Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98                                          struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106         if (!connector->mst_port)
107                 return connector->encoder;
108         else
109                 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113         int     min, max;
114 } intel_range_t;
115
116 typedef struct {
117         int     dot_limit;
118         int     p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
124         intel_p2_t          p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         WARN_ON(!HAS_PCH_SPLIT(dev));
133
134         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140         if (IS_GEN5(dev)) {
141                 struct drm_i915_private *dev_priv = dev->dev_private;
142                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143         } else
144                 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148         .dot = { .min = 25000, .max = 350000 },
149         .vco = { .min = 908000, .max = 1512000 },
150         .n = { .min = 2, .max = 16 },
151         .m = { .min = 96, .max = 140 },
152         .m1 = { .min = 18, .max = 26 },
153         .m2 = { .min = 6, .max = 16 },
154         .p = { .min = 4, .max = 128 },
155         .p1 = { .min = 2, .max = 33 },
156         .p2 = { .dot_limit = 165000,
157                 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 1, .max = 6 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187         .dot = { .min = 20000, .max = 400000 },
188         .vco = { .min = 1400000, .max = 2800000 },
189         .n = { .min = 1, .max = 6 },
190         .m = { .min = 70, .max = 120 },
191         .m1 = { .min = 8, .max = 18 },
192         .m2 = { .min = 3, .max = 7 },
193         .p = { .min = 5, .max = 80 },
194         .p1 = { .min = 1, .max = 8 },
195         .p2 = { .dot_limit = 200000,
196                 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 7, .max = 98 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 112000,
209                 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214         .dot = { .min = 25000, .max = 270000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 10, .max = 30 },
221         .p1 = { .min = 1, .max = 3},
222         .p2 = { .dot_limit = 270000,
223                 .p2_slow = 10,
224                 .p2_fast = 10
225         },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229         .dot = { .min = 22000, .max = 400000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 4 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 16, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 5, .max = 80 },
236         .p1 = { .min = 1, .max = 8},
237         .p2 = { .dot_limit = 165000,
238                 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242         .dot = { .min = 20000, .max = 115000 },
243         .vco = { .min = 1750000, .max = 3500000 },
244         .n = { .min = 1, .max = 3 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 17, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 28, .max = 112 },
249         .p1 = { .min = 2, .max = 8 },
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 14, .p2_fast = 14
252         },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256         .dot = { .min = 80000, .max = 224000 },
257         .vco = { .min = 1750000, .max = 3500000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 104, .max = 138 },
260         .m1 = { .min = 17, .max = 23 },
261         .m2 = { .min = 5, .max = 11 },
262         .p = { .min = 14, .max = 42 },
263         .p1 = { .min = 2, .max = 6 },
264         .p2 = { .dot_limit = 0,
265                 .p2_slow = 7, .p2_fast = 7
266         },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270         .dot = { .min = 20000, .max = 400000},
271         .vco = { .min = 1700000, .max = 3500000 },
272         /* Pineview's Ncounter is a ring counter */
273         .n = { .min = 3, .max = 6 },
274         .m = { .min = 2, .max = 256 },
275         /* Pineview only has one combined m divider, which we treat as m2. */
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 200000,
281                 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285         .dot = { .min = 20000, .max = 400000 },
286         .vco = { .min = 1700000, .max = 3500000 },
287         .n = { .min = 3, .max = 6 },
288         .m = { .min = 2, .max = 256 },
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 7, .max = 112 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 112000,
294                 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298  *
299  * We calculate clock using (register_value + 2) for N/M1/M2, so here
300  * the range value for them is (actual_value - 2).
301  */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 5 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 3 },
319         .m = { .min = 79, .max = 118 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 127 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 56 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343         .dot = { .min = 25000, .max = 350000 },
344         .vco = { .min = 1760000, .max = 3510000 },
345         .n = { .min = 1, .max = 2 },
346         .m = { .min = 79, .max = 126 },
347         .m1 = { .min = 12, .max = 22 },
348         .m2 = { .min = 5, .max = 9 },
349         .p = { .min = 28, .max = 112 },
350         .p1 = { .min = 2, .max = 8 },
351         .p2 = { .dot_limit = 225000,
352                 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 3 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 14, .max = 42 },
363         .p1 = { .min = 2, .max = 6 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369          /*
370           * These are the data rate limits (measured in fast clocks)
371           * since those are the strictest limits we have. The fast
372           * clock and actual rate limits are more relaxed, so checking
373           * them would make no difference.
374           */
375         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376         .vco = { .min = 4000000, .max = 6000000 },
377         .n = { .min = 1, .max = 7 },
378         .m1 = { .min = 2, .max = 3 },
379         .m2 = { .min = 11, .max = 156 },
380         .p1 = { .min = 2, .max = 3 },
381         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385         /*
386          * These are the data rate limits (measured in fast clocks)
387          * since those are the strictest limits we have.  The fast
388          * clock and actual rate limits are more relaxed, so checking
389          * them would make no difference.
390          */
391         .dot = { .min = 25000 * 5, .max = 540000 * 5},
392         .vco = { .min = 4860000, .max = 6700000 },
393         .n = { .min = 1, .max = 1 },
394         .m1 = { .min = 2, .max = 2 },
395         .m2 = { .min = 24 << 22, .max = 175 << 22 },
396         .p1 = { .min = 2, .max = 4 },
397         .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402         clock->m = clock->m1 * clock->m2;
403         clock->p = clock->p1 * clock->p2;
404         if (WARN_ON(clock->n == 0 || clock->p == 0))
405                 return;
406         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411  * Returns whether any output on the specified pipe is of the specified type
412  */
413 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414 {
415         struct drm_device *dev = crtc->dev;
416         struct intel_encoder *encoder;
417
418         for_each_encoder_on_crtc(dev, crtc, encoder)
419                 if (encoder->type == type)
420                         return true;
421
422         return false;
423 }
424
425 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426                                                 int refclk)
427 {
428         struct drm_device *dev = crtc->dev;
429         const intel_limit_t *limit;
430
431         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
432                 if (intel_is_dual_link_lvds(dev)) {
433                         if (refclk == 100000)
434                                 limit = &intel_limits_ironlake_dual_lvds_100m;
435                         else
436                                 limit = &intel_limits_ironlake_dual_lvds;
437                 } else {
438                         if (refclk == 100000)
439                                 limit = &intel_limits_ironlake_single_lvds_100m;
440                         else
441                                 limit = &intel_limits_ironlake_single_lvds;
442                 }
443         } else
444                 limit = &intel_limits_ironlake_dac;
445
446         return limit;
447 }
448
449 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450 {
451         struct drm_device *dev = crtc->dev;
452         const intel_limit_t *limit;
453
454         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
455                 if (intel_is_dual_link_lvds(dev))
456                         limit = &intel_limits_g4x_dual_channel_lvds;
457                 else
458                         limit = &intel_limits_g4x_single_channel_lvds;
459         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
461                 limit = &intel_limits_g4x_hdmi;
462         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
463                 limit = &intel_limits_g4x_sdvo;
464         } else /* The option is for other outputs */
465                 limit = &intel_limits_i9xx_sdvo;
466
467         return limit;
468 }
469
470 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
471 {
472         struct drm_device *dev = crtc->dev;
473         const intel_limit_t *limit;
474
475         if (HAS_PCH_SPLIT(dev))
476                 limit = intel_ironlake_limit(crtc, refclk);
477         else if (IS_G4X(dev)) {
478                 limit = intel_g4x_limit(crtc);
479         } else if (IS_PINEVIEW(dev)) {
480                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
481                         limit = &intel_limits_pineview_lvds;
482                 else
483                         limit = &intel_limits_pineview_sdvo;
484         } else if (IS_CHERRYVIEW(dev)) {
485                 limit = &intel_limits_chv;
486         } else if (IS_VALLEYVIEW(dev)) {
487                 limit = &intel_limits_vlv;
488         } else if (!IS_GEN2(dev)) {
489                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490                         limit = &intel_limits_i9xx_lvds;
491                 else
492                         limit = &intel_limits_i9xx_sdvo;
493         } else {
494                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
495                         limit = &intel_limits_i8xx_lvds;
496                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
497                         limit = &intel_limits_i8xx_dvo;
498                 else
499                         limit = &intel_limits_i8xx_dac;
500         }
501         return limit;
502 }
503
504 /* m1 is reserved as 0 in Pineview, n is a ring counter */
505 static void pineview_clock(int refclk, intel_clock_t *clock)
506 {
507         clock->m = clock->m2 + 2;
508         clock->p = clock->p1 * clock->p2;
509         if (WARN_ON(clock->n == 0 || clock->p == 0))
510                 return;
511         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
513 }
514
515 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516 {
517         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518 }
519
520 static void i9xx_clock(int refclk, intel_clock_t *clock)
521 {
522         clock->m = i9xx_dpll_compute_m(clock);
523         clock->p = clock->p1 * clock->p2;
524         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525                 return;
526         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
528 }
529
530 static void chv_clock(int refclk, intel_clock_t *clock)
531 {
532         clock->m = clock->m1 * clock->m2;
533         clock->p = clock->p1 * clock->p2;
534         if (WARN_ON(clock->n == 0 || clock->p == 0))
535                 return;
536         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537                         clock->n << 22);
538         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539 }
540
541 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
542 /**
543  * Returns whether the given set of divisors are valid for a given refclk with
544  * the given connectors.
545  */
546
547 static bool intel_PLL_is_valid(struct drm_device *dev,
548                                const intel_limit_t *limit,
549                                const intel_clock_t *clock)
550 {
551         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
552                 INTELPllInvalid("n out of range\n");
553         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
554                 INTELPllInvalid("p1 out of range\n");
555         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
556                 INTELPllInvalid("m2 out of range\n");
557         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
558                 INTELPllInvalid("m1 out of range\n");
559
560         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561                 if (clock->m1 <= clock->m2)
562                         INTELPllInvalid("m1 <= m2\n");
563
564         if (!IS_VALLEYVIEW(dev)) {
565                 if (clock->p < limit->p.min || limit->p.max < clock->p)
566                         INTELPllInvalid("p out of range\n");
567                 if (clock->m < limit->m.min || limit->m.max < clock->m)
568                         INTELPllInvalid("m out of range\n");
569         }
570
571         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
572                 INTELPllInvalid("vco out of range\n");
573         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574          * connector, etc., rather than just a single range.
575          */
576         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
577                 INTELPllInvalid("dot out of range\n");
578
579         return true;
580 }
581
582 static bool
583 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
584                     int target, int refclk, intel_clock_t *match_clock,
585                     intel_clock_t *best_clock)
586 {
587         struct drm_device *dev = crtc->dev;
588         intel_clock_t clock;
589         int err = target;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 /*
593                  * For LVDS just rely on its current settings for dual-channel.
594                  * We haven't figured out how to reliably set up different
595                  * single/dual channel state, if we even can.
596                  */
597                 if (intel_is_dual_link_lvds(dev))
598                         clock.p2 = limit->p2.p2_fast;
599                 else
600                         clock.p2 = limit->p2.p2_slow;
601         } else {
602                 if (target < limit->p2.dot_limit)
603                         clock.p2 = limit->p2.p2_slow;
604                 else
605                         clock.p2 = limit->p2.p2_fast;
606         }
607
608         memset(best_clock, 0, sizeof(*best_clock));
609
610         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611              clock.m1++) {
612                 for (clock.m2 = limit->m2.min;
613                      clock.m2 <= limit->m2.max; clock.m2++) {
614                         if (clock.m2 >= clock.m1)
615                                 break;
616                         for (clock.n = limit->n.min;
617                              clock.n <= limit->n.max; clock.n++) {
618                                 for (clock.p1 = limit->p1.min;
619                                         clock.p1 <= limit->p1.max; clock.p1++) {
620                                         int this_err;
621
622                                         i9xx_clock(refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626                                         if (match_clock &&
627                                             clock.p != match_clock->p)
628                                                 continue;
629
630                                         this_err = abs(clock.dot - target);
631                                         if (this_err < err) {
632                                                 *best_clock = clock;
633                                                 err = this_err;
634                                         }
635                                 }
636                         }
637                 }
638         }
639
640         return (err != target);
641 }
642
643 static bool
644 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645                    int target, int refclk, intel_clock_t *match_clock,
646                    intel_clock_t *best_clock)
647 {
648         struct drm_device *dev = crtc->dev;
649         intel_clock_t clock;
650         int err = target;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 /*
654                  * For LVDS just rely on its current settings for dual-channel.
655                  * We haven't figured out how to reliably set up different
656                  * single/dual channel state, if we even can.
657                  */
658                 if (intel_is_dual_link_lvds(dev))
659                         clock.p2 = limit->p2.p2_fast;
660                 else
661                         clock.p2 = limit->p2.p2_slow;
662         } else {
663                 if (target < limit->p2.dot_limit)
664                         clock.p2 = limit->p2.p2_slow;
665                 else
666                         clock.p2 = limit->p2.p2_fast;
667         }
668
669         memset(best_clock, 0, sizeof(*best_clock));
670
671         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672              clock.m1++) {
673                 for (clock.m2 = limit->m2.min;
674                      clock.m2 <= limit->m2.max; clock.m2++) {
675                         for (clock.n = limit->n.min;
676                              clock.n <= limit->n.max; clock.n++) {
677                                 for (clock.p1 = limit->p1.min;
678                                         clock.p1 <= limit->p1.max; clock.p1++) {
679                                         int this_err;
680
681                                         pineview_clock(refclk, &clock);
682                                         if (!intel_PLL_is_valid(dev, limit,
683                                                                 &clock))
684                                                 continue;
685                                         if (match_clock &&
686                                             clock.p != match_clock->p)
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err) {
691                                                 *best_clock = clock;
692                                                 err = this_err;
693                                         }
694                                 }
695                         }
696                 }
697         }
698
699         return (err != target);
700 }
701
702 static bool
703 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704                    int target, int refclk, intel_clock_t *match_clock,
705                    intel_clock_t *best_clock)
706 {
707         struct drm_device *dev = crtc->dev;
708         intel_clock_t clock;
709         int max_n;
710         bool found;
711         /* approximately equals target * 0.00585 */
712         int err_most = (target >> 8) + (target >> 9);
713         found = false;
714
715         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
716                 if (intel_is_dual_link_lvds(dev))
717                         clock.p2 = limit->p2.p2_fast;
718                 else
719                         clock.p2 = limit->p2.p2_slow;
720         } else {
721                 if (target < limit->p2.dot_limit)
722                         clock.p2 = limit->p2.p2_slow;
723                 else
724                         clock.p2 = limit->p2.p2_fast;
725         }
726
727         memset(best_clock, 0, sizeof(*best_clock));
728         max_n = limit->n.max;
729         /* based on hardware requirement, prefer smaller n to precision */
730         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731                 /* based on hardware requirement, prefere larger m1,m2 */
732                 for (clock.m1 = limit->m1.max;
733                      clock.m1 >= limit->m1.min; clock.m1--) {
734                         for (clock.m2 = limit->m2.max;
735                              clock.m2 >= limit->m2.min; clock.m2--) {
736                                 for (clock.p1 = limit->p1.max;
737                                      clock.p1 >= limit->p1.min; clock.p1--) {
738                                         int this_err;
739
740                                         i9xx_clock(refclk, &clock);
741                                         if (!intel_PLL_is_valid(dev, limit,
742                                                                 &clock))
743                                                 continue;
744
745                                         this_err = abs(clock.dot - target);
746                                         if (this_err < err_most) {
747                                                 *best_clock = clock;
748                                                 err_most = this_err;
749                                                 max_n = clock.n;
750                                                 found = true;
751                                         }
752                                 }
753                         }
754                 }
755         }
756         return found;
757 }
758
759 static bool
760 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761                    int target, int refclk, intel_clock_t *match_clock,
762                    intel_clock_t *best_clock)
763 {
764         struct drm_device *dev = crtc->dev;
765         intel_clock_t clock;
766         unsigned int bestppm = 1000000;
767         /* min update 19.2 MHz */
768         int max_n = min(limit->n.max, refclk / 19200);
769         bool found = false;
770
771         target *= 5; /* fast clock */
772
773         memset(best_clock, 0, sizeof(*best_clock));
774
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
778                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
779                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
780                                 clock.p = clock.p1 * clock.p2;
781                                 /* based on hardware requirement, prefer bigger m1,m2 values */
782                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
783                                         unsigned int ppm, diff;
784
785                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786                                                                      refclk * clock.m1);
787
788                                         vlv_clock(refclk, &clock);
789
790                                         if (!intel_PLL_is_valid(dev, limit,
791                                                                 &clock))
792                                                 continue;
793
794                                         diff = abs(clock.dot - target);
795                                         ppm = div_u64(1000000ULL * diff, target);
796
797                                         if (ppm < 100 && clock.p > best_clock->p) {
798                                                 bestppm = 0;
799                                                 *best_clock = clock;
800                                                 found = true;
801                                         }
802
803                                         if (bestppm >= 10 && ppm < bestppm - 10) {
804                                                 bestppm = ppm;
805                                                 *best_clock = clock;
806                                                 found = true;
807                                         }
808                                 }
809                         }
810                 }
811         }
812
813         return found;
814 }
815
816 static bool
817 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818                    int target, int refclk, intel_clock_t *match_clock,
819                    intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823         uint64_t m2;
824         int found = false;
825
826         memset(best_clock, 0, sizeof(*best_clock));
827
828         /*
829          * Based on hardware doc, the n always set to 1, and m1 always
830          * set to 2.  If requires to support 200Mhz refclk, we need to
831          * revisit this because n may not 1 anymore.
832          */
833         clock.n = 1, clock.m1 = 2;
834         target *= 5;    /* fast clock */
835
836         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837                 for (clock.p2 = limit->p2.p2_fast;
838                                 clock.p2 >= limit->p2.p2_slow;
839                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841                         clock.p = clock.p1 * clock.p2;
842
843                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844                                         clock.n) << 22, refclk * clock.m1);
845
846                         if (m2 > INT_MAX/clock.m1)
847                                 continue;
848
849                         clock.m2 = m2;
850
851                         chv_clock(refclk, &clock);
852
853                         if (!intel_PLL_is_valid(dev, limit, &clock))
854                                 continue;
855
856                         /* based on hardware requirement, prefer bigger p
857                          */
858                         if (clock.p > best_clock->p) {
859                                 *best_clock = clock;
860                                 found = true;
861                         }
862                 }
863         }
864
865         return found;
866 }
867
868 bool intel_crtc_active(struct drm_crtc *crtc)
869 {
870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872         /* Be paranoid as we can arrive here with only partial
873          * state retrieved from the hardware during setup.
874          *
875          * We can ditch the adjusted_mode.crtc_clock check as soon
876          * as Haswell has gained clock readout/fastboot support.
877          *
878          * We can ditch the crtc->primary->fb check as soon as we can
879          * properly reconstruct framebuffers.
880          */
881         return intel_crtc->active && crtc->primary->fb &&
882                 intel_crtc->config.adjusted_mode.crtc_clock;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886                                              enum pipe pipe)
887 {
888         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         return intel_crtc->config.cpu_transcoder;
892 }
893
894 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
898
899         frame = I915_READ(frame_reg);
900
901         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902                 WARN(1, "vblank wait timed out\n");
903 }
904
905 /**
906  * intel_wait_for_vblank - wait for vblank on a given pipe
907  * @dev: drm device
908  * @pipe: pipe to wait for
909  *
910  * Wait for vblank to occur on a given pipe.  Needed for various bits of
911  * mode setting code.
912  */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         int pipestat_reg = PIPESTAT(pipe);
917
918         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919                 g4x_wait_for_vblank(dev, pipe);
920                 return;
921         }
922
923         /* Clear existing vblank status. Note this will clear any other
924          * sticky status fields as well.
925          *
926          * This races with i915_driver_irq_handler() with the result
927          * that either function could miss a vblank event.  Here it is not
928          * fatal, as we will either wait upon the next vblank interrupt or
929          * timeout.  Generally speaking intel_wait_for_vblank() is only
930          * called during modeset at which time the GPU should be idle and
931          * should *not* be performing page flips and thus not waiting on
932          * vblanks...
933          * Currently, the result of us stealing a vblank from the irq
934          * handler is that a single frame will be skipped during swapbuffers.
935          */
936         I915_WRITE(pipestat_reg,
937                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939         /* Wait for vblank interrupt bit to set */
940         if (wait_for(I915_READ(pipestat_reg) &
941                      PIPE_VBLANK_INTERRUPT_STATUS,
942                      50))
943                 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         u32 reg = PIPEDSL(pipe);
950         u32 line1, line2;
951         u32 line_mask;
952
953         if (IS_GEN2(dev))
954                 line_mask = DSL_LINEMASK_GEN2;
955         else
956                 line_mask = DSL_LINEMASK_GEN3;
957
958         line1 = I915_READ(reg) & line_mask;
959         mdelay(5);
960         line2 = I915_READ(reg) & line_mask;
961
962         return line1 == line2;
963 }
964
965 /*
966  * intel_wait_for_pipe_off - wait for pipe to turn off
967  * @dev: drm device
968  * @pipe: pipe to wait for
969  *
970  * After disabling a pipe, we can't wait for vblank in the usual way,
971  * spinning on the vblank interrupt status bit, since we won't actually
972  * see an interrupt when the pipe is disabled.
973  *
974  * On Gen4 and above:
975  *   wait for the pipe register state bit to turn off
976  *
977  * Otherwise:
978  *   wait for the display line value to settle (it usually
979  *   ends up stopping at the start of the next frame).
980  *
981  */
982 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
983 {
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986                                                                       pipe);
987
988         if (INTEL_INFO(dev)->gen >= 4) {
989                 int reg = PIPECONF(cpu_transcoder);
990
991                 /* Wait for the Pipe State to go off */
992                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993                              100))
994                         WARN(1, "pipe_off wait timed out\n");
995         } else {
996                 /* Wait for the display line to settle */
997                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998                         WARN(1, "pipe_off wait timed out\n");
999         }
1000 }
1001
1002 /*
1003  * ibx_digital_port_connected - is the specified port connected?
1004  * @dev_priv: i915 private structure
1005  * @port: the port to test
1006  *
1007  * Returns true if @port is connected, false otherwise.
1008  */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010                                 struct intel_digital_port *port)
1011 {
1012         u32 bit;
1013
1014         if (HAS_PCH_IBX(dev_priv->dev)) {
1015                 switch (port->port) {
1016                 case PORT_B:
1017                         bit = SDE_PORTB_HOTPLUG;
1018                         break;
1019                 case PORT_C:
1020                         bit = SDE_PORTC_HOTPLUG;
1021                         break;
1022                 case PORT_D:
1023                         bit = SDE_PORTD_HOTPLUG;
1024                         break;
1025                 default:
1026                         return true;
1027                 }
1028         } else {
1029                 switch (port->port) {
1030                 case PORT_B:
1031                         bit = SDE_PORTB_HOTPLUG_CPT;
1032                         break;
1033                 case PORT_C:
1034                         bit = SDE_PORTC_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_D:
1037                         bit = SDE_PORTD_HOTPLUG_CPT;
1038                         break;
1039                 default:
1040                         return true;
1041                 }
1042         }
1043
1044         return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049         return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054                 enum pipe pipe, bool state)
1055 {
1056         int reg;
1057         u32 val;
1058         bool cur_state;
1059
1060         reg = DPLL(pipe);
1061         val = I915_READ(reg);
1062         cur_state = !!(val & DPLL_VCO_ENABLE);
1063         WARN(cur_state != state,
1064              "PLL state assertion failure (expected %s, current %s)\n",
1065              state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071         u32 val;
1072         bool cur_state;
1073
1074         mutex_lock(&dev_priv->dpio_lock);
1075         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076         mutex_unlock(&dev_priv->dpio_lock);
1077
1078         cur_state = val & DSI_PLL_VCO_EN;
1079         WARN(cur_state != state,
1080              "DSI PLL state assertion failure (expected %s, current %s)\n",
1081              state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091         if (crtc->config.shared_dpll < 0)
1092                 return NULL;
1093
1094         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099                         struct intel_shared_dpll *pll,
1100                         bool state)
1101 {
1102         bool cur_state;
1103         struct intel_dpll_hw_state hw_state;
1104
1105         if (WARN (!pll,
1106                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1107                 return;
1108
1109         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110         WARN(cur_state != state,
1111              "%s assertion failure (expected %s, current %s)\n",
1112              pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183
1184         reg = FDI_RX_CTL(pipe);
1185         val = I915_READ(reg);
1186         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187         WARN(cur_state != state,
1188              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189              state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         int pp_reg, lvds_reg;
1196         u32 val;
1197         enum pipe panel_pipe = PIPE_A;
1198         bool locked = true;
1199
1200         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201                 pp_reg = PCH_PP_CONTROL;
1202                 lvds_reg = PCH_LVDS;
1203         } else {
1204                 pp_reg = PP_CONTROL;
1205                 lvds_reg = LVDS;
1206         }
1207
1208         val = I915_READ(pp_reg);
1209         if (!(val & PANEL_POWER_ON) ||
1210             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211                 locked = false;
1212
1213         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214                 panel_pipe = PIPE_B;
1215
1216         WARN(panel_pipe == pipe && locked,
1217              "panel assertion failure, pipe %c regs locked\n",
1218              pipe_name(pipe));
1219 }
1220
1221 static void assert_cursor(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         struct drm_device *dev = dev_priv->dev;
1225         bool cur_state;
1226
1227         if (IS_845G(dev) || IS_I865G(dev))
1228                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1229         else
1230                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1231
1232         WARN(cur_state != state,
1233              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234              pipe_name(pipe), state_string(state), state_string(cur_state));
1235 }
1236 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
1239 void assert_pipe(struct drm_i915_private *dev_priv,
1240                  enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246                                                                       pipe);
1247
1248         /* if we need the pipe A quirk it must be always on */
1249         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250                 state = true;
1251
1252         if (!intel_display_power_enabled(dev_priv,
1253                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1254                 cur_state = false;
1255         } else {
1256                 reg = PIPECONF(cpu_transcoder);
1257                 val = I915_READ(reg);
1258                 cur_state = !!(val & PIPECONF_ENABLE);
1259         }
1260
1261         WARN(cur_state != state,
1262              "pipe %c assertion failure (expected %s, current %s)\n",
1263              pipe_name(pipe), state_string(state), state_string(cur_state));
1264 }
1265
1266 static void assert_plane(struct drm_i915_private *dev_priv,
1267                          enum plane plane, bool state)
1268 {
1269         int reg;
1270         u32 val;
1271         bool cur_state;
1272
1273         reg = DSPCNTR(plane);
1274         val = I915_READ(reg);
1275         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276         WARN(cur_state != state,
1277              "plane %c assertion failure (expected %s, current %s)\n",
1278              plane_name(plane), state_string(state), state_string(cur_state));
1279 }
1280
1281 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
1284 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285                                    enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int reg, i;
1289         u32 val;
1290         int cur_pipe;
1291
1292         /* Primary planes are fixed to pipes on gen4+ */
1293         if (INTEL_INFO(dev)->gen >= 4) {
1294                 reg = DSPCNTR(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & DISPLAY_PLANE_ENABLE,
1297                      "plane %c assertion failure, should be disabled but not\n",
1298                      plane_name(pipe));
1299                 return;
1300         }
1301
1302         /* Need to check both planes against the pipe */
1303         for_each_pipe(i) {
1304                 reg = DSPCNTR(i);
1305                 val = I915_READ(reg);
1306                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307                         DISPPLANE_SEL_PIPE_SHIFT;
1308                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1309                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310                      plane_name(i), pipe_name(pipe));
1311         }
1312 }
1313
1314 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315                                     enum pipe pipe)
1316 {
1317         struct drm_device *dev = dev_priv->dev;
1318         int reg, sprite;
1319         u32 val;
1320
1321         if (IS_VALLEYVIEW(dev)) {
1322                 for_each_sprite(pipe, sprite) {
1323                         reg = SPCNTR(pipe, sprite);
1324                         val = I915_READ(reg);
1325                         WARN(val & SP_ENABLE,
1326                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327                              sprite_name(pipe, sprite), pipe_name(pipe));
1328                 }
1329         } else if (INTEL_INFO(dev)->gen >= 7) {
1330                 reg = SPRCTL(pipe);
1331                 val = I915_READ(reg);
1332                 WARN(val & SPRITE_ENABLE,
1333                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1334                      plane_name(pipe), pipe_name(pipe));
1335         } else if (INTEL_INFO(dev)->gen >= 5) {
1336                 reg = DVSCNTR(pipe);
1337                 val = I915_READ(reg);
1338                 WARN(val & DVS_ENABLE,
1339                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340                      plane_name(pipe), pipe_name(pipe));
1341         }
1342 }
1343
1344 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1345 {
1346         u32 val;
1347         bool enabled;
1348
1349         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1350
1351         val = I915_READ(PCH_DREF_CONTROL);
1352         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353                             DREF_SUPERSPREAD_SOURCE_MASK));
1354         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355 }
1356
1357 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358                                            enum pipe pipe)
1359 {
1360         int reg;
1361         u32 val;
1362         bool enabled;
1363
1364         reg = PCH_TRANSCONF(pipe);
1365         val = I915_READ(reg);
1366         enabled = !!(val & TRANS_ENABLE);
1367         WARN(enabled,
1368              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369              pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373                             enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375         if ((val & DP_PORT_EN) == 0)
1376                 return false;
1377
1378         if (HAS_PCH_CPT(dev_priv->dev)) {
1379                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382                         return false;
1383         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385                         return false;
1386         } else {
1387                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388                         return false;
1389         }
1390         return true;
1391 }
1392
1393 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394                               enum pipe pipe, u32 val)
1395 {
1396         if ((val & SDVO_ENABLE) == 0)
1397                 return false;
1398
1399         if (HAS_PCH_CPT(dev_priv->dev)) {
1400                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1401                         return false;
1402         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404                         return false;
1405         } else {
1406                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1407                         return false;
1408         }
1409         return true;
1410 }
1411
1412 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413                               enum pipe pipe, u32 val)
1414 {
1415         if ((val & LVDS_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv->dev)) {
1419                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420                         return false;
1421         } else {
1422                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423                         return false;
1424         }
1425         return true;
1426 }
1427
1428 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429                               enum pipe pipe, u32 val)
1430 {
1431         if ((val & ADPA_DAC_ENABLE) == 0)
1432                 return false;
1433         if (HAS_PCH_CPT(dev_priv->dev)) {
1434                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435                         return false;
1436         } else {
1437                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438                         return false;
1439         }
1440         return true;
1441 }
1442
1443 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1444                                    enum pipe pipe, int reg, u32 port_sel)
1445 {
1446         u32 val = I915_READ(reg);
1447         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449              reg, pipe_name(pipe));
1450
1451         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452              && (val & DP_PIPEB_SELECT),
1453              "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457                                      enum pipe pipe, int reg)
1458 {
1459         u32 val = I915_READ(reg);
1460         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462              reg, pipe_name(pipe));
1463
1464         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1465              && (val & SDVO_PIPE_B_SELECT),
1466              "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470                                       enum pipe pipe)
1471 {
1472         int reg;
1473         u32 val;
1474
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1478
1479         reg = PCH_ADPA;
1480         val = I915_READ(reg);
1481         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482              "PCH VGA enabled on transcoder %c, should be disabled\n",
1483              pipe_name(pipe));
1484
1485         reg = PCH_LVDS;
1486         val = I915_READ(reg);
1487         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1488              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1489              pipe_name(pipe));
1490
1491         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1494 }
1495
1496 static void intel_init_dpio(struct drm_device *dev)
1497 {
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500         if (!IS_VALLEYVIEW(dev))
1501                 return;
1502
1503         /*
1504          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505          * CHV x1 PHY (DP/HDMI D)
1506          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507          */
1508         if (IS_CHERRYVIEW(dev)) {
1509                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511         } else {
1512                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513         }
1514 }
1515
1516 static void intel_reset_dpio(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         if (IS_CHERRYVIEW(dev)) {
1521                 enum dpio_phy phy;
1522                 u32 val;
1523
1524                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525                         /* Poll for phypwrgood signal */
1526                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527                                                 PHY_POWERGOOD(phy), 1))
1528                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530                         /*
1531                          * Deassert common lane reset for PHY.
1532                          *
1533                          * This should only be done on init and resume from S3
1534                          * with both PLLs disabled, or we risk losing DPIO and
1535                          * PLL synchronization.
1536                          */
1537                         val = I915_READ(DISPLAY_PHY_CONTROL);
1538                         I915_WRITE(DISPLAY_PHY_CONTROL,
1539                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540                 }
1541         }
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc)
1545 {
1546         struct drm_device *dev = crtc->base.dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         int reg = DPLL(crtc->pipe);
1549         u32 dpll = crtc->config.dpll_hw_state.dpll;
1550
1551         assert_pipe_disabled(dev_priv, crtc->pipe);
1552
1553         /* No really, not for ILK+ */
1554         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         I915_WRITE(reg, dpll);
1561         POSTING_READ(reg);
1562         udelay(150);
1563
1564         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1565                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1566
1567         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1568         POSTING_READ(DPLL_MD(crtc->pipe));
1569
1570         /* We do this three times for luck */
1571         I915_WRITE(reg, dpll);
1572         POSTING_READ(reg);
1573         udelay(150); /* wait for warmup */
1574         I915_WRITE(reg, dpll);
1575         POSTING_READ(reg);
1576         udelay(150); /* wait for warmup */
1577         I915_WRITE(reg, dpll);
1578         POSTING_READ(reg);
1579         udelay(150); /* wait for warmup */
1580 }
1581
1582 static void chv_enable_pll(struct intel_crtc *crtc)
1583 {
1584         struct drm_device *dev = crtc->base.dev;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586         int pipe = crtc->pipe;
1587         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1588         u32 tmp;
1589
1590         assert_pipe_disabled(dev_priv, crtc->pipe);
1591
1592         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1593
1594         mutex_lock(&dev_priv->dpio_lock);
1595
1596         /* Enable back the 10bit clock to display controller */
1597         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1598         tmp |= DPIO_DCLKP_EN;
1599         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1600
1601         /*
1602          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1603          */
1604         udelay(1);
1605
1606         /* Enable PLL */
1607         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1608
1609         /* Check PLL is locked */
1610         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1611                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1612
1613         /* not sure when this should be written */
1614         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1615         POSTING_READ(DPLL_MD(pipe));
1616
1617         mutex_unlock(&dev_priv->dpio_lock);
1618 }
1619
1620 static void i9xx_enable_pll(struct intel_crtc *crtc)
1621 {
1622         struct drm_device *dev = crtc->base.dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         int reg = DPLL(crtc->pipe);
1625         u32 dpll = crtc->config.dpll_hw_state.dpll;
1626
1627         assert_pipe_disabled(dev_priv, crtc->pipe);
1628
1629         /* No really, not for ILK+ */
1630         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1631
1632         /* PLL is protected by panel, make sure we can write it */
1633         if (IS_MOBILE(dev) && !IS_I830(dev))
1634                 assert_panel_unlocked(dev_priv, crtc->pipe);
1635
1636         I915_WRITE(reg, dpll);
1637
1638         /* Wait for the clocks to stabilize. */
1639         POSTING_READ(reg);
1640         udelay(150);
1641
1642         if (INTEL_INFO(dev)->gen >= 4) {
1643                 I915_WRITE(DPLL_MD(crtc->pipe),
1644                            crtc->config.dpll_hw_state.dpll_md);
1645         } else {
1646                 /* The pixel multiplier can only be updated once the
1647                  * DPLL is enabled and the clocks are stable.
1648                  *
1649                  * So write it again.
1650                  */
1651                 I915_WRITE(reg, dpll);
1652         }
1653
1654         /* We do this three times for luck */
1655         I915_WRITE(reg, dpll);
1656         POSTING_READ(reg);
1657         udelay(150); /* wait for warmup */
1658         I915_WRITE(reg, dpll);
1659         POSTING_READ(reg);
1660         udelay(150); /* wait for warmup */
1661         I915_WRITE(reg, dpll);
1662         POSTING_READ(reg);
1663         udelay(150); /* wait for warmup */
1664 }
1665
1666 /**
1667  * i9xx_disable_pll - disable a PLL
1668  * @dev_priv: i915 private structure
1669  * @pipe: pipe PLL to disable
1670  *
1671  * Disable the PLL for @pipe, making sure the pipe is off first.
1672  *
1673  * Note!  This is for pre-ILK only.
1674  */
1675 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         /* Don't disable pipe A or pipe A PLLs if needed */
1678         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1679                 return;
1680
1681         /* Make sure the pipe isn't still relying on us */
1682         assert_pipe_disabled(dev_priv, pipe);
1683
1684         I915_WRITE(DPLL(pipe), 0);
1685         POSTING_READ(DPLL(pipe));
1686 }
1687
1688 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1689 {
1690         u32 val = 0;
1691
1692         /* Make sure the pipe isn't still relying on us */
1693         assert_pipe_disabled(dev_priv, pipe);
1694
1695         /*
1696          * Leave integrated clock source and reference clock enabled for pipe B.
1697          * The latter is needed for VGA hotplug / manual detection.
1698          */
1699         if (pipe == PIPE_B)
1700                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1701         I915_WRITE(DPLL(pipe), val);
1702         POSTING_READ(DPLL(pipe));
1703
1704 }
1705
1706 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 {
1708         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1709         u32 val;
1710
1711         /* Make sure the pipe isn't still relying on us */
1712         assert_pipe_disabled(dev_priv, pipe);
1713
1714         /* Set PLL en = 0 */
1715         val = DPLL_SSC_REF_CLOCK_CHV;
1716         if (pipe != PIPE_A)
1717                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1718         I915_WRITE(DPLL(pipe), val);
1719         POSTING_READ(DPLL(pipe));
1720
1721         mutex_lock(&dev_priv->dpio_lock);
1722
1723         /* Disable 10bit clock to display controller */
1724         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1725         val &= ~DPIO_DCLKP_EN;
1726         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1727
1728         /* disable left/right clock distribution */
1729         if (pipe != PIPE_B) {
1730                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1731                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1732                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1733         } else {
1734                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1735                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1736                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1737         }
1738
1739         mutex_unlock(&dev_priv->dpio_lock);
1740 }
1741
1742 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1743                 struct intel_digital_port *dport)
1744 {
1745         u32 port_mask;
1746         int dpll_reg;
1747
1748         switch (dport->port) {
1749         case PORT_B:
1750                 port_mask = DPLL_PORTB_READY_MASK;
1751                 dpll_reg = DPLL(0);
1752                 break;
1753         case PORT_C:
1754                 port_mask = DPLL_PORTC_READY_MASK;
1755                 dpll_reg = DPLL(0);
1756                 break;
1757         case PORT_D:
1758                 port_mask = DPLL_PORTD_READY_MASK;
1759                 dpll_reg = DPIO_PHY_STATUS;
1760                 break;
1761         default:
1762                 BUG();
1763         }
1764
1765         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1766                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1767                      port_name(dport->port), I915_READ(dpll_reg));
1768 }
1769
1770 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1771 {
1772         struct drm_device *dev = crtc->base.dev;
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776         if (WARN_ON(pll == NULL))
1777                 return;
1778
1779         WARN_ON(!pll->refcount);
1780         if (pll->active == 0) {
1781                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1782                 WARN_ON(pll->on);
1783                 assert_shared_dpll_disabled(dev_priv, pll);
1784
1785                 pll->mode_set(dev_priv, pll);
1786         }
1787 }
1788
1789 /**
1790  * intel_enable_shared_dpll - enable PCH PLL
1791  * @dev_priv: i915 private structure
1792  * @pipe: pipe PLL to enable
1793  *
1794  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1795  * drives the transcoder clock.
1796  */
1797 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1798 {
1799         struct drm_device *dev = crtc->base.dev;
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1802
1803         if (WARN_ON(pll == NULL))
1804                 return;
1805
1806         if (WARN_ON(pll->refcount == 0))
1807                 return;
1808
1809         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1810                       pll->name, pll->active, pll->on,
1811                       crtc->base.base.id);
1812
1813         if (pll->active++) {
1814                 WARN_ON(!pll->on);
1815                 assert_shared_dpll_enabled(dev_priv, pll);
1816                 return;
1817         }
1818         WARN_ON(pll->on);
1819
1820         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1821
1822         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1823         pll->enable(dev_priv, pll);
1824         pll->on = true;
1825 }
1826
1827 void intel_disable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829         struct drm_device *dev = crtc->base.dev;
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833         /* PCH only available on ILK+ */
1834         BUG_ON(INTEL_INFO(dev)->gen < 5);
1835         if (WARN_ON(pll == NULL))
1836                return;
1837
1838         if (WARN_ON(pll->refcount == 0))
1839                 return;
1840
1841         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1842                       pll->name, pll->active, pll->on,
1843                       crtc->base.base.id);
1844
1845         if (WARN_ON(pll->active == 0)) {
1846                 assert_shared_dpll_disabled(dev_priv, pll);
1847                 return;
1848         }
1849
1850         assert_shared_dpll_enabled(dev_priv, pll);
1851         WARN_ON(!pll->on);
1852         if (--pll->active)
1853                 return;
1854
1855         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1856         pll->disable(dev_priv, pll);
1857         pll->on = false;
1858
1859         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1860 }
1861
1862 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1863                                            enum pipe pipe)
1864 {
1865         struct drm_device *dev = dev_priv->dev;
1866         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1868         uint32_t reg, val, pipeconf_val;
1869
1870         /* PCH only available on ILK+ */
1871         BUG_ON(INTEL_INFO(dev)->gen < 5);
1872
1873         /* Make sure PCH DPLL is enabled */
1874         assert_shared_dpll_enabled(dev_priv,
1875                                    intel_crtc_to_shared_dpll(intel_crtc));
1876
1877         /* FDI must be feeding us bits for PCH ports */
1878         assert_fdi_tx_enabled(dev_priv, pipe);
1879         assert_fdi_rx_enabled(dev_priv, pipe);
1880
1881         if (HAS_PCH_CPT(dev)) {
1882                 /* Workaround: Set the timing override bit before enabling the
1883                  * pch transcoder. */
1884                 reg = TRANS_CHICKEN2(pipe);
1885                 val = I915_READ(reg);
1886                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887                 I915_WRITE(reg, val);
1888         }
1889
1890         reg = PCH_TRANSCONF(pipe);
1891         val = I915_READ(reg);
1892         pipeconf_val = I915_READ(PIPECONF(pipe));
1893
1894         if (HAS_PCH_IBX(dev_priv->dev)) {
1895                 /*
1896                  * make the BPC in transcoder be consistent with
1897                  * that in pipeconf reg.
1898                  */
1899                 val &= ~PIPECONF_BPC_MASK;
1900                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1901         }
1902
1903         val &= ~TRANS_INTERLACE_MASK;
1904         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1905                 if (HAS_PCH_IBX(dev_priv->dev) &&
1906                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1907                         val |= TRANS_LEGACY_INTERLACED_ILK;
1908                 else
1909                         val |= TRANS_INTERLACED;
1910         else
1911                 val |= TRANS_PROGRESSIVE;
1912
1913         I915_WRITE(reg, val | TRANS_ENABLE);
1914         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1915                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1916 }
1917
1918 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1919                                       enum transcoder cpu_transcoder)
1920 {
1921         u32 val, pipeconf_val;
1922
1923         /* PCH only available on ILK+ */
1924         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1925
1926         /* FDI must be feeding us bits for PCH ports */
1927         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1928         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1929
1930         /* Workaround: set timing override bit. */
1931         val = I915_READ(_TRANSA_CHICKEN2);
1932         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1933         I915_WRITE(_TRANSA_CHICKEN2, val);
1934
1935         val = TRANS_ENABLE;
1936         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1937
1938         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1939             PIPECONF_INTERLACED_ILK)
1940                 val |= TRANS_INTERLACED;
1941         else
1942                 val |= TRANS_PROGRESSIVE;
1943
1944         I915_WRITE(LPT_TRANSCONF, val);
1945         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1946                 DRM_ERROR("Failed to enable PCH transcoder\n");
1947 }
1948
1949 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1950                                             enum pipe pipe)
1951 {
1952         struct drm_device *dev = dev_priv->dev;
1953         uint32_t reg, val;
1954
1955         /* FDI relies on the transcoder */
1956         assert_fdi_tx_disabled(dev_priv, pipe);
1957         assert_fdi_rx_disabled(dev_priv, pipe);
1958
1959         /* Ports must be off as well */
1960         assert_pch_ports_disabled(dev_priv, pipe);
1961
1962         reg = PCH_TRANSCONF(pipe);
1963         val = I915_READ(reg);
1964         val &= ~TRANS_ENABLE;
1965         I915_WRITE(reg, val);
1966         /* wait for PCH transcoder off, transcoder state */
1967         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1968                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1969
1970         if (!HAS_PCH_IBX(dev)) {
1971                 /* Workaround: Clear the timing override chicken bit again. */
1972                 reg = TRANS_CHICKEN2(pipe);
1973                 val = I915_READ(reg);
1974                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1975                 I915_WRITE(reg, val);
1976         }
1977 }
1978
1979 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1980 {
1981         u32 val;
1982
1983         val = I915_READ(LPT_TRANSCONF);
1984         val &= ~TRANS_ENABLE;
1985         I915_WRITE(LPT_TRANSCONF, val);
1986         /* wait for PCH transcoder off, transcoder state */
1987         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1988                 DRM_ERROR("Failed to disable PCH transcoder\n");
1989
1990         /* Workaround: clear timing override bit. */
1991         val = I915_READ(_TRANSA_CHICKEN2);
1992         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1993         I915_WRITE(_TRANSA_CHICKEN2, val);
1994 }
1995
1996 /**
1997  * intel_enable_pipe - enable a pipe, asserting requirements
1998  * @crtc: crtc responsible for the pipe
1999  *
2000  * Enable @crtc's pipe, making sure that various hardware specific requirements
2001  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2002  */
2003 static void intel_enable_pipe(struct intel_crtc *crtc)
2004 {
2005         struct drm_device *dev = crtc->base.dev;
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         enum pipe pipe = crtc->pipe;
2008         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2009                                                                       pipe);
2010         enum pipe pch_transcoder;
2011         int reg;
2012         u32 val;
2013
2014         assert_planes_disabled(dev_priv, pipe);
2015         assert_cursor_disabled(dev_priv, pipe);
2016         assert_sprites_disabled(dev_priv, pipe);
2017
2018         if (HAS_PCH_LPT(dev_priv->dev))
2019                 pch_transcoder = TRANSCODER_A;
2020         else
2021                 pch_transcoder = pipe;
2022
2023         /*
2024          * A pipe without a PLL won't actually be able to drive bits from
2025          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2026          * need the check.
2027          */
2028         if (!HAS_PCH_SPLIT(dev_priv->dev))
2029                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2030                         assert_dsi_pll_enabled(dev_priv);
2031                 else
2032                         assert_pll_enabled(dev_priv, pipe);
2033         else {
2034                 if (crtc->config.has_pch_encoder) {
2035                         /* if driving the PCH, we need FDI enabled */
2036                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2037                         assert_fdi_tx_pll_enabled(dev_priv,
2038                                                   (enum pipe) cpu_transcoder);
2039                 }
2040                 /* FIXME: assert CPU port conditions for SNB+ */
2041         }
2042
2043         reg = PIPECONF(cpu_transcoder);
2044         val = I915_READ(reg);
2045         if (val & PIPECONF_ENABLE) {
2046                 WARN_ON(!(pipe == PIPE_A &&
2047                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2048                 return;
2049         }
2050
2051         I915_WRITE(reg, val | PIPECONF_ENABLE);
2052         POSTING_READ(reg);
2053 }
2054
2055 /**
2056  * intel_disable_pipe - disable a pipe, asserting requirements
2057  * @dev_priv: i915 private structure
2058  * @pipe: pipe to disable
2059  *
2060  * Disable @pipe, making sure that various hardware specific requirements
2061  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2062  *
2063  * @pipe should be %PIPE_A or %PIPE_B.
2064  *
2065  * Will wait until the pipe has shut down before returning.
2066  */
2067 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2068                                enum pipe pipe)
2069 {
2070         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2071                                                                       pipe);
2072         int reg;
2073         u32 val;
2074
2075         /*
2076          * Make sure planes won't keep trying to pump pixels to us,
2077          * or we might hang the display.
2078          */
2079         assert_planes_disabled(dev_priv, pipe);
2080         assert_cursor_disabled(dev_priv, pipe);
2081         assert_sprites_disabled(dev_priv, pipe);
2082
2083         /* Don't disable pipe A or pipe A PLLs if needed */
2084         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2085                 return;
2086
2087         reg = PIPECONF(cpu_transcoder);
2088         val = I915_READ(reg);
2089         if ((val & PIPECONF_ENABLE) == 0)
2090                 return;
2091
2092         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2093         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2094 }
2095
2096 /*
2097  * Plane regs are double buffered, going from enabled->disabled needs a
2098  * trigger in order to latch.  The display address reg provides this.
2099  */
2100 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2101                                enum plane plane)
2102 {
2103         struct drm_device *dev = dev_priv->dev;
2104         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2105
2106         I915_WRITE(reg, I915_READ(reg));
2107         POSTING_READ(reg);
2108 }
2109
2110 /**
2111  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2112  * @dev_priv: i915 private structure
2113  * @plane: plane to enable
2114  * @pipe: pipe being fed
2115  *
2116  * Enable @plane on @pipe, making sure that @pipe is running first.
2117  */
2118 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2119                                           enum plane plane, enum pipe pipe)
2120 {
2121         struct drm_device *dev = dev_priv->dev;
2122         struct intel_crtc *intel_crtc =
2123                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124         int reg;
2125         u32 val;
2126
2127         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128         assert_pipe_enabled(dev_priv, pipe);
2129
2130         if (intel_crtc->primary_enabled)
2131                 return;
2132
2133         intel_crtc->primary_enabled = true;
2134
2135         reg = DSPCNTR(plane);
2136         val = I915_READ(reg);
2137         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2138
2139         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2140         intel_flush_primary_plane(dev_priv, plane);
2141
2142         /*
2143          * BDW signals flip done immediately if the plane
2144          * is disabled, even if the plane enable is already
2145          * armed to occur at the next vblank :(
2146          */
2147         if (IS_BROADWELL(dev))
2148                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2149 }
2150
2151 /**
2152  * intel_disable_primary_hw_plane - disable the primary hardware plane
2153  * @dev_priv: i915 private structure
2154  * @plane: plane to disable
2155  * @pipe: pipe consuming the data
2156  *
2157  * Disable @plane; should be an independent operation.
2158  */
2159 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2160                                            enum plane plane, enum pipe pipe)
2161 {
2162         struct intel_crtc *intel_crtc =
2163                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2164         int reg;
2165         u32 val;
2166
2167         if (!intel_crtc->primary_enabled)
2168                 return;
2169
2170         intel_crtc->primary_enabled = false;
2171
2172         reg = DSPCNTR(plane);
2173         val = I915_READ(reg);
2174         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2175
2176         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2177         intel_flush_primary_plane(dev_priv, plane);
2178 }
2179
2180 static bool need_vtd_wa(struct drm_device *dev)
2181 {
2182 #ifdef CONFIG_INTEL_IOMMU
2183         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2184                 return true;
2185 #endif
2186         return false;
2187 }
2188
2189 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2190 {
2191         int tile_height;
2192
2193         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2194         return ALIGN(height, tile_height);
2195 }
2196
2197 int
2198 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2199                            struct drm_i915_gem_object *obj,
2200                            struct intel_engine_cs *pipelined)
2201 {
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         u32 alignment;
2204         int ret;
2205
2206         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2207
2208         switch (obj->tiling_mode) {
2209         case I915_TILING_NONE:
2210                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2211                         alignment = 128 * 1024;
2212                 else if (INTEL_INFO(dev)->gen >= 4)
2213                         alignment = 4 * 1024;
2214                 else
2215                         alignment = 64 * 1024;
2216                 break;
2217         case I915_TILING_X:
2218                 /* pin() will align the object as required by fence */
2219                 alignment = 0;
2220                 break;
2221         case I915_TILING_Y:
2222                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2223                 return -EINVAL;
2224         default:
2225                 BUG();
2226         }
2227
2228         /* Note that the w/a also requires 64 PTE of padding following the
2229          * bo. We currently fill all unused PTE with the shadow page and so
2230          * we should always have valid PTE following the scanout preventing
2231          * the VT-d warning.
2232          */
2233         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2234                 alignment = 256 * 1024;
2235
2236         /*
2237          * Global gtt pte registers are special registers which actually forward
2238          * writes to a chunk of system memory. Which means that there is no risk
2239          * that the register values disappear as soon as we call
2240          * intel_runtime_pm_put(), so it is correct to wrap only the
2241          * pin/unpin/fence and not more.
2242          */
2243         intel_runtime_pm_get(dev_priv);
2244
2245         dev_priv->mm.interruptible = false;
2246         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2247         if (ret)
2248                 goto err_interruptible;
2249
2250         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2251          * fence, whereas 965+ only requires a fence if using
2252          * framebuffer compression.  For simplicity, we always install
2253          * a fence as the cost is not that onerous.
2254          */
2255         ret = i915_gem_object_get_fence(obj);
2256         if (ret)
2257                 goto err_unpin;
2258
2259         i915_gem_object_pin_fence(obj);
2260
2261         dev_priv->mm.interruptible = true;
2262         intel_runtime_pm_put(dev_priv);
2263         return 0;
2264
2265 err_unpin:
2266         i915_gem_object_unpin_from_display_plane(obj);
2267 err_interruptible:
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return ret;
2271 }
2272
2273 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2274 {
2275         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2276
2277         i915_gem_object_unpin_fence(obj);
2278         i915_gem_object_unpin_from_display_plane(obj);
2279 }
2280
2281 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2282  * is assumed to be a power-of-two. */
2283 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2284                                              unsigned int tiling_mode,
2285                                              unsigned int cpp,
2286                                              unsigned int pitch)
2287 {
2288         if (tiling_mode != I915_TILING_NONE) {
2289                 unsigned int tile_rows, tiles;
2290
2291                 tile_rows = *y / 8;
2292                 *y %= 8;
2293
2294                 tiles = *x / (512/cpp);
2295                 *x %= 512/cpp;
2296
2297                 return tile_rows * pitch * 8 + tiles * 4096;
2298         } else {
2299                 unsigned int offset;
2300
2301                 offset = *y * pitch + *x * cpp;
2302                 *y = 0;
2303                 *x = (offset & 4095) / cpp;
2304                 return offset & -4096;
2305         }
2306 }
2307
2308 int intel_format_to_fourcc(int format)
2309 {
2310         switch (format) {
2311         case DISPPLANE_8BPP:
2312                 return DRM_FORMAT_C8;
2313         case DISPPLANE_BGRX555:
2314                 return DRM_FORMAT_XRGB1555;
2315         case DISPPLANE_BGRX565:
2316                 return DRM_FORMAT_RGB565;
2317         default:
2318         case DISPPLANE_BGRX888:
2319                 return DRM_FORMAT_XRGB8888;
2320         case DISPPLANE_RGBX888:
2321                 return DRM_FORMAT_XBGR8888;
2322         case DISPPLANE_BGRX101010:
2323                 return DRM_FORMAT_XRGB2101010;
2324         case DISPPLANE_RGBX101010:
2325                 return DRM_FORMAT_XBGR2101010;
2326         }
2327 }
2328
2329 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2330                                   struct intel_plane_config *plane_config)
2331 {
2332         struct drm_device *dev = crtc->base.dev;
2333         struct drm_i915_gem_object *obj = NULL;
2334         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2335         u32 base = plane_config->base;
2336
2337         if (plane_config->size == 0)
2338                 return false;
2339
2340         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2341                                                              plane_config->size);
2342         if (!obj)
2343                 return false;
2344
2345         if (plane_config->tiled) {
2346                 obj->tiling_mode = I915_TILING_X;
2347                 obj->stride = crtc->base.primary->fb->pitches[0];
2348         }
2349
2350         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2351         mode_cmd.width = crtc->base.primary->fb->width;
2352         mode_cmd.height = crtc->base.primary->fb->height;
2353         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2354
2355         mutex_lock(&dev->struct_mutex);
2356
2357         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2358                                    &mode_cmd, obj)) {
2359                 DRM_DEBUG_KMS("intel fb init failed\n");
2360                 goto out_unref_obj;
2361         }
2362
2363         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2364         mutex_unlock(&dev->struct_mutex);
2365
2366         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2367         return true;
2368
2369 out_unref_obj:
2370         drm_gem_object_unreference(&obj->base);
2371         mutex_unlock(&dev->struct_mutex);
2372         return false;
2373 }
2374
2375 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2376                                  struct intel_plane_config *plane_config)
2377 {
2378         struct drm_device *dev = intel_crtc->base.dev;
2379         struct drm_crtc *c;
2380         struct intel_crtc *i;
2381         struct drm_i915_gem_object *obj;
2382
2383         if (!intel_crtc->base.primary->fb)
2384                 return;
2385
2386         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2387                 return;
2388
2389         kfree(intel_crtc->base.primary->fb);
2390         intel_crtc->base.primary->fb = NULL;
2391
2392         /*
2393          * Failed to alloc the obj, check to see if we should share
2394          * an fb with another CRTC instead
2395          */
2396         for_each_crtc(dev, c) {
2397                 i = to_intel_crtc(c);
2398
2399                 if (c == &intel_crtc->base)
2400                         continue;
2401
2402                 if (!i->active)
2403                         continue;
2404
2405                 obj = intel_fb_obj(c->primary->fb);
2406                 if (obj == NULL)
2407                         continue;
2408
2409                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2410                         drm_framebuffer_reference(c->primary->fb);
2411                         intel_crtc->base.primary->fb = c->primary->fb;
2412                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2413                         break;
2414                 }
2415         }
2416 }
2417
2418 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2419                                       struct drm_framebuffer *fb,
2420                                       int x, int y)
2421 {
2422         struct drm_device *dev = crtc->dev;
2423         struct drm_i915_private *dev_priv = dev->dev_private;
2424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2425         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2426         int plane = intel_crtc->plane;
2427         unsigned long linear_offset;
2428         u32 dspcntr;
2429         u32 reg;
2430
2431         reg = DSPCNTR(plane);
2432         dspcntr = I915_READ(reg);
2433         /* Mask out pixel format bits in case we change it */
2434         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2435         switch (fb->pixel_format) {
2436         case DRM_FORMAT_C8:
2437                 dspcntr |= DISPPLANE_8BPP;
2438                 break;
2439         case DRM_FORMAT_XRGB1555:
2440         case DRM_FORMAT_ARGB1555:
2441                 dspcntr |= DISPPLANE_BGRX555;
2442                 break;
2443         case DRM_FORMAT_RGB565:
2444                 dspcntr |= DISPPLANE_BGRX565;
2445                 break;
2446         case DRM_FORMAT_XRGB8888:
2447         case DRM_FORMAT_ARGB8888:
2448                 dspcntr |= DISPPLANE_BGRX888;
2449                 break;
2450         case DRM_FORMAT_XBGR8888:
2451         case DRM_FORMAT_ABGR8888:
2452                 dspcntr |= DISPPLANE_RGBX888;
2453                 break;
2454         case DRM_FORMAT_XRGB2101010:
2455         case DRM_FORMAT_ARGB2101010:
2456                 dspcntr |= DISPPLANE_BGRX101010;
2457                 break;
2458         case DRM_FORMAT_XBGR2101010:
2459         case DRM_FORMAT_ABGR2101010:
2460                 dspcntr |= DISPPLANE_RGBX101010;
2461                 break;
2462         default:
2463                 BUG();
2464         }
2465
2466         if (INTEL_INFO(dev)->gen >= 4) {
2467                 if (obj->tiling_mode != I915_TILING_NONE)
2468                         dspcntr |= DISPPLANE_TILED;
2469                 else
2470                         dspcntr &= ~DISPPLANE_TILED;
2471         }
2472
2473         if (IS_G4X(dev))
2474                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2475
2476         I915_WRITE(reg, dspcntr);
2477
2478         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2479
2480         if (INTEL_INFO(dev)->gen >= 4) {
2481                 intel_crtc->dspaddr_offset =
2482                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2483                                                        fb->bits_per_pixel / 8,
2484                                                        fb->pitches[0]);
2485                 linear_offset -= intel_crtc->dspaddr_offset;
2486         } else {
2487                 intel_crtc->dspaddr_offset = linear_offset;
2488         }
2489
2490         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2491                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2492                       fb->pitches[0]);
2493         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2494         if (INTEL_INFO(dev)->gen >= 4) {
2495                 I915_WRITE(DSPSURF(plane),
2496                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2497                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2498                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2499         } else
2500                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2501         POSTING_READ(reg);
2502 }
2503
2504 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2505                                           struct drm_framebuffer *fb,
2506                                           int x, int y)
2507 {
2508         struct drm_device *dev = crtc->dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2512         int plane = intel_crtc->plane;
2513         unsigned long linear_offset;
2514         u32 dspcntr;
2515         u32 reg;
2516
2517         reg = DSPCNTR(plane);
2518         dspcntr = I915_READ(reg);
2519         /* Mask out pixel format bits in case we change it */
2520         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2521         switch (fb->pixel_format) {
2522         case DRM_FORMAT_C8:
2523                 dspcntr |= DISPPLANE_8BPP;
2524                 break;
2525         case DRM_FORMAT_RGB565:
2526                 dspcntr |= DISPPLANE_BGRX565;
2527                 break;
2528         case DRM_FORMAT_XRGB8888:
2529         case DRM_FORMAT_ARGB8888:
2530                 dspcntr |= DISPPLANE_BGRX888;
2531                 break;
2532         case DRM_FORMAT_XBGR8888:
2533         case DRM_FORMAT_ABGR8888:
2534                 dspcntr |= DISPPLANE_RGBX888;
2535                 break;
2536         case DRM_FORMAT_XRGB2101010:
2537         case DRM_FORMAT_ARGB2101010:
2538                 dspcntr |= DISPPLANE_BGRX101010;
2539                 break;
2540         case DRM_FORMAT_XBGR2101010:
2541         case DRM_FORMAT_ABGR2101010:
2542                 dspcntr |= DISPPLANE_RGBX101010;
2543                 break;
2544         default:
2545                 BUG();
2546         }
2547
2548         if (obj->tiling_mode != I915_TILING_NONE)
2549                 dspcntr |= DISPPLANE_TILED;
2550         else
2551                 dspcntr &= ~DISPPLANE_TILED;
2552
2553         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2554                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2555         else
2556                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2557
2558         I915_WRITE(reg, dspcntr);
2559
2560         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2561         intel_crtc->dspaddr_offset =
2562                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2563                                                fb->bits_per_pixel / 8,
2564                                                fb->pitches[0]);
2565         linear_offset -= intel_crtc->dspaddr_offset;
2566
2567         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2568                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2569                       fb->pitches[0]);
2570         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2571         I915_WRITE(DSPSURF(plane),
2572                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2573         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2574                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2575         } else {
2576                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2577                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2578         }
2579         POSTING_READ(reg);
2580 }
2581
2582 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2583 static int
2584 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2585                            int x, int y, enum mode_set_atomic state)
2586 {
2587         struct drm_device *dev = crtc->dev;
2588         struct drm_i915_private *dev_priv = dev->dev_private;
2589
2590         if (dev_priv->display.disable_fbc)
2591                 dev_priv->display.disable_fbc(dev);
2592         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2593
2594         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2595
2596         return 0;
2597 }
2598
2599 void intel_display_handle_reset(struct drm_device *dev)
2600 {
2601         struct drm_i915_private *dev_priv = dev->dev_private;
2602         struct drm_crtc *crtc;
2603
2604         /*
2605          * Flips in the rings have been nuked by the reset,
2606          * so complete all pending flips so that user space
2607          * will get its events and not get stuck.
2608          *
2609          * Also update the base address of all primary
2610          * planes to the the last fb to make sure we're
2611          * showing the correct fb after a reset.
2612          *
2613          * Need to make two loops over the crtcs so that we
2614          * don't try to grab a crtc mutex before the
2615          * pending_flip_queue really got woken up.
2616          */
2617
2618         for_each_crtc(dev, crtc) {
2619                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2620                 enum plane plane = intel_crtc->plane;
2621
2622                 intel_prepare_page_flip(dev, plane);
2623                 intel_finish_page_flip_plane(dev, plane);
2624         }
2625
2626         for_each_crtc(dev, crtc) {
2627                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628
2629                 drm_modeset_lock(&crtc->mutex, NULL);
2630                 /*
2631                  * FIXME: Once we have proper support for primary planes (and
2632                  * disabling them without disabling the entire crtc) allow again
2633                  * a NULL crtc->primary->fb.
2634                  */
2635                 if (intel_crtc->active && crtc->primary->fb)
2636                         dev_priv->display.update_primary_plane(crtc,
2637                                                                crtc->primary->fb,
2638                                                                crtc->x,
2639                                                                crtc->y);
2640                 drm_modeset_unlock(&crtc->mutex);
2641         }
2642 }
2643
2644 static int
2645 intel_finish_fb(struct drm_framebuffer *old_fb)
2646 {
2647         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2648         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649         bool was_interruptible = dev_priv->mm.interruptible;
2650         int ret;
2651
2652         /* Big Hammer, we also need to ensure that any pending
2653          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2654          * current scanout is retired before unpinning the old
2655          * framebuffer.
2656          *
2657          * This should only fail upon a hung GPU, in which case we
2658          * can safely continue.
2659          */
2660         dev_priv->mm.interruptible = false;
2661         ret = i915_gem_object_finish_gpu(obj);
2662         dev_priv->mm.interruptible = was_interruptible;
2663
2664         return ret;
2665 }
2666
2667 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2668 {
2669         struct drm_device *dev = crtc->dev;
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2672         unsigned long flags;
2673         bool pending;
2674
2675         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2676             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2677                 return false;
2678
2679         spin_lock_irqsave(&dev->event_lock, flags);
2680         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2681         spin_unlock_irqrestore(&dev->event_lock, flags);
2682
2683         return pending;
2684 }
2685
2686 static int
2687 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2688                     struct drm_framebuffer *fb)
2689 {
2690         struct drm_device *dev = crtc->dev;
2691         struct drm_i915_private *dev_priv = dev->dev_private;
2692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2693         enum pipe pipe = intel_crtc->pipe;
2694         struct drm_framebuffer *old_fb = crtc->primary->fb;
2695         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2696         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2697         int ret;
2698
2699         if (intel_crtc_has_pending_flip(crtc)) {
2700                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2701                 return -EBUSY;
2702         }
2703
2704         /* no fb bound */
2705         if (!fb) {
2706                 DRM_ERROR("No FB bound\n");
2707                 return 0;
2708         }
2709
2710         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2711                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2712                           plane_name(intel_crtc->plane),
2713                           INTEL_INFO(dev)->num_pipes);
2714                 return -EINVAL;
2715         }
2716
2717         mutex_lock(&dev->struct_mutex);
2718         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2719         if (ret == 0)
2720                 i915_gem_track_fb(old_obj, obj,
2721                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2722         mutex_unlock(&dev->struct_mutex);
2723         if (ret != 0) {
2724                 DRM_ERROR("pin & fence failed\n");
2725                 return ret;
2726         }
2727
2728         /*
2729          * Update pipe size and adjust fitter if needed: the reason for this is
2730          * that in compute_mode_changes we check the native mode (not the pfit
2731          * mode) to see if we can flip rather than do a full mode set. In the
2732          * fastboot case, we'll flip, but if we don't update the pipesrc and
2733          * pfit state, we'll end up with a big fb scanned out into the wrong
2734          * sized surface.
2735          *
2736          * To fix this properly, we need to hoist the checks up into
2737          * compute_mode_changes (or above), check the actual pfit state and
2738          * whether the platform allows pfit disable with pipe active, and only
2739          * then update the pipesrc and pfit state, even on the flip path.
2740          */
2741         if (i915.fastboot) {
2742                 const struct drm_display_mode *adjusted_mode =
2743                         &intel_crtc->config.adjusted_mode;
2744
2745                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2746                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2747                            (adjusted_mode->crtc_vdisplay - 1));
2748                 if (!intel_crtc->config.pch_pfit.enabled &&
2749                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2750                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2751                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2752                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2753                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2754                 }
2755                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2756                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2757         }
2758
2759         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2760
2761         if (intel_crtc->active)
2762                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2763
2764         crtc->primary->fb = fb;
2765         crtc->x = x;
2766         crtc->y = y;
2767
2768         if (old_fb) {
2769                 if (intel_crtc->active && old_fb != fb)
2770                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2771                 mutex_lock(&dev->struct_mutex);
2772                 intel_unpin_fb_obj(old_obj);
2773                 mutex_unlock(&dev->struct_mutex);
2774         }
2775
2776         mutex_lock(&dev->struct_mutex);
2777         intel_update_fbc(dev);
2778         mutex_unlock(&dev->struct_mutex);
2779
2780         return 0;
2781 }
2782
2783 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2784 {
2785         struct drm_device *dev = crtc->dev;
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788         int pipe = intel_crtc->pipe;
2789         u32 reg, temp;
2790
2791         /* enable normal train */
2792         reg = FDI_TX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         if (IS_IVYBRIDGE(dev)) {
2795                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2796                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2797         } else {
2798                 temp &= ~FDI_LINK_TRAIN_NONE;
2799                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2800         }
2801         I915_WRITE(reg, temp);
2802
2803         reg = FDI_RX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         if (HAS_PCH_CPT(dev)) {
2806                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2807                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2808         } else {
2809                 temp &= ~FDI_LINK_TRAIN_NONE;
2810                 temp |= FDI_LINK_TRAIN_NONE;
2811         }
2812         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2813
2814         /* wait one idle pattern time */
2815         POSTING_READ(reg);
2816         udelay(1000);
2817
2818         /* IVB wants error correction enabled */
2819         if (IS_IVYBRIDGE(dev))
2820                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2821                            FDI_FE_ERRC_ENABLE);
2822 }
2823
2824 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2825 {
2826         return crtc->base.enabled && crtc->active &&
2827                 crtc->config.has_pch_encoder;
2828 }
2829
2830 static void ivb_modeset_global_resources(struct drm_device *dev)
2831 {
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833         struct intel_crtc *pipe_B_crtc =
2834                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2835         struct intel_crtc *pipe_C_crtc =
2836                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2837         uint32_t temp;
2838
2839         /*
2840          * When everything is off disable fdi C so that we could enable fdi B
2841          * with all lanes. Note that we don't care about enabled pipes without
2842          * an enabled pch encoder.
2843          */
2844         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2845             !pipe_has_enabled_pch(pipe_C_crtc)) {
2846                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2847                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2848
2849                 temp = I915_READ(SOUTH_CHICKEN1);
2850                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2851                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2852                 I915_WRITE(SOUTH_CHICKEN1, temp);
2853         }
2854 }
2855
2856 /* The FDI link training functions for ILK/Ibexpeak. */
2857 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2858 {
2859         struct drm_device *dev = crtc->dev;
2860         struct drm_i915_private *dev_priv = dev->dev_private;
2861         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2862         int pipe = intel_crtc->pipe;
2863         u32 reg, temp, tries;
2864
2865         /* FDI needs bits from pipe first */
2866         assert_pipe_enabled(dev_priv, pipe);
2867
2868         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2869            for train result */
2870         reg = FDI_RX_IMR(pipe);
2871         temp = I915_READ(reg);
2872         temp &= ~FDI_RX_SYMBOL_LOCK;
2873         temp &= ~FDI_RX_BIT_LOCK;
2874         I915_WRITE(reg, temp);
2875         I915_READ(reg);
2876         udelay(150);
2877
2878         /* enable CPU FDI TX and PCH FDI RX */
2879         reg = FDI_TX_CTL(pipe);
2880         temp = I915_READ(reg);
2881         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2882         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2883         temp &= ~FDI_LINK_TRAIN_NONE;
2884         temp |= FDI_LINK_TRAIN_PATTERN_1;
2885         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2886
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         temp &= ~FDI_LINK_TRAIN_NONE;
2890         temp |= FDI_LINK_TRAIN_PATTERN_1;
2891         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2892
2893         POSTING_READ(reg);
2894         udelay(150);
2895
2896         /* Ironlake workaround, enable clock pointer after FDI enable*/
2897         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2898         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2899                    FDI_RX_PHASE_SYNC_POINTER_EN);
2900
2901         reg = FDI_RX_IIR(pipe);
2902         for (tries = 0; tries < 5; tries++) {
2903                 temp = I915_READ(reg);
2904                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2905
2906                 if ((temp & FDI_RX_BIT_LOCK)) {
2907                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2908                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2909                         break;
2910                 }
2911         }
2912         if (tries == 5)
2913                 DRM_ERROR("FDI train 1 fail!\n");
2914
2915         /* Train 2 */
2916         reg = FDI_TX_CTL(pipe);
2917         temp = I915_READ(reg);
2918         temp &= ~FDI_LINK_TRAIN_NONE;
2919         temp |= FDI_LINK_TRAIN_PATTERN_2;
2920         I915_WRITE(reg, temp);
2921
2922         reg = FDI_RX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         temp &= ~FDI_LINK_TRAIN_NONE;
2925         temp |= FDI_LINK_TRAIN_PATTERN_2;
2926         I915_WRITE(reg, temp);
2927
2928         POSTING_READ(reg);
2929         udelay(150);
2930
2931         reg = FDI_RX_IIR(pipe);
2932         for (tries = 0; tries < 5; tries++) {
2933                 temp = I915_READ(reg);
2934                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2935
2936                 if (temp & FDI_RX_SYMBOL_LOCK) {
2937                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2938                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2939                         break;
2940                 }
2941         }
2942         if (tries == 5)
2943                 DRM_ERROR("FDI train 2 fail!\n");
2944
2945         DRM_DEBUG_KMS("FDI train done\n");
2946
2947 }
2948
2949 static const int snb_b_fdi_train_param[] = {
2950         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2951         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2952         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2953         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2954 };
2955
2956 /* The FDI link training functions for SNB/Cougarpoint. */
2957 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2958 {
2959         struct drm_device *dev = crtc->dev;
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962         int pipe = intel_crtc->pipe;
2963         u32 reg, temp, i, retry;
2964
2965         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2966            for train result */
2967         reg = FDI_RX_IMR(pipe);
2968         temp = I915_READ(reg);
2969         temp &= ~FDI_RX_SYMBOL_LOCK;
2970         temp &= ~FDI_RX_BIT_LOCK;
2971         I915_WRITE(reg, temp);
2972
2973         POSTING_READ(reg);
2974         udelay(150);
2975
2976         /* enable CPU FDI TX and PCH FDI RX */
2977         reg = FDI_TX_CTL(pipe);
2978         temp = I915_READ(reg);
2979         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2980         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2981         temp &= ~FDI_LINK_TRAIN_NONE;
2982         temp |= FDI_LINK_TRAIN_PATTERN_1;
2983         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2984         /* SNB-B */
2985         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2986         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2987
2988         I915_WRITE(FDI_RX_MISC(pipe),
2989                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2990
2991         reg = FDI_RX_CTL(pipe);
2992         temp = I915_READ(reg);
2993         if (HAS_PCH_CPT(dev)) {
2994                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2995                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2996         } else {
2997                 temp &= ~FDI_LINK_TRAIN_NONE;
2998                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2999         }
3000         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3001
3002         POSTING_READ(reg);
3003         udelay(150);
3004
3005         for (i = 0; i < 4; i++) {
3006                 reg = FDI_TX_CTL(pipe);
3007                 temp = I915_READ(reg);
3008                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3009                 temp |= snb_b_fdi_train_param[i];
3010                 I915_WRITE(reg, temp);
3011
3012                 POSTING_READ(reg);
3013                 udelay(500);
3014
3015                 for (retry = 0; retry < 5; retry++) {
3016                         reg = FDI_RX_IIR(pipe);
3017                         temp = I915_READ(reg);
3018                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3019                         if (temp & FDI_RX_BIT_LOCK) {
3020                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3021                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3022                                 break;
3023                         }
3024                         udelay(50);
3025                 }
3026                 if (retry < 5)
3027                         break;
3028         }
3029         if (i == 4)
3030                 DRM_ERROR("FDI train 1 fail!\n");
3031
3032         /* Train 2 */
3033         reg = FDI_TX_CTL(pipe);
3034         temp = I915_READ(reg);
3035         temp &= ~FDI_LINK_TRAIN_NONE;
3036         temp |= FDI_LINK_TRAIN_PATTERN_2;
3037         if (IS_GEN6(dev)) {
3038                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3039                 /* SNB-B */
3040                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3041         }
3042         I915_WRITE(reg, temp);
3043
3044         reg = FDI_RX_CTL(pipe);
3045         temp = I915_READ(reg);
3046         if (HAS_PCH_CPT(dev)) {
3047                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3048                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3049         } else {
3050                 temp &= ~FDI_LINK_TRAIN_NONE;
3051                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3052         }
3053         I915_WRITE(reg, temp);
3054
3055         POSTING_READ(reg);
3056         udelay(150);
3057
3058         for (i = 0; i < 4; i++) {
3059                 reg = FDI_TX_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3062                 temp |= snb_b_fdi_train_param[i];
3063                 I915_WRITE(reg, temp);
3064
3065                 POSTING_READ(reg);
3066                 udelay(500);
3067
3068                 for (retry = 0; retry < 5; retry++) {
3069                         reg = FDI_RX_IIR(pipe);
3070                         temp = I915_READ(reg);
3071                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072                         if (temp & FDI_RX_SYMBOL_LOCK) {
3073                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3074                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3075                                 break;
3076                         }
3077                         udelay(50);
3078                 }
3079                 if (retry < 5)
3080                         break;
3081         }
3082         if (i == 4)
3083                 DRM_ERROR("FDI train 2 fail!\n");
3084
3085         DRM_DEBUG_KMS("FDI train done.\n");
3086 }
3087
3088 /* Manual link training for Ivy Bridge A0 parts */
3089 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3090 {
3091         struct drm_device *dev = crtc->dev;
3092         struct drm_i915_private *dev_priv = dev->dev_private;
3093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094         int pipe = intel_crtc->pipe;
3095         u32 reg, temp, i, j;
3096
3097         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3098            for train result */
3099         reg = FDI_RX_IMR(pipe);
3100         temp = I915_READ(reg);
3101         temp &= ~FDI_RX_SYMBOL_LOCK;
3102         temp &= ~FDI_RX_BIT_LOCK;
3103         I915_WRITE(reg, temp);
3104
3105         POSTING_READ(reg);
3106         udelay(150);
3107
3108         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3109                       I915_READ(FDI_RX_IIR(pipe)));
3110
3111         /* Try each vswing and preemphasis setting twice before moving on */
3112         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3113                 /* disable first in case we need to retry */
3114                 reg = FDI_TX_CTL(pipe);
3115                 temp = I915_READ(reg);
3116                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3117                 temp &= ~FDI_TX_ENABLE;
3118                 I915_WRITE(reg, temp);
3119
3120                 reg = FDI_RX_CTL(pipe);
3121                 temp = I915_READ(reg);
3122                 temp &= ~FDI_LINK_TRAIN_AUTO;
3123                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3124                 temp &= ~FDI_RX_ENABLE;
3125                 I915_WRITE(reg, temp);
3126
3127                 /* enable CPU FDI TX and PCH FDI RX */
3128                 reg = FDI_TX_CTL(pipe);
3129                 temp = I915_READ(reg);
3130                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3131                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3132                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3133                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3134                 temp |= snb_b_fdi_train_param[j/2];
3135                 temp |= FDI_COMPOSITE_SYNC;
3136                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3137
3138                 I915_WRITE(FDI_RX_MISC(pipe),
3139                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3140
3141                 reg = FDI_RX_CTL(pipe);
3142                 temp = I915_READ(reg);
3143                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3144                 temp |= FDI_COMPOSITE_SYNC;
3145                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3146
3147                 POSTING_READ(reg);
3148                 udelay(1); /* should be 0.5us */
3149
3150                 for (i = 0; i < 4; i++) {
3151                         reg = FDI_RX_IIR(pipe);
3152                         temp = I915_READ(reg);
3153                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3154
3155                         if (temp & FDI_RX_BIT_LOCK ||
3156                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3157                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3158                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3159                                               i);
3160                                 break;
3161                         }
3162                         udelay(1); /* should be 0.5us */
3163                 }
3164                 if (i == 4) {
3165                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3166                         continue;
3167                 }
3168
3169                 /* Train 2 */
3170                 reg = FDI_TX_CTL(pipe);
3171                 temp = I915_READ(reg);
3172                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3173                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3174                 I915_WRITE(reg, temp);
3175
3176                 reg = FDI_RX_CTL(pipe);
3177                 temp = I915_READ(reg);
3178                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3179                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3180                 I915_WRITE(reg, temp);
3181
3182                 POSTING_READ(reg);
3183                 udelay(2); /* should be 1.5us */
3184
3185                 for (i = 0; i < 4; i++) {
3186                         reg = FDI_RX_IIR(pipe);
3187                         temp = I915_READ(reg);
3188                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3189
3190                         if (temp & FDI_RX_SYMBOL_LOCK ||
3191                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3192                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3193                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3194                                               i);
3195                                 goto train_done;
3196                         }
3197                         udelay(2); /* should be 1.5us */
3198                 }
3199                 if (i == 4)
3200                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3201         }
3202
3203 train_done:
3204         DRM_DEBUG_KMS("FDI train done.\n");
3205 }
3206
3207 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3208 {
3209         struct drm_device *dev = intel_crtc->base.dev;
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         int pipe = intel_crtc->pipe;
3212         u32 reg, temp;
3213
3214
3215         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3216         reg = FDI_RX_CTL(pipe);
3217         temp = I915_READ(reg);
3218         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3219         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3221         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3222
3223         POSTING_READ(reg);
3224         udelay(200);
3225
3226         /* Switch from Rawclk to PCDclk */
3227         temp = I915_READ(reg);
3228         I915_WRITE(reg, temp | FDI_PCDCLK);
3229
3230         POSTING_READ(reg);
3231         udelay(200);
3232
3233         /* Enable CPU FDI TX PLL, always on for Ironlake */
3234         reg = FDI_TX_CTL(pipe);
3235         temp = I915_READ(reg);
3236         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3237                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3238
3239                 POSTING_READ(reg);
3240                 udelay(100);
3241         }
3242 }
3243
3244 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3245 {
3246         struct drm_device *dev = intel_crtc->base.dev;
3247         struct drm_i915_private *dev_priv = dev->dev_private;
3248         int pipe = intel_crtc->pipe;
3249         u32 reg, temp;
3250
3251         /* Switch from PCDclk to Rawclk */
3252         reg = FDI_RX_CTL(pipe);
3253         temp = I915_READ(reg);
3254         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3255
3256         /* Disable CPU FDI TX PLL */
3257         reg = FDI_TX_CTL(pipe);
3258         temp = I915_READ(reg);
3259         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3260
3261         POSTING_READ(reg);
3262         udelay(100);
3263
3264         reg = FDI_RX_CTL(pipe);
3265         temp = I915_READ(reg);
3266         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3267
3268         /* Wait for the clocks to turn off. */
3269         POSTING_READ(reg);
3270         udelay(100);
3271 }
3272
3273 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3274 {
3275         struct drm_device *dev = crtc->dev;
3276         struct drm_i915_private *dev_priv = dev->dev_private;
3277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3278         int pipe = intel_crtc->pipe;
3279         u32 reg, temp;
3280
3281         /* disable CPU FDI tx and PCH FDI rx */
3282         reg = FDI_TX_CTL(pipe);
3283         temp = I915_READ(reg);
3284         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3285         POSTING_READ(reg);
3286
3287         reg = FDI_RX_CTL(pipe);
3288         temp = I915_READ(reg);
3289         temp &= ~(0x7 << 16);
3290         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3291         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3292
3293         POSTING_READ(reg);
3294         udelay(100);
3295
3296         /* Ironlake workaround, disable clock pointer after downing FDI */
3297         if (HAS_PCH_IBX(dev))
3298                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3299
3300         /* still set train pattern 1 */
3301         reg = FDI_TX_CTL(pipe);
3302         temp = I915_READ(reg);
3303         temp &= ~FDI_LINK_TRAIN_NONE;
3304         temp |= FDI_LINK_TRAIN_PATTERN_1;
3305         I915_WRITE(reg, temp);
3306
3307         reg = FDI_RX_CTL(pipe);
3308         temp = I915_READ(reg);
3309         if (HAS_PCH_CPT(dev)) {
3310                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3311                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3312         } else {
3313                 temp &= ~FDI_LINK_TRAIN_NONE;
3314                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315         }
3316         /* BPC in FDI rx is consistent with that in PIPECONF */
3317         temp &= ~(0x07 << 16);
3318         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3319         I915_WRITE(reg, temp);
3320
3321         POSTING_READ(reg);
3322         udelay(100);
3323 }
3324
3325 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3326 {
3327         struct intel_crtc *crtc;
3328
3329         /* Note that we don't need to be called with mode_config.lock here
3330          * as our list of CRTC objects is static for the lifetime of the
3331          * device and so cannot disappear as we iterate. Similarly, we can
3332          * happily treat the predicates as racy, atomic checks as userspace
3333          * cannot claim and pin a new fb without at least acquring the
3334          * struct_mutex and so serialising with us.
3335          */
3336         for_each_intel_crtc(dev, crtc) {
3337                 if (atomic_read(&crtc->unpin_work_count) == 0)
3338                         continue;
3339
3340                 if (crtc->unpin_work)
3341                         intel_wait_for_vblank(dev, crtc->pipe);
3342
3343                 return true;
3344         }
3345
3346         return false;
3347 }
3348
3349 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3350 {
3351         struct drm_device *dev = crtc->dev;
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353
3354         if (crtc->primary->fb == NULL)
3355                 return;
3356
3357         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3358
3359         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3360                                    !intel_crtc_has_pending_flip(crtc),
3361                                    60*HZ) == 0);
3362
3363         mutex_lock(&dev->struct_mutex);
3364         intel_finish_fb(crtc->primary->fb);
3365         mutex_unlock(&dev->struct_mutex);
3366 }
3367
3368 /* Program iCLKIP clock to the desired frequency */
3369 static void lpt_program_iclkip(struct drm_crtc *crtc)
3370 {
3371         struct drm_device *dev = crtc->dev;
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3374         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3375         u32 temp;
3376
3377         mutex_lock(&dev_priv->dpio_lock);
3378
3379         /* It is necessary to ungate the pixclk gate prior to programming
3380          * the divisors, and gate it back when it is done.
3381          */
3382         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3383
3384         /* Disable SSCCTL */
3385         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3386                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3387                                 SBI_SSCCTL_DISABLE,
3388                         SBI_ICLK);
3389
3390         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3391         if (clock == 20000) {
3392                 auxdiv = 1;
3393                 divsel = 0x41;
3394                 phaseinc = 0x20;
3395         } else {
3396                 /* The iCLK virtual clock root frequency is in MHz,
3397                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3398                  * divisors, it is necessary to divide one by another, so we
3399                  * convert the virtual clock precision to KHz here for higher
3400                  * precision.
3401                  */
3402                 u32 iclk_virtual_root_freq = 172800 * 1000;
3403                 u32 iclk_pi_range = 64;
3404                 u32 desired_divisor, msb_divisor_value, pi_value;
3405
3406                 desired_divisor = (iclk_virtual_root_freq / clock);
3407                 msb_divisor_value = desired_divisor / iclk_pi_range;
3408                 pi_value = desired_divisor % iclk_pi_range;
3409
3410                 auxdiv = 0;
3411                 divsel = msb_divisor_value - 2;
3412                 phaseinc = pi_value;
3413         }
3414
3415         /* This should not happen with any sane values */
3416         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3417                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3418         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3419                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3420
3421         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3422                         clock,
3423                         auxdiv,
3424                         divsel,
3425                         phasedir,
3426                         phaseinc);
3427
3428         /* Program SSCDIVINTPHASE6 */
3429         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3430         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3431         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3432         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3433         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3434         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3435         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3436         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3437
3438         /* Program SSCAUXDIV */
3439         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3440         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3441         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3442         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3443
3444         /* Enable modulator and associated divider */
3445         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3446         temp &= ~SBI_SSCCTL_DISABLE;
3447         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3448
3449         /* Wait for initialization time */
3450         udelay(24);
3451
3452         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3453
3454         mutex_unlock(&dev_priv->dpio_lock);
3455 }
3456
3457 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3458                                                 enum pipe pch_transcoder)
3459 {
3460         struct drm_device *dev = crtc->base.dev;
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3463
3464         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3465                    I915_READ(HTOTAL(cpu_transcoder)));
3466         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3467                    I915_READ(HBLANK(cpu_transcoder)));
3468         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3469                    I915_READ(HSYNC(cpu_transcoder)));
3470
3471         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3472                    I915_READ(VTOTAL(cpu_transcoder)));
3473         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3474                    I915_READ(VBLANK(cpu_transcoder)));
3475         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3476                    I915_READ(VSYNC(cpu_transcoder)));
3477         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3478                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3479 }
3480
3481 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3482 {
3483         struct drm_i915_private *dev_priv = dev->dev_private;
3484         uint32_t temp;
3485
3486         temp = I915_READ(SOUTH_CHICKEN1);
3487         if (temp & FDI_BC_BIFURCATION_SELECT)
3488                 return;
3489
3490         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3491         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3492
3493         temp |= FDI_BC_BIFURCATION_SELECT;
3494         DRM_DEBUG_KMS("enabling fdi C rx\n");
3495         I915_WRITE(SOUTH_CHICKEN1, temp);
3496         POSTING_READ(SOUTH_CHICKEN1);
3497 }
3498
3499 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3500 {
3501         struct drm_device *dev = intel_crtc->base.dev;
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503
3504         switch (intel_crtc->pipe) {
3505         case PIPE_A:
3506                 break;
3507         case PIPE_B:
3508                 if (intel_crtc->config.fdi_lanes > 2)
3509                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3510                 else
3511                         cpt_enable_fdi_bc_bifurcation(dev);
3512
3513                 break;
3514         case PIPE_C:
3515                 cpt_enable_fdi_bc_bifurcation(dev);
3516
3517                 break;
3518         default:
3519                 BUG();
3520         }
3521 }
3522
3523 /*
3524  * Enable PCH resources required for PCH ports:
3525  *   - PCH PLLs
3526  *   - FDI training & RX/TX
3527  *   - update transcoder timings
3528  *   - DP transcoding bits
3529  *   - transcoder
3530  */
3531 static void ironlake_pch_enable(struct drm_crtc *crtc)
3532 {
3533         struct drm_device *dev = crtc->dev;
3534         struct drm_i915_private *dev_priv = dev->dev_private;
3535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3536         int pipe = intel_crtc->pipe;
3537         u32 reg, temp;
3538
3539         assert_pch_transcoder_disabled(dev_priv, pipe);
3540
3541         if (IS_IVYBRIDGE(dev))
3542                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3543
3544         /* Write the TU size bits before fdi link training, so that error
3545          * detection works. */
3546         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3547                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3548
3549         /* For PCH output, training FDI link */
3550         dev_priv->display.fdi_link_train(crtc);
3551
3552         /* We need to program the right clock selection before writing the pixel
3553          * mutliplier into the DPLL. */
3554         if (HAS_PCH_CPT(dev)) {
3555                 u32 sel;
3556
3557                 temp = I915_READ(PCH_DPLL_SEL);
3558                 temp |= TRANS_DPLL_ENABLE(pipe);
3559                 sel = TRANS_DPLLB_SEL(pipe);
3560                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3561                         temp |= sel;
3562                 else
3563                         temp &= ~sel;
3564                 I915_WRITE(PCH_DPLL_SEL, temp);
3565         }
3566
3567         /* XXX: pch pll's can be enabled any time before we enable the PCH
3568          * transcoder, and we actually should do this to not upset any PCH
3569          * transcoder that already use the clock when we share it.
3570          *
3571          * Note that enable_shared_dpll tries to do the right thing, but
3572          * get_shared_dpll unconditionally resets the pll - we need that to have
3573          * the right LVDS enable sequence. */
3574         intel_enable_shared_dpll(intel_crtc);
3575
3576         /* set transcoder timing, panel must allow it */
3577         assert_panel_unlocked(dev_priv, pipe);
3578         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3579
3580         intel_fdi_normal_train(crtc);
3581
3582         /* For PCH DP, enable TRANS_DP_CTL */
3583         if (HAS_PCH_CPT(dev) &&
3584             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3585              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3586                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3587                 reg = TRANS_DP_CTL(pipe);
3588                 temp = I915_READ(reg);
3589                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3590                           TRANS_DP_SYNC_MASK |
3591                           TRANS_DP_BPC_MASK);
3592                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3593                          TRANS_DP_ENH_FRAMING);
3594                 temp |= bpc << 9; /* same format but at 11:9 */
3595
3596                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3597                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3598                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3599                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3600
3601                 switch (intel_trans_dp_port_sel(crtc)) {
3602                 case PCH_DP_B:
3603                         temp |= TRANS_DP_PORT_SEL_B;
3604                         break;
3605                 case PCH_DP_C:
3606                         temp |= TRANS_DP_PORT_SEL_C;
3607                         break;
3608                 case PCH_DP_D:
3609                         temp |= TRANS_DP_PORT_SEL_D;
3610                         break;
3611                 default:
3612                         BUG();
3613                 }
3614
3615                 I915_WRITE(reg, temp);
3616         }
3617
3618         ironlake_enable_pch_transcoder(dev_priv, pipe);
3619 }
3620
3621 static void lpt_pch_enable(struct drm_crtc *crtc)
3622 {
3623         struct drm_device *dev = crtc->dev;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3627
3628         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3629
3630         lpt_program_iclkip(crtc);
3631
3632         /* Set transcoder timing. */
3633         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3634
3635         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3636 }
3637
3638 void intel_put_shared_dpll(struct intel_crtc *crtc)
3639 {
3640         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3641
3642         if (pll == NULL)
3643                 return;
3644
3645         if (pll->refcount == 0) {
3646                 WARN(1, "bad %s refcount\n", pll->name);
3647                 return;
3648         }
3649
3650         if (--pll->refcount == 0) {
3651                 WARN_ON(pll->on);
3652                 WARN_ON(pll->active);
3653         }
3654
3655         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3656 }
3657
3658 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3659 {
3660         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3661         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3662         enum intel_dpll_id i;
3663
3664         if (pll) {
3665                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3666                               crtc->base.base.id, pll->name);
3667                 intel_put_shared_dpll(crtc);
3668         }
3669
3670         if (HAS_PCH_IBX(dev_priv->dev)) {
3671                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3672                 i = (enum intel_dpll_id) crtc->pipe;
3673                 pll = &dev_priv->shared_dplls[i];
3674
3675                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3676                               crtc->base.base.id, pll->name);
3677
3678                 WARN_ON(pll->refcount);
3679
3680                 goto found;
3681         }
3682
3683         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3684                 pll = &dev_priv->shared_dplls[i];
3685
3686                 /* Only want to check enabled timings first */
3687                 if (pll->refcount == 0)
3688                         continue;
3689
3690                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3691                            sizeof(pll->hw_state)) == 0) {
3692                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3693                                       crtc->base.base.id,
3694                                       pll->name, pll->refcount, pll->active);
3695
3696                         goto found;
3697                 }
3698         }
3699
3700         /* Ok no matching timings, maybe there's a free one? */
3701         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3702                 pll = &dev_priv->shared_dplls[i];
3703                 if (pll->refcount == 0) {
3704                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3705                                       crtc->base.base.id, pll->name);
3706                         goto found;
3707                 }
3708         }
3709
3710         return NULL;
3711
3712 found:
3713         if (pll->refcount == 0)
3714                 pll->hw_state = crtc->config.dpll_hw_state;
3715
3716         crtc->config.shared_dpll = i;
3717         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3718                          pipe_name(crtc->pipe));
3719
3720         pll->refcount++;
3721
3722         return pll;
3723 }
3724
3725 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3726 {
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         int dslreg = PIPEDSL(pipe);
3729         u32 temp;
3730
3731         temp = I915_READ(dslreg);
3732         udelay(500);
3733         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3734                 if (wait_for(I915_READ(dslreg) != temp, 5))
3735                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3736         }
3737 }
3738
3739 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3740 {
3741         struct drm_device *dev = crtc->base.dev;
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         int pipe = crtc->pipe;
3744
3745         if (crtc->config.pch_pfit.enabled) {
3746                 /* Force use of hard-coded filter coefficients
3747                  * as some pre-programmed values are broken,
3748                  * e.g. x201.
3749                  */
3750                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3751                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3752                                                  PF_PIPE_SEL_IVB(pipe));
3753                 else
3754                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3755                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3756                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3757         }
3758 }
3759
3760 static void intel_enable_planes(struct drm_crtc *crtc)
3761 {
3762         struct drm_device *dev = crtc->dev;
3763         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3764         struct drm_plane *plane;
3765         struct intel_plane *intel_plane;
3766
3767         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768                 intel_plane = to_intel_plane(plane);
3769                 if (intel_plane->pipe == pipe)
3770                         intel_plane_restore(&intel_plane->base);
3771         }
3772 }
3773
3774 static void intel_disable_planes(struct drm_crtc *crtc)
3775 {
3776         struct drm_device *dev = crtc->dev;
3777         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3778         struct drm_plane *plane;
3779         struct intel_plane *intel_plane;
3780
3781         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3782                 intel_plane = to_intel_plane(plane);
3783                 if (intel_plane->pipe == pipe)
3784                         intel_plane_disable(&intel_plane->base);
3785         }
3786 }
3787
3788 void hsw_enable_ips(struct intel_crtc *crtc)
3789 {
3790         struct drm_device *dev = crtc->base.dev;
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792
3793         if (!crtc->config.ips_enabled)
3794                 return;
3795
3796         /* We can only enable IPS after we enable a plane and wait for a vblank */
3797         intel_wait_for_vblank(dev, crtc->pipe);
3798
3799         assert_plane_enabled(dev_priv, crtc->plane);
3800         if (IS_BROADWELL(dev)) {
3801                 mutex_lock(&dev_priv->rps.hw_lock);
3802                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3803                 mutex_unlock(&dev_priv->rps.hw_lock);
3804                 /* Quoting Art Runyan: "its not safe to expect any particular
3805                  * value in IPS_CTL bit 31 after enabling IPS through the
3806                  * mailbox." Moreover, the mailbox may return a bogus state,
3807                  * so we need to just enable it and continue on.
3808                  */
3809         } else {
3810                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3811                 /* The bit only becomes 1 in the next vblank, so this wait here
3812                  * is essentially intel_wait_for_vblank. If we don't have this
3813                  * and don't wait for vblanks until the end of crtc_enable, then
3814                  * the HW state readout code will complain that the expected
3815                  * IPS_CTL value is not the one we read. */
3816                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3817                         DRM_ERROR("Timed out waiting for IPS enable\n");
3818         }
3819 }
3820
3821 void hsw_disable_ips(struct intel_crtc *crtc)
3822 {
3823         struct drm_device *dev = crtc->base.dev;
3824         struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826         if (!crtc->config.ips_enabled)
3827                 return;
3828
3829         assert_plane_enabled(dev_priv, crtc->plane);
3830         if (IS_BROADWELL(dev)) {
3831                 mutex_lock(&dev_priv->rps.hw_lock);
3832                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3833                 mutex_unlock(&dev_priv->rps.hw_lock);
3834                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3835                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3836                         DRM_ERROR("Timed out waiting for IPS disable\n");
3837         } else {
3838                 I915_WRITE(IPS_CTL, 0);
3839                 POSTING_READ(IPS_CTL);
3840         }
3841
3842         /* We need to wait for a vblank before we can disable the plane. */
3843         intel_wait_for_vblank(dev, crtc->pipe);
3844 }
3845
3846 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3847 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3848 {
3849         struct drm_device *dev = crtc->dev;
3850         struct drm_i915_private *dev_priv = dev->dev_private;
3851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852         enum pipe pipe = intel_crtc->pipe;
3853         int palreg = PALETTE(pipe);
3854         int i;
3855         bool reenable_ips = false;
3856
3857         /* The clocks have to be on to load the palette. */
3858         if (!crtc->enabled || !intel_crtc->active)
3859                 return;
3860
3861         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3862                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3863                         assert_dsi_pll_enabled(dev_priv);
3864                 else
3865                         assert_pll_enabled(dev_priv, pipe);
3866         }
3867
3868         /* use legacy palette for Ironlake */
3869         if (!HAS_GMCH_DISPLAY(dev))
3870                 palreg = LGC_PALETTE(pipe);
3871
3872         /* Workaround : Do not read or write the pipe palette/gamma data while
3873          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3874          */
3875         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3876             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3877              GAMMA_MODE_MODE_SPLIT)) {
3878                 hsw_disable_ips(intel_crtc);
3879                 reenable_ips = true;
3880         }
3881
3882         for (i = 0; i < 256; i++) {
3883                 I915_WRITE(palreg + 4 * i,
3884                            (intel_crtc->lut_r[i] << 16) |
3885                            (intel_crtc->lut_g[i] << 8) |
3886                            intel_crtc->lut_b[i]);
3887         }
3888
3889         if (reenable_ips)
3890                 hsw_enable_ips(intel_crtc);
3891 }
3892
3893 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3894 {
3895         if (!enable && intel_crtc->overlay) {
3896                 struct drm_device *dev = intel_crtc->base.dev;
3897                 struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899                 mutex_lock(&dev->struct_mutex);
3900                 dev_priv->mm.interruptible = false;
3901                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3902                 dev_priv->mm.interruptible = true;
3903                 mutex_unlock(&dev->struct_mutex);
3904         }
3905
3906         /* Let userspace switch the overlay on again. In most cases userspace
3907          * has to recompute where to put it anyway.
3908          */
3909 }
3910
3911 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3912 {
3913         struct drm_device *dev = crtc->dev;
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3916         int pipe = intel_crtc->pipe;
3917         int plane = intel_crtc->plane;
3918
3919         drm_vblank_on(dev, pipe);
3920
3921         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3922         intel_enable_planes(crtc);
3923         intel_crtc_update_cursor(crtc, true);
3924         intel_crtc_dpms_overlay(intel_crtc, true);
3925
3926         hsw_enable_ips(intel_crtc);
3927
3928         mutex_lock(&dev->struct_mutex);
3929         intel_update_fbc(dev);
3930         mutex_unlock(&dev->struct_mutex);
3931
3932         /*
3933          * FIXME: Once we grow proper nuclear flip support out of this we need
3934          * to compute the mask of flip planes precisely. For the time being
3935          * consider this a flip from a NULL plane.
3936          */
3937         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3938 }
3939
3940 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3941 {
3942         struct drm_device *dev = crtc->dev;
3943         struct drm_i915_private *dev_priv = dev->dev_private;
3944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3945         int pipe = intel_crtc->pipe;
3946         int plane = intel_crtc->plane;
3947
3948         intel_crtc_wait_for_pending_flips(crtc);
3949
3950         if (dev_priv->fbc.plane == plane)
3951                 intel_disable_fbc(dev);
3952
3953         hsw_disable_ips(intel_crtc);
3954
3955         intel_crtc_dpms_overlay(intel_crtc, false);
3956         intel_crtc_update_cursor(crtc, false);
3957         intel_disable_planes(crtc);
3958         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3959
3960         /*
3961          * FIXME: Once we grow proper nuclear flip support out of this we need
3962          * to compute the mask of flip planes precisely. For the time being
3963          * consider this a flip to a NULL plane.
3964          */
3965         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3966
3967         drm_vblank_off(dev, pipe);
3968 }
3969
3970 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3971 {
3972         struct drm_device *dev = crtc->dev;
3973         struct drm_i915_private *dev_priv = dev->dev_private;
3974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3975         struct intel_encoder *encoder;
3976         int pipe = intel_crtc->pipe;
3977         enum plane plane = intel_crtc->plane;
3978
3979         WARN_ON(!crtc->enabled);
3980
3981         if (intel_crtc->active)
3982                 return;
3983
3984         if (intel_crtc->config.has_pch_encoder)
3985                 intel_prepare_shared_dpll(intel_crtc);
3986
3987         if (intel_crtc->config.has_dp_encoder)
3988                 intel_dp_set_m_n(intel_crtc);
3989
3990         intel_set_pipe_timings(intel_crtc);
3991
3992         if (intel_crtc->config.has_pch_encoder) {
3993                 intel_cpu_transcoder_set_m_n(intel_crtc,
3994                                              &intel_crtc->config.fdi_m_n);
3995         }
3996
3997         ironlake_set_pipeconf(crtc);
3998
3999         /* Set up the display plane register */
4000         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4001         POSTING_READ(DSPCNTR(plane));
4002
4003         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4004                                                crtc->x, crtc->y);
4005
4006         intel_crtc->active = true;
4007
4008         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4009         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4010
4011         for_each_encoder_on_crtc(dev, crtc, encoder)
4012                 if (encoder->pre_enable)
4013                         encoder->pre_enable(encoder);
4014
4015         if (intel_crtc->config.has_pch_encoder) {
4016                 /* Note: FDI PLL enabling _must_ be done before we enable the
4017                  * cpu pipes, hence this is separate from all the other fdi/pch
4018                  * enabling. */
4019                 ironlake_fdi_pll_enable(intel_crtc);
4020         } else {
4021                 assert_fdi_tx_disabled(dev_priv, pipe);
4022                 assert_fdi_rx_disabled(dev_priv, pipe);
4023         }
4024
4025         ironlake_pfit_enable(intel_crtc);
4026
4027         /*
4028          * On ILK+ LUT must be loaded before the pipe is running but with
4029          * clocks enabled
4030          */
4031         intel_crtc_load_lut(crtc);
4032
4033         intel_update_watermarks(crtc);
4034         intel_enable_pipe(intel_crtc);
4035
4036         if (intel_crtc->config.has_pch_encoder)
4037                 ironlake_pch_enable(crtc);
4038
4039         for_each_encoder_on_crtc(dev, crtc, encoder)
4040                 encoder->enable(encoder);
4041
4042         if (HAS_PCH_CPT(dev))
4043                 cpt_verify_modeset(dev, intel_crtc->pipe);
4044
4045         intel_crtc_enable_planes(crtc);
4046 }
4047
4048 /* IPS only exists on ULT machines and is tied to pipe A. */
4049 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4050 {
4051         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4052 }
4053
4054 /*
4055  * This implements the workaround described in the "notes" section of the mode
4056  * set sequence documentation. When going from no pipes or single pipe to
4057  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4058  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4059  */
4060 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4061 {
4062         struct drm_device *dev = crtc->base.dev;
4063         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4064
4065         /* We want to get the other_active_crtc only if there's only 1 other
4066          * active crtc. */
4067         for_each_intel_crtc(dev, crtc_it) {
4068                 if (!crtc_it->active || crtc_it == crtc)
4069                         continue;
4070
4071                 if (other_active_crtc)
4072                         return;
4073
4074                 other_active_crtc = crtc_it;
4075         }
4076         if (!other_active_crtc)
4077                 return;
4078
4079         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4080         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4081 }
4082
4083 static void haswell_crtc_enable(struct drm_crtc *crtc)
4084 {
4085         struct drm_device *dev = crtc->dev;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4088         struct intel_encoder *encoder;
4089         int pipe = intel_crtc->pipe;
4090         enum plane plane = intel_crtc->plane;
4091
4092         WARN_ON(!crtc->enabled);
4093
4094         if (intel_crtc->active)
4095                 return;
4096
4097         if (intel_crtc_to_shared_dpll(intel_crtc))
4098                 intel_enable_shared_dpll(intel_crtc);
4099
4100         if (intel_crtc->config.has_dp_encoder)
4101                 intel_dp_set_m_n(intel_crtc);
4102
4103         intel_set_pipe_timings(intel_crtc);
4104
4105         if (intel_crtc->config.has_pch_encoder) {
4106                 intel_cpu_transcoder_set_m_n(intel_crtc,
4107                                              &intel_crtc->config.fdi_m_n);
4108         }
4109
4110         haswell_set_pipeconf(crtc);
4111
4112         intel_set_pipe_csc(crtc);
4113
4114         /* Set up the display plane register */
4115         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4116         POSTING_READ(DSPCNTR(plane));
4117
4118         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4119                                                crtc->x, crtc->y);
4120
4121         intel_crtc->active = true;
4122
4123         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4124         for_each_encoder_on_crtc(dev, crtc, encoder)
4125                 if (encoder->pre_enable)
4126                         encoder->pre_enable(encoder);
4127
4128         if (intel_crtc->config.has_pch_encoder) {
4129                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4130                 dev_priv->display.fdi_link_train(crtc);
4131         }
4132
4133         intel_ddi_enable_pipe_clock(intel_crtc);
4134
4135         ironlake_pfit_enable(intel_crtc);
4136
4137         /*
4138          * On ILK+ LUT must be loaded before the pipe is running but with
4139          * clocks enabled
4140          */
4141         intel_crtc_load_lut(crtc);
4142
4143         intel_ddi_set_pipe_settings(crtc);
4144         intel_ddi_enable_transcoder_func(crtc);
4145
4146         intel_update_watermarks(crtc);
4147         intel_enable_pipe(intel_crtc);
4148
4149         if (intel_crtc->config.has_pch_encoder)
4150                 lpt_pch_enable(crtc);
4151
4152         if (intel_crtc->config.dp_encoder_is_mst)
4153                 intel_ddi_set_vc_payload_alloc(crtc, true);
4154
4155         for_each_encoder_on_crtc(dev, crtc, encoder) {
4156                 encoder->enable(encoder);
4157                 intel_opregion_notify_encoder(encoder, true);
4158         }
4159
4160         /* If we change the relative order between pipe/planes enabling, we need
4161          * to change the workaround. */
4162         haswell_mode_set_planes_workaround(intel_crtc);
4163         intel_crtc_enable_planes(crtc);
4164 }
4165
4166 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4167 {
4168         struct drm_device *dev = crtc->base.dev;
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         int pipe = crtc->pipe;
4171
4172         /* To avoid upsetting the power well on haswell only disable the pfit if
4173          * it's in use. The hw state code will make sure we get this right. */
4174         if (crtc->config.pch_pfit.enabled) {
4175                 I915_WRITE(PF_CTL(pipe), 0);
4176                 I915_WRITE(PF_WIN_POS(pipe), 0);
4177                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4178         }
4179 }
4180
4181 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4182 {
4183         struct drm_device *dev = crtc->dev;
4184         struct drm_i915_private *dev_priv = dev->dev_private;
4185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186         struct intel_encoder *encoder;
4187         int pipe = intel_crtc->pipe;
4188         u32 reg, temp;
4189
4190         if (!intel_crtc->active)
4191                 return;
4192
4193         intel_crtc_disable_planes(crtc);
4194
4195         for_each_encoder_on_crtc(dev, crtc, encoder)
4196                 encoder->disable(encoder);
4197
4198         if (intel_crtc->config.has_pch_encoder)
4199                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4200
4201         intel_disable_pipe(dev_priv, pipe);
4202         ironlake_pfit_disable(intel_crtc);
4203
4204         for_each_encoder_on_crtc(dev, crtc, encoder)
4205                 if (encoder->post_disable)
4206                         encoder->post_disable(encoder);
4207
4208         if (intel_crtc->config.has_pch_encoder) {
4209                 ironlake_fdi_disable(crtc);
4210
4211                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4212                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4213
4214                 if (HAS_PCH_CPT(dev)) {
4215                         /* disable TRANS_DP_CTL */
4216                         reg = TRANS_DP_CTL(pipe);
4217                         temp = I915_READ(reg);
4218                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4219                                   TRANS_DP_PORT_SEL_MASK);
4220                         temp |= TRANS_DP_PORT_SEL_NONE;
4221                         I915_WRITE(reg, temp);
4222
4223                         /* disable DPLL_SEL */
4224                         temp = I915_READ(PCH_DPLL_SEL);
4225                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4226                         I915_WRITE(PCH_DPLL_SEL, temp);
4227                 }
4228
4229                 /* disable PCH DPLL */
4230                 intel_disable_shared_dpll(intel_crtc);
4231
4232                 ironlake_fdi_pll_disable(intel_crtc);
4233         }
4234
4235         intel_crtc->active = false;
4236         intel_update_watermarks(crtc);
4237
4238         mutex_lock(&dev->struct_mutex);
4239         intel_update_fbc(dev);
4240         mutex_unlock(&dev->struct_mutex);
4241 }
4242
4243 static void haswell_crtc_disable(struct drm_crtc *crtc)
4244 {
4245         struct drm_device *dev = crtc->dev;
4246         struct drm_i915_private *dev_priv = dev->dev_private;
4247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4248         struct intel_encoder *encoder;
4249         int pipe = intel_crtc->pipe;
4250         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4251
4252         if (!intel_crtc->active)
4253                 return;
4254
4255         intel_crtc_disable_planes(crtc);
4256
4257         for_each_encoder_on_crtc(dev, crtc, encoder) {
4258                 intel_opregion_notify_encoder(encoder, false);
4259                 encoder->disable(encoder);
4260         }
4261
4262         if (intel_crtc->config.has_pch_encoder)
4263                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4264         intel_disable_pipe(dev_priv, pipe);
4265
4266         if (intel_crtc->config.dp_encoder_is_mst)
4267                 intel_ddi_set_vc_payload_alloc(crtc, false);
4268
4269         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4270
4271         ironlake_pfit_disable(intel_crtc);
4272
4273         intel_ddi_disable_pipe_clock(intel_crtc);
4274
4275         if (intel_crtc->config.has_pch_encoder) {
4276                 lpt_disable_pch_transcoder(dev_priv);
4277                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4278                 intel_ddi_fdi_disable(crtc);
4279         }
4280
4281         for_each_encoder_on_crtc(dev, crtc, encoder)
4282                 if (encoder->post_disable)
4283                         encoder->post_disable(encoder);
4284
4285         intel_crtc->active = false;
4286         intel_update_watermarks(crtc);
4287
4288         mutex_lock(&dev->struct_mutex);
4289         intel_update_fbc(dev);
4290         mutex_unlock(&dev->struct_mutex);
4291
4292         if (intel_crtc_to_shared_dpll(intel_crtc))
4293                 intel_disable_shared_dpll(intel_crtc);
4294 }
4295
4296 static void ironlake_crtc_off(struct drm_crtc *crtc)
4297 {
4298         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4299         intel_put_shared_dpll(intel_crtc);
4300 }
4301
4302
4303 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4304 {
4305         struct drm_device *dev = crtc->base.dev;
4306         struct drm_i915_private *dev_priv = dev->dev_private;
4307         struct intel_crtc_config *pipe_config = &crtc->config;
4308
4309         if (!crtc->config.gmch_pfit.control)
4310                 return;
4311
4312         /*
4313          * The panel fitter should only be adjusted whilst the pipe is disabled,
4314          * according to register description and PRM.
4315          */
4316         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4317         assert_pipe_disabled(dev_priv, crtc->pipe);
4318
4319         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4320         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4321
4322         /* Border color in case we don't scale up to the full screen. Black by
4323          * default, change to something else for debugging. */
4324         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4325 }
4326
4327 static enum intel_display_power_domain port_to_power_domain(enum port port)
4328 {
4329         switch (port) {
4330         case PORT_A:
4331                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4332         case PORT_B:
4333                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4334         case PORT_C:
4335                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4336         case PORT_D:
4337                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4338         default:
4339                 WARN_ON_ONCE(1);
4340                 return POWER_DOMAIN_PORT_OTHER;
4341         }
4342 }
4343
4344 #define for_each_power_domain(domain, mask)                             \
4345         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4346                 if ((1 << (domain)) & (mask))
4347
4348 enum intel_display_power_domain
4349 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4350 {
4351         struct drm_device *dev = intel_encoder->base.dev;
4352         struct intel_digital_port *intel_dig_port;
4353
4354         switch (intel_encoder->type) {
4355         case INTEL_OUTPUT_UNKNOWN:
4356                 /* Only DDI platforms should ever use this output type */
4357                 WARN_ON_ONCE(!HAS_DDI(dev));
4358         case INTEL_OUTPUT_DISPLAYPORT:
4359         case INTEL_OUTPUT_HDMI:
4360         case INTEL_OUTPUT_EDP:
4361                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4362                 return port_to_power_domain(intel_dig_port->port);
4363         case INTEL_OUTPUT_DP_MST:
4364                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4365                 return port_to_power_domain(intel_dig_port->port);
4366         case INTEL_OUTPUT_ANALOG:
4367                 return POWER_DOMAIN_PORT_CRT;
4368         case INTEL_OUTPUT_DSI:
4369                 return POWER_DOMAIN_PORT_DSI;
4370         default:
4371                 return POWER_DOMAIN_PORT_OTHER;
4372         }
4373 }
4374
4375 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4376 {
4377         struct drm_device *dev = crtc->dev;
4378         struct intel_encoder *intel_encoder;
4379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4380         enum pipe pipe = intel_crtc->pipe;
4381         unsigned long mask;
4382         enum transcoder transcoder;
4383
4384         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4385
4386         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4387         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4388         if (intel_crtc->config.pch_pfit.enabled ||
4389             intel_crtc->config.pch_pfit.force_thru)
4390                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4391
4392         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4393                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4394
4395         return mask;
4396 }
4397
4398 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4399                                   bool enable)
4400 {
4401         if (dev_priv->power_domains.init_power_on == enable)
4402                 return;
4403
4404         if (enable)
4405                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4406         else
4407                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4408
4409         dev_priv->power_domains.init_power_on = enable;
4410 }
4411
4412 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4413 {
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4416         struct intel_crtc *crtc;
4417
4418         /*
4419          * First get all needed power domains, then put all unneeded, to avoid
4420          * any unnecessary toggling of the power wells.
4421          */
4422         for_each_intel_crtc(dev, crtc) {
4423                 enum intel_display_power_domain domain;
4424
4425                 if (!crtc->base.enabled)
4426                         continue;
4427
4428                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4429
4430                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4431                         intel_display_power_get(dev_priv, domain);
4432         }
4433
4434         for_each_intel_crtc(dev, crtc) {
4435                 enum intel_display_power_domain domain;
4436
4437                 for_each_power_domain(domain, crtc->enabled_power_domains)
4438                         intel_display_power_put(dev_priv, domain);
4439
4440                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4441         }
4442
4443         intel_display_set_init_power(dev_priv, false);
4444 }
4445
4446 /* returns HPLL frequency in kHz */
4447 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4448 {
4449         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4450
4451         /* Obtain SKU information */
4452         mutex_lock(&dev_priv->dpio_lock);
4453         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4454                 CCK_FUSE_HPLL_FREQ_MASK;
4455         mutex_unlock(&dev_priv->dpio_lock);
4456
4457         return vco_freq[hpll_freq] * 1000;
4458 }
4459
4460 static void vlv_update_cdclk(struct drm_device *dev)
4461 {
4462         struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4465         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4466                          dev_priv->vlv_cdclk_freq);
4467
4468         /*
4469          * Program the gmbus_freq based on the cdclk frequency.
4470          * BSpec erroneously claims we should aim for 4MHz, but
4471          * in fact 1MHz is the correct frequency.
4472          */
4473         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4474 }
4475
4476 /* Adjust CDclk dividers to allow high res or save power if possible */
4477 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4478 {
4479         struct drm_i915_private *dev_priv = dev->dev_private;
4480         u32 val, cmd;
4481
4482         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4483
4484         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4485                 cmd = 2;
4486         else if (cdclk == 266667)
4487                 cmd = 1;
4488         else
4489                 cmd = 0;
4490
4491         mutex_lock(&dev_priv->rps.hw_lock);
4492         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4493         val &= ~DSPFREQGUAR_MASK;
4494         val |= (cmd << DSPFREQGUAR_SHIFT);
4495         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4496         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4497                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4498                      50)) {
4499                 DRM_ERROR("timed out waiting for CDclk change\n");
4500         }
4501         mutex_unlock(&dev_priv->rps.hw_lock);
4502
4503         if (cdclk == 400000) {
4504                 u32 divider, vco;
4505
4506                 vco = valleyview_get_vco(dev_priv);
4507                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4508
4509                 mutex_lock(&dev_priv->dpio_lock);
4510                 /* adjust cdclk divider */
4511                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4512                 val &= ~DISPLAY_FREQUENCY_VALUES;
4513                 val |= divider;
4514                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4515
4516                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4517                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4518                              50))
4519                         DRM_ERROR("timed out waiting for CDclk change\n");
4520                 mutex_unlock(&dev_priv->dpio_lock);
4521         }
4522
4523         mutex_lock(&dev_priv->dpio_lock);
4524         /* adjust self-refresh exit latency value */
4525         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4526         val &= ~0x7f;
4527
4528         /*
4529          * For high bandwidth configs, we set a higher latency in the bunit
4530          * so that the core display fetch happens in time to avoid underruns.
4531          */
4532         if (cdclk == 400000)
4533                 val |= 4500 / 250; /* 4.5 usec */
4534         else
4535                 val |= 3000 / 250; /* 3.0 usec */
4536         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4537         mutex_unlock(&dev_priv->dpio_lock);
4538
4539         vlv_update_cdclk(dev);
4540 }
4541
4542 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4543                                  int max_pixclk)
4544 {
4545         int vco = valleyview_get_vco(dev_priv);
4546         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4547
4548         /*
4549          * Really only a few cases to deal with, as only 4 CDclks are supported:
4550          *   200MHz
4551          *   267MHz
4552          *   320/333MHz (depends on HPLL freq)
4553          *   400MHz
4554          * So we check to see whether we're above 90% of the lower bin and
4555          * adjust if needed.
4556          *
4557          * We seem to get an unstable or solid color picture at 200MHz.
4558          * Not sure what's wrong. For now use 200MHz only when all pipes
4559          * are off.
4560          */
4561         if (max_pixclk > freq_320*9/10)
4562                 return 400000;
4563         else if (max_pixclk > 266667*9/10)
4564                 return freq_320;
4565         else if (max_pixclk > 0)
4566                 return 266667;
4567         else
4568                 return 200000;
4569 }
4570
4571 /* compute the max pixel clock for new configuration */
4572 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4573 {
4574         struct drm_device *dev = dev_priv->dev;
4575         struct intel_crtc *intel_crtc;
4576         int max_pixclk = 0;
4577
4578         for_each_intel_crtc(dev, intel_crtc) {
4579                 if (intel_crtc->new_enabled)
4580                         max_pixclk = max(max_pixclk,
4581                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4582         }
4583
4584         return max_pixclk;
4585 }
4586
4587 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4588                                             unsigned *prepare_pipes)
4589 {
4590         struct drm_i915_private *dev_priv = dev->dev_private;
4591         struct intel_crtc *intel_crtc;
4592         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4593
4594         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4595             dev_priv->vlv_cdclk_freq)
4596                 return;
4597
4598         /* disable/enable all currently active pipes while we change cdclk */
4599         for_each_intel_crtc(dev, intel_crtc)
4600                 if (intel_crtc->base.enabled)
4601                         *prepare_pipes |= (1 << intel_crtc->pipe);
4602 }
4603
4604 static void valleyview_modeset_global_resources(struct drm_device *dev)
4605 {
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4608         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4609
4610         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4611                 valleyview_set_cdclk(dev, req_cdclk);
4612         modeset_update_crtc_power_domains(dev);
4613 }
4614
4615 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4616 {
4617         struct drm_device *dev = crtc->dev;
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4620         struct intel_encoder *encoder;
4621         int pipe = intel_crtc->pipe;
4622         int plane = intel_crtc->plane;
4623         bool is_dsi;
4624         u32 dspcntr;
4625
4626         WARN_ON(!crtc->enabled);
4627
4628         if (intel_crtc->active)
4629                 return;
4630
4631         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4632
4633         if (!is_dsi && !IS_CHERRYVIEW(dev))
4634                 vlv_prepare_pll(intel_crtc);
4635
4636         /* Set up the display plane register */
4637         dspcntr = DISPPLANE_GAMMA_ENABLE;
4638
4639         if (intel_crtc->config.has_dp_encoder)
4640                 intel_dp_set_m_n(intel_crtc);
4641
4642         intel_set_pipe_timings(intel_crtc);
4643
4644         /* pipesrc and dspsize control the size that is scaled from,
4645          * which should always be the user's requested size.
4646          */
4647         I915_WRITE(DSPSIZE(plane),
4648                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4649                    (intel_crtc->config.pipe_src_w - 1));
4650         I915_WRITE(DSPPOS(plane), 0);
4651
4652         i9xx_set_pipeconf(intel_crtc);
4653
4654         I915_WRITE(DSPCNTR(plane), dspcntr);
4655         POSTING_READ(DSPCNTR(plane));
4656
4657         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4658                                                crtc->x, crtc->y);
4659
4660         intel_crtc->active = true;
4661
4662         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4663
4664         for_each_encoder_on_crtc(dev, crtc, encoder)
4665                 if (encoder->pre_pll_enable)
4666                         encoder->pre_pll_enable(encoder);
4667
4668         if (!is_dsi) {
4669                 if (IS_CHERRYVIEW(dev))
4670                         chv_enable_pll(intel_crtc);
4671                 else
4672                         vlv_enable_pll(intel_crtc);
4673         }
4674
4675         for_each_encoder_on_crtc(dev, crtc, encoder)
4676                 if (encoder->pre_enable)
4677                         encoder->pre_enable(encoder);
4678
4679         i9xx_pfit_enable(intel_crtc);
4680
4681         intel_crtc_load_lut(crtc);
4682
4683         intel_update_watermarks(crtc);
4684         intel_enable_pipe(intel_crtc);
4685
4686         for_each_encoder_on_crtc(dev, crtc, encoder)
4687                 encoder->enable(encoder);
4688
4689         intel_crtc_enable_planes(crtc);
4690
4691         /* Underruns don't raise interrupts, so check manually. */
4692         i9xx_check_fifo_underruns(dev);
4693 }
4694
4695 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4696 {
4697         struct drm_device *dev = crtc->base.dev;
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4701         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4702 }
4703
4704 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4705 {
4706         struct drm_device *dev = crtc->dev;
4707         struct drm_i915_private *dev_priv = dev->dev_private;
4708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709         struct intel_encoder *encoder;
4710         int pipe = intel_crtc->pipe;
4711         int plane = intel_crtc->plane;
4712         u32 dspcntr;
4713
4714         WARN_ON(!crtc->enabled);
4715
4716         if (intel_crtc->active)
4717                 return;
4718
4719         i9xx_set_pll_dividers(intel_crtc);
4720
4721         /* Set up the display plane register */
4722         dspcntr = DISPPLANE_GAMMA_ENABLE;
4723
4724         if (pipe == 0)
4725                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4726         else
4727                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4728
4729         if (intel_crtc->config.has_dp_encoder)
4730                 intel_dp_set_m_n(intel_crtc);
4731
4732         intel_set_pipe_timings(intel_crtc);
4733
4734         /* pipesrc and dspsize control the size that is scaled from,
4735          * which should always be the user's requested size.
4736          */
4737         I915_WRITE(DSPSIZE(plane),
4738                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4739                    (intel_crtc->config.pipe_src_w - 1));
4740         I915_WRITE(DSPPOS(plane), 0);
4741
4742         i9xx_set_pipeconf(intel_crtc);
4743
4744         I915_WRITE(DSPCNTR(plane), dspcntr);
4745         POSTING_READ(DSPCNTR(plane));
4746
4747         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4748                                                crtc->x, crtc->y);
4749
4750         intel_crtc->active = true;
4751
4752         if (!IS_GEN2(dev))
4753                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4754
4755         for_each_encoder_on_crtc(dev, crtc, encoder)
4756                 if (encoder->pre_enable)
4757                         encoder->pre_enable(encoder);
4758
4759         i9xx_enable_pll(intel_crtc);
4760
4761         i9xx_pfit_enable(intel_crtc);
4762
4763         intel_crtc_load_lut(crtc);
4764
4765         intel_update_watermarks(crtc);
4766         intel_enable_pipe(intel_crtc);
4767
4768         for_each_encoder_on_crtc(dev, crtc, encoder)
4769                 encoder->enable(encoder);
4770
4771         intel_crtc_enable_planes(crtc);
4772
4773         /*
4774          * Gen2 reports pipe underruns whenever all planes are disabled.
4775          * So don't enable underrun reporting before at least some planes
4776          * are enabled.
4777          * FIXME: Need to fix the logic to work when we turn off all planes
4778          * but leave the pipe running.
4779          */
4780         if (IS_GEN2(dev))
4781                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4782
4783         /* Underruns don't raise interrupts, so check manually. */
4784         i9xx_check_fifo_underruns(dev);
4785 }
4786
4787 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4788 {
4789         struct drm_device *dev = crtc->base.dev;
4790         struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792         if (!crtc->config.gmch_pfit.control)
4793                 return;
4794
4795         assert_pipe_disabled(dev_priv, crtc->pipe);
4796
4797         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4798                          I915_READ(PFIT_CONTROL));
4799         I915_WRITE(PFIT_CONTROL, 0);
4800 }
4801
4802 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4803 {
4804         struct drm_device *dev = crtc->dev;
4805         struct drm_i915_private *dev_priv = dev->dev_private;
4806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4807         struct intel_encoder *encoder;
4808         int pipe = intel_crtc->pipe;
4809
4810         if (!intel_crtc->active)
4811                 return;
4812
4813         /*
4814          * Gen2 reports pipe underruns whenever all planes are disabled.
4815          * So diasble underrun reporting before all the planes get disabled.
4816          * FIXME: Need to fix the logic to work when we turn off all planes
4817          * but leave the pipe running.
4818          */
4819         if (IS_GEN2(dev))
4820                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4821
4822         /*
4823          * Vblank time updates from the shadow to live plane control register
4824          * are blocked if the memory self-refresh mode is active at that
4825          * moment. So to make sure the plane gets truly disabled, disable
4826          * first the self-refresh mode. The self-refresh enable bit in turn
4827          * will be checked/applied by the HW only at the next frame start
4828          * event which is after the vblank start event, so we need to have a
4829          * wait-for-vblank between disabling the plane and the pipe.
4830          */
4831         intel_set_memory_cxsr(dev_priv, false);
4832         intel_crtc_disable_planes(crtc);
4833
4834         for_each_encoder_on_crtc(dev, crtc, encoder)
4835                 encoder->disable(encoder);
4836
4837         /*
4838          * On gen2 planes are double buffered but the pipe isn't, so we must
4839          * wait for planes to fully turn off before disabling the pipe.
4840          * We also need to wait on all gmch platforms because of the
4841          * self-refresh mode constraint explained above.
4842          */
4843         intel_wait_for_vblank(dev, pipe);
4844
4845         intel_disable_pipe(dev_priv, pipe);
4846
4847         i9xx_pfit_disable(intel_crtc);
4848
4849         for_each_encoder_on_crtc(dev, crtc, encoder)
4850                 if (encoder->post_disable)
4851                         encoder->post_disable(encoder);
4852
4853         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4854                 if (IS_CHERRYVIEW(dev))
4855                         chv_disable_pll(dev_priv, pipe);
4856                 else if (IS_VALLEYVIEW(dev))
4857                         vlv_disable_pll(dev_priv, pipe);
4858                 else
4859                         i9xx_disable_pll(dev_priv, pipe);
4860         }
4861
4862         if (!IS_GEN2(dev))
4863                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4864
4865         intel_crtc->active = false;
4866         intel_update_watermarks(crtc);
4867
4868         mutex_lock(&dev->struct_mutex);
4869         intel_update_fbc(dev);
4870         mutex_unlock(&dev->struct_mutex);
4871 }
4872
4873 static void i9xx_crtc_off(struct drm_crtc *crtc)
4874 {
4875 }
4876
4877 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4878                                     bool enabled)
4879 {
4880         struct drm_device *dev = crtc->dev;
4881         struct drm_i915_master_private *master_priv;
4882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883         int pipe = intel_crtc->pipe;
4884
4885         if (!dev->primary->master)
4886                 return;
4887
4888         master_priv = dev->primary->master->driver_priv;
4889         if (!master_priv->sarea_priv)
4890                 return;
4891
4892         switch (pipe) {
4893         case 0:
4894                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4895                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4896                 break;
4897         case 1:
4898                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4899                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4900                 break;
4901         default:
4902                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4903                 break;
4904         }
4905 }
4906
4907 /* Master function to enable/disable CRTC and corresponding power wells */
4908 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4909 {
4910         struct drm_device *dev = crtc->dev;
4911         struct drm_i915_private *dev_priv = dev->dev_private;
4912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4913         enum intel_display_power_domain domain;
4914         unsigned long domains;
4915
4916         if (enable) {
4917                 if (!intel_crtc->active) {
4918                         domains = get_crtc_power_domains(crtc);
4919                         for_each_power_domain(domain, domains)
4920                                 intel_display_power_get(dev_priv, domain);
4921                         intel_crtc->enabled_power_domains = domains;
4922
4923                         dev_priv->display.crtc_enable(crtc);
4924                 }
4925         } else {
4926                 if (intel_crtc->active) {
4927                         dev_priv->display.crtc_disable(crtc);
4928
4929                         domains = intel_crtc->enabled_power_domains;
4930                         for_each_power_domain(domain, domains)
4931                                 intel_display_power_put(dev_priv, domain);
4932                         intel_crtc->enabled_power_domains = 0;
4933                 }
4934         }
4935 }
4936
4937 /**
4938  * Sets the power management mode of the pipe and plane.
4939  */
4940 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4941 {
4942         struct drm_device *dev = crtc->dev;
4943         struct intel_encoder *intel_encoder;
4944         bool enable = false;
4945
4946         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4947                 enable |= intel_encoder->connectors_active;
4948
4949         intel_crtc_control(crtc, enable);
4950
4951         intel_crtc_update_sarea(crtc, enable);
4952 }
4953
4954 static void intel_crtc_disable(struct drm_crtc *crtc)
4955 {
4956         struct drm_device *dev = crtc->dev;
4957         struct drm_connector *connector;
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4960         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4961
4962         /* crtc should still be enabled when we disable it. */
4963         WARN_ON(!crtc->enabled);
4964
4965         dev_priv->display.crtc_disable(crtc);
4966         intel_crtc_update_sarea(crtc, false);
4967         dev_priv->display.off(crtc);
4968
4969         if (crtc->primary->fb) {
4970                 mutex_lock(&dev->struct_mutex);
4971                 intel_unpin_fb_obj(old_obj);
4972                 i915_gem_track_fb(old_obj, NULL,
4973                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
4974                 mutex_unlock(&dev->struct_mutex);
4975                 crtc->primary->fb = NULL;
4976         }
4977
4978         /* Update computed state. */
4979         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4980                 if (!connector->encoder || !connector->encoder->crtc)
4981                         continue;
4982
4983                 if (connector->encoder->crtc != crtc)
4984                         continue;
4985
4986                 connector->dpms = DRM_MODE_DPMS_OFF;
4987                 to_intel_encoder(connector->encoder)->connectors_active = false;
4988         }
4989 }
4990
4991 void intel_encoder_destroy(struct drm_encoder *encoder)
4992 {
4993         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4994
4995         drm_encoder_cleanup(encoder);
4996         kfree(intel_encoder);
4997 }
4998
4999 /* Simple dpms helper for encoders with just one connector, no cloning and only
5000  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5001  * state of the entire output pipe. */
5002 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5003 {
5004         if (mode == DRM_MODE_DPMS_ON) {
5005                 encoder->connectors_active = true;
5006
5007                 intel_crtc_update_dpms(encoder->base.crtc);
5008         } else {
5009                 encoder->connectors_active = false;
5010
5011                 intel_crtc_update_dpms(encoder->base.crtc);
5012         }
5013 }
5014
5015 /* Cross check the actual hw state with our own modeset state tracking (and it's
5016  * internal consistency). */
5017 static void intel_connector_check_state(struct intel_connector *connector)
5018 {
5019         if (connector->get_hw_state(connector)) {
5020                 struct intel_encoder *encoder = connector->encoder;
5021                 struct drm_crtc *crtc;
5022                 bool encoder_enabled;
5023                 enum pipe pipe;
5024
5025                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5026                               connector->base.base.id,
5027                               connector->base.name);
5028
5029                 /* there is no real hw state for MST connectors */
5030                 if (connector->mst_port)
5031                         return;
5032
5033                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5034                      "wrong connector dpms state\n");
5035                 WARN(connector->base.encoder != &encoder->base,
5036                      "active connector not linked to encoder\n");
5037
5038                 if (encoder) {
5039                         WARN(!encoder->connectors_active,
5040                              "encoder->connectors_active not set\n");
5041
5042                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5043                         WARN(!encoder_enabled, "encoder not enabled\n");
5044                         if (WARN_ON(!encoder->base.crtc))
5045                                 return;
5046
5047                         crtc = encoder->base.crtc;
5048
5049                         WARN(!crtc->enabled, "crtc not enabled\n");
5050                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5051                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5052                              "encoder active on the wrong pipe\n");
5053                 }
5054         }
5055 }
5056
5057 /* Even simpler default implementation, if there's really no special case to
5058  * consider. */
5059 void intel_connector_dpms(struct drm_connector *connector, int mode)
5060 {
5061         /* All the simple cases only support two dpms states. */
5062         if (mode != DRM_MODE_DPMS_ON)
5063                 mode = DRM_MODE_DPMS_OFF;
5064
5065         if (mode == connector->dpms)
5066                 return;
5067
5068         connector->dpms = mode;
5069
5070         /* Only need to change hw state when actually enabled */
5071         if (connector->encoder)
5072                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5073
5074         intel_modeset_check_state(connector->dev);
5075 }
5076
5077 /* Simple connector->get_hw_state implementation for encoders that support only
5078  * one connector and no cloning and hence the encoder state determines the state
5079  * of the connector. */
5080 bool intel_connector_get_hw_state(struct intel_connector *connector)
5081 {
5082         enum pipe pipe = 0;
5083         struct intel_encoder *encoder = connector->encoder;
5084
5085         return encoder->get_hw_state(encoder, &pipe);
5086 }
5087
5088 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5089                                      struct intel_crtc_config *pipe_config)
5090 {
5091         struct drm_i915_private *dev_priv = dev->dev_private;
5092         struct intel_crtc *pipe_B_crtc =
5093                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5094
5095         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5096                       pipe_name(pipe), pipe_config->fdi_lanes);
5097         if (pipe_config->fdi_lanes > 4) {
5098                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5099                               pipe_name(pipe), pipe_config->fdi_lanes);
5100                 return false;
5101         }
5102
5103         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5104                 if (pipe_config->fdi_lanes > 2) {
5105                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5106                                       pipe_config->fdi_lanes);
5107                         return false;
5108                 } else {
5109                         return true;
5110                 }
5111         }
5112
5113         if (INTEL_INFO(dev)->num_pipes == 2)
5114                 return true;
5115
5116         /* Ivybridge 3 pipe is really complicated */
5117         switch (pipe) {
5118         case PIPE_A:
5119                 return true;
5120         case PIPE_B:
5121                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5122                     pipe_config->fdi_lanes > 2) {
5123                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5124                                       pipe_name(pipe), pipe_config->fdi_lanes);
5125                         return false;
5126                 }
5127                 return true;
5128         case PIPE_C:
5129                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5130                     pipe_B_crtc->config.fdi_lanes <= 2) {
5131                         if (pipe_config->fdi_lanes > 2) {
5132                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5133                                               pipe_name(pipe), pipe_config->fdi_lanes);
5134                                 return false;
5135                         }
5136                 } else {
5137                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5138                         return false;
5139                 }
5140                 return true;
5141         default:
5142                 BUG();
5143         }
5144 }
5145
5146 #define RETRY 1
5147 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5148                                        struct intel_crtc_config *pipe_config)
5149 {
5150         struct drm_device *dev = intel_crtc->base.dev;
5151         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5152         int lane, link_bw, fdi_dotclock;
5153         bool setup_ok, needs_recompute = false;
5154
5155 retry:
5156         /* FDI is a binary signal running at ~2.7GHz, encoding
5157          * each output octet as 10 bits. The actual frequency
5158          * is stored as a divider into a 100MHz clock, and the
5159          * mode pixel clock is stored in units of 1KHz.
5160          * Hence the bw of each lane in terms of the mode signal
5161          * is:
5162          */
5163         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5164
5165         fdi_dotclock = adjusted_mode->crtc_clock;
5166
5167         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5168                                            pipe_config->pipe_bpp);
5169
5170         pipe_config->fdi_lanes = lane;
5171
5172         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5173                                link_bw, &pipe_config->fdi_m_n);
5174
5175         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5176                                             intel_crtc->pipe, pipe_config);
5177         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5178                 pipe_config->pipe_bpp -= 2*3;
5179                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5180                               pipe_config->pipe_bpp);
5181                 needs_recompute = true;
5182                 pipe_config->bw_constrained = true;
5183
5184                 goto retry;
5185         }
5186
5187         if (needs_recompute)
5188                 return RETRY;
5189
5190         return setup_ok ? 0 : -EINVAL;
5191 }
5192
5193 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5194                                    struct intel_crtc_config *pipe_config)
5195 {
5196         pipe_config->ips_enabled = i915.enable_ips &&
5197                                    hsw_crtc_supports_ips(crtc) &&
5198                                    pipe_config->pipe_bpp <= 24;
5199 }
5200
5201 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5202                                      struct intel_crtc_config *pipe_config)
5203 {
5204         struct drm_device *dev = crtc->base.dev;
5205         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5206
5207         /* FIXME should check pixel clock limits on all platforms */
5208         if (INTEL_INFO(dev)->gen < 4) {
5209                 struct drm_i915_private *dev_priv = dev->dev_private;
5210                 int clock_limit =
5211                         dev_priv->display.get_display_clock_speed(dev);
5212
5213                 /*
5214                  * Enable pixel doubling when the dot clock
5215                  * is > 90% of the (display) core speed.
5216                  *
5217                  * GDG double wide on either pipe,
5218                  * otherwise pipe A only.
5219                  */
5220                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5221                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5222                         clock_limit *= 2;
5223                         pipe_config->double_wide = true;
5224                 }
5225
5226                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5227                         return -EINVAL;
5228         }
5229
5230         /*
5231          * Pipe horizontal size must be even in:
5232          * - DVO ganged mode
5233          * - LVDS dual channel mode
5234          * - Double wide pipe
5235          */
5236         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5237              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5238                 pipe_config->pipe_src_w &= ~1;
5239
5240         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5241          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5242          */
5243         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5244                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5245                 return -EINVAL;
5246
5247         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5248                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5249         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5250                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5251                  * for lvds. */
5252                 pipe_config->pipe_bpp = 8*3;
5253         }
5254
5255         if (HAS_IPS(dev))
5256                 hsw_compute_ips_config(crtc, pipe_config);
5257
5258         /*
5259          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5260          * old clock survives for now.
5261          */
5262         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5263                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5264
5265         if (pipe_config->has_pch_encoder)
5266                 return ironlake_fdi_compute_config(crtc, pipe_config);
5267
5268         return 0;
5269 }
5270
5271 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5272 {
5273         struct drm_i915_private *dev_priv = dev->dev_private;
5274         int vco = valleyview_get_vco(dev_priv);
5275         u32 val;
5276         int divider;
5277
5278         mutex_lock(&dev_priv->dpio_lock);
5279         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5280         mutex_unlock(&dev_priv->dpio_lock);
5281
5282         divider = val & DISPLAY_FREQUENCY_VALUES;
5283
5284         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5285              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5286              "cdclk change in progress\n");
5287
5288         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5289 }
5290
5291 static int i945_get_display_clock_speed(struct drm_device *dev)
5292 {
5293         return 400000;
5294 }
5295
5296 static int i915_get_display_clock_speed(struct drm_device *dev)
5297 {
5298         return 333000;
5299 }
5300
5301 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5302 {
5303         return 200000;
5304 }
5305
5306 static int pnv_get_display_clock_speed(struct drm_device *dev)
5307 {
5308         u16 gcfgc = 0;
5309
5310         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5311
5312         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5313         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5314                 return 267000;
5315         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5316                 return 333000;
5317         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5318                 return 444000;
5319         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5320                 return 200000;
5321         default:
5322                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5323         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5324                 return 133000;
5325         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5326                 return 167000;
5327         }
5328 }
5329
5330 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5331 {
5332         u16 gcfgc = 0;
5333
5334         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5335
5336         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5337                 return 133000;
5338         else {
5339                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5340                 case GC_DISPLAY_CLOCK_333_MHZ:
5341                         return 333000;
5342                 default:
5343                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5344                         return 190000;
5345                 }
5346         }
5347 }
5348
5349 static int i865_get_display_clock_speed(struct drm_device *dev)
5350 {
5351         return 266000;
5352 }
5353
5354 static int i855_get_display_clock_speed(struct drm_device *dev)
5355 {
5356         u16 hpllcc = 0;
5357         /* Assume that the hardware is in the high speed state.  This
5358          * should be the default.
5359          */
5360         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5361         case GC_CLOCK_133_200:
5362         case GC_CLOCK_100_200:
5363                 return 200000;
5364         case GC_CLOCK_166_250:
5365                 return 250000;
5366         case GC_CLOCK_100_133:
5367                 return 133000;
5368         }
5369
5370         /* Shouldn't happen */
5371         return 0;
5372 }
5373
5374 static int i830_get_display_clock_speed(struct drm_device *dev)
5375 {
5376         return 133000;
5377 }
5378
5379 static void
5380 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5381 {
5382         while (*num > DATA_LINK_M_N_MASK ||
5383                *den > DATA_LINK_M_N_MASK) {
5384                 *num >>= 1;
5385                 *den >>= 1;
5386         }
5387 }
5388
5389 static void compute_m_n(unsigned int m, unsigned int n,
5390                         uint32_t *ret_m, uint32_t *ret_n)
5391 {
5392         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5393         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5394         intel_reduce_m_n_ratio(ret_m, ret_n);
5395 }
5396
5397 void
5398 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5399                        int pixel_clock, int link_clock,
5400                        struct intel_link_m_n *m_n)
5401 {
5402         m_n->tu = 64;
5403
5404         compute_m_n(bits_per_pixel * pixel_clock,
5405                     link_clock * nlanes * 8,
5406                     &m_n->gmch_m, &m_n->gmch_n);
5407
5408         compute_m_n(pixel_clock, link_clock,
5409                     &m_n->link_m, &m_n->link_n);
5410 }
5411
5412 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5413 {
5414         if (i915.panel_use_ssc >= 0)
5415                 return i915.panel_use_ssc != 0;
5416         return dev_priv->vbt.lvds_use_ssc
5417                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5418 }
5419
5420 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5421 {
5422         struct drm_device *dev = crtc->dev;
5423         struct drm_i915_private *dev_priv = dev->dev_private;
5424         int refclk;
5425
5426         if (IS_VALLEYVIEW(dev)) {
5427                 refclk = 100000;
5428         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5429             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5430                 refclk = dev_priv->vbt.lvds_ssc_freq;
5431                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5432         } else if (!IS_GEN2(dev)) {
5433                 refclk = 96000;
5434         } else {
5435                 refclk = 48000;
5436         }
5437
5438         return refclk;
5439 }
5440
5441 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5442 {
5443         return (1 << dpll->n) << 16 | dpll->m2;
5444 }
5445
5446 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5447 {
5448         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5449 }
5450
5451 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5452                                      intel_clock_t *reduced_clock)
5453 {
5454         struct drm_device *dev = crtc->base.dev;
5455         u32 fp, fp2 = 0;
5456
5457         if (IS_PINEVIEW(dev)) {
5458                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5459                 if (reduced_clock)
5460                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5461         } else {
5462                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5463                 if (reduced_clock)
5464                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5465         }
5466
5467         crtc->config.dpll_hw_state.fp0 = fp;
5468
5469         crtc->lowfreq_avail = false;
5470         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5471             reduced_clock && i915.powersave) {
5472                 crtc->config.dpll_hw_state.fp1 = fp2;
5473                 crtc->lowfreq_avail = true;
5474         } else {
5475                 crtc->config.dpll_hw_state.fp1 = fp;
5476         }
5477 }
5478
5479 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5480                 pipe)
5481 {
5482         u32 reg_val;
5483
5484         /*
5485          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5486          * and set it to a reasonable value instead.
5487          */
5488         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5489         reg_val &= 0xffffff00;
5490         reg_val |= 0x00000030;
5491         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5492
5493         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5494         reg_val &= 0x8cffffff;
5495         reg_val = 0x8c000000;
5496         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5497
5498         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5499         reg_val &= 0xffffff00;
5500         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5501
5502         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5503         reg_val &= 0x00ffffff;
5504         reg_val |= 0xb0000000;
5505         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5506 }
5507
5508 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5509                                          struct intel_link_m_n *m_n)
5510 {
5511         struct drm_device *dev = crtc->base.dev;
5512         struct drm_i915_private *dev_priv = dev->dev_private;
5513         int pipe = crtc->pipe;
5514
5515         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5516         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5517         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5518         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5519 }
5520
5521 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5522                                          struct intel_link_m_n *m_n)
5523 {
5524         struct drm_device *dev = crtc->base.dev;
5525         struct drm_i915_private *dev_priv = dev->dev_private;
5526         int pipe = crtc->pipe;
5527         enum transcoder transcoder = crtc->config.cpu_transcoder;
5528
5529         if (INTEL_INFO(dev)->gen >= 5) {
5530                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5531                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5532                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5533                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5534         } else {
5535                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5536                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5537                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5538                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5539         }
5540 }
5541
5542 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5543 {
5544         if (crtc->config.has_pch_encoder)
5545                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5546         else
5547                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5548 }
5549
5550 static void vlv_update_pll(struct intel_crtc *crtc)
5551 {
5552         u32 dpll, dpll_md;
5553
5554         /*
5555          * Enable DPIO clock input. We should never disable the reference
5556          * clock for pipe B, since VGA hotplug / manual detection depends
5557          * on it.
5558          */
5559         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5560                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5561         /* We should never disable this, set it here for state tracking */
5562         if (crtc->pipe == PIPE_B)
5563                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5564         dpll |= DPLL_VCO_ENABLE;
5565         crtc->config.dpll_hw_state.dpll = dpll;
5566
5567         dpll_md = (crtc->config.pixel_multiplier - 1)
5568                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5569         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5570 }
5571
5572 static void vlv_prepare_pll(struct intel_crtc *crtc)
5573 {
5574         struct drm_device *dev = crtc->base.dev;
5575         struct drm_i915_private *dev_priv = dev->dev_private;
5576         int pipe = crtc->pipe;
5577         u32 mdiv;
5578         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5579         u32 coreclk, reg_val;
5580
5581         mutex_lock(&dev_priv->dpio_lock);
5582
5583         bestn = crtc->config.dpll.n;
5584         bestm1 = crtc->config.dpll.m1;
5585         bestm2 = crtc->config.dpll.m2;
5586         bestp1 = crtc->config.dpll.p1;
5587         bestp2 = crtc->config.dpll.p2;
5588
5589         /* See eDP HDMI DPIO driver vbios notes doc */
5590
5591         /* PLL B needs special handling */
5592         if (pipe == PIPE_B)
5593                 vlv_pllb_recal_opamp(dev_priv, pipe);
5594
5595         /* Set up Tx target for periodic Rcomp update */
5596         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5597
5598         /* Disable target IRef on PLL */
5599         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5600         reg_val &= 0x00ffffff;
5601         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5602
5603         /* Disable fast lock */
5604         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5605
5606         /* Set idtafcrecal before PLL is enabled */
5607         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5608         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5609         mdiv |= ((bestn << DPIO_N_SHIFT));
5610         mdiv |= (1 << DPIO_K_SHIFT);
5611
5612         /*
5613          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5614          * but we don't support that).
5615          * Note: don't use the DAC post divider as it seems unstable.
5616          */
5617         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5618         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5619
5620         mdiv |= DPIO_ENABLE_CALIBRATION;
5621         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5622
5623         /* Set HBR and RBR LPF coefficients */
5624         if (crtc->config.port_clock == 162000 ||
5625             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5626             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5627                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5628                                  0x009f0003);
5629         else
5630                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5631                                  0x00d0000f);
5632
5633         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5634             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5635                 /* Use SSC source */
5636                 if (pipe == PIPE_A)
5637                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5638                                          0x0df40000);
5639                 else
5640                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5641                                          0x0df70000);
5642         } else { /* HDMI or VGA */
5643                 /* Use bend source */
5644                 if (pipe == PIPE_A)
5645                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5646                                          0x0df70000);
5647                 else
5648                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5649                                          0x0df40000);
5650         }
5651
5652         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5653         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5654         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5655             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5656                 coreclk |= 0x01000000;
5657         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5658
5659         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5660         mutex_unlock(&dev_priv->dpio_lock);
5661 }
5662
5663 static void chv_update_pll(struct intel_crtc *crtc)
5664 {
5665         struct drm_device *dev = crtc->base.dev;
5666         struct drm_i915_private *dev_priv = dev->dev_private;
5667         int pipe = crtc->pipe;
5668         int dpll_reg = DPLL(crtc->pipe);
5669         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5670         u32 loopfilter, intcoeff;
5671         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5672         int refclk;
5673
5674         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5675                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5676                 DPLL_VCO_ENABLE;
5677         if (pipe != PIPE_A)
5678                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5679
5680         crtc->config.dpll_hw_state.dpll_md =
5681                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5682
5683         bestn = crtc->config.dpll.n;
5684         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5685         bestm1 = crtc->config.dpll.m1;
5686         bestm2 = crtc->config.dpll.m2 >> 22;
5687         bestp1 = crtc->config.dpll.p1;
5688         bestp2 = crtc->config.dpll.p2;
5689
5690         /*
5691          * Enable Refclk and SSC
5692          */
5693         I915_WRITE(dpll_reg,
5694                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5695
5696         mutex_lock(&dev_priv->dpio_lock);
5697
5698         /* p1 and p2 divider */
5699         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5700                         5 << DPIO_CHV_S1_DIV_SHIFT |
5701                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5702                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5703                         1 << DPIO_CHV_K_DIV_SHIFT);
5704
5705         /* Feedback post-divider - m2 */
5706         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5707
5708         /* Feedback refclk divider - n and m1 */
5709         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5710                         DPIO_CHV_M1_DIV_BY_2 |
5711                         1 << DPIO_CHV_N_DIV_SHIFT);
5712
5713         /* M2 fraction division */
5714         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5715
5716         /* M2 fraction division enable */
5717         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5718                        DPIO_CHV_FRAC_DIV_EN |
5719                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5720
5721         /* Loop filter */
5722         refclk = i9xx_get_refclk(&crtc->base, 0);
5723         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5724                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5725         if (refclk == 100000)
5726                 intcoeff = 11;
5727         else if (refclk == 38400)
5728                 intcoeff = 10;
5729         else
5730                 intcoeff = 9;
5731         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5732         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5733
5734         /* AFC Recal */
5735         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5736                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5737                         DPIO_AFC_RECAL);
5738
5739         mutex_unlock(&dev_priv->dpio_lock);
5740 }
5741
5742 static void i9xx_update_pll(struct intel_crtc *crtc,
5743                             intel_clock_t *reduced_clock,
5744                             int num_connectors)
5745 {
5746         struct drm_device *dev = crtc->base.dev;
5747         struct drm_i915_private *dev_priv = dev->dev_private;
5748         u32 dpll;
5749         bool is_sdvo;
5750         struct dpll *clock = &crtc->config.dpll;
5751
5752         i9xx_update_pll_dividers(crtc, reduced_clock);
5753
5754         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5755                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5756
5757         dpll = DPLL_VGA_MODE_DIS;
5758
5759         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5760                 dpll |= DPLLB_MODE_LVDS;
5761         else
5762                 dpll |= DPLLB_MODE_DAC_SERIAL;
5763
5764         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5765                 dpll |= (crtc->config.pixel_multiplier - 1)
5766                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5767         }
5768
5769         if (is_sdvo)
5770                 dpll |= DPLL_SDVO_HIGH_SPEED;
5771
5772         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5773                 dpll |= DPLL_SDVO_HIGH_SPEED;
5774
5775         /* compute bitmask from p1 value */
5776         if (IS_PINEVIEW(dev))
5777                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5778         else {
5779                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5780                 if (IS_G4X(dev) && reduced_clock)
5781                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5782         }
5783         switch (clock->p2) {
5784         case 5:
5785                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5786                 break;
5787         case 7:
5788                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5789                 break;
5790         case 10:
5791                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5792                 break;
5793         case 14:
5794                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5795                 break;
5796         }
5797         if (INTEL_INFO(dev)->gen >= 4)
5798                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5799
5800         if (crtc->config.sdvo_tv_clock)
5801                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5802         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5803                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5804                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5805         else
5806                 dpll |= PLL_REF_INPUT_DREFCLK;
5807
5808         dpll |= DPLL_VCO_ENABLE;
5809         crtc->config.dpll_hw_state.dpll = dpll;
5810
5811         if (INTEL_INFO(dev)->gen >= 4) {
5812                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5813                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5814                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5815         }
5816 }
5817
5818 static void i8xx_update_pll(struct intel_crtc *crtc,
5819                             intel_clock_t *reduced_clock,
5820                             int num_connectors)
5821 {
5822         struct drm_device *dev = crtc->base.dev;
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824         u32 dpll;
5825         struct dpll *clock = &crtc->config.dpll;
5826
5827         i9xx_update_pll_dividers(crtc, reduced_clock);
5828
5829         dpll = DPLL_VGA_MODE_DIS;
5830
5831         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5832                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5833         } else {
5834                 if (clock->p1 == 2)
5835                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5836                 else
5837                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5838                 if (clock->p2 == 4)
5839                         dpll |= PLL_P2_DIVIDE_BY_4;
5840         }
5841
5842         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5843                 dpll |= DPLL_DVO_2X_MODE;
5844
5845         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5846                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5847                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5848         else
5849                 dpll |= PLL_REF_INPUT_DREFCLK;
5850
5851         dpll |= DPLL_VCO_ENABLE;
5852         crtc->config.dpll_hw_state.dpll = dpll;
5853 }
5854
5855 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5856 {
5857         struct drm_device *dev = intel_crtc->base.dev;
5858         struct drm_i915_private *dev_priv = dev->dev_private;
5859         enum pipe pipe = intel_crtc->pipe;
5860         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5861         struct drm_display_mode *adjusted_mode =
5862                 &intel_crtc->config.adjusted_mode;
5863         uint32_t crtc_vtotal, crtc_vblank_end;
5864         int vsyncshift = 0;
5865
5866         /* We need to be careful not to changed the adjusted mode, for otherwise
5867          * the hw state checker will get angry at the mismatch. */
5868         crtc_vtotal = adjusted_mode->crtc_vtotal;
5869         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5870
5871         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5872                 /* the chip adds 2 halflines automatically */
5873                 crtc_vtotal -= 1;
5874                 crtc_vblank_end -= 1;
5875
5876                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5877                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5878                 else
5879                         vsyncshift = adjusted_mode->crtc_hsync_start -
5880                                 adjusted_mode->crtc_htotal / 2;
5881                 if (vsyncshift < 0)
5882                         vsyncshift += adjusted_mode->crtc_htotal;
5883         }
5884
5885         if (INTEL_INFO(dev)->gen > 3)
5886                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5887
5888         I915_WRITE(HTOTAL(cpu_transcoder),
5889                    (adjusted_mode->crtc_hdisplay - 1) |
5890                    ((adjusted_mode->crtc_htotal - 1) << 16));
5891         I915_WRITE(HBLANK(cpu_transcoder),
5892                    (adjusted_mode->crtc_hblank_start - 1) |
5893                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5894         I915_WRITE(HSYNC(cpu_transcoder),
5895                    (adjusted_mode->crtc_hsync_start - 1) |
5896                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5897
5898         I915_WRITE(VTOTAL(cpu_transcoder),
5899                    (adjusted_mode->crtc_vdisplay - 1) |
5900                    ((crtc_vtotal - 1) << 16));
5901         I915_WRITE(VBLANK(cpu_transcoder),
5902                    (adjusted_mode->crtc_vblank_start - 1) |
5903                    ((crtc_vblank_end - 1) << 16));
5904         I915_WRITE(VSYNC(cpu_transcoder),
5905                    (adjusted_mode->crtc_vsync_start - 1) |
5906                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5907
5908         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5909          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5910          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5911          * bits. */
5912         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5913             (pipe == PIPE_B || pipe == PIPE_C))
5914                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5915
5916         /* pipesrc controls the size that is scaled from, which should
5917          * always be the user's requested size.
5918          */
5919         I915_WRITE(PIPESRC(pipe),
5920                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5921                    (intel_crtc->config.pipe_src_h - 1));
5922 }
5923
5924 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5925                                    struct intel_crtc_config *pipe_config)
5926 {
5927         struct drm_device *dev = crtc->base.dev;
5928         struct drm_i915_private *dev_priv = dev->dev_private;
5929         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5930         uint32_t tmp;
5931
5932         tmp = I915_READ(HTOTAL(cpu_transcoder));
5933         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5934         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5935         tmp = I915_READ(HBLANK(cpu_transcoder));
5936         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5937         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5938         tmp = I915_READ(HSYNC(cpu_transcoder));
5939         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5940         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942         tmp = I915_READ(VTOTAL(cpu_transcoder));
5943         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5944         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5945         tmp = I915_READ(VBLANK(cpu_transcoder));
5946         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5947         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5948         tmp = I915_READ(VSYNC(cpu_transcoder));
5949         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5950         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5951
5952         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5953                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5954                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5955                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5956         }
5957
5958         tmp = I915_READ(PIPESRC(crtc->pipe));
5959         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5960         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5961
5962         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5963         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5964 }
5965
5966 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5967                                  struct intel_crtc_config *pipe_config)
5968 {
5969         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5970         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5971         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5972         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5973
5974         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5975         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5976         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5977         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5978
5979         mode->flags = pipe_config->adjusted_mode.flags;
5980
5981         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5982         mode->flags |= pipe_config->adjusted_mode.flags;
5983 }
5984
5985 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5986 {
5987         struct drm_device *dev = intel_crtc->base.dev;
5988         struct drm_i915_private *dev_priv = dev->dev_private;
5989         uint32_t pipeconf;
5990
5991         pipeconf = 0;
5992
5993         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5994             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5995                 pipeconf |= PIPECONF_ENABLE;
5996
5997         if (intel_crtc->config.double_wide)
5998                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5999
6000         /* only g4x and later have fancy bpc/dither controls */
6001         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6002                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6003                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6004                         pipeconf |= PIPECONF_DITHER_EN |
6005                                     PIPECONF_DITHER_TYPE_SP;
6006
6007                 switch (intel_crtc->config.pipe_bpp) {
6008                 case 18:
6009                         pipeconf |= PIPECONF_6BPC;
6010                         break;
6011                 case 24:
6012                         pipeconf |= PIPECONF_8BPC;
6013                         break;
6014                 case 30:
6015                         pipeconf |= PIPECONF_10BPC;
6016                         break;
6017                 default:
6018                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6019                         BUG();
6020                 }
6021         }
6022
6023         if (HAS_PIPE_CXSR(dev)) {
6024                 if (intel_crtc->lowfreq_avail) {
6025                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6026                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6027                 } else {
6028                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6029                 }
6030         }
6031
6032         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6033                 if (INTEL_INFO(dev)->gen < 4 ||
6034                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6035                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6036                 else
6037                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6038         } else
6039                 pipeconf |= PIPECONF_PROGRESSIVE;
6040
6041         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6042                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6043
6044         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6045         POSTING_READ(PIPECONF(intel_crtc->pipe));
6046 }
6047
6048 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6049                               int x, int y,
6050                               struct drm_framebuffer *fb)
6051 {
6052         struct drm_device *dev = crtc->dev;
6053         struct drm_i915_private *dev_priv = dev->dev_private;
6054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055         int refclk, num_connectors = 0;
6056         intel_clock_t clock, reduced_clock;
6057         bool ok, has_reduced_clock = false;
6058         bool is_lvds = false, is_dsi = false;
6059         struct intel_encoder *encoder;
6060         const intel_limit_t *limit;
6061
6062         for_each_encoder_on_crtc(dev, crtc, encoder) {
6063                 switch (encoder->type) {
6064                 case INTEL_OUTPUT_LVDS:
6065                         is_lvds = true;
6066                         break;
6067                 case INTEL_OUTPUT_DSI:
6068                         is_dsi = true;
6069                         break;
6070                 }
6071
6072                 num_connectors++;
6073         }
6074
6075         if (is_dsi)
6076                 return 0;
6077
6078         if (!intel_crtc->config.clock_set) {
6079                 refclk = i9xx_get_refclk(crtc, num_connectors);
6080
6081                 /*
6082                  * Returns a set of divisors for the desired target clock with
6083                  * the given refclk, or FALSE.  The returned values represent
6084                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6085                  * 2) / p1 / p2.
6086                  */
6087                 limit = intel_limit(crtc, refclk);
6088                 ok = dev_priv->display.find_dpll(limit, crtc,
6089                                                  intel_crtc->config.port_clock,
6090                                                  refclk, NULL, &clock);
6091                 if (!ok) {
6092                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6093                         return -EINVAL;
6094                 }
6095
6096                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6097                         /*
6098                          * Ensure we match the reduced clock's P to the target
6099                          * clock.  If the clocks don't match, we can't switch
6100                          * the display clock by using the FP0/FP1. In such case
6101                          * we will disable the LVDS downclock feature.
6102                          */
6103                         has_reduced_clock =
6104                                 dev_priv->display.find_dpll(limit, crtc,
6105                                                             dev_priv->lvds_downclock,
6106                                                             refclk, &clock,
6107                                                             &reduced_clock);
6108                 }
6109                 /* Compat-code for transition, will disappear. */
6110                 intel_crtc->config.dpll.n = clock.n;
6111                 intel_crtc->config.dpll.m1 = clock.m1;
6112                 intel_crtc->config.dpll.m2 = clock.m2;
6113                 intel_crtc->config.dpll.p1 = clock.p1;
6114                 intel_crtc->config.dpll.p2 = clock.p2;
6115         }
6116
6117         if (IS_GEN2(dev)) {
6118                 i8xx_update_pll(intel_crtc,
6119                                 has_reduced_clock ? &reduced_clock : NULL,
6120                                 num_connectors);
6121         } else if (IS_CHERRYVIEW(dev)) {
6122                 chv_update_pll(intel_crtc);
6123         } else if (IS_VALLEYVIEW(dev)) {
6124                 vlv_update_pll(intel_crtc);
6125         } else {
6126                 i9xx_update_pll(intel_crtc,
6127                                 has_reduced_clock ? &reduced_clock : NULL,
6128                                 num_connectors);
6129         }
6130
6131         return 0;
6132 }
6133
6134 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6135                                  struct intel_crtc_config *pipe_config)
6136 {
6137         struct drm_device *dev = crtc->base.dev;
6138         struct drm_i915_private *dev_priv = dev->dev_private;
6139         uint32_t tmp;
6140
6141         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6142                 return;
6143
6144         tmp = I915_READ(PFIT_CONTROL);
6145         if (!(tmp & PFIT_ENABLE))
6146                 return;
6147
6148         /* Check whether the pfit is attached to our pipe. */
6149         if (INTEL_INFO(dev)->gen < 4) {
6150                 if (crtc->pipe != PIPE_B)
6151                         return;
6152         } else {
6153                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6154                         return;
6155         }
6156
6157         pipe_config->gmch_pfit.control = tmp;
6158         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6159         if (INTEL_INFO(dev)->gen < 5)
6160                 pipe_config->gmch_pfit.lvds_border_bits =
6161                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6162 }
6163
6164 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6165                                struct intel_crtc_config *pipe_config)
6166 {
6167         struct drm_device *dev = crtc->base.dev;
6168         struct drm_i915_private *dev_priv = dev->dev_private;
6169         int pipe = pipe_config->cpu_transcoder;
6170         intel_clock_t clock;
6171         u32 mdiv;
6172         int refclk = 100000;
6173
6174         /* In case of MIPI DPLL will not even be used */
6175         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6176                 return;
6177
6178         mutex_lock(&dev_priv->dpio_lock);
6179         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6180         mutex_unlock(&dev_priv->dpio_lock);
6181
6182         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6183         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6184         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6185         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6186         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6187
6188         vlv_clock(refclk, &clock);
6189
6190         /* clock.dot is the fast clock */
6191         pipe_config->port_clock = clock.dot / 5;
6192 }
6193
6194 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6195                                   struct intel_plane_config *plane_config)
6196 {
6197         struct drm_device *dev = crtc->base.dev;
6198         struct drm_i915_private *dev_priv = dev->dev_private;
6199         u32 val, base, offset;
6200         int pipe = crtc->pipe, plane = crtc->plane;
6201         int fourcc, pixel_format;
6202         int aligned_height;
6203
6204         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6205         if (!crtc->base.primary->fb) {
6206                 DRM_DEBUG_KMS("failed to alloc fb\n");
6207                 return;
6208         }
6209
6210         val = I915_READ(DSPCNTR(plane));
6211
6212         if (INTEL_INFO(dev)->gen >= 4)
6213                 if (val & DISPPLANE_TILED)
6214                         plane_config->tiled = true;
6215
6216         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6217         fourcc = intel_format_to_fourcc(pixel_format);
6218         crtc->base.primary->fb->pixel_format = fourcc;
6219         crtc->base.primary->fb->bits_per_pixel =
6220                 drm_format_plane_cpp(fourcc, 0) * 8;
6221
6222         if (INTEL_INFO(dev)->gen >= 4) {
6223                 if (plane_config->tiled)
6224                         offset = I915_READ(DSPTILEOFF(plane));
6225                 else
6226                         offset = I915_READ(DSPLINOFF(plane));
6227                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6228         } else {
6229                 base = I915_READ(DSPADDR(plane));
6230         }
6231         plane_config->base = base;
6232
6233         val = I915_READ(PIPESRC(pipe));
6234         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6235         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6236
6237         val = I915_READ(DSPSTRIDE(pipe));
6238         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6239
6240         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6241                                             plane_config->tiled);
6242
6243         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6244                                         aligned_height);
6245
6246         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6247                       pipe, plane, crtc->base.primary->fb->width,
6248                       crtc->base.primary->fb->height,
6249                       crtc->base.primary->fb->bits_per_pixel, base,
6250                       crtc->base.primary->fb->pitches[0],
6251                       plane_config->size);
6252
6253 }
6254
6255 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6256                                struct intel_crtc_config *pipe_config)
6257 {
6258         struct drm_device *dev = crtc->base.dev;
6259         struct drm_i915_private *dev_priv = dev->dev_private;
6260         int pipe = pipe_config->cpu_transcoder;
6261         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6262         intel_clock_t clock;
6263         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6264         int refclk = 100000;
6265
6266         mutex_lock(&dev_priv->dpio_lock);
6267         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6268         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6269         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6270         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6271         mutex_unlock(&dev_priv->dpio_lock);
6272
6273         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6274         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6275         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6276         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6277         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6278
6279         chv_clock(refclk, &clock);
6280
6281         /* clock.dot is the fast clock */
6282         pipe_config->port_clock = clock.dot / 5;
6283 }
6284
6285 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6286                                  struct intel_crtc_config *pipe_config)
6287 {
6288         struct drm_device *dev = crtc->base.dev;
6289         struct drm_i915_private *dev_priv = dev->dev_private;
6290         uint32_t tmp;
6291
6292         if (!intel_display_power_enabled(dev_priv,
6293                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6294                 return false;
6295
6296         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6297         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6298
6299         tmp = I915_READ(PIPECONF(crtc->pipe));
6300         if (!(tmp & PIPECONF_ENABLE))
6301                 return false;
6302
6303         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6304                 switch (tmp & PIPECONF_BPC_MASK) {
6305                 case PIPECONF_6BPC:
6306                         pipe_config->pipe_bpp = 18;
6307                         break;
6308                 case PIPECONF_8BPC:
6309                         pipe_config->pipe_bpp = 24;
6310                         break;
6311                 case PIPECONF_10BPC:
6312                         pipe_config->pipe_bpp = 30;
6313                         break;
6314                 default:
6315                         break;
6316                 }
6317         }
6318
6319         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6320                 pipe_config->limited_color_range = true;
6321
6322         if (INTEL_INFO(dev)->gen < 4)
6323                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6324
6325         intel_get_pipe_timings(crtc, pipe_config);
6326
6327         i9xx_get_pfit_config(crtc, pipe_config);
6328
6329         if (INTEL_INFO(dev)->gen >= 4) {
6330                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6331                 pipe_config->pixel_multiplier =
6332                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6333                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6334                 pipe_config->dpll_hw_state.dpll_md = tmp;
6335         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6336                 tmp = I915_READ(DPLL(crtc->pipe));
6337                 pipe_config->pixel_multiplier =
6338                         ((tmp & SDVO_MULTIPLIER_MASK)
6339                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6340         } else {
6341                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6342                  * port and will be fixed up in the encoder->get_config
6343                  * function. */
6344                 pipe_config->pixel_multiplier = 1;
6345         }
6346         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6347         if (!IS_VALLEYVIEW(dev)) {
6348                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6349                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6350         } else {
6351                 /* Mask out read-only status bits. */
6352                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6353                                                      DPLL_PORTC_READY_MASK |
6354                                                      DPLL_PORTB_READY_MASK);
6355         }
6356
6357         if (IS_CHERRYVIEW(dev))
6358                 chv_crtc_clock_get(crtc, pipe_config);
6359         else if (IS_VALLEYVIEW(dev))
6360                 vlv_crtc_clock_get(crtc, pipe_config);
6361         else
6362                 i9xx_crtc_clock_get(crtc, pipe_config);
6363
6364         return true;
6365 }
6366
6367 static void ironlake_init_pch_refclk(struct drm_device *dev)
6368 {
6369         struct drm_i915_private *dev_priv = dev->dev_private;
6370         struct drm_mode_config *mode_config = &dev->mode_config;
6371         struct intel_encoder *encoder;
6372         u32 val, final;
6373         bool has_lvds = false;
6374         bool has_cpu_edp = false;
6375         bool has_panel = false;
6376         bool has_ck505 = false;
6377         bool can_ssc = false;
6378
6379         /* We need to take the global config into account */
6380         list_for_each_entry(encoder, &mode_config->encoder_list,
6381                             base.head) {
6382                 switch (encoder->type) {
6383                 case INTEL_OUTPUT_LVDS:
6384                         has_panel = true;
6385                         has_lvds = true;
6386                         break;
6387                 case INTEL_OUTPUT_EDP:
6388                         has_panel = true;
6389                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6390                                 has_cpu_edp = true;
6391                         break;
6392                 }
6393         }
6394
6395         if (HAS_PCH_IBX(dev)) {
6396                 has_ck505 = dev_priv->vbt.display_clock_mode;
6397                 can_ssc = has_ck505;
6398         } else {
6399                 has_ck505 = false;
6400                 can_ssc = true;
6401         }
6402
6403         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6404                       has_panel, has_lvds, has_ck505);
6405
6406         /* Ironlake: try to setup display ref clock before DPLL
6407          * enabling. This is only under driver's control after
6408          * PCH B stepping, previous chipset stepping should be
6409          * ignoring this setting.
6410          */
6411         val = I915_READ(PCH_DREF_CONTROL);
6412
6413         /* As we must carefully and slowly disable/enable each source in turn,
6414          * compute the final state we want first and check if we need to
6415          * make any changes at all.
6416          */
6417         final = val;
6418         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6419         if (has_ck505)
6420                 final |= DREF_NONSPREAD_CK505_ENABLE;
6421         else
6422                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6423
6424         final &= ~DREF_SSC_SOURCE_MASK;
6425         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6426         final &= ~DREF_SSC1_ENABLE;
6427
6428         if (has_panel) {
6429                 final |= DREF_SSC_SOURCE_ENABLE;
6430
6431                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6432                         final |= DREF_SSC1_ENABLE;
6433
6434                 if (has_cpu_edp) {
6435                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6436                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6437                         else
6438                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6439                 } else
6440                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6441         } else {
6442                 final |= DREF_SSC_SOURCE_DISABLE;
6443                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6444         }
6445
6446         if (final == val)
6447                 return;
6448
6449         /* Always enable nonspread source */
6450         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6451
6452         if (has_ck505)
6453                 val |= DREF_NONSPREAD_CK505_ENABLE;
6454         else
6455                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6456
6457         if (has_panel) {
6458                 val &= ~DREF_SSC_SOURCE_MASK;
6459                 val |= DREF_SSC_SOURCE_ENABLE;
6460
6461                 /* SSC must be turned on before enabling the CPU output  */
6462                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6463                         DRM_DEBUG_KMS("Using SSC on panel\n");
6464                         val |= DREF_SSC1_ENABLE;
6465                 } else
6466                         val &= ~DREF_SSC1_ENABLE;
6467
6468                 /* Get SSC going before enabling the outputs */
6469                 I915_WRITE(PCH_DREF_CONTROL, val);
6470                 POSTING_READ(PCH_DREF_CONTROL);
6471                 udelay(200);
6472
6473                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6474
6475                 /* Enable CPU source on CPU attached eDP */
6476                 if (has_cpu_edp) {
6477                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6478                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6479                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6480                         } else
6481                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6482                 } else
6483                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6484
6485                 I915_WRITE(PCH_DREF_CONTROL, val);
6486                 POSTING_READ(PCH_DREF_CONTROL);
6487                 udelay(200);
6488         } else {
6489                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6490
6491                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6492
6493                 /* Turn off CPU output */
6494                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6495
6496                 I915_WRITE(PCH_DREF_CONTROL, val);
6497                 POSTING_READ(PCH_DREF_CONTROL);
6498                 udelay(200);
6499
6500                 /* Turn off the SSC source */
6501                 val &= ~DREF_SSC_SOURCE_MASK;
6502                 val |= DREF_SSC_SOURCE_DISABLE;
6503
6504                 /* Turn off SSC1 */
6505                 val &= ~DREF_SSC1_ENABLE;
6506
6507                 I915_WRITE(PCH_DREF_CONTROL, val);
6508                 POSTING_READ(PCH_DREF_CONTROL);
6509                 udelay(200);
6510         }
6511
6512         BUG_ON(val != final);
6513 }
6514
6515 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6516 {
6517         uint32_t tmp;
6518
6519         tmp = I915_READ(SOUTH_CHICKEN2);
6520         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6521         I915_WRITE(SOUTH_CHICKEN2, tmp);
6522
6523         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6524                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6525                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6526
6527         tmp = I915_READ(SOUTH_CHICKEN2);
6528         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6529         I915_WRITE(SOUTH_CHICKEN2, tmp);
6530
6531         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6532                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6533                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6534 }
6535
6536 /* WaMPhyProgramming:hsw */
6537 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6538 {
6539         uint32_t tmp;
6540
6541         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6542         tmp &= ~(0xFF << 24);
6543         tmp |= (0x12 << 24);
6544         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6545
6546         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6547         tmp |= (1 << 11);
6548         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6549
6550         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6551         tmp |= (1 << 11);
6552         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6553
6554         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6555         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6556         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6557
6558         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6559         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6560         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6561
6562         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6563         tmp &= ~(7 << 13);
6564         tmp |= (5 << 13);
6565         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6566
6567         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6568         tmp &= ~(7 << 13);
6569         tmp |= (5 << 13);
6570         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6571
6572         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6573         tmp &= ~0xFF;
6574         tmp |= 0x1C;
6575         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6576
6577         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6578         tmp &= ~0xFF;
6579         tmp |= 0x1C;
6580         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6581
6582         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6583         tmp &= ~(0xFF << 16);
6584         tmp |= (0x1C << 16);
6585         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6586
6587         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6588         tmp &= ~(0xFF << 16);
6589         tmp |= (0x1C << 16);
6590         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6591
6592         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6593         tmp |= (1 << 27);
6594         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6595
6596         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6597         tmp |= (1 << 27);
6598         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6599
6600         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6601         tmp &= ~(0xF << 28);
6602         tmp |= (4 << 28);
6603         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6604
6605         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6606         tmp &= ~(0xF << 28);
6607         tmp |= (4 << 28);
6608         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6609 }
6610
6611 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6612  * Programming" based on the parameters passed:
6613  * - Sequence to enable CLKOUT_DP
6614  * - Sequence to enable CLKOUT_DP without spread
6615  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6616  */
6617 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6618                                  bool with_fdi)
6619 {
6620         struct drm_i915_private *dev_priv = dev->dev_private;
6621         uint32_t reg, tmp;
6622
6623         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6624                 with_spread = true;
6625         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6626                  with_fdi, "LP PCH doesn't have FDI\n"))
6627                 with_fdi = false;
6628
6629         mutex_lock(&dev_priv->dpio_lock);
6630
6631         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6632         tmp &= ~SBI_SSCCTL_DISABLE;
6633         tmp |= SBI_SSCCTL_PATHALT;
6634         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6635
6636         udelay(24);
6637
6638         if (with_spread) {
6639                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6640                 tmp &= ~SBI_SSCCTL_PATHALT;
6641                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6642
6643                 if (with_fdi) {
6644                         lpt_reset_fdi_mphy(dev_priv);
6645                         lpt_program_fdi_mphy(dev_priv);
6646                 }
6647         }
6648
6649         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6650                SBI_GEN0 : SBI_DBUFF0;
6651         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6652         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6653         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6654
6655         mutex_unlock(&dev_priv->dpio_lock);
6656 }
6657
6658 /* Sequence to disable CLKOUT_DP */
6659 static void lpt_disable_clkout_dp(struct drm_device *dev)
6660 {
6661         struct drm_i915_private *dev_priv = dev->dev_private;
6662         uint32_t reg, tmp;
6663
6664         mutex_lock(&dev_priv->dpio_lock);
6665
6666         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6667                SBI_GEN0 : SBI_DBUFF0;
6668         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6669         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6670         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6671
6672         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6673         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6674                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6675                         tmp |= SBI_SSCCTL_PATHALT;
6676                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6677                         udelay(32);
6678                 }
6679                 tmp |= SBI_SSCCTL_DISABLE;
6680                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6681         }
6682
6683         mutex_unlock(&dev_priv->dpio_lock);
6684 }
6685
6686 static void lpt_init_pch_refclk(struct drm_device *dev)
6687 {
6688         struct drm_mode_config *mode_config = &dev->mode_config;
6689         struct intel_encoder *encoder;
6690         bool has_vga = false;
6691
6692         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6693                 switch (encoder->type) {
6694                 case INTEL_OUTPUT_ANALOG:
6695                         has_vga = true;
6696                         break;
6697                 }
6698         }
6699
6700         if (has_vga)
6701                 lpt_enable_clkout_dp(dev, true, true);
6702         else
6703                 lpt_disable_clkout_dp(dev);
6704 }
6705
6706 /*
6707  * Initialize reference clocks when the driver loads
6708  */
6709 void intel_init_pch_refclk(struct drm_device *dev)
6710 {
6711         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6712                 ironlake_init_pch_refclk(dev);
6713         else if (HAS_PCH_LPT(dev))
6714                 lpt_init_pch_refclk(dev);
6715 }
6716
6717 static int ironlake_get_refclk(struct drm_crtc *crtc)
6718 {
6719         struct drm_device *dev = crtc->dev;
6720         struct drm_i915_private *dev_priv = dev->dev_private;
6721         struct intel_encoder *encoder;
6722         int num_connectors = 0;
6723         bool is_lvds = false;
6724
6725         for_each_encoder_on_crtc(dev, crtc, encoder) {
6726                 switch (encoder->type) {
6727                 case INTEL_OUTPUT_LVDS:
6728                         is_lvds = true;
6729                         break;
6730                 }
6731                 num_connectors++;
6732         }
6733
6734         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6735                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6736                               dev_priv->vbt.lvds_ssc_freq);
6737                 return dev_priv->vbt.lvds_ssc_freq;
6738         }
6739
6740         return 120000;
6741 }
6742
6743 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6744 {
6745         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6747         int pipe = intel_crtc->pipe;
6748         uint32_t val;
6749
6750         val = 0;
6751
6752         switch (intel_crtc->config.pipe_bpp) {
6753         case 18:
6754                 val |= PIPECONF_6BPC;
6755                 break;
6756         case 24:
6757                 val |= PIPECONF_8BPC;
6758                 break;
6759         case 30:
6760                 val |= PIPECONF_10BPC;
6761                 break;
6762         case 36:
6763                 val |= PIPECONF_12BPC;
6764                 break;
6765         default:
6766                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6767                 BUG();
6768         }
6769
6770         if (intel_crtc->config.dither)
6771                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6772
6773         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6774                 val |= PIPECONF_INTERLACED_ILK;
6775         else
6776                 val |= PIPECONF_PROGRESSIVE;
6777
6778         if (intel_crtc->config.limited_color_range)
6779                 val |= PIPECONF_COLOR_RANGE_SELECT;
6780
6781         I915_WRITE(PIPECONF(pipe), val);
6782         POSTING_READ(PIPECONF(pipe));
6783 }
6784
6785 /*
6786  * Set up the pipe CSC unit.
6787  *
6788  * Currently only full range RGB to limited range RGB conversion
6789  * is supported, but eventually this should handle various
6790  * RGB<->YCbCr scenarios as well.
6791  */
6792 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6793 {
6794         struct drm_device *dev = crtc->dev;
6795         struct drm_i915_private *dev_priv = dev->dev_private;
6796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6797         int pipe = intel_crtc->pipe;
6798         uint16_t coeff = 0x7800; /* 1.0 */
6799
6800         /*
6801          * TODO: Check what kind of values actually come out of the pipe
6802          * with these coeff/postoff values and adjust to get the best
6803          * accuracy. Perhaps we even need to take the bpc value into
6804          * consideration.
6805          */
6806
6807         if (intel_crtc->config.limited_color_range)
6808                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6809
6810         /*
6811          * GY/GU and RY/RU should be the other way around according
6812          * to BSpec, but reality doesn't agree. Just set them up in
6813          * a way that results in the correct picture.
6814          */
6815         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6816         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6817
6818         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6819         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6820
6821         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6822         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6823
6824         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6825         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6826         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6827
6828         if (INTEL_INFO(dev)->gen > 6) {
6829                 uint16_t postoff = 0;
6830
6831                 if (intel_crtc->config.limited_color_range)
6832                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6833
6834                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6835                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6836                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6837
6838                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6839         } else {
6840                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6841
6842                 if (intel_crtc->config.limited_color_range)
6843                         mode |= CSC_BLACK_SCREEN_OFFSET;
6844
6845                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6846         }
6847 }
6848
6849 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6850 {
6851         struct drm_device *dev = crtc->dev;
6852         struct drm_i915_private *dev_priv = dev->dev_private;
6853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6854         enum pipe pipe = intel_crtc->pipe;
6855         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6856         uint32_t val;
6857
6858         val = 0;
6859
6860         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6861                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6862
6863         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6864                 val |= PIPECONF_INTERLACED_ILK;
6865         else
6866                 val |= PIPECONF_PROGRESSIVE;
6867
6868         I915_WRITE(PIPECONF(cpu_transcoder), val);
6869         POSTING_READ(PIPECONF(cpu_transcoder));
6870
6871         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6872         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6873
6874         if (IS_BROADWELL(dev)) {
6875                 val = 0;
6876
6877                 switch (intel_crtc->config.pipe_bpp) {
6878                 case 18:
6879                         val |= PIPEMISC_DITHER_6_BPC;
6880                         break;
6881                 case 24:
6882                         val |= PIPEMISC_DITHER_8_BPC;
6883                         break;
6884                 case 30:
6885                         val |= PIPEMISC_DITHER_10_BPC;
6886                         break;
6887                 case 36:
6888                         val |= PIPEMISC_DITHER_12_BPC;
6889                         break;
6890                 default:
6891                         /* Case prevented by pipe_config_set_bpp. */
6892                         BUG();
6893                 }
6894
6895                 if (intel_crtc->config.dither)
6896                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6897
6898                 I915_WRITE(PIPEMISC(pipe), val);
6899         }
6900 }
6901
6902 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6903                                     intel_clock_t *clock,
6904                                     bool *has_reduced_clock,
6905                                     intel_clock_t *reduced_clock)
6906 {
6907         struct drm_device *dev = crtc->dev;
6908         struct drm_i915_private *dev_priv = dev->dev_private;
6909         struct intel_encoder *intel_encoder;
6910         int refclk;
6911         const intel_limit_t *limit;
6912         bool ret, is_lvds = false;
6913
6914         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6915                 switch (intel_encoder->type) {
6916                 case INTEL_OUTPUT_LVDS:
6917                         is_lvds = true;
6918                         break;
6919                 }
6920         }
6921
6922         refclk = ironlake_get_refclk(crtc);
6923
6924         /*
6925          * Returns a set of divisors for the desired target clock with the given
6926          * refclk, or FALSE.  The returned values represent the clock equation:
6927          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6928          */
6929         limit = intel_limit(crtc, refclk);
6930         ret = dev_priv->display.find_dpll(limit, crtc,
6931                                           to_intel_crtc(crtc)->config.port_clock,
6932                                           refclk, NULL, clock);
6933         if (!ret)
6934                 return false;
6935
6936         if (is_lvds && dev_priv->lvds_downclock_avail) {
6937                 /*
6938                  * Ensure we match the reduced clock's P to the target clock.
6939                  * If the clocks don't match, we can't switch the display clock
6940                  * by using the FP0/FP1. In such case we will disable the LVDS
6941                  * downclock feature.
6942                 */
6943                 *has_reduced_clock =
6944                         dev_priv->display.find_dpll(limit, crtc,
6945                                                     dev_priv->lvds_downclock,
6946                                                     refclk, clock,
6947                                                     reduced_clock);
6948         }
6949
6950         return true;
6951 }
6952
6953 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6954 {
6955         /*
6956          * Account for spread spectrum to avoid
6957          * oversubscribing the link. Max center spread
6958          * is 2.5%; use 5% for safety's sake.
6959          */
6960         u32 bps = target_clock * bpp * 21 / 20;
6961         return DIV_ROUND_UP(bps, link_bw * 8);
6962 }
6963
6964 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6965 {
6966         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6967 }
6968
6969 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6970                                       u32 *fp,
6971                                       intel_clock_t *reduced_clock, u32 *fp2)
6972 {
6973         struct drm_crtc *crtc = &intel_crtc->base;
6974         struct drm_device *dev = crtc->dev;
6975         struct drm_i915_private *dev_priv = dev->dev_private;
6976         struct intel_encoder *intel_encoder;
6977         uint32_t dpll;
6978         int factor, num_connectors = 0;
6979         bool is_lvds = false, is_sdvo = false;
6980
6981         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6982                 switch (intel_encoder->type) {
6983                 case INTEL_OUTPUT_LVDS:
6984                         is_lvds = true;
6985                         break;
6986                 case INTEL_OUTPUT_SDVO:
6987                 case INTEL_OUTPUT_HDMI:
6988                         is_sdvo = true;
6989                         break;
6990                 }
6991
6992                 num_connectors++;
6993         }
6994
6995         /* Enable autotuning of the PLL clock (if permissible) */
6996         factor = 21;
6997         if (is_lvds) {
6998                 if ((intel_panel_use_ssc(dev_priv) &&
6999                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7000                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7001                         factor = 25;
7002         } else if (intel_crtc->config.sdvo_tv_clock)
7003                 factor = 20;
7004
7005         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7006                 *fp |= FP_CB_TUNE;
7007
7008         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7009                 *fp2 |= FP_CB_TUNE;
7010
7011         dpll = 0;
7012
7013         if (is_lvds)
7014                 dpll |= DPLLB_MODE_LVDS;
7015         else
7016                 dpll |= DPLLB_MODE_DAC_SERIAL;
7017
7018         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7019                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7020
7021         if (is_sdvo)
7022                 dpll |= DPLL_SDVO_HIGH_SPEED;
7023         if (intel_crtc->config.has_dp_encoder)
7024                 dpll |= DPLL_SDVO_HIGH_SPEED;
7025
7026         /* compute bitmask from p1 value */
7027         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7028         /* also FPA1 */
7029         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7030
7031         switch (intel_crtc->config.dpll.p2) {
7032         case 5:
7033                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7034                 break;
7035         case 7:
7036                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7037                 break;
7038         case 10:
7039                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7040                 break;
7041         case 14:
7042                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7043                 break;
7044         }
7045
7046         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7047                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7048         else
7049                 dpll |= PLL_REF_INPUT_DREFCLK;
7050
7051         return dpll | DPLL_VCO_ENABLE;
7052 }
7053
7054 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7055                                   int x, int y,
7056                                   struct drm_framebuffer *fb)
7057 {
7058         struct drm_device *dev = crtc->dev;
7059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7060         int num_connectors = 0;
7061         intel_clock_t clock, reduced_clock;
7062         u32 dpll = 0, fp = 0, fp2 = 0;
7063         bool ok, has_reduced_clock = false;
7064         bool is_lvds = false;
7065         struct intel_encoder *encoder;
7066         struct intel_shared_dpll *pll;
7067
7068         for_each_encoder_on_crtc(dev, crtc, encoder) {
7069                 switch (encoder->type) {
7070                 case INTEL_OUTPUT_LVDS:
7071                         is_lvds = true;
7072                         break;
7073                 }
7074
7075                 num_connectors++;
7076         }
7077
7078         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7079              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7080
7081         ok = ironlake_compute_clocks(crtc, &clock,
7082                                      &has_reduced_clock, &reduced_clock);
7083         if (!ok && !intel_crtc->config.clock_set) {
7084                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7085                 return -EINVAL;
7086         }
7087         /* Compat-code for transition, will disappear. */
7088         if (!intel_crtc->config.clock_set) {
7089                 intel_crtc->config.dpll.n = clock.n;
7090                 intel_crtc->config.dpll.m1 = clock.m1;
7091                 intel_crtc->config.dpll.m2 = clock.m2;
7092                 intel_crtc->config.dpll.p1 = clock.p1;
7093                 intel_crtc->config.dpll.p2 = clock.p2;
7094         }
7095
7096         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7097         if (intel_crtc->config.has_pch_encoder) {
7098                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7099                 if (has_reduced_clock)
7100                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7101
7102                 dpll = ironlake_compute_dpll(intel_crtc,
7103                                              &fp, &reduced_clock,
7104                                              has_reduced_clock ? &fp2 : NULL);
7105
7106                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7107                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7108                 if (has_reduced_clock)
7109                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7110                 else
7111                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7112
7113                 pll = intel_get_shared_dpll(intel_crtc);
7114                 if (pll == NULL) {
7115                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7116                                          pipe_name(intel_crtc->pipe));
7117                         return -EINVAL;
7118                 }
7119         } else
7120                 intel_put_shared_dpll(intel_crtc);
7121
7122         if (is_lvds && has_reduced_clock && i915.powersave)
7123                 intel_crtc->lowfreq_avail = true;
7124         else
7125                 intel_crtc->lowfreq_avail = false;
7126
7127         return 0;
7128 }
7129
7130 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7131                                          struct intel_link_m_n *m_n)
7132 {
7133         struct drm_device *dev = crtc->base.dev;
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         enum pipe pipe = crtc->pipe;
7136
7137         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7138         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7139         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7140                 & ~TU_SIZE_MASK;
7141         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7142         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7143                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7144 }
7145
7146 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7147                                          enum transcoder transcoder,
7148                                          struct intel_link_m_n *m_n)
7149 {
7150         struct drm_device *dev = crtc->base.dev;
7151         struct drm_i915_private *dev_priv = dev->dev_private;
7152         enum pipe pipe = crtc->pipe;
7153
7154         if (INTEL_INFO(dev)->gen >= 5) {
7155                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7156                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7157                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7158                         & ~TU_SIZE_MASK;
7159                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7160                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7161                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7162         } else {
7163                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7164                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7165                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7166                         & ~TU_SIZE_MASK;
7167                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7168                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7169                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7170         }
7171 }
7172
7173 void intel_dp_get_m_n(struct intel_crtc *crtc,
7174                       struct intel_crtc_config *pipe_config)
7175 {
7176         if (crtc->config.has_pch_encoder)
7177                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7178         else
7179                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7180                                              &pipe_config->dp_m_n);
7181 }
7182
7183 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7184                                         struct intel_crtc_config *pipe_config)
7185 {
7186         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7187                                      &pipe_config->fdi_m_n);
7188 }
7189
7190 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7191                                      struct intel_crtc_config *pipe_config)
7192 {
7193         struct drm_device *dev = crtc->base.dev;
7194         struct drm_i915_private *dev_priv = dev->dev_private;
7195         uint32_t tmp;
7196
7197         tmp = I915_READ(PF_CTL(crtc->pipe));
7198
7199         if (tmp & PF_ENABLE) {
7200                 pipe_config->pch_pfit.enabled = true;
7201                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7202                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7203
7204                 /* We currently do not free assignements of panel fitters on
7205                  * ivb/hsw (since we don't use the higher upscaling modes which
7206                  * differentiates them) so just WARN about this case for now. */
7207                 if (IS_GEN7(dev)) {
7208                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7209                                 PF_PIPE_SEL_IVB(crtc->pipe));
7210                 }
7211         }
7212 }
7213
7214 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7215                                       struct intel_plane_config *plane_config)
7216 {
7217         struct drm_device *dev = crtc->base.dev;
7218         struct drm_i915_private *dev_priv = dev->dev_private;
7219         u32 val, base, offset;
7220         int pipe = crtc->pipe, plane = crtc->plane;
7221         int fourcc, pixel_format;
7222         int aligned_height;
7223
7224         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7225         if (!crtc->base.primary->fb) {
7226                 DRM_DEBUG_KMS("failed to alloc fb\n");
7227                 return;
7228         }
7229
7230         val = I915_READ(DSPCNTR(plane));
7231
7232         if (INTEL_INFO(dev)->gen >= 4)
7233                 if (val & DISPPLANE_TILED)
7234                         plane_config->tiled = true;
7235
7236         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7237         fourcc = intel_format_to_fourcc(pixel_format);
7238         crtc->base.primary->fb->pixel_format = fourcc;
7239         crtc->base.primary->fb->bits_per_pixel =
7240                 drm_format_plane_cpp(fourcc, 0) * 8;
7241
7242         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7243         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7244                 offset = I915_READ(DSPOFFSET(plane));
7245         } else {
7246                 if (plane_config->tiled)
7247                         offset = I915_READ(DSPTILEOFF(plane));
7248                 else
7249                         offset = I915_READ(DSPLINOFF(plane));
7250         }
7251         plane_config->base = base;
7252
7253         val = I915_READ(PIPESRC(pipe));
7254         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7255         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7256
7257         val = I915_READ(DSPSTRIDE(pipe));
7258         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7259
7260         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7261                                             plane_config->tiled);
7262
7263         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7264                                         aligned_height);
7265
7266         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7267                       pipe, plane, crtc->base.primary->fb->width,
7268                       crtc->base.primary->fb->height,
7269                       crtc->base.primary->fb->bits_per_pixel, base,
7270                       crtc->base.primary->fb->pitches[0],
7271                       plane_config->size);
7272 }
7273
7274 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7275                                      struct intel_crtc_config *pipe_config)
7276 {
7277         struct drm_device *dev = crtc->base.dev;
7278         struct drm_i915_private *dev_priv = dev->dev_private;
7279         uint32_t tmp;
7280
7281         if (!intel_display_power_enabled(dev_priv,
7282                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7283                 return false;
7284
7285         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7286         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7287
7288         tmp = I915_READ(PIPECONF(crtc->pipe));
7289         if (!(tmp & PIPECONF_ENABLE))
7290                 return false;
7291
7292         switch (tmp & PIPECONF_BPC_MASK) {
7293         case PIPECONF_6BPC:
7294                 pipe_config->pipe_bpp = 18;
7295                 break;
7296         case PIPECONF_8BPC:
7297                 pipe_config->pipe_bpp = 24;
7298                 break;
7299         case PIPECONF_10BPC:
7300                 pipe_config->pipe_bpp = 30;
7301                 break;
7302         case PIPECONF_12BPC:
7303                 pipe_config->pipe_bpp = 36;
7304                 break;
7305         default:
7306                 break;
7307         }
7308
7309         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7310                 pipe_config->limited_color_range = true;
7311
7312         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7313                 struct intel_shared_dpll *pll;
7314
7315                 pipe_config->has_pch_encoder = true;
7316
7317                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7318                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7319                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7320
7321                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7322
7323                 if (HAS_PCH_IBX(dev_priv->dev)) {
7324                         pipe_config->shared_dpll =
7325                                 (enum intel_dpll_id) crtc->pipe;
7326                 } else {
7327                         tmp = I915_READ(PCH_DPLL_SEL);
7328                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7329                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7330                         else
7331                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7332                 }
7333
7334                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7335
7336                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7337                                            &pipe_config->dpll_hw_state));
7338
7339                 tmp = pipe_config->dpll_hw_state.dpll;
7340                 pipe_config->pixel_multiplier =
7341                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7342                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7343
7344                 ironlake_pch_clock_get(crtc, pipe_config);
7345         } else {
7346                 pipe_config->pixel_multiplier = 1;
7347         }
7348
7349         intel_get_pipe_timings(crtc, pipe_config);
7350
7351         ironlake_get_pfit_config(crtc, pipe_config);
7352
7353         return true;
7354 }
7355
7356 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7357 {
7358         struct drm_device *dev = dev_priv->dev;
7359         struct intel_crtc *crtc;
7360
7361         for_each_intel_crtc(dev, crtc)
7362                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7363                      pipe_name(crtc->pipe));
7364
7365         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7366         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7367         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7368         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7369         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7370         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7371              "CPU PWM1 enabled\n");
7372         if (IS_HASWELL(dev))
7373                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7374                      "CPU PWM2 enabled\n");
7375         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7376              "PCH PWM1 enabled\n");
7377         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7378              "Utility pin enabled\n");
7379         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7380
7381         /*
7382          * In theory we can still leave IRQs enabled, as long as only the HPD
7383          * interrupts remain enabled. We used to check for that, but since it's
7384          * gen-specific and since we only disable LCPLL after we fully disable
7385          * the interrupts, the check below should be enough.
7386          */
7387         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7388 }
7389
7390 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7391 {
7392         struct drm_device *dev = dev_priv->dev;
7393
7394         if (IS_HASWELL(dev))
7395                 return I915_READ(D_COMP_HSW);
7396         else
7397                 return I915_READ(D_COMP_BDW);
7398 }
7399
7400 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7401 {
7402         struct drm_device *dev = dev_priv->dev;
7403
7404         if (IS_HASWELL(dev)) {
7405                 mutex_lock(&dev_priv->rps.hw_lock);
7406                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7407                                             val))
7408                         DRM_ERROR("Failed to write to D_COMP\n");
7409                 mutex_unlock(&dev_priv->rps.hw_lock);
7410         } else {
7411                 I915_WRITE(D_COMP_BDW, val);
7412                 POSTING_READ(D_COMP_BDW);
7413         }
7414 }
7415
7416 /*
7417  * This function implements pieces of two sequences from BSpec:
7418  * - Sequence for display software to disable LCPLL
7419  * - Sequence for display software to allow package C8+
7420  * The steps implemented here are just the steps that actually touch the LCPLL
7421  * register. Callers should take care of disabling all the display engine
7422  * functions, doing the mode unset, fixing interrupts, etc.
7423  */
7424 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7425                               bool switch_to_fclk, bool allow_power_down)
7426 {
7427         uint32_t val;
7428
7429         assert_can_disable_lcpll(dev_priv);
7430
7431         val = I915_READ(LCPLL_CTL);
7432
7433         if (switch_to_fclk) {
7434                 val |= LCPLL_CD_SOURCE_FCLK;
7435                 I915_WRITE(LCPLL_CTL, val);
7436
7437                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7438                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7439                         DRM_ERROR("Switching to FCLK failed\n");
7440
7441                 val = I915_READ(LCPLL_CTL);
7442         }
7443
7444         val |= LCPLL_PLL_DISABLE;
7445         I915_WRITE(LCPLL_CTL, val);
7446         POSTING_READ(LCPLL_CTL);
7447
7448         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7449                 DRM_ERROR("LCPLL still locked\n");
7450
7451         val = hsw_read_dcomp(dev_priv);
7452         val |= D_COMP_COMP_DISABLE;
7453         hsw_write_dcomp(dev_priv, val);
7454         ndelay(100);
7455
7456         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7457                      1))
7458                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7459
7460         if (allow_power_down) {
7461                 val = I915_READ(LCPLL_CTL);
7462                 val |= LCPLL_POWER_DOWN_ALLOW;
7463                 I915_WRITE(LCPLL_CTL, val);
7464                 POSTING_READ(LCPLL_CTL);
7465         }
7466 }
7467
7468 /*
7469  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7470  * source.
7471  */
7472 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7473 {
7474         uint32_t val;
7475         unsigned long irqflags;
7476
7477         val = I915_READ(LCPLL_CTL);
7478
7479         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7480                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7481                 return;
7482
7483         /*
7484          * Make sure we're not on PC8 state before disabling PC8, otherwise
7485          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7486          *
7487          * The other problem is that hsw_restore_lcpll() is called as part of
7488          * the runtime PM resume sequence, so we can't just call
7489          * gen6_gt_force_wake_get() because that function calls
7490          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7491          * while we are on the resume sequence. So to solve this problem we have
7492          * to call special forcewake code that doesn't touch runtime PM and
7493          * doesn't enable the forcewake delayed work.
7494          */
7495         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7496         if (dev_priv->uncore.forcewake_count++ == 0)
7497                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7498         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7499
7500         if (val & LCPLL_POWER_DOWN_ALLOW) {
7501                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7502                 I915_WRITE(LCPLL_CTL, val);
7503                 POSTING_READ(LCPLL_CTL);
7504         }
7505
7506         val = hsw_read_dcomp(dev_priv);
7507         val |= D_COMP_COMP_FORCE;
7508         val &= ~D_COMP_COMP_DISABLE;
7509         hsw_write_dcomp(dev_priv, val);
7510
7511         val = I915_READ(LCPLL_CTL);
7512         val &= ~LCPLL_PLL_DISABLE;
7513         I915_WRITE(LCPLL_CTL, val);
7514
7515         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7516                 DRM_ERROR("LCPLL not locked yet\n");
7517
7518         if (val & LCPLL_CD_SOURCE_FCLK) {
7519                 val = I915_READ(LCPLL_CTL);
7520                 val &= ~LCPLL_CD_SOURCE_FCLK;
7521                 I915_WRITE(LCPLL_CTL, val);
7522
7523                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7524                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7525                         DRM_ERROR("Switching back to LCPLL failed\n");
7526         }
7527
7528         /* See the big comment above. */
7529         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7530         if (--dev_priv->uncore.forcewake_count == 0)
7531                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7532         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7533 }
7534
7535 /*
7536  * Package states C8 and deeper are really deep PC states that can only be
7537  * reached when all the devices on the system allow it, so even if the graphics
7538  * device allows PC8+, it doesn't mean the system will actually get to these
7539  * states. Our driver only allows PC8+ when going into runtime PM.
7540  *
7541  * The requirements for PC8+ are that all the outputs are disabled, the power
7542  * well is disabled and most interrupts are disabled, and these are also
7543  * requirements for runtime PM. When these conditions are met, we manually do
7544  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7545  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7546  * hang the machine.
7547  *
7548  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7549  * the state of some registers, so when we come back from PC8+ we need to
7550  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7551  * need to take care of the registers kept by RC6. Notice that this happens even
7552  * if we don't put the device in PCI D3 state (which is what currently happens
7553  * because of the runtime PM support).
7554  *
7555  * For more, read "Display Sequences for Package C8" on the hardware
7556  * documentation.
7557  */
7558 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7559 {
7560         struct drm_device *dev = dev_priv->dev;
7561         uint32_t val;
7562
7563         DRM_DEBUG_KMS("Enabling package C8+\n");
7564
7565         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7566                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7567                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7568                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7569         }
7570
7571         lpt_disable_clkout_dp(dev);
7572         hsw_disable_lcpll(dev_priv, true, true);
7573 }
7574
7575 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7576 {
7577         struct drm_device *dev = dev_priv->dev;
7578         uint32_t val;
7579
7580         DRM_DEBUG_KMS("Disabling package C8+\n");
7581
7582         hsw_restore_lcpll(dev_priv);
7583         lpt_init_pch_refclk(dev);
7584
7585         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7586                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7587                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7588                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7589         }
7590
7591         intel_prepare_ddi(dev);
7592 }
7593
7594 static void snb_modeset_global_resources(struct drm_device *dev)
7595 {
7596         modeset_update_crtc_power_domains(dev);
7597 }
7598
7599 static void haswell_modeset_global_resources(struct drm_device *dev)
7600 {
7601         modeset_update_crtc_power_domains(dev);
7602 }
7603
7604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7605                                  int x, int y,
7606                                  struct drm_framebuffer *fb)
7607 {
7608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7609
7610         if (!intel_ddi_pll_select(intel_crtc))
7611                 return -EINVAL;
7612
7613         intel_crtc->lowfreq_avail = false;
7614
7615         return 0;
7616 }
7617
7618 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7619                                        struct intel_crtc_config *pipe_config)
7620 {
7621         struct drm_device *dev = crtc->base.dev;
7622         struct drm_i915_private *dev_priv = dev->dev_private;
7623         struct intel_shared_dpll *pll;
7624         enum port port;
7625         uint32_t tmp;
7626
7627         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7628
7629         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7630
7631         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7632
7633         switch (pipe_config->ddi_pll_sel) {
7634         case PORT_CLK_SEL_WRPLL1:
7635                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7636                 break;
7637         case PORT_CLK_SEL_WRPLL2:
7638                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7639                 break;
7640         }
7641
7642         if (pipe_config->shared_dpll >= 0) {
7643                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7644
7645                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7646                                            &pipe_config->dpll_hw_state));
7647         }
7648
7649         /*
7650          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7651          * DDI E. So just check whether this pipe is wired to DDI E and whether
7652          * the PCH transcoder is on.
7653          */
7654         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7655                 pipe_config->has_pch_encoder = true;
7656
7657                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7658                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7659                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7660
7661                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7662         }
7663 }
7664
7665 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7666                                     struct intel_crtc_config *pipe_config)
7667 {
7668         struct drm_device *dev = crtc->base.dev;
7669         struct drm_i915_private *dev_priv = dev->dev_private;
7670         enum intel_display_power_domain pfit_domain;
7671         uint32_t tmp;
7672
7673         if (!intel_display_power_enabled(dev_priv,
7674                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7675                 return false;
7676
7677         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7678         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7679
7680         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7681         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7682                 enum pipe trans_edp_pipe;
7683                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7684                 default:
7685                         WARN(1, "unknown pipe linked to edp transcoder\n");
7686                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7687                 case TRANS_DDI_EDP_INPUT_A_ON:
7688                         trans_edp_pipe = PIPE_A;
7689                         break;
7690                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7691                         trans_edp_pipe = PIPE_B;
7692                         break;
7693                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7694                         trans_edp_pipe = PIPE_C;
7695                         break;
7696                 }
7697
7698                 if (trans_edp_pipe == crtc->pipe)
7699                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7700         }
7701
7702         if (!intel_display_power_enabled(dev_priv,
7703                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7704                 return false;
7705
7706         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7707         if (!(tmp & PIPECONF_ENABLE))
7708                 return false;
7709
7710         haswell_get_ddi_port_state(crtc, pipe_config);
7711
7712         intel_get_pipe_timings(crtc, pipe_config);
7713
7714         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7715         if (intel_display_power_enabled(dev_priv, pfit_domain))
7716                 ironlake_get_pfit_config(crtc, pipe_config);
7717
7718         if (IS_HASWELL(dev))
7719                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7720                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7721
7722         pipe_config->pixel_multiplier = 1;
7723
7724         return true;
7725 }
7726
7727 static struct {
7728         int clock;
7729         u32 config;
7730 } hdmi_audio_clock[] = {
7731         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7732         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7733         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7734         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7735         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7736         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7737         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7738         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7739         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7740         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7741 };
7742
7743 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7744 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7745 {
7746         int i;
7747
7748         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7749                 if (mode->clock == hdmi_audio_clock[i].clock)
7750                         break;
7751         }
7752
7753         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7754                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7755                 i = 1;
7756         }
7757
7758         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7759                       hdmi_audio_clock[i].clock,
7760                       hdmi_audio_clock[i].config);
7761
7762         return hdmi_audio_clock[i].config;
7763 }
7764
7765 static bool intel_eld_uptodate(struct drm_connector *connector,
7766                                int reg_eldv, uint32_t bits_eldv,
7767                                int reg_elda, uint32_t bits_elda,
7768                                int reg_edid)
7769 {
7770         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7771         uint8_t *eld = connector->eld;
7772         uint32_t i;
7773
7774         i = I915_READ(reg_eldv);
7775         i &= bits_eldv;
7776
7777         if (!eld[0])
7778                 return !i;
7779
7780         if (!i)
7781                 return false;
7782
7783         i = I915_READ(reg_elda);
7784         i &= ~bits_elda;
7785         I915_WRITE(reg_elda, i);
7786
7787         for (i = 0; i < eld[2]; i++)
7788                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7789                         return false;
7790
7791         return true;
7792 }
7793
7794 static void g4x_write_eld(struct drm_connector *connector,
7795                           struct drm_crtc *crtc,
7796                           struct drm_display_mode *mode)
7797 {
7798         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7799         uint8_t *eld = connector->eld;
7800         uint32_t eldv;
7801         uint32_t len;
7802         uint32_t i;
7803
7804         i = I915_READ(G4X_AUD_VID_DID);
7805
7806         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7807                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7808         else
7809                 eldv = G4X_ELDV_DEVCTG;
7810
7811         if (intel_eld_uptodate(connector,
7812                                G4X_AUD_CNTL_ST, eldv,
7813                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7814                                G4X_HDMIW_HDMIEDID))
7815                 return;
7816
7817         i = I915_READ(G4X_AUD_CNTL_ST);
7818         i &= ~(eldv | G4X_ELD_ADDR);
7819         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7820         I915_WRITE(G4X_AUD_CNTL_ST, i);
7821
7822         if (!eld[0])
7823                 return;
7824
7825         len = min_t(uint8_t, eld[2], len);
7826         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7827         for (i = 0; i < len; i++)
7828                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7829
7830         i = I915_READ(G4X_AUD_CNTL_ST);
7831         i |= eldv;
7832         I915_WRITE(G4X_AUD_CNTL_ST, i);
7833 }
7834
7835 static void haswell_write_eld(struct drm_connector *connector,
7836                               struct drm_crtc *crtc,
7837                               struct drm_display_mode *mode)
7838 {
7839         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7840         uint8_t *eld = connector->eld;
7841         uint32_t eldv;
7842         uint32_t i;
7843         int len;
7844         int pipe = to_intel_crtc(crtc)->pipe;
7845         int tmp;
7846
7847         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7848         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7849         int aud_config = HSW_AUD_CFG(pipe);
7850         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7851
7852         /* Audio output enable */
7853         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7854         tmp = I915_READ(aud_cntrl_st2);
7855         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7856         I915_WRITE(aud_cntrl_st2, tmp);
7857         POSTING_READ(aud_cntrl_st2);
7858
7859         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7860
7861         /* Set ELD valid state */
7862         tmp = I915_READ(aud_cntrl_st2);
7863         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7864         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7865         I915_WRITE(aud_cntrl_st2, tmp);
7866         tmp = I915_READ(aud_cntrl_st2);
7867         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7868
7869         /* Enable HDMI mode */
7870         tmp = I915_READ(aud_config);
7871         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7872         /* clear N_programing_enable and N_value_index */
7873         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7874         I915_WRITE(aud_config, tmp);
7875
7876         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7877
7878         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7879
7880         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7881                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7882                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7883                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7884         } else {
7885                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7886         }
7887
7888         if (intel_eld_uptodate(connector,
7889                                aud_cntrl_st2, eldv,
7890                                aud_cntl_st, IBX_ELD_ADDRESS,
7891                                hdmiw_hdmiedid))
7892                 return;
7893
7894         i = I915_READ(aud_cntrl_st2);
7895         i &= ~eldv;
7896         I915_WRITE(aud_cntrl_st2, i);
7897
7898         if (!eld[0])
7899                 return;
7900
7901         i = I915_READ(aud_cntl_st);
7902         i &= ~IBX_ELD_ADDRESS;
7903         I915_WRITE(aud_cntl_st, i);
7904         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7905         DRM_DEBUG_DRIVER("port num:%d\n", i);
7906
7907         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7908         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7909         for (i = 0; i < len; i++)
7910                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7911
7912         i = I915_READ(aud_cntrl_st2);
7913         i |= eldv;
7914         I915_WRITE(aud_cntrl_st2, i);
7915
7916 }
7917
7918 static void ironlake_write_eld(struct drm_connector *connector,
7919                                struct drm_crtc *crtc,
7920                                struct drm_display_mode *mode)
7921 {
7922         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7923         uint8_t *eld = connector->eld;
7924         uint32_t eldv;
7925         uint32_t i;
7926         int len;
7927         int hdmiw_hdmiedid;
7928         int aud_config;
7929         int aud_cntl_st;
7930         int aud_cntrl_st2;
7931         int pipe = to_intel_crtc(crtc)->pipe;
7932
7933         if (HAS_PCH_IBX(connector->dev)) {
7934                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7935                 aud_config = IBX_AUD_CFG(pipe);
7936                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7937                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7938         } else if (IS_VALLEYVIEW(connector->dev)) {
7939                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7940                 aud_config = VLV_AUD_CFG(pipe);
7941                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7942                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7943         } else {
7944                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7945                 aud_config = CPT_AUD_CFG(pipe);
7946                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7947                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7948         }
7949
7950         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7951
7952         if (IS_VALLEYVIEW(connector->dev))  {
7953                 struct intel_encoder *intel_encoder;
7954                 struct intel_digital_port *intel_dig_port;
7955
7956                 intel_encoder = intel_attached_encoder(connector);
7957                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7958                 i = intel_dig_port->port;
7959         } else {
7960                 i = I915_READ(aud_cntl_st);
7961                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7962                 /* DIP_Port_Select, 0x1 = PortB */
7963         }
7964
7965         if (!i) {
7966                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7967                 /* operate blindly on all ports */
7968                 eldv = IBX_ELD_VALIDB;
7969                 eldv |= IBX_ELD_VALIDB << 4;
7970                 eldv |= IBX_ELD_VALIDB << 8;
7971         } else {
7972                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7973                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7974         }
7975
7976         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7977                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7978                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7979                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7980         } else {
7981                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7982         }
7983
7984         if (intel_eld_uptodate(connector,
7985                                aud_cntrl_st2, eldv,
7986                                aud_cntl_st, IBX_ELD_ADDRESS,
7987                                hdmiw_hdmiedid))
7988                 return;
7989
7990         i = I915_READ(aud_cntrl_st2);
7991         i &= ~eldv;
7992         I915_WRITE(aud_cntrl_st2, i);
7993
7994         if (!eld[0])
7995                 return;
7996
7997         i = I915_READ(aud_cntl_st);
7998         i &= ~IBX_ELD_ADDRESS;
7999         I915_WRITE(aud_cntl_st, i);
8000
8001         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8002         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8003         for (i = 0; i < len; i++)
8004                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8005
8006         i = I915_READ(aud_cntrl_st2);
8007         i |= eldv;
8008         I915_WRITE(aud_cntrl_st2, i);
8009 }
8010
8011 void intel_write_eld(struct drm_encoder *encoder,
8012                      struct drm_display_mode *mode)
8013 {
8014         struct drm_crtc *crtc = encoder->crtc;
8015         struct drm_connector *connector;
8016         struct drm_device *dev = encoder->dev;
8017         struct drm_i915_private *dev_priv = dev->dev_private;
8018
8019         connector = drm_select_eld(encoder, mode);
8020         if (!connector)
8021                 return;
8022
8023         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8024                          connector->base.id,
8025                          connector->name,
8026                          connector->encoder->base.id,
8027                          connector->encoder->name);
8028
8029         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8030
8031         if (dev_priv->display.write_eld)
8032                 dev_priv->display.write_eld(connector, crtc, mode);
8033 }
8034
8035 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8036 {
8037         struct drm_device *dev = crtc->dev;
8038         struct drm_i915_private *dev_priv = dev->dev_private;
8039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8040         uint32_t cntl;
8041
8042         if (base != intel_crtc->cursor_base) {
8043                 /* On these chipsets we can only modify the base whilst
8044                  * the cursor is disabled.
8045                  */
8046                 if (intel_crtc->cursor_cntl) {
8047                         I915_WRITE(_CURACNTR, 0);
8048                         POSTING_READ(_CURACNTR);
8049                         intel_crtc->cursor_cntl = 0;
8050                 }
8051
8052                 I915_WRITE(_CURABASE, base);
8053                 POSTING_READ(_CURABASE);
8054         }
8055
8056         /* XXX width must be 64, stride 256 => 0x00 << 28 */
8057         cntl = 0;
8058         if (base)
8059                 cntl = (CURSOR_ENABLE |
8060                         CURSOR_GAMMA_ENABLE |
8061                         CURSOR_FORMAT_ARGB);
8062         if (intel_crtc->cursor_cntl != cntl) {
8063                 I915_WRITE(_CURACNTR, cntl);
8064                 POSTING_READ(_CURACNTR);
8065                 intel_crtc->cursor_cntl = cntl;
8066         }
8067 }
8068
8069 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8070 {
8071         struct drm_device *dev = crtc->dev;
8072         struct drm_i915_private *dev_priv = dev->dev_private;
8073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8074         int pipe = intel_crtc->pipe;
8075         uint32_t cntl;
8076
8077         cntl = 0;
8078         if (base) {
8079                 cntl = MCURSOR_GAMMA_ENABLE;
8080                 switch (intel_crtc->cursor_width) {
8081                         case 64:
8082                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8083                                 break;
8084                         case 128:
8085                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8086                                 break;
8087                         case 256:
8088                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8089                                 break;
8090                         default:
8091                                 WARN_ON(1);
8092                                 return;
8093                 }
8094                 cntl |= pipe << 28; /* Connect to correct pipe */
8095         }
8096         if (intel_crtc->cursor_cntl != cntl) {
8097                 I915_WRITE(CURCNTR(pipe), cntl);
8098                 POSTING_READ(CURCNTR(pipe));
8099                 intel_crtc->cursor_cntl = cntl;
8100         }
8101
8102         /* and commit changes on next vblank */
8103         I915_WRITE(CURBASE(pipe), base);
8104         POSTING_READ(CURBASE(pipe));
8105 }
8106
8107 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8108 {
8109         struct drm_device *dev = crtc->dev;
8110         struct drm_i915_private *dev_priv = dev->dev_private;
8111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8112         int pipe = intel_crtc->pipe;
8113         uint32_t cntl;
8114
8115         cntl = 0;
8116         if (base) {
8117                 cntl = MCURSOR_GAMMA_ENABLE;
8118                 switch (intel_crtc->cursor_width) {
8119                         case 64:
8120                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8121                                 break;
8122                         case 128:
8123                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8124                                 break;
8125                         case 256:
8126                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8127                                 break;
8128                         default:
8129                                 WARN_ON(1);
8130                                 return;
8131                 }
8132         }
8133         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8134                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8135
8136         if (intel_crtc->cursor_cntl != cntl) {
8137                 I915_WRITE(CURCNTR(pipe), cntl);
8138                 POSTING_READ(CURCNTR(pipe));
8139                 intel_crtc->cursor_cntl = cntl;
8140         }
8141
8142         /* and commit changes on next vblank */
8143         I915_WRITE(CURBASE(pipe), base);
8144         POSTING_READ(CURBASE(pipe));
8145 }
8146
8147 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8148 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8149                                      bool on)
8150 {
8151         struct drm_device *dev = crtc->dev;
8152         struct drm_i915_private *dev_priv = dev->dev_private;
8153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8154         int pipe = intel_crtc->pipe;
8155         int x = crtc->cursor_x;
8156         int y = crtc->cursor_y;
8157         u32 base = 0, pos = 0;
8158
8159         if (on)
8160                 base = intel_crtc->cursor_addr;
8161
8162         if (x >= intel_crtc->config.pipe_src_w)
8163                 base = 0;
8164
8165         if (y >= intel_crtc->config.pipe_src_h)
8166                 base = 0;
8167
8168         if (x < 0) {
8169                 if (x + intel_crtc->cursor_width <= 0)
8170                         base = 0;
8171
8172                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8173                 x = -x;
8174         }
8175         pos |= x << CURSOR_X_SHIFT;
8176
8177         if (y < 0) {
8178                 if (y + intel_crtc->cursor_height <= 0)
8179                         base = 0;
8180
8181                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8182                 y = -y;
8183         }
8184         pos |= y << CURSOR_Y_SHIFT;
8185
8186         if (base == 0 && intel_crtc->cursor_base == 0)
8187                 return;
8188
8189         I915_WRITE(CURPOS(pipe), pos);
8190
8191         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8192                 ivb_update_cursor(crtc, base);
8193         else if (IS_845G(dev) || IS_I865G(dev))
8194                 i845_update_cursor(crtc, base);
8195         else
8196                 i9xx_update_cursor(crtc, base);
8197         intel_crtc->cursor_base = base;
8198 }
8199
8200 /*
8201  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8202  *
8203  * Note that the object's reference will be consumed if the update fails.  If
8204  * the update succeeds, the reference of the old object (if any) will be
8205  * consumed.
8206  */
8207 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8208                                      struct drm_i915_gem_object *obj,
8209                                      uint32_t width, uint32_t height)
8210 {
8211         struct drm_device *dev = crtc->dev;
8212         struct drm_i915_private *dev_priv = dev->dev_private;
8213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8214         enum pipe pipe = intel_crtc->pipe;
8215         unsigned old_width;
8216         uint32_t addr;
8217         int ret;
8218
8219         /* if we want to turn off the cursor ignore width and height */
8220         if (!obj) {
8221                 DRM_DEBUG_KMS("cursor off\n");
8222                 addr = 0;
8223                 obj = NULL;
8224                 mutex_lock(&dev->struct_mutex);
8225                 goto finish;
8226         }
8227
8228         /* Check for which cursor types we support */
8229         if (!((width == 64 && height == 64) ||
8230                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8231                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8232                 DRM_DEBUG("Cursor dimension not supported\n");
8233                 return -EINVAL;
8234         }
8235
8236         if (obj->base.size < width * height * 4) {
8237                 DRM_DEBUG_KMS("buffer is too small\n");
8238                 ret = -ENOMEM;
8239                 goto fail;
8240         }
8241
8242         /* we only need to pin inside GTT if cursor is non-phy */
8243         mutex_lock(&dev->struct_mutex);
8244         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8245                 unsigned alignment;
8246
8247                 if (obj->tiling_mode) {
8248                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8249                         ret = -EINVAL;
8250                         goto fail_locked;
8251                 }
8252
8253                 /*
8254                  * Global gtt pte registers are special registers which actually
8255                  * forward writes to a chunk of system memory. Which means that
8256                  * there is no risk that the register values disappear as soon
8257                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8258                  * only the pin/unpin/fence and not more.
8259                  */
8260                 intel_runtime_pm_get(dev_priv);
8261
8262                 /* Note that the w/a also requires 2 PTE of padding following
8263                  * the bo. We currently fill all unused PTE with the shadow
8264                  * page and so we should always have valid PTE following the
8265                  * cursor preventing the VT-d warning.
8266                  */
8267                 alignment = 0;
8268                 if (need_vtd_wa(dev))
8269                         alignment = 64*1024;
8270
8271                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8272                 if (ret) {
8273                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8274                         intel_runtime_pm_put(dev_priv);
8275                         goto fail_locked;
8276                 }
8277
8278                 ret = i915_gem_object_put_fence(obj);
8279                 if (ret) {
8280                         DRM_DEBUG_KMS("failed to release fence for cursor");
8281                         intel_runtime_pm_put(dev_priv);
8282                         goto fail_unpin;
8283                 }
8284
8285                 addr = i915_gem_obj_ggtt_offset(obj);
8286
8287                 intel_runtime_pm_put(dev_priv);
8288         } else {
8289                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8290                 ret = i915_gem_object_attach_phys(obj, align);
8291                 if (ret) {
8292                         DRM_DEBUG_KMS("failed to attach phys object\n");
8293                         goto fail_locked;
8294                 }
8295                 addr = obj->phys_handle->busaddr;
8296         }
8297
8298         if (IS_GEN2(dev))
8299                 I915_WRITE(CURSIZE, (height << 12) | width);
8300
8301  finish:
8302         if (intel_crtc->cursor_bo) {
8303                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8304                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8305         }
8306
8307         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8308                           INTEL_FRONTBUFFER_CURSOR(pipe));
8309         mutex_unlock(&dev->struct_mutex);
8310
8311         old_width = intel_crtc->cursor_width;
8312
8313         intel_crtc->cursor_addr = addr;
8314         intel_crtc->cursor_bo = obj;
8315         intel_crtc->cursor_width = width;
8316         intel_crtc->cursor_height = height;
8317
8318         if (intel_crtc->active) {
8319                 if (old_width != width)
8320                         intel_update_watermarks(crtc);
8321                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8322         }
8323
8324         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8325
8326         return 0;
8327 fail_unpin:
8328         i915_gem_object_unpin_from_display_plane(obj);
8329 fail_locked:
8330         mutex_unlock(&dev->struct_mutex);
8331 fail:
8332         drm_gem_object_unreference_unlocked(&obj->base);
8333         return ret;
8334 }
8335
8336 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8337                                  u16 *blue, uint32_t start, uint32_t size)
8338 {
8339         int end = (start + size > 256) ? 256 : start + size, i;
8340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8341
8342         for (i = start; i < end; i++) {
8343                 intel_crtc->lut_r[i] = red[i] >> 8;
8344                 intel_crtc->lut_g[i] = green[i] >> 8;
8345                 intel_crtc->lut_b[i] = blue[i] >> 8;
8346         }
8347
8348         intel_crtc_load_lut(crtc);
8349 }
8350
8351 /* VESA 640x480x72Hz mode to set on the pipe */
8352 static struct drm_display_mode load_detect_mode = {
8353         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8354                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8355 };
8356
8357 struct drm_framebuffer *
8358 __intel_framebuffer_create(struct drm_device *dev,
8359                            struct drm_mode_fb_cmd2 *mode_cmd,
8360                            struct drm_i915_gem_object *obj)
8361 {
8362         struct intel_framebuffer *intel_fb;
8363         int ret;
8364
8365         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8366         if (!intel_fb) {
8367                 drm_gem_object_unreference_unlocked(&obj->base);
8368                 return ERR_PTR(-ENOMEM);
8369         }
8370
8371         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8372         if (ret)
8373                 goto err;
8374
8375         return &intel_fb->base;
8376 err:
8377         drm_gem_object_unreference_unlocked(&obj->base);
8378         kfree(intel_fb);
8379
8380         return ERR_PTR(ret);
8381 }
8382
8383 static struct drm_framebuffer *
8384 intel_framebuffer_create(struct drm_device *dev,
8385                          struct drm_mode_fb_cmd2 *mode_cmd,
8386                          struct drm_i915_gem_object *obj)
8387 {
8388         struct drm_framebuffer *fb;
8389         int ret;
8390
8391         ret = i915_mutex_lock_interruptible(dev);
8392         if (ret)
8393                 return ERR_PTR(ret);
8394         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8395         mutex_unlock(&dev->struct_mutex);
8396
8397         return fb;
8398 }
8399
8400 static u32
8401 intel_framebuffer_pitch_for_width(int width, int bpp)
8402 {
8403         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8404         return ALIGN(pitch, 64);
8405 }
8406
8407 static u32
8408 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8409 {
8410         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8411         return PAGE_ALIGN(pitch * mode->vdisplay);
8412 }
8413
8414 static struct drm_framebuffer *
8415 intel_framebuffer_create_for_mode(struct drm_device *dev,
8416                                   struct drm_display_mode *mode,
8417                                   int depth, int bpp)
8418 {
8419         struct drm_i915_gem_object *obj;
8420         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8421
8422         obj = i915_gem_alloc_object(dev,
8423                                     intel_framebuffer_size_for_mode(mode, bpp));
8424         if (obj == NULL)
8425                 return ERR_PTR(-ENOMEM);
8426
8427         mode_cmd.width = mode->hdisplay;
8428         mode_cmd.height = mode->vdisplay;
8429         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8430                                                                 bpp);
8431         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8432
8433         return intel_framebuffer_create(dev, &mode_cmd, obj);
8434 }
8435
8436 static struct drm_framebuffer *
8437 mode_fits_in_fbdev(struct drm_device *dev,
8438                    struct drm_display_mode *mode)
8439 {
8440 #ifdef CONFIG_DRM_I915_FBDEV
8441         struct drm_i915_private *dev_priv = dev->dev_private;
8442         struct drm_i915_gem_object *obj;
8443         struct drm_framebuffer *fb;
8444
8445         if (!dev_priv->fbdev)
8446                 return NULL;
8447
8448         if (!dev_priv->fbdev->fb)
8449                 return NULL;
8450
8451         obj = dev_priv->fbdev->fb->obj;
8452         BUG_ON(!obj);
8453
8454         fb = &dev_priv->fbdev->fb->base;
8455         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8456                                                                fb->bits_per_pixel))
8457                 return NULL;
8458
8459         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8460                 return NULL;
8461
8462         return fb;
8463 #else
8464         return NULL;
8465 #endif
8466 }
8467
8468 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8469                                 struct drm_display_mode *mode,
8470                                 struct intel_load_detect_pipe *old,
8471                                 struct drm_modeset_acquire_ctx *ctx)
8472 {
8473         struct intel_crtc *intel_crtc;
8474         struct intel_encoder *intel_encoder =
8475                 intel_attached_encoder(connector);
8476         struct drm_crtc *possible_crtc;
8477         struct drm_encoder *encoder = &intel_encoder->base;
8478         struct drm_crtc *crtc = NULL;
8479         struct drm_device *dev = encoder->dev;
8480         struct drm_framebuffer *fb;
8481         struct drm_mode_config *config = &dev->mode_config;
8482         int ret, i = -1;
8483
8484         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8485                       connector->base.id, connector->name,
8486                       encoder->base.id, encoder->name);
8487
8488 retry:
8489         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8490         if (ret)
8491                 goto fail_unlock;
8492
8493         /*
8494          * Algorithm gets a little messy:
8495          *
8496          *   - if the connector already has an assigned crtc, use it (but make
8497          *     sure it's on first)
8498          *
8499          *   - try to find the first unused crtc that can drive this connector,
8500          *     and use that if we find one
8501          */
8502
8503         /* See if we already have a CRTC for this connector */
8504         if (encoder->crtc) {
8505                 crtc = encoder->crtc;
8506
8507                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8508                 if (ret)
8509                         goto fail_unlock;
8510
8511                 old->dpms_mode = connector->dpms;
8512                 old->load_detect_temp = false;
8513
8514                 /* Make sure the crtc and connector are running */
8515                 if (connector->dpms != DRM_MODE_DPMS_ON)
8516                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8517
8518                 return true;
8519         }
8520
8521         /* Find an unused one (if possible) */
8522         for_each_crtc(dev, possible_crtc) {
8523                 i++;
8524                 if (!(encoder->possible_crtcs & (1 << i)))
8525                         continue;
8526                 if (possible_crtc->enabled)
8527                         continue;
8528                 /* This can occur when applying the pipe A quirk on resume. */
8529                 if (to_intel_crtc(possible_crtc)->new_enabled)
8530                         continue;
8531
8532                 crtc = possible_crtc;
8533                 break;
8534         }
8535
8536         /*
8537          * If we didn't find an unused CRTC, don't use any.
8538          */
8539         if (!crtc) {
8540                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8541                 goto fail_unlock;
8542         }
8543
8544         ret = drm_modeset_lock(&crtc->mutex, ctx);
8545         if (ret)
8546                 goto fail_unlock;
8547         intel_encoder->new_crtc = to_intel_crtc(crtc);
8548         to_intel_connector(connector)->new_encoder = intel_encoder;
8549
8550         intel_crtc = to_intel_crtc(crtc);
8551         intel_crtc->new_enabled = true;
8552         intel_crtc->new_config = &intel_crtc->config;
8553         old->dpms_mode = connector->dpms;
8554         old->load_detect_temp = true;
8555         old->release_fb = NULL;
8556
8557         if (!mode)
8558                 mode = &load_detect_mode;
8559
8560         /* We need a framebuffer large enough to accommodate all accesses
8561          * that the plane may generate whilst we perform load detection.
8562          * We can not rely on the fbcon either being present (we get called
8563          * during its initialisation to detect all boot displays, or it may
8564          * not even exist) or that it is large enough to satisfy the
8565          * requested mode.
8566          */
8567         fb = mode_fits_in_fbdev(dev, mode);
8568         if (fb == NULL) {
8569                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8570                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8571                 old->release_fb = fb;
8572         } else
8573                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8574         if (IS_ERR(fb)) {
8575                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8576                 goto fail;
8577         }
8578
8579         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8580                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8581                 if (old->release_fb)
8582                         old->release_fb->funcs->destroy(old->release_fb);
8583                 goto fail;
8584         }
8585
8586         /* let the connector get through one full cycle before testing */
8587         intel_wait_for_vblank(dev, intel_crtc->pipe);
8588         return true;
8589
8590  fail:
8591         intel_crtc->new_enabled = crtc->enabled;
8592         if (intel_crtc->new_enabled)
8593                 intel_crtc->new_config = &intel_crtc->config;
8594         else
8595                 intel_crtc->new_config = NULL;
8596 fail_unlock:
8597         if (ret == -EDEADLK) {
8598                 drm_modeset_backoff(ctx);
8599                 goto retry;
8600         }
8601
8602         return false;
8603 }
8604
8605 void intel_release_load_detect_pipe(struct drm_connector *connector,
8606                                     struct intel_load_detect_pipe *old)
8607 {
8608         struct intel_encoder *intel_encoder =
8609                 intel_attached_encoder(connector);
8610         struct drm_encoder *encoder = &intel_encoder->base;
8611         struct drm_crtc *crtc = encoder->crtc;
8612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8613
8614         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8615                       connector->base.id, connector->name,
8616                       encoder->base.id, encoder->name);
8617
8618         if (old->load_detect_temp) {
8619                 to_intel_connector(connector)->new_encoder = NULL;
8620                 intel_encoder->new_crtc = NULL;
8621                 intel_crtc->new_enabled = false;
8622                 intel_crtc->new_config = NULL;
8623                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8624
8625                 if (old->release_fb) {
8626                         drm_framebuffer_unregister_private(old->release_fb);
8627                         drm_framebuffer_unreference(old->release_fb);
8628                 }
8629
8630                 return;
8631         }
8632
8633         /* Switch crtc and encoder back off if necessary */
8634         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8635                 connector->funcs->dpms(connector, old->dpms_mode);
8636 }
8637
8638 static int i9xx_pll_refclk(struct drm_device *dev,
8639                            const struct intel_crtc_config *pipe_config)
8640 {
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         u32 dpll = pipe_config->dpll_hw_state.dpll;
8643
8644         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8645                 return dev_priv->vbt.lvds_ssc_freq;
8646         else if (HAS_PCH_SPLIT(dev))
8647                 return 120000;
8648         else if (!IS_GEN2(dev))
8649                 return 96000;
8650         else
8651                 return 48000;
8652 }
8653
8654 /* Returns the clock of the currently programmed mode of the given pipe. */
8655 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8656                                 struct intel_crtc_config *pipe_config)
8657 {
8658         struct drm_device *dev = crtc->base.dev;
8659         struct drm_i915_private *dev_priv = dev->dev_private;
8660         int pipe = pipe_config->cpu_transcoder;
8661         u32 dpll = pipe_config->dpll_hw_state.dpll;
8662         u32 fp;
8663         intel_clock_t clock;
8664         int refclk = i9xx_pll_refclk(dev, pipe_config);
8665
8666         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8667                 fp = pipe_config->dpll_hw_state.fp0;
8668         else
8669                 fp = pipe_config->dpll_hw_state.fp1;
8670
8671         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8672         if (IS_PINEVIEW(dev)) {
8673                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8674                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8675         } else {
8676                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8677                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8678         }
8679
8680         if (!IS_GEN2(dev)) {
8681                 if (IS_PINEVIEW(dev))
8682                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8683                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8684                 else
8685                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8686                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8687
8688                 switch (dpll & DPLL_MODE_MASK) {
8689                 case DPLLB_MODE_DAC_SERIAL:
8690                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8691                                 5 : 10;
8692                         break;
8693                 case DPLLB_MODE_LVDS:
8694                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8695                                 7 : 14;
8696                         break;
8697                 default:
8698                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8699                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8700                         return;
8701                 }
8702
8703                 if (IS_PINEVIEW(dev))
8704                         pineview_clock(refclk, &clock);
8705                 else
8706                         i9xx_clock(refclk, &clock);
8707         } else {
8708                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8709                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8710
8711                 if (is_lvds) {
8712                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8713                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8714
8715                         if (lvds & LVDS_CLKB_POWER_UP)
8716                                 clock.p2 = 7;
8717                         else
8718                                 clock.p2 = 14;
8719                 } else {
8720                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8721                                 clock.p1 = 2;
8722                         else {
8723                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8724                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8725                         }
8726                         if (dpll & PLL_P2_DIVIDE_BY_4)
8727                                 clock.p2 = 4;
8728                         else
8729                                 clock.p2 = 2;
8730                 }
8731
8732                 i9xx_clock(refclk, &clock);
8733         }
8734
8735         /*
8736          * This value includes pixel_multiplier. We will use
8737          * port_clock to compute adjusted_mode.crtc_clock in the
8738          * encoder's get_config() function.
8739          */
8740         pipe_config->port_clock = clock.dot;
8741 }
8742
8743 int intel_dotclock_calculate(int link_freq,
8744                              const struct intel_link_m_n *m_n)
8745 {
8746         /*
8747          * The calculation for the data clock is:
8748          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8749          * But we want to avoid losing precison if possible, so:
8750          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8751          *
8752          * and the link clock is simpler:
8753          * link_clock = (m * link_clock) / n
8754          */
8755
8756         if (!m_n->link_n)
8757                 return 0;
8758
8759         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8760 }
8761
8762 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8763                                    struct intel_crtc_config *pipe_config)
8764 {
8765         struct drm_device *dev = crtc->base.dev;
8766
8767         /* read out port_clock from the DPLL */
8768         i9xx_crtc_clock_get(crtc, pipe_config);
8769
8770         /*
8771          * This value does not include pixel_multiplier.
8772          * We will check that port_clock and adjusted_mode.crtc_clock
8773          * agree once we know their relationship in the encoder's
8774          * get_config() function.
8775          */
8776         pipe_config->adjusted_mode.crtc_clock =
8777                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8778                                          &pipe_config->fdi_m_n);
8779 }
8780
8781 /** Returns the currently programmed mode of the given pipe. */
8782 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8783                                              struct drm_crtc *crtc)
8784 {
8785         struct drm_i915_private *dev_priv = dev->dev_private;
8786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8787         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8788         struct drm_display_mode *mode;
8789         struct intel_crtc_config pipe_config;
8790         int htot = I915_READ(HTOTAL(cpu_transcoder));
8791         int hsync = I915_READ(HSYNC(cpu_transcoder));
8792         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8793         int vsync = I915_READ(VSYNC(cpu_transcoder));
8794         enum pipe pipe = intel_crtc->pipe;
8795
8796         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8797         if (!mode)
8798                 return NULL;
8799
8800         /*
8801          * Construct a pipe_config sufficient for getting the clock info
8802          * back out of crtc_clock_get.
8803          *
8804          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8805          * to use a real value here instead.
8806          */
8807         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8808         pipe_config.pixel_multiplier = 1;
8809         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8810         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8811         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8812         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8813
8814         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8815         mode->hdisplay = (htot & 0xffff) + 1;
8816         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8817         mode->hsync_start = (hsync & 0xffff) + 1;
8818         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8819         mode->vdisplay = (vtot & 0xffff) + 1;
8820         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8821         mode->vsync_start = (vsync & 0xffff) + 1;
8822         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8823
8824         drm_mode_set_name(mode);
8825
8826         return mode;
8827 }
8828
8829 static void intel_increase_pllclock(struct drm_device *dev,
8830                                     enum pipe pipe)
8831 {
8832         struct drm_i915_private *dev_priv = dev->dev_private;
8833         int dpll_reg = DPLL(pipe);
8834         int dpll;
8835
8836         if (!HAS_GMCH_DISPLAY(dev))
8837                 return;
8838
8839         if (!dev_priv->lvds_downclock_avail)
8840                 return;
8841
8842         dpll = I915_READ(dpll_reg);
8843         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8844                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8845
8846                 assert_panel_unlocked(dev_priv, pipe);
8847
8848                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8849                 I915_WRITE(dpll_reg, dpll);
8850                 intel_wait_for_vblank(dev, pipe);
8851
8852                 dpll = I915_READ(dpll_reg);
8853                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8854                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8855         }
8856 }
8857
8858 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8859 {
8860         struct drm_device *dev = crtc->dev;
8861         struct drm_i915_private *dev_priv = dev->dev_private;
8862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8863
8864         if (!HAS_GMCH_DISPLAY(dev))
8865                 return;
8866
8867         if (!dev_priv->lvds_downclock_avail)
8868                 return;
8869
8870         /*
8871          * Since this is called by a timer, we should never get here in
8872          * the manual case.
8873          */
8874         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8875                 int pipe = intel_crtc->pipe;
8876                 int dpll_reg = DPLL(pipe);
8877                 int dpll;
8878
8879                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8880
8881                 assert_panel_unlocked(dev_priv, pipe);
8882
8883                 dpll = I915_READ(dpll_reg);
8884                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8885                 I915_WRITE(dpll_reg, dpll);
8886                 intel_wait_for_vblank(dev, pipe);
8887                 dpll = I915_READ(dpll_reg);
8888                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8889                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8890         }
8891
8892 }
8893
8894 void intel_mark_busy(struct drm_device *dev)
8895 {
8896         struct drm_i915_private *dev_priv = dev->dev_private;
8897
8898         if (dev_priv->mm.busy)
8899                 return;
8900
8901         intel_runtime_pm_get(dev_priv);
8902         i915_update_gfx_val(dev_priv);
8903         dev_priv->mm.busy = true;
8904 }
8905
8906 void intel_mark_idle(struct drm_device *dev)
8907 {
8908         struct drm_i915_private *dev_priv = dev->dev_private;
8909         struct drm_crtc *crtc;
8910
8911         if (!dev_priv->mm.busy)
8912                 return;
8913
8914         dev_priv->mm.busy = false;
8915
8916         if (!i915.powersave)
8917                 goto out;
8918
8919         for_each_crtc(dev, crtc) {
8920                 if (!crtc->primary->fb)
8921                         continue;
8922
8923                 intel_decrease_pllclock(crtc);
8924         }
8925
8926         if (INTEL_INFO(dev)->gen >= 6)
8927                 gen6_rps_idle(dev->dev_private);
8928
8929 out:
8930         intel_runtime_pm_put(dev_priv);
8931 }
8932
8933
8934 /**
8935  * intel_mark_fb_busy - mark given planes as busy
8936  * @dev: DRM device
8937  * @frontbuffer_bits: bits for the affected planes
8938  * @ring: optional ring for asynchronous commands
8939  *
8940  * This function gets called every time the screen contents change. It can be
8941  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8942  */
8943 static void intel_mark_fb_busy(struct drm_device *dev,
8944                                unsigned frontbuffer_bits,
8945                                struct intel_engine_cs *ring)
8946 {
8947         enum pipe pipe;
8948
8949         if (!i915.powersave)
8950                 return;
8951
8952         for_each_pipe(pipe) {
8953                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8954                         continue;
8955
8956                 intel_increase_pllclock(dev, pipe);
8957                 if (ring && intel_fbc_enabled(dev))
8958                         ring->fbc_dirty = true;
8959         }
8960 }
8961
8962 /**
8963  * intel_fb_obj_invalidate - invalidate frontbuffer object
8964  * @obj: GEM object to invalidate
8965  * @ring: set for asynchronous rendering
8966  *
8967  * This function gets called every time rendering on the given object starts and
8968  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8969  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8970  * until the rendering completes or a flip on this frontbuffer plane is
8971  * scheduled.
8972  */
8973 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8974                              struct intel_engine_cs *ring)
8975 {
8976         struct drm_device *dev = obj->base.dev;
8977         struct drm_i915_private *dev_priv = dev->dev_private;
8978
8979         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8980
8981         if (!obj->frontbuffer_bits)
8982                 return;
8983
8984         if (ring) {
8985                 mutex_lock(&dev_priv->fb_tracking.lock);
8986                 dev_priv->fb_tracking.busy_bits
8987                         |= obj->frontbuffer_bits;
8988                 dev_priv->fb_tracking.flip_bits
8989                         &= ~obj->frontbuffer_bits;
8990                 mutex_unlock(&dev_priv->fb_tracking.lock);
8991         }
8992
8993         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8994
8995         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8996 }
8997
8998 /**
8999  * intel_frontbuffer_flush - flush frontbuffer
9000  * @dev: DRM device
9001  * @frontbuffer_bits: frontbuffer plane tracking bits
9002  *
9003  * This function gets called every time rendering on the given planes has
9004  * completed and frontbuffer caching can be started again. Flushes will get
9005  * delayed if they're blocked by some oustanding asynchronous rendering.
9006  *
9007  * Can be called without any locks held.
9008  */
9009 void intel_frontbuffer_flush(struct drm_device *dev,
9010                              unsigned frontbuffer_bits)
9011 {
9012         struct drm_i915_private *dev_priv = dev->dev_private;
9013
9014         /* Delay flushing when rings are still busy.*/
9015         mutex_lock(&dev_priv->fb_tracking.lock);
9016         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9017         mutex_unlock(&dev_priv->fb_tracking.lock);
9018
9019         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9020
9021         intel_edp_psr_flush(dev, frontbuffer_bits);
9022 }
9023
9024 /**
9025  * intel_fb_obj_flush - flush frontbuffer object
9026  * @obj: GEM object to flush
9027  * @retire: set when retiring asynchronous rendering
9028  *
9029  * This function gets called every time rendering on the given object has
9030  * completed and frontbuffer caching can be started again. If @retire is true
9031  * then any delayed flushes will be unblocked.
9032  */
9033 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9034                         bool retire)
9035 {
9036         struct drm_device *dev = obj->base.dev;
9037         struct drm_i915_private *dev_priv = dev->dev_private;
9038         unsigned frontbuffer_bits;
9039
9040         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9041
9042         if (!obj->frontbuffer_bits)
9043                 return;
9044
9045         frontbuffer_bits = obj->frontbuffer_bits;
9046
9047         if (retire) {
9048                 mutex_lock(&dev_priv->fb_tracking.lock);
9049                 /* Filter out new bits since rendering started. */
9050                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9051
9052                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9053                 mutex_unlock(&dev_priv->fb_tracking.lock);
9054         }
9055
9056         intel_frontbuffer_flush(dev, frontbuffer_bits);
9057 }
9058
9059 /**
9060  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9061  * @dev: DRM device
9062  * @frontbuffer_bits: frontbuffer plane tracking bits
9063  *
9064  * This function gets called after scheduling a flip on @obj. The actual
9065  * frontbuffer flushing will be delayed until completion is signalled with
9066  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9067  * flush will be cancelled.
9068  *
9069  * Can be called without any locks held.
9070  */
9071 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9072                                     unsigned frontbuffer_bits)
9073 {
9074         struct drm_i915_private *dev_priv = dev->dev_private;
9075
9076         mutex_lock(&dev_priv->fb_tracking.lock);
9077         dev_priv->fb_tracking.flip_bits
9078                 |= frontbuffer_bits;
9079         mutex_unlock(&dev_priv->fb_tracking.lock);
9080 }
9081
9082 /**
9083  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9084  * @dev: DRM device
9085  * @frontbuffer_bits: frontbuffer plane tracking bits
9086  *
9087  * This function gets called after the flip has been latched and will complete
9088  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9089  *
9090  * Can be called without any locks held.
9091  */
9092 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9093                                      unsigned frontbuffer_bits)
9094 {
9095         struct drm_i915_private *dev_priv = dev->dev_private;
9096
9097         mutex_lock(&dev_priv->fb_tracking.lock);
9098         /* Mask any cancelled flips. */
9099         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9100         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9101         mutex_unlock(&dev_priv->fb_tracking.lock);
9102
9103         intel_frontbuffer_flush(dev, frontbuffer_bits);
9104 }
9105
9106 static void intel_crtc_destroy(struct drm_crtc *crtc)
9107 {
9108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9109         struct drm_device *dev = crtc->dev;
9110         struct intel_unpin_work *work;
9111         unsigned long flags;
9112
9113         spin_lock_irqsave(&dev->event_lock, flags);
9114         work = intel_crtc->unpin_work;
9115         intel_crtc->unpin_work = NULL;
9116         spin_unlock_irqrestore(&dev->event_lock, flags);
9117
9118         if (work) {
9119                 cancel_work_sync(&work->work);
9120                 kfree(work);
9121         }
9122
9123         drm_crtc_cleanup(crtc);
9124
9125         kfree(intel_crtc);
9126 }
9127
9128 static void intel_unpin_work_fn(struct work_struct *__work)
9129 {
9130         struct intel_unpin_work *work =
9131                 container_of(__work, struct intel_unpin_work, work);
9132         struct drm_device *dev = work->crtc->dev;
9133         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9134
9135         mutex_lock(&dev->struct_mutex);
9136         intel_unpin_fb_obj(work->old_fb_obj);
9137         drm_gem_object_unreference(&work->pending_flip_obj->base);
9138         drm_gem_object_unreference(&work->old_fb_obj->base);
9139
9140         intel_update_fbc(dev);
9141         mutex_unlock(&dev->struct_mutex);
9142
9143         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9144
9145         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9146         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9147
9148         kfree(work);
9149 }
9150
9151 static void do_intel_finish_page_flip(struct drm_device *dev,
9152                                       struct drm_crtc *crtc)
9153 {
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9156         struct intel_unpin_work *work;
9157         unsigned long flags;
9158
9159         /* Ignore early vblank irqs */
9160         if (intel_crtc == NULL)
9161                 return;
9162
9163         spin_lock_irqsave(&dev->event_lock, flags);
9164         work = intel_crtc->unpin_work;
9165
9166         /* Ensure we don't miss a work->pending update ... */
9167         smp_rmb();
9168
9169         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9170                 spin_unlock_irqrestore(&dev->event_lock, flags);
9171                 return;
9172         }
9173
9174         /* and that the unpin work is consistent wrt ->pending. */
9175         smp_rmb();
9176
9177         intel_crtc->unpin_work = NULL;
9178
9179         if (work->event)
9180                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9181
9182         drm_crtc_vblank_put(crtc);
9183
9184         spin_unlock_irqrestore(&dev->event_lock, flags);
9185
9186         wake_up_all(&dev_priv->pending_flip_queue);
9187
9188         queue_work(dev_priv->wq, &work->work);
9189
9190         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9191 }
9192
9193 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9194 {
9195         struct drm_i915_private *dev_priv = dev->dev_private;
9196         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9197
9198         do_intel_finish_page_flip(dev, crtc);
9199 }
9200
9201 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9202 {
9203         struct drm_i915_private *dev_priv = dev->dev_private;
9204         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9205
9206         do_intel_finish_page_flip(dev, crtc);
9207 }
9208
9209 /* Is 'a' after or equal to 'b'? */
9210 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9211 {
9212         return !((a - b) & 0x80000000);
9213 }
9214
9215 static bool page_flip_finished(struct intel_crtc *crtc)
9216 {
9217         struct drm_device *dev = crtc->base.dev;
9218         struct drm_i915_private *dev_priv = dev->dev_private;
9219
9220         /*
9221          * The relevant registers doen't exist on pre-ctg.
9222          * As the flip done interrupt doesn't trigger for mmio
9223          * flips on gmch platforms, a flip count check isn't
9224          * really needed there. But since ctg has the registers,
9225          * include it in the check anyway.
9226          */
9227         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9228                 return true;
9229
9230         /*
9231          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9232          * used the same base address. In that case the mmio flip might
9233          * have completed, but the CS hasn't even executed the flip yet.
9234          *
9235          * A flip count check isn't enough as the CS might have updated
9236          * the base address just after start of vblank, but before we
9237          * managed to process the interrupt. This means we'd complete the
9238          * CS flip too soon.
9239          *
9240          * Combining both checks should get us a good enough result. It may
9241          * still happen that the CS flip has been executed, but has not
9242          * yet actually completed. But in case the base address is the same
9243          * anyway, we don't really care.
9244          */
9245         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9246                 crtc->unpin_work->gtt_offset &&
9247                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9248                                     crtc->unpin_work->flip_count);
9249 }
9250
9251 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9252 {
9253         struct drm_i915_private *dev_priv = dev->dev_private;
9254         struct intel_crtc *intel_crtc =
9255                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9256         unsigned long flags;
9257
9258         /* NB: An MMIO update of the plane base pointer will also
9259          * generate a page-flip completion irq, i.e. every modeset
9260          * is also accompanied by a spurious intel_prepare_page_flip().
9261          */
9262         spin_lock_irqsave(&dev->event_lock, flags);
9263         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9264                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9265         spin_unlock_irqrestore(&dev->event_lock, flags);
9266 }
9267
9268 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9269 {
9270         /* Ensure that the work item is consistent when activating it ... */
9271         smp_wmb();
9272         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9273         /* and that it is marked active as soon as the irq could fire. */
9274         smp_wmb();
9275 }
9276
9277 static int intel_gen2_queue_flip(struct drm_device *dev,
9278                                  struct drm_crtc *crtc,
9279                                  struct drm_framebuffer *fb,
9280                                  struct drm_i915_gem_object *obj,
9281                                  struct intel_engine_cs *ring,
9282                                  uint32_t flags)
9283 {
9284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9285         u32 flip_mask;
9286         int ret;
9287
9288         ret = intel_ring_begin(ring, 6);
9289         if (ret)
9290                 return ret;
9291
9292         /* Can't queue multiple flips, so wait for the previous
9293          * one to finish before executing the next.
9294          */
9295         if (intel_crtc->plane)
9296                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9297         else
9298                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9299         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9300         intel_ring_emit(ring, MI_NOOP);
9301         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9302                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9303         intel_ring_emit(ring, fb->pitches[0]);
9304         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9305         intel_ring_emit(ring, 0); /* aux display base address, unused */
9306
9307         intel_mark_page_flip_active(intel_crtc);
9308         __intel_ring_advance(ring);
9309         return 0;
9310 }
9311
9312 static int intel_gen3_queue_flip(struct drm_device *dev,
9313                                  struct drm_crtc *crtc,
9314                                  struct drm_framebuffer *fb,
9315                                  struct drm_i915_gem_object *obj,
9316                                  struct intel_engine_cs *ring,
9317                                  uint32_t flags)
9318 {
9319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9320         u32 flip_mask;
9321         int ret;
9322
9323         ret = intel_ring_begin(ring, 6);
9324         if (ret)
9325                 return ret;
9326
9327         if (intel_crtc->plane)
9328                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9329         else
9330                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9331         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9332         intel_ring_emit(ring, MI_NOOP);
9333         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9334                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9335         intel_ring_emit(ring, fb->pitches[0]);
9336         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9337         intel_ring_emit(ring, MI_NOOP);
9338
9339         intel_mark_page_flip_active(intel_crtc);
9340         __intel_ring_advance(ring);
9341         return 0;
9342 }
9343
9344 static int intel_gen4_queue_flip(struct drm_device *dev,
9345                                  struct drm_crtc *crtc,
9346                                  struct drm_framebuffer *fb,
9347                                  struct drm_i915_gem_object *obj,
9348                                  struct intel_engine_cs *ring,
9349                                  uint32_t flags)
9350 {
9351         struct drm_i915_private *dev_priv = dev->dev_private;
9352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9353         uint32_t pf, pipesrc;
9354         int ret;
9355
9356         ret = intel_ring_begin(ring, 4);
9357         if (ret)
9358                 return ret;
9359
9360         /* i965+ uses the linear or tiled offsets from the
9361          * Display Registers (which do not change across a page-flip)
9362          * so we need only reprogram the base address.
9363          */
9364         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9365                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9366         intel_ring_emit(ring, fb->pitches[0]);
9367         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9368                         obj->tiling_mode);
9369
9370         /* XXX Enabling the panel-fitter across page-flip is so far
9371          * untested on non-native modes, so ignore it for now.
9372          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9373          */
9374         pf = 0;
9375         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9376         intel_ring_emit(ring, pf | pipesrc);
9377
9378         intel_mark_page_flip_active(intel_crtc);
9379         __intel_ring_advance(ring);
9380         return 0;
9381 }
9382
9383 static int intel_gen6_queue_flip(struct drm_device *dev,
9384                                  struct drm_crtc *crtc,
9385                                  struct drm_framebuffer *fb,
9386                                  struct drm_i915_gem_object *obj,
9387                                  struct intel_engine_cs *ring,
9388                                  uint32_t flags)
9389 {
9390         struct drm_i915_private *dev_priv = dev->dev_private;
9391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9392         uint32_t pf, pipesrc;
9393         int ret;
9394
9395         ret = intel_ring_begin(ring, 4);
9396         if (ret)
9397                 return ret;
9398
9399         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9400                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9401         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9402         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9403
9404         /* Contrary to the suggestions in the documentation,
9405          * "Enable Panel Fitter" does not seem to be required when page
9406          * flipping with a non-native mode, and worse causes a normal
9407          * modeset to fail.
9408          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9409          */
9410         pf = 0;
9411         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9412         intel_ring_emit(ring, pf | pipesrc);
9413
9414         intel_mark_page_flip_active(intel_crtc);
9415         __intel_ring_advance(ring);
9416         return 0;
9417 }
9418
9419 static int intel_gen7_queue_flip(struct drm_device *dev,
9420                                  struct drm_crtc *crtc,
9421                                  struct drm_framebuffer *fb,
9422                                  struct drm_i915_gem_object *obj,
9423                                  struct intel_engine_cs *ring,
9424                                  uint32_t flags)
9425 {
9426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9427         uint32_t plane_bit = 0;
9428         int len, ret;
9429
9430         switch (intel_crtc->plane) {
9431         case PLANE_A:
9432                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9433                 break;
9434         case PLANE_B:
9435                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9436                 break;
9437         case PLANE_C:
9438                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9439                 break;
9440         default:
9441                 WARN_ONCE(1, "unknown plane in flip command\n");
9442                 return -ENODEV;
9443         }
9444
9445         len = 4;
9446         if (ring->id == RCS) {
9447                 len += 6;
9448                 /*
9449                  * On Gen 8, SRM is now taking an extra dword to accommodate
9450                  * 48bits addresses, and we need a NOOP for the batch size to
9451                  * stay even.
9452                  */
9453                 if (IS_GEN8(dev))
9454                         len += 2;
9455         }
9456
9457         /*
9458          * BSpec MI_DISPLAY_FLIP for IVB:
9459          * "The full packet must be contained within the same cache line."
9460          *
9461          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9462          * cacheline, if we ever start emitting more commands before
9463          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9464          * then do the cacheline alignment, and finally emit the
9465          * MI_DISPLAY_FLIP.
9466          */
9467         ret = intel_ring_cacheline_align(ring);
9468         if (ret)
9469                 return ret;
9470
9471         ret = intel_ring_begin(ring, len);
9472         if (ret)
9473                 return ret;
9474
9475         /* Unmask the flip-done completion message. Note that the bspec says that
9476          * we should do this for both the BCS and RCS, and that we must not unmask
9477          * more than one flip event at any time (or ensure that one flip message
9478          * can be sent by waiting for flip-done prior to queueing new flips).
9479          * Experimentation says that BCS works despite DERRMR masking all
9480          * flip-done completion events and that unmasking all planes at once
9481          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9482          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9483          */
9484         if (ring->id == RCS) {
9485                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9486                 intel_ring_emit(ring, DERRMR);
9487                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9488                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9489                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9490                 if (IS_GEN8(dev))
9491                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9492                                               MI_SRM_LRM_GLOBAL_GTT);
9493                 else
9494                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9495                                               MI_SRM_LRM_GLOBAL_GTT);
9496                 intel_ring_emit(ring, DERRMR);
9497                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9498                 if (IS_GEN8(dev)) {
9499                         intel_ring_emit(ring, 0);
9500                         intel_ring_emit(ring, MI_NOOP);
9501                 }
9502         }
9503
9504         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9505         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9506         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9507         intel_ring_emit(ring, (MI_NOOP));
9508
9509         intel_mark_page_flip_active(intel_crtc);
9510         __intel_ring_advance(ring);
9511         return 0;
9512 }
9513
9514 static bool use_mmio_flip(struct intel_engine_cs *ring,
9515                           struct drm_i915_gem_object *obj)
9516 {
9517         /*
9518          * This is not being used for older platforms, because
9519          * non-availability of flip done interrupt forces us to use
9520          * CS flips. Older platforms derive flip done using some clever
9521          * tricks involving the flip_pending status bits and vblank irqs.
9522          * So using MMIO flips there would disrupt this mechanism.
9523          */
9524
9525         if (ring == NULL)
9526                 return true;
9527
9528         if (INTEL_INFO(ring->dev)->gen < 5)
9529                 return false;
9530
9531         if (i915.use_mmio_flip < 0)
9532                 return false;
9533         else if (i915.use_mmio_flip > 0)
9534                 return true;
9535         else
9536                 return ring != obj->ring;
9537 }
9538
9539 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9540 {
9541         struct drm_device *dev = intel_crtc->base.dev;
9542         struct drm_i915_private *dev_priv = dev->dev_private;
9543         struct intel_framebuffer *intel_fb =
9544                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9545         struct drm_i915_gem_object *obj = intel_fb->obj;
9546         u32 dspcntr;
9547         u32 reg;
9548
9549         intel_mark_page_flip_active(intel_crtc);
9550
9551         reg = DSPCNTR(intel_crtc->plane);
9552         dspcntr = I915_READ(reg);
9553
9554         if (INTEL_INFO(dev)->gen >= 4) {
9555                 if (obj->tiling_mode != I915_TILING_NONE)
9556                         dspcntr |= DISPPLANE_TILED;
9557                 else
9558                         dspcntr &= ~DISPPLANE_TILED;
9559         }
9560         I915_WRITE(reg, dspcntr);
9561
9562         I915_WRITE(DSPSURF(intel_crtc->plane),
9563                    intel_crtc->unpin_work->gtt_offset);
9564         POSTING_READ(DSPSURF(intel_crtc->plane));
9565 }
9566
9567 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9568 {
9569         struct intel_engine_cs *ring;
9570         int ret;
9571
9572         lockdep_assert_held(&obj->base.dev->struct_mutex);
9573
9574         if (!obj->last_write_seqno)
9575                 return 0;
9576
9577         ring = obj->ring;
9578
9579         if (i915_seqno_passed(ring->get_seqno(ring, true),
9580                               obj->last_write_seqno))
9581                 return 0;
9582
9583         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9584         if (ret)
9585                 return ret;
9586
9587         if (WARN_ON(!ring->irq_get(ring)))
9588                 return 0;
9589
9590         return 1;
9591 }
9592
9593 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9594 {
9595         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9596         struct intel_crtc *intel_crtc;
9597         unsigned long irq_flags;
9598         u32 seqno;
9599
9600         seqno = ring->get_seqno(ring, false);
9601
9602         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9603         for_each_intel_crtc(ring->dev, intel_crtc) {
9604                 struct intel_mmio_flip *mmio_flip;
9605
9606                 mmio_flip = &intel_crtc->mmio_flip;
9607                 if (mmio_flip->seqno == 0)
9608                         continue;
9609
9610                 if (ring->id != mmio_flip->ring_id)
9611                         continue;
9612
9613                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9614                         intel_do_mmio_flip(intel_crtc);
9615                         mmio_flip->seqno = 0;
9616                         ring->irq_put(ring);
9617                 }
9618         }
9619         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9620 }
9621
9622 static int intel_queue_mmio_flip(struct drm_device *dev,
9623                                  struct drm_crtc *crtc,
9624                                  struct drm_framebuffer *fb,
9625                                  struct drm_i915_gem_object *obj,
9626                                  struct intel_engine_cs *ring,
9627                                  uint32_t flags)
9628 {
9629         struct drm_i915_private *dev_priv = dev->dev_private;
9630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9631         unsigned long irq_flags;
9632         int ret;
9633
9634         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9635                 return -EBUSY;
9636
9637         ret = intel_postpone_flip(obj);
9638         if (ret < 0)
9639                 return ret;
9640         if (ret == 0) {
9641                 intel_do_mmio_flip(intel_crtc);
9642                 return 0;
9643         }
9644
9645         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9646         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9647         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9648         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9649
9650         /*
9651          * Double check to catch cases where irq fired before
9652          * mmio flip data was ready
9653          */
9654         intel_notify_mmio_flip(obj->ring);
9655         return 0;
9656 }
9657
9658 static int intel_default_queue_flip(struct drm_device *dev,
9659                                     struct drm_crtc *crtc,
9660                                     struct drm_framebuffer *fb,
9661                                     struct drm_i915_gem_object *obj,
9662                                     struct intel_engine_cs *ring,
9663                                     uint32_t flags)
9664 {
9665         return -ENODEV;
9666 }
9667
9668 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9669                                 struct drm_framebuffer *fb,
9670                                 struct drm_pending_vblank_event *event,
9671                                 uint32_t page_flip_flags)
9672 {
9673         struct drm_device *dev = crtc->dev;
9674         struct drm_i915_private *dev_priv = dev->dev_private;
9675         struct drm_framebuffer *old_fb = crtc->primary->fb;
9676         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9678         enum pipe pipe = intel_crtc->pipe;
9679         struct intel_unpin_work *work;
9680         struct intel_engine_cs *ring;
9681         unsigned long flags;
9682         int ret;
9683
9684         /*
9685          * drm_mode_page_flip_ioctl() should already catch this, but double
9686          * check to be safe.  In the future we may enable pageflipping from
9687          * a disabled primary plane.
9688          */
9689         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9690                 return -EBUSY;
9691
9692         /* Can't change pixel format via MI display flips. */
9693         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9694                 return -EINVAL;
9695
9696         /*
9697          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9698          * Note that pitch changes could also affect these register.
9699          */
9700         if (INTEL_INFO(dev)->gen > 3 &&
9701             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9702              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9703                 return -EINVAL;
9704
9705         if (i915_terminally_wedged(&dev_priv->gpu_error))
9706                 goto out_hang;
9707
9708         work = kzalloc(sizeof(*work), GFP_KERNEL);
9709         if (work == NULL)
9710                 return -ENOMEM;
9711
9712         work->event = event;
9713         work->crtc = crtc;
9714         work->old_fb_obj = intel_fb_obj(old_fb);
9715         INIT_WORK(&work->work, intel_unpin_work_fn);
9716
9717         ret = drm_crtc_vblank_get(crtc);
9718         if (ret)
9719                 goto free_work;
9720
9721         /* We borrow the event spin lock for protecting unpin_work */
9722         spin_lock_irqsave(&dev->event_lock, flags);
9723         if (intel_crtc->unpin_work) {
9724                 spin_unlock_irqrestore(&dev->event_lock, flags);
9725                 kfree(work);
9726                 drm_crtc_vblank_put(crtc);
9727
9728                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9729                 return -EBUSY;
9730         }
9731         intel_crtc->unpin_work = work;
9732         spin_unlock_irqrestore(&dev->event_lock, flags);
9733
9734         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9735                 flush_workqueue(dev_priv->wq);
9736
9737         ret = i915_mutex_lock_interruptible(dev);
9738         if (ret)
9739                 goto cleanup;
9740
9741         /* Reference the objects for the scheduled work. */
9742         drm_gem_object_reference(&work->old_fb_obj->base);
9743         drm_gem_object_reference(&obj->base);
9744
9745         crtc->primary->fb = fb;
9746
9747         work->pending_flip_obj = obj;
9748
9749         work->enable_stall_check = true;
9750
9751         atomic_inc(&intel_crtc->unpin_work_count);
9752         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9753
9754         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9755                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9756
9757         if (IS_VALLEYVIEW(dev)) {
9758                 ring = &dev_priv->ring[BCS];
9759                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9760                         /* vlv: DISPLAY_FLIP fails to change tiling */
9761                         ring = NULL;
9762         } else if (IS_IVYBRIDGE(dev)) {
9763                 ring = &dev_priv->ring[BCS];
9764         } else if (INTEL_INFO(dev)->gen >= 7) {
9765                 ring = obj->ring;
9766                 if (ring == NULL || ring->id != RCS)
9767                         ring = &dev_priv->ring[BCS];
9768         } else {
9769                 ring = &dev_priv->ring[RCS];
9770         }
9771
9772         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9773         if (ret)
9774                 goto cleanup_pending;
9775
9776         work->gtt_offset =
9777                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9778
9779         if (use_mmio_flip(ring, obj))
9780                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9781                                             page_flip_flags);
9782         else
9783                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9784                                 page_flip_flags);
9785         if (ret)
9786                 goto cleanup_unpin;
9787
9788         i915_gem_track_fb(work->old_fb_obj, obj,
9789                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9790
9791         intel_disable_fbc(dev);
9792         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9793         mutex_unlock(&dev->struct_mutex);
9794
9795         trace_i915_flip_request(intel_crtc->plane, obj);
9796
9797         return 0;
9798
9799 cleanup_unpin:
9800         intel_unpin_fb_obj(obj);
9801 cleanup_pending:
9802         atomic_dec(&intel_crtc->unpin_work_count);
9803         crtc->primary->fb = old_fb;
9804         drm_gem_object_unreference(&work->old_fb_obj->base);
9805         drm_gem_object_unreference(&obj->base);
9806         mutex_unlock(&dev->struct_mutex);
9807
9808 cleanup:
9809         spin_lock_irqsave(&dev->event_lock, flags);
9810         intel_crtc->unpin_work = NULL;
9811         spin_unlock_irqrestore(&dev->event_lock, flags);
9812
9813         drm_crtc_vblank_put(crtc);
9814 free_work:
9815         kfree(work);
9816
9817         if (ret == -EIO) {
9818 out_hang:
9819                 intel_crtc_wait_for_pending_flips(crtc);
9820                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9821                 if (ret == 0 && event)
9822                         drm_send_vblank_event(dev, pipe, event);
9823         }
9824         return ret;
9825 }
9826
9827 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9828         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9829         .load_lut = intel_crtc_load_lut,
9830 };
9831
9832 /**
9833  * intel_modeset_update_staged_output_state
9834  *
9835  * Updates the staged output configuration state, e.g. after we've read out the
9836  * current hw state.
9837  */
9838 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9839 {
9840         struct intel_crtc *crtc;
9841         struct intel_encoder *encoder;
9842         struct intel_connector *connector;
9843
9844         list_for_each_entry(connector, &dev->mode_config.connector_list,
9845                             base.head) {
9846                 connector->new_encoder =
9847                         to_intel_encoder(connector->base.encoder);
9848         }
9849
9850         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9851                             base.head) {
9852                 encoder->new_crtc =
9853                         to_intel_crtc(encoder->base.crtc);
9854         }
9855
9856         for_each_intel_crtc(dev, crtc) {
9857                 crtc->new_enabled = crtc->base.enabled;
9858
9859                 if (crtc->new_enabled)
9860                         crtc->new_config = &crtc->config;
9861                 else
9862                         crtc->new_config = NULL;
9863         }
9864 }
9865
9866 /**
9867  * intel_modeset_commit_output_state
9868  *
9869  * This function copies the stage display pipe configuration to the real one.
9870  */
9871 static void intel_modeset_commit_output_state(struct drm_device *dev)
9872 {
9873         struct intel_crtc *crtc;
9874         struct intel_encoder *encoder;
9875         struct intel_connector *connector;
9876
9877         list_for_each_entry(connector, &dev->mode_config.connector_list,
9878                             base.head) {
9879                 connector->base.encoder = &connector->new_encoder->base;
9880         }
9881
9882         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9883                             base.head) {
9884                 encoder->base.crtc = &encoder->new_crtc->base;
9885         }
9886
9887         for_each_intel_crtc(dev, crtc) {
9888                 crtc->base.enabled = crtc->new_enabled;
9889         }
9890 }
9891
9892 static void
9893 connected_sink_compute_bpp(struct intel_connector *connector,
9894                            struct intel_crtc_config *pipe_config)
9895 {
9896         int bpp = pipe_config->pipe_bpp;
9897
9898         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9899                 connector->base.base.id,
9900                 connector->base.name);
9901
9902         /* Don't use an invalid EDID bpc value */
9903         if (connector->base.display_info.bpc &&
9904             connector->base.display_info.bpc * 3 < bpp) {
9905                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9906                               bpp, connector->base.display_info.bpc*3);
9907                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9908         }
9909
9910         /* Clamp bpp to 8 on screens without EDID 1.4 */
9911         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9912                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9913                               bpp);
9914                 pipe_config->pipe_bpp = 24;
9915         }
9916 }
9917
9918 static int
9919 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9920                           struct drm_framebuffer *fb,
9921                           struct intel_crtc_config *pipe_config)
9922 {
9923         struct drm_device *dev = crtc->base.dev;
9924         struct intel_connector *connector;
9925         int bpp;
9926
9927         switch (fb->pixel_format) {
9928         case DRM_FORMAT_C8:
9929                 bpp = 8*3; /* since we go through a colormap */
9930                 break;
9931         case DRM_FORMAT_XRGB1555:
9932         case DRM_FORMAT_ARGB1555:
9933                 /* checked in intel_framebuffer_init already */
9934                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9935                         return -EINVAL;
9936         case DRM_FORMAT_RGB565:
9937                 bpp = 6*3; /* min is 18bpp */
9938                 break;
9939         case DRM_FORMAT_XBGR8888:
9940         case DRM_FORMAT_ABGR8888:
9941                 /* checked in intel_framebuffer_init already */
9942                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9943                         return -EINVAL;
9944         case DRM_FORMAT_XRGB8888:
9945         case DRM_FORMAT_ARGB8888:
9946                 bpp = 8*3;
9947                 break;
9948         case DRM_FORMAT_XRGB2101010:
9949         case DRM_FORMAT_ARGB2101010:
9950         case DRM_FORMAT_XBGR2101010:
9951         case DRM_FORMAT_ABGR2101010:
9952                 /* checked in intel_framebuffer_init already */
9953                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9954                         return -EINVAL;
9955                 bpp = 10*3;
9956                 break;
9957         /* TODO: gen4+ supports 16 bpc floating point, too. */
9958         default:
9959                 DRM_DEBUG_KMS("unsupported depth\n");
9960                 return -EINVAL;
9961         }
9962
9963         pipe_config->pipe_bpp = bpp;
9964
9965         /* Clamp display bpp to EDID value */
9966         list_for_each_entry(connector, &dev->mode_config.connector_list,
9967                             base.head) {
9968                 if (!connector->new_encoder ||
9969                     connector->new_encoder->new_crtc != crtc)
9970                         continue;
9971
9972                 connected_sink_compute_bpp(connector, pipe_config);
9973         }
9974
9975         return bpp;
9976 }
9977
9978 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9979 {
9980         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9981                         "type: 0x%x flags: 0x%x\n",
9982                 mode->crtc_clock,
9983                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9984                 mode->crtc_hsync_end, mode->crtc_htotal,
9985                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9986                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9987 }
9988
9989 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9990                                    struct intel_crtc_config *pipe_config,
9991                                    const char *context)
9992 {
9993         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9994                       context, pipe_name(crtc->pipe));
9995
9996         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9997         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9998                       pipe_config->pipe_bpp, pipe_config->dither);
9999         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10000                       pipe_config->has_pch_encoder,
10001                       pipe_config->fdi_lanes,
10002                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10003                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10004                       pipe_config->fdi_m_n.tu);
10005         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10006                       pipe_config->has_dp_encoder,
10007                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10008                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10009                       pipe_config->dp_m_n.tu);
10010         DRM_DEBUG_KMS("requested mode:\n");
10011         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10012         DRM_DEBUG_KMS("adjusted mode:\n");
10013         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10014         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10015         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10016         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10017                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10018         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10019                       pipe_config->gmch_pfit.control,
10020                       pipe_config->gmch_pfit.pgm_ratios,
10021                       pipe_config->gmch_pfit.lvds_border_bits);
10022         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10023                       pipe_config->pch_pfit.pos,
10024                       pipe_config->pch_pfit.size,
10025                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10026         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10027         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10028 }
10029
10030 static bool encoders_cloneable(const struct intel_encoder *a,
10031                                const struct intel_encoder *b)
10032 {
10033         /* masks could be asymmetric, so check both ways */
10034         return a == b || (a->cloneable & (1 << b->type) &&
10035                           b->cloneable & (1 << a->type));
10036 }
10037
10038 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10039                                          struct intel_encoder *encoder)
10040 {
10041         struct drm_device *dev = crtc->base.dev;
10042         struct intel_encoder *source_encoder;
10043
10044         list_for_each_entry(source_encoder,
10045                             &dev->mode_config.encoder_list, base.head) {
10046                 if (source_encoder->new_crtc != crtc)
10047                         continue;
10048
10049                 if (!encoders_cloneable(encoder, source_encoder))
10050                         return false;
10051         }
10052
10053         return true;
10054 }
10055
10056 static bool check_encoder_cloning(struct intel_crtc *crtc)
10057 {
10058         struct drm_device *dev = crtc->base.dev;
10059         struct intel_encoder *encoder;
10060
10061         list_for_each_entry(encoder,
10062                             &dev->mode_config.encoder_list, base.head) {
10063                 if (encoder->new_crtc != crtc)
10064                         continue;
10065
10066                 if (!check_single_encoder_cloning(crtc, encoder))
10067                         return false;
10068         }
10069
10070         return true;
10071 }
10072
10073 static struct intel_crtc_config *
10074 intel_modeset_pipe_config(struct drm_crtc *crtc,
10075                           struct drm_framebuffer *fb,
10076                           struct drm_display_mode *mode)
10077 {
10078         struct drm_device *dev = crtc->dev;
10079         struct intel_encoder *encoder;
10080         struct intel_crtc_config *pipe_config;
10081         int plane_bpp, ret = -EINVAL;
10082         bool retry = true;
10083
10084         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10085                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10086                 return ERR_PTR(-EINVAL);
10087         }
10088
10089         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10090         if (!pipe_config)
10091                 return ERR_PTR(-ENOMEM);
10092
10093         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10094         drm_mode_copy(&pipe_config->requested_mode, mode);
10095
10096         pipe_config->cpu_transcoder =
10097                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10098         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10099
10100         /*
10101          * Sanitize sync polarity flags based on requested ones. If neither
10102          * positive or negative polarity is requested, treat this as meaning
10103          * negative polarity.
10104          */
10105         if (!(pipe_config->adjusted_mode.flags &
10106               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10107                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10108
10109         if (!(pipe_config->adjusted_mode.flags &
10110               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10111                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10112
10113         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10114          * plane pixel format and any sink constraints into account. Returns the
10115          * source plane bpp so that dithering can be selected on mismatches
10116          * after encoders and crtc also have had their say. */
10117         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10118                                               fb, pipe_config);
10119         if (plane_bpp < 0)
10120                 goto fail;
10121
10122         /*
10123          * Determine the real pipe dimensions. Note that stereo modes can
10124          * increase the actual pipe size due to the frame doubling and
10125          * insertion of additional space for blanks between the frame. This
10126          * is stored in the crtc timings. We use the requested mode to do this
10127          * computation to clearly distinguish it from the adjusted mode, which
10128          * can be changed by the connectors in the below retry loop.
10129          */
10130         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10131         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10132         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10133
10134 encoder_retry:
10135         /* Ensure the port clock defaults are reset when retrying. */
10136         pipe_config->port_clock = 0;
10137         pipe_config->pixel_multiplier = 1;
10138
10139         /* Fill in default crtc timings, allow encoders to overwrite them. */
10140         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10141
10142         /* Pass our mode to the connectors and the CRTC to give them a chance to
10143          * adjust it according to limitations or connector properties, and also
10144          * a chance to reject the mode entirely.
10145          */
10146         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10147                             base.head) {
10148
10149                 if (&encoder->new_crtc->base != crtc)
10150                         continue;
10151
10152                 if (!(encoder->compute_config(encoder, pipe_config))) {
10153                         DRM_DEBUG_KMS("Encoder config failure\n");
10154                         goto fail;
10155                 }
10156         }
10157
10158         /* Set default port clock if not overwritten by the encoder. Needs to be
10159          * done afterwards in case the encoder adjusts the mode. */
10160         if (!pipe_config->port_clock)
10161                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10162                         * pipe_config->pixel_multiplier;
10163
10164         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10165         if (ret < 0) {
10166                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10167                 goto fail;
10168         }
10169
10170         if (ret == RETRY) {
10171                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10172                         ret = -EINVAL;
10173                         goto fail;
10174                 }
10175
10176                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10177                 retry = false;
10178                 goto encoder_retry;
10179         }
10180
10181         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10182         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10183                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10184
10185         return pipe_config;
10186 fail:
10187         kfree(pipe_config);
10188         return ERR_PTR(ret);
10189 }
10190
10191 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10192  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10193 static void
10194 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10195                              unsigned *prepare_pipes, unsigned *disable_pipes)
10196 {
10197         struct intel_crtc *intel_crtc;
10198         struct drm_device *dev = crtc->dev;
10199         struct intel_encoder *encoder;
10200         struct intel_connector *connector;
10201         struct drm_crtc *tmp_crtc;
10202
10203         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10204
10205         /* Check which crtcs have changed outputs connected to them, these need
10206          * to be part of the prepare_pipes mask. We don't (yet) support global
10207          * modeset across multiple crtcs, so modeset_pipes will only have one
10208          * bit set at most. */
10209         list_for_each_entry(connector, &dev->mode_config.connector_list,
10210                             base.head) {
10211                 if (connector->base.encoder == &connector->new_encoder->base)
10212                         continue;
10213
10214                 if (connector->base.encoder) {
10215                         tmp_crtc = connector->base.encoder->crtc;
10216
10217                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10218                 }
10219
10220                 if (connector->new_encoder)
10221                         *prepare_pipes |=
10222                                 1 << connector->new_encoder->new_crtc->pipe;
10223         }
10224
10225         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10226                             base.head) {
10227                 if (encoder->base.crtc == &encoder->new_crtc->base)
10228                         continue;
10229
10230                 if (encoder->base.crtc) {
10231                         tmp_crtc = encoder->base.crtc;
10232
10233                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10234                 }
10235
10236                 if (encoder->new_crtc)
10237                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10238         }
10239
10240         /* Check for pipes that will be enabled/disabled ... */
10241         for_each_intel_crtc(dev, intel_crtc) {
10242                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10243                         continue;
10244
10245                 if (!intel_crtc->new_enabled)
10246                         *disable_pipes |= 1 << intel_crtc->pipe;
10247                 else
10248                         *prepare_pipes |= 1 << intel_crtc->pipe;
10249         }
10250
10251
10252         /* set_mode is also used to update properties on life display pipes. */
10253         intel_crtc = to_intel_crtc(crtc);
10254         if (intel_crtc->new_enabled)
10255                 *prepare_pipes |= 1 << intel_crtc->pipe;
10256
10257         /*
10258          * For simplicity do a full modeset on any pipe where the output routing
10259          * changed. We could be more clever, but that would require us to be
10260          * more careful with calling the relevant encoder->mode_set functions.
10261          */
10262         if (*prepare_pipes)
10263                 *modeset_pipes = *prepare_pipes;
10264
10265         /* ... and mask these out. */
10266         *modeset_pipes &= ~(*disable_pipes);
10267         *prepare_pipes &= ~(*disable_pipes);
10268
10269         /*
10270          * HACK: We don't (yet) fully support global modesets. intel_set_config
10271          * obies this rule, but the modeset restore mode of
10272          * intel_modeset_setup_hw_state does not.
10273          */
10274         *modeset_pipes &= 1 << intel_crtc->pipe;
10275         *prepare_pipes &= 1 << intel_crtc->pipe;
10276
10277         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10278                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10279 }
10280
10281 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10282 {
10283         struct drm_encoder *encoder;
10284         struct drm_device *dev = crtc->dev;
10285
10286         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10287                 if (encoder->crtc == crtc)
10288                         return true;
10289
10290         return false;
10291 }
10292
10293 static void
10294 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10295 {
10296         struct intel_encoder *intel_encoder;
10297         struct intel_crtc *intel_crtc;
10298         struct drm_connector *connector;
10299
10300         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10301                             base.head) {
10302                 if (!intel_encoder->base.crtc)
10303                         continue;
10304
10305                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10306
10307                 if (prepare_pipes & (1 << intel_crtc->pipe))
10308                         intel_encoder->connectors_active = false;
10309         }
10310
10311         intel_modeset_commit_output_state(dev);
10312
10313         /* Double check state. */
10314         for_each_intel_crtc(dev, intel_crtc) {
10315                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10316                 WARN_ON(intel_crtc->new_config &&
10317                         intel_crtc->new_config != &intel_crtc->config);
10318                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10319         }
10320
10321         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10322                 if (!connector->encoder || !connector->encoder->crtc)
10323                         continue;
10324
10325                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10326
10327                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10328                         struct drm_property *dpms_property =
10329                                 dev->mode_config.dpms_property;
10330
10331                         connector->dpms = DRM_MODE_DPMS_ON;
10332                         drm_object_property_set_value(&connector->base,
10333                                                          dpms_property,
10334                                                          DRM_MODE_DPMS_ON);
10335
10336                         intel_encoder = to_intel_encoder(connector->encoder);
10337                         intel_encoder->connectors_active = true;
10338                 }
10339         }
10340
10341 }
10342
10343 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10344 {
10345         int diff;
10346
10347         if (clock1 == clock2)
10348                 return true;
10349
10350         if (!clock1 || !clock2)
10351                 return false;
10352
10353         diff = abs(clock1 - clock2);
10354
10355         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10356                 return true;
10357
10358         return false;
10359 }
10360
10361 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10362         list_for_each_entry((intel_crtc), \
10363                             &(dev)->mode_config.crtc_list, \
10364                             base.head) \
10365                 if (mask & (1 <<(intel_crtc)->pipe))
10366
10367 static bool
10368 intel_pipe_config_compare(struct drm_device *dev,
10369                           struct intel_crtc_config *current_config,
10370                           struct intel_crtc_config *pipe_config)
10371 {
10372 #define PIPE_CONF_CHECK_X(name) \
10373         if (current_config->name != pipe_config->name) { \
10374                 DRM_ERROR("mismatch in " #name " " \
10375                           "(expected 0x%08x, found 0x%08x)\n", \
10376                           current_config->name, \
10377                           pipe_config->name); \
10378                 return false; \
10379         }
10380
10381 #define PIPE_CONF_CHECK_I(name) \
10382         if (current_config->name != pipe_config->name) { \
10383                 DRM_ERROR("mismatch in " #name " " \
10384                           "(expected %i, found %i)\n", \
10385                           current_config->name, \
10386                           pipe_config->name); \
10387                 return false; \
10388         }
10389
10390 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10391         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10392                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10393                           "(expected %i, found %i)\n", \
10394                           current_config->name & (mask), \
10395                           pipe_config->name & (mask)); \
10396                 return false; \
10397         }
10398
10399 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10400         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10401                 DRM_ERROR("mismatch in " #name " " \
10402                           "(expected %i, found %i)\n", \
10403                           current_config->name, \
10404                           pipe_config->name); \
10405                 return false; \
10406         }
10407
10408 #define PIPE_CONF_QUIRK(quirk)  \
10409         ((current_config->quirks | pipe_config->quirks) & (quirk))
10410
10411         PIPE_CONF_CHECK_I(cpu_transcoder);
10412
10413         PIPE_CONF_CHECK_I(has_pch_encoder);
10414         PIPE_CONF_CHECK_I(fdi_lanes);
10415         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10416         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10417         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10418         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10419         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10420
10421         PIPE_CONF_CHECK_I(has_dp_encoder);
10422         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10423         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10424         PIPE_CONF_CHECK_I(dp_m_n.link_m);
10425         PIPE_CONF_CHECK_I(dp_m_n.link_n);
10426         PIPE_CONF_CHECK_I(dp_m_n.tu);
10427
10428         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10429         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10430         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10431         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10432         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10433         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10434
10435         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10436         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10437         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10438         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10439         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10440         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10441
10442         PIPE_CONF_CHECK_I(pixel_multiplier);
10443         PIPE_CONF_CHECK_I(has_hdmi_sink);
10444         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10445             IS_VALLEYVIEW(dev))
10446                 PIPE_CONF_CHECK_I(limited_color_range);
10447
10448         PIPE_CONF_CHECK_I(has_audio);
10449
10450         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10451                               DRM_MODE_FLAG_INTERLACE);
10452
10453         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10454                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10455                                       DRM_MODE_FLAG_PHSYNC);
10456                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10457                                       DRM_MODE_FLAG_NHSYNC);
10458                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10459                                       DRM_MODE_FLAG_PVSYNC);
10460                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10461                                       DRM_MODE_FLAG_NVSYNC);
10462         }
10463
10464         PIPE_CONF_CHECK_I(pipe_src_w);
10465         PIPE_CONF_CHECK_I(pipe_src_h);
10466
10467         /*
10468          * FIXME: BIOS likes to set up a cloned config with lvds+external
10469          * screen. Since we don't yet re-compute the pipe config when moving
10470          * just the lvds port away to another pipe the sw tracking won't match.
10471          *
10472          * Proper atomic modesets with recomputed global state will fix this.
10473          * Until then just don't check gmch state for inherited modes.
10474          */
10475         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10476                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10477                 /* pfit ratios are autocomputed by the hw on gen4+ */
10478                 if (INTEL_INFO(dev)->gen < 4)
10479                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10480                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10481         }
10482
10483         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10484         if (current_config->pch_pfit.enabled) {
10485                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10486                 PIPE_CONF_CHECK_I(pch_pfit.size);
10487         }
10488
10489         /* BDW+ don't expose a synchronous way to read the state */
10490         if (IS_HASWELL(dev))
10491                 PIPE_CONF_CHECK_I(ips_enabled);
10492
10493         PIPE_CONF_CHECK_I(double_wide);
10494
10495         PIPE_CONF_CHECK_X(ddi_pll_sel);
10496
10497         PIPE_CONF_CHECK_I(shared_dpll);
10498         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10499         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10500         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10501         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10502         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10503
10504         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10505                 PIPE_CONF_CHECK_I(pipe_bpp);
10506
10507         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10508         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10509
10510 #undef PIPE_CONF_CHECK_X
10511 #undef PIPE_CONF_CHECK_I
10512 #undef PIPE_CONF_CHECK_FLAGS
10513 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10514 #undef PIPE_CONF_QUIRK
10515
10516         return true;
10517 }
10518
10519 static void
10520 check_connector_state(struct drm_device *dev)
10521 {
10522         struct intel_connector *connector;
10523
10524         list_for_each_entry(connector, &dev->mode_config.connector_list,
10525                             base.head) {
10526                 /* This also checks the encoder/connector hw state with the
10527                  * ->get_hw_state callbacks. */
10528                 intel_connector_check_state(connector);
10529
10530                 WARN(&connector->new_encoder->base != connector->base.encoder,
10531                      "connector's staged encoder doesn't match current encoder\n");
10532         }
10533 }
10534
10535 static void
10536 check_encoder_state(struct drm_device *dev)
10537 {
10538         struct intel_encoder *encoder;
10539         struct intel_connector *connector;
10540
10541         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10542                             base.head) {
10543                 bool enabled = false;
10544                 bool active = false;
10545                 enum pipe pipe, tracked_pipe;
10546
10547                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10548                               encoder->base.base.id,
10549                               encoder->base.name);
10550
10551                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10552                      "encoder's stage crtc doesn't match current crtc\n");
10553                 WARN(encoder->connectors_active && !encoder->base.crtc,
10554                      "encoder's active_connectors set, but no crtc\n");
10555
10556                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10557                                     base.head) {
10558                         if (connector->base.encoder != &encoder->base)
10559                                 continue;
10560                         enabled = true;
10561                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10562                                 active = true;
10563                 }
10564                 /*
10565                  * for MST connectors if we unplug the connector is gone
10566                  * away but the encoder is still connected to a crtc
10567                  * until a modeset happens in response to the hotplug.
10568                  */
10569                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10570                         continue;
10571
10572                 WARN(!!encoder->base.crtc != enabled,
10573                      "encoder's enabled state mismatch "
10574                      "(expected %i, found %i)\n",
10575                      !!encoder->base.crtc, enabled);
10576                 WARN(active && !encoder->base.crtc,
10577                      "active encoder with no crtc\n");
10578
10579                 WARN(encoder->connectors_active != active,
10580                      "encoder's computed active state doesn't match tracked active state "
10581                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10582
10583                 active = encoder->get_hw_state(encoder, &pipe);
10584                 WARN(active != encoder->connectors_active,
10585                      "encoder's hw state doesn't match sw tracking "
10586                      "(expected %i, found %i)\n",
10587                      encoder->connectors_active, active);
10588
10589                 if (!encoder->base.crtc)
10590                         continue;
10591
10592                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10593                 WARN(active && pipe != tracked_pipe,
10594                      "active encoder's pipe doesn't match"
10595                      "(expected %i, found %i)\n",
10596                      tracked_pipe, pipe);
10597
10598         }
10599 }
10600
10601 static void
10602 check_crtc_state(struct drm_device *dev)
10603 {
10604         struct drm_i915_private *dev_priv = dev->dev_private;
10605         struct intel_crtc *crtc;
10606         struct intel_encoder *encoder;
10607         struct intel_crtc_config pipe_config;
10608
10609         for_each_intel_crtc(dev, crtc) {
10610                 bool enabled = false;
10611                 bool active = false;
10612
10613                 memset(&pipe_config, 0, sizeof(pipe_config));
10614
10615                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10616                               crtc->base.base.id);
10617
10618                 WARN(crtc->active && !crtc->base.enabled,
10619                      "active crtc, but not enabled in sw tracking\n");
10620
10621                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10622                                     base.head) {
10623                         if (encoder->base.crtc != &crtc->base)
10624                                 continue;
10625                         enabled = true;
10626                         if (encoder->connectors_active)
10627                                 active = true;
10628                 }
10629
10630                 WARN(active != crtc->active,
10631                      "crtc's computed active state doesn't match tracked active state "
10632                      "(expected %i, found %i)\n", active, crtc->active);
10633                 WARN(enabled != crtc->base.enabled,
10634                      "crtc's computed enabled state doesn't match tracked enabled state "
10635                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10636
10637                 active = dev_priv->display.get_pipe_config(crtc,
10638                                                            &pipe_config);
10639
10640                 /* hw state is inconsistent with the pipe A quirk */
10641                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10642                         active = crtc->active;
10643
10644                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10645                                     base.head) {
10646                         enum pipe pipe;
10647                         if (encoder->base.crtc != &crtc->base)
10648                                 continue;
10649                         if (encoder->get_hw_state(encoder, &pipe))
10650                                 encoder->get_config(encoder, &pipe_config);
10651                 }
10652
10653                 WARN(crtc->active != active,
10654                      "crtc active state doesn't match with hw state "
10655                      "(expected %i, found %i)\n", crtc->active, active);
10656
10657                 if (active &&
10658                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10659                         WARN(1, "pipe state doesn't match!\n");
10660                         intel_dump_pipe_config(crtc, &pipe_config,
10661                                                "[hw state]");
10662                         intel_dump_pipe_config(crtc, &crtc->config,
10663                                                "[sw state]");
10664                 }
10665         }
10666 }
10667
10668 static void
10669 check_shared_dpll_state(struct drm_device *dev)
10670 {
10671         struct drm_i915_private *dev_priv = dev->dev_private;
10672         struct intel_crtc *crtc;
10673         struct intel_dpll_hw_state dpll_hw_state;
10674         int i;
10675
10676         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10677                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10678                 int enabled_crtcs = 0, active_crtcs = 0;
10679                 bool active;
10680
10681                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10682
10683                 DRM_DEBUG_KMS("%s\n", pll->name);
10684
10685                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10686
10687                 WARN(pll->active > pll->refcount,
10688                      "more active pll users than references: %i vs %i\n",
10689                      pll->active, pll->refcount);
10690                 WARN(pll->active && !pll->on,
10691                      "pll in active use but not on in sw tracking\n");
10692                 WARN(pll->on && !pll->active,
10693                      "pll in on but not on in use in sw tracking\n");
10694                 WARN(pll->on != active,
10695                      "pll on state mismatch (expected %i, found %i)\n",
10696                      pll->on, active);
10697
10698                 for_each_intel_crtc(dev, crtc) {
10699                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10700                                 enabled_crtcs++;
10701                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10702                                 active_crtcs++;
10703                 }
10704                 WARN(pll->active != active_crtcs,
10705                      "pll active crtcs mismatch (expected %i, found %i)\n",
10706                      pll->active, active_crtcs);
10707                 WARN(pll->refcount != enabled_crtcs,
10708                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10709                      pll->refcount, enabled_crtcs);
10710
10711                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10712                                        sizeof(dpll_hw_state)),
10713                      "pll hw state mismatch\n");
10714         }
10715 }
10716
10717 void
10718 intel_modeset_check_state(struct drm_device *dev)
10719 {
10720         check_connector_state(dev);
10721         check_encoder_state(dev);
10722         check_crtc_state(dev);
10723         check_shared_dpll_state(dev);
10724 }
10725
10726 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10727                                      int dotclock)
10728 {
10729         /*
10730          * FDI already provided one idea for the dotclock.
10731          * Yell if the encoder disagrees.
10732          */
10733         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10734              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10735              pipe_config->adjusted_mode.crtc_clock, dotclock);
10736 }
10737
10738 static void update_scanline_offset(struct intel_crtc *crtc)
10739 {
10740         struct drm_device *dev = crtc->base.dev;
10741
10742         /*
10743          * The scanline counter increments at the leading edge of hsync.
10744          *
10745          * On most platforms it starts counting from vtotal-1 on the
10746          * first active line. That means the scanline counter value is
10747          * always one less than what we would expect. Ie. just after
10748          * start of vblank, which also occurs at start of hsync (on the
10749          * last active line), the scanline counter will read vblank_start-1.
10750          *
10751          * On gen2 the scanline counter starts counting from 1 instead
10752          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10753          * to keep the value positive), instead of adding one.
10754          *
10755          * On HSW+ the behaviour of the scanline counter depends on the output
10756          * type. For DP ports it behaves like most other platforms, but on HDMI
10757          * there's an extra 1 line difference. So we need to add two instead of
10758          * one to the value.
10759          */
10760         if (IS_GEN2(dev)) {
10761                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10762                 int vtotal;
10763
10764                 vtotal = mode->crtc_vtotal;
10765                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10766                         vtotal /= 2;
10767
10768                 crtc->scanline_offset = vtotal - 1;
10769         } else if (HAS_DDI(dev) &&
10770                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10771                 crtc->scanline_offset = 2;
10772         } else
10773                 crtc->scanline_offset = 1;
10774 }
10775
10776 static int __intel_set_mode(struct drm_crtc *crtc,
10777                             struct drm_display_mode *mode,
10778                             int x, int y, struct drm_framebuffer *fb)
10779 {
10780         struct drm_device *dev = crtc->dev;
10781         struct drm_i915_private *dev_priv = dev->dev_private;
10782         struct drm_display_mode *saved_mode;
10783         struct intel_crtc_config *pipe_config = NULL;
10784         struct intel_crtc *intel_crtc;
10785         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10786         int ret = 0;
10787
10788         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10789         if (!saved_mode)
10790                 return -ENOMEM;
10791
10792         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10793                                      &prepare_pipes, &disable_pipes);
10794
10795         *saved_mode = crtc->mode;
10796
10797         /* Hack: Because we don't (yet) support global modeset on multiple
10798          * crtcs, we don't keep track of the new mode for more than one crtc.
10799          * Hence simply check whether any bit is set in modeset_pipes in all the
10800          * pieces of code that are not yet converted to deal with mutliple crtcs
10801          * changing their mode at the same time. */
10802         if (modeset_pipes) {
10803                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10804                 if (IS_ERR(pipe_config)) {
10805                         ret = PTR_ERR(pipe_config);
10806                         pipe_config = NULL;
10807
10808                         goto out;
10809                 }
10810                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10811                                        "[modeset]");
10812                 to_intel_crtc(crtc)->new_config = pipe_config;
10813         }
10814
10815         /*
10816          * See if the config requires any additional preparation, e.g.
10817          * to adjust global state with pipes off.  We need to do this
10818          * here so we can get the modeset_pipe updated config for the new
10819          * mode set on this crtc.  For other crtcs we need to use the
10820          * adjusted_mode bits in the crtc directly.
10821          */
10822         if (IS_VALLEYVIEW(dev)) {
10823                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10824
10825                 /* may have added more to prepare_pipes than we should */
10826                 prepare_pipes &= ~disable_pipes;
10827         }
10828
10829         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10830                 intel_crtc_disable(&intel_crtc->base);
10831
10832         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10833                 if (intel_crtc->base.enabled)
10834                         dev_priv->display.crtc_disable(&intel_crtc->base);
10835         }
10836
10837         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10838          * to set it here already despite that we pass it down the callchain.
10839          */
10840         if (modeset_pipes) {
10841                 crtc->mode = *mode;
10842                 /* mode_set/enable/disable functions rely on a correct pipe
10843                  * config. */
10844                 to_intel_crtc(crtc)->config = *pipe_config;
10845                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10846
10847                 /*
10848                  * Calculate and store various constants which
10849                  * are later needed by vblank and swap-completion
10850                  * timestamping. They are derived from true hwmode.
10851                  */
10852                 drm_calc_timestamping_constants(crtc,
10853                                                 &pipe_config->adjusted_mode);
10854         }
10855
10856         /* Only after disabling all output pipelines that will be changed can we
10857          * update the the output configuration. */
10858         intel_modeset_update_state(dev, prepare_pipes);
10859
10860         if (dev_priv->display.modeset_global_resources)
10861                 dev_priv->display.modeset_global_resources(dev);
10862
10863         /* Set up the DPLL and any encoders state that needs to adjust or depend
10864          * on the DPLL.
10865          */
10866         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10867                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10868                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10869                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10870
10871                 mutex_lock(&dev->struct_mutex);
10872                 ret = intel_pin_and_fence_fb_obj(dev,
10873                                                  obj,
10874                                                  NULL);
10875                 if (ret != 0) {
10876                         DRM_ERROR("pin & fence failed\n");
10877                         mutex_unlock(&dev->struct_mutex);
10878                         goto done;
10879                 }
10880                 if (old_fb)
10881                         intel_unpin_fb_obj(old_obj);
10882                 i915_gem_track_fb(old_obj, obj,
10883                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10884                 mutex_unlock(&dev->struct_mutex);
10885
10886                 crtc->primary->fb = fb;
10887                 crtc->x = x;
10888                 crtc->y = y;
10889
10890                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10891                                                       x, y, fb);
10892                 if (ret)
10893                         goto done;
10894         }
10895
10896         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10897         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10898                 update_scanline_offset(intel_crtc);
10899
10900                 dev_priv->display.crtc_enable(&intel_crtc->base);
10901         }
10902
10903         /* FIXME: add subpixel order */
10904 done:
10905         if (ret && crtc->enabled)
10906                 crtc->mode = *saved_mode;
10907
10908 out:
10909         kfree(pipe_config);
10910         kfree(saved_mode);
10911         return ret;
10912 }
10913
10914 static int intel_set_mode(struct drm_crtc *crtc,
10915                           struct drm_display_mode *mode,
10916                           int x, int y, struct drm_framebuffer *fb)
10917 {
10918         int ret;
10919
10920         ret = __intel_set_mode(crtc, mode, x, y, fb);
10921
10922         if (ret == 0)
10923                 intel_modeset_check_state(crtc->dev);
10924
10925         return ret;
10926 }
10927
10928 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10929 {
10930         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10931 }
10932
10933 #undef for_each_intel_crtc_masked
10934
10935 static void intel_set_config_free(struct intel_set_config *config)
10936 {
10937         if (!config)
10938                 return;
10939
10940         kfree(config->save_connector_encoders);
10941         kfree(config->save_encoder_crtcs);
10942         kfree(config->save_crtc_enabled);
10943         kfree(config);
10944 }
10945
10946 static int intel_set_config_save_state(struct drm_device *dev,
10947                                        struct intel_set_config *config)
10948 {
10949         struct drm_crtc *crtc;
10950         struct drm_encoder *encoder;
10951         struct drm_connector *connector;
10952         int count;
10953
10954         config->save_crtc_enabled =
10955                 kcalloc(dev->mode_config.num_crtc,
10956                         sizeof(bool), GFP_KERNEL);
10957         if (!config->save_crtc_enabled)
10958                 return -ENOMEM;
10959
10960         config->save_encoder_crtcs =
10961                 kcalloc(dev->mode_config.num_encoder,
10962                         sizeof(struct drm_crtc *), GFP_KERNEL);
10963         if (!config->save_encoder_crtcs)
10964                 return -ENOMEM;
10965
10966         config->save_connector_encoders =
10967                 kcalloc(dev->mode_config.num_connector,
10968                         sizeof(struct drm_encoder *), GFP_KERNEL);
10969         if (!config->save_connector_encoders)
10970                 return -ENOMEM;
10971
10972         /* Copy data. Note that driver private data is not affected.
10973          * Should anything bad happen only the expected state is
10974          * restored, not the drivers personal bookkeeping.
10975          */
10976         count = 0;
10977         for_each_crtc(dev, crtc) {
10978                 config->save_crtc_enabled[count++] = crtc->enabled;
10979         }
10980
10981         count = 0;
10982         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10983                 config->save_encoder_crtcs[count++] = encoder->crtc;
10984         }
10985
10986         count = 0;
10987         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10988                 config->save_connector_encoders[count++] = connector->encoder;
10989         }
10990
10991         return 0;
10992 }
10993
10994 static void intel_set_config_restore_state(struct drm_device *dev,
10995                                            struct intel_set_config *config)
10996 {
10997         struct intel_crtc *crtc;
10998         struct intel_encoder *encoder;
10999         struct intel_connector *connector;
11000         int count;
11001
11002         count = 0;
11003         for_each_intel_crtc(dev, crtc) {
11004                 crtc->new_enabled = config->save_crtc_enabled[count++];
11005
11006                 if (crtc->new_enabled)
11007                         crtc->new_config = &crtc->config;
11008                 else
11009                         crtc->new_config = NULL;
11010         }
11011
11012         count = 0;
11013         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11014                 encoder->new_crtc =
11015                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11016         }
11017
11018         count = 0;
11019         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11020                 connector->new_encoder =
11021                         to_intel_encoder(config->save_connector_encoders[count++]);
11022         }
11023 }
11024
11025 static bool
11026 is_crtc_connector_off(struct drm_mode_set *set)
11027 {
11028         int i;
11029
11030         if (set->num_connectors == 0)
11031                 return false;
11032
11033         if (WARN_ON(set->connectors == NULL))
11034                 return false;
11035
11036         for (i = 0; i < set->num_connectors; i++)
11037                 if (set->connectors[i]->encoder &&
11038                     set->connectors[i]->encoder->crtc == set->crtc &&
11039                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11040                         return true;
11041
11042         return false;
11043 }
11044
11045 static void
11046 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11047                                       struct intel_set_config *config)
11048 {
11049
11050         /* We should be able to check here if the fb has the same properties
11051          * and then just flip_or_move it */
11052         if (is_crtc_connector_off(set)) {
11053                 config->mode_changed = true;
11054         } else if (set->crtc->primary->fb != set->fb) {
11055                 /*
11056                  * If we have no fb, we can only flip as long as the crtc is
11057                  * active, otherwise we need a full mode set.  The crtc may
11058                  * be active if we've only disabled the primary plane, or
11059                  * in fastboot situations.
11060                  */
11061                 if (set->crtc->primary->fb == NULL) {
11062                         struct intel_crtc *intel_crtc =
11063                                 to_intel_crtc(set->crtc);
11064
11065                         if (intel_crtc->active) {
11066                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11067                                 config->fb_changed = true;
11068                         } else {
11069                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11070                                 config->mode_changed = true;
11071                         }
11072                 } else if (set->fb == NULL) {
11073                         config->mode_changed = true;
11074                 } else if (set->fb->pixel_format !=
11075                            set->crtc->primary->fb->pixel_format) {
11076                         config->mode_changed = true;
11077                 } else {
11078                         config->fb_changed = true;
11079                 }
11080         }
11081
11082         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11083                 config->fb_changed = true;
11084
11085         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11086                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11087                 drm_mode_debug_printmodeline(&set->crtc->mode);
11088                 drm_mode_debug_printmodeline(set->mode);
11089                 config->mode_changed = true;
11090         }
11091
11092         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11093                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11094 }
11095
11096 static int
11097 intel_modeset_stage_output_state(struct drm_device *dev,
11098                                  struct drm_mode_set *set,
11099                                  struct intel_set_config *config)
11100 {
11101         struct intel_connector *connector;
11102         struct intel_encoder *encoder;
11103         struct intel_crtc *crtc;
11104         int ro;
11105
11106         /* The upper layers ensure that we either disable a crtc or have a list
11107          * of connectors. For paranoia, double-check this. */
11108         WARN_ON(!set->fb && (set->num_connectors != 0));
11109         WARN_ON(set->fb && (set->num_connectors == 0));
11110
11111         list_for_each_entry(connector, &dev->mode_config.connector_list,
11112                             base.head) {
11113                 /* Otherwise traverse passed in connector list and get encoders
11114                  * for them. */
11115                 for (ro = 0; ro < set->num_connectors; ro++) {
11116                         if (set->connectors[ro] == &connector->base) {
11117                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11118                                 break;
11119                         }
11120                 }
11121
11122                 /* If we disable the crtc, disable all its connectors. Also, if
11123                  * the connector is on the changing crtc but not on the new
11124                  * connector list, disable it. */
11125                 if ((!set->fb || ro == set->num_connectors) &&
11126                     connector->base.encoder &&
11127                     connector->base.encoder->crtc == set->crtc) {
11128                         connector->new_encoder = NULL;
11129
11130                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11131                                 connector->base.base.id,
11132                                 connector->base.name);
11133                 }
11134
11135
11136                 if (&connector->new_encoder->base != connector->base.encoder) {
11137                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11138                         config->mode_changed = true;
11139                 }
11140         }
11141         /* connector->new_encoder is now updated for all connectors. */
11142
11143         /* Update crtc of enabled connectors. */
11144         list_for_each_entry(connector, &dev->mode_config.connector_list,
11145                             base.head) {
11146                 struct drm_crtc *new_crtc;
11147
11148                 if (!connector->new_encoder)
11149                         continue;
11150
11151                 new_crtc = connector->new_encoder->base.crtc;
11152
11153                 for (ro = 0; ro < set->num_connectors; ro++) {
11154                         if (set->connectors[ro] == &connector->base)
11155                                 new_crtc = set->crtc;
11156                 }
11157
11158                 /* Make sure the new CRTC will work with the encoder */
11159                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11160                                          new_crtc)) {
11161                         return -EINVAL;
11162                 }
11163                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11164
11165                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11166                         connector->base.base.id,
11167                         connector->base.name,
11168                         new_crtc->base.id);
11169         }
11170
11171         /* Check for any encoders that needs to be disabled. */
11172         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11173                             base.head) {
11174                 int num_connectors = 0;
11175                 list_for_each_entry(connector,
11176                                     &dev->mode_config.connector_list,
11177                                     base.head) {
11178                         if (connector->new_encoder == encoder) {
11179                                 WARN_ON(!connector->new_encoder->new_crtc);
11180                                 num_connectors++;
11181                         }
11182                 }
11183
11184                 if (num_connectors == 0)
11185                         encoder->new_crtc = NULL;
11186                 else if (num_connectors > 1)
11187                         return -EINVAL;
11188
11189                 /* Only now check for crtc changes so we don't miss encoders
11190                  * that will be disabled. */
11191                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11192                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11193                         config->mode_changed = true;
11194                 }
11195         }
11196         /* Now we've also updated encoder->new_crtc for all encoders. */
11197         list_for_each_entry(connector, &dev->mode_config.connector_list,
11198                             base.head) {
11199                 if (connector->new_encoder)
11200                         if (connector->new_encoder != connector->encoder)
11201                                 connector->encoder = connector->new_encoder;
11202         }
11203         for_each_intel_crtc(dev, crtc) {
11204                 crtc->new_enabled = false;
11205
11206                 list_for_each_entry(encoder,
11207                                     &dev->mode_config.encoder_list,
11208                                     base.head) {
11209                         if (encoder->new_crtc == crtc) {
11210                                 crtc->new_enabled = true;
11211                                 break;
11212                         }
11213                 }
11214
11215                 if (crtc->new_enabled != crtc->base.enabled) {
11216                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11217                                       crtc->new_enabled ? "en" : "dis");
11218                         config->mode_changed = true;
11219                 }
11220
11221                 if (crtc->new_enabled)
11222                         crtc->new_config = &crtc->config;
11223                 else
11224                         crtc->new_config = NULL;
11225         }
11226
11227         return 0;
11228 }
11229
11230 static void disable_crtc_nofb(struct intel_crtc *crtc)
11231 {
11232         struct drm_device *dev = crtc->base.dev;
11233         struct intel_encoder *encoder;
11234         struct intel_connector *connector;
11235
11236         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11237                       pipe_name(crtc->pipe));
11238
11239         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11240                 if (connector->new_encoder &&
11241                     connector->new_encoder->new_crtc == crtc)
11242                         connector->new_encoder = NULL;
11243         }
11244
11245         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11246                 if (encoder->new_crtc == crtc)
11247                         encoder->new_crtc = NULL;
11248         }
11249
11250         crtc->new_enabled = false;
11251         crtc->new_config = NULL;
11252 }
11253
11254 static int intel_crtc_set_config(struct drm_mode_set *set)
11255 {
11256         struct drm_device *dev;
11257         struct drm_mode_set save_set;
11258         struct intel_set_config *config;
11259         int ret;
11260
11261         BUG_ON(!set);
11262         BUG_ON(!set->crtc);
11263         BUG_ON(!set->crtc->helper_private);
11264
11265         /* Enforce sane interface api - has been abused by the fb helper. */
11266         BUG_ON(!set->mode && set->fb);
11267         BUG_ON(set->fb && set->num_connectors == 0);
11268
11269         if (set->fb) {
11270                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11271                                 set->crtc->base.id, set->fb->base.id,
11272                                 (int)set->num_connectors, set->x, set->y);
11273         } else {
11274                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11275         }
11276
11277         dev = set->crtc->dev;
11278
11279         ret = -ENOMEM;
11280         config = kzalloc(sizeof(*config), GFP_KERNEL);
11281         if (!config)
11282                 goto out_config;
11283
11284         ret = intel_set_config_save_state(dev, config);
11285         if (ret)
11286                 goto out_config;
11287
11288         save_set.crtc = set->crtc;
11289         save_set.mode = &set->crtc->mode;
11290         save_set.x = set->crtc->x;
11291         save_set.y = set->crtc->y;
11292         save_set.fb = set->crtc->primary->fb;
11293
11294         /* Compute whether we need a full modeset, only an fb base update or no
11295          * change at all. In the future we might also check whether only the
11296          * mode changed, e.g. for LVDS where we only change the panel fitter in
11297          * such cases. */
11298         intel_set_config_compute_mode_changes(set, config);
11299
11300         ret = intel_modeset_stage_output_state(dev, set, config);
11301         if (ret)
11302                 goto fail;
11303
11304         if (config->mode_changed) {
11305                 ret = intel_set_mode(set->crtc, set->mode,
11306                                      set->x, set->y, set->fb);
11307         } else if (config->fb_changed) {
11308                 struct drm_i915_private *dev_priv = dev->dev_private;
11309                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11310
11311                 intel_crtc_wait_for_pending_flips(set->crtc);
11312
11313                 ret = intel_pipe_set_base(set->crtc,
11314                                           set->x, set->y, set->fb);
11315
11316                 /*
11317                  * We need to make sure the primary plane is re-enabled if it
11318                  * has previously been turned off.
11319                  */
11320                 if (!intel_crtc->primary_enabled && ret == 0) {
11321                         WARN_ON(!intel_crtc->active);
11322                         intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11323                                                       intel_crtc->pipe);
11324                 }
11325
11326                 /*
11327                  * In the fastboot case this may be our only check of the
11328                  * state after boot.  It would be better to only do it on
11329                  * the first update, but we don't have a nice way of doing that
11330                  * (and really, set_config isn't used much for high freq page
11331                  * flipping, so increasing its cost here shouldn't be a big
11332                  * deal).
11333                  */
11334                 if (i915.fastboot && ret == 0)
11335                         intel_modeset_check_state(set->crtc->dev);
11336         }
11337
11338         if (ret) {
11339                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11340                               set->crtc->base.id, ret);
11341 fail:
11342                 intel_set_config_restore_state(dev, config);
11343
11344                 /*
11345                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11346                  * force the pipe off to avoid oopsing in the modeset code
11347                  * due to fb==NULL. This should only happen during boot since
11348                  * we don't yet reconstruct the FB from the hardware state.
11349                  */
11350                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11351                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11352
11353                 /* Try to restore the config */
11354                 if (config->mode_changed &&
11355                     intel_set_mode(save_set.crtc, save_set.mode,
11356                                    save_set.x, save_set.y, save_set.fb))
11357                         DRM_ERROR("failed to restore config after modeset failure\n");
11358         }
11359
11360 out_config:
11361         intel_set_config_free(config);
11362         return ret;
11363 }
11364
11365 static const struct drm_crtc_funcs intel_crtc_funcs = {
11366         .gamma_set = intel_crtc_gamma_set,
11367         .set_config = intel_crtc_set_config,
11368         .destroy = intel_crtc_destroy,
11369         .page_flip = intel_crtc_page_flip,
11370 };
11371
11372 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11373                                       struct intel_shared_dpll *pll,
11374                                       struct intel_dpll_hw_state *hw_state)
11375 {
11376         uint32_t val;
11377
11378         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11379                 return false;
11380
11381         val = I915_READ(PCH_DPLL(pll->id));
11382         hw_state->dpll = val;
11383         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11384         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11385
11386         return val & DPLL_VCO_ENABLE;
11387 }
11388
11389 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11390                                   struct intel_shared_dpll *pll)
11391 {
11392         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11393         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11394 }
11395
11396 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11397                                 struct intel_shared_dpll *pll)
11398 {
11399         /* PCH refclock must be enabled first */
11400         ibx_assert_pch_refclk_enabled(dev_priv);
11401
11402         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11403
11404         /* Wait for the clocks to stabilize. */
11405         POSTING_READ(PCH_DPLL(pll->id));
11406         udelay(150);
11407
11408         /* The pixel multiplier can only be updated once the
11409          * DPLL is enabled and the clocks are stable.
11410          *
11411          * So write it again.
11412          */
11413         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11414         POSTING_READ(PCH_DPLL(pll->id));
11415         udelay(200);
11416 }
11417
11418 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11419                                  struct intel_shared_dpll *pll)
11420 {
11421         struct drm_device *dev = dev_priv->dev;
11422         struct intel_crtc *crtc;
11423
11424         /* Make sure no transcoder isn't still depending on us. */
11425         for_each_intel_crtc(dev, crtc) {
11426                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11427                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11428         }
11429
11430         I915_WRITE(PCH_DPLL(pll->id), 0);
11431         POSTING_READ(PCH_DPLL(pll->id));
11432         udelay(200);
11433 }
11434
11435 static char *ibx_pch_dpll_names[] = {
11436         "PCH DPLL A",
11437         "PCH DPLL B",
11438 };
11439
11440 static void ibx_pch_dpll_init(struct drm_device *dev)
11441 {
11442         struct drm_i915_private *dev_priv = dev->dev_private;
11443         int i;
11444
11445         dev_priv->num_shared_dpll = 2;
11446
11447         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11448                 dev_priv->shared_dplls[i].id = i;
11449                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11450                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11451                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11452                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11453                 dev_priv->shared_dplls[i].get_hw_state =
11454                         ibx_pch_dpll_get_hw_state;
11455         }
11456 }
11457
11458 static void intel_shared_dpll_init(struct drm_device *dev)
11459 {
11460         struct drm_i915_private *dev_priv = dev->dev_private;
11461
11462         if (HAS_DDI(dev))
11463                 intel_ddi_pll_init(dev);
11464         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11465                 ibx_pch_dpll_init(dev);
11466         else
11467                 dev_priv->num_shared_dpll = 0;
11468
11469         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11470 }
11471
11472 static int
11473 intel_primary_plane_disable(struct drm_plane *plane)
11474 {
11475         struct drm_device *dev = plane->dev;
11476         struct drm_i915_private *dev_priv = dev->dev_private;
11477         struct intel_plane *intel_plane = to_intel_plane(plane);
11478         struct intel_crtc *intel_crtc;
11479
11480         if (!plane->fb)
11481                 return 0;
11482
11483         BUG_ON(!plane->crtc);
11484
11485         intel_crtc = to_intel_crtc(plane->crtc);
11486
11487         /*
11488          * Even though we checked plane->fb above, it's still possible that
11489          * the primary plane has been implicitly disabled because the crtc
11490          * coordinates given weren't visible, or because we detected
11491          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11492          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11493          * In either case, we need to unpin the FB and let the fb pointer get
11494          * updated, but otherwise we don't need to touch the hardware.
11495          */
11496         if (!intel_crtc->primary_enabled)
11497                 goto disable_unpin;
11498
11499         intel_crtc_wait_for_pending_flips(plane->crtc);
11500         intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11501                                        intel_plane->pipe);
11502 disable_unpin:
11503         mutex_lock(&dev->struct_mutex);
11504         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11505                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11506         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11507         mutex_unlock(&dev->struct_mutex);
11508         plane->fb = NULL;
11509
11510         return 0;
11511 }
11512
11513 static int
11514 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11515                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11516                              unsigned int crtc_w, unsigned int crtc_h,
11517                              uint32_t src_x, uint32_t src_y,
11518                              uint32_t src_w, uint32_t src_h)
11519 {
11520         struct drm_device *dev = crtc->dev;
11521         struct drm_i915_private *dev_priv = dev->dev_private;
11522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11523         struct intel_plane *intel_plane = to_intel_plane(plane);
11524         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11525         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11526         struct drm_rect dest = {
11527                 /* integer pixels */
11528                 .x1 = crtc_x,
11529                 .y1 = crtc_y,
11530                 .x2 = crtc_x + crtc_w,
11531                 .y2 = crtc_y + crtc_h,
11532         };
11533         struct drm_rect src = {
11534                 /* 16.16 fixed point */
11535                 .x1 = src_x,
11536                 .y1 = src_y,
11537                 .x2 = src_x + src_w,
11538                 .y2 = src_y + src_h,
11539         };
11540         const struct drm_rect clip = {
11541                 /* integer pixels */
11542                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11543                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11544         };
11545         bool visible;
11546         int ret;
11547
11548         ret = drm_plane_helper_check_update(plane, crtc, fb,
11549                                             &src, &dest, &clip,
11550                                             DRM_PLANE_HELPER_NO_SCALING,
11551                                             DRM_PLANE_HELPER_NO_SCALING,
11552                                             false, true, &visible);
11553
11554         if (ret)
11555                 return ret;
11556
11557         /*
11558          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11559          * updating the fb pointer, and returning without touching the
11560          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11561          * turn on the display with all planes setup as desired.
11562          */
11563         if (!crtc->enabled) {
11564                 mutex_lock(&dev->struct_mutex);
11565
11566                 /*
11567                  * If we already called setplane while the crtc was disabled,
11568                  * we may have an fb pinned; unpin it.
11569                  */
11570                 if (plane->fb)
11571                         intel_unpin_fb_obj(old_obj);
11572
11573                 i915_gem_track_fb(old_obj, obj,
11574                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11575
11576                 /* Pin and return without programming hardware */
11577                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11578                 mutex_unlock(&dev->struct_mutex);
11579
11580                 return ret;
11581         }
11582
11583         intel_crtc_wait_for_pending_flips(crtc);
11584
11585         /*
11586          * If clipping results in a non-visible primary plane, we'll disable
11587          * the primary plane.  Note that this is a bit different than what
11588          * happens if userspace explicitly disables the plane by passing fb=0
11589          * because plane->fb still gets set and pinned.
11590          */
11591         if (!visible) {
11592                 mutex_lock(&dev->struct_mutex);
11593
11594                 /*
11595                  * Try to pin the new fb first so that we can bail out if we
11596                  * fail.
11597                  */
11598                 if (plane->fb != fb) {
11599                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11600                         if (ret) {
11601                                 mutex_unlock(&dev->struct_mutex);
11602                                 return ret;
11603                         }
11604                 }
11605
11606                 i915_gem_track_fb(old_obj, obj,
11607                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11608
11609                 if (intel_crtc->primary_enabled)
11610                         intel_disable_primary_hw_plane(dev_priv,
11611                                                        intel_plane->plane,
11612                                                        intel_plane->pipe);
11613
11614
11615                 if (plane->fb != fb)
11616                         if (plane->fb)
11617                                 intel_unpin_fb_obj(old_obj);
11618
11619                 mutex_unlock(&dev->struct_mutex);
11620
11621                 return 0;
11622         }
11623
11624         ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11625         if (ret)
11626                 return ret;
11627
11628         if (!intel_crtc->primary_enabled)
11629                 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11630                                               intel_crtc->pipe);
11631
11632         return 0;
11633 }
11634
11635 /* Common destruction function for both primary and cursor planes */
11636 static void intel_plane_destroy(struct drm_plane *plane)
11637 {
11638         struct intel_plane *intel_plane = to_intel_plane(plane);
11639         drm_plane_cleanup(plane);
11640         kfree(intel_plane);
11641 }
11642
11643 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11644         .update_plane = intel_primary_plane_setplane,
11645         .disable_plane = intel_primary_plane_disable,
11646         .destroy = intel_plane_destroy,
11647 };
11648
11649 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11650                                                     int pipe)
11651 {
11652         struct intel_plane *primary;
11653         const uint32_t *intel_primary_formats;
11654         int num_formats;
11655
11656         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11657         if (primary == NULL)
11658                 return NULL;
11659
11660         primary->can_scale = false;
11661         primary->max_downscale = 1;
11662         primary->pipe = pipe;
11663         primary->plane = pipe;
11664         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11665                 primary->plane = !pipe;
11666
11667         if (INTEL_INFO(dev)->gen <= 3) {
11668                 intel_primary_formats = intel_primary_formats_gen2;
11669                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11670         } else {
11671                 intel_primary_formats = intel_primary_formats_gen4;
11672                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11673         }
11674
11675         drm_universal_plane_init(dev, &primary->base, 0,
11676                                  &intel_primary_plane_funcs,
11677                                  intel_primary_formats, num_formats,
11678                                  DRM_PLANE_TYPE_PRIMARY);
11679         return &primary->base;
11680 }
11681
11682 static int
11683 intel_cursor_plane_disable(struct drm_plane *plane)
11684 {
11685         if (!plane->fb)
11686                 return 0;
11687
11688         BUG_ON(!plane->crtc);
11689
11690         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11691 }
11692
11693 static int
11694 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11695                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11696                           unsigned int crtc_w, unsigned int crtc_h,
11697                           uint32_t src_x, uint32_t src_y,
11698                           uint32_t src_w, uint32_t src_h)
11699 {
11700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11701         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11702         struct drm_i915_gem_object *obj = intel_fb->obj;
11703         struct drm_rect dest = {
11704                 /* integer pixels */
11705                 .x1 = crtc_x,
11706                 .y1 = crtc_y,
11707                 .x2 = crtc_x + crtc_w,
11708                 .y2 = crtc_y + crtc_h,
11709         };
11710         struct drm_rect src = {
11711                 /* 16.16 fixed point */
11712                 .x1 = src_x,
11713                 .y1 = src_y,
11714                 .x2 = src_x + src_w,
11715                 .y2 = src_y + src_h,
11716         };
11717         const struct drm_rect clip = {
11718                 /* integer pixels */
11719                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11720                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11721         };
11722         bool visible;
11723         int ret;
11724
11725         ret = drm_plane_helper_check_update(plane, crtc, fb,
11726                                             &src, &dest, &clip,
11727                                             DRM_PLANE_HELPER_NO_SCALING,
11728                                             DRM_PLANE_HELPER_NO_SCALING,
11729                                             true, true, &visible);
11730         if (ret)
11731                 return ret;
11732
11733         crtc->cursor_x = crtc_x;
11734         crtc->cursor_y = crtc_y;
11735         if (fb != crtc->cursor->fb) {
11736                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11737         } else {
11738                 intel_crtc_update_cursor(crtc, visible);
11739                 return 0;
11740         }
11741 }
11742 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11743         .update_plane = intel_cursor_plane_update,
11744         .disable_plane = intel_cursor_plane_disable,
11745         .destroy = intel_plane_destroy,
11746 };
11747
11748 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11749                                                    int pipe)
11750 {
11751         struct intel_plane *cursor;
11752
11753         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11754         if (cursor == NULL)
11755                 return NULL;
11756
11757         cursor->can_scale = false;
11758         cursor->max_downscale = 1;
11759         cursor->pipe = pipe;
11760         cursor->plane = pipe;
11761
11762         drm_universal_plane_init(dev, &cursor->base, 0,
11763                                  &intel_cursor_plane_funcs,
11764                                  intel_cursor_formats,
11765                                  ARRAY_SIZE(intel_cursor_formats),
11766                                  DRM_PLANE_TYPE_CURSOR);
11767         return &cursor->base;
11768 }
11769
11770 static void intel_crtc_init(struct drm_device *dev, int pipe)
11771 {
11772         struct drm_i915_private *dev_priv = dev->dev_private;
11773         struct intel_crtc *intel_crtc;
11774         struct drm_plane *primary = NULL;
11775         struct drm_plane *cursor = NULL;
11776         int i, ret;
11777
11778         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11779         if (intel_crtc == NULL)
11780                 return;
11781
11782         primary = intel_primary_plane_create(dev, pipe);
11783         if (!primary)
11784                 goto fail;
11785
11786         cursor = intel_cursor_plane_create(dev, pipe);
11787         if (!cursor)
11788                 goto fail;
11789
11790         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11791                                         cursor, &intel_crtc_funcs);
11792         if (ret)
11793                 goto fail;
11794
11795         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11796         for (i = 0; i < 256; i++) {
11797                 intel_crtc->lut_r[i] = i;
11798                 intel_crtc->lut_g[i] = i;
11799                 intel_crtc->lut_b[i] = i;
11800         }
11801
11802         /*
11803          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11804          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11805          */
11806         intel_crtc->pipe = pipe;
11807         intel_crtc->plane = pipe;
11808         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11809                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11810                 intel_crtc->plane = !pipe;
11811         }
11812
11813         intel_crtc->cursor_base = ~0;
11814         intel_crtc->cursor_cntl = ~0;
11815
11816         init_waitqueue_head(&intel_crtc->vbl_wait);
11817
11818         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11819                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11820         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11821         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11822
11823         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11824
11825         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11826         return;
11827
11828 fail:
11829         if (primary)
11830                 drm_plane_cleanup(primary);
11831         if (cursor)
11832                 drm_plane_cleanup(cursor);
11833         kfree(intel_crtc);
11834 }
11835
11836 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11837 {
11838         struct drm_encoder *encoder = connector->base.encoder;
11839         struct drm_device *dev = connector->base.dev;
11840
11841         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11842
11843         if (!encoder)
11844                 return INVALID_PIPE;
11845
11846         return to_intel_crtc(encoder->crtc)->pipe;
11847 }
11848
11849 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11850                                 struct drm_file *file)
11851 {
11852         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11853         struct drm_crtc *drmmode_crtc;
11854         struct intel_crtc *crtc;
11855
11856         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11857                 return -ENODEV;
11858
11859         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11860
11861         if (!drmmode_crtc) {
11862                 DRM_ERROR("no such CRTC id\n");
11863                 return -ENOENT;
11864         }
11865
11866         crtc = to_intel_crtc(drmmode_crtc);
11867         pipe_from_crtc_id->pipe = crtc->pipe;
11868
11869         return 0;
11870 }
11871
11872 static int intel_encoder_clones(struct intel_encoder *encoder)
11873 {
11874         struct drm_device *dev = encoder->base.dev;
11875         struct intel_encoder *source_encoder;
11876         int index_mask = 0;
11877         int entry = 0;
11878
11879         list_for_each_entry(source_encoder,
11880                             &dev->mode_config.encoder_list, base.head) {
11881                 if (encoders_cloneable(encoder, source_encoder))
11882                         index_mask |= (1 << entry);
11883
11884                 entry++;
11885         }
11886
11887         return index_mask;
11888 }
11889
11890 static bool has_edp_a(struct drm_device *dev)
11891 {
11892         struct drm_i915_private *dev_priv = dev->dev_private;
11893
11894         if (!IS_MOBILE(dev))
11895                 return false;
11896
11897         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11898                 return false;
11899
11900         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11901                 return false;
11902
11903         return true;
11904 }
11905
11906 const char *intel_output_name(int output)
11907 {
11908         static const char *names[] = {
11909                 [INTEL_OUTPUT_UNUSED] = "Unused",
11910                 [INTEL_OUTPUT_ANALOG] = "Analog",
11911                 [INTEL_OUTPUT_DVO] = "DVO",
11912                 [INTEL_OUTPUT_SDVO] = "SDVO",
11913                 [INTEL_OUTPUT_LVDS] = "LVDS",
11914                 [INTEL_OUTPUT_TVOUT] = "TV",
11915                 [INTEL_OUTPUT_HDMI] = "HDMI",
11916                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11917                 [INTEL_OUTPUT_EDP] = "eDP",
11918                 [INTEL_OUTPUT_DSI] = "DSI",
11919                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11920         };
11921
11922         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11923                 return "Invalid";
11924
11925         return names[output];
11926 }
11927
11928 static bool intel_crt_present(struct drm_device *dev)
11929 {
11930         struct drm_i915_private *dev_priv = dev->dev_private;
11931
11932         if (IS_ULT(dev))
11933                 return false;
11934
11935         if (IS_CHERRYVIEW(dev))
11936                 return false;
11937
11938         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11939                 return false;
11940
11941         return true;
11942 }
11943
11944 static void intel_setup_outputs(struct drm_device *dev)
11945 {
11946         struct drm_i915_private *dev_priv = dev->dev_private;
11947         struct intel_encoder *encoder;
11948         bool dpd_is_edp = false;
11949
11950         intel_lvds_init(dev);
11951
11952         if (intel_crt_present(dev))
11953                 intel_crt_init(dev);
11954
11955         if (HAS_DDI(dev)) {
11956                 int found;
11957
11958                 /* Haswell uses DDI functions to detect digital outputs */
11959                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11960                 /* DDI A only supports eDP */
11961                 if (found)
11962                         intel_ddi_init(dev, PORT_A);
11963
11964                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11965                  * register */
11966                 found = I915_READ(SFUSE_STRAP);
11967
11968                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11969                         intel_ddi_init(dev, PORT_B);
11970                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11971                         intel_ddi_init(dev, PORT_C);
11972                 if (found & SFUSE_STRAP_DDID_DETECTED)
11973                         intel_ddi_init(dev, PORT_D);
11974         } else if (HAS_PCH_SPLIT(dev)) {
11975                 int found;
11976                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11977
11978                 if (has_edp_a(dev))
11979                         intel_dp_init(dev, DP_A, PORT_A);
11980
11981                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11982                         /* PCH SDVOB multiplex with HDMIB */
11983                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11984                         if (!found)
11985                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11986                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11987                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11988                 }
11989
11990                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11991                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11992
11993                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11994                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11995
11996                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11997                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11998
11999                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12000                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12001         } else if (IS_VALLEYVIEW(dev)) {
12002                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12003                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12004                                         PORT_B);
12005                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12006                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12007                 }
12008
12009                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12010                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12011                                         PORT_C);
12012                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12013                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12014                 }
12015
12016                 if (IS_CHERRYVIEW(dev)) {
12017                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12018                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12019                                                 PORT_D);
12020                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12021                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12022                         }
12023                 }
12024
12025                 intel_dsi_init(dev);
12026         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12027                 bool found = false;
12028
12029                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12030                         DRM_DEBUG_KMS("probing SDVOB\n");
12031                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12032                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12033                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12034                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12035                         }
12036
12037                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12038                                 intel_dp_init(dev, DP_B, PORT_B);
12039                 }
12040
12041                 /* Before G4X SDVOC doesn't have its own detect register */
12042
12043                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12044                         DRM_DEBUG_KMS("probing SDVOC\n");
12045                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12046                 }
12047
12048                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12049
12050                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12051                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12052                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12053                         }
12054                         if (SUPPORTS_INTEGRATED_DP(dev))
12055                                 intel_dp_init(dev, DP_C, PORT_C);
12056                 }
12057
12058                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12059                     (I915_READ(DP_D) & DP_DETECTED))
12060                         intel_dp_init(dev, DP_D, PORT_D);
12061         } else if (IS_GEN2(dev))
12062                 intel_dvo_init(dev);
12063
12064         if (SUPPORTS_TV(dev))
12065                 intel_tv_init(dev);
12066
12067         intel_edp_psr_init(dev);
12068
12069         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12070                 encoder->base.possible_crtcs = encoder->crtc_mask;
12071                 encoder->base.possible_clones =
12072                         intel_encoder_clones(encoder);
12073         }
12074
12075         intel_init_pch_refclk(dev);
12076
12077         drm_helper_move_panel_connectors_to_head(dev);
12078 }
12079
12080 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12081 {
12082         struct drm_device *dev = fb->dev;
12083         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12084
12085         drm_framebuffer_cleanup(fb);
12086         mutex_lock(&dev->struct_mutex);
12087         WARN_ON(!intel_fb->obj->framebuffer_references--);
12088         drm_gem_object_unreference(&intel_fb->obj->base);
12089         mutex_unlock(&dev->struct_mutex);
12090         kfree(intel_fb);
12091 }
12092
12093 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12094                                                 struct drm_file *file,
12095                                                 unsigned int *handle)
12096 {
12097         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12098         struct drm_i915_gem_object *obj = intel_fb->obj;
12099
12100         return drm_gem_handle_create(file, &obj->base, handle);
12101 }
12102
12103 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12104         .destroy = intel_user_framebuffer_destroy,
12105         .create_handle = intel_user_framebuffer_create_handle,
12106 };
12107
12108 static int intel_framebuffer_init(struct drm_device *dev,
12109                                   struct intel_framebuffer *intel_fb,
12110                                   struct drm_mode_fb_cmd2 *mode_cmd,
12111                                   struct drm_i915_gem_object *obj)
12112 {
12113         int aligned_height;
12114         int pitch_limit;
12115         int ret;
12116
12117         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12118
12119         if (obj->tiling_mode == I915_TILING_Y) {
12120                 DRM_DEBUG("hardware does not support tiling Y\n");
12121                 return -EINVAL;
12122         }
12123
12124         if (mode_cmd->pitches[0] & 63) {
12125                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12126                           mode_cmd->pitches[0]);
12127                 return -EINVAL;
12128         }
12129
12130         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12131                 pitch_limit = 32*1024;
12132         } else if (INTEL_INFO(dev)->gen >= 4) {
12133                 if (obj->tiling_mode)
12134                         pitch_limit = 16*1024;
12135                 else
12136                         pitch_limit = 32*1024;
12137         } else if (INTEL_INFO(dev)->gen >= 3) {
12138                 if (obj->tiling_mode)
12139                         pitch_limit = 8*1024;
12140                 else
12141                         pitch_limit = 16*1024;
12142         } else
12143                 /* XXX DSPC is limited to 4k tiled */
12144                 pitch_limit = 8*1024;
12145
12146         if (mode_cmd->pitches[0] > pitch_limit) {
12147                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12148                           obj->tiling_mode ? "tiled" : "linear",
12149                           mode_cmd->pitches[0], pitch_limit);
12150                 return -EINVAL;
12151         }
12152
12153         if (obj->tiling_mode != I915_TILING_NONE &&
12154             mode_cmd->pitches[0] != obj->stride) {
12155                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12156                           mode_cmd->pitches[0], obj->stride);
12157                 return -EINVAL;
12158         }
12159
12160         /* Reject formats not supported by any plane early. */
12161         switch (mode_cmd->pixel_format) {
12162         case DRM_FORMAT_C8:
12163         case DRM_FORMAT_RGB565:
12164         case DRM_FORMAT_XRGB8888:
12165         case DRM_FORMAT_ARGB8888:
12166                 break;
12167         case DRM_FORMAT_XRGB1555:
12168         case DRM_FORMAT_ARGB1555:
12169                 if (INTEL_INFO(dev)->gen > 3) {
12170                         DRM_DEBUG("unsupported pixel format: %s\n",
12171                                   drm_get_format_name(mode_cmd->pixel_format));
12172                         return -EINVAL;
12173                 }
12174                 break;
12175         case DRM_FORMAT_XBGR8888:
12176         case DRM_FORMAT_ABGR8888:
12177         case DRM_FORMAT_XRGB2101010:
12178         case DRM_FORMAT_ARGB2101010:
12179         case DRM_FORMAT_XBGR2101010:
12180         case DRM_FORMAT_ABGR2101010:
12181                 if (INTEL_INFO(dev)->gen < 4) {
12182                         DRM_DEBUG("unsupported pixel format: %s\n",
12183                                   drm_get_format_name(mode_cmd->pixel_format));
12184                         return -EINVAL;
12185                 }
12186                 break;
12187         case DRM_FORMAT_YUYV:
12188         case DRM_FORMAT_UYVY:
12189         case DRM_FORMAT_YVYU:
12190         case DRM_FORMAT_VYUY:
12191                 if (INTEL_INFO(dev)->gen < 5) {
12192                         DRM_DEBUG("unsupported pixel format: %s\n",
12193                                   drm_get_format_name(mode_cmd->pixel_format));
12194                         return -EINVAL;
12195                 }
12196                 break;
12197         default:
12198                 DRM_DEBUG("unsupported pixel format: %s\n",
12199                           drm_get_format_name(mode_cmd->pixel_format));
12200                 return -EINVAL;
12201         }
12202
12203         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12204         if (mode_cmd->offsets[0] != 0)
12205                 return -EINVAL;
12206
12207         aligned_height = intel_align_height(dev, mode_cmd->height,
12208                                             obj->tiling_mode);
12209         /* FIXME drm helper for size checks (especially planar formats)? */
12210         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12211                 return -EINVAL;
12212
12213         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12214         intel_fb->obj = obj;
12215         intel_fb->obj->framebuffer_references++;
12216
12217         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12218         if (ret) {
12219                 DRM_ERROR("framebuffer init failed %d\n", ret);
12220                 return ret;
12221         }
12222
12223         return 0;
12224 }
12225
12226 static struct drm_framebuffer *
12227 intel_user_framebuffer_create(struct drm_device *dev,
12228                               struct drm_file *filp,
12229                               struct drm_mode_fb_cmd2 *mode_cmd)
12230 {
12231         struct drm_i915_gem_object *obj;
12232
12233         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12234                                                 mode_cmd->handles[0]));
12235         if (&obj->base == NULL)
12236                 return ERR_PTR(-ENOENT);
12237
12238         return intel_framebuffer_create(dev, mode_cmd, obj);
12239 }
12240
12241 #ifndef CONFIG_DRM_I915_FBDEV
12242 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12243 {
12244 }
12245 #endif
12246
12247 static const struct drm_mode_config_funcs intel_mode_funcs = {
12248         .fb_create = intel_user_framebuffer_create,
12249         .output_poll_changed = intel_fbdev_output_poll_changed,
12250 };
12251
12252 /* Set up chip specific display functions */
12253 static void intel_init_display(struct drm_device *dev)
12254 {
12255         struct drm_i915_private *dev_priv = dev->dev_private;
12256
12257         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12258                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12259         else if (IS_CHERRYVIEW(dev))
12260                 dev_priv->display.find_dpll = chv_find_best_dpll;
12261         else if (IS_VALLEYVIEW(dev))
12262                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12263         else if (IS_PINEVIEW(dev))
12264                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12265         else
12266                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12267
12268         if (HAS_DDI(dev)) {
12269                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12270                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12271                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12272                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12273                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12274                 dev_priv->display.off = ironlake_crtc_off;
12275                 dev_priv->display.update_primary_plane =
12276                         ironlake_update_primary_plane;
12277         } else if (HAS_PCH_SPLIT(dev)) {
12278                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12279                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12280                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12281                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12282                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12283                 dev_priv->display.off = ironlake_crtc_off;
12284                 dev_priv->display.update_primary_plane =
12285                         ironlake_update_primary_plane;
12286         } else if (IS_VALLEYVIEW(dev)) {
12287                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12288                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12289                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12290                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12291                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12292                 dev_priv->display.off = i9xx_crtc_off;
12293                 dev_priv->display.update_primary_plane =
12294                         i9xx_update_primary_plane;
12295         } else {
12296                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12297                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12298                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12299                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12300                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12301                 dev_priv->display.off = i9xx_crtc_off;
12302                 dev_priv->display.update_primary_plane =
12303                         i9xx_update_primary_plane;
12304         }
12305
12306         /* Returns the core display clock speed */
12307         if (IS_VALLEYVIEW(dev))
12308                 dev_priv->display.get_display_clock_speed =
12309                         valleyview_get_display_clock_speed;
12310         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12311                 dev_priv->display.get_display_clock_speed =
12312                         i945_get_display_clock_speed;
12313         else if (IS_I915G(dev))
12314                 dev_priv->display.get_display_clock_speed =
12315                         i915_get_display_clock_speed;
12316         else if (IS_I945GM(dev) || IS_845G(dev))
12317                 dev_priv->display.get_display_clock_speed =
12318                         i9xx_misc_get_display_clock_speed;
12319         else if (IS_PINEVIEW(dev))
12320                 dev_priv->display.get_display_clock_speed =
12321                         pnv_get_display_clock_speed;
12322         else if (IS_I915GM(dev))
12323                 dev_priv->display.get_display_clock_speed =
12324                         i915gm_get_display_clock_speed;
12325         else if (IS_I865G(dev))
12326                 dev_priv->display.get_display_clock_speed =
12327                         i865_get_display_clock_speed;
12328         else if (IS_I85X(dev))
12329                 dev_priv->display.get_display_clock_speed =
12330                         i855_get_display_clock_speed;
12331         else /* 852, 830 */
12332                 dev_priv->display.get_display_clock_speed =
12333                         i830_get_display_clock_speed;
12334
12335         if (HAS_PCH_SPLIT(dev)) {
12336                 if (IS_GEN5(dev)) {
12337                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12338                         dev_priv->display.write_eld = ironlake_write_eld;
12339                 } else if (IS_GEN6(dev)) {
12340                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12341                         dev_priv->display.write_eld = ironlake_write_eld;
12342                         dev_priv->display.modeset_global_resources =
12343                                 snb_modeset_global_resources;
12344                 } else if (IS_IVYBRIDGE(dev)) {
12345                         /* FIXME: detect B0+ stepping and use auto training */
12346                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12347                         dev_priv->display.write_eld = ironlake_write_eld;
12348                         dev_priv->display.modeset_global_resources =
12349                                 ivb_modeset_global_resources;
12350                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12351                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12352                         dev_priv->display.write_eld = haswell_write_eld;
12353                         dev_priv->display.modeset_global_resources =
12354                                 haswell_modeset_global_resources;
12355                 }
12356         } else if (IS_G4X(dev)) {
12357                 dev_priv->display.write_eld = g4x_write_eld;
12358         } else if (IS_VALLEYVIEW(dev)) {
12359                 dev_priv->display.modeset_global_resources =
12360                         valleyview_modeset_global_resources;
12361                 dev_priv->display.write_eld = ironlake_write_eld;
12362         }
12363
12364         /* Default just returns -ENODEV to indicate unsupported */
12365         dev_priv->display.queue_flip = intel_default_queue_flip;
12366
12367         switch (INTEL_INFO(dev)->gen) {
12368         case 2:
12369                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12370                 break;
12371
12372         case 3:
12373                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12374                 break;
12375
12376         case 4:
12377         case 5:
12378                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12379                 break;
12380
12381         case 6:
12382                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12383                 break;
12384         case 7:
12385         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12386                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12387                 break;
12388         }
12389
12390         intel_panel_init_backlight_funcs(dev);
12391 }
12392
12393 /*
12394  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12395  * resume, or other times.  This quirk makes sure that's the case for
12396  * affected systems.
12397  */
12398 static void quirk_pipea_force(struct drm_device *dev)
12399 {
12400         struct drm_i915_private *dev_priv = dev->dev_private;
12401
12402         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12403         DRM_INFO("applying pipe a force quirk\n");
12404 }
12405
12406 /*
12407  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12408  */
12409 static void quirk_ssc_force_disable(struct drm_device *dev)
12410 {
12411         struct drm_i915_private *dev_priv = dev->dev_private;
12412         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12413         DRM_INFO("applying lvds SSC disable quirk\n");
12414 }
12415
12416 /*
12417  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12418  * brightness value
12419  */
12420 static void quirk_invert_brightness(struct drm_device *dev)
12421 {
12422         struct drm_i915_private *dev_priv = dev->dev_private;
12423         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12424         DRM_INFO("applying inverted panel brightness quirk\n");
12425 }
12426
12427 /* Some VBT's incorrectly indicate no backlight is present */
12428 static void quirk_backlight_present(struct drm_device *dev)
12429 {
12430         struct drm_i915_private *dev_priv = dev->dev_private;
12431         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12432         DRM_INFO("applying backlight present quirk\n");
12433 }
12434
12435 struct intel_quirk {
12436         int device;
12437         int subsystem_vendor;
12438         int subsystem_device;
12439         void (*hook)(struct drm_device *dev);
12440 };
12441
12442 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12443 struct intel_dmi_quirk {
12444         void (*hook)(struct drm_device *dev);
12445         const struct dmi_system_id (*dmi_id_list)[];
12446 };
12447
12448 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12449 {
12450         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12451         return 1;
12452 }
12453
12454 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12455         {
12456                 .dmi_id_list = &(const struct dmi_system_id[]) {
12457                         {
12458                                 .callback = intel_dmi_reverse_brightness,
12459                                 .ident = "NCR Corporation",
12460                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12461                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12462                                 },
12463                         },
12464                         { }  /* terminating entry */
12465                 },
12466                 .hook = quirk_invert_brightness,
12467         },
12468 };
12469
12470 static struct intel_quirk intel_quirks[] = {
12471         /* HP Mini needs pipe A force quirk (LP: #322104) */
12472         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12473
12474         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12475         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12476
12477         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12478         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12479
12480         /* Lenovo U160 cannot use SSC on LVDS */
12481         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12482
12483         /* Sony Vaio Y cannot use SSC on LVDS */
12484         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12485
12486         /* Acer Aspire 5734Z must invert backlight brightness */
12487         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12488
12489         /* Acer/eMachines G725 */
12490         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12491
12492         /* Acer/eMachines e725 */
12493         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12494
12495         /* Acer/Packard Bell NCL20 */
12496         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12497
12498         /* Acer Aspire 4736Z */
12499         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12500
12501         /* Acer Aspire 5336 */
12502         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12503
12504         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12505         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12506
12507         /* Acer C720 Chromebook (Core i3 4005U) */
12508         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12509
12510         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12511         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12512
12513         /* HP Chromebook 14 (Celeron 2955U) */
12514         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12515 };
12516
12517 static void intel_init_quirks(struct drm_device *dev)
12518 {
12519         struct pci_dev *d = dev->pdev;
12520         int i;
12521
12522         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12523                 struct intel_quirk *q = &intel_quirks[i];
12524
12525                 if (d->device == q->device &&
12526                     (d->subsystem_vendor == q->subsystem_vendor ||
12527                      q->subsystem_vendor == PCI_ANY_ID) &&
12528                     (d->subsystem_device == q->subsystem_device ||
12529                      q->subsystem_device == PCI_ANY_ID))
12530                         q->hook(dev);
12531         }
12532         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12533                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12534                         intel_dmi_quirks[i].hook(dev);
12535         }
12536 }
12537
12538 /* Disable the VGA plane that we never use */
12539 static void i915_disable_vga(struct drm_device *dev)
12540 {
12541         struct drm_i915_private *dev_priv = dev->dev_private;
12542         u8 sr1;
12543         u32 vga_reg = i915_vgacntrl_reg(dev);
12544
12545         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12546         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12547         outb(SR01, VGA_SR_INDEX);
12548         sr1 = inb(VGA_SR_DATA);
12549         outb(sr1 | 1<<5, VGA_SR_DATA);
12550         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12551         udelay(300);
12552
12553         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12554         POSTING_READ(vga_reg);
12555 }
12556
12557 void intel_modeset_init_hw(struct drm_device *dev)
12558 {
12559         intel_prepare_ddi(dev);
12560
12561         if (IS_VALLEYVIEW(dev))
12562                 vlv_update_cdclk(dev);
12563
12564         intel_init_clock_gating(dev);
12565
12566         intel_reset_dpio(dev);
12567
12568         intel_enable_gt_powersave(dev);
12569 }
12570
12571 void intel_modeset_suspend_hw(struct drm_device *dev)
12572 {
12573         intel_suspend_hw(dev);
12574 }
12575
12576 void intel_modeset_init(struct drm_device *dev)
12577 {
12578         struct drm_i915_private *dev_priv = dev->dev_private;
12579         int sprite, ret;
12580         enum pipe pipe;
12581         struct intel_crtc *crtc;
12582
12583         drm_mode_config_init(dev);
12584
12585         dev->mode_config.min_width = 0;
12586         dev->mode_config.min_height = 0;
12587
12588         dev->mode_config.preferred_depth = 24;
12589         dev->mode_config.prefer_shadow = 1;
12590
12591         dev->mode_config.funcs = &intel_mode_funcs;
12592
12593         intel_init_quirks(dev);
12594
12595         intel_init_pm(dev);
12596
12597         if (INTEL_INFO(dev)->num_pipes == 0)
12598                 return;
12599
12600         intel_init_display(dev);
12601
12602         if (IS_GEN2(dev)) {
12603                 dev->mode_config.max_width = 2048;
12604                 dev->mode_config.max_height = 2048;
12605         } else if (IS_GEN3(dev)) {
12606                 dev->mode_config.max_width = 4096;
12607                 dev->mode_config.max_height = 4096;
12608         } else {
12609                 dev->mode_config.max_width = 8192;
12610                 dev->mode_config.max_height = 8192;
12611         }
12612
12613         if (IS_GEN2(dev)) {
12614                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12615                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12616         } else {
12617                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12618                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12619         }
12620
12621         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12622
12623         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12624                       INTEL_INFO(dev)->num_pipes,
12625                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12626
12627         for_each_pipe(pipe) {
12628                 intel_crtc_init(dev, pipe);
12629                 for_each_sprite(pipe, sprite) {
12630                         ret = intel_plane_init(dev, pipe, sprite);
12631                         if (ret)
12632                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12633                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12634                 }
12635         }
12636
12637         intel_init_dpio(dev);
12638         intel_reset_dpio(dev);
12639
12640         intel_shared_dpll_init(dev);
12641
12642         /* Just disable it once at startup */
12643         i915_disable_vga(dev);
12644         intel_setup_outputs(dev);
12645
12646         /* Just in case the BIOS is doing something questionable. */
12647         intel_disable_fbc(dev);
12648
12649         drm_modeset_lock_all(dev);
12650         intel_modeset_setup_hw_state(dev, false);
12651         drm_modeset_unlock_all(dev);
12652
12653         for_each_intel_crtc(dev, crtc) {
12654                 if (!crtc->active)
12655                         continue;
12656
12657                 /*
12658                  * Note that reserving the BIOS fb up front prevents us
12659                  * from stuffing other stolen allocations like the ring
12660                  * on top.  This prevents some ugliness at boot time, and
12661                  * can even allow for smooth boot transitions if the BIOS
12662                  * fb is large enough for the active pipe configuration.
12663                  */
12664                 if (dev_priv->display.get_plane_config) {
12665                         dev_priv->display.get_plane_config(crtc,
12666                                                            &crtc->plane_config);
12667                         /*
12668                          * If the fb is shared between multiple heads, we'll
12669                          * just get the first one.
12670                          */
12671                         intel_find_plane_obj(crtc, &crtc->plane_config);
12672                 }
12673         }
12674 }
12675
12676 static void intel_enable_pipe_a(struct drm_device *dev)
12677 {
12678         struct intel_connector *connector;
12679         struct drm_connector *crt = NULL;
12680         struct intel_load_detect_pipe load_detect_temp;
12681         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12682
12683         /* We can't just switch on the pipe A, we need to set things up with a
12684          * proper mode and output configuration. As a gross hack, enable pipe A
12685          * by enabling the load detect pipe once. */
12686         list_for_each_entry(connector,
12687                             &dev->mode_config.connector_list,
12688                             base.head) {
12689                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12690                         crt = &connector->base;
12691                         break;
12692                 }
12693         }
12694
12695         if (!crt)
12696                 return;
12697
12698         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12699                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12700 }
12701
12702 static bool
12703 intel_check_plane_mapping(struct intel_crtc *crtc)
12704 {
12705         struct drm_device *dev = crtc->base.dev;
12706         struct drm_i915_private *dev_priv = dev->dev_private;
12707         u32 reg, val;
12708
12709         if (INTEL_INFO(dev)->num_pipes == 1)
12710                 return true;
12711
12712         reg = DSPCNTR(!crtc->plane);
12713         val = I915_READ(reg);
12714
12715         if ((val & DISPLAY_PLANE_ENABLE) &&
12716             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12717                 return false;
12718
12719         return true;
12720 }
12721
12722 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12723 {
12724         struct drm_device *dev = crtc->base.dev;
12725         struct drm_i915_private *dev_priv = dev->dev_private;
12726         u32 reg;
12727
12728         /* Clear any frame start delays used for debugging left by the BIOS */
12729         reg = PIPECONF(crtc->config.cpu_transcoder);
12730         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12731
12732         /* restore vblank interrupts to correct state */
12733         if (crtc->active)
12734                 drm_vblank_on(dev, crtc->pipe);
12735         else
12736                 drm_vblank_off(dev, crtc->pipe);
12737
12738         /* We need to sanitize the plane -> pipe mapping first because this will
12739          * disable the crtc (and hence change the state) if it is wrong. Note
12740          * that gen4+ has a fixed plane -> pipe mapping.  */
12741         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12742                 struct intel_connector *connector;
12743                 bool plane;
12744
12745                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12746                               crtc->base.base.id);
12747
12748                 /* Pipe has the wrong plane attached and the plane is active.
12749                  * Temporarily change the plane mapping and disable everything
12750                  * ...  */
12751                 plane = crtc->plane;
12752                 crtc->plane = !plane;
12753                 crtc->primary_enabled = true;
12754                 dev_priv->display.crtc_disable(&crtc->base);
12755                 crtc->plane = plane;
12756
12757                 /* ... and break all links. */
12758                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12759                                     base.head) {
12760                         if (connector->encoder->base.crtc != &crtc->base)
12761                                 continue;
12762
12763                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12764                         connector->base.encoder = NULL;
12765                 }
12766                 /* multiple connectors may have the same encoder:
12767                  *  handle them and break crtc link separately */
12768                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12769                                     base.head)
12770                         if (connector->encoder->base.crtc == &crtc->base) {
12771                                 connector->encoder->base.crtc = NULL;
12772                                 connector->encoder->connectors_active = false;
12773                         }
12774
12775                 WARN_ON(crtc->active);
12776                 crtc->base.enabled = false;
12777         }
12778
12779         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12780             crtc->pipe == PIPE_A && !crtc->active) {
12781                 /* BIOS forgot to enable pipe A, this mostly happens after
12782                  * resume. Force-enable the pipe to fix this, the update_dpms
12783                  * call below we restore the pipe to the right state, but leave
12784                  * the required bits on. */
12785                 intel_enable_pipe_a(dev);
12786         }
12787
12788         /* Adjust the state of the output pipe according to whether we
12789          * have active connectors/encoders. */
12790         intel_crtc_update_dpms(&crtc->base);
12791
12792         if (crtc->active != crtc->base.enabled) {
12793                 struct intel_encoder *encoder;
12794
12795                 /* This can happen either due to bugs in the get_hw_state
12796                  * functions or because the pipe is force-enabled due to the
12797                  * pipe A quirk. */
12798                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12799                               crtc->base.base.id,
12800                               crtc->base.enabled ? "enabled" : "disabled",
12801                               crtc->active ? "enabled" : "disabled");
12802
12803                 crtc->base.enabled = crtc->active;
12804
12805                 /* Because we only establish the connector -> encoder ->
12806                  * crtc links if something is active, this means the
12807                  * crtc is now deactivated. Break the links. connector
12808                  * -> encoder links are only establish when things are
12809                  *  actually up, hence no need to break them. */
12810                 WARN_ON(crtc->active);
12811
12812                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12813                         WARN_ON(encoder->connectors_active);
12814                         encoder->base.crtc = NULL;
12815                 }
12816         }
12817
12818         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12819                 /*
12820                  * We start out with underrun reporting disabled to avoid races.
12821                  * For correct bookkeeping mark this on active crtcs.
12822                  *
12823                  * Also on gmch platforms we dont have any hardware bits to
12824                  * disable the underrun reporting. Which means we need to start
12825                  * out with underrun reporting disabled also on inactive pipes,
12826                  * since otherwise we'll complain about the garbage we read when
12827                  * e.g. coming up after runtime pm.
12828                  *
12829                  * No protection against concurrent access is required - at
12830                  * worst a fifo underrun happens which also sets this to false.
12831                  */
12832                 crtc->cpu_fifo_underrun_disabled = true;
12833                 crtc->pch_fifo_underrun_disabled = true;
12834
12835                 update_scanline_offset(crtc);
12836         }
12837 }
12838
12839 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12840 {
12841         struct intel_connector *connector;
12842         struct drm_device *dev = encoder->base.dev;
12843
12844         /* We need to check both for a crtc link (meaning that the
12845          * encoder is active and trying to read from a pipe) and the
12846          * pipe itself being active. */
12847         bool has_active_crtc = encoder->base.crtc &&
12848                 to_intel_crtc(encoder->base.crtc)->active;
12849
12850         if (encoder->connectors_active && !has_active_crtc) {
12851                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12852                               encoder->base.base.id,
12853                               encoder->base.name);
12854
12855                 /* Connector is active, but has no active pipe. This is
12856                  * fallout from our resume register restoring. Disable
12857                  * the encoder manually again. */
12858                 if (encoder->base.crtc) {
12859                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12860                                       encoder->base.base.id,
12861                                       encoder->base.name);
12862                         encoder->disable(encoder);
12863                         if (encoder->post_disable)
12864                                 encoder->post_disable(encoder);
12865                 }
12866                 encoder->base.crtc = NULL;
12867                 encoder->connectors_active = false;
12868
12869                 /* Inconsistent output/port/pipe state happens presumably due to
12870                  * a bug in one of the get_hw_state functions. Or someplace else
12871                  * in our code, like the register restore mess on resume. Clamp
12872                  * things to off as a safer default. */
12873                 list_for_each_entry(connector,
12874                                     &dev->mode_config.connector_list,
12875                                     base.head) {
12876                         if (connector->encoder != encoder)
12877                                 continue;
12878                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12879                         connector->base.encoder = NULL;
12880                 }
12881         }
12882         /* Enabled encoders without active connectors will be fixed in
12883          * the crtc fixup. */
12884 }
12885
12886 void i915_redisable_vga_power_on(struct drm_device *dev)
12887 {
12888         struct drm_i915_private *dev_priv = dev->dev_private;
12889         u32 vga_reg = i915_vgacntrl_reg(dev);
12890
12891         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12892                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12893                 i915_disable_vga(dev);
12894         }
12895 }
12896
12897 void i915_redisable_vga(struct drm_device *dev)
12898 {
12899         struct drm_i915_private *dev_priv = dev->dev_private;
12900
12901         /* This function can be called both from intel_modeset_setup_hw_state or
12902          * at a very early point in our resume sequence, where the power well
12903          * structures are not yet restored. Since this function is at a very
12904          * paranoid "someone might have enabled VGA while we were not looking"
12905          * level, just check if the power well is enabled instead of trying to
12906          * follow the "don't touch the power well if we don't need it" policy
12907          * the rest of the driver uses. */
12908         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12909                 return;
12910
12911         i915_redisable_vga_power_on(dev);
12912 }
12913
12914 static bool primary_get_hw_state(struct intel_crtc *crtc)
12915 {
12916         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12917
12918         if (!crtc->active)
12919                 return false;
12920
12921         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12922 }
12923
12924 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12925 {
12926         struct drm_i915_private *dev_priv = dev->dev_private;
12927         enum pipe pipe;
12928         struct intel_crtc *crtc;
12929         struct intel_encoder *encoder;
12930         struct intel_connector *connector;
12931         int i;
12932
12933         for_each_intel_crtc(dev, crtc) {
12934                 memset(&crtc->config, 0, sizeof(crtc->config));
12935
12936                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12937
12938                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12939                                                                  &crtc->config);
12940
12941                 crtc->base.enabled = crtc->active;
12942                 crtc->primary_enabled = primary_get_hw_state(crtc);
12943
12944                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12945                               crtc->base.base.id,
12946                               crtc->active ? "enabled" : "disabled");
12947         }
12948
12949         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12950                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12951
12952                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12953                 pll->active = 0;
12954                 for_each_intel_crtc(dev, crtc) {
12955                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12956                                 pll->active++;
12957                 }
12958                 pll->refcount = pll->active;
12959
12960                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12961                               pll->name, pll->refcount, pll->on);
12962
12963                 if (pll->refcount)
12964                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
12965         }
12966
12967         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12968                             base.head) {
12969                 pipe = 0;
12970
12971                 if (encoder->get_hw_state(encoder, &pipe)) {
12972                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12973                         encoder->base.crtc = &crtc->base;
12974                         encoder->get_config(encoder, &crtc->config);
12975                 } else {
12976                         encoder->base.crtc = NULL;
12977                 }
12978
12979                 encoder->connectors_active = false;
12980                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12981                               encoder->base.base.id,
12982                               encoder->base.name,
12983                               encoder->base.crtc ? "enabled" : "disabled",
12984                               pipe_name(pipe));
12985         }
12986
12987         list_for_each_entry(connector, &dev->mode_config.connector_list,
12988                             base.head) {
12989                 if (connector->get_hw_state(connector)) {
12990                         connector->base.dpms = DRM_MODE_DPMS_ON;
12991                         connector->encoder->connectors_active = true;
12992                         connector->base.encoder = &connector->encoder->base;
12993                 } else {
12994                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12995                         connector->base.encoder = NULL;
12996                 }
12997                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12998                               connector->base.base.id,
12999                               connector->base.name,
13000                               connector->base.encoder ? "enabled" : "disabled");
13001         }
13002 }
13003
13004 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13005  * and i915 state tracking structures. */
13006 void intel_modeset_setup_hw_state(struct drm_device *dev,
13007                                   bool force_restore)
13008 {
13009         struct drm_i915_private *dev_priv = dev->dev_private;
13010         enum pipe pipe;
13011         struct intel_crtc *crtc;
13012         struct intel_encoder *encoder;
13013         int i;
13014
13015         intel_modeset_readout_hw_state(dev);
13016
13017         /*
13018          * Now that we have the config, copy it to each CRTC struct
13019          * Note that this could go away if we move to using crtc_config
13020          * checking everywhere.
13021          */
13022         for_each_intel_crtc(dev, crtc) {
13023                 if (crtc->active && i915.fastboot) {
13024                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13025                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13026                                       crtc->base.base.id);
13027                         drm_mode_debug_printmodeline(&crtc->base.mode);
13028                 }
13029         }
13030
13031         /* HW state is read out, now we need to sanitize this mess. */
13032         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13033                             base.head) {
13034                 intel_sanitize_encoder(encoder);
13035         }
13036
13037         for_each_pipe(pipe) {
13038                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13039                 intel_sanitize_crtc(crtc);
13040                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13041         }
13042
13043         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13044                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13045
13046                 if (!pll->on || pll->active)
13047                         continue;
13048
13049                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13050
13051                 pll->disable(dev_priv, pll);
13052                 pll->on = false;
13053         }
13054
13055         if (HAS_PCH_SPLIT(dev))
13056                 ilk_wm_get_hw_state(dev);
13057
13058         if (force_restore) {
13059                 i915_redisable_vga(dev);
13060
13061                 /*
13062                  * We need to use raw interfaces for restoring state to avoid
13063                  * checking (bogus) intermediate states.
13064                  */
13065                 for_each_pipe(pipe) {
13066                         struct drm_crtc *crtc =
13067                                 dev_priv->pipe_to_crtc_mapping[pipe];
13068
13069                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13070                                          crtc->primary->fb);
13071                 }
13072         } else {
13073                 intel_modeset_update_staged_output_state(dev);
13074         }
13075
13076         intel_modeset_check_state(dev);
13077 }
13078
13079 void intel_modeset_gem_init(struct drm_device *dev)
13080 {
13081         struct drm_crtc *c;
13082         struct drm_i915_gem_object *obj;
13083
13084         mutex_lock(&dev->struct_mutex);
13085         intel_init_gt_powersave(dev);
13086         mutex_unlock(&dev->struct_mutex);
13087
13088         intel_modeset_init_hw(dev);
13089
13090         intel_setup_overlay(dev);
13091
13092         /*
13093          * Make sure any fbs we allocated at startup are properly
13094          * pinned & fenced.  When we do the allocation it's too early
13095          * for this.
13096          */
13097         mutex_lock(&dev->struct_mutex);
13098         for_each_crtc(dev, c) {
13099                 obj = intel_fb_obj(c->primary->fb);
13100                 if (obj == NULL)
13101                         continue;
13102
13103                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13104                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13105                                   to_intel_crtc(c)->pipe);
13106                         drm_framebuffer_unreference(c->primary->fb);
13107                         c->primary->fb = NULL;
13108                 }
13109         }
13110         mutex_unlock(&dev->struct_mutex);
13111 }
13112
13113 void intel_connector_unregister(struct intel_connector *intel_connector)
13114 {
13115         struct drm_connector *connector = &intel_connector->base;
13116
13117         intel_panel_destroy_backlight(connector);
13118         drm_connector_unregister(connector);
13119 }
13120
13121 void intel_modeset_cleanup(struct drm_device *dev)
13122 {
13123         struct drm_i915_private *dev_priv = dev->dev_private;
13124         struct drm_connector *connector;
13125
13126         /*
13127          * Interrupts and polling as the first thing to avoid creating havoc.
13128          * Too much stuff here (turning of rps, connectors, ...) would
13129          * experience fancy races otherwise.
13130          */
13131         drm_irq_uninstall(dev);
13132         intel_hpd_cancel_work(dev_priv);
13133         dev_priv->pm._irqs_disabled = true;
13134
13135         /*
13136          * Due to the hpd irq storm handling the hotplug work can re-arm the
13137          * poll handlers. Hence disable polling after hpd handling is shut down.
13138          */
13139         drm_kms_helper_poll_fini(dev);
13140
13141         mutex_lock(&dev->struct_mutex);
13142
13143         intel_unregister_dsm_handler();
13144
13145         intel_disable_fbc(dev);
13146
13147         intel_disable_gt_powersave(dev);
13148
13149         ironlake_teardown_rc6(dev);
13150
13151         mutex_unlock(&dev->struct_mutex);
13152
13153         /* flush any delayed tasks or pending work */
13154         flush_scheduled_work();
13155
13156         /* destroy the backlight and sysfs files before encoders/connectors */
13157         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13158                 struct intel_connector *intel_connector;
13159
13160                 intel_connector = to_intel_connector(connector);
13161                 intel_connector->unregister(intel_connector);
13162         }
13163
13164         drm_mode_config_cleanup(dev);
13165
13166         intel_cleanup_overlay(dev);
13167
13168         mutex_lock(&dev->struct_mutex);
13169         intel_cleanup_gt_powersave(dev);
13170         mutex_unlock(&dev->struct_mutex);
13171 }
13172
13173 /*
13174  * Return which encoder is currently attached for connector.
13175  */
13176 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13177 {
13178         return &intel_attached_encoder(connector)->base;
13179 }
13180
13181 void intel_connector_attach_encoder(struct intel_connector *connector,
13182                                     struct intel_encoder *encoder)
13183 {
13184         connector->encoder = encoder;
13185         drm_mode_connector_attach_encoder(&connector->base,
13186                                           &encoder->base);
13187 }
13188
13189 /*
13190  * set vga decode state - true == enable VGA decode
13191  */
13192 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13193 {
13194         struct drm_i915_private *dev_priv = dev->dev_private;
13195         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13196         u16 gmch_ctrl;
13197
13198         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13199                 DRM_ERROR("failed to read control word\n");
13200                 return -EIO;
13201         }
13202
13203         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13204                 return 0;
13205
13206         if (state)
13207                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13208         else
13209                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13210
13211         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13212                 DRM_ERROR("failed to write control word\n");
13213                 return -EIO;
13214         }
13215
13216         return 0;
13217 }
13218
13219 struct intel_display_error_state {
13220
13221         u32 power_well_driver;
13222
13223         int num_transcoders;
13224
13225         struct intel_cursor_error_state {
13226                 u32 control;
13227                 u32 position;
13228                 u32 base;
13229                 u32 size;
13230         } cursor[I915_MAX_PIPES];
13231
13232         struct intel_pipe_error_state {
13233                 bool power_domain_on;
13234                 u32 source;
13235                 u32 stat;
13236         } pipe[I915_MAX_PIPES];
13237
13238         struct intel_plane_error_state {
13239                 u32 control;
13240                 u32 stride;
13241                 u32 size;
13242                 u32 pos;
13243                 u32 addr;
13244                 u32 surface;
13245                 u32 tile_offset;
13246         } plane[I915_MAX_PIPES];
13247
13248         struct intel_transcoder_error_state {
13249                 bool power_domain_on;
13250                 enum transcoder cpu_transcoder;
13251
13252                 u32 conf;
13253
13254                 u32 htotal;
13255                 u32 hblank;
13256                 u32 hsync;
13257                 u32 vtotal;
13258                 u32 vblank;
13259                 u32 vsync;
13260         } transcoder[4];
13261 };
13262
13263 struct intel_display_error_state *
13264 intel_display_capture_error_state(struct drm_device *dev)
13265 {
13266         struct drm_i915_private *dev_priv = dev->dev_private;
13267         struct intel_display_error_state *error;
13268         int transcoders[] = {
13269                 TRANSCODER_A,
13270                 TRANSCODER_B,
13271                 TRANSCODER_C,
13272                 TRANSCODER_EDP,
13273         };
13274         int i;
13275
13276         if (INTEL_INFO(dev)->num_pipes == 0)
13277                 return NULL;
13278
13279         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13280         if (error == NULL)
13281                 return NULL;
13282
13283         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13284                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13285
13286         for_each_pipe(i) {
13287                 error->pipe[i].power_domain_on =
13288                         intel_display_power_enabled_unlocked(dev_priv,
13289                                                            POWER_DOMAIN_PIPE(i));
13290                 if (!error->pipe[i].power_domain_on)
13291                         continue;
13292
13293                 error->cursor[i].control = I915_READ(CURCNTR(i));
13294                 error->cursor[i].position = I915_READ(CURPOS(i));
13295                 error->cursor[i].base = I915_READ(CURBASE(i));
13296
13297                 error->plane[i].control = I915_READ(DSPCNTR(i));
13298                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13299                 if (INTEL_INFO(dev)->gen <= 3) {
13300                         error->plane[i].size = I915_READ(DSPSIZE(i));
13301                         error->plane[i].pos = I915_READ(DSPPOS(i));
13302                 }
13303                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13304                         error->plane[i].addr = I915_READ(DSPADDR(i));
13305                 if (INTEL_INFO(dev)->gen >= 4) {
13306                         error->plane[i].surface = I915_READ(DSPSURF(i));
13307                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13308                 }
13309
13310                 error->pipe[i].source = I915_READ(PIPESRC(i));
13311
13312                 if (HAS_GMCH_DISPLAY(dev))
13313                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13314         }
13315
13316         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13317         if (HAS_DDI(dev_priv->dev))
13318                 error->num_transcoders++; /* Account for eDP. */
13319
13320         for (i = 0; i < error->num_transcoders; i++) {
13321                 enum transcoder cpu_transcoder = transcoders[i];
13322
13323                 error->transcoder[i].power_domain_on =
13324                         intel_display_power_enabled_unlocked(dev_priv,
13325                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13326                 if (!error->transcoder[i].power_domain_on)
13327                         continue;
13328
13329                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13330
13331                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13332                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13333                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13334                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13335                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13336                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13337                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13338         }
13339
13340         return error;
13341 }
13342
13343 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13344
13345 void
13346 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13347                                 struct drm_device *dev,
13348                                 struct intel_display_error_state *error)
13349 {
13350         int i;
13351
13352         if (!error)
13353                 return;
13354
13355         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13356         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13357                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13358                            error->power_well_driver);
13359         for_each_pipe(i) {
13360                 err_printf(m, "Pipe [%d]:\n", i);
13361                 err_printf(m, "  Power: %s\n",
13362                            error->pipe[i].power_domain_on ? "on" : "off");
13363                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13364                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13365
13366                 err_printf(m, "Plane [%d]:\n", i);
13367                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13368                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13369                 if (INTEL_INFO(dev)->gen <= 3) {
13370                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13371                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13372                 }
13373                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13374                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13375                 if (INTEL_INFO(dev)->gen >= 4) {
13376                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13377                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13378                 }
13379
13380                 err_printf(m, "Cursor [%d]:\n", i);
13381                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13382                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13383                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13384         }
13385
13386         for (i = 0; i < error->num_transcoders; i++) {
13387                 err_printf(m, "CPU transcoder: %c\n",
13388                            transcoder_name(error->transcoder[i].cpu_transcoder));
13389                 err_printf(m, "  Power: %s\n",
13390                            error->transcoder[i].power_domain_on ? "on" : "off");
13391                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13392                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13393                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13394                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13395                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13396                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13397                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13398         }
13399 }