drm/i915: Make encoder->mode_set callbacks optional
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55                                   struct intel_framebuffer *ifb,
56                                   struct drm_mode_fb_cmd2 *mode_cmd,
57                                   struct drm_i915_gem_object *obj);
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71         intel_p2_t          p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77         struct drm_i915_private *dev_priv = dev->dev_private;
78
79         WARN_ON(!HAS_PCH_SPLIT(dev));
80
81         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87         if (IS_GEN5(dev)) {
88                 struct drm_i915_private *dev_priv = dev->dev_private;
89                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90         } else
91                 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95         .dot = { .min = 25000, .max = 350000 },
96         .vco = { .min = 908000, .max = 1512000 },
97         .n = { .min = 2, .max = 16 },
98         .m = { .min = 96, .max = 140 },
99         .m1 = { .min = 18, .max = 26 },
100         .m2 = { .min = 6, .max = 16 },
101         .p = { .min = 4, .max = 128 },
102         .p1 = { .min = 2, .max = 33 },
103         .p2 = { .dot_limit = 165000,
104                 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 908000, .max = 1512000 },
110         .n = { .min = 2, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 908000, .max = 1512000 },
123         .n = { .min = 2, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134         .dot = { .min = 20000, .max = 400000 },
135         .vco = { .min = 1400000, .max = 2800000 },
136         .n = { .min = 1, .max = 6 },
137         .m = { .min = 70, .max = 120 },
138         .m1 = { .min = 8, .max = 18 },
139         .m2 = { .min = 3, .max = 7 },
140         .p = { .min = 5, .max = 80 },
141         .p1 = { .min = 1, .max = 8 },
142         .p2 = { .dot_limit = 200000,
143                 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 7, .max = 98 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 112000,
156                 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161         .dot = { .min = 25000, .max = 270000 },
162         .vco = { .min = 1750000, .max = 3500000},
163         .n = { .min = 1, .max = 4 },
164         .m = { .min = 104, .max = 138 },
165         .m1 = { .min = 17, .max = 23 },
166         .m2 = { .min = 5, .max = 11 },
167         .p = { .min = 10, .max = 30 },
168         .p1 = { .min = 1, .max = 3},
169         .p2 = { .dot_limit = 270000,
170                 .p2_slow = 10,
171                 .p2_fast = 10
172         },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176         .dot = { .min = 22000, .max = 400000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 16, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 5, .max = 80 },
183         .p1 = { .min = 1, .max = 8},
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189         .dot = { .min = 20000, .max = 115000 },
190         .vco = { .min = 1750000, .max = 3500000 },
191         .n = { .min = 1, .max = 3 },
192         .m = { .min = 104, .max = 138 },
193         .m1 = { .min = 17, .max = 23 },
194         .m2 = { .min = 5, .max = 11 },
195         .p = { .min = 28, .max = 112 },
196         .p1 = { .min = 2, .max = 8 },
197         .p2 = { .dot_limit = 0,
198                 .p2_slow = 14, .p2_fast = 14
199         },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203         .dot = { .min = 80000, .max = 224000 },
204         .vco = { .min = 1750000, .max = 3500000 },
205         .n = { .min = 1, .max = 3 },
206         .m = { .min = 104, .max = 138 },
207         .m1 = { .min = 17, .max = 23 },
208         .m2 = { .min = 5, .max = 11 },
209         .p = { .min = 14, .max = 42 },
210         .p1 = { .min = 2, .max = 6 },
211         .p2 = { .dot_limit = 0,
212                 .p2_slow = 7, .p2_fast = 7
213         },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217         .dot = { .min = 20000, .max = 400000},
218         .vco = { .min = 1700000, .max = 3500000 },
219         /* Pineview's Ncounter is a ring counter */
220         .n = { .min = 3, .max = 6 },
221         .m = { .min = 2, .max = 256 },
222         /* Pineview only has one combined m divider, which we treat as m2. */
223         .m1 = { .min = 0, .max = 0 },
224         .m2 = { .min = 0, .max = 254 },
225         .p = { .min = 5, .max = 80 },
226         .p1 = { .min = 1, .max = 8 },
227         .p2 = { .dot_limit = 200000,
228                 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232         .dot = { .min = 20000, .max = 400000 },
233         .vco = { .min = 1700000, .max = 3500000 },
234         .n = { .min = 3, .max = 6 },
235         .m = { .min = 2, .max = 256 },
236         .m1 = { .min = 0, .max = 0 },
237         .m2 = { .min = 0, .max = 254 },
238         .p = { .min = 7, .max = 112 },
239         .p1 = { .min = 1, .max = 8 },
240         .p2 = { .dot_limit = 112000,
241                 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245  *
246  * We calculate clock using (register_value + 2) for N/M1/M2, so here
247  * the range value for them is (actual_value - 2).
248  */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 1760000, .max = 3510000 },
252         .n = { .min = 1, .max = 5 },
253         .m = { .min = 79, .max = 127 },
254         .m1 = { .min = 12, .max = 22 },
255         .m2 = { .min = 5, .max = 9 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 225000,
259                 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 1760000, .max = 3510000 },
265         .n = { .min = 1, .max = 3 },
266         .m = { .min = 79, .max = 118 },
267         .m1 = { .min = 12, .max = 22 },
268         .m2 = { .min = 5, .max = 9 },
269         .p = { .min = 28, .max = 112 },
270         .p1 = { .min = 2, .max = 8 },
271         .p2 = { .dot_limit = 225000,
272                 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 3 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 14, .max = 56 },
283         .p1 = { .min = 2, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 2 },
293         .m = { .min = 79, .max = 126 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 126 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 42 },
310         .p1 = { .min = 2, .max = 6 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316          /*
317           * These are the data rate limits (measured in fast clocks)
318           * since those are the strictest limits we have. The fast
319           * clock and actual rate limits are more relaxed, so checking
320           * them would make no difference.
321           */
322         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m1 = { .min = 2, .max = 3 },
326         .m2 = { .min = 11, .max = 156 },
327         .p1 = { .min = 2, .max = 3 },
328         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333         clock->m = clock->m1 * clock->m2;
334         clock->p = clock->p1 * clock->p2;
335         if (WARN_ON(clock->n == 0 || clock->p == 0))
336                 return;
337         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342  * Returns whether any output on the specified pipe is of the specified type
343  */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346         struct drm_device *dev = crtc->dev;
347         struct intel_encoder *encoder;
348
349         for_each_encoder_on_crtc(dev, crtc, encoder)
350                 if (encoder->type == type)
351                         return true;
352
353         return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357                                                 int refclk)
358 {
359         struct drm_device *dev = crtc->dev;
360         const intel_limit_t *limit;
361
362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363                 if (intel_is_dual_link_lvds(dev)) {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_dual_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_dual_lvds;
368                 } else {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_single_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_single_lvds;
373                 }
374         } else
375                 limit = &intel_limits_ironlake_dac;
376
377         return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382         struct drm_device *dev = crtc->dev;
383         const intel_limit_t *limit;
384
385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386                 if (intel_is_dual_link_lvds(dev))
387                         limit = &intel_limits_g4x_dual_channel_lvds;
388                 else
389                         limit = &intel_limits_g4x_single_channel_lvds;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392                 limit = &intel_limits_g4x_hdmi;
393         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394                 limit = &intel_limits_g4x_sdvo;
395         } else /* The option is for other outputs */
396                 limit = &intel_limits_i9xx_sdvo;
397
398         return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403         struct drm_device *dev = crtc->dev;
404         const intel_limit_t *limit;
405
406         if (HAS_PCH_SPLIT(dev))
407                 limit = intel_ironlake_limit(crtc, refclk);
408         else if (IS_G4X(dev)) {
409                 limit = intel_g4x_limit(crtc);
410         } else if (IS_PINEVIEW(dev)) {
411                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412                         limit = &intel_limits_pineview_lvds;
413                 else
414                         limit = &intel_limits_pineview_sdvo;
415         } else if (IS_VALLEYVIEW(dev)) {
416                 limit = &intel_limits_vlv;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         if (WARN_ON(clock->n == 0 || clock->p == 0))
439                 return;
440         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = i9xx_dpll_compute_m(clock);
452         clock->p = clock->p1 * clock->p2;
453         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454                 return;
455         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461  * Returns whether the given set of divisors are valid for a given refclk with
462  * the given connectors.
463  */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466                                const intel_limit_t *limit,
467                                const intel_clock_t *clock)
468 {
469         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
470                 INTELPllInvalid("n out of range\n");
471         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
472                 INTELPllInvalid("p1 out of range\n");
473         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
474                 INTELPllInvalid("m2 out of range\n");
475         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
476                 INTELPllInvalid("m1 out of range\n");
477
478         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479                 if (clock->m1 <= clock->m2)
480                         INTELPllInvalid("m1 <= m2\n");
481
482         if (!IS_VALLEYVIEW(dev)) {
483                 if (clock->p < limit->p.min || limit->p.max < clock->p)
484                         INTELPllInvalid("p out of range\n");
485                 if (clock->m < limit->m.min || limit->m.max < clock->m)
486                         INTELPllInvalid("m out of range\n");
487         }
488
489         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490                 INTELPllInvalid("vco out of range\n");
491         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492          * connector, etc., rather than just a single range.
493          */
494         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495                 INTELPllInvalid("dot out of range\n");
496
497         return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502                     int target, int refclk, intel_clock_t *match_clock,
503                     intel_clock_t *best_clock)
504 {
505         struct drm_device *dev = crtc->dev;
506         intel_clock_t clock;
507         int err = target;
508
509         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510                 /*
511                  * For LVDS just rely on its current settings for dual-channel.
512                  * We haven't figured out how to reliably set up different
513                  * single/dual channel state, if we even can.
514                  */
515                 if (intel_is_dual_link_lvds(dev))
516                         clock.p2 = limit->p2.p2_fast;
517                 else
518                         clock.p2 = limit->p2.p2_slow;
519         } else {
520                 if (target < limit->p2.dot_limit)
521                         clock.p2 = limit->p2.p2_slow;
522                 else
523                         clock.p2 = limit->p2.p2_fast;
524         }
525
526         memset(best_clock, 0, sizeof(*best_clock));
527
528         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529              clock.m1++) {
530                 for (clock.m2 = limit->m2.min;
531                      clock.m2 <= limit->m2.max; clock.m2++) {
532                         if (clock.m2 >= clock.m1)
533                                 break;
534                         for (clock.n = limit->n.min;
535                              clock.n <= limit->n.max; clock.n++) {
536                                 for (clock.p1 = limit->p1.min;
537                                         clock.p1 <= limit->p1.max; clock.p1++) {
538                                         int this_err;
539
540                                         i9xx_clock(refclk, &clock);
541                                         if (!intel_PLL_is_valid(dev, limit,
542                                                                 &clock))
543                                                 continue;
544                                         if (match_clock &&
545                                             clock.p != match_clock->p)
546                                                 continue;
547
548                                         this_err = abs(clock.dot - target);
549                                         if (this_err < err) {
550                                                 *best_clock = clock;
551                                                 err = this_err;
552                                         }
553                                 }
554                         }
555                 }
556         }
557
558         return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563                    int target, int refclk, intel_clock_t *match_clock,
564                    intel_clock_t *best_clock)
565 {
566         struct drm_device *dev = crtc->dev;
567         intel_clock_t clock;
568         int err = target;
569
570         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571                 /*
572                  * For LVDS just rely on its current settings for dual-channel.
573                  * We haven't figured out how to reliably set up different
574                  * single/dual channel state, if we even can.
575                  */
576                 if (intel_is_dual_link_lvds(dev))
577                         clock.p2 = limit->p2.p2_fast;
578                 else
579                         clock.p2 = limit->p2.p2_slow;
580         } else {
581                 if (target < limit->p2.dot_limit)
582                         clock.p2 = limit->p2.p2_slow;
583                 else
584                         clock.p2 = limit->p2.p2_fast;
585         }
586
587         memset(best_clock, 0, sizeof(*best_clock));
588
589         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590              clock.m1++) {
591                 for (clock.m2 = limit->m2.min;
592                      clock.m2 <= limit->m2.max; clock.m2++) {
593                         for (clock.n = limit->n.min;
594                              clock.n <= limit->n.max; clock.n++) {
595                                 for (clock.p1 = limit->p1.min;
596                                         clock.p1 <= limit->p1.max; clock.p1++) {
597                                         int this_err;
598
599                                         pineview_clock(refclk, &clock);
600                                         if (!intel_PLL_is_valid(dev, limit,
601                                                                 &clock))
602                                                 continue;
603                                         if (match_clock &&
604                                             clock.p != match_clock->p)
605                                                 continue;
606
607                                         this_err = abs(clock.dot - target);
608                                         if (this_err < err) {
609                                                 *best_clock = clock;
610                                                 err = this_err;
611                                         }
612                                 }
613                         }
614                 }
615         }
616
617         return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622                    int target, int refclk, intel_clock_t *match_clock,
623                    intel_clock_t *best_clock)
624 {
625         struct drm_device *dev = crtc->dev;
626         intel_clock_t clock;
627         int max_n;
628         bool found;
629         /* approximately equals target * 0.00585 */
630         int err_most = (target >> 8) + (target >> 9);
631         found = false;
632
633         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634                 if (intel_is_dual_link_lvds(dev))
635                         clock.p2 = limit->p2.p2_fast;
636                 else
637                         clock.p2 = limit->p2.p2_slow;
638         } else {
639                 if (target < limit->p2.dot_limit)
640                         clock.p2 = limit->p2.p2_slow;
641                 else
642                         clock.p2 = limit->p2.p2_fast;
643         }
644
645         memset(best_clock, 0, sizeof(*best_clock));
646         max_n = limit->n.max;
647         /* based on hardware requirement, prefer smaller n to precision */
648         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649                 /* based on hardware requirement, prefere larger m1,m2 */
650                 for (clock.m1 = limit->m1.max;
651                      clock.m1 >= limit->m1.min; clock.m1--) {
652                         for (clock.m2 = limit->m2.max;
653                              clock.m2 >= limit->m2.min; clock.m2--) {
654                                 for (clock.p1 = limit->p1.max;
655                                      clock.p1 >= limit->p1.min; clock.p1--) {
656                                         int this_err;
657
658                                         i9xx_clock(refclk, &clock);
659                                         if (!intel_PLL_is_valid(dev, limit,
660                                                                 &clock))
661                                                 continue;
662
663                                         this_err = abs(clock.dot - target);
664                                         if (this_err < err_most) {
665                                                 *best_clock = clock;
666                                                 err_most = this_err;
667                                                 max_n = clock.n;
668                                                 found = true;
669                                         }
670                                 }
671                         }
672                 }
673         }
674         return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679                    int target, int refclk, intel_clock_t *match_clock,
680                    intel_clock_t *best_clock)
681 {
682         struct drm_device *dev = crtc->dev;
683         intel_clock_t clock;
684         unsigned int bestppm = 1000000;
685         /* min update 19.2 MHz */
686         int max_n = min(limit->n.max, refclk / 19200);
687         bool found = false;
688
689         target *= 5; /* fast clock */
690
691         memset(best_clock, 0, sizeof(*best_clock));
692
693         /* based on hardware requirement, prefer smaller n to precision */
694         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698                                 clock.p = clock.p1 * clock.p2;
699                                 /* based on hardware requirement, prefer bigger m1,m2 values */
700                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701                                         unsigned int ppm, diff;
702
703                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704                                                                      refclk * clock.m1);
705
706                                         vlv_clock(refclk, &clock);
707
708                                         if (!intel_PLL_is_valid(dev, limit,
709                                                                 &clock))
710                                                 continue;
711
712                                         diff = abs(clock.dot - target);
713                                         ppm = div_u64(1000000ULL * diff, target);
714
715                                         if (ppm < 100 && clock.p > best_clock->p) {
716                                                 bestppm = 0;
717                                                 *best_clock = clock;
718                                                 found = true;
719                                         }
720
721                                         if (bestppm >= 10 && ppm < bestppm - 10) {
722                                                 bestppm = ppm;
723                                                 *best_clock = clock;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730
731         return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         /* Be paranoid as we can arrive here with only partial
739          * state retrieved from the hardware during setup.
740          *
741          * We can ditch the adjusted_mode.crtc_clock check as soon
742          * as Haswell has gained clock readout/fastboot support.
743          *
744          * We can ditch the crtc->primary->fb check as soon as we can
745          * properly reconstruct framebuffers.
746          */
747         return intel_crtc->active && crtc->primary->fb &&
748                 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752                                              enum pipe pipe)
753 {
754         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757         return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765         frame = I915_READ(frame_reg);
766
767         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768                 WARN(1, "vblank wait timed out\n");
769 }
770
771 /**
772  * intel_wait_for_vblank - wait for vblank on a given pipe
773  * @dev: drm device
774  * @pipe: pipe to wait for
775  *
776  * Wait for vblank to occur on a given pipe.  Needed for various bits of
777  * mode setting code.
778  */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         int pipestat_reg = PIPESTAT(pipe);
783
784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 g4x_wait_for_vblank(dev, pipe);
786                 return;
787         }
788
789         /* Clear existing vblank status. Note this will clear any other
790          * sticky status fields as well.
791          *
792          * This races with i915_driver_irq_handler() with the result
793          * that either function could miss a vblank event.  Here it is not
794          * fatal, as we will either wait upon the next vblank interrupt or
795          * timeout.  Generally speaking intel_wait_for_vblank() is only
796          * called during modeset at which time the GPU should be idle and
797          * should *not* be performing page flips and thus not waiting on
798          * vblanks...
799          * Currently, the result of us stealing a vblank from the irq
800          * handler is that a single frame will be skipped during swapbuffers.
801          */
802         I915_WRITE(pipestat_reg,
803                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805         /* Wait for vblank interrupt bit to set */
806         if (wait_for(I915_READ(pipestat_reg) &
807                      PIPE_VBLANK_INTERRUPT_STATUS,
808                      50))
809                 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 reg = PIPEDSL(pipe);
816         u32 line1, line2;
817         u32 line_mask;
818
819         if (IS_GEN2(dev))
820                 line_mask = DSL_LINEMASK_GEN2;
821         else
822                 line_mask = DSL_LINEMASK_GEN3;
823
824         line1 = I915_READ(reg) & line_mask;
825         mdelay(5);
826         line2 = I915_READ(reg) & line_mask;
827
828         return line1 == line2;
829 }
830
831 /*
832  * intel_wait_for_pipe_off - wait for pipe to turn off
833  * @dev: drm device
834  * @pipe: pipe to wait for
835  *
836  * After disabling a pipe, we can't wait for vblank in the usual way,
837  * spinning on the vblank interrupt status bit, since we won't actually
838  * see an interrupt when the pipe is disabled.
839  *
840  * On Gen4 and above:
841  *   wait for the pipe register state bit to turn off
842  *
843  * Otherwise:
844  *   wait for the display line value to settle (it usually
845  *   ends up stopping at the start of the next frame).
846  *
847  */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852                                                                       pipe);
853
854         if (INTEL_INFO(dev)->gen >= 4) {
855                 int reg = PIPECONF(cpu_transcoder);
856
857                 /* Wait for the Pipe State to go off */
858                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859                              100))
860                         WARN(1, "pipe_off wait timed out\n");
861         } else {
862                 /* Wait for the display line to settle */
863                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864                         WARN(1, "pipe_off wait timed out\n");
865         }
866 }
867
868 /*
869  * ibx_digital_port_connected - is the specified port connected?
870  * @dev_priv: i915 private structure
871  * @port: the port to test
872  *
873  * Returns true if @port is connected, false otherwise.
874  */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876                                 struct intel_digital_port *port)
877 {
878         u32 bit;
879
880         if (HAS_PCH_IBX(dev_priv->dev)) {
881                 switch(port->port) {
882                 case PORT_B:
883                         bit = SDE_PORTB_HOTPLUG;
884                         break;
885                 case PORT_C:
886                         bit = SDE_PORTC_HOTPLUG;
887                         break;
888                 case PORT_D:
889                         bit = SDE_PORTD_HOTPLUG;
890                         break;
891                 default:
892                         return true;
893                 }
894         } else {
895                 switch(port->port) {
896                 case PORT_B:
897                         bit = SDE_PORTB_HOTPLUG_CPT;
898                         break;
899                 case PORT_C:
900                         bit = SDE_PORTC_HOTPLUG_CPT;
901                         break;
902                 case PORT_D:
903                         bit = SDE_PORTD_HOTPLUG_CPT;
904                         break;
905                 default:
906                         return true;
907                 }
908         }
909
910         return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915         return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920                 enum pipe pipe, bool state)
921 {
922         int reg;
923         u32 val;
924         bool cur_state;
925
926         reg = DPLL(pipe);
927         val = I915_READ(reg);
928         cur_state = !!(val & DPLL_VCO_ENABLE);
929         WARN(cur_state != state,
930              "PLL state assertion failure (expected %s, current %s)\n",
931              state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937         u32 val;
938         bool cur_state;
939
940         mutex_lock(&dev_priv->dpio_lock);
941         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942         mutex_unlock(&dev_priv->dpio_lock);
943
944         cur_state = val & DSI_PLL_VCO_EN;
945         WARN(cur_state != state,
946              "DSI PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957         if (crtc->config.shared_dpll < 0)
958                 return NULL;
959
960         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965                         struct intel_shared_dpll *pll,
966                         bool state)
967 {
968         bool cur_state;
969         struct intel_dpll_hw_state hw_state;
970
971         if (HAS_PCH_LPT(dev_priv->dev)) {
972                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973                 return;
974         }
975
976         if (WARN (!pll,
977                   "asserting DPLL %s with no DPLL\n", state_string(state)))
978                 return;
979
980         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981         WARN(cur_state != state,
982              "%s assertion failure (expected %s, current %s)\n",
983              pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987                           enum pipe pipe, bool state)
988 {
989         int reg;
990         u32 val;
991         bool cur_state;
992         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993                                                                       pipe);
994
995         if (HAS_DDI(dev_priv->dev)) {
996                 /* DDI does not have a specific FDI_TX register */
997                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000         } else {
1001                 reg = FDI_TX_CTL(pipe);
1002                 val = I915_READ(reg);
1003                 cur_state = !!(val & FDI_TX_ENABLE);
1004         }
1005         WARN(cur_state != state,
1006              "FDI TX state assertion failure (expected %s, current %s)\n",
1007              state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013                           enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = FDI_RX_CTL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & FDI_RX_ENABLE);
1022         WARN(cur_state != state,
1023              "FDI RX state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030                                       enum pipe pipe)
1031 {
1032         int reg;
1033         u32 val;
1034
1035         /* ILK FDI PLL is always enabled */
1036         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037                 return;
1038
1039         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040         if (HAS_DDI(dev_priv->dev))
1041                 return;
1042
1043         reg = FDI_TX_CTL(pipe);
1044         val = I915_READ(reg);
1045         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = FDI_RX_CTL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058         WARN(cur_state != state,
1059              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064                                   enum pipe pipe)
1065 {
1066         int pp_reg, lvds_reg;
1067         u32 val;
1068         enum pipe panel_pipe = PIPE_A;
1069         bool locked = true;
1070
1071         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072                 pp_reg = PCH_PP_CONTROL;
1073                 lvds_reg = PCH_LVDS;
1074         } else {
1075                 pp_reg = PP_CONTROL;
1076                 lvds_reg = LVDS;
1077         }
1078
1079         val = I915_READ(pp_reg);
1080         if (!(val & PANEL_POWER_ON) ||
1081             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082                 locked = false;
1083
1084         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085                 panel_pipe = PIPE_B;
1086
1087         WARN(panel_pipe == pipe && locked,
1088              "panel assertion failure, pipe %c regs locked\n",
1089              pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         struct drm_device *dev = dev_priv->dev;
1096         bool cur_state;
1097
1098         if (IS_845G(dev) || IS_I865G(dev))
1099                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102         else
1103                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105         WARN(cur_state != state,
1106              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107              pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113                  enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119                                                                       pipe);
1120
1121         /* if we need the pipe A quirk it must be always on */
1122         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123                 state = true;
1124
1125         if (!intel_display_power_enabled(dev_priv,
1126                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127                 cur_state = false;
1128         } else {
1129                 reg = PIPECONF(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & PIPECONF_ENABLE);
1132         }
1133
1134         WARN(cur_state != state,
1135              "pipe %c assertion failure (expected %s, current %s)\n",
1136              pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140                          enum plane plane, bool state)
1141 {
1142         int reg;
1143         u32 val;
1144         bool cur_state;
1145
1146         reg = DSPCNTR(plane);
1147         val = I915_READ(reg);
1148         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149         WARN(cur_state != state,
1150              "plane %c assertion failure (expected %s, current %s)\n",
1151              plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158                                    enum pipe pipe)
1159 {
1160         struct drm_device *dev = dev_priv->dev;
1161         int reg, i;
1162         u32 val;
1163         int cur_pipe;
1164
1165         /* Primary planes are fixed to pipes on gen4+ */
1166         if (INTEL_INFO(dev)->gen >= 4) {
1167                 reg = DSPCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN(val & DISPLAY_PLANE_ENABLE,
1170                      "plane %c assertion failure, should be disabled but not\n",
1171                      plane_name(pipe));
1172                 return;
1173         }
1174
1175         /* Need to check both planes against the pipe */
1176         for_each_pipe(i) {
1177                 reg = DSPCNTR(i);
1178                 val = I915_READ(reg);
1179                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180                         DISPPLANE_SEL_PIPE_SHIFT;
1181                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183                      plane_name(i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188                                     enum pipe pipe)
1189 {
1190         struct drm_device *dev = dev_priv->dev;
1191         int reg, sprite;
1192         u32 val;
1193
1194         if (IS_VALLEYVIEW(dev)) {
1195                 for_each_sprite(pipe, sprite) {
1196                         reg = SPCNTR(pipe, sprite);
1197                         val = I915_READ(reg);
1198                         WARN(val & SP_ENABLE,
1199                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200                              sprite_name(pipe, sprite), pipe_name(pipe));
1201                 }
1202         } else if (INTEL_INFO(dev)->gen >= 7) {
1203                 reg = SPRCTL(pipe);
1204                 val = I915_READ(reg);
1205                 WARN(val & SPRITE_ENABLE,
1206                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207                      plane_name(pipe), pipe_name(pipe));
1208         } else if (INTEL_INFO(dev)->gen >= 5) {
1209                 reg = DVSCNTR(pipe);
1210                 val = I915_READ(reg);
1211                 WARN(val & DVS_ENABLE,
1212                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213                      plane_name(pipe), pipe_name(pipe));
1214         }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219         u32 val;
1220         bool enabled;
1221
1222         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377         if (!IS_VALLEYVIEW(dev))
1378                 return;
1379
1380         /*
1381          * Enable the CRI clock source so we can get at the display and the
1382          * reference clock for VGA hotplug / manual detection.
1383          */
1384         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385                    DPLL_REFA_CLK_ENABLE_VLV |
1386                    DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388         /*
1389          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1391          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392          *   b. The other bits such as sfr settings / modesel may all be set
1393          *      to 0.
1394          *
1395          * This should only be done on init and resume from S3 with both
1396          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397          */
1398         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418         POSTING_READ(reg);
1419         udelay(150);
1420
1421         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425         POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427         /* We do this three times for luck */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434         I915_WRITE(reg, dpll);
1435         POSTING_READ(reg);
1436         udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->base.dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         int reg = DPLL(crtc->pipe);
1444         u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446         assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev) && !IS_I830(dev))
1453                 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455         I915_WRITE(reg, dpll);
1456
1457         /* Wait for the clocks to stabilize. */
1458         POSTING_READ(reg);
1459         udelay(150);
1460
1461         if (INTEL_INFO(dev)->gen >= 4) {
1462                 I915_WRITE(DPLL_MD(crtc->pipe),
1463                            crtc->config.dpll_hw_state.dpll_md);
1464         } else {
1465                 /* The pixel multiplier can only be updated once the
1466                  * DPLL is enabled and the clocks are stable.
1467                  *
1468                  * So write it again.
1469                  */
1470                 I915_WRITE(reg, dpll);
1471         }
1472
1473         /* We do this three times for luck */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, dpll);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486  * i9xx_disable_pll - disable a PLL
1487  * @dev_priv: i915 private structure
1488  * @pipe: pipe PLL to disable
1489  *
1490  * Disable the PLL for @pipe, making sure the pipe is off first.
1491  *
1492  * Note!  This is for pre-ILK only.
1493  */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         /* Don't disable pipe A or pipe A PLLs if needed */
1497         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498                 return;
1499
1500         /* Make sure the pipe isn't still relying on us */
1501         assert_pipe_disabled(dev_priv, pipe);
1502
1503         I915_WRITE(DPLL(pipe), 0);
1504         POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509         u32 val = 0;
1510
1511         /* Make sure the pipe isn't still relying on us */
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /*
1515          * Leave integrated clock source and reference clock enabled for pipe B.
1516          * The latter is needed for VGA hotplug / manual detection.
1517          */
1518         if (pipe == PIPE_B)
1519                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520         I915_WRITE(DPLL(pipe), val);
1521         POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525                 struct intel_digital_port *dport)
1526 {
1527         u32 port_mask;
1528
1529         switch (dport->port) {
1530         case PORT_B:
1531                 port_mask = DPLL_PORTB_READY_MASK;
1532                 break;
1533         case PORT_C:
1534                 port_mask = DPLL_PORTC_READY_MASK;
1535                 break;
1536         default:
1537                 BUG();
1538         }
1539
1540         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542                      port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546  * ironlake_enable_shared_dpll - enable PCH PLL
1547  * @dev_priv: i915 private structure
1548  * @pipe: pipe PLL to enable
1549  *
1550  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551  * drives the transcoder clock.
1552  */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555         struct drm_device *dev = crtc->base.dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559         /* PCH PLLs only available on ILK, SNB and IVB */
1560         BUG_ON(INTEL_INFO(dev)->gen < 5);
1561         if (WARN_ON(pll == NULL))
1562                 return;
1563
1564         if (WARN_ON(pll->refcount == 0))
1565                 return;
1566
1567         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568                       pll->name, pll->active, pll->on,
1569                       crtc->base.base.id);
1570
1571         if (pll->active++) {
1572                 WARN_ON(!pll->on);
1573                 assert_shared_dpll_enabled(dev_priv, pll);
1574                 return;
1575         }
1576         WARN_ON(pll->on);
1577
1578         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579         pll->enable(dev_priv, pll);
1580         pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585         struct drm_device *dev = crtc->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589         /* PCH only available on ILK+ */
1590         BUG_ON(INTEL_INFO(dev)->gen < 5);
1591         if (WARN_ON(pll == NULL))
1592                return;
1593
1594         if (WARN_ON(pll->refcount == 0))
1595                 return;
1596
1597         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598                       pll->name, pll->active, pll->on,
1599                       crtc->base.base.id);
1600
1601         if (WARN_ON(pll->active == 0)) {
1602                 assert_shared_dpll_disabled(dev_priv, pll);
1603                 return;
1604         }
1605
1606         assert_shared_dpll_enabled(dev_priv, pll);
1607         WARN_ON(!pll->on);
1608         if (--pll->active)
1609                 return;
1610
1611         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612         pll->disable(dev_priv, pll);
1613         pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617                                            enum pipe pipe)
1618 {
1619         struct drm_device *dev = dev_priv->dev;
1620         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622         uint32_t reg, val, pipeconf_val;
1623
1624         /* PCH only available on ILK+ */
1625         BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627         /* Make sure PCH DPLL is enabled */
1628         assert_shared_dpll_enabled(dev_priv,
1629                                    intel_crtc_to_shared_dpll(intel_crtc));
1630
1631         /* FDI must be feeding us bits for PCH ports */
1632         assert_fdi_tx_enabled(dev_priv, pipe);
1633         assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635         if (HAS_PCH_CPT(dev)) {
1636                 /* Workaround: Set the timing override bit before enabling the
1637                  * pch transcoder. */
1638                 reg = TRANS_CHICKEN2(pipe);
1639                 val = I915_READ(reg);
1640                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641                 I915_WRITE(reg, val);
1642         }
1643
1644         reg = PCH_TRANSCONF(pipe);
1645         val = I915_READ(reg);
1646         pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648         if (HAS_PCH_IBX(dev_priv->dev)) {
1649                 /*
1650                  * make the BPC in transcoder be consistent with
1651                  * that in pipeconf reg.
1652                  */
1653                 val &= ~PIPECONF_BPC_MASK;
1654                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655         }
1656
1657         val &= ~TRANS_INTERLACE_MASK;
1658         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659                 if (HAS_PCH_IBX(dev_priv->dev) &&
1660                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661                         val |= TRANS_LEGACY_INTERLACED_ILK;
1662                 else
1663                         val |= TRANS_INTERLACED;
1664         else
1665                 val |= TRANS_PROGRESSIVE;
1666
1667         I915_WRITE(reg, val | TRANS_ENABLE);
1668         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673                                       enum transcoder cpu_transcoder)
1674 {
1675         u32 val, pipeconf_val;
1676
1677         /* PCH only available on ILK+ */
1678         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680         /* FDI must be feeding us bits for PCH ports */
1681         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684         /* Workaround: set timing override bit. */
1685         val = I915_READ(_TRANSA_CHICKEN2);
1686         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687         I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689         val = TRANS_ENABLE;
1690         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693             PIPECONF_INTERLACED_ILK)
1694                 val |= TRANS_INTERLACED;
1695         else
1696                 val |= TRANS_PROGRESSIVE;
1697
1698         I915_WRITE(LPT_TRANSCONF, val);
1699         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                             enum pipe pipe)
1705 {
1706         struct drm_device *dev = dev_priv->dev;
1707         uint32_t reg, val;
1708
1709         /* FDI relies on the transcoder */
1710         assert_fdi_tx_disabled(dev_priv, pipe);
1711         assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713         /* Ports must be off as well */
1714         assert_pch_ports_disabled(dev_priv, pipe);
1715
1716         reg = PCH_TRANSCONF(pipe);
1717         val = I915_READ(reg);
1718         val &= ~TRANS_ENABLE;
1719         I915_WRITE(reg, val);
1720         /* wait for PCH transcoder off, transcoder state */
1721         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724         if (!HAS_PCH_IBX(dev)) {
1725                 /* Workaround: Clear the timing override chicken bit again. */
1726                 reg = TRANS_CHICKEN2(pipe);
1727                 val = I915_READ(reg);
1728                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729                 I915_WRITE(reg, val);
1730         }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735         u32 val;
1736
1737         val = I915_READ(LPT_TRANSCONF);
1738         val &= ~TRANS_ENABLE;
1739         I915_WRITE(LPT_TRANSCONF, val);
1740         /* wait for PCH transcoder off, transcoder state */
1741         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742                 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744         /* Workaround: clear timing override bit. */
1745         val = I915_READ(_TRANSA_CHICKEN2);
1746         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747         I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751  * intel_enable_pipe - enable a pipe, asserting requirements
1752  * @crtc: crtc responsible for the pipe
1753  *
1754  * Enable @crtc's pipe, making sure that various hardware specific requirements
1755  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756  */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759         struct drm_device *dev = crtc->base.dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         enum pipe pipe = crtc->pipe;
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (crtc->config.has_pch_encoder) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE) {
1800                 WARN_ON(!(pipe == PIPE_A &&
1801                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802                 return;
1803         }
1804
1805         I915_WRITE(reg, val | PIPECONF_ENABLE);
1806         POSTING_READ(reg);
1807 }
1808
1809 /**
1810  * intel_disable_pipe - disable a pipe, asserting requirements
1811  * @dev_priv: i915 private structure
1812  * @pipe: pipe to disable
1813  *
1814  * Disable @pipe, making sure that various hardware specific requirements
1815  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1816  *
1817  * @pipe should be %PIPE_A or %PIPE_B.
1818  *
1819  * Will wait until the pipe has shut down before returning.
1820  */
1821 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1822                                enum pipe pipe)
1823 {
1824         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1825                                                                       pipe);
1826         int reg;
1827         u32 val;
1828
1829         /*
1830          * Make sure planes won't keep trying to pump pixels to us,
1831          * or we might hang the display.
1832          */
1833         assert_planes_disabled(dev_priv, pipe);
1834         assert_cursor_disabled(dev_priv, pipe);
1835         assert_sprites_disabled(dev_priv, pipe);
1836
1837         /* Don't disable pipe A or pipe A PLLs if needed */
1838         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1839                 return;
1840
1841         reg = PIPECONF(cpu_transcoder);
1842         val = I915_READ(reg);
1843         if ((val & PIPECONF_ENABLE) == 0)
1844                 return;
1845
1846         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1847         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1848 }
1849
1850 /*
1851  * Plane regs are double buffered, going from enabled->disabled needs a
1852  * trigger in order to latch.  The display address reg provides this.
1853  */
1854 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1855                                enum plane plane)
1856 {
1857         struct drm_device *dev = dev_priv->dev;
1858         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1859
1860         I915_WRITE(reg, I915_READ(reg));
1861         POSTING_READ(reg);
1862 }
1863
1864 /**
1865  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1866  * @dev_priv: i915 private structure
1867  * @plane: plane to enable
1868  * @pipe: pipe being fed
1869  *
1870  * Enable @plane on @pipe, making sure that @pipe is running first.
1871  */
1872 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1873                                           enum plane plane, enum pipe pipe)
1874 {
1875         struct intel_crtc *intel_crtc =
1876                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1877         int reg;
1878         u32 val;
1879
1880         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1881         assert_pipe_enabled(dev_priv, pipe);
1882
1883         if (intel_crtc->primary_enabled)
1884                 return;
1885
1886         intel_crtc->primary_enabled = true;
1887
1888         reg = DSPCNTR(plane);
1889         val = I915_READ(reg);
1890         if (val & DISPLAY_PLANE_ENABLE)
1891                 return;
1892
1893         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1894         intel_flush_primary_plane(dev_priv, plane);
1895         intel_wait_for_vblank(dev_priv->dev, pipe);
1896 }
1897
1898 /**
1899  * intel_disable_primary_hw_plane - disable the primary hardware plane
1900  * @dev_priv: i915 private structure
1901  * @plane: plane to disable
1902  * @pipe: pipe consuming the data
1903  *
1904  * Disable @plane; should be an independent operation.
1905  */
1906 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1907                                            enum plane plane, enum pipe pipe)
1908 {
1909         struct intel_crtc *intel_crtc =
1910                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1911         int reg;
1912         u32 val;
1913
1914         if (!intel_crtc->primary_enabled)
1915                 return;
1916
1917         intel_crtc->primary_enabled = false;
1918
1919         reg = DSPCNTR(plane);
1920         val = I915_READ(reg);
1921         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1922                 return;
1923
1924         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1925         intel_flush_primary_plane(dev_priv, plane);
1926         intel_wait_for_vblank(dev_priv->dev, pipe);
1927 }
1928
1929 static bool need_vtd_wa(struct drm_device *dev)
1930 {
1931 #ifdef CONFIG_INTEL_IOMMU
1932         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1933                 return true;
1934 #endif
1935         return false;
1936 }
1937
1938 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1939 {
1940         int tile_height;
1941
1942         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1943         return ALIGN(height, tile_height);
1944 }
1945
1946 int
1947 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1948                            struct drm_i915_gem_object *obj,
1949                            struct intel_ring_buffer *pipelined)
1950 {
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         u32 alignment;
1953         int ret;
1954
1955         switch (obj->tiling_mode) {
1956         case I915_TILING_NONE:
1957                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1958                         alignment = 128 * 1024;
1959                 else if (INTEL_INFO(dev)->gen >= 4)
1960                         alignment = 4 * 1024;
1961                 else
1962                         alignment = 64 * 1024;
1963                 break;
1964         case I915_TILING_X:
1965                 /* pin() will align the object as required by fence */
1966                 alignment = 0;
1967                 break;
1968         case I915_TILING_Y:
1969                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1970                 return -EINVAL;
1971         default:
1972                 BUG();
1973         }
1974
1975         /* Note that the w/a also requires 64 PTE of padding following the
1976          * bo. We currently fill all unused PTE with the shadow page and so
1977          * we should always have valid PTE following the scanout preventing
1978          * the VT-d warning.
1979          */
1980         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1981                 alignment = 256 * 1024;
1982
1983         dev_priv->mm.interruptible = false;
1984         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1985         if (ret)
1986                 goto err_interruptible;
1987
1988         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1989          * fence, whereas 965+ only requires a fence if using
1990          * framebuffer compression.  For simplicity, we always install
1991          * a fence as the cost is not that onerous.
1992          */
1993         ret = i915_gem_object_get_fence(obj);
1994         if (ret)
1995                 goto err_unpin;
1996
1997         i915_gem_object_pin_fence(obj);
1998
1999         dev_priv->mm.interruptible = true;
2000         return 0;
2001
2002 err_unpin:
2003         i915_gem_object_unpin_from_display_plane(obj);
2004 err_interruptible:
2005         dev_priv->mm.interruptible = true;
2006         return ret;
2007 }
2008
2009 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2010 {
2011         i915_gem_object_unpin_fence(obj);
2012         i915_gem_object_unpin_from_display_plane(obj);
2013 }
2014
2015 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2016  * is assumed to be a power-of-two. */
2017 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2018                                              unsigned int tiling_mode,
2019                                              unsigned int cpp,
2020                                              unsigned int pitch)
2021 {
2022         if (tiling_mode != I915_TILING_NONE) {
2023                 unsigned int tile_rows, tiles;
2024
2025                 tile_rows = *y / 8;
2026                 *y %= 8;
2027
2028                 tiles = *x / (512/cpp);
2029                 *x %= 512/cpp;
2030
2031                 return tile_rows * pitch * 8 + tiles * 4096;
2032         } else {
2033                 unsigned int offset;
2034
2035                 offset = *y * pitch + *x * cpp;
2036                 *y = 0;
2037                 *x = (offset & 4095) / cpp;
2038                 return offset & -4096;
2039         }
2040 }
2041
2042 int intel_format_to_fourcc(int format)
2043 {
2044         switch (format) {
2045         case DISPPLANE_8BPP:
2046                 return DRM_FORMAT_C8;
2047         case DISPPLANE_BGRX555:
2048                 return DRM_FORMAT_XRGB1555;
2049         case DISPPLANE_BGRX565:
2050                 return DRM_FORMAT_RGB565;
2051         default:
2052         case DISPPLANE_BGRX888:
2053                 return DRM_FORMAT_XRGB8888;
2054         case DISPPLANE_RGBX888:
2055                 return DRM_FORMAT_XBGR8888;
2056         case DISPPLANE_BGRX101010:
2057                 return DRM_FORMAT_XRGB2101010;
2058         case DISPPLANE_RGBX101010:
2059                 return DRM_FORMAT_XBGR2101010;
2060         }
2061 }
2062
2063 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2064                                   struct intel_plane_config *plane_config)
2065 {
2066         struct drm_device *dev = crtc->base.dev;
2067         struct drm_i915_gem_object *obj = NULL;
2068         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2069         u32 base = plane_config->base;
2070
2071         if (plane_config->size == 0)
2072                 return false;
2073
2074         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2075                                                              plane_config->size);
2076         if (!obj)
2077                 return false;
2078
2079         if (plane_config->tiled) {
2080                 obj->tiling_mode = I915_TILING_X;
2081                 obj->stride = crtc->base.primary->fb->pitches[0];
2082         }
2083
2084         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2085         mode_cmd.width = crtc->base.primary->fb->width;
2086         mode_cmd.height = crtc->base.primary->fb->height;
2087         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2088
2089         mutex_lock(&dev->struct_mutex);
2090
2091         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2092                                    &mode_cmd, obj)) {
2093                 DRM_DEBUG_KMS("intel fb init failed\n");
2094                 goto out_unref_obj;
2095         }
2096
2097         mutex_unlock(&dev->struct_mutex);
2098
2099         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2100         return true;
2101
2102 out_unref_obj:
2103         drm_gem_object_unreference(&obj->base);
2104         mutex_unlock(&dev->struct_mutex);
2105         return false;
2106 }
2107
2108 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2109                                  struct intel_plane_config *plane_config)
2110 {
2111         struct drm_device *dev = intel_crtc->base.dev;
2112         struct drm_crtc *c;
2113         struct intel_crtc *i;
2114         struct intel_framebuffer *fb;
2115
2116         if (!intel_crtc->base.primary->fb)
2117                 return;
2118
2119         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2120                 return;
2121
2122         kfree(intel_crtc->base.primary->fb);
2123         intel_crtc->base.primary->fb = NULL;
2124
2125         /*
2126          * Failed to alloc the obj, check to see if we should share
2127          * an fb with another CRTC instead
2128          */
2129         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2130                 i = to_intel_crtc(c);
2131
2132                 if (c == &intel_crtc->base)
2133                         continue;
2134
2135                 if (!i->active || !c->primary->fb)
2136                         continue;
2137
2138                 fb = to_intel_framebuffer(c->primary->fb);
2139                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2140                         drm_framebuffer_reference(c->primary->fb);
2141                         intel_crtc->base.primary->fb = c->primary->fb;
2142                         break;
2143                 }
2144         }
2145 }
2146
2147 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2148                                      struct drm_framebuffer *fb,
2149                                      int x, int y)
2150 {
2151         struct drm_device *dev = crtc->dev;
2152         struct drm_i915_private *dev_priv = dev->dev_private;
2153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2154         struct intel_framebuffer *intel_fb;
2155         struct drm_i915_gem_object *obj;
2156         int plane = intel_crtc->plane;
2157         unsigned long linear_offset;
2158         u32 dspcntr;
2159         u32 reg;
2160
2161         intel_fb = to_intel_framebuffer(fb);
2162         obj = intel_fb->obj;
2163
2164         reg = DSPCNTR(plane);
2165         dspcntr = I915_READ(reg);
2166         /* Mask out pixel format bits in case we change it */
2167         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2168         switch (fb->pixel_format) {
2169         case DRM_FORMAT_C8:
2170                 dspcntr |= DISPPLANE_8BPP;
2171                 break;
2172         case DRM_FORMAT_XRGB1555:
2173         case DRM_FORMAT_ARGB1555:
2174                 dspcntr |= DISPPLANE_BGRX555;
2175                 break;
2176         case DRM_FORMAT_RGB565:
2177                 dspcntr |= DISPPLANE_BGRX565;
2178                 break;
2179         case DRM_FORMAT_XRGB8888:
2180         case DRM_FORMAT_ARGB8888:
2181                 dspcntr |= DISPPLANE_BGRX888;
2182                 break;
2183         case DRM_FORMAT_XBGR8888:
2184         case DRM_FORMAT_ABGR8888:
2185                 dspcntr |= DISPPLANE_RGBX888;
2186                 break;
2187         case DRM_FORMAT_XRGB2101010:
2188         case DRM_FORMAT_ARGB2101010:
2189                 dspcntr |= DISPPLANE_BGRX101010;
2190                 break;
2191         case DRM_FORMAT_XBGR2101010:
2192         case DRM_FORMAT_ABGR2101010:
2193                 dspcntr |= DISPPLANE_RGBX101010;
2194                 break;
2195         default:
2196                 BUG();
2197         }
2198
2199         if (INTEL_INFO(dev)->gen >= 4) {
2200                 if (obj->tiling_mode != I915_TILING_NONE)
2201                         dspcntr |= DISPPLANE_TILED;
2202                 else
2203                         dspcntr &= ~DISPPLANE_TILED;
2204         }
2205
2206         if (IS_G4X(dev))
2207                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2208
2209         I915_WRITE(reg, dspcntr);
2210
2211         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2212
2213         if (INTEL_INFO(dev)->gen >= 4) {
2214                 intel_crtc->dspaddr_offset =
2215                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2216                                                        fb->bits_per_pixel / 8,
2217                                                        fb->pitches[0]);
2218                 linear_offset -= intel_crtc->dspaddr_offset;
2219         } else {
2220                 intel_crtc->dspaddr_offset = linear_offset;
2221         }
2222
2223         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2224                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2225                       fb->pitches[0]);
2226         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2227         if (INTEL_INFO(dev)->gen >= 4) {
2228                 I915_WRITE(DSPSURF(plane),
2229                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2230                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2231                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2232         } else
2233                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2234         POSTING_READ(reg);
2235
2236         return 0;
2237 }
2238
2239 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2240                                          struct drm_framebuffer *fb,
2241                                          int x, int y)
2242 {
2243         struct drm_device *dev = crtc->dev;
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2246         struct intel_framebuffer *intel_fb;
2247         struct drm_i915_gem_object *obj;
2248         int plane = intel_crtc->plane;
2249         unsigned long linear_offset;
2250         u32 dspcntr;
2251         u32 reg;
2252
2253         intel_fb = to_intel_framebuffer(fb);
2254         obj = intel_fb->obj;
2255
2256         reg = DSPCNTR(plane);
2257         dspcntr = I915_READ(reg);
2258         /* Mask out pixel format bits in case we change it */
2259         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2260         switch (fb->pixel_format) {
2261         case DRM_FORMAT_C8:
2262                 dspcntr |= DISPPLANE_8BPP;
2263                 break;
2264         case DRM_FORMAT_RGB565:
2265                 dspcntr |= DISPPLANE_BGRX565;
2266                 break;
2267         case DRM_FORMAT_XRGB8888:
2268         case DRM_FORMAT_ARGB8888:
2269                 dspcntr |= DISPPLANE_BGRX888;
2270                 break;
2271         case DRM_FORMAT_XBGR8888:
2272         case DRM_FORMAT_ABGR8888:
2273                 dspcntr |= DISPPLANE_RGBX888;
2274                 break;
2275         case DRM_FORMAT_XRGB2101010:
2276         case DRM_FORMAT_ARGB2101010:
2277                 dspcntr |= DISPPLANE_BGRX101010;
2278                 break;
2279         case DRM_FORMAT_XBGR2101010:
2280         case DRM_FORMAT_ABGR2101010:
2281                 dspcntr |= DISPPLANE_RGBX101010;
2282                 break;
2283         default:
2284                 BUG();
2285         }
2286
2287         if (obj->tiling_mode != I915_TILING_NONE)
2288                 dspcntr |= DISPPLANE_TILED;
2289         else
2290                 dspcntr &= ~DISPPLANE_TILED;
2291
2292         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2293                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2294         else
2295                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2296
2297         I915_WRITE(reg, dspcntr);
2298
2299         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2300         intel_crtc->dspaddr_offset =
2301                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2302                                                fb->bits_per_pixel / 8,
2303                                                fb->pitches[0]);
2304         linear_offset -= intel_crtc->dspaddr_offset;
2305
2306         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2307                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2308                       fb->pitches[0]);
2309         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2310         I915_WRITE(DSPSURF(plane),
2311                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2312         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2313                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2314         } else {
2315                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2316                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2317         }
2318         POSTING_READ(reg);
2319
2320         return 0;
2321 }
2322
2323 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2324 static int
2325 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2326                            int x, int y, enum mode_set_atomic state)
2327 {
2328         struct drm_device *dev = crtc->dev;
2329         struct drm_i915_private *dev_priv = dev->dev_private;
2330
2331         if (dev_priv->display.disable_fbc)
2332                 dev_priv->display.disable_fbc(dev);
2333         intel_increase_pllclock(crtc);
2334
2335         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2336 }
2337
2338 void intel_display_handle_reset(struct drm_device *dev)
2339 {
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct drm_crtc *crtc;
2342
2343         /*
2344          * Flips in the rings have been nuked by the reset,
2345          * so complete all pending flips so that user space
2346          * will get its events and not get stuck.
2347          *
2348          * Also update the base address of all primary
2349          * planes to the the last fb to make sure we're
2350          * showing the correct fb after a reset.
2351          *
2352          * Need to make two loops over the crtcs so that we
2353          * don't try to grab a crtc mutex before the
2354          * pending_flip_queue really got woken up.
2355          */
2356
2357         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2358                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2359                 enum plane plane = intel_crtc->plane;
2360
2361                 intel_prepare_page_flip(dev, plane);
2362                 intel_finish_page_flip_plane(dev, plane);
2363         }
2364
2365         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2366                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367
2368                 mutex_lock(&crtc->mutex);
2369                 /*
2370                  * FIXME: Once we have proper support for primary planes (and
2371                  * disabling them without disabling the entire crtc) allow again
2372                  * a NULL crtc->primary->fb.
2373                  */
2374                 if (intel_crtc->active && crtc->primary->fb)
2375                         dev_priv->display.update_primary_plane(crtc,
2376                                                                crtc->primary->fb,
2377                                                                crtc->x,
2378                                                                crtc->y);
2379                 mutex_unlock(&crtc->mutex);
2380         }
2381 }
2382
2383 static int
2384 intel_finish_fb(struct drm_framebuffer *old_fb)
2385 {
2386         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2387         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2388         bool was_interruptible = dev_priv->mm.interruptible;
2389         int ret;
2390
2391         /* Big Hammer, we also need to ensure that any pending
2392          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2393          * current scanout is retired before unpinning the old
2394          * framebuffer.
2395          *
2396          * This should only fail upon a hung GPU, in which case we
2397          * can safely continue.
2398          */
2399         dev_priv->mm.interruptible = false;
2400         ret = i915_gem_object_finish_gpu(obj);
2401         dev_priv->mm.interruptible = was_interruptible;
2402
2403         return ret;
2404 }
2405
2406 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2407 {
2408         struct drm_device *dev = crtc->dev;
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2411         unsigned long flags;
2412         bool pending;
2413
2414         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2415             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2416                 return false;
2417
2418         spin_lock_irqsave(&dev->event_lock, flags);
2419         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2420         spin_unlock_irqrestore(&dev->event_lock, flags);
2421
2422         return pending;
2423 }
2424
2425 static int
2426 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2427                     struct drm_framebuffer *fb)
2428 {
2429         struct drm_device *dev = crtc->dev;
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2432         struct drm_framebuffer *old_fb;
2433         int ret;
2434
2435         if (intel_crtc_has_pending_flip(crtc)) {
2436                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2437                 return -EBUSY;
2438         }
2439
2440         /* no fb bound */
2441         if (!fb) {
2442                 DRM_ERROR("No FB bound\n");
2443                 return 0;
2444         }
2445
2446         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2447                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2448                           plane_name(intel_crtc->plane),
2449                           INTEL_INFO(dev)->num_pipes);
2450                 return -EINVAL;
2451         }
2452
2453         mutex_lock(&dev->struct_mutex);
2454         ret = intel_pin_and_fence_fb_obj(dev,
2455                                          to_intel_framebuffer(fb)->obj,
2456                                          NULL);
2457         mutex_unlock(&dev->struct_mutex);
2458         if (ret != 0) {
2459                 DRM_ERROR("pin & fence failed\n");
2460                 return ret;
2461         }
2462
2463         /*
2464          * Update pipe size and adjust fitter if needed: the reason for this is
2465          * that in compute_mode_changes we check the native mode (not the pfit
2466          * mode) to see if we can flip rather than do a full mode set. In the
2467          * fastboot case, we'll flip, but if we don't update the pipesrc and
2468          * pfit state, we'll end up with a big fb scanned out into the wrong
2469          * sized surface.
2470          *
2471          * To fix this properly, we need to hoist the checks up into
2472          * compute_mode_changes (or above), check the actual pfit state and
2473          * whether the platform allows pfit disable with pipe active, and only
2474          * then update the pipesrc and pfit state, even on the flip path.
2475          */
2476         if (i915.fastboot) {
2477                 const struct drm_display_mode *adjusted_mode =
2478                         &intel_crtc->config.adjusted_mode;
2479
2480                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2481                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2482                            (adjusted_mode->crtc_vdisplay - 1));
2483                 if (!intel_crtc->config.pch_pfit.enabled &&
2484                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2485                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2486                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2487                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2488                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2489                 }
2490                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2491                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2492         }
2493
2494         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2495         if (ret) {
2496                 mutex_lock(&dev->struct_mutex);
2497                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2498                 mutex_unlock(&dev->struct_mutex);
2499                 DRM_ERROR("failed to update base address\n");
2500                 return ret;
2501         }
2502
2503         old_fb = crtc->primary->fb;
2504         crtc->primary->fb = fb;
2505         crtc->x = x;
2506         crtc->y = y;
2507
2508         if (old_fb) {
2509                 if (intel_crtc->active && old_fb != fb)
2510                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2511                 mutex_lock(&dev->struct_mutex);
2512                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2513                 mutex_unlock(&dev->struct_mutex);
2514         }
2515
2516         mutex_lock(&dev->struct_mutex);
2517         intel_update_fbc(dev);
2518         intel_edp_psr_update(dev);
2519         mutex_unlock(&dev->struct_mutex);
2520
2521         return 0;
2522 }
2523
2524 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2525 {
2526         struct drm_device *dev = crtc->dev;
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2529         int pipe = intel_crtc->pipe;
2530         u32 reg, temp;
2531
2532         /* enable normal train */
2533         reg = FDI_TX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         if (IS_IVYBRIDGE(dev)) {
2536                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2537                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2538         } else {
2539                 temp &= ~FDI_LINK_TRAIN_NONE;
2540                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2541         }
2542         I915_WRITE(reg, temp);
2543
2544         reg = FDI_RX_CTL(pipe);
2545         temp = I915_READ(reg);
2546         if (HAS_PCH_CPT(dev)) {
2547                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2548                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2549         } else {
2550                 temp &= ~FDI_LINK_TRAIN_NONE;
2551                 temp |= FDI_LINK_TRAIN_NONE;
2552         }
2553         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2554
2555         /* wait one idle pattern time */
2556         POSTING_READ(reg);
2557         udelay(1000);
2558
2559         /* IVB wants error correction enabled */
2560         if (IS_IVYBRIDGE(dev))
2561                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2562                            FDI_FE_ERRC_ENABLE);
2563 }
2564
2565 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2566 {
2567         return crtc->base.enabled && crtc->active &&
2568                 crtc->config.has_pch_encoder;
2569 }
2570
2571 static void ivb_modeset_global_resources(struct drm_device *dev)
2572 {
2573         struct drm_i915_private *dev_priv = dev->dev_private;
2574         struct intel_crtc *pipe_B_crtc =
2575                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2576         struct intel_crtc *pipe_C_crtc =
2577                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2578         uint32_t temp;
2579
2580         /*
2581          * When everything is off disable fdi C so that we could enable fdi B
2582          * with all lanes. Note that we don't care about enabled pipes without
2583          * an enabled pch encoder.
2584          */
2585         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2586             !pipe_has_enabled_pch(pipe_C_crtc)) {
2587                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2588                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2589
2590                 temp = I915_READ(SOUTH_CHICKEN1);
2591                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2592                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2593                 I915_WRITE(SOUTH_CHICKEN1, temp);
2594         }
2595 }
2596
2597 /* The FDI link training functions for ILK/Ibexpeak. */
2598 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2599 {
2600         struct drm_device *dev = crtc->dev;
2601         struct drm_i915_private *dev_priv = dev->dev_private;
2602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2603         int pipe = intel_crtc->pipe;
2604         u32 reg, temp, tries;
2605
2606         /* FDI needs bits from pipe first */
2607         assert_pipe_enabled(dev_priv, pipe);
2608
2609         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2610            for train result */
2611         reg = FDI_RX_IMR(pipe);
2612         temp = I915_READ(reg);
2613         temp &= ~FDI_RX_SYMBOL_LOCK;
2614         temp &= ~FDI_RX_BIT_LOCK;
2615         I915_WRITE(reg, temp);
2616         I915_READ(reg);
2617         udelay(150);
2618
2619         /* enable CPU FDI TX and PCH FDI RX */
2620         reg = FDI_TX_CTL(pipe);
2621         temp = I915_READ(reg);
2622         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2623         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2624         temp &= ~FDI_LINK_TRAIN_NONE;
2625         temp |= FDI_LINK_TRAIN_PATTERN_1;
2626         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627
2628         reg = FDI_RX_CTL(pipe);
2629         temp = I915_READ(reg);
2630         temp &= ~FDI_LINK_TRAIN_NONE;
2631         temp |= FDI_LINK_TRAIN_PATTERN_1;
2632         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2633
2634         POSTING_READ(reg);
2635         udelay(150);
2636
2637         /* Ironlake workaround, enable clock pointer after FDI enable*/
2638         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2639         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2640                    FDI_RX_PHASE_SYNC_POINTER_EN);
2641
2642         reg = FDI_RX_IIR(pipe);
2643         for (tries = 0; tries < 5; tries++) {
2644                 temp = I915_READ(reg);
2645                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2646
2647                 if ((temp & FDI_RX_BIT_LOCK)) {
2648                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2649                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2650                         break;
2651                 }
2652         }
2653         if (tries == 5)
2654                 DRM_ERROR("FDI train 1 fail!\n");
2655
2656         /* Train 2 */
2657         reg = FDI_TX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         temp &= ~FDI_LINK_TRAIN_NONE;
2660         temp |= FDI_LINK_TRAIN_PATTERN_2;
2661         I915_WRITE(reg, temp);
2662
2663         reg = FDI_RX_CTL(pipe);
2664         temp = I915_READ(reg);
2665         temp &= ~FDI_LINK_TRAIN_NONE;
2666         temp |= FDI_LINK_TRAIN_PATTERN_2;
2667         I915_WRITE(reg, temp);
2668
2669         POSTING_READ(reg);
2670         udelay(150);
2671
2672         reg = FDI_RX_IIR(pipe);
2673         for (tries = 0; tries < 5; tries++) {
2674                 temp = I915_READ(reg);
2675                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2676
2677                 if (temp & FDI_RX_SYMBOL_LOCK) {
2678                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2679                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2680                         break;
2681                 }
2682         }
2683         if (tries == 5)
2684                 DRM_ERROR("FDI train 2 fail!\n");
2685
2686         DRM_DEBUG_KMS("FDI train done\n");
2687
2688 }
2689
2690 static const int snb_b_fdi_train_param[] = {
2691         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2692         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2693         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2694         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2695 };
2696
2697 /* The FDI link training functions for SNB/Cougarpoint. */
2698 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2699 {
2700         struct drm_device *dev = crtc->dev;
2701         struct drm_i915_private *dev_priv = dev->dev_private;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         int pipe = intel_crtc->pipe;
2704         u32 reg, temp, i, retry;
2705
2706         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2707            for train result */
2708         reg = FDI_RX_IMR(pipe);
2709         temp = I915_READ(reg);
2710         temp &= ~FDI_RX_SYMBOL_LOCK;
2711         temp &= ~FDI_RX_BIT_LOCK;
2712         I915_WRITE(reg, temp);
2713
2714         POSTING_READ(reg);
2715         udelay(150);
2716
2717         /* enable CPU FDI TX and PCH FDI RX */
2718         reg = FDI_TX_CTL(pipe);
2719         temp = I915_READ(reg);
2720         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2721         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2722         temp &= ~FDI_LINK_TRAIN_NONE;
2723         temp |= FDI_LINK_TRAIN_PATTERN_1;
2724         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2725         /* SNB-B */
2726         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2728
2729         I915_WRITE(FDI_RX_MISC(pipe),
2730                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2731
2732         reg = FDI_RX_CTL(pipe);
2733         temp = I915_READ(reg);
2734         if (HAS_PCH_CPT(dev)) {
2735                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2736                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2737         } else {
2738                 temp &= ~FDI_LINK_TRAIN_NONE;
2739                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2740         }
2741         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2742
2743         POSTING_READ(reg);
2744         udelay(150);
2745
2746         for (i = 0; i < 4; i++) {
2747                 reg = FDI_TX_CTL(pipe);
2748                 temp = I915_READ(reg);
2749                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2750                 temp |= snb_b_fdi_train_param[i];
2751                 I915_WRITE(reg, temp);
2752
2753                 POSTING_READ(reg);
2754                 udelay(500);
2755
2756                 for (retry = 0; retry < 5; retry++) {
2757                         reg = FDI_RX_IIR(pipe);
2758                         temp = I915_READ(reg);
2759                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2760                         if (temp & FDI_RX_BIT_LOCK) {
2761                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2762                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2763                                 break;
2764                         }
2765                         udelay(50);
2766                 }
2767                 if (retry < 5)
2768                         break;
2769         }
2770         if (i == 4)
2771                 DRM_ERROR("FDI train 1 fail!\n");
2772
2773         /* Train 2 */
2774         reg = FDI_TX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~FDI_LINK_TRAIN_NONE;
2777         temp |= FDI_LINK_TRAIN_PATTERN_2;
2778         if (IS_GEN6(dev)) {
2779                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2780                 /* SNB-B */
2781                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2782         }
2783         I915_WRITE(reg, temp);
2784
2785         reg = FDI_RX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         if (HAS_PCH_CPT(dev)) {
2788                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2789                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2790         } else {
2791                 temp &= ~FDI_LINK_TRAIN_NONE;
2792                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2793         }
2794         I915_WRITE(reg, temp);
2795
2796         POSTING_READ(reg);
2797         udelay(150);
2798
2799         for (i = 0; i < 4; i++) {
2800                 reg = FDI_TX_CTL(pipe);
2801                 temp = I915_READ(reg);
2802                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2803                 temp |= snb_b_fdi_train_param[i];
2804                 I915_WRITE(reg, temp);
2805
2806                 POSTING_READ(reg);
2807                 udelay(500);
2808
2809                 for (retry = 0; retry < 5; retry++) {
2810                         reg = FDI_RX_IIR(pipe);
2811                         temp = I915_READ(reg);
2812                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2813                         if (temp & FDI_RX_SYMBOL_LOCK) {
2814                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2815                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2816                                 break;
2817                         }
2818                         udelay(50);
2819                 }
2820                 if (retry < 5)
2821                         break;
2822         }
2823         if (i == 4)
2824                 DRM_ERROR("FDI train 2 fail!\n");
2825
2826         DRM_DEBUG_KMS("FDI train done.\n");
2827 }
2828
2829 /* Manual link training for Ivy Bridge A0 parts */
2830 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2831 {
2832         struct drm_device *dev = crtc->dev;
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2835         int pipe = intel_crtc->pipe;
2836         u32 reg, temp, i, j;
2837
2838         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2839            for train result */
2840         reg = FDI_RX_IMR(pipe);
2841         temp = I915_READ(reg);
2842         temp &= ~FDI_RX_SYMBOL_LOCK;
2843         temp &= ~FDI_RX_BIT_LOCK;
2844         I915_WRITE(reg, temp);
2845
2846         POSTING_READ(reg);
2847         udelay(150);
2848
2849         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2850                       I915_READ(FDI_RX_IIR(pipe)));
2851
2852         /* Try each vswing and preemphasis setting twice before moving on */
2853         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2854                 /* disable first in case we need to retry */
2855                 reg = FDI_TX_CTL(pipe);
2856                 temp = I915_READ(reg);
2857                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2858                 temp &= ~FDI_TX_ENABLE;
2859                 I915_WRITE(reg, temp);
2860
2861                 reg = FDI_RX_CTL(pipe);
2862                 temp = I915_READ(reg);
2863                 temp &= ~FDI_LINK_TRAIN_AUTO;
2864                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2865                 temp &= ~FDI_RX_ENABLE;
2866                 I915_WRITE(reg, temp);
2867
2868                 /* enable CPU FDI TX and PCH FDI RX */
2869                 reg = FDI_TX_CTL(pipe);
2870                 temp = I915_READ(reg);
2871                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2872                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2873                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2874                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2875                 temp |= snb_b_fdi_train_param[j/2];
2876                 temp |= FDI_COMPOSITE_SYNC;
2877                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2878
2879                 I915_WRITE(FDI_RX_MISC(pipe),
2880                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2881
2882                 reg = FDI_RX_CTL(pipe);
2883                 temp = I915_READ(reg);
2884                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2885                 temp |= FDI_COMPOSITE_SYNC;
2886                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2887
2888                 POSTING_READ(reg);
2889                 udelay(1); /* should be 0.5us */
2890
2891                 for (i = 0; i < 4; i++) {
2892                         reg = FDI_RX_IIR(pipe);
2893                         temp = I915_READ(reg);
2894                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2895
2896                         if (temp & FDI_RX_BIT_LOCK ||
2897                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2898                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2899                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2900                                               i);
2901                                 break;
2902                         }
2903                         udelay(1); /* should be 0.5us */
2904                 }
2905                 if (i == 4) {
2906                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2907                         continue;
2908                 }
2909
2910                 /* Train 2 */
2911                 reg = FDI_TX_CTL(pipe);
2912                 temp = I915_READ(reg);
2913                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2915                 I915_WRITE(reg, temp);
2916
2917                 reg = FDI_RX_CTL(pipe);
2918                 temp = I915_READ(reg);
2919                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2920                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2921                 I915_WRITE(reg, temp);
2922
2923                 POSTING_READ(reg);
2924                 udelay(2); /* should be 1.5us */
2925
2926                 for (i = 0; i < 4; i++) {
2927                         reg = FDI_RX_IIR(pipe);
2928                         temp = I915_READ(reg);
2929                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2930
2931                         if (temp & FDI_RX_SYMBOL_LOCK ||
2932                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2933                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2934                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2935                                               i);
2936                                 goto train_done;
2937                         }
2938                         udelay(2); /* should be 1.5us */
2939                 }
2940                 if (i == 4)
2941                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2942         }
2943
2944 train_done:
2945         DRM_DEBUG_KMS("FDI train done.\n");
2946 }
2947
2948 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2949 {
2950         struct drm_device *dev = intel_crtc->base.dev;
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         int pipe = intel_crtc->pipe;
2953         u32 reg, temp;
2954
2955
2956         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2957         reg = FDI_RX_CTL(pipe);
2958         temp = I915_READ(reg);
2959         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2960         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2961         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2962         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2963
2964         POSTING_READ(reg);
2965         udelay(200);
2966
2967         /* Switch from Rawclk to PCDclk */
2968         temp = I915_READ(reg);
2969         I915_WRITE(reg, temp | FDI_PCDCLK);
2970
2971         POSTING_READ(reg);
2972         udelay(200);
2973
2974         /* Enable CPU FDI TX PLL, always on for Ironlake */
2975         reg = FDI_TX_CTL(pipe);
2976         temp = I915_READ(reg);
2977         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2978                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2979
2980                 POSTING_READ(reg);
2981                 udelay(100);
2982         }
2983 }
2984
2985 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2986 {
2987         struct drm_device *dev = intel_crtc->base.dev;
2988         struct drm_i915_private *dev_priv = dev->dev_private;
2989         int pipe = intel_crtc->pipe;
2990         u32 reg, temp;
2991
2992         /* Switch from PCDclk to Rawclk */
2993         reg = FDI_RX_CTL(pipe);
2994         temp = I915_READ(reg);
2995         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2996
2997         /* Disable CPU FDI TX PLL */
2998         reg = FDI_TX_CTL(pipe);
2999         temp = I915_READ(reg);
3000         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3001
3002         POSTING_READ(reg);
3003         udelay(100);
3004
3005         reg = FDI_RX_CTL(pipe);
3006         temp = I915_READ(reg);
3007         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3008
3009         /* Wait for the clocks to turn off. */
3010         POSTING_READ(reg);
3011         udelay(100);
3012 }
3013
3014 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3015 {
3016         struct drm_device *dev = crtc->dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3019         int pipe = intel_crtc->pipe;
3020         u32 reg, temp;
3021
3022         /* disable CPU FDI tx and PCH FDI rx */
3023         reg = FDI_TX_CTL(pipe);
3024         temp = I915_READ(reg);
3025         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3026         POSTING_READ(reg);
3027
3028         reg = FDI_RX_CTL(pipe);
3029         temp = I915_READ(reg);
3030         temp &= ~(0x7 << 16);
3031         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3032         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3033
3034         POSTING_READ(reg);
3035         udelay(100);
3036
3037         /* Ironlake workaround, disable clock pointer after downing FDI */
3038         if (HAS_PCH_IBX(dev)) {
3039                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3040         }
3041
3042         /* still set train pattern 1 */
3043         reg = FDI_TX_CTL(pipe);
3044         temp = I915_READ(reg);
3045         temp &= ~FDI_LINK_TRAIN_NONE;
3046         temp |= FDI_LINK_TRAIN_PATTERN_1;
3047         I915_WRITE(reg, temp);
3048
3049         reg = FDI_RX_CTL(pipe);
3050         temp = I915_READ(reg);
3051         if (HAS_PCH_CPT(dev)) {
3052                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3053                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3054         } else {
3055                 temp &= ~FDI_LINK_TRAIN_NONE;
3056                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3057         }
3058         /* BPC in FDI rx is consistent with that in PIPECONF */
3059         temp &= ~(0x07 << 16);
3060         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061         I915_WRITE(reg, temp);
3062
3063         POSTING_READ(reg);
3064         udelay(100);
3065 }
3066
3067 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3068 {
3069         struct intel_crtc *crtc;
3070
3071         /* Note that we don't need to be called with mode_config.lock here
3072          * as our list of CRTC objects is static for the lifetime of the
3073          * device and so cannot disappear as we iterate. Similarly, we can
3074          * happily treat the predicates as racy, atomic checks as userspace
3075          * cannot claim and pin a new fb without at least acquring the
3076          * struct_mutex and so serialising with us.
3077          */
3078         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3079                 if (atomic_read(&crtc->unpin_work_count) == 0)
3080                         continue;
3081
3082                 if (crtc->unpin_work)
3083                         intel_wait_for_vblank(dev, crtc->pipe);
3084
3085                 return true;
3086         }
3087
3088         return false;
3089 }
3090
3091 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3092 {
3093         struct drm_device *dev = crtc->dev;
3094         struct drm_i915_private *dev_priv = dev->dev_private;
3095
3096         if (crtc->primary->fb == NULL)
3097                 return;
3098
3099         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3100
3101         wait_event(dev_priv->pending_flip_queue,
3102                    !intel_crtc_has_pending_flip(crtc));
3103
3104         mutex_lock(&dev->struct_mutex);
3105         intel_finish_fb(crtc->primary->fb);
3106         mutex_unlock(&dev->struct_mutex);
3107 }
3108
3109 /* Program iCLKIP clock to the desired frequency */
3110 static void lpt_program_iclkip(struct drm_crtc *crtc)
3111 {
3112         struct drm_device *dev = crtc->dev;
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3115         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3116         u32 temp;
3117
3118         mutex_lock(&dev_priv->dpio_lock);
3119
3120         /* It is necessary to ungate the pixclk gate prior to programming
3121          * the divisors, and gate it back when it is done.
3122          */
3123         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3124
3125         /* Disable SSCCTL */
3126         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3127                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3128                                 SBI_SSCCTL_DISABLE,
3129                         SBI_ICLK);
3130
3131         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3132         if (clock == 20000) {
3133                 auxdiv = 1;
3134                 divsel = 0x41;
3135                 phaseinc = 0x20;
3136         } else {
3137                 /* The iCLK virtual clock root frequency is in MHz,
3138                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3139                  * divisors, it is necessary to divide one by another, so we
3140                  * convert the virtual clock precision to KHz here for higher
3141                  * precision.
3142                  */
3143                 u32 iclk_virtual_root_freq = 172800 * 1000;
3144                 u32 iclk_pi_range = 64;
3145                 u32 desired_divisor, msb_divisor_value, pi_value;
3146
3147                 desired_divisor = (iclk_virtual_root_freq / clock);
3148                 msb_divisor_value = desired_divisor / iclk_pi_range;
3149                 pi_value = desired_divisor % iclk_pi_range;
3150
3151                 auxdiv = 0;
3152                 divsel = msb_divisor_value - 2;
3153                 phaseinc = pi_value;
3154         }
3155
3156         /* This should not happen with any sane values */
3157         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3158                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3159         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3160                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3161
3162         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3163                         clock,
3164                         auxdiv,
3165                         divsel,
3166                         phasedir,
3167                         phaseinc);
3168
3169         /* Program SSCDIVINTPHASE6 */
3170         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3171         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3172         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3173         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3174         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3175         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3176         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3177         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3178
3179         /* Program SSCAUXDIV */
3180         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3181         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3182         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3183         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3184
3185         /* Enable modulator and associated divider */
3186         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3187         temp &= ~SBI_SSCCTL_DISABLE;
3188         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3189
3190         /* Wait for initialization time */
3191         udelay(24);
3192
3193         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3194
3195         mutex_unlock(&dev_priv->dpio_lock);
3196 }
3197
3198 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3199                                                 enum pipe pch_transcoder)
3200 {
3201         struct drm_device *dev = crtc->base.dev;
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3204
3205         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3206                    I915_READ(HTOTAL(cpu_transcoder)));
3207         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3208                    I915_READ(HBLANK(cpu_transcoder)));
3209         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3210                    I915_READ(HSYNC(cpu_transcoder)));
3211
3212         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3213                    I915_READ(VTOTAL(cpu_transcoder)));
3214         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3215                    I915_READ(VBLANK(cpu_transcoder)));
3216         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3217                    I915_READ(VSYNC(cpu_transcoder)));
3218         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3219                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3220 }
3221
3222 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3223 {
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         uint32_t temp;
3226
3227         temp = I915_READ(SOUTH_CHICKEN1);
3228         if (temp & FDI_BC_BIFURCATION_SELECT)
3229                 return;
3230
3231         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3232         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3233
3234         temp |= FDI_BC_BIFURCATION_SELECT;
3235         DRM_DEBUG_KMS("enabling fdi C rx\n");
3236         I915_WRITE(SOUTH_CHICKEN1, temp);
3237         POSTING_READ(SOUTH_CHICKEN1);
3238 }
3239
3240 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3241 {
3242         struct drm_device *dev = intel_crtc->base.dev;
3243         struct drm_i915_private *dev_priv = dev->dev_private;
3244
3245         switch (intel_crtc->pipe) {
3246         case PIPE_A:
3247                 break;
3248         case PIPE_B:
3249                 if (intel_crtc->config.fdi_lanes > 2)
3250                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3251                 else
3252                         cpt_enable_fdi_bc_bifurcation(dev);
3253
3254                 break;
3255         case PIPE_C:
3256                 cpt_enable_fdi_bc_bifurcation(dev);
3257
3258                 break;
3259         default:
3260                 BUG();
3261         }
3262 }
3263
3264 /*
3265  * Enable PCH resources required for PCH ports:
3266  *   - PCH PLLs
3267  *   - FDI training & RX/TX
3268  *   - update transcoder timings
3269  *   - DP transcoding bits
3270  *   - transcoder
3271  */
3272 static void ironlake_pch_enable(struct drm_crtc *crtc)
3273 {
3274         struct drm_device *dev = crtc->dev;
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3277         int pipe = intel_crtc->pipe;
3278         u32 reg, temp;
3279
3280         assert_pch_transcoder_disabled(dev_priv, pipe);
3281
3282         if (IS_IVYBRIDGE(dev))
3283                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3284
3285         /* Write the TU size bits before fdi link training, so that error
3286          * detection works. */
3287         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3288                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3289
3290         /* For PCH output, training FDI link */
3291         dev_priv->display.fdi_link_train(crtc);
3292
3293         /* We need to program the right clock selection before writing the pixel
3294          * mutliplier into the DPLL. */
3295         if (HAS_PCH_CPT(dev)) {
3296                 u32 sel;
3297
3298                 temp = I915_READ(PCH_DPLL_SEL);
3299                 temp |= TRANS_DPLL_ENABLE(pipe);
3300                 sel = TRANS_DPLLB_SEL(pipe);
3301                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3302                         temp |= sel;
3303                 else
3304                         temp &= ~sel;
3305                 I915_WRITE(PCH_DPLL_SEL, temp);
3306         }
3307
3308         /* XXX: pch pll's can be enabled any time before we enable the PCH
3309          * transcoder, and we actually should do this to not upset any PCH
3310          * transcoder that already use the clock when we share it.
3311          *
3312          * Note that enable_shared_dpll tries to do the right thing, but
3313          * get_shared_dpll unconditionally resets the pll - we need that to have
3314          * the right LVDS enable sequence. */
3315         ironlake_enable_shared_dpll(intel_crtc);
3316
3317         /* set transcoder timing, panel must allow it */
3318         assert_panel_unlocked(dev_priv, pipe);
3319         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3320
3321         intel_fdi_normal_train(crtc);
3322
3323         /* For PCH DP, enable TRANS_DP_CTL */
3324         if (HAS_PCH_CPT(dev) &&
3325             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3326              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3327                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3328                 reg = TRANS_DP_CTL(pipe);
3329                 temp = I915_READ(reg);
3330                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3331                           TRANS_DP_SYNC_MASK |
3332                           TRANS_DP_BPC_MASK);
3333                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3334                          TRANS_DP_ENH_FRAMING);
3335                 temp |= bpc << 9; /* same format but at 11:9 */
3336
3337                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3338                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3339                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3340                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3341
3342                 switch (intel_trans_dp_port_sel(crtc)) {
3343                 case PCH_DP_B:
3344                         temp |= TRANS_DP_PORT_SEL_B;
3345                         break;
3346                 case PCH_DP_C:
3347                         temp |= TRANS_DP_PORT_SEL_C;
3348                         break;
3349                 case PCH_DP_D:
3350                         temp |= TRANS_DP_PORT_SEL_D;
3351                         break;
3352                 default:
3353                         BUG();
3354                 }
3355
3356                 I915_WRITE(reg, temp);
3357         }
3358
3359         ironlake_enable_pch_transcoder(dev_priv, pipe);
3360 }
3361
3362 static void lpt_pch_enable(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3367         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3368
3369         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3370
3371         lpt_program_iclkip(crtc);
3372
3373         /* Set transcoder timing. */
3374         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3375
3376         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3377 }
3378
3379 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3380 {
3381         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3382
3383         if (pll == NULL)
3384                 return;
3385
3386         if (pll->refcount == 0) {
3387                 WARN(1, "bad %s refcount\n", pll->name);
3388                 return;
3389         }
3390
3391         if (--pll->refcount == 0) {
3392                 WARN_ON(pll->on);
3393                 WARN_ON(pll->active);
3394         }
3395
3396         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3397 }
3398
3399 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3400 {
3401         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3402         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3403         enum intel_dpll_id i;
3404
3405         if (pll) {
3406                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3407                               crtc->base.base.id, pll->name);
3408                 intel_put_shared_dpll(crtc);
3409         }
3410
3411         if (HAS_PCH_IBX(dev_priv->dev)) {
3412                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3413                 i = (enum intel_dpll_id) crtc->pipe;
3414                 pll = &dev_priv->shared_dplls[i];
3415
3416                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3417                               crtc->base.base.id, pll->name);
3418
3419                 goto found;
3420         }
3421
3422         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3423                 pll = &dev_priv->shared_dplls[i];
3424
3425                 /* Only want to check enabled timings first */
3426                 if (pll->refcount == 0)
3427                         continue;
3428
3429                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3430                            sizeof(pll->hw_state)) == 0) {
3431                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3432                                       crtc->base.base.id,
3433                                       pll->name, pll->refcount, pll->active);
3434
3435                         goto found;
3436                 }
3437         }
3438
3439         /* Ok no matching timings, maybe there's a free one? */
3440         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3441                 pll = &dev_priv->shared_dplls[i];
3442                 if (pll->refcount == 0) {
3443                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3444                                       crtc->base.base.id, pll->name);
3445                         goto found;
3446                 }
3447         }
3448
3449         return NULL;
3450
3451 found:
3452         crtc->config.shared_dpll = i;
3453         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3454                          pipe_name(crtc->pipe));
3455
3456         if (pll->active == 0) {
3457                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3458                        sizeof(pll->hw_state));
3459
3460                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3461                 WARN_ON(pll->on);
3462                 assert_shared_dpll_disabled(dev_priv, pll);
3463
3464                 pll->mode_set(dev_priv, pll);
3465         }
3466         pll->refcount++;
3467
3468         return pll;
3469 }
3470
3471 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3472 {
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474         int dslreg = PIPEDSL(pipe);
3475         u32 temp;
3476
3477         temp = I915_READ(dslreg);
3478         udelay(500);
3479         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3480                 if (wait_for(I915_READ(dslreg) != temp, 5))
3481                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3482         }
3483 }
3484
3485 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3486 {
3487         struct drm_device *dev = crtc->base.dev;
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489         int pipe = crtc->pipe;
3490
3491         if (crtc->config.pch_pfit.enabled) {
3492                 /* Force use of hard-coded filter coefficients
3493                  * as some pre-programmed values are broken,
3494                  * e.g. x201.
3495                  */
3496                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3497                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3498                                                  PF_PIPE_SEL_IVB(pipe));
3499                 else
3500                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3501                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3502                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3503         }
3504 }
3505
3506 static void intel_enable_planes(struct drm_crtc *crtc)
3507 {
3508         struct drm_device *dev = crtc->dev;
3509         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3510         struct drm_plane *plane;
3511         struct intel_plane *intel_plane;
3512
3513         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3514                 intel_plane = to_intel_plane(plane);
3515                 if (intel_plane->pipe == pipe)
3516                         intel_plane_restore(&intel_plane->base);
3517         }
3518 }
3519
3520 static void intel_disable_planes(struct drm_crtc *crtc)
3521 {
3522         struct drm_device *dev = crtc->dev;
3523         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3524         struct drm_plane *plane;
3525         struct intel_plane *intel_plane;
3526
3527         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3528                 intel_plane = to_intel_plane(plane);
3529                 if (intel_plane->pipe == pipe)
3530                         intel_plane_disable(&intel_plane->base);
3531         }
3532 }
3533
3534 void hsw_enable_ips(struct intel_crtc *crtc)
3535 {
3536         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3537
3538         if (!crtc->config.ips_enabled)
3539                 return;
3540
3541         /* We can only enable IPS after we enable a plane and wait for a vblank.
3542          * We guarantee that the plane is enabled by calling intel_enable_ips
3543          * only after intel_enable_plane. And intel_enable_plane already waits
3544          * for a vblank, so all we need to do here is to enable the IPS bit. */
3545         assert_plane_enabled(dev_priv, crtc->plane);
3546         if (IS_BROADWELL(crtc->base.dev)) {
3547                 mutex_lock(&dev_priv->rps.hw_lock);
3548                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3549                 mutex_unlock(&dev_priv->rps.hw_lock);
3550                 /* Quoting Art Runyan: "its not safe to expect any particular
3551                  * value in IPS_CTL bit 31 after enabling IPS through the
3552                  * mailbox." Moreover, the mailbox may return a bogus state,
3553                  * so we need to just enable it and continue on.
3554                  */
3555         } else {
3556                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3557                 /* The bit only becomes 1 in the next vblank, so this wait here
3558                  * is essentially intel_wait_for_vblank. If we don't have this
3559                  * and don't wait for vblanks until the end of crtc_enable, then
3560                  * the HW state readout code will complain that the expected
3561                  * IPS_CTL value is not the one we read. */
3562                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3563                         DRM_ERROR("Timed out waiting for IPS enable\n");
3564         }
3565 }
3566
3567 void hsw_disable_ips(struct intel_crtc *crtc)
3568 {
3569         struct drm_device *dev = crtc->base.dev;
3570         struct drm_i915_private *dev_priv = dev->dev_private;
3571
3572         if (!crtc->config.ips_enabled)
3573                 return;
3574
3575         assert_plane_enabled(dev_priv, crtc->plane);
3576         if (IS_BROADWELL(dev)) {
3577                 mutex_lock(&dev_priv->rps.hw_lock);
3578                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3579                 mutex_unlock(&dev_priv->rps.hw_lock);
3580                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3581                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3582                         DRM_ERROR("Timed out waiting for IPS disable\n");
3583         } else {
3584                 I915_WRITE(IPS_CTL, 0);
3585                 POSTING_READ(IPS_CTL);
3586         }
3587
3588         /* We need to wait for a vblank before we can disable the plane. */
3589         intel_wait_for_vblank(dev, crtc->pipe);
3590 }
3591
3592 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3593 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3594 {
3595         struct drm_device *dev = crtc->dev;
3596         struct drm_i915_private *dev_priv = dev->dev_private;
3597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3598         enum pipe pipe = intel_crtc->pipe;
3599         int palreg = PALETTE(pipe);
3600         int i;
3601         bool reenable_ips = false;
3602
3603         /* The clocks have to be on to load the palette. */
3604         if (!crtc->enabled || !intel_crtc->active)
3605                 return;
3606
3607         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3608                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3609                         assert_dsi_pll_enabled(dev_priv);
3610                 else
3611                         assert_pll_enabled(dev_priv, pipe);
3612         }
3613
3614         /* use legacy palette for Ironlake */
3615         if (HAS_PCH_SPLIT(dev))
3616                 palreg = LGC_PALETTE(pipe);
3617
3618         /* Workaround : Do not read or write the pipe palette/gamma data while
3619          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3620          */
3621         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3622             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3623              GAMMA_MODE_MODE_SPLIT)) {
3624                 hsw_disable_ips(intel_crtc);
3625                 reenable_ips = true;
3626         }
3627
3628         for (i = 0; i < 256; i++) {
3629                 I915_WRITE(palreg + 4 * i,
3630                            (intel_crtc->lut_r[i] << 16) |
3631                            (intel_crtc->lut_g[i] << 8) |
3632                            intel_crtc->lut_b[i]);
3633         }
3634
3635         if (reenable_ips)
3636                 hsw_enable_ips(intel_crtc);
3637 }
3638
3639 static void ilk_crtc_enable_planes(struct drm_crtc *crtc)
3640 {
3641         struct drm_device *dev = crtc->dev;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         int pipe = intel_crtc->pipe;
3645         int plane = intel_crtc->plane;
3646
3647         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3648         intel_enable_planes(crtc);
3649         intel_crtc_update_cursor(crtc, true);
3650
3651         hsw_enable_ips(intel_crtc);
3652
3653         mutex_lock(&dev->struct_mutex);
3654         intel_update_fbc(dev);
3655         mutex_unlock(&dev->struct_mutex);
3656 }
3657
3658 static void ilk_crtc_disable_planes(struct drm_crtc *crtc)
3659 {
3660         struct drm_device *dev = crtc->dev;
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663         int pipe = intel_crtc->pipe;
3664         int plane = intel_crtc->plane;
3665
3666         intel_crtc_wait_for_pending_flips(crtc);
3667         drm_vblank_off(dev, pipe);
3668
3669         if (dev_priv->fbc.plane == plane)
3670                 intel_disable_fbc(dev);
3671
3672         hsw_disable_ips(intel_crtc);
3673
3674         intel_crtc_update_cursor(crtc, false);
3675         intel_disable_planes(crtc);
3676         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3677 }
3678
3679 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3680 {
3681         struct drm_device *dev = crtc->dev;
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3684         struct intel_encoder *encoder;
3685         int pipe = intel_crtc->pipe;
3686
3687         WARN_ON(!crtc->enabled);
3688
3689         if (intel_crtc->active)
3690                 return;
3691
3692         intel_crtc->active = true;
3693
3694         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3695         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3696
3697         for_each_encoder_on_crtc(dev, crtc, encoder)
3698                 if (encoder->pre_enable)
3699                         encoder->pre_enable(encoder);
3700
3701         if (intel_crtc->config.has_pch_encoder) {
3702                 /* Note: FDI PLL enabling _must_ be done before we enable the
3703                  * cpu pipes, hence this is separate from all the other fdi/pch
3704                  * enabling. */
3705                 ironlake_fdi_pll_enable(intel_crtc);
3706         } else {
3707                 assert_fdi_tx_disabled(dev_priv, pipe);
3708                 assert_fdi_rx_disabled(dev_priv, pipe);
3709         }
3710
3711         ironlake_pfit_enable(intel_crtc);
3712
3713         /*
3714          * On ILK+ LUT must be loaded before the pipe is running but with
3715          * clocks enabled
3716          */
3717         intel_crtc_load_lut(crtc);
3718
3719         intel_update_watermarks(crtc);
3720         intel_enable_pipe(intel_crtc);
3721
3722         if (intel_crtc->config.has_pch_encoder)
3723                 ironlake_pch_enable(crtc);
3724
3725         for_each_encoder_on_crtc(dev, crtc, encoder)
3726                 encoder->enable(encoder);
3727
3728         if (HAS_PCH_CPT(dev))
3729                 cpt_verify_modeset(dev, intel_crtc->pipe);
3730
3731         ilk_crtc_enable_planes(crtc);
3732
3733         /*
3734          * There seems to be a race in PCH platform hw (at least on some
3735          * outputs) where an enabled pipe still completes any pageflip right
3736          * away (as if the pipe is off) instead of waiting for vblank. As soon
3737          * as the first vblank happend, everything works as expected. Hence just
3738          * wait for one vblank before returning to avoid strange things
3739          * happening.
3740          */
3741         intel_wait_for_vblank(dev, intel_crtc->pipe);
3742 }
3743
3744 /* IPS only exists on ULT machines and is tied to pipe A. */
3745 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3746 {
3747         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3748 }
3749
3750 /*
3751  * This implements the workaround described in the "notes" section of the mode
3752  * set sequence documentation. When going from no pipes or single pipe to
3753  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3754  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3755  */
3756 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3757 {
3758         struct drm_device *dev = crtc->base.dev;
3759         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3760
3761         /* We want to get the other_active_crtc only if there's only 1 other
3762          * active crtc. */
3763         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3764                 if (!crtc_it->active || crtc_it == crtc)
3765                         continue;
3766
3767                 if (other_active_crtc)
3768                         return;
3769
3770                 other_active_crtc = crtc_it;
3771         }
3772         if (!other_active_crtc)
3773                 return;
3774
3775         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3776         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3777 }
3778
3779 static void haswell_crtc_enable(struct drm_crtc *crtc)
3780 {
3781         struct drm_device *dev = crtc->dev;
3782         struct drm_i915_private *dev_priv = dev->dev_private;
3783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3784         struct intel_encoder *encoder;
3785         int pipe = intel_crtc->pipe;
3786
3787         WARN_ON(!crtc->enabled);
3788
3789         if (intel_crtc->active)
3790                 return;
3791
3792         intel_crtc->active = true;
3793
3794         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3795         if (intel_crtc->config.has_pch_encoder)
3796                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3797
3798         if (intel_crtc->config.has_pch_encoder)
3799                 dev_priv->display.fdi_link_train(crtc);
3800
3801         for_each_encoder_on_crtc(dev, crtc, encoder)
3802                 if (encoder->pre_enable)
3803                         encoder->pre_enable(encoder);
3804
3805         intel_ddi_enable_pipe_clock(intel_crtc);
3806
3807         ironlake_pfit_enable(intel_crtc);
3808
3809         /*
3810          * On ILK+ LUT must be loaded before the pipe is running but with
3811          * clocks enabled
3812          */
3813         intel_crtc_load_lut(crtc);
3814
3815         intel_ddi_set_pipe_settings(crtc);
3816         intel_ddi_enable_transcoder_func(crtc);
3817
3818         intel_update_watermarks(crtc);
3819         intel_enable_pipe(intel_crtc);
3820
3821         if (intel_crtc->config.has_pch_encoder)
3822                 lpt_pch_enable(crtc);
3823
3824         for_each_encoder_on_crtc(dev, crtc, encoder) {
3825                 encoder->enable(encoder);
3826                 intel_opregion_notify_encoder(encoder, true);
3827         }
3828
3829         /* If we change the relative order between pipe/planes enabling, we need
3830          * to change the workaround. */
3831         haswell_mode_set_planes_workaround(intel_crtc);
3832         ilk_crtc_enable_planes(crtc);
3833 }
3834
3835 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3836 {
3837         struct drm_device *dev = crtc->base.dev;
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839         int pipe = crtc->pipe;
3840
3841         /* To avoid upsetting the power well on haswell only disable the pfit if
3842          * it's in use. The hw state code will make sure we get this right. */
3843         if (crtc->config.pch_pfit.enabled) {
3844                 I915_WRITE(PF_CTL(pipe), 0);
3845                 I915_WRITE(PF_WIN_POS(pipe), 0);
3846                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3847         }
3848 }
3849
3850 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3851 {
3852         struct drm_device *dev = crtc->dev;
3853         struct drm_i915_private *dev_priv = dev->dev_private;
3854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3855         struct intel_encoder *encoder;
3856         int pipe = intel_crtc->pipe;
3857         u32 reg, temp;
3858
3859         if (!intel_crtc->active)
3860                 return;
3861
3862         ilk_crtc_disable_planes(crtc);
3863
3864         for_each_encoder_on_crtc(dev, crtc, encoder)
3865                 encoder->disable(encoder);
3866
3867         if (intel_crtc->config.has_pch_encoder)
3868                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3869
3870         intel_disable_pipe(dev_priv, pipe);
3871
3872         ironlake_pfit_disable(intel_crtc);
3873
3874         for_each_encoder_on_crtc(dev, crtc, encoder)
3875                 if (encoder->post_disable)
3876                         encoder->post_disable(encoder);
3877
3878         if (intel_crtc->config.has_pch_encoder) {
3879                 ironlake_fdi_disable(crtc);
3880
3881                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3882                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3883
3884                 if (HAS_PCH_CPT(dev)) {
3885                         /* disable TRANS_DP_CTL */
3886                         reg = TRANS_DP_CTL(pipe);
3887                         temp = I915_READ(reg);
3888                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3889                                   TRANS_DP_PORT_SEL_MASK);
3890                         temp |= TRANS_DP_PORT_SEL_NONE;
3891                         I915_WRITE(reg, temp);
3892
3893                         /* disable DPLL_SEL */
3894                         temp = I915_READ(PCH_DPLL_SEL);
3895                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3896                         I915_WRITE(PCH_DPLL_SEL, temp);
3897                 }
3898
3899                 /* disable PCH DPLL */
3900                 intel_disable_shared_dpll(intel_crtc);
3901
3902                 ironlake_fdi_pll_disable(intel_crtc);
3903         }
3904
3905         intel_crtc->active = false;
3906         intel_update_watermarks(crtc);
3907
3908         mutex_lock(&dev->struct_mutex);
3909         intel_update_fbc(dev);
3910         mutex_unlock(&dev->struct_mutex);
3911 }
3912
3913 static void haswell_crtc_disable(struct drm_crtc *crtc)
3914 {
3915         struct drm_device *dev = crtc->dev;
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918         struct intel_encoder *encoder;
3919         int pipe = intel_crtc->pipe;
3920         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3921
3922         if (!intel_crtc->active)
3923                 return;
3924
3925         ilk_crtc_disable_planes(crtc);
3926
3927         for_each_encoder_on_crtc(dev, crtc, encoder) {
3928                 intel_opregion_notify_encoder(encoder, false);
3929                 encoder->disable(encoder);
3930         }
3931
3932         if (intel_crtc->config.has_pch_encoder)
3933                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3934         intel_disable_pipe(dev_priv, pipe);
3935
3936         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3937
3938         ironlake_pfit_disable(intel_crtc);
3939
3940         intel_ddi_disable_pipe_clock(intel_crtc);
3941
3942         for_each_encoder_on_crtc(dev, crtc, encoder)
3943                 if (encoder->post_disable)
3944                         encoder->post_disable(encoder);
3945
3946         if (intel_crtc->config.has_pch_encoder) {
3947                 lpt_disable_pch_transcoder(dev_priv);
3948                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3949                 intel_ddi_fdi_disable(crtc);
3950         }
3951
3952         intel_crtc->active = false;
3953         intel_update_watermarks(crtc);
3954
3955         mutex_lock(&dev->struct_mutex);
3956         intel_update_fbc(dev);
3957         mutex_unlock(&dev->struct_mutex);
3958 }
3959
3960 static void ironlake_crtc_off(struct drm_crtc *crtc)
3961 {
3962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3963         intel_put_shared_dpll(intel_crtc);
3964 }
3965
3966 static void haswell_crtc_off(struct drm_crtc *crtc)
3967 {
3968         intel_ddi_put_crtc_pll(crtc);
3969 }
3970
3971 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3972 {
3973         if (!enable && intel_crtc->overlay) {
3974                 struct drm_device *dev = intel_crtc->base.dev;
3975                 struct drm_i915_private *dev_priv = dev->dev_private;
3976
3977                 mutex_lock(&dev->struct_mutex);
3978                 dev_priv->mm.interruptible = false;
3979                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3980                 dev_priv->mm.interruptible = true;
3981                 mutex_unlock(&dev->struct_mutex);
3982         }
3983
3984         /* Let userspace switch the overlay on again. In most cases userspace
3985          * has to recompute where to put it anyway.
3986          */
3987 }
3988
3989 /**
3990  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3991  * cursor plane briefly if not already running after enabling the display
3992  * plane.
3993  * This workaround avoids occasional blank screens when self refresh is
3994  * enabled.
3995  */
3996 static void
3997 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3998 {
3999         u32 cntl = I915_READ(CURCNTR(pipe));
4000
4001         if ((cntl & CURSOR_MODE) == 0) {
4002                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4003
4004                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4005                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4006                 intel_wait_for_vblank(dev_priv->dev, pipe);
4007                 I915_WRITE(CURCNTR(pipe), cntl);
4008                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4009                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4010         }
4011 }
4012
4013 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4014 {
4015         struct drm_device *dev = crtc->base.dev;
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017         struct intel_crtc_config *pipe_config = &crtc->config;
4018
4019         if (!crtc->config.gmch_pfit.control)
4020                 return;
4021
4022         /*
4023          * The panel fitter should only be adjusted whilst the pipe is disabled,
4024          * according to register description and PRM.
4025          */
4026         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4027         assert_pipe_disabled(dev_priv, crtc->pipe);
4028
4029         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4030         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4031
4032         /* Border color in case we don't scale up to the full screen. Black by
4033          * default, change to something else for debugging. */
4034         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4035 }
4036
4037 #define for_each_power_domain(domain, mask)                             \
4038         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4039                 if ((1 << (domain)) & (mask))
4040
4041 enum intel_display_power_domain
4042 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4043 {
4044         struct drm_device *dev = intel_encoder->base.dev;
4045         struct intel_digital_port *intel_dig_port;
4046
4047         switch (intel_encoder->type) {
4048         case INTEL_OUTPUT_UNKNOWN:
4049                 /* Only DDI platforms should ever use this output type */
4050                 WARN_ON_ONCE(!HAS_DDI(dev));
4051         case INTEL_OUTPUT_DISPLAYPORT:
4052         case INTEL_OUTPUT_HDMI:
4053         case INTEL_OUTPUT_EDP:
4054                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4055                 switch (intel_dig_port->port) {
4056                 case PORT_A:
4057                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4058                 case PORT_B:
4059                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4060                 case PORT_C:
4061                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4062                 case PORT_D:
4063                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4064                 default:
4065                         WARN_ON_ONCE(1);
4066                         return POWER_DOMAIN_PORT_OTHER;
4067                 }
4068         case INTEL_OUTPUT_ANALOG:
4069                 return POWER_DOMAIN_PORT_CRT;
4070         case INTEL_OUTPUT_DSI:
4071                 return POWER_DOMAIN_PORT_DSI;
4072         default:
4073                 return POWER_DOMAIN_PORT_OTHER;
4074         }
4075 }
4076
4077 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4078 {
4079         struct drm_device *dev = crtc->dev;
4080         struct intel_encoder *intel_encoder;
4081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4082         enum pipe pipe = intel_crtc->pipe;
4083         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4084         unsigned long mask;
4085         enum transcoder transcoder;
4086
4087         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4088
4089         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4090         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4091         if (pfit_enabled)
4092                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4093
4094         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4095                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4096
4097         return mask;
4098 }
4099
4100 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4101                                   bool enable)
4102 {
4103         if (dev_priv->power_domains.init_power_on == enable)
4104                 return;
4105
4106         if (enable)
4107                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4108         else
4109                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4110
4111         dev_priv->power_domains.init_power_on = enable;
4112 }
4113
4114 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4115 {
4116         struct drm_i915_private *dev_priv = dev->dev_private;
4117         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4118         struct intel_crtc *crtc;
4119
4120         /*
4121          * First get all needed power domains, then put all unneeded, to avoid
4122          * any unnecessary toggling of the power wells.
4123          */
4124         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4125                 enum intel_display_power_domain domain;
4126
4127                 if (!crtc->base.enabled)
4128                         continue;
4129
4130                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4131
4132                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4133                         intel_display_power_get(dev_priv, domain);
4134         }
4135
4136         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4137                 enum intel_display_power_domain domain;
4138
4139                 for_each_power_domain(domain, crtc->enabled_power_domains)
4140                         intel_display_power_put(dev_priv, domain);
4141
4142                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4143         }
4144
4145         intel_display_set_init_power(dev_priv, false);
4146 }
4147
4148 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4149 {
4150         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4151
4152         /* Obtain SKU information */
4153         mutex_lock(&dev_priv->dpio_lock);
4154         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4155                 CCK_FUSE_HPLL_FREQ_MASK;
4156         mutex_unlock(&dev_priv->dpio_lock);
4157
4158         return vco_freq[hpll_freq];
4159 }
4160
4161 /* Adjust CDclk dividers to allow high res or save power if possible */
4162 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4163 {
4164         struct drm_i915_private *dev_priv = dev->dev_private;
4165         u32 val, cmd;
4166
4167         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4168         dev_priv->vlv_cdclk_freq = cdclk;
4169
4170         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4171                 cmd = 2;
4172         else if (cdclk == 266)
4173                 cmd = 1;
4174         else
4175                 cmd = 0;
4176
4177         mutex_lock(&dev_priv->rps.hw_lock);
4178         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4179         val &= ~DSPFREQGUAR_MASK;
4180         val |= (cmd << DSPFREQGUAR_SHIFT);
4181         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4182         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4183                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4184                      50)) {
4185                 DRM_ERROR("timed out waiting for CDclk change\n");
4186         }
4187         mutex_unlock(&dev_priv->rps.hw_lock);
4188
4189         if (cdclk == 400) {
4190                 u32 divider, vco;
4191
4192                 vco = valleyview_get_vco(dev_priv);
4193                 divider = ((vco << 1) / cdclk) - 1;
4194
4195                 mutex_lock(&dev_priv->dpio_lock);
4196                 /* adjust cdclk divider */
4197                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4198                 val &= ~0xf;
4199                 val |= divider;
4200                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4201                 mutex_unlock(&dev_priv->dpio_lock);
4202         }
4203
4204         mutex_lock(&dev_priv->dpio_lock);
4205         /* adjust self-refresh exit latency value */
4206         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4207         val &= ~0x7f;
4208
4209         /*
4210          * For high bandwidth configs, we set a higher latency in the bunit
4211          * so that the core display fetch happens in time to avoid underruns.
4212          */
4213         if (cdclk == 400)
4214                 val |= 4500 / 250; /* 4.5 usec */
4215         else
4216                 val |= 3000 / 250; /* 3.0 usec */
4217         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4218         mutex_unlock(&dev_priv->dpio_lock);
4219
4220         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4221         intel_i2c_reset(dev);
4222 }
4223
4224 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4225 {
4226         int cur_cdclk, vco;
4227         int divider;
4228
4229         vco = valleyview_get_vco(dev_priv);
4230
4231         mutex_lock(&dev_priv->dpio_lock);
4232         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4233         mutex_unlock(&dev_priv->dpio_lock);
4234
4235         divider &= 0xf;
4236
4237         cur_cdclk = (vco << 1) / (divider + 1);
4238
4239         return cur_cdclk;
4240 }
4241
4242 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4243                                  int max_pixclk)
4244 {
4245         /*
4246          * Really only a few cases to deal with, as only 4 CDclks are supported:
4247          *   200MHz
4248          *   267MHz
4249          *   320MHz
4250          *   400MHz
4251          * So we check to see whether we're above 90% of the lower bin and
4252          * adjust if needed.
4253          */
4254         if (max_pixclk > 288000) {
4255                 return 400;
4256         } else if (max_pixclk > 240000) {
4257                 return 320;
4258         } else
4259                 return 266;
4260         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4261 }
4262
4263 /* compute the max pixel clock for new configuration */
4264 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4265 {
4266         struct drm_device *dev = dev_priv->dev;
4267         struct intel_crtc *intel_crtc;
4268         int max_pixclk = 0;
4269
4270         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4271                             base.head) {
4272                 if (intel_crtc->new_enabled)
4273                         max_pixclk = max(max_pixclk,
4274                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4275         }
4276
4277         return max_pixclk;
4278 }
4279
4280 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4281                                             unsigned *prepare_pipes)
4282 {
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         struct intel_crtc *intel_crtc;
4285         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4286
4287         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4288             dev_priv->vlv_cdclk_freq)
4289                 return;
4290
4291         /* disable/enable all currently active pipes while we change cdclk */
4292         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4293                             base.head)
4294                 if (intel_crtc->base.enabled)
4295                         *prepare_pipes |= (1 << intel_crtc->pipe);
4296 }
4297
4298 static void valleyview_modeset_global_resources(struct drm_device *dev)
4299 {
4300         struct drm_i915_private *dev_priv = dev->dev_private;
4301         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4302         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4303
4304         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4305                 valleyview_set_cdclk(dev, req_cdclk);
4306         modeset_update_crtc_power_domains(dev);
4307 }
4308
4309 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4310 {
4311         struct drm_device *dev = crtc->dev;
4312         struct drm_i915_private *dev_priv = dev->dev_private;
4313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4314         struct intel_encoder *encoder;
4315         int pipe = intel_crtc->pipe;
4316         int plane = intel_crtc->plane;
4317         bool is_dsi;
4318
4319         WARN_ON(!crtc->enabled);
4320
4321         if (intel_crtc->active)
4322                 return;
4323
4324         intel_crtc->active = true;
4325
4326         for_each_encoder_on_crtc(dev, crtc, encoder)
4327                 if (encoder->pre_pll_enable)
4328                         encoder->pre_pll_enable(encoder);
4329
4330         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4331
4332         if (!is_dsi)
4333                 vlv_enable_pll(intel_crtc);
4334
4335         for_each_encoder_on_crtc(dev, crtc, encoder)
4336                 if (encoder->pre_enable)
4337                         encoder->pre_enable(encoder);
4338
4339         i9xx_pfit_enable(intel_crtc);
4340
4341         intel_crtc_load_lut(crtc);
4342
4343         intel_update_watermarks(crtc);
4344         intel_enable_pipe(intel_crtc);
4345         intel_wait_for_vblank(dev_priv->dev, pipe);
4346         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4347
4348         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4349         intel_enable_planes(crtc);
4350         intel_crtc_update_cursor(crtc, true);
4351
4352         intel_update_fbc(dev);
4353
4354         for_each_encoder_on_crtc(dev, crtc, encoder)
4355                 encoder->enable(encoder);
4356 }
4357
4358 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4359 {
4360         struct drm_device *dev = crtc->dev;
4361         struct drm_i915_private *dev_priv = dev->dev_private;
4362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4363         struct intel_encoder *encoder;
4364         int pipe = intel_crtc->pipe;
4365         int plane = intel_crtc->plane;
4366
4367         WARN_ON(!crtc->enabled);
4368
4369         if (intel_crtc->active)
4370                 return;
4371
4372         intel_crtc->active = true;
4373
4374         for_each_encoder_on_crtc(dev, crtc, encoder)
4375                 if (encoder->pre_enable)
4376                         encoder->pre_enable(encoder);
4377
4378         i9xx_enable_pll(intel_crtc);
4379
4380         i9xx_pfit_enable(intel_crtc);
4381
4382         intel_crtc_load_lut(crtc);
4383
4384         intel_update_watermarks(crtc);
4385         intel_enable_pipe(intel_crtc);
4386         intel_wait_for_vblank(dev_priv->dev, pipe);
4387         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4388
4389         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4390         intel_enable_planes(crtc);
4391         /* The fixup needs to happen before cursor is enabled */
4392         if (IS_G4X(dev))
4393                 g4x_fixup_plane(dev_priv, pipe);
4394         intel_crtc_update_cursor(crtc, true);
4395
4396         /* Give the overlay scaler a chance to enable if it's on this pipe */
4397         intel_crtc_dpms_overlay(intel_crtc, true);
4398
4399         intel_update_fbc(dev);
4400
4401         for_each_encoder_on_crtc(dev, crtc, encoder)
4402                 encoder->enable(encoder);
4403 }
4404
4405 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4406 {
4407         struct drm_device *dev = crtc->base.dev;
4408         struct drm_i915_private *dev_priv = dev->dev_private;
4409
4410         if (!crtc->config.gmch_pfit.control)
4411                 return;
4412
4413         assert_pipe_disabled(dev_priv, crtc->pipe);
4414
4415         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4416                          I915_READ(PFIT_CONTROL));
4417         I915_WRITE(PFIT_CONTROL, 0);
4418 }
4419
4420 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4421 {
4422         struct drm_device *dev = crtc->dev;
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425         struct intel_encoder *encoder;
4426         int pipe = intel_crtc->pipe;
4427         int plane = intel_crtc->plane;
4428
4429         if (!intel_crtc->active)
4430                 return;
4431
4432         for_each_encoder_on_crtc(dev, crtc, encoder)
4433                 encoder->disable(encoder);
4434
4435         /* Give the overlay scaler a chance to disable if it's on this pipe */
4436         intel_crtc_wait_for_pending_flips(crtc);
4437         drm_vblank_off(dev, pipe);
4438
4439         if (dev_priv->fbc.plane == plane)
4440                 intel_disable_fbc(dev);
4441
4442         intel_crtc_dpms_overlay(intel_crtc, false);
4443         intel_crtc_update_cursor(crtc, false);
4444         intel_disable_planes(crtc);
4445         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4446
4447         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4448         intel_disable_pipe(dev_priv, pipe);
4449
4450         i9xx_pfit_disable(intel_crtc);
4451
4452         for_each_encoder_on_crtc(dev, crtc, encoder)
4453                 if (encoder->post_disable)
4454                         encoder->post_disable(encoder);
4455
4456         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4457                 vlv_disable_pll(dev_priv, pipe);
4458         else if (!IS_VALLEYVIEW(dev))
4459                 i9xx_disable_pll(dev_priv, pipe);
4460
4461         intel_crtc->active = false;
4462         intel_update_watermarks(crtc);
4463
4464         intel_update_fbc(dev);
4465 }
4466
4467 static void i9xx_crtc_off(struct drm_crtc *crtc)
4468 {
4469 }
4470
4471 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4472                                     bool enabled)
4473 {
4474         struct drm_device *dev = crtc->dev;
4475         struct drm_i915_master_private *master_priv;
4476         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4477         int pipe = intel_crtc->pipe;
4478
4479         if (!dev->primary->master)
4480                 return;
4481
4482         master_priv = dev->primary->master->driver_priv;
4483         if (!master_priv->sarea_priv)
4484                 return;
4485
4486         switch (pipe) {
4487         case 0:
4488                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4489                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4490                 break;
4491         case 1:
4492                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4493                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4494                 break;
4495         default:
4496                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4497                 break;
4498         }
4499 }
4500
4501 /**
4502  * Sets the power management mode of the pipe and plane.
4503  */
4504 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4505 {
4506         struct drm_device *dev = crtc->dev;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         struct intel_encoder *intel_encoder;
4509         bool enable = false;
4510
4511         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4512                 enable |= intel_encoder->connectors_active;
4513
4514         if (enable)
4515                 dev_priv->display.crtc_enable(crtc);
4516         else
4517                 dev_priv->display.crtc_disable(crtc);
4518
4519         intel_crtc_update_sarea(crtc, enable);
4520 }
4521
4522 static void intel_crtc_disable(struct drm_crtc *crtc)
4523 {
4524         struct drm_device *dev = crtc->dev;
4525         struct drm_connector *connector;
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4528
4529         /* crtc should still be enabled when we disable it. */
4530         WARN_ON(!crtc->enabled);
4531
4532         dev_priv->display.crtc_disable(crtc);
4533         intel_crtc->eld_vld = false;
4534         intel_crtc_update_sarea(crtc, false);
4535         dev_priv->display.off(crtc);
4536
4537         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4538         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4539         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4540
4541         if (crtc->primary->fb) {
4542                 mutex_lock(&dev->struct_mutex);
4543                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4544                 mutex_unlock(&dev->struct_mutex);
4545                 crtc->primary->fb = NULL;
4546         }
4547
4548         /* Update computed state. */
4549         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4550                 if (!connector->encoder || !connector->encoder->crtc)
4551                         continue;
4552
4553                 if (connector->encoder->crtc != crtc)
4554                         continue;
4555
4556                 connector->dpms = DRM_MODE_DPMS_OFF;
4557                 to_intel_encoder(connector->encoder)->connectors_active = false;
4558         }
4559 }
4560
4561 void intel_encoder_destroy(struct drm_encoder *encoder)
4562 {
4563         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4564
4565         drm_encoder_cleanup(encoder);
4566         kfree(intel_encoder);
4567 }
4568
4569 /* Simple dpms helper for encoders with just one connector, no cloning and only
4570  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4571  * state of the entire output pipe. */
4572 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4573 {
4574         if (mode == DRM_MODE_DPMS_ON) {
4575                 encoder->connectors_active = true;
4576
4577                 intel_crtc_update_dpms(encoder->base.crtc);
4578         } else {
4579                 encoder->connectors_active = false;
4580
4581                 intel_crtc_update_dpms(encoder->base.crtc);
4582         }
4583 }
4584
4585 /* Cross check the actual hw state with our own modeset state tracking (and it's
4586  * internal consistency). */
4587 static void intel_connector_check_state(struct intel_connector *connector)
4588 {
4589         if (connector->get_hw_state(connector)) {
4590                 struct intel_encoder *encoder = connector->encoder;
4591                 struct drm_crtc *crtc;
4592                 bool encoder_enabled;
4593                 enum pipe pipe;
4594
4595                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4596                               connector->base.base.id,
4597                               drm_get_connector_name(&connector->base));
4598
4599                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4600                      "wrong connector dpms state\n");
4601                 WARN(connector->base.encoder != &encoder->base,
4602                      "active connector not linked to encoder\n");
4603                 WARN(!encoder->connectors_active,
4604                      "encoder->connectors_active not set\n");
4605
4606                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4607                 WARN(!encoder_enabled, "encoder not enabled\n");
4608                 if (WARN_ON(!encoder->base.crtc))
4609                         return;
4610
4611                 crtc = encoder->base.crtc;
4612
4613                 WARN(!crtc->enabled, "crtc not enabled\n");
4614                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4615                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4616                      "encoder active on the wrong pipe\n");
4617         }
4618 }
4619
4620 /* Even simpler default implementation, if there's really no special case to
4621  * consider. */
4622 void intel_connector_dpms(struct drm_connector *connector, int mode)
4623 {
4624         /* All the simple cases only support two dpms states. */
4625         if (mode != DRM_MODE_DPMS_ON)
4626                 mode = DRM_MODE_DPMS_OFF;
4627
4628         if (mode == connector->dpms)
4629                 return;
4630
4631         connector->dpms = mode;
4632
4633         /* Only need to change hw state when actually enabled */
4634         if (connector->encoder)
4635                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4636
4637         intel_modeset_check_state(connector->dev);
4638 }
4639
4640 /* Simple connector->get_hw_state implementation for encoders that support only
4641  * one connector and no cloning and hence the encoder state determines the state
4642  * of the connector. */
4643 bool intel_connector_get_hw_state(struct intel_connector *connector)
4644 {
4645         enum pipe pipe = 0;
4646         struct intel_encoder *encoder = connector->encoder;
4647
4648         return encoder->get_hw_state(encoder, &pipe);
4649 }
4650
4651 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4652                                      struct intel_crtc_config *pipe_config)
4653 {
4654         struct drm_i915_private *dev_priv = dev->dev_private;
4655         struct intel_crtc *pipe_B_crtc =
4656                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4657
4658         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4659                       pipe_name(pipe), pipe_config->fdi_lanes);
4660         if (pipe_config->fdi_lanes > 4) {
4661                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4662                               pipe_name(pipe), pipe_config->fdi_lanes);
4663                 return false;
4664         }
4665
4666         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4667                 if (pipe_config->fdi_lanes > 2) {
4668                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4669                                       pipe_config->fdi_lanes);
4670                         return false;
4671                 } else {
4672                         return true;
4673                 }
4674         }
4675
4676         if (INTEL_INFO(dev)->num_pipes == 2)
4677                 return true;
4678
4679         /* Ivybridge 3 pipe is really complicated */
4680         switch (pipe) {
4681         case PIPE_A:
4682                 return true;
4683         case PIPE_B:
4684                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4685                     pipe_config->fdi_lanes > 2) {
4686                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4687                                       pipe_name(pipe), pipe_config->fdi_lanes);
4688                         return false;
4689                 }
4690                 return true;
4691         case PIPE_C:
4692                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4693                     pipe_B_crtc->config.fdi_lanes <= 2) {
4694                         if (pipe_config->fdi_lanes > 2) {
4695                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4696                                               pipe_name(pipe), pipe_config->fdi_lanes);
4697                                 return false;
4698                         }
4699                 } else {
4700                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4701                         return false;
4702                 }
4703                 return true;
4704         default:
4705                 BUG();
4706         }
4707 }
4708
4709 #define RETRY 1
4710 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4711                                        struct intel_crtc_config *pipe_config)
4712 {
4713         struct drm_device *dev = intel_crtc->base.dev;
4714         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4715         int lane, link_bw, fdi_dotclock;
4716         bool setup_ok, needs_recompute = false;
4717
4718 retry:
4719         /* FDI is a binary signal running at ~2.7GHz, encoding
4720          * each output octet as 10 bits. The actual frequency
4721          * is stored as a divider into a 100MHz clock, and the
4722          * mode pixel clock is stored in units of 1KHz.
4723          * Hence the bw of each lane in terms of the mode signal
4724          * is:
4725          */
4726         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4727
4728         fdi_dotclock = adjusted_mode->crtc_clock;
4729
4730         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4731                                            pipe_config->pipe_bpp);
4732
4733         pipe_config->fdi_lanes = lane;
4734
4735         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4736                                link_bw, &pipe_config->fdi_m_n);
4737
4738         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4739                                             intel_crtc->pipe, pipe_config);
4740         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4741                 pipe_config->pipe_bpp -= 2*3;
4742                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4743                               pipe_config->pipe_bpp);
4744                 needs_recompute = true;
4745                 pipe_config->bw_constrained = true;
4746
4747                 goto retry;
4748         }
4749
4750         if (needs_recompute)
4751                 return RETRY;
4752
4753         return setup_ok ? 0 : -EINVAL;
4754 }
4755
4756 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4757                                    struct intel_crtc_config *pipe_config)
4758 {
4759         pipe_config->ips_enabled = i915.enable_ips &&
4760                                    hsw_crtc_supports_ips(crtc) &&
4761                                    pipe_config->pipe_bpp <= 24;
4762 }
4763
4764 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4765                                      struct intel_crtc_config *pipe_config)
4766 {
4767         struct drm_device *dev = crtc->base.dev;
4768         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4769
4770         /* FIXME should check pixel clock limits on all platforms */
4771         if (INTEL_INFO(dev)->gen < 4) {
4772                 struct drm_i915_private *dev_priv = dev->dev_private;
4773                 int clock_limit =
4774                         dev_priv->display.get_display_clock_speed(dev);
4775
4776                 /*
4777                  * Enable pixel doubling when the dot clock
4778                  * is > 90% of the (display) core speed.
4779                  *
4780                  * GDG double wide on either pipe,
4781                  * otherwise pipe A only.
4782                  */
4783                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4784                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4785                         clock_limit *= 2;
4786                         pipe_config->double_wide = true;
4787                 }
4788
4789                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4790                         return -EINVAL;
4791         }
4792
4793         /*
4794          * Pipe horizontal size must be even in:
4795          * - DVO ganged mode
4796          * - LVDS dual channel mode
4797          * - Double wide pipe
4798          */
4799         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4800              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4801                 pipe_config->pipe_src_w &= ~1;
4802
4803         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4804          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4805          */
4806         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4807                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4808                 return -EINVAL;
4809
4810         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4811                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4812         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4813                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4814                  * for lvds. */
4815                 pipe_config->pipe_bpp = 8*3;
4816         }
4817
4818         if (HAS_IPS(dev))
4819                 hsw_compute_ips_config(crtc, pipe_config);
4820
4821         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4822          * clock survives for now. */
4823         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4824                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4825
4826         if (pipe_config->has_pch_encoder)
4827                 return ironlake_fdi_compute_config(crtc, pipe_config);
4828
4829         return 0;
4830 }
4831
4832 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4833 {
4834         return 400000; /* FIXME */
4835 }
4836
4837 static int i945_get_display_clock_speed(struct drm_device *dev)
4838 {
4839         return 400000;
4840 }
4841
4842 static int i915_get_display_clock_speed(struct drm_device *dev)
4843 {
4844         return 333000;
4845 }
4846
4847 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4848 {
4849         return 200000;
4850 }
4851
4852 static int pnv_get_display_clock_speed(struct drm_device *dev)
4853 {
4854         u16 gcfgc = 0;
4855
4856         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4857
4858         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4859         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4860                 return 267000;
4861         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4862                 return 333000;
4863         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4864                 return 444000;
4865         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4866                 return 200000;
4867         default:
4868                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4869         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4870                 return 133000;
4871         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4872                 return 167000;
4873         }
4874 }
4875
4876 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4877 {
4878         u16 gcfgc = 0;
4879
4880         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4881
4882         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4883                 return 133000;
4884         else {
4885                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4886                 case GC_DISPLAY_CLOCK_333_MHZ:
4887                         return 333000;
4888                 default:
4889                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4890                         return 190000;
4891                 }
4892         }
4893 }
4894
4895 static int i865_get_display_clock_speed(struct drm_device *dev)
4896 {
4897         return 266000;
4898 }
4899
4900 static int i855_get_display_clock_speed(struct drm_device *dev)
4901 {
4902         u16 hpllcc = 0;
4903         /* Assume that the hardware is in the high speed state.  This
4904          * should be the default.
4905          */
4906         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4907         case GC_CLOCK_133_200:
4908         case GC_CLOCK_100_200:
4909                 return 200000;
4910         case GC_CLOCK_166_250:
4911                 return 250000;
4912         case GC_CLOCK_100_133:
4913                 return 133000;
4914         }
4915
4916         /* Shouldn't happen */
4917         return 0;
4918 }
4919
4920 static int i830_get_display_clock_speed(struct drm_device *dev)
4921 {
4922         return 133000;
4923 }
4924
4925 static void
4926 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4927 {
4928         while (*num > DATA_LINK_M_N_MASK ||
4929                *den > DATA_LINK_M_N_MASK) {
4930                 *num >>= 1;
4931                 *den >>= 1;
4932         }
4933 }
4934
4935 static void compute_m_n(unsigned int m, unsigned int n,
4936                         uint32_t *ret_m, uint32_t *ret_n)
4937 {
4938         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4939         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4940         intel_reduce_m_n_ratio(ret_m, ret_n);
4941 }
4942
4943 void
4944 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4945                        int pixel_clock, int link_clock,
4946                        struct intel_link_m_n *m_n)
4947 {
4948         m_n->tu = 64;
4949
4950         compute_m_n(bits_per_pixel * pixel_clock,
4951                     link_clock * nlanes * 8,
4952                     &m_n->gmch_m, &m_n->gmch_n);
4953
4954         compute_m_n(pixel_clock, link_clock,
4955                     &m_n->link_m, &m_n->link_n);
4956 }
4957
4958 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4959 {
4960         if (i915.panel_use_ssc >= 0)
4961                 return i915.panel_use_ssc != 0;
4962         return dev_priv->vbt.lvds_use_ssc
4963                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4964 }
4965
4966 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4967 {
4968         struct drm_device *dev = crtc->dev;
4969         struct drm_i915_private *dev_priv = dev->dev_private;
4970         int refclk;
4971
4972         if (IS_VALLEYVIEW(dev)) {
4973                 refclk = 100000;
4974         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4975             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4976                 refclk = dev_priv->vbt.lvds_ssc_freq;
4977                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
4978         } else if (!IS_GEN2(dev)) {
4979                 refclk = 96000;
4980         } else {
4981                 refclk = 48000;
4982         }
4983
4984         return refclk;
4985 }
4986
4987 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4988 {
4989         return (1 << dpll->n) << 16 | dpll->m2;
4990 }
4991
4992 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4993 {
4994         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4995 }
4996
4997 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4998                                      intel_clock_t *reduced_clock)
4999 {
5000         struct drm_device *dev = crtc->base.dev;
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         int pipe = crtc->pipe;
5003         u32 fp, fp2 = 0;
5004
5005         if (IS_PINEVIEW(dev)) {
5006                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5007                 if (reduced_clock)
5008                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5009         } else {
5010                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5011                 if (reduced_clock)
5012                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5013         }
5014
5015         I915_WRITE(FP0(pipe), fp);
5016         crtc->config.dpll_hw_state.fp0 = fp;
5017
5018         crtc->lowfreq_avail = false;
5019         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5020             reduced_clock && i915.powersave) {
5021                 I915_WRITE(FP1(pipe), fp2);
5022                 crtc->config.dpll_hw_state.fp1 = fp2;
5023                 crtc->lowfreq_avail = true;
5024         } else {
5025                 I915_WRITE(FP1(pipe), fp);
5026                 crtc->config.dpll_hw_state.fp1 = fp;
5027         }
5028 }
5029
5030 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5031                 pipe)
5032 {
5033         u32 reg_val;
5034
5035         /*
5036          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5037          * and set it to a reasonable value instead.
5038          */
5039         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5040         reg_val &= 0xffffff00;
5041         reg_val |= 0x00000030;
5042         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5043
5044         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5045         reg_val &= 0x8cffffff;
5046         reg_val = 0x8c000000;
5047         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5048
5049         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5050         reg_val &= 0xffffff00;
5051         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5052
5053         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5054         reg_val &= 0x00ffffff;
5055         reg_val |= 0xb0000000;
5056         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5057 }
5058
5059 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5060                                          struct intel_link_m_n *m_n)
5061 {
5062         struct drm_device *dev = crtc->base.dev;
5063         struct drm_i915_private *dev_priv = dev->dev_private;
5064         int pipe = crtc->pipe;
5065
5066         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5067         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5068         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5069         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5070 }
5071
5072 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5073                                          struct intel_link_m_n *m_n)
5074 {
5075         struct drm_device *dev = crtc->base.dev;
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077         int pipe = crtc->pipe;
5078         enum transcoder transcoder = crtc->config.cpu_transcoder;
5079
5080         if (INTEL_INFO(dev)->gen >= 5) {
5081                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5082                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5083                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5084                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5085         } else {
5086                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5087                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5088                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5089                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5090         }
5091 }
5092
5093 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5094 {
5095         if (crtc->config.has_pch_encoder)
5096                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5097         else
5098                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5099 }
5100
5101 static void vlv_update_pll(struct intel_crtc *crtc)
5102 {
5103         struct drm_device *dev = crtc->base.dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         int pipe = crtc->pipe;
5106         u32 dpll, mdiv;
5107         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5108         u32 coreclk, reg_val, dpll_md;
5109
5110         mutex_lock(&dev_priv->dpio_lock);
5111
5112         bestn = crtc->config.dpll.n;
5113         bestm1 = crtc->config.dpll.m1;
5114         bestm2 = crtc->config.dpll.m2;
5115         bestp1 = crtc->config.dpll.p1;
5116         bestp2 = crtc->config.dpll.p2;
5117
5118         /* See eDP HDMI DPIO driver vbios notes doc */
5119
5120         /* PLL B needs special handling */
5121         if (pipe)
5122                 vlv_pllb_recal_opamp(dev_priv, pipe);
5123
5124         /* Set up Tx target for periodic Rcomp update */
5125         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5126
5127         /* Disable target IRef on PLL */
5128         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5129         reg_val &= 0x00ffffff;
5130         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5131
5132         /* Disable fast lock */
5133         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5134
5135         /* Set idtafcrecal before PLL is enabled */
5136         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5137         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5138         mdiv |= ((bestn << DPIO_N_SHIFT));
5139         mdiv |= (1 << DPIO_K_SHIFT);
5140
5141         /*
5142          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5143          * but we don't support that).
5144          * Note: don't use the DAC post divider as it seems unstable.
5145          */
5146         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5147         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5148
5149         mdiv |= DPIO_ENABLE_CALIBRATION;
5150         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5151
5152         /* Set HBR and RBR LPF coefficients */
5153         if (crtc->config.port_clock == 162000 ||
5154             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5155             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5156                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5157                                  0x009f0003);
5158         else
5159                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5160                                  0x00d0000f);
5161
5162         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5163             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5164                 /* Use SSC source */
5165                 if (!pipe)
5166                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5167                                          0x0df40000);
5168                 else
5169                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5170                                          0x0df70000);
5171         } else { /* HDMI or VGA */
5172                 /* Use bend source */
5173                 if (!pipe)
5174                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5175                                          0x0df70000);
5176                 else
5177                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5178                                          0x0df40000);
5179         }
5180
5181         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5182         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5183         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5184             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5185                 coreclk |= 0x01000000;
5186         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5187
5188         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5189
5190         /*
5191          * Enable DPIO clock input. We should never disable the reference
5192          * clock for pipe B, since VGA hotplug / manual detection depends
5193          * on it.
5194          */
5195         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5196                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5197         /* We should never disable this, set it here for state tracking */
5198         if (pipe == PIPE_B)
5199                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5200         dpll |= DPLL_VCO_ENABLE;
5201         crtc->config.dpll_hw_state.dpll = dpll;
5202
5203         dpll_md = (crtc->config.pixel_multiplier - 1)
5204                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5205         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5206
5207         mutex_unlock(&dev_priv->dpio_lock);
5208 }
5209
5210 static void i9xx_update_pll(struct intel_crtc *crtc,
5211                             intel_clock_t *reduced_clock,
5212                             int num_connectors)
5213 {
5214         struct drm_device *dev = crtc->base.dev;
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         u32 dpll;
5217         bool is_sdvo;
5218         struct dpll *clock = &crtc->config.dpll;
5219
5220         i9xx_update_pll_dividers(crtc, reduced_clock);
5221
5222         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5223                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5224
5225         dpll = DPLL_VGA_MODE_DIS;
5226
5227         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5228                 dpll |= DPLLB_MODE_LVDS;
5229         else
5230                 dpll |= DPLLB_MODE_DAC_SERIAL;
5231
5232         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5233                 dpll |= (crtc->config.pixel_multiplier - 1)
5234                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5235         }
5236
5237         if (is_sdvo)
5238                 dpll |= DPLL_SDVO_HIGH_SPEED;
5239
5240         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5241                 dpll |= DPLL_SDVO_HIGH_SPEED;
5242
5243         /* compute bitmask from p1 value */
5244         if (IS_PINEVIEW(dev))
5245                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5246         else {
5247                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5248                 if (IS_G4X(dev) && reduced_clock)
5249                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5250         }
5251         switch (clock->p2) {
5252         case 5:
5253                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5254                 break;
5255         case 7:
5256                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5257                 break;
5258         case 10:
5259                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5260                 break;
5261         case 14:
5262                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5263                 break;
5264         }
5265         if (INTEL_INFO(dev)->gen >= 4)
5266                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5267
5268         if (crtc->config.sdvo_tv_clock)
5269                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5270         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5271                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5272                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5273         else
5274                 dpll |= PLL_REF_INPUT_DREFCLK;
5275
5276         dpll |= DPLL_VCO_ENABLE;
5277         crtc->config.dpll_hw_state.dpll = dpll;
5278
5279         if (INTEL_INFO(dev)->gen >= 4) {
5280                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5281                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5282                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5283         }
5284 }
5285
5286 static void i8xx_update_pll(struct intel_crtc *crtc,
5287                             intel_clock_t *reduced_clock,
5288                             int num_connectors)
5289 {
5290         struct drm_device *dev = crtc->base.dev;
5291         struct drm_i915_private *dev_priv = dev->dev_private;
5292         u32 dpll;
5293         struct dpll *clock = &crtc->config.dpll;
5294
5295         i9xx_update_pll_dividers(crtc, reduced_clock);
5296
5297         dpll = DPLL_VGA_MODE_DIS;
5298
5299         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5300                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5301         } else {
5302                 if (clock->p1 == 2)
5303                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5304                 else
5305                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5306                 if (clock->p2 == 4)
5307                         dpll |= PLL_P2_DIVIDE_BY_4;
5308         }
5309
5310         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5311                 dpll |= DPLL_DVO_2X_MODE;
5312
5313         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5314                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5315                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5316         else
5317                 dpll |= PLL_REF_INPUT_DREFCLK;
5318
5319         dpll |= DPLL_VCO_ENABLE;
5320         crtc->config.dpll_hw_state.dpll = dpll;
5321 }
5322
5323 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5324 {
5325         struct drm_device *dev = intel_crtc->base.dev;
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327         enum pipe pipe = intel_crtc->pipe;
5328         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5329         struct drm_display_mode *adjusted_mode =
5330                 &intel_crtc->config.adjusted_mode;
5331         uint32_t crtc_vtotal, crtc_vblank_end;
5332         int vsyncshift = 0;
5333
5334         /* We need to be careful not to changed the adjusted mode, for otherwise
5335          * the hw state checker will get angry at the mismatch. */
5336         crtc_vtotal = adjusted_mode->crtc_vtotal;
5337         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5338
5339         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5340                 /* the chip adds 2 halflines automatically */
5341                 crtc_vtotal -= 1;
5342                 crtc_vblank_end -= 1;
5343
5344                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5345                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5346                 else
5347                         vsyncshift = adjusted_mode->crtc_hsync_start -
5348                                 adjusted_mode->crtc_htotal / 2;
5349                 if (vsyncshift < 0)
5350                         vsyncshift += adjusted_mode->crtc_htotal;
5351         }
5352
5353         if (INTEL_INFO(dev)->gen > 3)
5354                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5355
5356         I915_WRITE(HTOTAL(cpu_transcoder),
5357                    (adjusted_mode->crtc_hdisplay - 1) |
5358                    ((adjusted_mode->crtc_htotal - 1) << 16));
5359         I915_WRITE(HBLANK(cpu_transcoder),
5360                    (adjusted_mode->crtc_hblank_start - 1) |
5361                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5362         I915_WRITE(HSYNC(cpu_transcoder),
5363                    (adjusted_mode->crtc_hsync_start - 1) |
5364                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5365
5366         I915_WRITE(VTOTAL(cpu_transcoder),
5367                    (adjusted_mode->crtc_vdisplay - 1) |
5368                    ((crtc_vtotal - 1) << 16));
5369         I915_WRITE(VBLANK(cpu_transcoder),
5370                    (adjusted_mode->crtc_vblank_start - 1) |
5371                    ((crtc_vblank_end - 1) << 16));
5372         I915_WRITE(VSYNC(cpu_transcoder),
5373                    (adjusted_mode->crtc_vsync_start - 1) |
5374                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5375
5376         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5377          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5378          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5379          * bits. */
5380         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5381             (pipe == PIPE_B || pipe == PIPE_C))
5382                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5383
5384         /* pipesrc controls the size that is scaled from, which should
5385          * always be the user's requested size.
5386          */
5387         I915_WRITE(PIPESRC(pipe),
5388                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5389                    (intel_crtc->config.pipe_src_h - 1));
5390 }
5391
5392 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5393                                    struct intel_crtc_config *pipe_config)
5394 {
5395         struct drm_device *dev = crtc->base.dev;
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5398         uint32_t tmp;
5399
5400         tmp = I915_READ(HTOTAL(cpu_transcoder));
5401         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5402         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5403         tmp = I915_READ(HBLANK(cpu_transcoder));
5404         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5405         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5406         tmp = I915_READ(HSYNC(cpu_transcoder));
5407         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5408         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5409
5410         tmp = I915_READ(VTOTAL(cpu_transcoder));
5411         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5412         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5413         tmp = I915_READ(VBLANK(cpu_transcoder));
5414         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5415         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5416         tmp = I915_READ(VSYNC(cpu_transcoder));
5417         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5418         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5419
5420         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5421                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5422                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5423                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5424         }
5425
5426         tmp = I915_READ(PIPESRC(crtc->pipe));
5427         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5428         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5429
5430         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5431         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5432 }
5433
5434 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5435                                  struct intel_crtc_config *pipe_config)
5436 {
5437         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5438         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5439         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5440         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5441
5442         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5443         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5444         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5445         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5446
5447         mode->flags = pipe_config->adjusted_mode.flags;
5448
5449         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5450         mode->flags |= pipe_config->adjusted_mode.flags;
5451 }
5452
5453 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5454 {
5455         struct drm_device *dev = intel_crtc->base.dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         uint32_t pipeconf;
5458
5459         pipeconf = 0;
5460
5461         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5462             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5463                 pipeconf |= PIPECONF_ENABLE;
5464
5465         if (intel_crtc->config.double_wide)
5466                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5467
5468         /* only g4x and later have fancy bpc/dither controls */
5469         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5470                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5471                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5472                         pipeconf |= PIPECONF_DITHER_EN |
5473                                     PIPECONF_DITHER_TYPE_SP;
5474
5475                 switch (intel_crtc->config.pipe_bpp) {
5476                 case 18:
5477                         pipeconf |= PIPECONF_6BPC;
5478                         break;
5479                 case 24:
5480                         pipeconf |= PIPECONF_8BPC;
5481                         break;
5482                 case 30:
5483                         pipeconf |= PIPECONF_10BPC;
5484                         break;
5485                 default:
5486                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5487                         BUG();
5488                 }
5489         }
5490
5491         if (HAS_PIPE_CXSR(dev)) {
5492                 if (intel_crtc->lowfreq_avail) {
5493                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5494                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5495                 } else {
5496                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5497                 }
5498         }
5499
5500         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5501                 if (INTEL_INFO(dev)->gen < 4 ||
5502                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5503                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5504                 else
5505                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5506         } else
5507                 pipeconf |= PIPECONF_PROGRESSIVE;
5508
5509         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5510                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5511
5512         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5513         POSTING_READ(PIPECONF(intel_crtc->pipe));
5514 }
5515
5516 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5517                               int x, int y,
5518                               struct drm_framebuffer *fb)
5519 {
5520         struct drm_device *dev = crtc->dev;
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5523         int pipe = intel_crtc->pipe;
5524         int plane = intel_crtc->plane;
5525         int refclk, num_connectors = 0;
5526         intel_clock_t clock, reduced_clock;
5527         u32 dspcntr;
5528         bool ok, has_reduced_clock = false;
5529         bool is_lvds = false, is_dsi = false;
5530         struct intel_encoder *encoder;
5531         const intel_limit_t *limit;
5532         int ret;
5533
5534         for_each_encoder_on_crtc(dev, crtc, encoder) {
5535                 switch (encoder->type) {
5536                 case INTEL_OUTPUT_LVDS:
5537                         is_lvds = true;
5538                         break;
5539                 case INTEL_OUTPUT_DSI:
5540                         is_dsi = true;
5541                         break;
5542                 }
5543
5544                 num_connectors++;
5545         }
5546
5547         if (is_dsi)
5548                 goto skip_dpll;
5549
5550         if (!intel_crtc->config.clock_set) {
5551                 refclk = i9xx_get_refclk(crtc, num_connectors);
5552
5553                 /*
5554                  * Returns a set of divisors for the desired target clock with
5555                  * the given refclk, or FALSE.  The returned values represent
5556                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5557                  * 2) / p1 / p2.
5558                  */
5559                 limit = intel_limit(crtc, refclk);
5560                 ok = dev_priv->display.find_dpll(limit, crtc,
5561                                                  intel_crtc->config.port_clock,
5562                                                  refclk, NULL, &clock);
5563                 if (!ok) {
5564                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5565                         return -EINVAL;
5566                 }
5567
5568                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5569                         /*
5570                          * Ensure we match the reduced clock's P to the target
5571                          * clock.  If the clocks don't match, we can't switch
5572                          * the display clock by using the FP0/FP1. In such case
5573                          * we will disable the LVDS downclock feature.
5574                          */
5575                         has_reduced_clock =
5576                                 dev_priv->display.find_dpll(limit, crtc,
5577                                                             dev_priv->lvds_downclock,
5578                                                             refclk, &clock,
5579                                                             &reduced_clock);
5580                 }
5581                 /* Compat-code for transition, will disappear. */
5582                 intel_crtc->config.dpll.n = clock.n;
5583                 intel_crtc->config.dpll.m1 = clock.m1;
5584                 intel_crtc->config.dpll.m2 = clock.m2;
5585                 intel_crtc->config.dpll.p1 = clock.p1;
5586                 intel_crtc->config.dpll.p2 = clock.p2;
5587         }
5588
5589         if (IS_GEN2(dev)) {
5590                 i8xx_update_pll(intel_crtc,
5591                                 has_reduced_clock ? &reduced_clock : NULL,
5592                                 num_connectors);
5593         } else if (IS_VALLEYVIEW(dev)) {
5594                 vlv_update_pll(intel_crtc);
5595         } else {
5596                 i9xx_update_pll(intel_crtc,
5597                                 has_reduced_clock ? &reduced_clock : NULL,
5598                                 num_connectors);
5599         }
5600
5601 skip_dpll:
5602         /* Set up the display plane register */
5603         dspcntr = DISPPLANE_GAMMA_ENABLE;
5604
5605         if (!IS_VALLEYVIEW(dev)) {
5606                 if (pipe == 0)
5607                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5608                 else
5609                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5610         }
5611
5612         if (intel_crtc->config.has_dp_encoder)
5613                 intel_dp_set_m_n(intel_crtc);
5614
5615         intel_set_pipe_timings(intel_crtc);
5616
5617         /* pipesrc and dspsize control the size that is scaled from,
5618          * which should always be the user's requested size.
5619          */
5620         I915_WRITE(DSPSIZE(plane),
5621                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5622                    (intel_crtc->config.pipe_src_w - 1));
5623         I915_WRITE(DSPPOS(plane), 0);
5624
5625         i9xx_set_pipeconf(intel_crtc);
5626
5627         I915_WRITE(DSPCNTR(plane), dspcntr);
5628         POSTING_READ(DSPCNTR(plane));
5629
5630         ret = intel_pipe_set_base(crtc, x, y, fb);
5631
5632         return ret;
5633 }
5634
5635 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5636                                  struct intel_crtc_config *pipe_config)
5637 {
5638         struct drm_device *dev = crtc->base.dev;
5639         struct drm_i915_private *dev_priv = dev->dev_private;
5640         uint32_t tmp;
5641
5642         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5643                 return;
5644
5645         tmp = I915_READ(PFIT_CONTROL);
5646         if (!(tmp & PFIT_ENABLE))
5647                 return;
5648
5649         /* Check whether the pfit is attached to our pipe. */
5650         if (INTEL_INFO(dev)->gen < 4) {
5651                 if (crtc->pipe != PIPE_B)
5652                         return;
5653         } else {
5654                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5655                         return;
5656         }
5657
5658         pipe_config->gmch_pfit.control = tmp;
5659         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5660         if (INTEL_INFO(dev)->gen < 5)
5661                 pipe_config->gmch_pfit.lvds_border_bits =
5662                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5663 }
5664
5665 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5666                                struct intel_crtc_config *pipe_config)
5667 {
5668         struct drm_device *dev = crtc->base.dev;
5669         struct drm_i915_private *dev_priv = dev->dev_private;
5670         int pipe = pipe_config->cpu_transcoder;
5671         intel_clock_t clock;
5672         u32 mdiv;
5673         int refclk = 100000;
5674
5675         mutex_lock(&dev_priv->dpio_lock);
5676         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5677         mutex_unlock(&dev_priv->dpio_lock);
5678
5679         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5680         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5681         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5682         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5683         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5684
5685         vlv_clock(refclk, &clock);
5686
5687         /* clock.dot is the fast clock */
5688         pipe_config->port_clock = clock.dot / 5;
5689 }
5690
5691 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5692                                   struct intel_plane_config *plane_config)
5693 {
5694         struct drm_device *dev = crtc->base.dev;
5695         struct drm_i915_private *dev_priv = dev->dev_private;
5696         u32 val, base, offset;
5697         int pipe = crtc->pipe, plane = crtc->plane;
5698         int fourcc, pixel_format;
5699         int aligned_height;
5700
5701         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5702         if (!crtc->base.primary->fb) {
5703                 DRM_DEBUG_KMS("failed to alloc fb\n");
5704                 return;
5705         }
5706
5707         val = I915_READ(DSPCNTR(plane));
5708
5709         if (INTEL_INFO(dev)->gen >= 4)
5710                 if (val & DISPPLANE_TILED)
5711                         plane_config->tiled = true;
5712
5713         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5714         fourcc = intel_format_to_fourcc(pixel_format);
5715         crtc->base.primary->fb->pixel_format = fourcc;
5716         crtc->base.primary->fb->bits_per_pixel =
5717                 drm_format_plane_cpp(fourcc, 0) * 8;
5718
5719         if (INTEL_INFO(dev)->gen >= 4) {
5720                 if (plane_config->tiled)
5721                         offset = I915_READ(DSPTILEOFF(plane));
5722                 else
5723                         offset = I915_READ(DSPLINOFF(plane));
5724                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5725         } else {
5726                 base = I915_READ(DSPADDR(plane));
5727         }
5728         plane_config->base = base;
5729
5730         val = I915_READ(PIPESRC(pipe));
5731         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5732         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5733
5734         val = I915_READ(DSPSTRIDE(pipe));
5735         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5736
5737         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5738                                             plane_config->tiled);
5739
5740         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5741                                    aligned_height, PAGE_SIZE);
5742
5743         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5744                       pipe, plane, crtc->base.primary->fb->width,
5745                       crtc->base.primary->fb->height,
5746                       crtc->base.primary->fb->bits_per_pixel, base,
5747                       crtc->base.primary->fb->pitches[0],
5748                       plane_config->size);
5749
5750 }
5751
5752 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5753                                  struct intel_crtc_config *pipe_config)
5754 {
5755         struct drm_device *dev = crtc->base.dev;
5756         struct drm_i915_private *dev_priv = dev->dev_private;
5757         uint32_t tmp;
5758
5759         if (!intel_display_power_enabled(dev_priv,
5760                                          POWER_DOMAIN_PIPE(crtc->pipe)))
5761                 return false;
5762
5763         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5764         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5765
5766         tmp = I915_READ(PIPECONF(crtc->pipe));
5767         if (!(tmp & PIPECONF_ENABLE))
5768                 return false;
5769
5770         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5771                 switch (tmp & PIPECONF_BPC_MASK) {
5772                 case PIPECONF_6BPC:
5773                         pipe_config->pipe_bpp = 18;
5774                         break;
5775                 case PIPECONF_8BPC:
5776                         pipe_config->pipe_bpp = 24;
5777                         break;
5778                 case PIPECONF_10BPC:
5779                         pipe_config->pipe_bpp = 30;
5780                         break;
5781                 default:
5782                         break;
5783                 }
5784         }
5785
5786         if (INTEL_INFO(dev)->gen < 4)
5787                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5788
5789         intel_get_pipe_timings(crtc, pipe_config);
5790
5791         i9xx_get_pfit_config(crtc, pipe_config);
5792
5793         if (INTEL_INFO(dev)->gen >= 4) {
5794                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5795                 pipe_config->pixel_multiplier =
5796                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5797                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5798                 pipe_config->dpll_hw_state.dpll_md = tmp;
5799         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5800                 tmp = I915_READ(DPLL(crtc->pipe));
5801                 pipe_config->pixel_multiplier =
5802                         ((tmp & SDVO_MULTIPLIER_MASK)
5803                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5804         } else {
5805                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5806                  * port and will be fixed up in the encoder->get_config
5807                  * function. */
5808                 pipe_config->pixel_multiplier = 1;
5809         }
5810         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5811         if (!IS_VALLEYVIEW(dev)) {
5812                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5813                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5814         } else {
5815                 /* Mask out read-only status bits. */
5816                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5817                                                      DPLL_PORTC_READY_MASK |
5818                                                      DPLL_PORTB_READY_MASK);
5819         }
5820
5821         if (IS_VALLEYVIEW(dev))
5822                 vlv_crtc_clock_get(crtc, pipe_config);
5823         else
5824                 i9xx_crtc_clock_get(crtc, pipe_config);
5825
5826         return true;
5827 }
5828
5829 static void ironlake_init_pch_refclk(struct drm_device *dev)
5830 {
5831         struct drm_i915_private *dev_priv = dev->dev_private;
5832         struct drm_mode_config *mode_config = &dev->mode_config;
5833         struct intel_encoder *encoder;
5834         u32 val, final;
5835         bool has_lvds = false;
5836         bool has_cpu_edp = false;
5837         bool has_panel = false;
5838         bool has_ck505 = false;
5839         bool can_ssc = false;
5840
5841         /* We need to take the global config into account */
5842         list_for_each_entry(encoder, &mode_config->encoder_list,
5843                             base.head) {
5844                 switch (encoder->type) {
5845                 case INTEL_OUTPUT_LVDS:
5846                         has_panel = true;
5847                         has_lvds = true;
5848                         break;
5849                 case INTEL_OUTPUT_EDP:
5850                         has_panel = true;
5851                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5852                                 has_cpu_edp = true;
5853                         break;
5854                 }
5855         }
5856
5857         if (HAS_PCH_IBX(dev)) {
5858                 has_ck505 = dev_priv->vbt.display_clock_mode;
5859                 can_ssc = has_ck505;
5860         } else {
5861                 has_ck505 = false;
5862                 can_ssc = true;
5863         }
5864
5865         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5866                       has_panel, has_lvds, has_ck505);
5867
5868         /* Ironlake: try to setup display ref clock before DPLL
5869          * enabling. This is only under driver's control after
5870          * PCH B stepping, previous chipset stepping should be
5871          * ignoring this setting.
5872          */
5873         val = I915_READ(PCH_DREF_CONTROL);
5874
5875         /* As we must carefully and slowly disable/enable each source in turn,
5876          * compute the final state we want first and check if we need to
5877          * make any changes at all.
5878          */
5879         final = val;
5880         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5881         if (has_ck505)
5882                 final |= DREF_NONSPREAD_CK505_ENABLE;
5883         else
5884                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5885
5886         final &= ~DREF_SSC_SOURCE_MASK;
5887         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5888         final &= ~DREF_SSC1_ENABLE;
5889
5890         if (has_panel) {
5891                 final |= DREF_SSC_SOURCE_ENABLE;
5892
5893                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5894                         final |= DREF_SSC1_ENABLE;
5895
5896                 if (has_cpu_edp) {
5897                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5898                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5899                         else
5900                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5901                 } else
5902                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5903         } else {
5904                 final |= DREF_SSC_SOURCE_DISABLE;
5905                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5906         }
5907
5908         if (final == val)
5909                 return;
5910
5911         /* Always enable nonspread source */
5912         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5913
5914         if (has_ck505)
5915                 val |= DREF_NONSPREAD_CK505_ENABLE;
5916         else
5917                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5918
5919         if (has_panel) {
5920                 val &= ~DREF_SSC_SOURCE_MASK;
5921                 val |= DREF_SSC_SOURCE_ENABLE;
5922
5923                 /* SSC must be turned on before enabling the CPU output  */
5924                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5925                         DRM_DEBUG_KMS("Using SSC on panel\n");
5926                         val |= DREF_SSC1_ENABLE;
5927                 } else
5928                         val &= ~DREF_SSC1_ENABLE;
5929
5930                 /* Get SSC going before enabling the outputs */
5931                 I915_WRITE(PCH_DREF_CONTROL, val);
5932                 POSTING_READ(PCH_DREF_CONTROL);
5933                 udelay(200);
5934
5935                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5936
5937                 /* Enable CPU source on CPU attached eDP */
5938                 if (has_cpu_edp) {
5939                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5940                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5941                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5942                         }
5943                         else
5944                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5945                 } else
5946                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5947
5948                 I915_WRITE(PCH_DREF_CONTROL, val);
5949                 POSTING_READ(PCH_DREF_CONTROL);
5950                 udelay(200);
5951         } else {
5952                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5953
5954                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5955
5956                 /* Turn off CPU output */
5957                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5958
5959                 I915_WRITE(PCH_DREF_CONTROL, val);
5960                 POSTING_READ(PCH_DREF_CONTROL);
5961                 udelay(200);
5962
5963                 /* Turn off the SSC source */
5964                 val &= ~DREF_SSC_SOURCE_MASK;
5965                 val |= DREF_SSC_SOURCE_DISABLE;
5966
5967                 /* Turn off SSC1 */
5968                 val &= ~DREF_SSC1_ENABLE;
5969
5970                 I915_WRITE(PCH_DREF_CONTROL, val);
5971                 POSTING_READ(PCH_DREF_CONTROL);
5972                 udelay(200);
5973         }
5974
5975         BUG_ON(val != final);
5976 }
5977
5978 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5979 {
5980         uint32_t tmp;
5981
5982         tmp = I915_READ(SOUTH_CHICKEN2);
5983         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5984         I915_WRITE(SOUTH_CHICKEN2, tmp);
5985
5986         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5987                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5988                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5989
5990         tmp = I915_READ(SOUTH_CHICKEN2);
5991         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5992         I915_WRITE(SOUTH_CHICKEN2, tmp);
5993
5994         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5995                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5996                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5997 }
5998
5999 /* WaMPhyProgramming:hsw */
6000 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6001 {
6002         uint32_t tmp;
6003
6004         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6005         tmp &= ~(0xFF << 24);
6006         tmp |= (0x12 << 24);
6007         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6008
6009         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6010         tmp |= (1 << 11);
6011         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6012
6013         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6014         tmp |= (1 << 11);
6015         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6016
6017         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6018         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6019         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6020
6021         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6022         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6023         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6024
6025         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6026         tmp &= ~(7 << 13);
6027         tmp |= (5 << 13);
6028         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6029
6030         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6031         tmp &= ~(7 << 13);
6032         tmp |= (5 << 13);
6033         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6034
6035         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6036         tmp &= ~0xFF;
6037         tmp |= 0x1C;
6038         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6039
6040         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6041         tmp &= ~0xFF;
6042         tmp |= 0x1C;
6043         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6044
6045         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6046         tmp &= ~(0xFF << 16);
6047         tmp |= (0x1C << 16);
6048         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6049
6050         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6051         tmp &= ~(0xFF << 16);
6052         tmp |= (0x1C << 16);
6053         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6054
6055         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6056         tmp |= (1 << 27);
6057         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6058
6059         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6060         tmp |= (1 << 27);
6061         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6062
6063         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6064         tmp &= ~(0xF << 28);
6065         tmp |= (4 << 28);
6066         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6067
6068         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6069         tmp &= ~(0xF << 28);
6070         tmp |= (4 << 28);
6071         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6072 }
6073
6074 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6075  * Programming" based on the parameters passed:
6076  * - Sequence to enable CLKOUT_DP
6077  * - Sequence to enable CLKOUT_DP without spread
6078  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6079  */
6080 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6081                                  bool with_fdi)
6082 {
6083         struct drm_i915_private *dev_priv = dev->dev_private;
6084         uint32_t reg, tmp;
6085
6086         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6087                 with_spread = true;
6088         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6089                  with_fdi, "LP PCH doesn't have FDI\n"))
6090                 with_fdi = false;
6091
6092         mutex_lock(&dev_priv->dpio_lock);
6093
6094         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6095         tmp &= ~SBI_SSCCTL_DISABLE;
6096         tmp |= SBI_SSCCTL_PATHALT;
6097         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6098
6099         udelay(24);
6100
6101         if (with_spread) {
6102                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6103                 tmp &= ~SBI_SSCCTL_PATHALT;
6104                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6105
6106                 if (with_fdi) {
6107                         lpt_reset_fdi_mphy(dev_priv);
6108                         lpt_program_fdi_mphy(dev_priv);
6109                 }
6110         }
6111
6112         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6113                SBI_GEN0 : SBI_DBUFF0;
6114         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6115         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6116         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6117
6118         mutex_unlock(&dev_priv->dpio_lock);
6119 }
6120
6121 /* Sequence to disable CLKOUT_DP */
6122 static void lpt_disable_clkout_dp(struct drm_device *dev)
6123 {
6124         struct drm_i915_private *dev_priv = dev->dev_private;
6125         uint32_t reg, tmp;
6126
6127         mutex_lock(&dev_priv->dpio_lock);
6128
6129         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6130                SBI_GEN0 : SBI_DBUFF0;
6131         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6132         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6133         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6134
6135         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6136         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6137                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6138                         tmp |= SBI_SSCCTL_PATHALT;
6139                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6140                         udelay(32);
6141                 }
6142                 tmp |= SBI_SSCCTL_DISABLE;
6143                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6144         }
6145
6146         mutex_unlock(&dev_priv->dpio_lock);
6147 }
6148
6149 static void lpt_init_pch_refclk(struct drm_device *dev)
6150 {
6151         struct drm_mode_config *mode_config = &dev->mode_config;
6152         struct intel_encoder *encoder;
6153         bool has_vga = false;
6154
6155         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6156                 switch (encoder->type) {
6157                 case INTEL_OUTPUT_ANALOG:
6158                         has_vga = true;
6159                         break;
6160                 }
6161         }
6162
6163         if (has_vga)
6164                 lpt_enable_clkout_dp(dev, true, true);
6165         else
6166                 lpt_disable_clkout_dp(dev);
6167 }
6168
6169 /*
6170  * Initialize reference clocks when the driver loads
6171  */
6172 void intel_init_pch_refclk(struct drm_device *dev)
6173 {
6174         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6175                 ironlake_init_pch_refclk(dev);
6176         else if (HAS_PCH_LPT(dev))
6177                 lpt_init_pch_refclk(dev);
6178 }
6179
6180 static int ironlake_get_refclk(struct drm_crtc *crtc)
6181 {
6182         struct drm_device *dev = crtc->dev;
6183         struct drm_i915_private *dev_priv = dev->dev_private;
6184         struct intel_encoder *encoder;
6185         int num_connectors = 0;
6186         bool is_lvds = false;
6187
6188         for_each_encoder_on_crtc(dev, crtc, encoder) {
6189                 switch (encoder->type) {
6190                 case INTEL_OUTPUT_LVDS:
6191                         is_lvds = true;
6192                         break;
6193                 }
6194                 num_connectors++;
6195         }
6196
6197         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6198                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6199                               dev_priv->vbt.lvds_ssc_freq);
6200                 return dev_priv->vbt.lvds_ssc_freq;
6201         }
6202
6203         return 120000;
6204 }
6205
6206 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6207 {
6208         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6210         int pipe = intel_crtc->pipe;
6211         uint32_t val;
6212
6213         val = 0;
6214
6215         switch (intel_crtc->config.pipe_bpp) {
6216         case 18:
6217                 val |= PIPECONF_6BPC;
6218                 break;
6219         case 24:
6220                 val |= PIPECONF_8BPC;
6221                 break;
6222         case 30:
6223                 val |= PIPECONF_10BPC;
6224                 break;
6225         case 36:
6226                 val |= PIPECONF_12BPC;
6227                 break;
6228         default:
6229                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6230                 BUG();
6231         }
6232
6233         if (intel_crtc->config.dither)
6234                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6235
6236         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6237                 val |= PIPECONF_INTERLACED_ILK;
6238         else
6239                 val |= PIPECONF_PROGRESSIVE;
6240
6241         if (intel_crtc->config.limited_color_range)
6242                 val |= PIPECONF_COLOR_RANGE_SELECT;
6243
6244         I915_WRITE(PIPECONF(pipe), val);
6245         POSTING_READ(PIPECONF(pipe));
6246 }
6247
6248 /*
6249  * Set up the pipe CSC unit.
6250  *
6251  * Currently only full range RGB to limited range RGB conversion
6252  * is supported, but eventually this should handle various
6253  * RGB<->YCbCr scenarios as well.
6254  */
6255 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6256 {
6257         struct drm_device *dev = crtc->dev;
6258         struct drm_i915_private *dev_priv = dev->dev_private;
6259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6260         int pipe = intel_crtc->pipe;
6261         uint16_t coeff = 0x7800; /* 1.0 */
6262
6263         /*
6264          * TODO: Check what kind of values actually come out of the pipe
6265          * with these coeff/postoff values and adjust to get the best
6266          * accuracy. Perhaps we even need to take the bpc value into
6267          * consideration.
6268          */
6269
6270         if (intel_crtc->config.limited_color_range)
6271                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6272
6273         /*
6274          * GY/GU and RY/RU should be the other way around according
6275          * to BSpec, but reality doesn't agree. Just set them up in
6276          * a way that results in the correct picture.
6277          */
6278         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6279         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6280
6281         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6282         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6283
6284         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6285         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6286
6287         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6288         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6289         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6290
6291         if (INTEL_INFO(dev)->gen > 6) {
6292                 uint16_t postoff = 0;
6293
6294                 if (intel_crtc->config.limited_color_range)
6295                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6296
6297                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6298                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6299                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6300
6301                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6302         } else {
6303                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6304
6305                 if (intel_crtc->config.limited_color_range)
6306                         mode |= CSC_BLACK_SCREEN_OFFSET;
6307
6308                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6309         }
6310 }
6311
6312 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6313 {
6314         struct drm_device *dev = crtc->dev;
6315         struct drm_i915_private *dev_priv = dev->dev_private;
6316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317         enum pipe pipe = intel_crtc->pipe;
6318         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6319         uint32_t val;
6320
6321         val = 0;
6322
6323         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6324                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6325
6326         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6327                 val |= PIPECONF_INTERLACED_ILK;
6328         else
6329                 val |= PIPECONF_PROGRESSIVE;
6330
6331         I915_WRITE(PIPECONF(cpu_transcoder), val);
6332         POSTING_READ(PIPECONF(cpu_transcoder));
6333
6334         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6335         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6336
6337         if (IS_BROADWELL(dev)) {
6338                 val = 0;
6339
6340                 switch (intel_crtc->config.pipe_bpp) {
6341                 case 18:
6342                         val |= PIPEMISC_DITHER_6_BPC;
6343                         break;
6344                 case 24:
6345                         val |= PIPEMISC_DITHER_8_BPC;
6346                         break;
6347                 case 30:
6348                         val |= PIPEMISC_DITHER_10_BPC;
6349                         break;
6350                 case 36:
6351                         val |= PIPEMISC_DITHER_12_BPC;
6352                         break;
6353                 default:
6354                         /* Case prevented by pipe_config_set_bpp. */
6355                         BUG();
6356                 }
6357
6358                 if (intel_crtc->config.dither)
6359                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6360
6361                 I915_WRITE(PIPEMISC(pipe), val);
6362         }
6363 }
6364
6365 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6366                                     intel_clock_t *clock,
6367                                     bool *has_reduced_clock,
6368                                     intel_clock_t *reduced_clock)
6369 {
6370         struct drm_device *dev = crtc->dev;
6371         struct drm_i915_private *dev_priv = dev->dev_private;
6372         struct intel_encoder *intel_encoder;
6373         int refclk;
6374         const intel_limit_t *limit;
6375         bool ret, is_lvds = false;
6376
6377         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6378                 switch (intel_encoder->type) {
6379                 case INTEL_OUTPUT_LVDS:
6380                         is_lvds = true;
6381                         break;
6382                 }
6383         }
6384
6385         refclk = ironlake_get_refclk(crtc);
6386
6387         /*
6388          * Returns a set of divisors for the desired target clock with the given
6389          * refclk, or FALSE.  The returned values represent the clock equation:
6390          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6391          */
6392         limit = intel_limit(crtc, refclk);
6393         ret = dev_priv->display.find_dpll(limit, crtc,
6394                                           to_intel_crtc(crtc)->config.port_clock,
6395                                           refclk, NULL, clock);
6396         if (!ret)
6397                 return false;
6398
6399         if (is_lvds && dev_priv->lvds_downclock_avail) {
6400                 /*
6401                  * Ensure we match the reduced clock's P to the target clock.
6402                  * If the clocks don't match, we can't switch the display clock
6403                  * by using the FP0/FP1. In such case we will disable the LVDS
6404                  * downclock feature.
6405                 */
6406                 *has_reduced_clock =
6407                         dev_priv->display.find_dpll(limit, crtc,
6408                                                     dev_priv->lvds_downclock,
6409                                                     refclk, clock,
6410                                                     reduced_clock);
6411         }
6412
6413         return true;
6414 }
6415
6416 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6417 {
6418         /*
6419          * Account for spread spectrum to avoid
6420          * oversubscribing the link. Max center spread
6421          * is 2.5%; use 5% for safety's sake.
6422          */
6423         u32 bps = target_clock * bpp * 21 / 20;
6424         return DIV_ROUND_UP(bps, link_bw * 8);
6425 }
6426
6427 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6428 {
6429         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6430 }
6431
6432 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6433                                       u32 *fp,
6434                                       intel_clock_t *reduced_clock, u32 *fp2)
6435 {
6436         struct drm_crtc *crtc = &intel_crtc->base;
6437         struct drm_device *dev = crtc->dev;
6438         struct drm_i915_private *dev_priv = dev->dev_private;
6439         struct intel_encoder *intel_encoder;
6440         uint32_t dpll;
6441         int factor, num_connectors = 0;
6442         bool is_lvds = false, is_sdvo = false;
6443
6444         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6445                 switch (intel_encoder->type) {
6446                 case INTEL_OUTPUT_LVDS:
6447                         is_lvds = true;
6448                         break;
6449                 case INTEL_OUTPUT_SDVO:
6450                 case INTEL_OUTPUT_HDMI:
6451                         is_sdvo = true;
6452                         break;
6453                 }
6454
6455                 num_connectors++;
6456         }
6457
6458         /* Enable autotuning of the PLL clock (if permissible) */
6459         factor = 21;
6460         if (is_lvds) {
6461                 if ((intel_panel_use_ssc(dev_priv) &&
6462                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6463                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6464                         factor = 25;
6465         } else if (intel_crtc->config.sdvo_tv_clock)
6466                 factor = 20;
6467
6468         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6469                 *fp |= FP_CB_TUNE;
6470
6471         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6472                 *fp2 |= FP_CB_TUNE;
6473
6474         dpll = 0;
6475
6476         if (is_lvds)
6477                 dpll |= DPLLB_MODE_LVDS;
6478         else
6479                 dpll |= DPLLB_MODE_DAC_SERIAL;
6480
6481         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6482                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6483
6484         if (is_sdvo)
6485                 dpll |= DPLL_SDVO_HIGH_SPEED;
6486         if (intel_crtc->config.has_dp_encoder)
6487                 dpll |= DPLL_SDVO_HIGH_SPEED;
6488
6489         /* compute bitmask from p1 value */
6490         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6491         /* also FPA1 */
6492         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6493
6494         switch (intel_crtc->config.dpll.p2) {
6495         case 5:
6496                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6497                 break;
6498         case 7:
6499                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6500                 break;
6501         case 10:
6502                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6503                 break;
6504         case 14:
6505                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6506                 break;
6507         }
6508
6509         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6510                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6511         else
6512                 dpll |= PLL_REF_INPUT_DREFCLK;
6513
6514         return dpll | DPLL_VCO_ENABLE;
6515 }
6516
6517 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6518                                   int x, int y,
6519                                   struct drm_framebuffer *fb)
6520 {
6521         struct drm_device *dev = crtc->dev;
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6524         int pipe = intel_crtc->pipe;
6525         int plane = intel_crtc->plane;
6526         int num_connectors = 0;
6527         intel_clock_t clock, reduced_clock;
6528         u32 dpll = 0, fp = 0, fp2 = 0;
6529         bool ok, has_reduced_clock = false;
6530         bool is_lvds = false;
6531         struct intel_encoder *encoder;
6532         struct intel_shared_dpll *pll;
6533         int ret;
6534
6535         for_each_encoder_on_crtc(dev, crtc, encoder) {
6536                 switch (encoder->type) {
6537                 case INTEL_OUTPUT_LVDS:
6538                         is_lvds = true;
6539                         break;
6540                 }
6541
6542                 num_connectors++;
6543         }
6544
6545         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6546              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6547
6548         ok = ironlake_compute_clocks(crtc, &clock,
6549                                      &has_reduced_clock, &reduced_clock);
6550         if (!ok && !intel_crtc->config.clock_set) {
6551                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6552                 return -EINVAL;
6553         }
6554         /* Compat-code for transition, will disappear. */
6555         if (!intel_crtc->config.clock_set) {
6556                 intel_crtc->config.dpll.n = clock.n;
6557                 intel_crtc->config.dpll.m1 = clock.m1;
6558                 intel_crtc->config.dpll.m2 = clock.m2;
6559                 intel_crtc->config.dpll.p1 = clock.p1;
6560                 intel_crtc->config.dpll.p2 = clock.p2;
6561         }
6562
6563         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6564         if (intel_crtc->config.has_pch_encoder) {
6565                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6566                 if (has_reduced_clock)
6567                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6568
6569                 dpll = ironlake_compute_dpll(intel_crtc,
6570                                              &fp, &reduced_clock,
6571                                              has_reduced_clock ? &fp2 : NULL);
6572
6573                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6574                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6575                 if (has_reduced_clock)
6576                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6577                 else
6578                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6579
6580                 pll = intel_get_shared_dpll(intel_crtc);
6581                 if (pll == NULL) {
6582                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6583                                          pipe_name(pipe));
6584                         return -EINVAL;
6585                 }
6586         } else
6587                 intel_put_shared_dpll(intel_crtc);
6588
6589         if (intel_crtc->config.has_dp_encoder)
6590                 intel_dp_set_m_n(intel_crtc);
6591
6592         if (is_lvds && has_reduced_clock && i915.powersave)
6593                 intel_crtc->lowfreq_avail = true;
6594         else
6595                 intel_crtc->lowfreq_avail = false;
6596
6597         intel_set_pipe_timings(intel_crtc);
6598
6599         if (intel_crtc->config.has_pch_encoder) {
6600                 intel_cpu_transcoder_set_m_n(intel_crtc,
6601                                              &intel_crtc->config.fdi_m_n);
6602         }
6603
6604         ironlake_set_pipeconf(crtc);
6605
6606         /* Set up the display plane register */
6607         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6608         POSTING_READ(DSPCNTR(plane));
6609
6610         ret = intel_pipe_set_base(crtc, x, y, fb);
6611
6612         return ret;
6613 }
6614
6615 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6616                                          struct intel_link_m_n *m_n)
6617 {
6618         struct drm_device *dev = crtc->base.dev;
6619         struct drm_i915_private *dev_priv = dev->dev_private;
6620         enum pipe pipe = crtc->pipe;
6621
6622         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6623         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6624         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6625                 & ~TU_SIZE_MASK;
6626         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6627         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6628                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6629 }
6630
6631 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6632                                          enum transcoder transcoder,
6633                                          struct intel_link_m_n *m_n)
6634 {
6635         struct drm_device *dev = crtc->base.dev;
6636         struct drm_i915_private *dev_priv = dev->dev_private;
6637         enum pipe pipe = crtc->pipe;
6638
6639         if (INTEL_INFO(dev)->gen >= 5) {
6640                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6641                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6642                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6643                         & ~TU_SIZE_MASK;
6644                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6645                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6646                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6647         } else {
6648                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6649                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6650                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6651                         & ~TU_SIZE_MASK;
6652                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6653                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6654                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6655         }
6656 }
6657
6658 void intel_dp_get_m_n(struct intel_crtc *crtc,
6659                       struct intel_crtc_config *pipe_config)
6660 {
6661         if (crtc->config.has_pch_encoder)
6662                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6663         else
6664                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6665                                              &pipe_config->dp_m_n);
6666 }
6667
6668 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6669                                         struct intel_crtc_config *pipe_config)
6670 {
6671         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6672                                      &pipe_config->fdi_m_n);
6673 }
6674
6675 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6676                                      struct intel_crtc_config *pipe_config)
6677 {
6678         struct drm_device *dev = crtc->base.dev;
6679         struct drm_i915_private *dev_priv = dev->dev_private;
6680         uint32_t tmp;
6681
6682         tmp = I915_READ(PF_CTL(crtc->pipe));
6683
6684         if (tmp & PF_ENABLE) {
6685                 pipe_config->pch_pfit.enabled = true;
6686                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6687                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6688
6689                 /* We currently do not free assignements of panel fitters on
6690                  * ivb/hsw (since we don't use the higher upscaling modes which
6691                  * differentiates them) so just WARN about this case for now. */
6692                 if (IS_GEN7(dev)) {
6693                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6694                                 PF_PIPE_SEL_IVB(crtc->pipe));
6695                 }
6696         }
6697 }
6698
6699 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6700                                       struct intel_plane_config *plane_config)
6701 {
6702         struct drm_device *dev = crtc->base.dev;
6703         struct drm_i915_private *dev_priv = dev->dev_private;
6704         u32 val, base, offset;
6705         int pipe = crtc->pipe, plane = crtc->plane;
6706         int fourcc, pixel_format;
6707         int aligned_height;
6708
6709         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6710         if (!crtc->base.primary->fb) {
6711                 DRM_DEBUG_KMS("failed to alloc fb\n");
6712                 return;
6713         }
6714
6715         val = I915_READ(DSPCNTR(plane));
6716
6717         if (INTEL_INFO(dev)->gen >= 4)
6718                 if (val & DISPPLANE_TILED)
6719                         plane_config->tiled = true;
6720
6721         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6722         fourcc = intel_format_to_fourcc(pixel_format);
6723         crtc->base.primary->fb->pixel_format = fourcc;
6724         crtc->base.primary->fb->bits_per_pixel =
6725                 drm_format_plane_cpp(fourcc, 0) * 8;
6726
6727         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6728         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6729                 offset = I915_READ(DSPOFFSET(plane));
6730         } else {
6731                 if (plane_config->tiled)
6732                         offset = I915_READ(DSPTILEOFF(plane));
6733                 else
6734                         offset = I915_READ(DSPLINOFF(plane));
6735         }
6736         plane_config->base = base;
6737
6738         val = I915_READ(PIPESRC(pipe));
6739         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6740         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6741
6742         val = I915_READ(DSPSTRIDE(pipe));
6743         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6744
6745         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6746                                             plane_config->tiled);
6747
6748         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6749                                    aligned_height, PAGE_SIZE);
6750
6751         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6752                       pipe, plane, crtc->base.primary->fb->width,
6753                       crtc->base.primary->fb->height,
6754                       crtc->base.primary->fb->bits_per_pixel, base,
6755                       crtc->base.primary->fb->pitches[0],
6756                       plane_config->size);
6757 }
6758
6759 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6760                                      struct intel_crtc_config *pipe_config)
6761 {
6762         struct drm_device *dev = crtc->base.dev;
6763         struct drm_i915_private *dev_priv = dev->dev_private;
6764         uint32_t tmp;
6765
6766         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6767         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6768
6769         tmp = I915_READ(PIPECONF(crtc->pipe));
6770         if (!(tmp & PIPECONF_ENABLE))
6771                 return false;
6772
6773         switch (tmp & PIPECONF_BPC_MASK) {
6774         case PIPECONF_6BPC:
6775                 pipe_config->pipe_bpp = 18;
6776                 break;
6777         case PIPECONF_8BPC:
6778                 pipe_config->pipe_bpp = 24;
6779                 break;
6780         case PIPECONF_10BPC:
6781                 pipe_config->pipe_bpp = 30;
6782                 break;
6783         case PIPECONF_12BPC:
6784                 pipe_config->pipe_bpp = 36;
6785                 break;
6786         default:
6787                 break;
6788         }
6789
6790         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6791                 struct intel_shared_dpll *pll;
6792
6793                 pipe_config->has_pch_encoder = true;
6794
6795                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6796                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6797                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6798
6799                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6800
6801                 if (HAS_PCH_IBX(dev_priv->dev)) {
6802                         pipe_config->shared_dpll =
6803                                 (enum intel_dpll_id) crtc->pipe;
6804                 } else {
6805                         tmp = I915_READ(PCH_DPLL_SEL);
6806                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6807                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6808                         else
6809                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6810                 }
6811
6812                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6813
6814                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6815                                            &pipe_config->dpll_hw_state));
6816
6817                 tmp = pipe_config->dpll_hw_state.dpll;
6818                 pipe_config->pixel_multiplier =
6819                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6820                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6821
6822                 ironlake_pch_clock_get(crtc, pipe_config);
6823         } else {
6824                 pipe_config->pixel_multiplier = 1;
6825         }
6826
6827         intel_get_pipe_timings(crtc, pipe_config);
6828
6829         ironlake_get_pfit_config(crtc, pipe_config);
6830
6831         return true;
6832 }
6833
6834 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6835 {
6836         struct drm_device *dev = dev_priv->dev;
6837         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6838         struct intel_crtc *crtc;
6839
6840         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6841                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6842                      pipe_name(crtc->pipe));
6843
6844         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6845         WARN(plls->spll_refcount, "SPLL enabled\n");
6846         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6847         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6848         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6849         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6850              "CPU PWM1 enabled\n");
6851         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6852              "CPU PWM2 enabled\n");
6853         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6854              "PCH PWM1 enabled\n");
6855         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6856              "Utility pin enabled\n");
6857         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6858
6859         /*
6860          * In theory we can still leave IRQs enabled, as long as only the HPD
6861          * interrupts remain enabled. We used to check for that, but since it's
6862          * gen-specific and since we only disable LCPLL after we fully disable
6863          * the interrupts, the check below should be enough.
6864          */
6865         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
6866 }
6867
6868 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
6869 {
6870         struct drm_device *dev = dev_priv->dev;
6871
6872         if (IS_HASWELL(dev)) {
6873                 mutex_lock(&dev_priv->rps.hw_lock);
6874                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
6875                                             val))
6876                         DRM_ERROR("Failed to disable D_COMP\n");
6877                 mutex_unlock(&dev_priv->rps.hw_lock);
6878         } else {
6879                 I915_WRITE(D_COMP, val);
6880         }
6881         POSTING_READ(D_COMP);
6882 }
6883
6884 /*
6885  * This function implements pieces of two sequences from BSpec:
6886  * - Sequence for display software to disable LCPLL
6887  * - Sequence for display software to allow package C8+
6888  * The steps implemented here are just the steps that actually touch the LCPLL
6889  * register. Callers should take care of disabling all the display engine
6890  * functions, doing the mode unset, fixing interrupts, etc.
6891  */
6892 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6893                               bool switch_to_fclk, bool allow_power_down)
6894 {
6895         uint32_t val;
6896
6897         assert_can_disable_lcpll(dev_priv);
6898
6899         val = I915_READ(LCPLL_CTL);
6900
6901         if (switch_to_fclk) {
6902                 val |= LCPLL_CD_SOURCE_FCLK;
6903                 I915_WRITE(LCPLL_CTL, val);
6904
6905                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6906                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6907                         DRM_ERROR("Switching to FCLK failed\n");
6908
6909                 val = I915_READ(LCPLL_CTL);
6910         }
6911
6912         val |= LCPLL_PLL_DISABLE;
6913         I915_WRITE(LCPLL_CTL, val);
6914         POSTING_READ(LCPLL_CTL);
6915
6916         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6917                 DRM_ERROR("LCPLL still locked\n");
6918
6919         val = I915_READ(D_COMP);
6920         val |= D_COMP_COMP_DISABLE;
6921         hsw_write_dcomp(dev_priv, val);
6922         ndelay(100);
6923
6924         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6925                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6926
6927         if (allow_power_down) {
6928                 val = I915_READ(LCPLL_CTL);
6929                 val |= LCPLL_POWER_DOWN_ALLOW;
6930                 I915_WRITE(LCPLL_CTL, val);
6931                 POSTING_READ(LCPLL_CTL);
6932         }
6933 }
6934
6935 /*
6936  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6937  * source.
6938  */
6939 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6940 {
6941         uint32_t val;
6942         unsigned long irqflags;
6943
6944         val = I915_READ(LCPLL_CTL);
6945
6946         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6947                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6948                 return;
6949
6950         /*
6951          * Make sure we're not on PC8 state before disabling PC8, otherwise
6952          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6953          *
6954          * The other problem is that hsw_restore_lcpll() is called as part of
6955          * the runtime PM resume sequence, so we can't just call
6956          * gen6_gt_force_wake_get() because that function calls
6957          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6958          * while we are on the resume sequence. So to solve this problem we have
6959          * to call special forcewake code that doesn't touch runtime PM and
6960          * doesn't enable the forcewake delayed work.
6961          */
6962         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6963         if (dev_priv->uncore.forcewake_count++ == 0)
6964                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6965         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6966
6967         if (val & LCPLL_POWER_DOWN_ALLOW) {
6968                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6969                 I915_WRITE(LCPLL_CTL, val);
6970                 POSTING_READ(LCPLL_CTL);
6971         }
6972
6973         val = I915_READ(D_COMP);
6974         val |= D_COMP_COMP_FORCE;
6975         val &= ~D_COMP_COMP_DISABLE;
6976         hsw_write_dcomp(dev_priv, val);
6977
6978         val = I915_READ(LCPLL_CTL);
6979         val &= ~LCPLL_PLL_DISABLE;
6980         I915_WRITE(LCPLL_CTL, val);
6981
6982         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6983                 DRM_ERROR("LCPLL not locked yet\n");
6984
6985         if (val & LCPLL_CD_SOURCE_FCLK) {
6986                 val = I915_READ(LCPLL_CTL);
6987                 val &= ~LCPLL_CD_SOURCE_FCLK;
6988                 I915_WRITE(LCPLL_CTL, val);
6989
6990                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6991                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6992                         DRM_ERROR("Switching back to LCPLL failed\n");
6993         }
6994
6995         /* See the big comment above. */
6996         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6997         if (--dev_priv->uncore.forcewake_count == 0)
6998                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
6999         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7000 }
7001
7002 /*
7003  * Package states C8 and deeper are really deep PC states that can only be
7004  * reached when all the devices on the system allow it, so even if the graphics
7005  * device allows PC8+, it doesn't mean the system will actually get to these
7006  * states. Our driver only allows PC8+ when going into runtime PM.
7007  *
7008  * The requirements for PC8+ are that all the outputs are disabled, the power
7009  * well is disabled and most interrupts are disabled, and these are also
7010  * requirements for runtime PM. When these conditions are met, we manually do
7011  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7012  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7013  * hang the machine.
7014  *
7015  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7016  * the state of some registers, so when we come back from PC8+ we need to
7017  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7018  * need to take care of the registers kept by RC6. Notice that this happens even
7019  * if we don't put the device in PCI D3 state (which is what currently happens
7020  * because of the runtime PM support).
7021  *
7022  * For more, read "Display Sequences for Package C8" on the hardware
7023  * documentation.
7024  */
7025 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7026 {
7027         struct drm_device *dev = dev_priv->dev;
7028         uint32_t val;
7029
7030         DRM_DEBUG_KMS("Enabling package C8+\n");
7031
7032         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7033                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7034                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7035                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7036         }
7037
7038         lpt_disable_clkout_dp(dev);
7039         hsw_disable_lcpll(dev_priv, true, true);
7040 }
7041
7042 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7043 {
7044         struct drm_device *dev = dev_priv->dev;
7045         uint32_t val;
7046
7047         DRM_DEBUG_KMS("Disabling package C8+\n");
7048
7049         hsw_restore_lcpll(dev_priv);
7050         lpt_init_pch_refclk(dev);
7051
7052         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7053                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7054                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7055                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7056         }
7057
7058         intel_prepare_ddi(dev);
7059 }
7060
7061 static void snb_modeset_global_resources(struct drm_device *dev)
7062 {
7063         modeset_update_crtc_power_domains(dev);
7064 }
7065
7066 static void haswell_modeset_global_resources(struct drm_device *dev)
7067 {
7068         modeset_update_crtc_power_domains(dev);
7069 }
7070
7071 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7072                                  int x, int y,
7073                                  struct drm_framebuffer *fb)
7074 {
7075         struct drm_device *dev = crtc->dev;
7076         struct drm_i915_private *dev_priv = dev->dev_private;
7077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7078         int plane = intel_crtc->plane;
7079         int ret;
7080
7081         if (!intel_ddi_pll_select(intel_crtc))
7082                 return -EINVAL;
7083         intel_ddi_pll_enable(intel_crtc);
7084
7085         if (intel_crtc->config.has_dp_encoder)
7086                 intel_dp_set_m_n(intel_crtc);
7087
7088         intel_crtc->lowfreq_avail = false;
7089
7090         intel_set_pipe_timings(intel_crtc);
7091
7092         if (intel_crtc->config.has_pch_encoder) {
7093                 intel_cpu_transcoder_set_m_n(intel_crtc,
7094                                              &intel_crtc->config.fdi_m_n);
7095         }
7096
7097         haswell_set_pipeconf(crtc);
7098
7099         intel_set_pipe_csc(crtc);
7100
7101         /* Set up the display plane register */
7102         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7103         POSTING_READ(DSPCNTR(plane));
7104
7105         ret = intel_pipe_set_base(crtc, x, y, fb);
7106
7107         return ret;
7108 }
7109
7110 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7111                                     struct intel_crtc_config *pipe_config)
7112 {
7113         struct drm_device *dev = crtc->base.dev;
7114         struct drm_i915_private *dev_priv = dev->dev_private;
7115         enum intel_display_power_domain pfit_domain;
7116         uint32_t tmp;
7117
7118         if (!intel_display_power_enabled(dev_priv,
7119                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7120                 return false;
7121
7122         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7123         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7124
7125         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7126         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7127                 enum pipe trans_edp_pipe;
7128                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7129                 default:
7130                         WARN(1, "unknown pipe linked to edp transcoder\n");
7131                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7132                 case TRANS_DDI_EDP_INPUT_A_ON:
7133                         trans_edp_pipe = PIPE_A;
7134                         break;
7135                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7136                         trans_edp_pipe = PIPE_B;
7137                         break;
7138                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7139                         trans_edp_pipe = PIPE_C;
7140                         break;
7141                 }
7142
7143                 if (trans_edp_pipe == crtc->pipe)
7144                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7145         }
7146
7147         if (!intel_display_power_enabled(dev_priv,
7148                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7149                 return false;
7150
7151         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7152         if (!(tmp & PIPECONF_ENABLE))
7153                 return false;
7154
7155         /*
7156          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7157          * DDI E. So just check whether this pipe is wired to DDI E and whether
7158          * the PCH transcoder is on.
7159          */
7160         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7161         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7162             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7163                 pipe_config->has_pch_encoder = true;
7164
7165                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7166                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7167                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7168
7169                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7170         }
7171
7172         intel_get_pipe_timings(crtc, pipe_config);
7173
7174         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7175         if (intel_display_power_enabled(dev_priv, pfit_domain))
7176                 ironlake_get_pfit_config(crtc, pipe_config);
7177
7178         if (IS_HASWELL(dev))
7179                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7180                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7181
7182         pipe_config->pixel_multiplier = 1;
7183
7184         return true;
7185 }
7186
7187 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7188                                int x, int y,
7189                                struct drm_framebuffer *fb)
7190 {
7191         struct drm_device *dev = crtc->dev;
7192         struct drm_i915_private *dev_priv = dev->dev_private;
7193         struct intel_encoder *encoder;
7194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7195         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7196         int pipe = intel_crtc->pipe;
7197         int ret;
7198
7199         drm_vblank_pre_modeset(dev, pipe);
7200
7201         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7202
7203         drm_vblank_post_modeset(dev, pipe);
7204
7205         if (ret != 0)
7206                 return ret;
7207
7208         for_each_encoder_on_crtc(dev, crtc, encoder) {
7209                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7210                         encoder->base.base.id,
7211                         drm_get_encoder_name(&encoder->base),
7212                         mode->base.id, mode->name);
7213
7214                 if (encoder->mode_set)
7215                         encoder->mode_set(encoder);
7216         }
7217
7218         return 0;
7219 }
7220
7221 static struct {
7222         int clock;
7223         u32 config;
7224 } hdmi_audio_clock[] = {
7225         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7226         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7227         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7228         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7229         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7230         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7231         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7232         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7233         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7234         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7235 };
7236
7237 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7238 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7239 {
7240         int i;
7241
7242         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7243                 if (mode->clock == hdmi_audio_clock[i].clock)
7244                         break;
7245         }
7246
7247         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7248                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7249                 i = 1;
7250         }
7251
7252         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7253                       hdmi_audio_clock[i].clock,
7254                       hdmi_audio_clock[i].config);
7255
7256         return hdmi_audio_clock[i].config;
7257 }
7258
7259 static bool intel_eld_uptodate(struct drm_connector *connector,
7260                                int reg_eldv, uint32_t bits_eldv,
7261                                int reg_elda, uint32_t bits_elda,
7262                                int reg_edid)
7263 {
7264         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7265         uint8_t *eld = connector->eld;
7266         uint32_t i;
7267
7268         i = I915_READ(reg_eldv);
7269         i &= bits_eldv;
7270
7271         if (!eld[0])
7272                 return !i;
7273
7274         if (!i)
7275                 return false;
7276
7277         i = I915_READ(reg_elda);
7278         i &= ~bits_elda;
7279         I915_WRITE(reg_elda, i);
7280
7281         for (i = 0; i < eld[2]; i++)
7282                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7283                         return false;
7284
7285         return true;
7286 }
7287
7288 static void g4x_write_eld(struct drm_connector *connector,
7289                           struct drm_crtc *crtc,
7290                           struct drm_display_mode *mode)
7291 {
7292         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7293         uint8_t *eld = connector->eld;
7294         uint32_t eldv;
7295         uint32_t len;
7296         uint32_t i;
7297
7298         i = I915_READ(G4X_AUD_VID_DID);
7299
7300         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7301                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7302         else
7303                 eldv = G4X_ELDV_DEVCTG;
7304
7305         if (intel_eld_uptodate(connector,
7306                                G4X_AUD_CNTL_ST, eldv,
7307                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7308                                G4X_HDMIW_HDMIEDID))
7309                 return;
7310
7311         i = I915_READ(G4X_AUD_CNTL_ST);
7312         i &= ~(eldv | G4X_ELD_ADDR);
7313         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7314         I915_WRITE(G4X_AUD_CNTL_ST, i);
7315
7316         if (!eld[0])
7317                 return;
7318
7319         len = min_t(uint8_t, eld[2], len);
7320         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7321         for (i = 0; i < len; i++)
7322                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7323
7324         i = I915_READ(G4X_AUD_CNTL_ST);
7325         i |= eldv;
7326         I915_WRITE(G4X_AUD_CNTL_ST, i);
7327 }
7328
7329 static void haswell_write_eld(struct drm_connector *connector,
7330                               struct drm_crtc *crtc,
7331                               struct drm_display_mode *mode)
7332 {
7333         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7334         uint8_t *eld = connector->eld;
7335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7336         uint32_t eldv;
7337         uint32_t i;
7338         int len;
7339         int pipe = to_intel_crtc(crtc)->pipe;
7340         int tmp;
7341
7342         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7343         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7344         int aud_config = HSW_AUD_CFG(pipe);
7345         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7346
7347         /* Audio output enable */
7348         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7349         tmp = I915_READ(aud_cntrl_st2);
7350         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7351         I915_WRITE(aud_cntrl_st2, tmp);
7352         POSTING_READ(aud_cntrl_st2);
7353
7354         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7355
7356         /* Set ELD valid state */
7357         tmp = I915_READ(aud_cntrl_st2);
7358         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7359         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7360         I915_WRITE(aud_cntrl_st2, tmp);
7361         tmp = I915_READ(aud_cntrl_st2);
7362         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7363
7364         /* Enable HDMI mode */
7365         tmp = I915_READ(aud_config);
7366         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7367         /* clear N_programing_enable and N_value_index */
7368         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7369         I915_WRITE(aud_config, tmp);
7370
7371         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7372
7373         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7374         intel_crtc->eld_vld = true;
7375
7376         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7377                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7378                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7379                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7380         } else {
7381                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7382         }
7383
7384         if (intel_eld_uptodate(connector,
7385                                aud_cntrl_st2, eldv,
7386                                aud_cntl_st, IBX_ELD_ADDRESS,
7387                                hdmiw_hdmiedid))
7388                 return;
7389
7390         i = I915_READ(aud_cntrl_st2);
7391         i &= ~eldv;
7392         I915_WRITE(aud_cntrl_st2, i);
7393
7394         if (!eld[0])
7395                 return;
7396
7397         i = I915_READ(aud_cntl_st);
7398         i &= ~IBX_ELD_ADDRESS;
7399         I915_WRITE(aud_cntl_st, i);
7400         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7401         DRM_DEBUG_DRIVER("port num:%d\n", i);
7402
7403         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7404         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7405         for (i = 0; i < len; i++)
7406                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7407
7408         i = I915_READ(aud_cntrl_st2);
7409         i |= eldv;
7410         I915_WRITE(aud_cntrl_st2, i);
7411
7412 }
7413
7414 static void ironlake_write_eld(struct drm_connector *connector,
7415                                struct drm_crtc *crtc,
7416                                struct drm_display_mode *mode)
7417 {
7418         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7419         uint8_t *eld = connector->eld;
7420         uint32_t eldv;
7421         uint32_t i;
7422         int len;
7423         int hdmiw_hdmiedid;
7424         int aud_config;
7425         int aud_cntl_st;
7426         int aud_cntrl_st2;
7427         int pipe = to_intel_crtc(crtc)->pipe;
7428
7429         if (HAS_PCH_IBX(connector->dev)) {
7430                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7431                 aud_config = IBX_AUD_CFG(pipe);
7432                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7433                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7434         } else if (IS_VALLEYVIEW(connector->dev)) {
7435                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7436                 aud_config = VLV_AUD_CFG(pipe);
7437                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7438                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7439         } else {
7440                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7441                 aud_config = CPT_AUD_CFG(pipe);
7442                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7443                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7444         }
7445
7446         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7447
7448         if (IS_VALLEYVIEW(connector->dev))  {
7449                 struct intel_encoder *intel_encoder;
7450                 struct intel_digital_port *intel_dig_port;
7451
7452                 intel_encoder = intel_attached_encoder(connector);
7453                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7454                 i = intel_dig_port->port;
7455         } else {
7456                 i = I915_READ(aud_cntl_st);
7457                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7458                 /* DIP_Port_Select, 0x1 = PortB */
7459         }
7460
7461         if (!i) {
7462                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7463                 /* operate blindly on all ports */
7464                 eldv = IBX_ELD_VALIDB;
7465                 eldv |= IBX_ELD_VALIDB << 4;
7466                 eldv |= IBX_ELD_VALIDB << 8;
7467         } else {
7468                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7469                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7470         }
7471
7472         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7473                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7474                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7475                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7476         } else {
7477                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7478         }
7479
7480         if (intel_eld_uptodate(connector,
7481                                aud_cntrl_st2, eldv,
7482                                aud_cntl_st, IBX_ELD_ADDRESS,
7483                                hdmiw_hdmiedid))
7484                 return;
7485
7486         i = I915_READ(aud_cntrl_st2);
7487         i &= ~eldv;
7488         I915_WRITE(aud_cntrl_st2, i);
7489
7490         if (!eld[0])
7491                 return;
7492
7493         i = I915_READ(aud_cntl_st);
7494         i &= ~IBX_ELD_ADDRESS;
7495         I915_WRITE(aud_cntl_st, i);
7496
7497         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7498         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7499         for (i = 0; i < len; i++)
7500                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7501
7502         i = I915_READ(aud_cntrl_st2);
7503         i |= eldv;
7504         I915_WRITE(aud_cntrl_st2, i);
7505 }
7506
7507 void intel_write_eld(struct drm_encoder *encoder,
7508                      struct drm_display_mode *mode)
7509 {
7510         struct drm_crtc *crtc = encoder->crtc;
7511         struct drm_connector *connector;
7512         struct drm_device *dev = encoder->dev;
7513         struct drm_i915_private *dev_priv = dev->dev_private;
7514
7515         connector = drm_select_eld(encoder, mode);
7516         if (!connector)
7517                 return;
7518
7519         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7520                          connector->base.id,
7521                          drm_get_connector_name(connector),
7522                          connector->encoder->base.id,
7523                          drm_get_encoder_name(connector->encoder));
7524
7525         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7526
7527         if (dev_priv->display.write_eld)
7528                 dev_priv->display.write_eld(connector, crtc, mode);
7529 }
7530
7531 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7532 {
7533         struct drm_device *dev = crtc->dev;
7534         struct drm_i915_private *dev_priv = dev->dev_private;
7535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7536         bool visible = base != 0;
7537         u32 cntl;
7538
7539         if (intel_crtc->cursor_visible == visible)
7540                 return;
7541
7542         cntl = I915_READ(_CURACNTR);
7543         if (visible) {
7544                 /* On these chipsets we can only modify the base whilst
7545                  * the cursor is disabled.
7546                  */
7547                 I915_WRITE(_CURABASE, base);
7548
7549                 cntl &= ~(CURSOR_FORMAT_MASK);
7550                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7551                 cntl |= CURSOR_ENABLE |
7552                         CURSOR_GAMMA_ENABLE |
7553                         CURSOR_FORMAT_ARGB;
7554         } else
7555                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7556         I915_WRITE(_CURACNTR, cntl);
7557
7558         intel_crtc->cursor_visible = visible;
7559 }
7560
7561 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7562 {
7563         struct drm_device *dev = crtc->dev;
7564         struct drm_i915_private *dev_priv = dev->dev_private;
7565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7566         int pipe = intel_crtc->pipe;
7567         bool visible = base != 0;
7568
7569         if (intel_crtc->cursor_visible != visible) {
7570                 int16_t width = intel_crtc->cursor_width;
7571                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7572                 if (base) {
7573                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7574                         cntl |= MCURSOR_GAMMA_ENABLE;
7575
7576                         switch (width) {
7577                         case 64:
7578                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7579                                 break;
7580                         case 128:
7581                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7582                                 break;
7583                         case 256:
7584                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7585                                 break;
7586                         default:
7587                                 WARN_ON(1);
7588                                 return;
7589                         }
7590                         cntl |= pipe << 28; /* Connect to correct pipe */
7591                 } else {
7592                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7593                         cntl |= CURSOR_MODE_DISABLE;
7594                 }
7595                 I915_WRITE(CURCNTR(pipe), cntl);
7596
7597                 intel_crtc->cursor_visible = visible;
7598         }
7599         /* and commit changes on next vblank */
7600         POSTING_READ(CURCNTR(pipe));
7601         I915_WRITE(CURBASE(pipe), base);
7602         POSTING_READ(CURBASE(pipe));
7603 }
7604
7605 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7606 {
7607         struct drm_device *dev = crtc->dev;
7608         struct drm_i915_private *dev_priv = dev->dev_private;
7609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7610         int pipe = intel_crtc->pipe;
7611         bool visible = base != 0;
7612
7613         if (intel_crtc->cursor_visible != visible) {
7614                 int16_t width = intel_crtc->cursor_width;
7615                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7616                 if (base) {
7617                         cntl &= ~CURSOR_MODE;
7618                         cntl |= MCURSOR_GAMMA_ENABLE;
7619                         switch (width) {
7620                         case 64:
7621                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7622                                 break;
7623                         case 128:
7624                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7625                                 break;
7626                         case 256:
7627                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7628                                 break;
7629                         default:
7630                                 WARN_ON(1);
7631                                 return;
7632                         }
7633                 } else {
7634                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7635                         cntl |= CURSOR_MODE_DISABLE;
7636                 }
7637                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7638                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7639                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7640                 }
7641                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7642
7643                 intel_crtc->cursor_visible = visible;
7644         }
7645         /* and commit changes on next vblank */
7646         POSTING_READ(CURCNTR_IVB(pipe));
7647         I915_WRITE(CURBASE_IVB(pipe), base);
7648         POSTING_READ(CURBASE_IVB(pipe));
7649 }
7650
7651 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7652 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7653                                      bool on)
7654 {
7655         struct drm_device *dev = crtc->dev;
7656         struct drm_i915_private *dev_priv = dev->dev_private;
7657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7658         int pipe = intel_crtc->pipe;
7659         int x = intel_crtc->cursor_x;
7660         int y = intel_crtc->cursor_y;
7661         u32 base = 0, pos = 0;
7662         bool visible;
7663
7664         if (on)
7665                 base = intel_crtc->cursor_addr;
7666
7667         if (x >= intel_crtc->config.pipe_src_w)
7668                 base = 0;
7669
7670         if (y >= intel_crtc->config.pipe_src_h)
7671                 base = 0;
7672
7673         if (x < 0) {
7674                 if (x + intel_crtc->cursor_width <= 0)
7675                         base = 0;
7676
7677                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7678                 x = -x;
7679         }
7680         pos |= x << CURSOR_X_SHIFT;
7681
7682         if (y < 0) {
7683                 if (y + intel_crtc->cursor_height <= 0)
7684                         base = 0;
7685
7686                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7687                 y = -y;
7688         }
7689         pos |= y << CURSOR_Y_SHIFT;
7690
7691         visible = base != 0;
7692         if (!visible && !intel_crtc->cursor_visible)
7693                 return;
7694
7695         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7696                 I915_WRITE(CURPOS_IVB(pipe), pos);
7697                 ivb_update_cursor(crtc, base);
7698         } else {
7699                 I915_WRITE(CURPOS(pipe), pos);
7700                 if (IS_845G(dev) || IS_I865G(dev))
7701                         i845_update_cursor(crtc, base);
7702                 else
7703                         i9xx_update_cursor(crtc, base);
7704         }
7705 }
7706
7707 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7708                                  struct drm_file *file,
7709                                  uint32_t handle,
7710                                  uint32_t width, uint32_t height)
7711 {
7712         struct drm_device *dev = crtc->dev;
7713         struct drm_i915_private *dev_priv = dev->dev_private;
7714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7715         struct drm_i915_gem_object *obj;
7716         unsigned old_width;
7717         uint32_t addr;
7718         int ret;
7719
7720         /* if we want to turn off the cursor ignore width and height */
7721         if (!handle) {
7722                 DRM_DEBUG_KMS("cursor off\n");
7723                 addr = 0;
7724                 obj = NULL;
7725                 mutex_lock(&dev->struct_mutex);
7726                 goto finish;
7727         }
7728
7729         /* Check for which cursor types we support */
7730         if (!((width == 64 && height == 64) ||
7731                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7732                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7733                 DRM_DEBUG("Cursor dimension not supported\n");
7734                 return -EINVAL;
7735         }
7736
7737         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7738         if (&obj->base == NULL)
7739                 return -ENOENT;
7740
7741         if (obj->base.size < width * height * 4) {
7742                 DRM_DEBUG_KMS("buffer is to small\n");
7743                 ret = -ENOMEM;
7744                 goto fail;
7745         }
7746
7747         /* we only need to pin inside GTT if cursor is non-phy */
7748         mutex_lock(&dev->struct_mutex);
7749         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7750                 unsigned alignment;
7751
7752                 if (obj->tiling_mode) {
7753                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7754                         ret = -EINVAL;
7755                         goto fail_locked;
7756                 }
7757
7758                 /* Note that the w/a also requires 2 PTE of padding following
7759                  * the bo. We currently fill all unused PTE with the shadow
7760                  * page and so we should always have valid PTE following the
7761                  * cursor preventing the VT-d warning.
7762                  */
7763                 alignment = 0;
7764                 if (need_vtd_wa(dev))
7765                         alignment = 64*1024;
7766
7767                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7768                 if (ret) {
7769                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7770                         goto fail_locked;
7771                 }
7772
7773                 ret = i915_gem_object_put_fence(obj);
7774                 if (ret) {
7775                         DRM_DEBUG_KMS("failed to release fence for cursor");
7776                         goto fail_unpin;
7777                 }
7778
7779                 addr = i915_gem_obj_ggtt_offset(obj);
7780         } else {
7781                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7782                 ret = i915_gem_attach_phys_object(dev, obj,
7783                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7784                                                   align);
7785                 if (ret) {
7786                         DRM_DEBUG_KMS("failed to attach phys object\n");
7787                         goto fail_locked;
7788                 }
7789                 addr = obj->phys_obj->handle->busaddr;
7790         }
7791
7792         if (IS_GEN2(dev))
7793                 I915_WRITE(CURSIZE, (height << 12) | width);
7794
7795  finish:
7796         if (intel_crtc->cursor_bo) {
7797                 if (INTEL_INFO(dev)->cursor_needs_physical) {
7798                         if (intel_crtc->cursor_bo != obj)
7799                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7800                 } else
7801                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7802                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7803         }
7804
7805         mutex_unlock(&dev->struct_mutex);
7806
7807         old_width = intel_crtc->cursor_width;
7808
7809         intel_crtc->cursor_addr = addr;
7810         intel_crtc->cursor_bo = obj;
7811         intel_crtc->cursor_width = width;
7812         intel_crtc->cursor_height = height;
7813
7814         if (intel_crtc->active) {
7815                 if (old_width != width)
7816                         intel_update_watermarks(crtc);
7817                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7818         }
7819
7820         return 0;
7821 fail_unpin:
7822         i915_gem_object_unpin_from_display_plane(obj);
7823 fail_locked:
7824         mutex_unlock(&dev->struct_mutex);
7825 fail:
7826         drm_gem_object_unreference_unlocked(&obj->base);
7827         return ret;
7828 }
7829
7830 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7831 {
7832         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7833
7834         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7835         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7836
7837         if (intel_crtc->active)
7838                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7839
7840         return 0;
7841 }
7842
7843 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7844                                  u16 *blue, uint32_t start, uint32_t size)
7845 {
7846         int end = (start + size > 256) ? 256 : start + size, i;
7847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7848
7849         for (i = start; i < end; i++) {
7850                 intel_crtc->lut_r[i] = red[i] >> 8;
7851                 intel_crtc->lut_g[i] = green[i] >> 8;
7852                 intel_crtc->lut_b[i] = blue[i] >> 8;
7853         }
7854
7855         intel_crtc_load_lut(crtc);
7856 }
7857
7858 /* VESA 640x480x72Hz mode to set on the pipe */
7859 static struct drm_display_mode load_detect_mode = {
7860         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7861                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7862 };
7863
7864 struct drm_framebuffer *
7865 __intel_framebuffer_create(struct drm_device *dev,
7866                            struct drm_mode_fb_cmd2 *mode_cmd,
7867                            struct drm_i915_gem_object *obj)
7868 {
7869         struct intel_framebuffer *intel_fb;
7870         int ret;
7871
7872         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7873         if (!intel_fb) {
7874                 drm_gem_object_unreference_unlocked(&obj->base);
7875                 return ERR_PTR(-ENOMEM);
7876         }
7877
7878         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7879         if (ret)
7880                 goto err;
7881
7882         return &intel_fb->base;
7883 err:
7884         drm_gem_object_unreference_unlocked(&obj->base);
7885         kfree(intel_fb);
7886
7887         return ERR_PTR(ret);
7888 }
7889
7890 static struct drm_framebuffer *
7891 intel_framebuffer_create(struct drm_device *dev,
7892                          struct drm_mode_fb_cmd2 *mode_cmd,
7893                          struct drm_i915_gem_object *obj)
7894 {
7895         struct drm_framebuffer *fb;
7896         int ret;
7897
7898         ret = i915_mutex_lock_interruptible(dev);
7899         if (ret)
7900                 return ERR_PTR(ret);
7901         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7902         mutex_unlock(&dev->struct_mutex);
7903
7904         return fb;
7905 }
7906
7907 static u32
7908 intel_framebuffer_pitch_for_width(int width, int bpp)
7909 {
7910         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7911         return ALIGN(pitch, 64);
7912 }
7913
7914 static u32
7915 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7916 {
7917         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7918         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7919 }
7920
7921 static struct drm_framebuffer *
7922 intel_framebuffer_create_for_mode(struct drm_device *dev,
7923                                   struct drm_display_mode *mode,
7924                                   int depth, int bpp)
7925 {
7926         struct drm_i915_gem_object *obj;
7927         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7928
7929         obj = i915_gem_alloc_object(dev,
7930                                     intel_framebuffer_size_for_mode(mode, bpp));
7931         if (obj == NULL)
7932                 return ERR_PTR(-ENOMEM);
7933
7934         mode_cmd.width = mode->hdisplay;
7935         mode_cmd.height = mode->vdisplay;
7936         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7937                                                                 bpp);
7938         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7939
7940         return intel_framebuffer_create(dev, &mode_cmd, obj);
7941 }
7942
7943 static struct drm_framebuffer *
7944 mode_fits_in_fbdev(struct drm_device *dev,
7945                    struct drm_display_mode *mode)
7946 {
7947 #ifdef CONFIG_DRM_I915_FBDEV
7948         struct drm_i915_private *dev_priv = dev->dev_private;
7949         struct drm_i915_gem_object *obj;
7950         struct drm_framebuffer *fb;
7951
7952         if (!dev_priv->fbdev)
7953                 return NULL;
7954
7955         if (!dev_priv->fbdev->fb)
7956                 return NULL;
7957
7958         obj = dev_priv->fbdev->fb->obj;
7959         BUG_ON(!obj);
7960
7961         fb = &dev_priv->fbdev->fb->base;
7962         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7963                                                                fb->bits_per_pixel))
7964                 return NULL;
7965
7966         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7967                 return NULL;
7968
7969         return fb;
7970 #else
7971         return NULL;
7972 #endif
7973 }
7974
7975 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7976                                 struct drm_display_mode *mode,
7977                                 struct intel_load_detect_pipe *old)
7978 {
7979         struct intel_crtc *intel_crtc;
7980         struct intel_encoder *intel_encoder =
7981                 intel_attached_encoder(connector);
7982         struct drm_crtc *possible_crtc;
7983         struct drm_encoder *encoder = &intel_encoder->base;
7984         struct drm_crtc *crtc = NULL;
7985         struct drm_device *dev = encoder->dev;
7986         struct drm_framebuffer *fb;
7987         int i = -1;
7988
7989         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7990                       connector->base.id, drm_get_connector_name(connector),
7991                       encoder->base.id, drm_get_encoder_name(encoder));
7992
7993         /*
7994          * Algorithm gets a little messy:
7995          *
7996          *   - if the connector already has an assigned crtc, use it (but make
7997          *     sure it's on first)
7998          *
7999          *   - try to find the first unused crtc that can drive this connector,
8000          *     and use that if we find one
8001          */
8002
8003         /* See if we already have a CRTC for this connector */
8004         if (encoder->crtc) {
8005                 crtc = encoder->crtc;
8006
8007                 mutex_lock(&crtc->mutex);
8008
8009                 old->dpms_mode = connector->dpms;
8010                 old->load_detect_temp = false;
8011
8012                 /* Make sure the crtc and connector are running */
8013                 if (connector->dpms != DRM_MODE_DPMS_ON)
8014                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8015
8016                 return true;
8017         }
8018
8019         /* Find an unused one (if possible) */
8020         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8021                 i++;
8022                 if (!(encoder->possible_crtcs & (1 << i)))
8023                         continue;
8024                 if (!possible_crtc->enabled) {
8025                         crtc = possible_crtc;
8026                         break;
8027                 }
8028         }
8029
8030         /*
8031          * If we didn't find an unused CRTC, don't use any.
8032          */
8033         if (!crtc) {
8034                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8035                 return false;
8036         }
8037
8038         mutex_lock(&crtc->mutex);
8039         intel_encoder->new_crtc = to_intel_crtc(crtc);
8040         to_intel_connector(connector)->new_encoder = intel_encoder;
8041
8042         intel_crtc = to_intel_crtc(crtc);
8043         intel_crtc->new_enabled = true;
8044         intel_crtc->new_config = &intel_crtc->config;
8045         old->dpms_mode = connector->dpms;
8046         old->load_detect_temp = true;
8047         old->release_fb = NULL;
8048
8049         if (!mode)
8050                 mode = &load_detect_mode;
8051
8052         /* We need a framebuffer large enough to accommodate all accesses
8053          * that the plane may generate whilst we perform load detection.
8054          * We can not rely on the fbcon either being present (we get called
8055          * during its initialisation to detect all boot displays, or it may
8056          * not even exist) or that it is large enough to satisfy the
8057          * requested mode.
8058          */
8059         fb = mode_fits_in_fbdev(dev, mode);
8060         if (fb == NULL) {
8061                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8062                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8063                 old->release_fb = fb;
8064         } else
8065                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8066         if (IS_ERR(fb)) {
8067                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8068                 goto fail;
8069         }
8070
8071         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8072                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8073                 if (old->release_fb)
8074                         old->release_fb->funcs->destroy(old->release_fb);
8075                 goto fail;
8076         }
8077
8078         /* let the connector get through one full cycle before testing */
8079         intel_wait_for_vblank(dev, intel_crtc->pipe);
8080         return true;
8081
8082  fail:
8083         intel_crtc->new_enabled = crtc->enabled;
8084         if (intel_crtc->new_enabled)
8085                 intel_crtc->new_config = &intel_crtc->config;
8086         else
8087                 intel_crtc->new_config = NULL;
8088         mutex_unlock(&crtc->mutex);
8089         return false;
8090 }
8091
8092 void intel_release_load_detect_pipe(struct drm_connector *connector,
8093                                     struct intel_load_detect_pipe *old)
8094 {
8095         struct intel_encoder *intel_encoder =
8096                 intel_attached_encoder(connector);
8097         struct drm_encoder *encoder = &intel_encoder->base;
8098         struct drm_crtc *crtc = encoder->crtc;
8099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8100
8101         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8102                       connector->base.id, drm_get_connector_name(connector),
8103                       encoder->base.id, drm_get_encoder_name(encoder));
8104
8105         if (old->load_detect_temp) {
8106                 to_intel_connector(connector)->new_encoder = NULL;
8107                 intel_encoder->new_crtc = NULL;
8108                 intel_crtc->new_enabled = false;
8109                 intel_crtc->new_config = NULL;
8110                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8111
8112                 if (old->release_fb) {
8113                         drm_framebuffer_unregister_private(old->release_fb);
8114                         drm_framebuffer_unreference(old->release_fb);
8115                 }
8116
8117                 mutex_unlock(&crtc->mutex);
8118                 return;
8119         }
8120
8121         /* Switch crtc and encoder back off if necessary */
8122         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8123                 connector->funcs->dpms(connector, old->dpms_mode);
8124
8125         mutex_unlock(&crtc->mutex);
8126 }
8127
8128 static int i9xx_pll_refclk(struct drm_device *dev,
8129                            const struct intel_crtc_config *pipe_config)
8130 {
8131         struct drm_i915_private *dev_priv = dev->dev_private;
8132         u32 dpll = pipe_config->dpll_hw_state.dpll;
8133
8134         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8135                 return dev_priv->vbt.lvds_ssc_freq;
8136         else if (HAS_PCH_SPLIT(dev))
8137                 return 120000;
8138         else if (!IS_GEN2(dev))
8139                 return 96000;
8140         else
8141                 return 48000;
8142 }
8143
8144 /* Returns the clock of the currently programmed mode of the given pipe. */
8145 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8146                                 struct intel_crtc_config *pipe_config)
8147 {
8148         struct drm_device *dev = crtc->base.dev;
8149         struct drm_i915_private *dev_priv = dev->dev_private;
8150         int pipe = pipe_config->cpu_transcoder;
8151         u32 dpll = pipe_config->dpll_hw_state.dpll;
8152         u32 fp;
8153         intel_clock_t clock;
8154         int refclk = i9xx_pll_refclk(dev, pipe_config);
8155
8156         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8157                 fp = pipe_config->dpll_hw_state.fp0;
8158         else
8159                 fp = pipe_config->dpll_hw_state.fp1;
8160
8161         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8162         if (IS_PINEVIEW(dev)) {
8163                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8164                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8165         } else {
8166                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8167                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8168         }
8169
8170         if (!IS_GEN2(dev)) {
8171                 if (IS_PINEVIEW(dev))
8172                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8173                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8174                 else
8175                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8176                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8177
8178                 switch (dpll & DPLL_MODE_MASK) {
8179                 case DPLLB_MODE_DAC_SERIAL:
8180                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8181                                 5 : 10;
8182                         break;
8183                 case DPLLB_MODE_LVDS:
8184                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8185                                 7 : 14;
8186                         break;
8187                 default:
8188                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8189                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8190                         return;
8191                 }
8192
8193                 if (IS_PINEVIEW(dev))
8194                         pineview_clock(refclk, &clock);
8195                 else
8196                         i9xx_clock(refclk, &clock);
8197         } else {
8198                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8199                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8200
8201                 if (is_lvds) {
8202                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8203                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8204
8205                         if (lvds & LVDS_CLKB_POWER_UP)
8206                                 clock.p2 = 7;
8207                         else
8208                                 clock.p2 = 14;
8209                 } else {
8210                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8211                                 clock.p1 = 2;
8212                         else {
8213                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8214                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8215                         }
8216                         if (dpll & PLL_P2_DIVIDE_BY_4)
8217                                 clock.p2 = 4;
8218                         else
8219                                 clock.p2 = 2;
8220                 }
8221
8222                 i9xx_clock(refclk, &clock);
8223         }
8224
8225         /*
8226          * This value includes pixel_multiplier. We will use
8227          * port_clock to compute adjusted_mode.crtc_clock in the
8228          * encoder's get_config() function.
8229          */
8230         pipe_config->port_clock = clock.dot;
8231 }
8232
8233 int intel_dotclock_calculate(int link_freq,
8234                              const struct intel_link_m_n *m_n)
8235 {
8236         /*
8237          * The calculation for the data clock is:
8238          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8239          * But we want to avoid losing precison if possible, so:
8240          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8241          *
8242          * and the link clock is simpler:
8243          * link_clock = (m * link_clock) / n
8244          */
8245
8246         if (!m_n->link_n)
8247                 return 0;
8248
8249         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8250 }
8251
8252 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8253                                    struct intel_crtc_config *pipe_config)
8254 {
8255         struct drm_device *dev = crtc->base.dev;
8256
8257         /* read out port_clock from the DPLL */
8258         i9xx_crtc_clock_get(crtc, pipe_config);
8259
8260         /*
8261          * This value does not include pixel_multiplier.
8262          * We will check that port_clock and adjusted_mode.crtc_clock
8263          * agree once we know their relationship in the encoder's
8264          * get_config() function.
8265          */
8266         pipe_config->adjusted_mode.crtc_clock =
8267                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8268                                          &pipe_config->fdi_m_n);
8269 }
8270
8271 /** Returns the currently programmed mode of the given pipe. */
8272 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8273                                              struct drm_crtc *crtc)
8274 {
8275         struct drm_i915_private *dev_priv = dev->dev_private;
8276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8277         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8278         struct drm_display_mode *mode;
8279         struct intel_crtc_config pipe_config;
8280         int htot = I915_READ(HTOTAL(cpu_transcoder));
8281         int hsync = I915_READ(HSYNC(cpu_transcoder));
8282         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8283         int vsync = I915_READ(VSYNC(cpu_transcoder));
8284         enum pipe pipe = intel_crtc->pipe;
8285
8286         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8287         if (!mode)
8288                 return NULL;
8289
8290         /*
8291          * Construct a pipe_config sufficient for getting the clock info
8292          * back out of crtc_clock_get.
8293          *
8294          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8295          * to use a real value here instead.
8296          */
8297         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8298         pipe_config.pixel_multiplier = 1;
8299         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8300         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8301         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8302         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8303
8304         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8305         mode->hdisplay = (htot & 0xffff) + 1;
8306         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8307         mode->hsync_start = (hsync & 0xffff) + 1;
8308         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8309         mode->vdisplay = (vtot & 0xffff) + 1;
8310         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8311         mode->vsync_start = (vsync & 0xffff) + 1;
8312         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8313
8314         drm_mode_set_name(mode);
8315
8316         return mode;
8317 }
8318
8319 static void intel_increase_pllclock(struct drm_crtc *crtc)
8320 {
8321         struct drm_device *dev = crtc->dev;
8322         struct drm_i915_private *dev_priv = dev->dev_private;
8323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8324         int pipe = intel_crtc->pipe;
8325         int dpll_reg = DPLL(pipe);
8326         int dpll;
8327
8328         if (HAS_PCH_SPLIT(dev))
8329                 return;
8330
8331         if (!dev_priv->lvds_downclock_avail)
8332                 return;
8333
8334         dpll = I915_READ(dpll_reg);
8335         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8336                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8337
8338                 assert_panel_unlocked(dev_priv, pipe);
8339
8340                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8341                 I915_WRITE(dpll_reg, dpll);
8342                 intel_wait_for_vblank(dev, pipe);
8343
8344                 dpll = I915_READ(dpll_reg);
8345                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8346                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8347         }
8348 }
8349
8350 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8351 {
8352         struct drm_device *dev = crtc->dev;
8353         struct drm_i915_private *dev_priv = dev->dev_private;
8354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8355
8356         if (HAS_PCH_SPLIT(dev))
8357                 return;
8358
8359         if (!dev_priv->lvds_downclock_avail)
8360                 return;
8361
8362         /*
8363          * Since this is called by a timer, we should never get here in
8364          * the manual case.
8365          */
8366         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8367                 int pipe = intel_crtc->pipe;
8368                 int dpll_reg = DPLL(pipe);
8369                 int dpll;
8370
8371                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8372
8373                 assert_panel_unlocked(dev_priv, pipe);
8374
8375                 dpll = I915_READ(dpll_reg);
8376                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8377                 I915_WRITE(dpll_reg, dpll);
8378                 intel_wait_for_vblank(dev, pipe);
8379                 dpll = I915_READ(dpll_reg);
8380                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8381                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8382         }
8383
8384 }
8385
8386 void intel_mark_busy(struct drm_device *dev)
8387 {
8388         struct drm_i915_private *dev_priv = dev->dev_private;
8389
8390         if (dev_priv->mm.busy)
8391                 return;
8392
8393         intel_runtime_pm_get(dev_priv);
8394         i915_update_gfx_val(dev_priv);
8395         dev_priv->mm.busy = true;
8396 }
8397
8398 void intel_mark_idle(struct drm_device *dev)
8399 {
8400         struct drm_i915_private *dev_priv = dev->dev_private;
8401         struct drm_crtc *crtc;
8402
8403         if (!dev_priv->mm.busy)
8404                 return;
8405
8406         dev_priv->mm.busy = false;
8407
8408         if (!i915.powersave)
8409                 goto out;
8410
8411         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8412                 if (!crtc->primary->fb)
8413                         continue;
8414
8415                 intel_decrease_pllclock(crtc);
8416         }
8417
8418         if (INTEL_INFO(dev)->gen >= 6)
8419                 gen6_rps_idle(dev->dev_private);
8420
8421 out:
8422         intel_runtime_pm_put(dev_priv);
8423 }
8424
8425 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8426                         struct intel_ring_buffer *ring)
8427 {
8428         struct drm_device *dev = obj->base.dev;
8429         struct drm_crtc *crtc;
8430
8431         if (!i915.powersave)
8432                 return;
8433
8434         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8435                 if (!crtc->primary->fb)
8436                         continue;
8437
8438                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8439                         continue;
8440
8441                 intel_increase_pllclock(crtc);
8442                 if (ring && intel_fbc_enabled(dev))
8443                         ring->fbc_dirty = true;
8444         }
8445 }
8446
8447 static void intel_crtc_destroy(struct drm_crtc *crtc)
8448 {
8449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8450         struct drm_device *dev = crtc->dev;
8451         struct intel_unpin_work *work;
8452         unsigned long flags;
8453
8454         spin_lock_irqsave(&dev->event_lock, flags);
8455         work = intel_crtc->unpin_work;
8456         intel_crtc->unpin_work = NULL;
8457         spin_unlock_irqrestore(&dev->event_lock, flags);
8458
8459         if (work) {
8460                 cancel_work_sync(&work->work);
8461                 kfree(work);
8462         }
8463
8464         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8465
8466         drm_crtc_cleanup(crtc);
8467
8468         kfree(intel_crtc);
8469 }
8470
8471 static void intel_unpin_work_fn(struct work_struct *__work)
8472 {
8473         struct intel_unpin_work *work =
8474                 container_of(__work, struct intel_unpin_work, work);
8475         struct drm_device *dev = work->crtc->dev;
8476
8477         mutex_lock(&dev->struct_mutex);
8478         intel_unpin_fb_obj(work->old_fb_obj);
8479         drm_gem_object_unreference(&work->pending_flip_obj->base);
8480         drm_gem_object_unreference(&work->old_fb_obj->base);
8481
8482         intel_update_fbc(dev);
8483         mutex_unlock(&dev->struct_mutex);
8484
8485         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8486         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8487
8488         kfree(work);
8489 }
8490
8491 static void do_intel_finish_page_flip(struct drm_device *dev,
8492                                       struct drm_crtc *crtc)
8493 {
8494         struct drm_i915_private *dev_priv = dev->dev_private;
8495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8496         struct intel_unpin_work *work;
8497         unsigned long flags;
8498
8499         /* Ignore early vblank irqs */
8500         if (intel_crtc == NULL)
8501                 return;
8502
8503         spin_lock_irqsave(&dev->event_lock, flags);
8504         work = intel_crtc->unpin_work;
8505
8506         /* Ensure we don't miss a work->pending update ... */
8507         smp_rmb();
8508
8509         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8510                 spin_unlock_irqrestore(&dev->event_lock, flags);
8511                 return;
8512         }
8513
8514         /* and that the unpin work is consistent wrt ->pending. */
8515         smp_rmb();
8516
8517         intel_crtc->unpin_work = NULL;
8518
8519         if (work->event)
8520                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8521
8522         drm_vblank_put(dev, intel_crtc->pipe);
8523
8524         spin_unlock_irqrestore(&dev->event_lock, flags);
8525
8526         wake_up_all(&dev_priv->pending_flip_queue);
8527
8528         queue_work(dev_priv->wq, &work->work);
8529
8530         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8531 }
8532
8533 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8534 {
8535         struct drm_i915_private *dev_priv = dev->dev_private;
8536         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8537
8538         do_intel_finish_page_flip(dev, crtc);
8539 }
8540
8541 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8542 {
8543         struct drm_i915_private *dev_priv = dev->dev_private;
8544         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8545
8546         do_intel_finish_page_flip(dev, crtc);
8547 }
8548
8549 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8550 {
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552         struct intel_crtc *intel_crtc =
8553                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8554         unsigned long flags;
8555
8556         /* NB: An MMIO update of the plane base pointer will also
8557          * generate a page-flip completion irq, i.e. every modeset
8558          * is also accompanied by a spurious intel_prepare_page_flip().
8559          */
8560         spin_lock_irqsave(&dev->event_lock, flags);
8561         if (intel_crtc->unpin_work)
8562                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8563         spin_unlock_irqrestore(&dev->event_lock, flags);
8564 }
8565
8566 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8567 {
8568         /* Ensure that the work item is consistent when activating it ... */
8569         smp_wmb();
8570         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8571         /* and that it is marked active as soon as the irq could fire. */
8572         smp_wmb();
8573 }
8574
8575 static int intel_gen2_queue_flip(struct drm_device *dev,
8576                                  struct drm_crtc *crtc,
8577                                  struct drm_framebuffer *fb,
8578                                  struct drm_i915_gem_object *obj,
8579                                  uint32_t flags)
8580 {
8581         struct drm_i915_private *dev_priv = dev->dev_private;
8582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8583         u32 flip_mask;
8584         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8585         int ret;
8586
8587         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8588         if (ret)
8589                 goto err;
8590
8591         ret = intel_ring_begin(ring, 6);
8592         if (ret)
8593                 goto err_unpin;
8594
8595         /* Can't queue multiple flips, so wait for the previous
8596          * one to finish before executing the next.
8597          */
8598         if (intel_crtc->plane)
8599                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8600         else
8601                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8602         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8603         intel_ring_emit(ring, MI_NOOP);
8604         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8605                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8606         intel_ring_emit(ring, fb->pitches[0]);
8607         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8608         intel_ring_emit(ring, 0); /* aux display base address, unused */
8609
8610         intel_mark_page_flip_active(intel_crtc);
8611         __intel_ring_advance(ring);
8612         return 0;
8613
8614 err_unpin:
8615         intel_unpin_fb_obj(obj);
8616 err:
8617         return ret;
8618 }
8619
8620 static int intel_gen3_queue_flip(struct drm_device *dev,
8621                                  struct drm_crtc *crtc,
8622                                  struct drm_framebuffer *fb,
8623                                  struct drm_i915_gem_object *obj,
8624                                  uint32_t flags)
8625 {
8626         struct drm_i915_private *dev_priv = dev->dev_private;
8627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8628         u32 flip_mask;
8629         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8630         int ret;
8631
8632         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8633         if (ret)
8634                 goto err;
8635
8636         ret = intel_ring_begin(ring, 6);
8637         if (ret)
8638                 goto err_unpin;
8639
8640         if (intel_crtc->plane)
8641                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8642         else
8643                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8644         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8645         intel_ring_emit(ring, MI_NOOP);
8646         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8647                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8648         intel_ring_emit(ring, fb->pitches[0]);
8649         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8650         intel_ring_emit(ring, MI_NOOP);
8651
8652         intel_mark_page_flip_active(intel_crtc);
8653         __intel_ring_advance(ring);
8654         return 0;
8655
8656 err_unpin:
8657         intel_unpin_fb_obj(obj);
8658 err:
8659         return ret;
8660 }
8661
8662 static int intel_gen4_queue_flip(struct drm_device *dev,
8663                                  struct drm_crtc *crtc,
8664                                  struct drm_framebuffer *fb,
8665                                  struct drm_i915_gem_object *obj,
8666                                  uint32_t flags)
8667 {
8668         struct drm_i915_private *dev_priv = dev->dev_private;
8669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8670         uint32_t pf, pipesrc;
8671         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8672         int ret;
8673
8674         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8675         if (ret)
8676                 goto err;
8677
8678         ret = intel_ring_begin(ring, 4);
8679         if (ret)
8680                 goto err_unpin;
8681
8682         /* i965+ uses the linear or tiled offsets from the
8683          * Display Registers (which do not change across a page-flip)
8684          * so we need only reprogram the base address.
8685          */
8686         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8687                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8688         intel_ring_emit(ring, fb->pitches[0]);
8689         intel_ring_emit(ring,
8690                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8691                         obj->tiling_mode);
8692
8693         /* XXX Enabling the panel-fitter across page-flip is so far
8694          * untested on non-native modes, so ignore it for now.
8695          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8696          */
8697         pf = 0;
8698         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8699         intel_ring_emit(ring, pf | pipesrc);
8700
8701         intel_mark_page_flip_active(intel_crtc);
8702         __intel_ring_advance(ring);
8703         return 0;
8704
8705 err_unpin:
8706         intel_unpin_fb_obj(obj);
8707 err:
8708         return ret;
8709 }
8710
8711 static int intel_gen6_queue_flip(struct drm_device *dev,
8712                                  struct drm_crtc *crtc,
8713                                  struct drm_framebuffer *fb,
8714                                  struct drm_i915_gem_object *obj,
8715                                  uint32_t flags)
8716 {
8717         struct drm_i915_private *dev_priv = dev->dev_private;
8718         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8719         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8720         uint32_t pf, pipesrc;
8721         int ret;
8722
8723         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8724         if (ret)
8725                 goto err;
8726
8727         ret = intel_ring_begin(ring, 4);
8728         if (ret)
8729                 goto err_unpin;
8730
8731         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8732                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8733         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8734         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8735
8736         /* Contrary to the suggestions in the documentation,
8737          * "Enable Panel Fitter" does not seem to be required when page
8738          * flipping with a non-native mode, and worse causes a normal
8739          * modeset to fail.
8740          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8741          */
8742         pf = 0;
8743         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8744         intel_ring_emit(ring, pf | pipesrc);
8745
8746         intel_mark_page_flip_active(intel_crtc);
8747         __intel_ring_advance(ring);
8748         return 0;
8749
8750 err_unpin:
8751         intel_unpin_fb_obj(obj);
8752 err:
8753         return ret;
8754 }
8755
8756 static int intel_gen7_queue_flip(struct drm_device *dev,
8757                                  struct drm_crtc *crtc,
8758                                  struct drm_framebuffer *fb,
8759                                  struct drm_i915_gem_object *obj,
8760                                  uint32_t flags)
8761 {
8762         struct drm_i915_private *dev_priv = dev->dev_private;
8763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8764         struct intel_ring_buffer *ring;
8765         uint32_t plane_bit = 0;
8766         int len, ret;
8767
8768         ring = obj->ring;
8769         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8770                 ring = &dev_priv->ring[BCS];
8771
8772         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8773         if (ret)
8774                 goto err;
8775
8776         switch(intel_crtc->plane) {
8777         case PLANE_A:
8778                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8779                 break;
8780         case PLANE_B:
8781                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8782                 break;
8783         case PLANE_C:
8784                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8785                 break;
8786         default:
8787                 WARN_ONCE(1, "unknown plane in flip command\n");
8788                 ret = -ENODEV;
8789                 goto err_unpin;
8790         }
8791
8792         len = 4;
8793         if (ring->id == RCS) {
8794                 len += 6;
8795                 /*
8796                  * On Gen 8, SRM is now taking an extra dword to accommodate
8797                  * 48bits addresses, and we need a NOOP for the batch size to
8798                  * stay even.
8799                  */
8800                 if (IS_GEN8(dev))
8801                         len += 2;
8802         }
8803
8804         /*
8805          * BSpec MI_DISPLAY_FLIP for IVB:
8806          * "The full packet must be contained within the same cache line."
8807          *
8808          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8809          * cacheline, if we ever start emitting more commands before
8810          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8811          * then do the cacheline alignment, and finally emit the
8812          * MI_DISPLAY_FLIP.
8813          */
8814         ret = intel_ring_cacheline_align(ring);
8815         if (ret)
8816                 goto err_unpin;
8817
8818         ret = intel_ring_begin(ring, len);
8819         if (ret)
8820                 goto err_unpin;
8821
8822         /* Unmask the flip-done completion message. Note that the bspec says that
8823          * we should do this for both the BCS and RCS, and that we must not unmask
8824          * more than one flip event at any time (or ensure that one flip message
8825          * can be sent by waiting for flip-done prior to queueing new flips).
8826          * Experimentation says that BCS works despite DERRMR masking all
8827          * flip-done completion events and that unmasking all planes at once
8828          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8829          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8830          */
8831         if (ring->id == RCS) {
8832                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8833                 intel_ring_emit(ring, DERRMR);
8834                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8835                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8836                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8837                 if (IS_GEN8(dev))
8838                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
8839                                               MI_SRM_LRM_GLOBAL_GTT);
8840                 else
8841                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8842                                               MI_SRM_LRM_GLOBAL_GTT);
8843                 intel_ring_emit(ring, DERRMR);
8844                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8845                 if (IS_GEN8(dev)) {
8846                         intel_ring_emit(ring, 0);
8847                         intel_ring_emit(ring, MI_NOOP);
8848                 }
8849         }
8850
8851         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8852         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8853         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8854         intel_ring_emit(ring, (MI_NOOP));
8855
8856         intel_mark_page_flip_active(intel_crtc);
8857         __intel_ring_advance(ring);
8858         return 0;
8859
8860 err_unpin:
8861         intel_unpin_fb_obj(obj);
8862 err:
8863         return ret;
8864 }
8865
8866 static int intel_default_queue_flip(struct drm_device *dev,
8867                                     struct drm_crtc *crtc,
8868                                     struct drm_framebuffer *fb,
8869                                     struct drm_i915_gem_object *obj,
8870                                     uint32_t flags)
8871 {
8872         return -ENODEV;
8873 }
8874
8875 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8876                                 struct drm_framebuffer *fb,
8877                                 struct drm_pending_vblank_event *event,
8878                                 uint32_t page_flip_flags)
8879 {
8880         struct drm_device *dev = crtc->dev;
8881         struct drm_i915_private *dev_priv = dev->dev_private;
8882         struct drm_framebuffer *old_fb = crtc->primary->fb;
8883         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8885         struct intel_unpin_work *work;
8886         unsigned long flags;
8887         int ret;
8888
8889         /* Can't change pixel format via MI display flips. */
8890         if (fb->pixel_format != crtc->primary->fb->pixel_format)
8891                 return -EINVAL;
8892
8893         /*
8894          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8895          * Note that pitch changes could also affect these register.
8896          */
8897         if (INTEL_INFO(dev)->gen > 3 &&
8898             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
8899              fb->pitches[0] != crtc->primary->fb->pitches[0]))
8900                 return -EINVAL;
8901
8902         if (i915_terminally_wedged(&dev_priv->gpu_error))
8903                 goto out_hang;
8904
8905         work = kzalloc(sizeof(*work), GFP_KERNEL);
8906         if (work == NULL)
8907                 return -ENOMEM;
8908
8909         work->event = event;
8910         work->crtc = crtc;
8911         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8912         INIT_WORK(&work->work, intel_unpin_work_fn);
8913
8914         ret = drm_vblank_get(dev, intel_crtc->pipe);
8915         if (ret)
8916                 goto free_work;
8917
8918         /* We borrow the event spin lock for protecting unpin_work */
8919         spin_lock_irqsave(&dev->event_lock, flags);
8920         if (intel_crtc->unpin_work) {
8921                 spin_unlock_irqrestore(&dev->event_lock, flags);
8922                 kfree(work);
8923                 drm_vblank_put(dev, intel_crtc->pipe);
8924
8925                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8926                 return -EBUSY;
8927         }
8928         intel_crtc->unpin_work = work;
8929         spin_unlock_irqrestore(&dev->event_lock, flags);
8930
8931         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8932                 flush_workqueue(dev_priv->wq);
8933
8934         ret = i915_mutex_lock_interruptible(dev);
8935         if (ret)
8936                 goto cleanup;
8937
8938         /* Reference the objects for the scheduled work. */
8939         drm_gem_object_reference(&work->old_fb_obj->base);
8940         drm_gem_object_reference(&obj->base);
8941
8942         crtc->primary->fb = fb;
8943
8944         work->pending_flip_obj = obj;
8945
8946         work->enable_stall_check = true;
8947
8948         atomic_inc(&intel_crtc->unpin_work_count);
8949         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8950
8951         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8952         if (ret)
8953                 goto cleanup_pending;
8954
8955         intel_disable_fbc(dev);
8956         intel_mark_fb_busy(obj, NULL);
8957         mutex_unlock(&dev->struct_mutex);
8958
8959         trace_i915_flip_request(intel_crtc->plane, obj);
8960
8961         return 0;
8962
8963 cleanup_pending:
8964         atomic_dec(&intel_crtc->unpin_work_count);
8965         crtc->primary->fb = old_fb;
8966         drm_gem_object_unreference(&work->old_fb_obj->base);
8967         drm_gem_object_unreference(&obj->base);
8968         mutex_unlock(&dev->struct_mutex);
8969
8970 cleanup:
8971         spin_lock_irqsave(&dev->event_lock, flags);
8972         intel_crtc->unpin_work = NULL;
8973         spin_unlock_irqrestore(&dev->event_lock, flags);
8974
8975         drm_vblank_put(dev, intel_crtc->pipe);
8976 free_work:
8977         kfree(work);
8978
8979         if (ret == -EIO) {
8980 out_hang:
8981                 intel_crtc_wait_for_pending_flips(crtc);
8982                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
8983                 if (ret == 0 && event)
8984                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
8985         }
8986         return ret;
8987 }
8988
8989 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8990         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8991         .load_lut = intel_crtc_load_lut,
8992 };
8993
8994 /**
8995  * intel_modeset_update_staged_output_state
8996  *
8997  * Updates the staged output configuration state, e.g. after we've read out the
8998  * current hw state.
8999  */
9000 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9001 {
9002         struct intel_crtc *crtc;
9003         struct intel_encoder *encoder;
9004         struct intel_connector *connector;
9005
9006         list_for_each_entry(connector, &dev->mode_config.connector_list,
9007                             base.head) {
9008                 connector->new_encoder =
9009                         to_intel_encoder(connector->base.encoder);
9010         }
9011
9012         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9013                             base.head) {
9014                 encoder->new_crtc =
9015                         to_intel_crtc(encoder->base.crtc);
9016         }
9017
9018         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9019                             base.head) {
9020                 crtc->new_enabled = crtc->base.enabled;
9021
9022                 if (crtc->new_enabled)
9023                         crtc->new_config = &crtc->config;
9024                 else
9025                         crtc->new_config = NULL;
9026         }
9027 }
9028
9029 /**
9030  * intel_modeset_commit_output_state
9031  *
9032  * This function copies the stage display pipe configuration to the real one.
9033  */
9034 static void intel_modeset_commit_output_state(struct drm_device *dev)
9035 {
9036         struct intel_crtc *crtc;
9037         struct intel_encoder *encoder;
9038         struct intel_connector *connector;
9039
9040         list_for_each_entry(connector, &dev->mode_config.connector_list,
9041                             base.head) {
9042                 connector->base.encoder = &connector->new_encoder->base;
9043         }
9044
9045         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9046                             base.head) {
9047                 encoder->base.crtc = &encoder->new_crtc->base;
9048         }
9049
9050         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9051                             base.head) {
9052                 crtc->base.enabled = crtc->new_enabled;
9053         }
9054 }
9055
9056 static void
9057 connected_sink_compute_bpp(struct intel_connector * connector,
9058                            struct intel_crtc_config *pipe_config)
9059 {
9060         int bpp = pipe_config->pipe_bpp;
9061
9062         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9063                 connector->base.base.id,
9064                 drm_get_connector_name(&connector->base));
9065
9066         /* Don't use an invalid EDID bpc value */
9067         if (connector->base.display_info.bpc &&
9068             connector->base.display_info.bpc * 3 < bpp) {
9069                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9070                               bpp, connector->base.display_info.bpc*3);
9071                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9072         }
9073
9074         /* Clamp bpp to 8 on screens without EDID 1.4 */
9075         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9076                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9077                               bpp);
9078                 pipe_config->pipe_bpp = 24;
9079         }
9080 }
9081
9082 static int
9083 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9084                           struct drm_framebuffer *fb,
9085                           struct intel_crtc_config *pipe_config)
9086 {
9087         struct drm_device *dev = crtc->base.dev;
9088         struct intel_connector *connector;
9089         int bpp;
9090
9091         switch (fb->pixel_format) {
9092         case DRM_FORMAT_C8:
9093                 bpp = 8*3; /* since we go through a colormap */
9094                 break;
9095         case DRM_FORMAT_XRGB1555:
9096         case DRM_FORMAT_ARGB1555:
9097                 /* checked in intel_framebuffer_init already */
9098                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9099                         return -EINVAL;
9100         case DRM_FORMAT_RGB565:
9101                 bpp = 6*3; /* min is 18bpp */
9102                 break;
9103         case DRM_FORMAT_XBGR8888:
9104         case DRM_FORMAT_ABGR8888:
9105                 /* checked in intel_framebuffer_init already */
9106                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9107                         return -EINVAL;
9108         case DRM_FORMAT_XRGB8888:
9109         case DRM_FORMAT_ARGB8888:
9110                 bpp = 8*3;
9111                 break;
9112         case DRM_FORMAT_XRGB2101010:
9113         case DRM_FORMAT_ARGB2101010:
9114         case DRM_FORMAT_XBGR2101010:
9115         case DRM_FORMAT_ABGR2101010:
9116                 /* checked in intel_framebuffer_init already */
9117                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9118                         return -EINVAL;
9119                 bpp = 10*3;
9120                 break;
9121         /* TODO: gen4+ supports 16 bpc floating point, too. */
9122         default:
9123                 DRM_DEBUG_KMS("unsupported depth\n");
9124                 return -EINVAL;
9125         }
9126
9127         pipe_config->pipe_bpp = bpp;
9128
9129         /* Clamp display bpp to EDID value */
9130         list_for_each_entry(connector, &dev->mode_config.connector_list,
9131                             base.head) {
9132                 if (!connector->new_encoder ||
9133                     connector->new_encoder->new_crtc != crtc)
9134                         continue;
9135
9136                 connected_sink_compute_bpp(connector, pipe_config);
9137         }
9138
9139         return bpp;
9140 }
9141
9142 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9143 {
9144         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9145                         "type: 0x%x flags: 0x%x\n",
9146                 mode->crtc_clock,
9147                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9148                 mode->crtc_hsync_end, mode->crtc_htotal,
9149                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9150                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9151 }
9152
9153 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9154                                    struct intel_crtc_config *pipe_config,
9155                                    const char *context)
9156 {
9157         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9158                       context, pipe_name(crtc->pipe));
9159
9160         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9161         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9162                       pipe_config->pipe_bpp, pipe_config->dither);
9163         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9164                       pipe_config->has_pch_encoder,
9165                       pipe_config->fdi_lanes,
9166                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9167                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9168                       pipe_config->fdi_m_n.tu);
9169         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9170                       pipe_config->has_dp_encoder,
9171                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9172                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9173                       pipe_config->dp_m_n.tu);
9174         DRM_DEBUG_KMS("requested mode:\n");
9175         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9176         DRM_DEBUG_KMS("adjusted mode:\n");
9177         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9178         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9179         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9180         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9181                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9182         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9183                       pipe_config->gmch_pfit.control,
9184                       pipe_config->gmch_pfit.pgm_ratios,
9185                       pipe_config->gmch_pfit.lvds_border_bits);
9186         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9187                       pipe_config->pch_pfit.pos,
9188                       pipe_config->pch_pfit.size,
9189                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9190         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9191         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9192 }
9193
9194 static bool encoders_cloneable(const struct intel_encoder *a,
9195                                const struct intel_encoder *b)
9196 {
9197         /* masks could be asymmetric, so check both ways */
9198         return a == b || (a->cloneable & (1 << b->type) &&
9199                           b->cloneable & (1 << a->type));
9200 }
9201
9202 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9203                                          struct intel_encoder *encoder)
9204 {
9205         struct drm_device *dev = crtc->base.dev;
9206         struct intel_encoder *source_encoder;
9207
9208         list_for_each_entry(source_encoder,
9209                             &dev->mode_config.encoder_list, base.head) {
9210                 if (source_encoder->new_crtc != crtc)
9211                         continue;
9212
9213                 if (!encoders_cloneable(encoder, source_encoder))
9214                         return false;
9215         }
9216
9217         return true;
9218 }
9219
9220 static bool check_encoder_cloning(struct intel_crtc *crtc)
9221 {
9222         struct drm_device *dev = crtc->base.dev;
9223         struct intel_encoder *encoder;
9224
9225         list_for_each_entry(encoder,
9226                             &dev->mode_config.encoder_list, base.head) {
9227                 if (encoder->new_crtc != crtc)
9228                         continue;
9229
9230                 if (!check_single_encoder_cloning(crtc, encoder))
9231                         return false;
9232         }
9233
9234         return true;
9235 }
9236
9237 static struct intel_crtc_config *
9238 intel_modeset_pipe_config(struct drm_crtc *crtc,
9239                           struct drm_framebuffer *fb,
9240                           struct drm_display_mode *mode)
9241 {
9242         struct drm_device *dev = crtc->dev;
9243         struct intel_encoder *encoder;
9244         struct intel_crtc_config *pipe_config;
9245         int plane_bpp, ret = -EINVAL;
9246         bool retry = true;
9247
9248         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9249                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9250                 return ERR_PTR(-EINVAL);
9251         }
9252
9253         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9254         if (!pipe_config)
9255                 return ERR_PTR(-ENOMEM);
9256
9257         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9258         drm_mode_copy(&pipe_config->requested_mode, mode);
9259
9260         pipe_config->cpu_transcoder =
9261                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9262         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9263
9264         /*
9265          * Sanitize sync polarity flags based on requested ones. If neither
9266          * positive or negative polarity is requested, treat this as meaning
9267          * negative polarity.
9268          */
9269         if (!(pipe_config->adjusted_mode.flags &
9270               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9271                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9272
9273         if (!(pipe_config->adjusted_mode.flags &
9274               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9275                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9276
9277         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9278          * plane pixel format and any sink constraints into account. Returns the
9279          * source plane bpp so that dithering can be selected on mismatches
9280          * after encoders and crtc also have had their say. */
9281         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9282                                               fb, pipe_config);
9283         if (plane_bpp < 0)
9284                 goto fail;
9285
9286         /*
9287          * Determine the real pipe dimensions. Note that stereo modes can
9288          * increase the actual pipe size due to the frame doubling and
9289          * insertion of additional space for blanks between the frame. This
9290          * is stored in the crtc timings. We use the requested mode to do this
9291          * computation to clearly distinguish it from the adjusted mode, which
9292          * can be changed by the connectors in the below retry loop.
9293          */
9294         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9295         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9296         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9297
9298 encoder_retry:
9299         /* Ensure the port clock defaults are reset when retrying. */
9300         pipe_config->port_clock = 0;
9301         pipe_config->pixel_multiplier = 1;
9302
9303         /* Fill in default crtc timings, allow encoders to overwrite them. */
9304         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9305
9306         /* Pass our mode to the connectors and the CRTC to give them a chance to
9307          * adjust it according to limitations or connector properties, and also
9308          * a chance to reject the mode entirely.
9309          */
9310         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9311                             base.head) {
9312
9313                 if (&encoder->new_crtc->base != crtc)
9314                         continue;
9315
9316                 if (!(encoder->compute_config(encoder, pipe_config))) {
9317                         DRM_DEBUG_KMS("Encoder config failure\n");
9318                         goto fail;
9319                 }
9320         }
9321
9322         /* Set default port clock if not overwritten by the encoder. Needs to be
9323          * done afterwards in case the encoder adjusts the mode. */
9324         if (!pipe_config->port_clock)
9325                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9326                         * pipe_config->pixel_multiplier;
9327
9328         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9329         if (ret < 0) {
9330                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9331                 goto fail;
9332         }
9333
9334         if (ret == RETRY) {
9335                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9336                         ret = -EINVAL;
9337                         goto fail;
9338                 }
9339
9340                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9341                 retry = false;
9342                 goto encoder_retry;
9343         }
9344
9345         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9346         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9347                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9348
9349         return pipe_config;
9350 fail:
9351         kfree(pipe_config);
9352         return ERR_PTR(ret);
9353 }
9354
9355 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9356  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9357 static void
9358 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9359                              unsigned *prepare_pipes, unsigned *disable_pipes)
9360 {
9361         struct intel_crtc *intel_crtc;
9362         struct drm_device *dev = crtc->dev;
9363         struct intel_encoder *encoder;
9364         struct intel_connector *connector;
9365         struct drm_crtc *tmp_crtc;
9366
9367         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9368
9369         /* Check which crtcs have changed outputs connected to them, these need
9370          * to be part of the prepare_pipes mask. We don't (yet) support global
9371          * modeset across multiple crtcs, so modeset_pipes will only have one
9372          * bit set at most. */
9373         list_for_each_entry(connector, &dev->mode_config.connector_list,
9374                             base.head) {
9375                 if (connector->base.encoder == &connector->new_encoder->base)
9376                         continue;
9377
9378                 if (connector->base.encoder) {
9379                         tmp_crtc = connector->base.encoder->crtc;
9380
9381                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9382                 }
9383
9384                 if (connector->new_encoder)
9385                         *prepare_pipes |=
9386                                 1 << connector->new_encoder->new_crtc->pipe;
9387         }
9388
9389         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9390                             base.head) {
9391                 if (encoder->base.crtc == &encoder->new_crtc->base)
9392                         continue;
9393
9394                 if (encoder->base.crtc) {
9395                         tmp_crtc = encoder->base.crtc;
9396
9397                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9398                 }
9399
9400                 if (encoder->new_crtc)
9401                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9402         }
9403
9404         /* Check for pipes that will be enabled/disabled ... */
9405         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9406                             base.head) {
9407                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9408                         continue;
9409
9410                 if (!intel_crtc->new_enabled)
9411                         *disable_pipes |= 1 << intel_crtc->pipe;
9412                 else
9413                         *prepare_pipes |= 1 << intel_crtc->pipe;
9414         }
9415
9416
9417         /* set_mode is also used to update properties on life display pipes. */
9418         intel_crtc = to_intel_crtc(crtc);
9419         if (intel_crtc->new_enabled)
9420                 *prepare_pipes |= 1 << intel_crtc->pipe;
9421
9422         /*
9423          * For simplicity do a full modeset on any pipe where the output routing
9424          * changed. We could be more clever, but that would require us to be
9425          * more careful with calling the relevant encoder->mode_set functions.
9426          */
9427         if (*prepare_pipes)
9428                 *modeset_pipes = *prepare_pipes;
9429
9430         /* ... and mask these out. */
9431         *modeset_pipes &= ~(*disable_pipes);
9432         *prepare_pipes &= ~(*disable_pipes);
9433
9434         /*
9435          * HACK: We don't (yet) fully support global modesets. intel_set_config
9436          * obies this rule, but the modeset restore mode of
9437          * intel_modeset_setup_hw_state does not.
9438          */
9439         *modeset_pipes &= 1 << intel_crtc->pipe;
9440         *prepare_pipes &= 1 << intel_crtc->pipe;
9441
9442         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9443                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9444 }
9445
9446 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9447 {
9448         struct drm_encoder *encoder;
9449         struct drm_device *dev = crtc->dev;
9450
9451         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9452                 if (encoder->crtc == crtc)
9453                         return true;
9454
9455         return false;
9456 }
9457
9458 static void
9459 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9460 {
9461         struct intel_encoder *intel_encoder;
9462         struct intel_crtc *intel_crtc;
9463         struct drm_connector *connector;
9464
9465         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9466                             base.head) {
9467                 if (!intel_encoder->base.crtc)
9468                         continue;
9469
9470                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9471
9472                 if (prepare_pipes & (1 << intel_crtc->pipe))
9473                         intel_encoder->connectors_active = false;
9474         }
9475
9476         intel_modeset_commit_output_state(dev);
9477
9478         /* Double check state. */
9479         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9480                             base.head) {
9481                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9482                 WARN_ON(intel_crtc->new_config &&
9483                         intel_crtc->new_config != &intel_crtc->config);
9484                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9485         }
9486
9487         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9488                 if (!connector->encoder || !connector->encoder->crtc)
9489                         continue;
9490
9491                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9492
9493                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9494                         struct drm_property *dpms_property =
9495                                 dev->mode_config.dpms_property;
9496
9497                         connector->dpms = DRM_MODE_DPMS_ON;
9498                         drm_object_property_set_value(&connector->base,
9499                                                          dpms_property,
9500                                                          DRM_MODE_DPMS_ON);
9501
9502                         intel_encoder = to_intel_encoder(connector->encoder);
9503                         intel_encoder->connectors_active = true;
9504                 }
9505         }
9506
9507 }
9508
9509 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9510 {
9511         int diff;
9512
9513         if (clock1 == clock2)
9514                 return true;
9515
9516         if (!clock1 || !clock2)
9517                 return false;
9518
9519         diff = abs(clock1 - clock2);
9520
9521         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9522                 return true;
9523
9524         return false;
9525 }
9526
9527 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9528         list_for_each_entry((intel_crtc), \
9529                             &(dev)->mode_config.crtc_list, \
9530                             base.head) \
9531                 if (mask & (1 <<(intel_crtc)->pipe))
9532
9533 static bool
9534 intel_pipe_config_compare(struct drm_device *dev,
9535                           struct intel_crtc_config *current_config,
9536                           struct intel_crtc_config *pipe_config)
9537 {
9538 #define PIPE_CONF_CHECK_X(name) \
9539         if (current_config->name != pipe_config->name) { \
9540                 DRM_ERROR("mismatch in " #name " " \
9541                           "(expected 0x%08x, found 0x%08x)\n", \
9542                           current_config->name, \
9543                           pipe_config->name); \
9544                 return false; \
9545         }
9546
9547 #define PIPE_CONF_CHECK_I(name) \
9548         if (current_config->name != pipe_config->name) { \
9549                 DRM_ERROR("mismatch in " #name " " \
9550                           "(expected %i, found %i)\n", \
9551                           current_config->name, \
9552                           pipe_config->name); \
9553                 return false; \
9554         }
9555
9556 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9557         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9558                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9559                           "(expected %i, found %i)\n", \
9560                           current_config->name & (mask), \
9561                           pipe_config->name & (mask)); \
9562                 return false; \
9563         }
9564
9565 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9566         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9567                 DRM_ERROR("mismatch in " #name " " \
9568                           "(expected %i, found %i)\n", \
9569                           current_config->name, \
9570                           pipe_config->name); \
9571                 return false; \
9572         }
9573
9574 #define PIPE_CONF_QUIRK(quirk)  \
9575         ((current_config->quirks | pipe_config->quirks) & (quirk))
9576
9577         PIPE_CONF_CHECK_I(cpu_transcoder);
9578
9579         PIPE_CONF_CHECK_I(has_pch_encoder);
9580         PIPE_CONF_CHECK_I(fdi_lanes);
9581         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9582         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9583         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9584         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9585         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9586
9587         PIPE_CONF_CHECK_I(has_dp_encoder);
9588         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9589         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9590         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9591         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9592         PIPE_CONF_CHECK_I(dp_m_n.tu);
9593
9594         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9595         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9596         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9597         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9598         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9599         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9600
9601         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9602         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9603         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9604         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9605         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9606         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9607
9608         PIPE_CONF_CHECK_I(pixel_multiplier);
9609
9610         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9611                               DRM_MODE_FLAG_INTERLACE);
9612
9613         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9614                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9615                                       DRM_MODE_FLAG_PHSYNC);
9616                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9617                                       DRM_MODE_FLAG_NHSYNC);
9618                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9619                                       DRM_MODE_FLAG_PVSYNC);
9620                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9621                                       DRM_MODE_FLAG_NVSYNC);
9622         }
9623
9624         PIPE_CONF_CHECK_I(pipe_src_w);
9625         PIPE_CONF_CHECK_I(pipe_src_h);
9626
9627         /*
9628          * FIXME: BIOS likes to set up a cloned config with lvds+external
9629          * screen. Since we don't yet re-compute the pipe config when moving
9630          * just the lvds port away to another pipe the sw tracking won't match.
9631          *
9632          * Proper atomic modesets with recomputed global state will fix this.
9633          * Until then just don't check gmch state for inherited modes.
9634          */
9635         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9636                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9637                 /* pfit ratios are autocomputed by the hw on gen4+ */
9638                 if (INTEL_INFO(dev)->gen < 4)
9639                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9640                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9641         }
9642
9643         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9644         if (current_config->pch_pfit.enabled) {
9645                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9646                 PIPE_CONF_CHECK_I(pch_pfit.size);
9647         }
9648
9649         /* BDW+ don't expose a synchronous way to read the state */
9650         if (IS_HASWELL(dev))
9651                 PIPE_CONF_CHECK_I(ips_enabled);
9652
9653         PIPE_CONF_CHECK_I(double_wide);
9654
9655         PIPE_CONF_CHECK_I(shared_dpll);
9656         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9657         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9658         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9659         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9660
9661         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9662                 PIPE_CONF_CHECK_I(pipe_bpp);
9663
9664         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9665         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9666
9667 #undef PIPE_CONF_CHECK_X
9668 #undef PIPE_CONF_CHECK_I
9669 #undef PIPE_CONF_CHECK_FLAGS
9670 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9671 #undef PIPE_CONF_QUIRK
9672
9673         return true;
9674 }
9675
9676 static void
9677 check_connector_state(struct drm_device *dev)
9678 {
9679         struct intel_connector *connector;
9680
9681         list_for_each_entry(connector, &dev->mode_config.connector_list,
9682                             base.head) {
9683                 /* This also checks the encoder/connector hw state with the
9684                  * ->get_hw_state callbacks. */
9685                 intel_connector_check_state(connector);
9686
9687                 WARN(&connector->new_encoder->base != connector->base.encoder,
9688                      "connector's staged encoder doesn't match current encoder\n");
9689         }
9690 }
9691
9692 static void
9693 check_encoder_state(struct drm_device *dev)
9694 {
9695         struct intel_encoder *encoder;
9696         struct intel_connector *connector;
9697
9698         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9699                             base.head) {
9700                 bool enabled = false;
9701                 bool active = false;
9702                 enum pipe pipe, tracked_pipe;
9703
9704                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9705                               encoder->base.base.id,
9706                               drm_get_encoder_name(&encoder->base));
9707
9708                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9709                      "encoder's stage crtc doesn't match current crtc\n");
9710                 WARN(encoder->connectors_active && !encoder->base.crtc,
9711                      "encoder's active_connectors set, but no crtc\n");
9712
9713                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9714                                     base.head) {
9715                         if (connector->base.encoder != &encoder->base)
9716                                 continue;
9717                         enabled = true;
9718                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9719                                 active = true;
9720                 }
9721                 WARN(!!encoder->base.crtc != enabled,
9722                      "encoder's enabled state mismatch "
9723                      "(expected %i, found %i)\n",
9724                      !!encoder->base.crtc, enabled);
9725                 WARN(active && !encoder->base.crtc,
9726                      "active encoder with no crtc\n");
9727
9728                 WARN(encoder->connectors_active != active,
9729                      "encoder's computed active state doesn't match tracked active state "
9730                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9731
9732                 active = encoder->get_hw_state(encoder, &pipe);
9733                 WARN(active != encoder->connectors_active,
9734                      "encoder's hw state doesn't match sw tracking "
9735                      "(expected %i, found %i)\n",
9736                      encoder->connectors_active, active);
9737
9738                 if (!encoder->base.crtc)
9739                         continue;
9740
9741                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9742                 WARN(active && pipe != tracked_pipe,
9743                      "active encoder's pipe doesn't match"
9744                      "(expected %i, found %i)\n",
9745                      tracked_pipe, pipe);
9746
9747         }
9748 }
9749
9750 static void
9751 check_crtc_state(struct drm_device *dev)
9752 {
9753         struct drm_i915_private *dev_priv = dev->dev_private;
9754         struct intel_crtc *crtc;
9755         struct intel_encoder *encoder;
9756         struct intel_crtc_config pipe_config;
9757
9758         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9759                             base.head) {
9760                 bool enabled = false;
9761                 bool active = false;
9762
9763                 memset(&pipe_config, 0, sizeof(pipe_config));
9764
9765                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9766                               crtc->base.base.id);
9767
9768                 WARN(crtc->active && !crtc->base.enabled,
9769                      "active crtc, but not enabled in sw tracking\n");
9770
9771                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9772                                     base.head) {
9773                         if (encoder->base.crtc != &crtc->base)
9774                                 continue;
9775                         enabled = true;
9776                         if (encoder->connectors_active)
9777                                 active = true;
9778                 }
9779
9780                 WARN(active != crtc->active,
9781                      "crtc's computed active state doesn't match tracked active state "
9782                      "(expected %i, found %i)\n", active, crtc->active);
9783                 WARN(enabled != crtc->base.enabled,
9784                      "crtc's computed enabled state doesn't match tracked enabled state "
9785                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9786
9787                 active = dev_priv->display.get_pipe_config(crtc,
9788                                                            &pipe_config);
9789
9790                 /* hw state is inconsistent with the pipe A quirk */
9791                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9792                         active = crtc->active;
9793
9794                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9795                                     base.head) {
9796                         enum pipe pipe;
9797                         if (encoder->base.crtc != &crtc->base)
9798                                 continue;
9799                         if (encoder->get_hw_state(encoder, &pipe))
9800                                 encoder->get_config(encoder, &pipe_config);
9801                 }
9802
9803                 WARN(crtc->active != active,
9804                      "crtc active state doesn't match with hw state "
9805                      "(expected %i, found %i)\n", crtc->active, active);
9806
9807                 if (active &&
9808                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9809                         WARN(1, "pipe state doesn't match!\n");
9810                         intel_dump_pipe_config(crtc, &pipe_config,
9811                                                "[hw state]");
9812                         intel_dump_pipe_config(crtc, &crtc->config,
9813                                                "[sw state]");
9814                 }
9815         }
9816 }
9817
9818 static void
9819 check_shared_dpll_state(struct drm_device *dev)
9820 {
9821         struct drm_i915_private *dev_priv = dev->dev_private;
9822         struct intel_crtc *crtc;
9823         struct intel_dpll_hw_state dpll_hw_state;
9824         int i;
9825
9826         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9827                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9828                 int enabled_crtcs = 0, active_crtcs = 0;
9829                 bool active;
9830
9831                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9832
9833                 DRM_DEBUG_KMS("%s\n", pll->name);
9834
9835                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9836
9837                 WARN(pll->active > pll->refcount,
9838                      "more active pll users than references: %i vs %i\n",
9839                      pll->active, pll->refcount);
9840                 WARN(pll->active && !pll->on,
9841                      "pll in active use but not on in sw tracking\n");
9842                 WARN(pll->on && !pll->active,
9843                      "pll in on but not on in use in sw tracking\n");
9844                 WARN(pll->on != active,
9845                      "pll on state mismatch (expected %i, found %i)\n",
9846                      pll->on, active);
9847
9848                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9849                                     base.head) {
9850                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9851                                 enabled_crtcs++;
9852                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9853                                 active_crtcs++;
9854                 }
9855                 WARN(pll->active != active_crtcs,
9856                      "pll active crtcs mismatch (expected %i, found %i)\n",
9857                      pll->active, active_crtcs);
9858                 WARN(pll->refcount != enabled_crtcs,
9859                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9860                      pll->refcount, enabled_crtcs);
9861
9862                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9863                                        sizeof(dpll_hw_state)),
9864                      "pll hw state mismatch\n");
9865         }
9866 }
9867
9868 void
9869 intel_modeset_check_state(struct drm_device *dev)
9870 {
9871         check_connector_state(dev);
9872         check_encoder_state(dev);
9873         check_crtc_state(dev);
9874         check_shared_dpll_state(dev);
9875 }
9876
9877 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9878                                      int dotclock)
9879 {
9880         /*
9881          * FDI already provided one idea for the dotclock.
9882          * Yell if the encoder disagrees.
9883          */
9884         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9885              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9886              pipe_config->adjusted_mode.crtc_clock, dotclock);
9887 }
9888
9889 static int __intel_set_mode(struct drm_crtc *crtc,
9890                             struct drm_display_mode *mode,
9891                             int x, int y, struct drm_framebuffer *fb)
9892 {
9893         struct drm_device *dev = crtc->dev;
9894         struct drm_i915_private *dev_priv = dev->dev_private;
9895         struct drm_display_mode *saved_mode;
9896         struct intel_crtc_config *pipe_config = NULL;
9897         struct intel_crtc *intel_crtc;
9898         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9899         int ret = 0;
9900
9901         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9902         if (!saved_mode)
9903                 return -ENOMEM;
9904
9905         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9906                                      &prepare_pipes, &disable_pipes);
9907
9908         *saved_mode = crtc->mode;
9909
9910         /* Hack: Because we don't (yet) support global modeset on multiple
9911          * crtcs, we don't keep track of the new mode for more than one crtc.
9912          * Hence simply check whether any bit is set in modeset_pipes in all the
9913          * pieces of code that are not yet converted to deal with mutliple crtcs
9914          * changing their mode at the same time. */
9915         if (modeset_pipes) {
9916                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9917                 if (IS_ERR(pipe_config)) {
9918                         ret = PTR_ERR(pipe_config);
9919                         pipe_config = NULL;
9920
9921                         goto out;
9922                 }
9923                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9924                                        "[modeset]");
9925                 to_intel_crtc(crtc)->new_config = pipe_config;
9926         }
9927
9928         /*
9929          * See if the config requires any additional preparation, e.g.
9930          * to adjust global state with pipes off.  We need to do this
9931          * here so we can get the modeset_pipe updated config for the new
9932          * mode set on this crtc.  For other crtcs we need to use the
9933          * adjusted_mode bits in the crtc directly.
9934          */
9935         if (IS_VALLEYVIEW(dev)) {
9936                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9937
9938                 /* may have added more to prepare_pipes than we should */
9939                 prepare_pipes &= ~disable_pipes;
9940         }
9941
9942         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9943                 intel_crtc_disable(&intel_crtc->base);
9944
9945         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9946                 if (intel_crtc->base.enabled)
9947                         dev_priv->display.crtc_disable(&intel_crtc->base);
9948         }
9949
9950         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9951          * to set it here already despite that we pass it down the callchain.
9952          */
9953         if (modeset_pipes) {
9954                 crtc->mode = *mode;
9955                 /* mode_set/enable/disable functions rely on a correct pipe
9956                  * config. */
9957                 to_intel_crtc(crtc)->config = *pipe_config;
9958                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9959
9960                 /*
9961                  * Calculate and store various constants which
9962                  * are later needed by vblank and swap-completion
9963                  * timestamping. They are derived from true hwmode.
9964                  */
9965                 drm_calc_timestamping_constants(crtc,
9966                                                 &pipe_config->adjusted_mode);
9967         }
9968
9969         /* Only after disabling all output pipelines that will be changed can we
9970          * update the the output configuration. */
9971         intel_modeset_update_state(dev, prepare_pipes);
9972
9973         if (dev_priv->display.modeset_global_resources)
9974                 dev_priv->display.modeset_global_resources(dev);
9975
9976         /* Set up the DPLL and any encoders state that needs to adjust or depend
9977          * on the DPLL.
9978          */
9979         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9980                 ret = intel_crtc_mode_set(&intel_crtc->base,
9981                                           x, y, fb);
9982                 if (ret)
9983                         goto done;
9984         }
9985
9986         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9987         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9988                 dev_priv->display.crtc_enable(&intel_crtc->base);
9989
9990         /* FIXME: add subpixel order */
9991 done:
9992         if (ret && crtc->enabled)
9993                 crtc->mode = *saved_mode;
9994
9995 out:
9996         kfree(pipe_config);
9997         kfree(saved_mode);
9998         return ret;
9999 }
10000
10001 static int intel_set_mode(struct drm_crtc *crtc,
10002                           struct drm_display_mode *mode,
10003                           int x, int y, struct drm_framebuffer *fb)
10004 {
10005         int ret;
10006
10007         ret = __intel_set_mode(crtc, mode, x, y, fb);
10008
10009         if (ret == 0)
10010                 intel_modeset_check_state(crtc->dev);
10011
10012         return ret;
10013 }
10014
10015 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10016 {
10017         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10018 }
10019
10020 #undef for_each_intel_crtc_masked
10021
10022 static void intel_set_config_free(struct intel_set_config *config)
10023 {
10024         if (!config)
10025                 return;
10026
10027         kfree(config->save_connector_encoders);
10028         kfree(config->save_encoder_crtcs);
10029         kfree(config->save_crtc_enabled);
10030         kfree(config);
10031 }
10032
10033 static int intel_set_config_save_state(struct drm_device *dev,
10034                                        struct intel_set_config *config)
10035 {
10036         struct drm_crtc *crtc;
10037         struct drm_encoder *encoder;
10038         struct drm_connector *connector;
10039         int count;
10040
10041         config->save_crtc_enabled =
10042                 kcalloc(dev->mode_config.num_crtc,
10043                         sizeof(bool), GFP_KERNEL);
10044         if (!config->save_crtc_enabled)
10045                 return -ENOMEM;
10046
10047         config->save_encoder_crtcs =
10048                 kcalloc(dev->mode_config.num_encoder,
10049                         sizeof(struct drm_crtc *), GFP_KERNEL);
10050         if (!config->save_encoder_crtcs)
10051                 return -ENOMEM;
10052
10053         config->save_connector_encoders =
10054                 kcalloc(dev->mode_config.num_connector,
10055                         sizeof(struct drm_encoder *), GFP_KERNEL);
10056         if (!config->save_connector_encoders)
10057                 return -ENOMEM;
10058
10059         /* Copy data. Note that driver private data is not affected.
10060          * Should anything bad happen only the expected state is
10061          * restored, not the drivers personal bookkeeping.
10062          */
10063         count = 0;
10064         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10065                 config->save_crtc_enabled[count++] = crtc->enabled;
10066         }
10067
10068         count = 0;
10069         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10070                 config->save_encoder_crtcs[count++] = encoder->crtc;
10071         }
10072
10073         count = 0;
10074         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10075                 config->save_connector_encoders[count++] = connector->encoder;
10076         }
10077
10078         return 0;
10079 }
10080
10081 static void intel_set_config_restore_state(struct drm_device *dev,
10082                                            struct intel_set_config *config)
10083 {
10084         struct intel_crtc *crtc;
10085         struct intel_encoder *encoder;
10086         struct intel_connector *connector;
10087         int count;
10088
10089         count = 0;
10090         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10091                 crtc->new_enabled = config->save_crtc_enabled[count++];
10092
10093                 if (crtc->new_enabled)
10094                         crtc->new_config = &crtc->config;
10095                 else
10096                         crtc->new_config = NULL;
10097         }
10098
10099         count = 0;
10100         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10101                 encoder->new_crtc =
10102                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10103         }
10104
10105         count = 0;
10106         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10107                 connector->new_encoder =
10108                         to_intel_encoder(config->save_connector_encoders[count++]);
10109         }
10110 }
10111
10112 static bool
10113 is_crtc_connector_off(struct drm_mode_set *set)
10114 {
10115         int i;
10116
10117         if (set->num_connectors == 0)
10118                 return false;
10119
10120         if (WARN_ON(set->connectors == NULL))
10121                 return false;
10122
10123         for (i = 0; i < set->num_connectors; i++)
10124                 if (set->connectors[i]->encoder &&
10125                     set->connectors[i]->encoder->crtc == set->crtc &&
10126                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10127                         return true;
10128
10129         return false;
10130 }
10131
10132 static void
10133 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10134                                       struct intel_set_config *config)
10135 {
10136
10137         /* We should be able to check here if the fb has the same properties
10138          * and then just flip_or_move it */
10139         if (is_crtc_connector_off(set)) {
10140                 config->mode_changed = true;
10141         } else if (set->crtc->primary->fb != set->fb) {
10142                 /* If we have no fb then treat it as a full mode set */
10143                 if (set->crtc->primary->fb == NULL) {
10144                         struct intel_crtc *intel_crtc =
10145                                 to_intel_crtc(set->crtc);
10146
10147                         if (intel_crtc->active && i915.fastboot) {
10148                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10149                                 config->fb_changed = true;
10150                         } else {
10151                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10152                                 config->mode_changed = true;
10153                         }
10154                 } else if (set->fb == NULL) {
10155                         config->mode_changed = true;
10156                 } else if (set->fb->pixel_format !=
10157                            set->crtc->primary->fb->pixel_format) {
10158                         config->mode_changed = true;
10159                 } else {
10160                         config->fb_changed = true;
10161                 }
10162         }
10163
10164         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10165                 config->fb_changed = true;
10166
10167         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10168                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10169                 drm_mode_debug_printmodeline(&set->crtc->mode);
10170                 drm_mode_debug_printmodeline(set->mode);
10171                 config->mode_changed = true;
10172         }
10173
10174         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10175                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10176 }
10177
10178 static int
10179 intel_modeset_stage_output_state(struct drm_device *dev,
10180                                  struct drm_mode_set *set,
10181                                  struct intel_set_config *config)
10182 {
10183         struct intel_connector *connector;
10184         struct intel_encoder *encoder;
10185         struct intel_crtc *crtc;
10186         int ro;
10187
10188         /* The upper layers ensure that we either disable a crtc or have a list
10189          * of connectors. For paranoia, double-check this. */
10190         WARN_ON(!set->fb && (set->num_connectors != 0));
10191         WARN_ON(set->fb && (set->num_connectors == 0));
10192
10193         list_for_each_entry(connector, &dev->mode_config.connector_list,
10194                             base.head) {
10195                 /* Otherwise traverse passed in connector list and get encoders
10196                  * for them. */
10197                 for (ro = 0; ro < set->num_connectors; ro++) {
10198                         if (set->connectors[ro] == &connector->base) {
10199                                 connector->new_encoder = connector->encoder;
10200                                 break;
10201                         }
10202                 }
10203
10204                 /* If we disable the crtc, disable all its connectors. Also, if
10205                  * the connector is on the changing crtc but not on the new
10206                  * connector list, disable it. */
10207                 if ((!set->fb || ro == set->num_connectors) &&
10208                     connector->base.encoder &&
10209                     connector->base.encoder->crtc == set->crtc) {
10210                         connector->new_encoder = NULL;
10211
10212                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10213                                 connector->base.base.id,
10214                                 drm_get_connector_name(&connector->base));
10215                 }
10216
10217
10218                 if (&connector->new_encoder->base != connector->base.encoder) {
10219                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10220                         config->mode_changed = true;
10221                 }
10222         }
10223         /* connector->new_encoder is now updated for all connectors. */
10224
10225         /* Update crtc of enabled connectors. */
10226         list_for_each_entry(connector, &dev->mode_config.connector_list,
10227                             base.head) {
10228                 struct drm_crtc *new_crtc;
10229
10230                 if (!connector->new_encoder)
10231                         continue;
10232
10233                 new_crtc = connector->new_encoder->base.crtc;
10234
10235                 for (ro = 0; ro < set->num_connectors; ro++) {
10236                         if (set->connectors[ro] == &connector->base)
10237                                 new_crtc = set->crtc;
10238                 }
10239
10240                 /* Make sure the new CRTC will work with the encoder */
10241                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10242                                          new_crtc)) {
10243                         return -EINVAL;
10244                 }
10245                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10246
10247                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10248                         connector->base.base.id,
10249                         drm_get_connector_name(&connector->base),
10250                         new_crtc->base.id);
10251         }
10252
10253         /* Check for any encoders that needs to be disabled. */
10254         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10255                             base.head) {
10256                 int num_connectors = 0;
10257                 list_for_each_entry(connector,
10258                                     &dev->mode_config.connector_list,
10259                                     base.head) {
10260                         if (connector->new_encoder == encoder) {
10261                                 WARN_ON(!connector->new_encoder->new_crtc);
10262                                 num_connectors++;
10263                         }
10264                 }
10265
10266                 if (num_connectors == 0)
10267                         encoder->new_crtc = NULL;
10268                 else if (num_connectors > 1)
10269                         return -EINVAL;
10270
10271                 /* Only now check for crtc changes so we don't miss encoders
10272                  * that will be disabled. */
10273                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10274                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10275                         config->mode_changed = true;
10276                 }
10277         }
10278         /* Now we've also updated encoder->new_crtc for all encoders. */
10279
10280         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10281                             base.head) {
10282                 crtc->new_enabled = false;
10283
10284                 list_for_each_entry(encoder,
10285                                     &dev->mode_config.encoder_list,
10286                                     base.head) {
10287                         if (encoder->new_crtc == crtc) {
10288                                 crtc->new_enabled = true;
10289                                 break;
10290                         }
10291                 }
10292
10293                 if (crtc->new_enabled != crtc->base.enabled) {
10294                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10295                                       crtc->new_enabled ? "en" : "dis");
10296                         config->mode_changed = true;
10297                 }
10298
10299                 if (crtc->new_enabled)
10300                         crtc->new_config = &crtc->config;
10301                 else
10302                         crtc->new_config = NULL;
10303         }
10304
10305         return 0;
10306 }
10307
10308 static void disable_crtc_nofb(struct intel_crtc *crtc)
10309 {
10310         struct drm_device *dev = crtc->base.dev;
10311         struct intel_encoder *encoder;
10312         struct intel_connector *connector;
10313
10314         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10315                       pipe_name(crtc->pipe));
10316
10317         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10318                 if (connector->new_encoder &&
10319                     connector->new_encoder->new_crtc == crtc)
10320                         connector->new_encoder = NULL;
10321         }
10322
10323         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10324                 if (encoder->new_crtc == crtc)
10325                         encoder->new_crtc = NULL;
10326         }
10327
10328         crtc->new_enabled = false;
10329         crtc->new_config = NULL;
10330 }
10331
10332 static int intel_crtc_set_config(struct drm_mode_set *set)
10333 {
10334         struct drm_device *dev;
10335         struct drm_mode_set save_set;
10336         struct intel_set_config *config;
10337         int ret;
10338
10339         BUG_ON(!set);
10340         BUG_ON(!set->crtc);
10341         BUG_ON(!set->crtc->helper_private);
10342
10343         /* Enforce sane interface api - has been abused by the fb helper. */
10344         BUG_ON(!set->mode && set->fb);
10345         BUG_ON(set->fb && set->num_connectors == 0);
10346
10347         if (set->fb) {
10348                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10349                                 set->crtc->base.id, set->fb->base.id,
10350                                 (int)set->num_connectors, set->x, set->y);
10351         } else {
10352                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10353         }
10354
10355         dev = set->crtc->dev;
10356
10357         ret = -ENOMEM;
10358         config = kzalloc(sizeof(*config), GFP_KERNEL);
10359         if (!config)
10360                 goto out_config;
10361
10362         ret = intel_set_config_save_state(dev, config);
10363         if (ret)
10364                 goto out_config;
10365
10366         save_set.crtc = set->crtc;
10367         save_set.mode = &set->crtc->mode;
10368         save_set.x = set->crtc->x;
10369         save_set.y = set->crtc->y;
10370         save_set.fb = set->crtc->primary->fb;
10371
10372         /* Compute whether we need a full modeset, only an fb base update or no
10373          * change at all. In the future we might also check whether only the
10374          * mode changed, e.g. for LVDS where we only change the panel fitter in
10375          * such cases. */
10376         intel_set_config_compute_mode_changes(set, config);
10377
10378         ret = intel_modeset_stage_output_state(dev, set, config);
10379         if (ret)
10380                 goto fail;
10381
10382         if (config->mode_changed) {
10383                 ret = intel_set_mode(set->crtc, set->mode,
10384                                      set->x, set->y, set->fb);
10385         } else if (config->fb_changed) {
10386                 intel_crtc_wait_for_pending_flips(set->crtc);
10387
10388                 ret = intel_pipe_set_base(set->crtc,
10389                                           set->x, set->y, set->fb);
10390                 /*
10391                  * In the fastboot case this may be our only check of the
10392                  * state after boot.  It would be better to only do it on
10393                  * the first update, but we don't have a nice way of doing that
10394                  * (and really, set_config isn't used much for high freq page
10395                  * flipping, so increasing its cost here shouldn't be a big
10396                  * deal).
10397                  */
10398                 if (i915.fastboot && ret == 0)
10399                         intel_modeset_check_state(set->crtc->dev);
10400         }
10401
10402         if (ret) {
10403                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10404                               set->crtc->base.id, ret);
10405 fail:
10406                 intel_set_config_restore_state(dev, config);
10407
10408                 /*
10409                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10410                  * force the pipe off to avoid oopsing in the modeset code
10411                  * due to fb==NULL. This should only happen during boot since
10412                  * we don't yet reconstruct the FB from the hardware state.
10413                  */
10414                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10415                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10416
10417                 /* Try to restore the config */
10418                 if (config->mode_changed &&
10419                     intel_set_mode(save_set.crtc, save_set.mode,
10420                                    save_set.x, save_set.y, save_set.fb))
10421                         DRM_ERROR("failed to restore config after modeset failure\n");
10422         }
10423
10424 out_config:
10425         intel_set_config_free(config);
10426         return ret;
10427 }
10428
10429 static const struct drm_crtc_funcs intel_crtc_funcs = {
10430         .cursor_set = intel_crtc_cursor_set,
10431         .cursor_move = intel_crtc_cursor_move,
10432         .gamma_set = intel_crtc_gamma_set,
10433         .set_config = intel_crtc_set_config,
10434         .destroy = intel_crtc_destroy,
10435         .page_flip = intel_crtc_page_flip,
10436 };
10437
10438 static void intel_cpu_pll_init(struct drm_device *dev)
10439 {
10440         if (HAS_DDI(dev))
10441                 intel_ddi_pll_init(dev);
10442 }
10443
10444 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10445                                       struct intel_shared_dpll *pll,
10446                                       struct intel_dpll_hw_state *hw_state)
10447 {
10448         uint32_t val;
10449
10450         val = I915_READ(PCH_DPLL(pll->id));
10451         hw_state->dpll = val;
10452         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10453         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10454
10455         return val & DPLL_VCO_ENABLE;
10456 }
10457
10458 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10459                                   struct intel_shared_dpll *pll)
10460 {
10461         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10462         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10463 }
10464
10465 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10466                                 struct intel_shared_dpll *pll)
10467 {
10468         /* PCH refclock must be enabled first */
10469         ibx_assert_pch_refclk_enabled(dev_priv);
10470
10471         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10472
10473         /* Wait for the clocks to stabilize. */
10474         POSTING_READ(PCH_DPLL(pll->id));
10475         udelay(150);
10476
10477         /* The pixel multiplier can only be updated once the
10478          * DPLL is enabled and the clocks are stable.
10479          *
10480          * So write it again.
10481          */
10482         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10483         POSTING_READ(PCH_DPLL(pll->id));
10484         udelay(200);
10485 }
10486
10487 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10488                                  struct intel_shared_dpll *pll)
10489 {
10490         struct drm_device *dev = dev_priv->dev;
10491         struct intel_crtc *crtc;
10492
10493         /* Make sure no transcoder isn't still depending on us. */
10494         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10495                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10496                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10497         }
10498
10499         I915_WRITE(PCH_DPLL(pll->id), 0);
10500         POSTING_READ(PCH_DPLL(pll->id));
10501         udelay(200);
10502 }
10503
10504 static char *ibx_pch_dpll_names[] = {
10505         "PCH DPLL A",
10506         "PCH DPLL B",
10507 };
10508
10509 static void ibx_pch_dpll_init(struct drm_device *dev)
10510 {
10511         struct drm_i915_private *dev_priv = dev->dev_private;
10512         int i;
10513
10514         dev_priv->num_shared_dpll = 2;
10515
10516         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10517                 dev_priv->shared_dplls[i].id = i;
10518                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10519                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10520                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10521                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10522                 dev_priv->shared_dplls[i].get_hw_state =
10523                         ibx_pch_dpll_get_hw_state;
10524         }
10525 }
10526
10527 static void intel_shared_dpll_init(struct drm_device *dev)
10528 {
10529         struct drm_i915_private *dev_priv = dev->dev_private;
10530
10531         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10532                 ibx_pch_dpll_init(dev);
10533         else
10534                 dev_priv->num_shared_dpll = 0;
10535
10536         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10537 }
10538
10539 static void intel_crtc_init(struct drm_device *dev, int pipe)
10540 {
10541         struct drm_i915_private *dev_priv = dev->dev_private;
10542         struct intel_crtc *intel_crtc;
10543         int i;
10544
10545         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10546         if (intel_crtc == NULL)
10547                 return;
10548
10549         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10550
10551         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10552         for (i = 0; i < 256; i++) {
10553                 intel_crtc->lut_r[i] = i;
10554                 intel_crtc->lut_g[i] = i;
10555                 intel_crtc->lut_b[i] = i;
10556         }
10557
10558         /*
10559          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10560          * is hooked to plane B. Hence we want plane A feeding pipe B.
10561          */
10562         intel_crtc->pipe = pipe;
10563         intel_crtc->plane = pipe;
10564         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10565                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10566                 intel_crtc->plane = !pipe;
10567         }
10568
10569         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10570                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10571         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10572         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10573
10574         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10575 }
10576
10577 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10578 {
10579         struct drm_encoder *encoder = connector->base.encoder;
10580
10581         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10582
10583         if (!encoder)
10584                 return INVALID_PIPE;
10585
10586         return to_intel_crtc(encoder->crtc)->pipe;
10587 }
10588
10589 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10590                                 struct drm_file *file)
10591 {
10592         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10593         struct drm_mode_object *drmmode_obj;
10594         struct intel_crtc *crtc;
10595
10596         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10597                 return -ENODEV;
10598
10599         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10600                         DRM_MODE_OBJECT_CRTC);
10601
10602         if (!drmmode_obj) {
10603                 DRM_ERROR("no such CRTC id\n");
10604                 return -ENOENT;
10605         }
10606
10607         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10608         pipe_from_crtc_id->pipe = crtc->pipe;
10609
10610         return 0;
10611 }
10612
10613 static int intel_encoder_clones(struct intel_encoder *encoder)
10614 {
10615         struct drm_device *dev = encoder->base.dev;
10616         struct intel_encoder *source_encoder;
10617         int index_mask = 0;
10618         int entry = 0;
10619
10620         list_for_each_entry(source_encoder,
10621                             &dev->mode_config.encoder_list, base.head) {
10622                 if (encoders_cloneable(encoder, source_encoder))
10623                         index_mask |= (1 << entry);
10624
10625                 entry++;
10626         }
10627
10628         return index_mask;
10629 }
10630
10631 static bool has_edp_a(struct drm_device *dev)
10632 {
10633         struct drm_i915_private *dev_priv = dev->dev_private;
10634
10635         if (!IS_MOBILE(dev))
10636                 return false;
10637
10638         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10639                 return false;
10640
10641         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10642                 return false;
10643
10644         return true;
10645 }
10646
10647 const char *intel_output_name(int output)
10648 {
10649         static const char *names[] = {
10650                 [INTEL_OUTPUT_UNUSED] = "Unused",
10651                 [INTEL_OUTPUT_ANALOG] = "Analog",
10652                 [INTEL_OUTPUT_DVO] = "DVO",
10653                 [INTEL_OUTPUT_SDVO] = "SDVO",
10654                 [INTEL_OUTPUT_LVDS] = "LVDS",
10655                 [INTEL_OUTPUT_TVOUT] = "TV",
10656                 [INTEL_OUTPUT_HDMI] = "HDMI",
10657                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10658                 [INTEL_OUTPUT_EDP] = "eDP",
10659                 [INTEL_OUTPUT_DSI] = "DSI",
10660                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10661         };
10662
10663         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10664                 return "Invalid";
10665
10666         return names[output];
10667 }
10668
10669 static void intel_setup_outputs(struct drm_device *dev)
10670 {
10671         struct drm_i915_private *dev_priv = dev->dev_private;
10672         struct intel_encoder *encoder;
10673         bool dpd_is_edp = false;
10674
10675         intel_lvds_init(dev);
10676
10677         if (!IS_ULT(dev))
10678                 intel_crt_init(dev);
10679
10680         if (HAS_DDI(dev)) {
10681                 int found;
10682
10683                 /* Haswell uses DDI functions to detect digital outputs */
10684                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10685                 /* DDI A only supports eDP */
10686                 if (found)
10687                         intel_ddi_init(dev, PORT_A);
10688
10689                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10690                  * register */
10691                 found = I915_READ(SFUSE_STRAP);
10692
10693                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10694                         intel_ddi_init(dev, PORT_B);
10695                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10696                         intel_ddi_init(dev, PORT_C);
10697                 if (found & SFUSE_STRAP_DDID_DETECTED)
10698                         intel_ddi_init(dev, PORT_D);
10699         } else if (HAS_PCH_SPLIT(dev)) {
10700                 int found;
10701                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10702
10703                 if (has_edp_a(dev))
10704                         intel_dp_init(dev, DP_A, PORT_A);
10705
10706                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10707                         /* PCH SDVOB multiplex with HDMIB */
10708                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10709                         if (!found)
10710                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10711                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10712                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10713                 }
10714
10715                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10716                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10717
10718                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10719                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10720
10721                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10722                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10723
10724                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10725                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10726         } else if (IS_VALLEYVIEW(dev)) {
10727                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10728                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10729                                         PORT_B);
10730                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10731                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10732                 }
10733
10734                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10735                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10736                                         PORT_C);
10737                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10738                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10739                 }
10740
10741                 intel_dsi_init(dev);
10742         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10743                 bool found = false;
10744
10745                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10746                         DRM_DEBUG_KMS("probing SDVOB\n");
10747                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10748                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10749                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10750                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10751                         }
10752
10753                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10754                                 intel_dp_init(dev, DP_B, PORT_B);
10755                 }
10756
10757                 /* Before G4X SDVOC doesn't have its own detect register */
10758
10759                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10760                         DRM_DEBUG_KMS("probing SDVOC\n");
10761                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10762                 }
10763
10764                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10765
10766                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10767                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10768                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10769                         }
10770                         if (SUPPORTS_INTEGRATED_DP(dev))
10771                                 intel_dp_init(dev, DP_C, PORT_C);
10772                 }
10773
10774                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10775                     (I915_READ(DP_D) & DP_DETECTED))
10776                         intel_dp_init(dev, DP_D, PORT_D);
10777         } else if (IS_GEN2(dev))
10778                 intel_dvo_init(dev);
10779
10780         if (SUPPORTS_TV(dev))
10781                 intel_tv_init(dev);
10782
10783         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10784                 encoder->base.possible_crtcs = encoder->crtc_mask;
10785                 encoder->base.possible_clones =
10786                         intel_encoder_clones(encoder);
10787         }
10788
10789         intel_init_pch_refclk(dev);
10790
10791         drm_helper_move_panel_connectors_to_head(dev);
10792 }
10793
10794 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10795 {
10796         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10797
10798         drm_framebuffer_cleanup(fb);
10799         WARN_ON(!intel_fb->obj->framebuffer_references--);
10800         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10801         kfree(intel_fb);
10802 }
10803
10804 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10805                                                 struct drm_file *file,
10806                                                 unsigned int *handle)
10807 {
10808         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10809         struct drm_i915_gem_object *obj = intel_fb->obj;
10810
10811         return drm_gem_handle_create(file, &obj->base, handle);
10812 }
10813
10814 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10815         .destroy = intel_user_framebuffer_destroy,
10816         .create_handle = intel_user_framebuffer_create_handle,
10817 };
10818
10819 static int intel_framebuffer_init(struct drm_device *dev,
10820                                   struct intel_framebuffer *intel_fb,
10821                                   struct drm_mode_fb_cmd2 *mode_cmd,
10822                                   struct drm_i915_gem_object *obj)
10823 {
10824         int aligned_height;
10825         int pitch_limit;
10826         int ret;
10827
10828         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10829
10830         if (obj->tiling_mode == I915_TILING_Y) {
10831                 DRM_DEBUG("hardware does not support tiling Y\n");
10832                 return -EINVAL;
10833         }
10834
10835         if (mode_cmd->pitches[0] & 63) {
10836                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10837                           mode_cmd->pitches[0]);
10838                 return -EINVAL;
10839         }
10840
10841         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10842                 pitch_limit = 32*1024;
10843         } else if (INTEL_INFO(dev)->gen >= 4) {
10844                 if (obj->tiling_mode)
10845                         pitch_limit = 16*1024;
10846                 else
10847                         pitch_limit = 32*1024;
10848         } else if (INTEL_INFO(dev)->gen >= 3) {
10849                 if (obj->tiling_mode)
10850                         pitch_limit = 8*1024;
10851                 else
10852                         pitch_limit = 16*1024;
10853         } else
10854                 /* XXX DSPC is limited to 4k tiled */
10855                 pitch_limit = 8*1024;
10856
10857         if (mode_cmd->pitches[0] > pitch_limit) {
10858                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10859                           obj->tiling_mode ? "tiled" : "linear",
10860                           mode_cmd->pitches[0], pitch_limit);
10861                 return -EINVAL;
10862         }
10863
10864         if (obj->tiling_mode != I915_TILING_NONE &&
10865             mode_cmd->pitches[0] != obj->stride) {
10866                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10867                           mode_cmd->pitches[0], obj->stride);
10868                 return -EINVAL;
10869         }
10870
10871         /* Reject formats not supported by any plane early. */
10872         switch (mode_cmd->pixel_format) {
10873         case DRM_FORMAT_C8:
10874         case DRM_FORMAT_RGB565:
10875         case DRM_FORMAT_XRGB8888:
10876         case DRM_FORMAT_ARGB8888:
10877                 break;
10878         case DRM_FORMAT_XRGB1555:
10879         case DRM_FORMAT_ARGB1555:
10880                 if (INTEL_INFO(dev)->gen > 3) {
10881                         DRM_DEBUG("unsupported pixel format: %s\n",
10882                                   drm_get_format_name(mode_cmd->pixel_format));
10883                         return -EINVAL;
10884                 }
10885                 break;
10886         case DRM_FORMAT_XBGR8888:
10887         case DRM_FORMAT_ABGR8888:
10888         case DRM_FORMAT_XRGB2101010:
10889         case DRM_FORMAT_ARGB2101010:
10890         case DRM_FORMAT_XBGR2101010:
10891         case DRM_FORMAT_ABGR2101010:
10892                 if (INTEL_INFO(dev)->gen < 4) {
10893                         DRM_DEBUG("unsupported pixel format: %s\n",
10894                                   drm_get_format_name(mode_cmd->pixel_format));
10895                         return -EINVAL;
10896                 }
10897                 break;
10898         case DRM_FORMAT_YUYV:
10899         case DRM_FORMAT_UYVY:
10900         case DRM_FORMAT_YVYU:
10901         case DRM_FORMAT_VYUY:
10902                 if (INTEL_INFO(dev)->gen < 5) {
10903                         DRM_DEBUG("unsupported pixel format: %s\n",
10904                                   drm_get_format_name(mode_cmd->pixel_format));
10905                         return -EINVAL;
10906                 }
10907                 break;
10908         default:
10909                 DRM_DEBUG("unsupported pixel format: %s\n",
10910                           drm_get_format_name(mode_cmd->pixel_format));
10911                 return -EINVAL;
10912         }
10913
10914         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10915         if (mode_cmd->offsets[0] != 0)
10916                 return -EINVAL;
10917
10918         aligned_height = intel_align_height(dev, mode_cmd->height,
10919                                             obj->tiling_mode);
10920         /* FIXME drm helper for size checks (especially planar formats)? */
10921         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10922                 return -EINVAL;
10923
10924         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10925         intel_fb->obj = obj;
10926         intel_fb->obj->framebuffer_references++;
10927
10928         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10929         if (ret) {
10930                 DRM_ERROR("framebuffer init failed %d\n", ret);
10931                 return ret;
10932         }
10933
10934         return 0;
10935 }
10936
10937 static struct drm_framebuffer *
10938 intel_user_framebuffer_create(struct drm_device *dev,
10939                               struct drm_file *filp,
10940                               struct drm_mode_fb_cmd2 *mode_cmd)
10941 {
10942         struct drm_i915_gem_object *obj;
10943
10944         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10945                                                 mode_cmd->handles[0]));
10946         if (&obj->base == NULL)
10947                 return ERR_PTR(-ENOENT);
10948
10949         return intel_framebuffer_create(dev, mode_cmd, obj);
10950 }
10951
10952 #ifndef CONFIG_DRM_I915_FBDEV
10953 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10954 {
10955 }
10956 #endif
10957
10958 static const struct drm_mode_config_funcs intel_mode_funcs = {
10959         .fb_create = intel_user_framebuffer_create,
10960         .output_poll_changed = intel_fbdev_output_poll_changed,
10961 };
10962
10963 /* Set up chip specific display functions */
10964 static void intel_init_display(struct drm_device *dev)
10965 {
10966         struct drm_i915_private *dev_priv = dev->dev_private;
10967
10968         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10969                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10970         else if (IS_VALLEYVIEW(dev))
10971                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10972         else if (IS_PINEVIEW(dev))
10973                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10974         else
10975                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10976
10977         if (HAS_DDI(dev)) {
10978                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10979                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10980                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10981                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10982                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10983                 dev_priv->display.off = haswell_crtc_off;
10984                 dev_priv->display.update_primary_plane =
10985                         ironlake_update_primary_plane;
10986         } else if (HAS_PCH_SPLIT(dev)) {
10987                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10988                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10989                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10990                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10991                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10992                 dev_priv->display.off = ironlake_crtc_off;
10993                 dev_priv->display.update_primary_plane =
10994                         ironlake_update_primary_plane;
10995         } else if (IS_VALLEYVIEW(dev)) {
10996                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10997                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
10998                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10999                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11000                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11001                 dev_priv->display.off = i9xx_crtc_off;
11002                 dev_priv->display.update_primary_plane =
11003                         i9xx_update_primary_plane;
11004         } else {
11005                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11006                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11007                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11008                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11009                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11010                 dev_priv->display.off = i9xx_crtc_off;
11011                 dev_priv->display.update_primary_plane =
11012                         i9xx_update_primary_plane;
11013         }
11014
11015         /* Returns the core display clock speed */
11016         if (IS_VALLEYVIEW(dev))
11017                 dev_priv->display.get_display_clock_speed =
11018                         valleyview_get_display_clock_speed;
11019         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11020                 dev_priv->display.get_display_clock_speed =
11021                         i945_get_display_clock_speed;
11022         else if (IS_I915G(dev))
11023                 dev_priv->display.get_display_clock_speed =
11024                         i915_get_display_clock_speed;
11025         else if (IS_I945GM(dev) || IS_845G(dev))
11026                 dev_priv->display.get_display_clock_speed =
11027                         i9xx_misc_get_display_clock_speed;
11028         else if (IS_PINEVIEW(dev))
11029                 dev_priv->display.get_display_clock_speed =
11030                         pnv_get_display_clock_speed;
11031         else if (IS_I915GM(dev))
11032                 dev_priv->display.get_display_clock_speed =
11033                         i915gm_get_display_clock_speed;
11034         else if (IS_I865G(dev))
11035                 dev_priv->display.get_display_clock_speed =
11036                         i865_get_display_clock_speed;
11037         else if (IS_I85X(dev))
11038                 dev_priv->display.get_display_clock_speed =
11039                         i855_get_display_clock_speed;
11040         else /* 852, 830 */
11041                 dev_priv->display.get_display_clock_speed =
11042                         i830_get_display_clock_speed;
11043
11044         if (HAS_PCH_SPLIT(dev)) {
11045                 if (IS_GEN5(dev)) {
11046                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11047                         dev_priv->display.write_eld = ironlake_write_eld;
11048                 } else if (IS_GEN6(dev)) {
11049                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11050                         dev_priv->display.write_eld = ironlake_write_eld;
11051                         dev_priv->display.modeset_global_resources =
11052                                 snb_modeset_global_resources;
11053                 } else if (IS_IVYBRIDGE(dev)) {
11054                         /* FIXME: detect B0+ stepping and use auto training */
11055                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11056                         dev_priv->display.write_eld = ironlake_write_eld;
11057                         dev_priv->display.modeset_global_resources =
11058                                 ivb_modeset_global_resources;
11059                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11060                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11061                         dev_priv->display.write_eld = haswell_write_eld;
11062                         dev_priv->display.modeset_global_resources =
11063                                 haswell_modeset_global_resources;
11064                 }
11065         } else if (IS_G4X(dev)) {
11066                 dev_priv->display.write_eld = g4x_write_eld;
11067         } else if (IS_VALLEYVIEW(dev)) {
11068                 dev_priv->display.modeset_global_resources =
11069                         valleyview_modeset_global_resources;
11070                 dev_priv->display.write_eld = ironlake_write_eld;
11071         }
11072
11073         /* Default just returns -ENODEV to indicate unsupported */
11074         dev_priv->display.queue_flip = intel_default_queue_flip;
11075
11076         switch (INTEL_INFO(dev)->gen) {
11077         case 2:
11078                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11079                 break;
11080
11081         case 3:
11082                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11083                 break;
11084
11085         case 4:
11086         case 5:
11087                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11088                 break;
11089
11090         case 6:
11091                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11092                 break;
11093         case 7:
11094         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11095                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11096                 break;
11097         }
11098
11099         intel_panel_init_backlight_funcs(dev);
11100 }
11101
11102 /*
11103  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11104  * resume, or other times.  This quirk makes sure that's the case for
11105  * affected systems.
11106  */
11107 static void quirk_pipea_force(struct drm_device *dev)
11108 {
11109         struct drm_i915_private *dev_priv = dev->dev_private;
11110
11111         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11112         DRM_INFO("applying pipe a force quirk\n");
11113 }
11114
11115 /*
11116  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11117  */
11118 static void quirk_ssc_force_disable(struct drm_device *dev)
11119 {
11120         struct drm_i915_private *dev_priv = dev->dev_private;
11121         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11122         DRM_INFO("applying lvds SSC disable quirk\n");
11123 }
11124
11125 /*
11126  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11127  * brightness value
11128  */
11129 static void quirk_invert_brightness(struct drm_device *dev)
11130 {
11131         struct drm_i915_private *dev_priv = dev->dev_private;
11132         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11133         DRM_INFO("applying inverted panel brightness quirk\n");
11134 }
11135
11136 struct intel_quirk {
11137         int device;
11138         int subsystem_vendor;
11139         int subsystem_device;
11140         void (*hook)(struct drm_device *dev);
11141 };
11142
11143 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11144 struct intel_dmi_quirk {
11145         void (*hook)(struct drm_device *dev);
11146         const struct dmi_system_id (*dmi_id_list)[];
11147 };
11148
11149 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11150 {
11151         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11152         return 1;
11153 }
11154
11155 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11156         {
11157                 .dmi_id_list = &(const struct dmi_system_id[]) {
11158                         {
11159                                 .callback = intel_dmi_reverse_brightness,
11160                                 .ident = "NCR Corporation",
11161                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11162                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11163                                 },
11164                         },
11165                         { }  /* terminating entry */
11166                 },
11167                 .hook = quirk_invert_brightness,
11168         },
11169 };
11170
11171 static struct intel_quirk intel_quirks[] = {
11172         /* HP Mini needs pipe A force quirk (LP: #322104) */
11173         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11174
11175         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11176         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11177
11178         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11179         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11180
11181         /* 830 needs to leave pipe A & dpll A up */
11182         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11183
11184         /* Lenovo U160 cannot use SSC on LVDS */
11185         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11186
11187         /* Sony Vaio Y cannot use SSC on LVDS */
11188         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11189
11190         /* Acer Aspire 5734Z must invert backlight brightness */
11191         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11192
11193         /* Acer/eMachines G725 */
11194         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11195
11196         /* Acer/eMachines e725 */
11197         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11198
11199         /* Acer/Packard Bell NCL20 */
11200         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11201
11202         /* Acer Aspire 4736Z */
11203         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11204
11205         /* Acer Aspire 5336 */
11206         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11207 };
11208
11209 static void intel_init_quirks(struct drm_device *dev)
11210 {
11211         struct pci_dev *d = dev->pdev;
11212         int i;
11213
11214         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11215                 struct intel_quirk *q = &intel_quirks[i];
11216
11217                 if (d->device == q->device &&
11218                     (d->subsystem_vendor == q->subsystem_vendor ||
11219                      q->subsystem_vendor == PCI_ANY_ID) &&
11220                     (d->subsystem_device == q->subsystem_device ||
11221                      q->subsystem_device == PCI_ANY_ID))
11222                         q->hook(dev);
11223         }
11224         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11225                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11226                         intel_dmi_quirks[i].hook(dev);
11227         }
11228 }
11229
11230 /* Disable the VGA plane that we never use */
11231 static void i915_disable_vga(struct drm_device *dev)
11232 {
11233         struct drm_i915_private *dev_priv = dev->dev_private;
11234         u8 sr1;
11235         u32 vga_reg = i915_vgacntrl_reg(dev);
11236
11237         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11238         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11239         outb(SR01, VGA_SR_INDEX);
11240         sr1 = inb(VGA_SR_DATA);
11241         outb(sr1 | 1<<5, VGA_SR_DATA);
11242         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11243         udelay(300);
11244
11245         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11246         POSTING_READ(vga_reg);
11247 }
11248
11249 void intel_modeset_init_hw(struct drm_device *dev)
11250 {
11251         intel_prepare_ddi(dev);
11252
11253         intel_init_clock_gating(dev);
11254
11255         intel_reset_dpio(dev);
11256
11257         intel_enable_gt_powersave(dev);
11258 }
11259
11260 void intel_modeset_suspend_hw(struct drm_device *dev)
11261 {
11262         intel_suspend_hw(dev);
11263 }
11264
11265 void intel_modeset_init(struct drm_device *dev)
11266 {
11267         struct drm_i915_private *dev_priv = dev->dev_private;
11268         int sprite, ret;
11269         enum pipe pipe;
11270         struct intel_crtc *crtc;
11271
11272         drm_mode_config_init(dev);
11273
11274         dev->mode_config.min_width = 0;
11275         dev->mode_config.min_height = 0;
11276
11277         dev->mode_config.preferred_depth = 24;
11278         dev->mode_config.prefer_shadow = 1;
11279
11280         dev->mode_config.funcs = &intel_mode_funcs;
11281
11282         intel_init_quirks(dev);
11283
11284         intel_init_pm(dev);
11285
11286         if (INTEL_INFO(dev)->num_pipes == 0)
11287                 return;
11288
11289         intel_init_display(dev);
11290
11291         if (IS_GEN2(dev)) {
11292                 dev->mode_config.max_width = 2048;
11293                 dev->mode_config.max_height = 2048;
11294         } else if (IS_GEN3(dev)) {
11295                 dev->mode_config.max_width = 4096;
11296                 dev->mode_config.max_height = 4096;
11297         } else {
11298                 dev->mode_config.max_width = 8192;
11299                 dev->mode_config.max_height = 8192;
11300         }
11301
11302         if (IS_GEN2(dev)) {
11303                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11304                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11305         } else {
11306                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11307                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11308         }
11309
11310         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11311
11312         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11313                       INTEL_INFO(dev)->num_pipes,
11314                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11315
11316         for_each_pipe(pipe) {
11317                 intel_crtc_init(dev, pipe);
11318                 for_each_sprite(pipe, sprite) {
11319                         ret = intel_plane_init(dev, pipe, sprite);
11320                         if (ret)
11321                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11322                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11323                 }
11324         }
11325
11326         intel_init_dpio(dev);
11327         intel_reset_dpio(dev);
11328
11329         intel_cpu_pll_init(dev);
11330         intel_shared_dpll_init(dev);
11331
11332         /* Just disable it once at startup */
11333         i915_disable_vga(dev);
11334         intel_setup_outputs(dev);
11335
11336         /* Just in case the BIOS is doing something questionable. */
11337         intel_disable_fbc(dev);
11338
11339         mutex_lock(&dev->mode_config.mutex);
11340         intel_modeset_setup_hw_state(dev, false);
11341         mutex_unlock(&dev->mode_config.mutex);
11342
11343         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11344                             base.head) {
11345                 if (!crtc->active)
11346                         continue;
11347
11348                 /*
11349                  * Note that reserving the BIOS fb up front prevents us
11350                  * from stuffing other stolen allocations like the ring
11351                  * on top.  This prevents some ugliness at boot time, and
11352                  * can even allow for smooth boot transitions if the BIOS
11353                  * fb is large enough for the active pipe configuration.
11354                  */
11355                 if (dev_priv->display.get_plane_config) {
11356                         dev_priv->display.get_plane_config(crtc,
11357                                                            &crtc->plane_config);
11358                         /*
11359                          * If the fb is shared between multiple heads, we'll
11360                          * just get the first one.
11361                          */
11362                         intel_find_plane_obj(crtc, &crtc->plane_config);
11363                 }
11364         }
11365 }
11366
11367 static void
11368 intel_connector_break_all_links(struct intel_connector *connector)
11369 {
11370         connector->base.dpms = DRM_MODE_DPMS_OFF;
11371         connector->base.encoder = NULL;
11372         connector->encoder->connectors_active = false;
11373         connector->encoder->base.crtc = NULL;
11374 }
11375
11376 static void intel_enable_pipe_a(struct drm_device *dev)
11377 {
11378         struct intel_connector *connector;
11379         struct drm_connector *crt = NULL;
11380         struct intel_load_detect_pipe load_detect_temp;
11381
11382         /* We can't just switch on the pipe A, we need to set things up with a
11383          * proper mode and output configuration. As a gross hack, enable pipe A
11384          * by enabling the load detect pipe once. */
11385         list_for_each_entry(connector,
11386                             &dev->mode_config.connector_list,
11387                             base.head) {
11388                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11389                         crt = &connector->base;
11390                         break;
11391                 }
11392         }
11393
11394         if (!crt)
11395                 return;
11396
11397         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11398                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11399
11400
11401 }
11402
11403 static bool
11404 intel_check_plane_mapping(struct intel_crtc *crtc)
11405 {
11406         struct drm_device *dev = crtc->base.dev;
11407         struct drm_i915_private *dev_priv = dev->dev_private;
11408         u32 reg, val;
11409
11410         if (INTEL_INFO(dev)->num_pipes == 1)
11411                 return true;
11412
11413         reg = DSPCNTR(!crtc->plane);
11414         val = I915_READ(reg);
11415
11416         if ((val & DISPLAY_PLANE_ENABLE) &&
11417             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11418                 return false;
11419
11420         return true;
11421 }
11422
11423 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11424 {
11425         struct drm_device *dev = crtc->base.dev;
11426         struct drm_i915_private *dev_priv = dev->dev_private;
11427         u32 reg;
11428
11429         /* Clear any frame start delays used for debugging left by the BIOS */
11430         reg = PIPECONF(crtc->config.cpu_transcoder);
11431         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11432
11433         /* We need to sanitize the plane -> pipe mapping first because this will
11434          * disable the crtc (and hence change the state) if it is wrong. Note
11435          * that gen4+ has a fixed plane -> pipe mapping.  */
11436         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11437                 struct intel_connector *connector;
11438                 bool plane;
11439
11440                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11441                               crtc->base.base.id);
11442
11443                 /* Pipe has the wrong plane attached and the plane is active.
11444                  * Temporarily change the plane mapping and disable everything
11445                  * ...  */
11446                 plane = crtc->plane;
11447                 crtc->plane = !plane;
11448                 dev_priv->display.crtc_disable(&crtc->base);
11449                 crtc->plane = plane;
11450
11451                 /* ... and break all links. */
11452                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11453                                     base.head) {
11454                         if (connector->encoder->base.crtc != &crtc->base)
11455                                 continue;
11456
11457                         intel_connector_break_all_links(connector);
11458                 }
11459
11460                 WARN_ON(crtc->active);
11461                 crtc->base.enabled = false;
11462         }
11463
11464         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11465             crtc->pipe == PIPE_A && !crtc->active) {
11466                 /* BIOS forgot to enable pipe A, this mostly happens after
11467                  * resume. Force-enable the pipe to fix this, the update_dpms
11468                  * call below we restore the pipe to the right state, but leave
11469                  * the required bits on. */
11470                 intel_enable_pipe_a(dev);
11471         }
11472
11473         /* Adjust the state of the output pipe according to whether we
11474          * have active connectors/encoders. */
11475         intel_crtc_update_dpms(&crtc->base);
11476
11477         if (crtc->active != crtc->base.enabled) {
11478                 struct intel_encoder *encoder;
11479
11480                 /* This can happen either due to bugs in the get_hw_state
11481                  * functions or because the pipe is force-enabled due to the
11482                  * pipe A quirk. */
11483                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11484                               crtc->base.base.id,
11485                               crtc->base.enabled ? "enabled" : "disabled",
11486                               crtc->active ? "enabled" : "disabled");
11487
11488                 crtc->base.enabled = crtc->active;
11489
11490                 /* Because we only establish the connector -> encoder ->
11491                  * crtc links if something is active, this means the
11492                  * crtc is now deactivated. Break the links. connector
11493                  * -> encoder links are only establish when things are
11494                  *  actually up, hence no need to break them. */
11495                 WARN_ON(crtc->active);
11496
11497                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11498                         WARN_ON(encoder->connectors_active);
11499                         encoder->base.crtc = NULL;
11500                 }
11501         }
11502         if (crtc->active) {
11503                 /*
11504                  * We start out with underrun reporting disabled to avoid races.
11505                  * For correct bookkeeping mark this on active crtcs.
11506                  *
11507                  * No protection against concurrent access is required - at
11508                  * worst a fifo underrun happens which also sets this to false.
11509                  */
11510                 crtc->cpu_fifo_underrun_disabled = true;
11511                 crtc->pch_fifo_underrun_disabled = true;
11512         }
11513 }
11514
11515 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11516 {
11517         struct intel_connector *connector;
11518         struct drm_device *dev = encoder->base.dev;
11519
11520         /* We need to check both for a crtc link (meaning that the
11521          * encoder is active and trying to read from a pipe) and the
11522          * pipe itself being active. */
11523         bool has_active_crtc = encoder->base.crtc &&
11524                 to_intel_crtc(encoder->base.crtc)->active;
11525
11526         if (encoder->connectors_active && !has_active_crtc) {
11527                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11528                               encoder->base.base.id,
11529                               drm_get_encoder_name(&encoder->base));
11530
11531                 /* Connector is active, but has no active pipe. This is
11532                  * fallout from our resume register restoring. Disable
11533                  * the encoder manually again. */
11534                 if (encoder->base.crtc) {
11535                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11536                                       encoder->base.base.id,
11537                                       drm_get_encoder_name(&encoder->base));
11538                         encoder->disable(encoder);
11539                 }
11540
11541                 /* Inconsistent output/port/pipe state happens presumably due to
11542                  * a bug in one of the get_hw_state functions. Or someplace else
11543                  * in our code, like the register restore mess on resume. Clamp
11544                  * things to off as a safer default. */
11545                 list_for_each_entry(connector,
11546                                     &dev->mode_config.connector_list,
11547                                     base.head) {
11548                         if (connector->encoder != encoder)
11549                                 continue;
11550
11551                         intel_connector_break_all_links(connector);
11552                 }
11553         }
11554         /* Enabled encoders without active connectors will be fixed in
11555          * the crtc fixup. */
11556 }
11557
11558 void i915_redisable_vga_power_on(struct drm_device *dev)
11559 {
11560         struct drm_i915_private *dev_priv = dev->dev_private;
11561         u32 vga_reg = i915_vgacntrl_reg(dev);
11562
11563         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11564                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11565                 i915_disable_vga(dev);
11566         }
11567 }
11568
11569 void i915_redisable_vga(struct drm_device *dev)
11570 {
11571         struct drm_i915_private *dev_priv = dev->dev_private;
11572
11573         /* This function can be called both from intel_modeset_setup_hw_state or
11574          * at a very early point in our resume sequence, where the power well
11575          * structures are not yet restored. Since this function is at a very
11576          * paranoid "someone might have enabled VGA while we were not looking"
11577          * level, just check if the power well is enabled instead of trying to
11578          * follow the "don't touch the power well if we don't need it" policy
11579          * the rest of the driver uses. */
11580         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11581                 return;
11582
11583         i915_redisable_vga_power_on(dev);
11584 }
11585
11586 static bool primary_get_hw_state(struct intel_crtc *crtc)
11587 {
11588         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11589
11590         if (!crtc->active)
11591                 return false;
11592
11593         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11594 }
11595
11596 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11597 {
11598         struct drm_i915_private *dev_priv = dev->dev_private;
11599         enum pipe pipe;
11600         struct intel_crtc *crtc;
11601         struct intel_encoder *encoder;
11602         struct intel_connector *connector;
11603         int i;
11604
11605         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11606                             base.head) {
11607                 memset(&crtc->config, 0, sizeof(crtc->config));
11608
11609                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11610
11611                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11612                                                                  &crtc->config);
11613
11614                 crtc->base.enabled = crtc->active;
11615                 crtc->primary_enabled = primary_get_hw_state(crtc);
11616
11617                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11618                               crtc->base.base.id,
11619                               crtc->active ? "enabled" : "disabled");
11620         }
11621
11622         /* FIXME: Smash this into the new shared dpll infrastructure. */
11623         if (HAS_DDI(dev))
11624                 intel_ddi_setup_hw_pll_state(dev);
11625
11626         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11627                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11628
11629                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11630                 pll->active = 0;
11631                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11632                                     base.head) {
11633                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11634                                 pll->active++;
11635                 }
11636                 pll->refcount = pll->active;
11637
11638                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11639                               pll->name, pll->refcount, pll->on);
11640         }
11641
11642         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11643                             base.head) {
11644                 pipe = 0;
11645
11646                 if (encoder->get_hw_state(encoder, &pipe)) {
11647                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11648                         encoder->base.crtc = &crtc->base;
11649                         encoder->get_config(encoder, &crtc->config);
11650                 } else {
11651                         encoder->base.crtc = NULL;
11652                 }
11653
11654                 encoder->connectors_active = false;
11655                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11656                               encoder->base.base.id,
11657                               drm_get_encoder_name(&encoder->base),
11658                               encoder->base.crtc ? "enabled" : "disabled",
11659                               pipe_name(pipe));
11660         }
11661
11662         list_for_each_entry(connector, &dev->mode_config.connector_list,
11663                             base.head) {
11664                 if (connector->get_hw_state(connector)) {
11665                         connector->base.dpms = DRM_MODE_DPMS_ON;
11666                         connector->encoder->connectors_active = true;
11667                         connector->base.encoder = &connector->encoder->base;
11668                 } else {
11669                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11670                         connector->base.encoder = NULL;
11671                 }
11672                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11673                               connector->base.base.id,
11674                               drm_get_connector_name(&connector->base),
11675                               connector->base.encoder ? "enabled" : "disabled");
11676         }
11677 }
11678
11679 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11680  * and i915 state tracking structures. */
11681 void intel_modeset_setup_hw_state(struct drm_device *dev,
11682                                   bool force_restore)
11683 {
11684         struct drm_i915_private *dev_priv = dev->dev_private;
11685         enum pipe pipe;
11686         struct intel_crtc *crtc;
11687         struct intel_encoder *encoder;
11688         int i;
11689
11690         intel_modeset_readout_hw_state(dev);
11691
11692         /*
11693          * Now that we have the config, copy it to each CRTC struct
11694          * Note that this could go away if we move to using crtc_config
11695          * checking everywhere.
11696          */
11697         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11698                             base.head) {
11699                 if (crtc->active && i915.fastboot) {
11700                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11701                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11702                                       crtc->base.base.id);
11703                         drm_mode_debug_printmodeline(&crtc->base.mode);
11704                 }
11705         }
11706
11707         /* HW state is read out, now we need to sanitize this mess. */
11708         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11709                             base.head) {
11710                 intel_sanitize_encoder(encoder);
11711         }
11712
11713         for_each_pipe(pipe) {
11714                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11715                 intel_sanitize_crtc(crtc);
11716                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11717         }
11718
11719         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11720                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11721
11722                 if (!pll->on || pll->active)
11723                         continue;
11724
11725                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11726
11727                 pll->disable(dev_priv, pll);
11728                 pll->on = false;
11729         }
11730
11731         if (HAS_PCH_SPLIT(dev))
11732                 ilk_wm_get_hw_state(dev);
11733
11734         if (force_restore) {
11735                 i915_redisable_vga(dev);
11736
11737                 /*
11738                  * We need to use raw interfaces for restoring state to avoid
11739                  * checking (bogus) intermediate states.
11740                  */
11741                 for_each_pipe(pipe) {
11742                         struct drm_crtc *crtc =
11743                                 dev_priv->pipe_to_crtc_mapping[pipe];
11744
11745                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11746                                          crtc->primary->fb);
11747                 }
11748         } else {
11749                 intel_modeset_update_staged_output_state(dev);
11750         }
11751
11752         intel_modeset_check_state(dev);
11753 }
11754
11755 void intel_modeset_gem_init(struct drm_device *dev)
11756 {
11757         struct drm_crtc *c;
11758         struct intel_framebuffer *fb;
11759
11760         mutex_lock(&dev->struct_mutex);
11761         intel_init_gt_powersave(dev);
11762         mutex_unlock(&dev->struct_mutex);
11763
11764         intel_modeset_init_hw(dev);
11765
11766         intel_setup_overlay(dev);
11767
11768         /*
11769          * Make sure any fbs we allocated at startup are properly
11770          * pinned & fenced.  When we do the allocation it's too early
11771          * for this.
11772          */
11773         mutex_lock(&dev->struct_mutex);
11774         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11775                 if (!c->primary->fb)
11776                         continue;
11777
11778                 fb = to_intel_framebuffer(c->primary->fb);
11779                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11780                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
11781                                   to_intel_crtc(c)->pipe);
11782                         drm_framebuffer_unreference(c->primary->fb);
11783                         c->primary->fb = NULL;
11784                 }
11785         }
11786         mutex_unlock(&dev->struct_mutex);
11787 }
11788
11789 void intel_connector_unregister(struct intel_connector *intel_connector)
11790 {
11791         struct drm_connector *connector = &intel_connector->base;
11792
11793         intel_panel_destroy_backlight(connector);
11794         drm_sysfs_connector_remove(connector);
11795 }
11796
11797 void intel_modeset_cleanup(struct drm_device *dev)
11798 {
11799         struct drm_i915_private *dev_priv = dev->dev_private;
11800         struct drm_crtc *crtc;
11801         struct drm_connector *connector;
11802
11803         /*
11804          * Interrupts and polling as the first thing to avoid creating havoc.
11805          * Too much stuff here (turning of rps, connectors, ...) would
11806          * experience fancy races otherwise.
11807          */
11808         drm_irq_uninstall(dev);
11809         cancel_work_sync(&dev_priv->hotplug_work);
11810         /*
11811          * Due to the hpd irq storm handling the hotplug work can re-arm the
11812          * poll handlers. Hence disable polling after hpd handling is shut down.
11813          */
11814         drm_kms_helper_poll_fini(dev);
11815
11816         mutex_lock(&dev->struct_mutex);
11817
11818         intel_unregister_dsm_handler();
11819
11820         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11821                 /* Skip inactive CRTCs */
11822                 if (!crtc->primary->fb)
11823                         continue;
11824
11825                 intel_increase_pllclock(crtc);
11826         }
11827
11828         intel_disable_fbc(dev);
11829
11830         intel_disable_gt_powersave(dev);
11831
11832         ironlake_teardown_rc6(dev);
11833
11834         mutex_unlock(&dev->struct_mutex);
11835
11836         /* flush any delayed tasks or pending work */
11837         flush_scheduled_work();
11838
11839         /* destroy the backlight and sysfs files before encoders/connectors */
11840         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11841                 struct intel_connector *intel_connector;
11842
11843                 intel_connector = to_intel_connector(connector);
11844                 intel_connector->unregister(intel_connector);
11845         }
11846
11847         drm_mode_config_cleanup(dev);
11848
11849         intel_cleanup_overlay(dev);
11850
11851         mutex_lock(&dev->struct_mutex);
11852         intel_cleanup_gt_powersave(dev);
11853         mutex_unlock(&dev->struct_mutex);
11854 }
11855
11856 /*
11857  * Return which encoder is currently attached for connector.
11858  */
11859 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11860 {
11861         return &intel_attached_encoder(connector)->base;
11862 }
11863
11864 void intel_connector_attach_encoder(struct intel_connector *connector,
11865                                     struct intel_encoder *encoder)
11866 {
11867         connector->encoder = encoder;
11868         drm_mode_connector_attach_encoder(&connector->base,
11869                                           &encoder->base);
11870 }
11871
11872 /*
11873  * set vga decode state - true == enable VGA decode
11874  */
11875 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11876 {
11877         struct drm_i915_private *dev_priv = dev->dev_private;
11878         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11879         u16 gmch_ctrl;
11880
11881         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11882                 DRM_ERROR("failed to read control word\n");
11883                 return -EIO;
11884         }
11885
11886         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11887                 return 0;
11888
11889         if (state)
11890                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11891         else
11892                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11893
11894         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11895                 DRM_ERROR("failed to write control word\n");
11896                 return -EIO;
11897         }
11898
11899         return 0;
11900 }
11901
11902 struct intel_display_error_state {
11903
11904         u32 power_well_driver;
11905
11906         int num_transcoders;
11907
11908         struct intel_cursor_error_state {
11909                 u32 control;
11910                 u32 position;
11911                 u32 base;
11912                 u32 size;
11913         } cursor[I915_MAX_PIPES];
11914
11915         struct intel_pipe_error_state {
11916                 bool power_domain_on;
11917                 u32 source;
11918                 u32 stat;
11919         } pipe[I915_MAX_PIPES];
11920
11921         struct intel_plane_error_state {
11922                 u32 control;
11923                 u32 stride;
11924                 u32 size;
11925                 u32 pos;
11926                 u32 addr;
11927                 u32 surface;
11928                 u32 tile_offset;
11929         } plane[I915_MAX_PIPES];
11930
11931         struct intel_transcoder_error_state {
11932                 bool power_domain_on;
11933                 enum transcoder cpu_transcoder;
11934
11935                 u32 conf;
11936
11937                 u32 htotal;
11938                 u32 hblank;
11939                 u32 hsync;
11940                 u32 vtotal;
11941                 u32 vblank;
11942                 u32 vsync;
11943         } transcoder[4];
11944 };
11945
11946 struct intel_display_error_state *
11947 intel_display_capture_error_state(struct drm_device *dev)
11948 {
11949         struct drm_i915_private *dev_priv = dev->dev_private;
11950         struct intel_display_error_state *error;
11951         int transcoders[] = {
11952                 TRANSCODER_A,
11953                 TRANSCODER_B,
11954                 TRANSCODER_C,
11955                 TRANSCODER_EDP,
11956         };
11957         int i;
11958
11959         if (INTEL_INFO(dev)->num_pipes == 0)
11960                 return NULL;
11961
11962         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11963         if (error == NULL)
11964                 return NULL;
11965
11966         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11967                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11968
11969         for_each_pipe(i) {
11970                 error->pipe[i].power_domain_on =
11971                         intel_display_power_enabled_sw(dev_priv,
11972                                                        POWER_DOMAIN_PIPE(i));
11973                 if (!error->pipe[i].power_domain_on)
11974                         continue;
11975
11976                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11977                         error->cursor[i].control = I915_READ(CURCNTR(i));
11978                         error->cursor[i].position = I915_READ(CURPOS(i));
11979                         error->cursor[i].base = I915_READ(CURBASE(i));
11980                 } else {
11981                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11982                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11983                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11984                 }
11985
11986                 error->plane[i].control = I915_READ(DSPCNTR(i));
11987                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11988                 if (INTEL_INFO(dev)->gen <= 3) {
11989                         error->plane[i].size = I915_READ(DSPSIZE(i));
11990                         error->plane[i].pos = I915_READ(DSPPOS(i));
11991                 }
11992                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11993                         error->plane[i].addr = I915_READ(DSPADDR(i));
11994                 if (INTEL_INFO(dev)->gen >= 4) {
11995                         error->plane[i].surface = I915_READ(DSPSURF(i));
11996                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11997                 }
11998
11999                 error->pipe[i].source = I915_READ(PIPESRC(i));
12000
12001                 if (!HAS_PCH_SPLIT(dev))
12002                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12003         }
12004
12005         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12006         if (HAS_DDI(dev_priv->dev))
12007                 error->num_transcoders++; /* Account for eDP. */
12008
12009         for (i = 0; i < error->num_transcoders; i++) {
12010                 enum transcoder cpu_transcoder = transcoders[i];
12011
12012                 error->transcoder[i].power_domain_on =
12013                         intel_display_power_enabled_sw(dev_priv,
12014                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12015                 if (!error->transcoder[i].power_domain_on)
12016                         continue;
12017
12018                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12019
12020                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12021                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12022                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12023                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12024                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12025                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12026                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12027         }
12028
12029         return error;
12030 }
12031
12032 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12033
12034 void
12035 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12036                                 struct drm_device *dev,
12037                                 struct intel_display_error_state *error)
12038 {
12039         int i;
12040
12041         if (!error)
12042                 return;
12043
12044         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12045         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12046                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12047                            error->power_well_driver);
12048         for_each_pipe(i) {
12049                 err_printf(m, "Pipe [%d]:\n", i);
12050                 err_printf(m, "  Power: %s\n",
12051                            error->pipe[i].power_domain_on ? "on" : "off");
12052                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12053                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12054
12055                 err_printf(m, "Plane [%d]:\n", i);
12056                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12057                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12058                 if (INTEL_INFO(dev)->gen <= 3) {
12059                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12060                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12061                 }
12062                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12063                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12064                 if (INTEL_INFO(dev)->gen >= 4) {
12065                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12066                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12067                 }
12068
12069                 err_printf(m, "Cursor [%d]:\n", i);
12070                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12071                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12072                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12073         }
12074
12075         for (i = 0; i < error->num_transcoders; i++) {
12076                 err_printf(m, "CPU transcoder: %c\n",
12077                            transcoder_name(error->transcoder[i].cpu_transcoder));
12078                 err_printf(m, "  Power: %s\n",
12079                            error->transcoder[i].power_domain_on ? "on" : "off");
12080                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12081                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12082                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12083                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12084                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12085                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12086                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12087         }
12088 }