drm/i915: clean up crtc timings computation
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54         int     min, max;
55 } intel_range_t;
56
57 typedef struct {
58         int     dot_limit;
59         int     p2_slow, p2_fast;
60 } intel_p2_t;
61
62 #define INTEL_P2_NUM                  2
63 typedef struct intel_limit intel_limit_t;
64 struct intel_limit {
65         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
66         intel_p2_t          p2;
67 };
68
69 /* FDI */
70 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75         struct drm_i915_private *dev_priv = dev->dev_private;
76
77         WARN_ON(!HAS_PCH_SPLIT(dev));
78
79         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85         if (IS_GEN5(dev)) {
86                 struct drm_i915_private *dev_priv = dev->dev_private;
87                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88         } else
89                 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93         .dot = { .min = 25000, .max = 350000 },
94         .vco = { .min = 930000, .max = 1400000 },
95         .n = { .min = 3, .max = 16 },
96         .m = { .min = 96, .max = 140 },
97         .m1 = { .min = 18, .max = 26 },
98         .m2 = { .min = 6, .max = 16 },
99         .p = { .min = 4, .max = 128 },
100         .p1 = { .min = 2, .max = 33 },
101         .p2 = { .dot_limit = 165000,
102                 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106         .dot = { .min = 25000, .max = 350000 },
107         .vco = { .min = 930000, .max = 1400000 },
108         .n = { .min = 3, .max = 16 },
109         .m = { .min = 96, .max = 140 },
110         .m1 = { .min = 18, .max = 26 },
111         .m2 = { .min = 6, .max = 16 },
112         .p = { .min = 4, .max = 128 },
113         .p1 = { .min = 2, .max = 33 },
114         .p2 = { .dot_limit = 165000,
115                 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 1, .max = 6 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132         .dot = { .min = 20000, .max = 400000 },
133         .vco = { .min = 1400000, .max = 2800000 },
134         .n = { .min = 1, .max = 6 },
135         .m = { .min = 70, .max = 120 },
136         .m1 = { .min = 8, .max = 18 },
137         .m2 = { .min = 3, .max = 7 },
138         .p = { .min = 5, .max = 80 },
139         .p1 = { .min = 1, .max = 8 },
140         .p2 = { .dot_limit = 200000,
141                 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 8, .max = 18 },
150         .m2 = { .min = 3, .max = 7 },
151         .p = { .min = 7, .max = 98 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 112000,
154                 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159         .dot = { .min = 25000, .max = 270000 },
160         .vco = { .min = 1750000, .max = 3500000},
161         .n = { .min = 1, .max = 4 },
162         .m = { .min = 104, .max = 138 },
163         .m1 = { .min = 17, .max = 23 },
164         .m2 = { .min = 5, .max = 11 },
165         .p = { .min = 10, .max = 30 },
166         .p1 = { .min = 1, .max = 3},
167         .p2 = { .dot_limit = 270000,
168                 .p2_slow = 10,
169                 .p2_fast = 10
170         },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174         .dot = { .min = 22000, .max = 400000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 16, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 5, .max = 80 },
181         .p1 = { .min = 1, .max = 8},
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187         .dot = { .min = 20000, .max = 115000 },
188         .vco = { .min = 1750000, .max = 3500000 },
189         .n = { .min = 1, .max = 3 },
190         .m = { .min = 104, .max = 138 },
191         .m1 = { .min = 17, .max = 23 },
192         .m2 = { .min = 5, .max = 11 },
193         .p = { .min = 28, .max = 112 },
194         .p1 = { .min = 2, .max = 8 },
195         .p2 = { .dot_limit = 0,
196                 .p2_slow = 14, .p2_fast = 14
197         },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201         .dot = { .min = 80000, .max = 224000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 14, .max = 42 },
208         .p1 = { .min = 2, .max = 6 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 7, .p2_fast = 7
211         },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215         .dot = { .min = 20000, .max = 400000},
216         .vco = { .min = 1700000, .max = 3500000 },
217         /* Pineview's Ncounter is a ring counter */
218         .n = { .min = 3, .max = 6 },
219         .m = { .min = 2, .max = 256 },
220         /* Pineview only has one combined m divider, which we treat as m2. */
221         .m1 = { .min = 0, .max = 0 },
222         .m2 = { .min = 0, .max = 254 },
223         .p = { .min = 5, .max = 80 },
224         .p1 = { .min = 1, .max = 8 },
225         .p2 = { .dot_limit = 200000,
226                 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230         .dot = { .min = 20000, .max = 400000 },
231         .vco = { .min = 1700000, .max = 3500000 },
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         .m1 = { .min = 0, .max = 0 },
235         .m2 = { .min = 0, .max = 254 },
236         .p = { .min = 7, .max = 112 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 112000,
239                 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243  *
244  * We calculate clock using (register_value + 2) for N/M1/M2, so here
245  * the range value for them is (actual_value - 2).
246  */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248         .dot = { .min = 25000, .max = 350000 },
249         .vco = { .min = 1760000, .max = 3510000 },
250         .n = { .min = 1, .max = 5 },
251         .m = { .min = 79, .max = 127 },
252         .m1 = { .min = 12, .max = 22 },
253         .m2 = { .min = 5, .max = 9 },
254         .p = { .min = 5, .max = 80 },
255         .p1 = { .min = 1, .max = 8 },
256         .p2 = { .dot_limit = 225000,
257                 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261         .dot = { .min = 25000, .max = 350000 },
262         .vco = { .min = 1760000, .max = 3510000 },
263         .n = { .min = 1, .max = 3 },
264         .m = { .min = 79, .max = 118 },
265         .m1 = { .min = 12, .max = 22 },
266         .m2 = { .min = 5, .max = 9 },
267         .p = { .min = 28, .max = 112 },
268         .p1 = { .min = 2, .max = 8 },
269         .p2 = { .dot_limit = 225000,
270                 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 3 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 14, .max = 56 },
281         .p1 = { .min = 2, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 2 },
291         .m = { .min = 79, .max = 126 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 126 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 42 },
308         .p1 = { .min = 2, .max = 6 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314         .dot = { .min = 25000, .max = 270000 },
315         .vco = { .min = 4000000, .max = 6000000 },
316         .n = { .min = 1, .max = 7 },
317         .m = { .min = 22, .max = 450 }, /* guess */
318         .m1 = { .min = 2, .max = 3 },
319         .m2 = { .min = 11, .max = 156 },
320         .p = { .min = 10, .max = 30 },
321         .p1 = { .min = 1, .max = 3 },
322         .p2 = { .dot_limit = 270000,
323                 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327         .dot = { .min = 25000, .max = 270000 },
328         .vco = { .min = 4000000, .max = 6000000 },
329         .n = { .min = 1, .max = 7 },
330         .m = { .min = 60, .max = 300 }, /* guess */
331         .m1 = { .min = 2, .max = 3 },
332         .m2 = { .min = 11, .max = 156 },
333         .p = { .min = 10, .max = 30 },
334         .p1 = { .min = 2, .max = 3 },
335         .p2 = { .dot_limit = 270000,
336                 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t intel_limits_vlv_dp = {
340         .dot = { .min = 25000, .max = 270000 },
341         .vco = { .min = 4000000, .max = 6000000 },
342         .n = { .min = 1, .max = 7 },
343         .m = { .min = 22, .max = 450 },
344         .m1 = { .min = 2, .max = 3 },
345         .m2 = { .min = 11, .max = 156 },
346         .p = { .min = 10, .max = 30 },
347         .p1 = { .min = 1, .max = 3 },
348         .p2 = { .dot_limit = 270000,
349                 .p2_slow = 2, .p2_fast = 20 },
350 };
351
352 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
353                                                 int refclk)
354 {
355         struct drm_device *dev = crtc->dev;
356         const intel_limit_t *limit;
357
358         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
359                 if (intel_is_dual_link_lvds(dev)) {
360                         if (refclk == 100000)
361                                 limit = &intel_limits_ironlake_dual_lvds_100m;
362                         else
363                                 limit = &intel_limits_ironlake_dual_lvds;
364                 } else {
365                         if (refclk == 100000)
366                                 limit = &intel_limits_ironlake_single_lvds_100m;
367                         else
368                                 limit = &intel_limits_ironlake_single_lvds;
369                 }
370         } else
371                 limit = &intel_limits_ironlake_dac;
372
373         return limit;
374 }
375
376 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev))
383                         limit = &intel_limits_g4x_dual_channel_lvds;
384                 else
385                         limit = &intel_limits_g4x_single_channel_lvds;
386         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
387                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
388                 limit = &intel_limits_g4x_hdmi;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
390                 limit = &intel_limits_g4x_sdvo;
391         } else /* The option is for other outputs */
392                 limit = &intel_limits_i9xx_sdvo;
393
394         return limit;
395 }
396
397 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
398 {
399         struct drm_device *dev = crtc->dev;
400         const intel_limit_t *limit;
401
402         if (HAS_PCH_SPLIT(dev))
403                 limit = intel_ironlake_limit(crtc, refclk);
404         else if (IS_G4X(dev)) {
405                 limit = intel_g4x_limit(crtc);
406         } else if (IS_PINEVIEW(dev)) {
407                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
408                         limit = &intel_limits_pineview_lvds;
409                 else
410                         limit = &intel_limits_pineview_sdvo;
411         } else if (IS_VALLEYVIEW(dev)) {
412                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
413                         limit = &intel_limits_vlv_dac;
414                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
415                         limit = &intel_limits_vlv_hdmi;
416                 else
417                         limit = &intel_limits_vlv_dp;
418         } else if (!IS_GEN2(dev)) {
419                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
420                         limit = &intel_limits_i9xx_lvds;
421                 else
422                         limit = &intel_limits_i9xx_sdvo;
423         } else {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_i8xx_lvds;
426                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
427                         limit = &intel_limits_i8xx_dvo;
428                 else
429                         limit = &intel_limits_i8xx_dac;
430         }
431         return limit;
432 }
433
434 /* m1 is reserved as 0 in Pineview, n is a ring counter */
435 static void pineview_clock(int refclk, intel_clock_t *clock)
436 {
437         clock->m = clock->m2 + 2;
438         clock->p = clock->p1 * clock->p2;
439         clock->vco = refclk * clock->m / clock->n;
440         clock->dot = clock->vco / clock->p;
441 }
442
443 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
444 {
445         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
446 }
447
448 static void i9xx_clock(int refclk, intel_clock_t *clock)
449 {
450         clock->m = i9xx_dpll_compute_m(clock);
451         clock->p = clock->p1 * clock->p2;
452         clock->vco = refclk * clock->m / (clock->n + 2);
453         clock->dot = clock->vco / clock->p;
454 }
455
456 /**
457  * Returns whether any output on the specified pipe is of the specified type
458  */
459 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
460 {
461         struct drm_device *dev = crtc->dev;
462         struct intel_encoder *encoder;
463
464         for_each_encoder_on_crtc(dev, crtc, encoder)
465                 if (encoder->type == type)
466                         return true;
467
468         return false;
469 }
470
471 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
472 /**
473  * Returns whether the given set of divisors are valid for a given refclk with
474  * the given connectors.
475  */
476
477 static bool intel_PLL_is_valid(struct drm_device *dev,
478                                const intel_limit_t *limit,
479                                const intel_clock_t *clock)
480 {
481         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
482                 INTELPllInvalid("p1 out of range\n");
483         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
484                 INTELPllInvalid("p out of range\n");
485         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
486                 INTELPllInvalid("m2 out of range\n");
487         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
488                 INTELPllInvalid("m1 out of range\n");
489         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
490                 INTELPllInvalid("m1 <= m2\n");
491         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
492                 INTELPllInvalid("m out of range\n");
493         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
494                 INTELPllInvalid("n out of range\n");
495         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
496                 INTELPllInvalid("vco out of range\n");
497         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
498          * connector, etc., rather than just a single range.
499          */
500         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
501                 INTELPllInvalid("dot out of range\n");
502
503         return true;
504 }
505
506 static bool
507 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
508                     int target, int refclk, intel_clock_t *match_clock,
509                     intel_clock_t *best_clock)
510 {
511         struct drm_device *dev = crtc->dev;
512         intel_clock_t clock;
513         int err = target;
514
515         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
516                 /*
517                  * For LVDS just rely on its current settings for dual-channel.
518                  * We haven't figured out how to reliably set up different
519                  * single/dual channel state, if we even can.
520                  */
521                 if (intel_is_dual_link_lvds(dev))
522                         clock.p2 = limit->p2.p2_fast;
523                 else
524                         clock.p2 = limit->p2.p2_slow;
525         } else {
526                 if (target < limit->p2.dot_limit)
527                         clock.p2 = limit->p2.p2_slow;
528                 else
529                         clock.p2 = limit->p2.p2_fast;
530         }
531
532         memset(best_clock, 0, sizeof(*best_clock));
533
534         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
535              clock.m1++) {
536                 for (clock.m2 = limit->m2.min;
537                      clock.m2 <= limit->m2.max; clock.m2++) {
538                         if (clock.m2 >= clock.m1)
539                                 break;
540                         for (clock.n = limit->n.min;
541                              clock.n <= limit->n.max; clock.n++) {
542                                 for (clock.p1 = limit->p1.min;
543                                         clock.p1 <= limit->p1.max; clock.p1++) {
544                                         int this_err;
545
546                                         i9xx_clock(refclk, &clock);
547                                         if (!intel_PLL_is_valid(dev, limit,
548                                                                 &clock))
549                                                 continue;
550                                         if (match_clock &&
551                                             clock.p != match_clock->p)
552                                                 continue;
553
554                                         this_err = abs(clock.dot - target);
555                                         if (this_err < err) {
556                                                 *best_clock = clock;
557                                                 err = this_err;
558                                         }
559                                 }
560                         }
561                 }
562         }
563
564         return (err != target);
565 }
566
567 static bool
568 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
569                    int target, int refclk, intel_clock_t *match_clock,
570                    intel_clock_t *best_clock)
571 {
572         struct drm_device *dev = crtc->dev;
573         intel_clock_t clock;
574         int err = target;
575
576         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
577                 /*
578                  * For LVDS just rely on its current settings for dual-channel.
579                  * We haven't figured out how to reliably set up different
580                  * single/dual channel state, if we even can.
581                  */
582                 if (intel_is_dual_link_lvds(dev))
583                         clock.p2 = limit->p2.p2_fast;
584                 else
585                         clock.p2 = limit->p2.p2_slow;
586         } else {
587                 if (target < limit->p2.dot_limit)
588                         clock.p2 = limit->p2.p2_slow;
589                 else
590                         clock.p2 = limit->p2.p2_fast;
591         }
592
593         memset(best_clock, 0, sizeof(*best_clock));
594
595         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
596              clock.m1++) {
597                 for (clock.m2 = limit->m2.min;
598                      clock.m2 <= limit->m2.max; clock.m2++) {
599                         for (clock.n = limit->n.min;
600                              clock.n <= limit->n.max; clock.n++) {
601                                 for (clock.p1 = limit->p1.min;
602                                         clock.p1 <= limit->p1.max; clock.p1++) {
603                                         int this_err;
604
605                                         pineview_clock(refclk, &clock);
606                                         if (!intel_PLL_is_valid(dev, limit,
607                                                                 &clock))
608                                                 continue;
609                                         if (match_clock &&
610                                             clock.p != match_clock->p)
611                                                 continue;
612
613                                         this_err = abs(clock.dot - target);
614                                         if (this_err < err) {
615                                                 *best_clock = clock;
616                                                 err = this_err;
617                                         }
618                                 }
619                         }
620                 }
621         }
622
623         return (err != target);
624 }
625
626 static bool
627 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
628                    int target, int refclk, intel_clock_t *match_clock,
629                    intel_clock_t *best_clock)
630 {
631         struct drm_device *dev = crtc->dev;
632         intel_clock_t clock;
633         int max_n;
634         bool found;
635         /* approximately equals target * 0.00585 */
636         int err_most = (target >> 8) + (target >> 9);
637         found = false;
638
639         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
640                 if (intel_is_dual_link_lvds(dev))
641                         clock.p2 = limit->p2.p2_fast;
642                 else
643                         clock.p2 = limit->p2.p2_slow;
644         } else {
645                 if (target < limit->p2.dot_limit)
646                         clock.p2 = limit->p2.p2_slow;
647                 else
648                         clock.p2 = limit->p2.p2_fast;
649         }
650
651         memset(best_clock, 0, sizeof(*best_clock));
652         max_n = limit->n.max;
653         /* based on hardware requirement, prefer smaller n to precision */
654         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
655                 /* based on hardware requirement, prefere larger m1,m2 */
656                 for (clock.m1 = limit->m1.max;
657                      clock.m1 >= limit->m1.min; clock.m1--) {
658                         for (clock.m2 = limit->m2.max;
659                              clock.m2 >= limit->m2.min; clock.m2--) {
660                                 for (clock.p1 = limit->p1.max;
661                                      clock.p1 >= limit->p1.min; clock.p1--) {
662                                         int this_err;
663
664                                         i9xx_clock(refclk, &clock);
665                                         if (!intel_PLL_is_valid(dev, limit,
666                                                                 &clock))
667                                                 continue;
668
669                                         this_err = abs(clock.dot - target);
670                                         if (this_err < err_most) {
671                                                 *best_clock = clock;
672                                                 err_most = this_err;
673                                                 max_n = clock.n;
674                                                 found = true;
675                                         }
676                                 }
677                         }
678                 }
679         }
680         return found;
681 }
682
683 static bool
684 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
685                    int target, int refclk, intel_clock_t *match_clock,
686                    intel_clock_t *best_clock)
687 {
688         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
689         u32 m, n, fastclk;
690         u32 updrate, minupdate, fracbits, p;
691         unsigned long bestppm, ppm, absppm;
692         int dotclk, flag;
693
694         flag = 0;
695         dotclk = target * 1000;
696         bestppm = 1000000;
697         ppm = absppm = 0;
698         fastclk = dotclk / (2*100);
699         updrate = 0;
700         minupdate = 19200;
701         fracbits = 1;
702         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
703         bestm1 = bestm2 = bestp1 = bestp2 = 0;
704
705         /* based on hardware requirement, prefer smaller n to precision */
706         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
707                 updrate = refclk / n;
708                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
709                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
710                                 if (p2 > 10)
711                                         p2 = p2 - 1;
712                                 p = p1 * p2;
713                                 /* based on hardware requirement, prefer bigger m1,m2 values */
714                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
715                                         m2 = (((2*(fastclk * p * n / m1 )) +
716                                                refclk) / (2*refclk));
717                                         m = m1 * m2;
718                                         vco = updrate * m;
719                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
720                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
721                                                 absppm = (ppm > 0) ? ppm : (-ppm);
722                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
723                                                         bestppm = 0;
724                                                         flag = 1;
725                                                 }
726                                                 if (absppm < bestppm - 10) {
727                                                         bestppm = absppm;
728                                                         flag = 1;
729                                                 }
730                                                 if (flag) {
731                                                         bestn = n;
732                                                         bestm1 = m1;
733                                                         bestm2 = m2;
734                                                         bestp1 = p1;
735                                                         bestp2 = p2;
736                                                         flag = 0;
737                                                 }
738                                         }
739                                 }
740                         }
741                 }
742         }
743         best_clock->n = bestn;
744         best_clock->m1 = bestm1;
745         best_clock->m2 = bestm2;
746         best_clock->p1 = bestp1;
747         best_clock->p2 = bestp2;
748
749         return true;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753                                              enum pipe pipe)
754 {
755         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758         return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763         struct drm_i915_private *dev_priv = dev->dev_private;
764         u32 frame, frame_reg = PIPEFRAME(pipe);
765
766         frame = I915_READ(frame_reg);
767
768         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769                 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773  * intel_wait_for_vblank - wait for vblank on a given pipe
774  * @dev: drm device
775  * @pipe: pipe to wait for
776  *
777  * Wait for vblank to occur on a given pipe.  Needed for various bits of
778  * mode setting code.
779  */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782         struct drm_i915_private *dev_priv = dev->dev_private;
783         int pipestat_reg = PIPESTAT(pipe);
784
785         if (INTEL_INFO(dev)->gen >= 5) {
786                 ironlake_wait_for_vblank(dev, pipe);
787                 return;
788         }
789
790         /* Clear existing vblank status. Note this will clear any other
791          * sticky status fields as well.
792          *
793          * This races with i915_driver_irq_handler() with the result
794          * that either function could miss a vblank event.  Here it is not
795          * fatal, as we will either wait upon the next vblank interrupt or
796          * timeout.  Generally speaking intel_wait_for_vblank() is only
797          * called during modeset at which time the GPU should be idle and
798          * should *not* be performing page flips and thus not waiting on
799          * vblanks...
800          * Currently, the result of us stealing a vblank from the irq
801          * handler is that a single frame will be skipped during swapbuffers.
802          */
803         I915_WRITE(pipestat_reg,
804                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806         /* Wait for vblank interrupt bit to set */
807         if (wait_for(I915_READ(pipestat_reg) &
808                      PIPE_VBLANK_INTERRUPT_STATUS,
809                      50))
810                 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814  * intel_wait_for_pipe_off - wait for pipe to turn off
815  * @dev: drm device
816  * @pipe: pipe to wait for
817  *
818  * After disabling a pipe, we can't wait for vblank in the usual way,
819  * spinning on the vblank interrupt status bit, since we won't actually
820  * see an interrupt when the pipe is disabled.
821  *
822  * On Gen4 and above:
823  *   wait for the pipe register state bit to turn off
824  *
825  * Otherwise:
826  *   wait for the display line value to settle (it usually
827  *   ends up stopping at the start of the next frame).
828  *
829  */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832         struct drm_i915_private *dev_priv = dev->dev_private;
833         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834                                                                       pipe);
835
836         if (INTEL_INFO(dev)->gen >= 4) {
837                 int reg = PIPECONF(cpu_transcoder);
838
839                 /* Wait for the Pipe State to go off */
840                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841                              100))
842                         WARN(1, "pipe_off wait timed out\n");
843         } else {
844                 u32 last_line, line_mask;
845                 int reg = PIPEDSL(pipe);
846                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848                 if (IS_GEN2(dev))
849                         line_mask = DSL_LINEMASK_GEN2;
850                 else
851                         line_mask = DSL_LINEMASK_GEN3;
852
853                 /* Wait for the display line to settle */
854                 do {
855                         last_line = I915_READ(reg) & line_mask;
856                         mdelay(5);
857                 } while (((I915_READ(reg) & line_mask) != last_line) &&
858                          time_after(timeout, jiffies));
859                 if (time_after(jiffies, timeout))
860                         WARN(1, "pipe_off wait timed out\n");
861         }
862 }
863
864 /*
865  * ibx_digital_port_connected - is the specified port connected?
866  * @dev_priv: i915 private structure
867  * @port: the port to test
868  *
869  * Returns true if @port is connected, false otherwise.
870  */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872                                 struct intel_digital_port *port)
873 {
874         u32 bit;
875
876         if (HAS_PCH_IBX(dev_priv->dev)) {
877                 switch(port->port) {
878                 case PORT_B:
879                         bit = SDE_PORTB_HOTPLUG;
880                         break;
881                 case PORT_C:
882                         bit = SDE_PORTC_HOTPLUG;
883                         break;
884                 case PORT_D:
885                         bit = SDE_PORTD_HOTPLUG;
886                         break;
887                 default:
888                         return true;
889                 }
890         } else {
891                 switch(port->port) {
892                 case PORT_B:
893                         bit = SDE_PORTB_HOTPLUG_CPT;
894                         break;
895                 case PORT_C:
896                         bit = SDE_PORTC_HOTPLUG_CPT;
897                         break;
898                 case PORT_D:
899                         bit = SDE_PORTD_HOTPLUG_CPT;
900                         break;
901                 default:
902                         return true;
903                 }
904         }
905
906         return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911         return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916                 enum pipe pipe, bool state)
917 {
918         int reg;
919         u32 val;
920         bool cur_state;
921
922         reg = DPLL(pipe);
923         val = I915_READ(reg);
924         cur_state = !!(val & DPLL_VCO_ENABLE);
925         WARN(cur_state != state,
926              "PLL state assertion failure (expected %s, current %s)\n",
927              state_string(state), state_string(cur_state));
928 }
929
930 struct intel_shared_dpll *
931 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
932 {
933         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
934
935         if (crtc->config.shared_dpll < 0)
936                 return NULL;
937
938         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
939 }
940
941 /* For ILK+ */
942 void assert_shared_dpll(struct drm_i915_private *dev_priv,
943                         struct intel_shared_dpll *pll,
944                         bool state)
945 {
946         bool cur_state;
947         struct intel_dpll_hw_state hw_state;
948
949         if (HAS_PCH_LPT(dev_priv->dev)) {
950                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
951                 return;
952         }
953
954         if (WARN (!pll,
955                   "asserting DPLL %s with no DPLL\n", state_string(state)))
956                 return;
957
958         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
959         WARN(cur_state != state,
960              "%s assertion failure (expected %s, current %s)\n",
961              pll->name, state_string(state), state_string(cur_state));
962 }
963
964 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
965                           enum pipe pipe, bool state)
966 {
967         int reg;
968         u32 val;
969         bool cur_state;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (HAS_DDI(dev_priv->dev)) {
974                 /* DDI does not have a specific FDI_TX register */
975                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
976                 val = I915_READ(reg);
977                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
978         } else {
979                 reg = FDI_TX_CTL(pipe);
980                 val = I915_READ(reg);
981                 cur_state = !!(val & FDI_TX_ENABLE);
982         }
983         WARN(cur_state != state,
984              "FDI TX state assertion failure (expected %s, current %s)\n",
985              state_string(state), state_string(cur_state));
986 }
987 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
988 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
989
990 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
991                           enum pipe pipe, bool state)
992 {
993         int reg;
994         u32 val;
995         bool cur_state;
996
997         reg = FDI_RX_CTL(pipe);
998         val = I915_READ(reg);
999         cur_state = !!(val & FDI_RX_ENABLE);
1000         WARN(cur_state != state,
1001              "FDI RX state assertion failure (expected %s, current %s)\n",
1002              state_string(state), state_string(cur_state));
1003 }
1004 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1005 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1006
1007 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1008                                       enum pipe pipe)
1009 {
1010         int reg;
1011         u32 val;
1012
1013         /* ILK FDI PLL is always enabled */
1014         if (dev_priv->info->gen == 5)
1015                 return;
1016
1017         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1018         if (HAS_DDI(dev_priv->dev))
1019                 return;
1020
1021         reg = FDI_TX_CTL(pipe);
1022         val = I915_READ(reg);
1023         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1024 }
1025
1026 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1027                        enum pipe pipe, bool state)
1028 {
1029         int reg;
1030         u32 val;
1031         bool cur_state;
1032
1033         reg = FDI_RX_CTL(pipe);
1034         val = I915_READ(reg);
1035         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1036         WARN(cur_state != state,
1037              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1038              state_string(state), state_string(cur_state));
1039 }
1040
1041 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1042                                   enum pipe pipe)
1043 {
1044         int pp_reg, lvds_reg;
1045         u32 val;
1046         enum pipe panel_pipe = PIPE_A;
1047         bool locked = true;
1048
1049         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1050                 pp_reg = PCH_PP_CONTROL;
1051                 lvds_reg = PCH_LVDS;
1052         } else {
1053                 pp_reg = PP_CONTROL;
1054                 lvds_reg = LVDS;
1055         }
1056
1057         val = I915_READ(pp_reg);
1058         if (!(val & PANEL_POWER_ON) ||
1059             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1060                 locked = false;
1061
1062         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1063                 panel_pipe = PIPE_B;
1064
1065         WARN(panel_pipe == pipe && locked,
1066              "panel assertion failure, pipe %c regs locked\n",
1067              pipe_name(pipe));
1068 }
1069
1070 void assert_pipe(struct drm_i915_private *dev_priv,
1071                  enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         /* if we need the pipe A quirk it must be always on */
1080         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1081                 state = true;
1082
1083         if (!intel_display_power_enabled(dev_priv->dev,
1084                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1085                 cur_state = false;
1086         } else {
1087                 reg = PIPECONF(cpu_transcoder);
1088                 val = I915_READ(reg);
1089                 cur_state = !!(val & PIPECONF_ENABLE);
1090         }
1091
1092         WARN(cur_state != state,
1093              "pipe %c assertion failure (expected %s, current %s)\n",
1094              pipe_name(pipe), state_string(state), state_string(cur_state));
1095 }
1096
1097 static void assert_plane(struct drm_i915_private *dev_priv,
1098                          enum plane plane, bool state)
1099 {
1100         int reg;
1101         u32 val;
1102         bool cur_state;
1103
1104         reg = DSPCNTR(plane);
1105         val = I915_READ(reg);
1106         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1107         WARN(cur_state != state,
1108              "plane %c assertion failure (expected %s, current %s)\n",
1109              plane_name(plane), state_string(state), state_string(cur_state));
1110 }
1111
1112 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1113 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1114
1115 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1116                                    enum pipe pipe)
1117 {
1118         struct drm_device *dev = dev_priv->dev;
1119         int reg, i;
1120         u32 val;
1121         int cur_pipe;
1122
1123         /* Primary planes are fixed to pipes on gen4+ */
1124         if (INTEL_INFO(dev)->gen >= 4) {
1125                 reg = DSPCNTR(pipe);
1126                 val = I915_READ(reg);
1127                 WARN((val & DISPLAY_PLANE_ENABLE),
1128                      "plane %c assertion failure, should be disabled but not\n",
1129                      plane_name(pipe));
1130                 return;
1131         }
1132
1133         /* Need to check both planes against the pipe */
1134         for_each_pipe(i) {
1135                 reg = DSPCNTR(i);
1136                 val = I915_READ(reg);
1137                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1138                         DISPPLANE_SEL_PIPE_SHIFT;
1139                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1140                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1141                      plane_name(i), pipe_name(pipe));
1142         }
1143 }
1144
1145 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1146                                     enum pipe pipe)
1147 {
1148         struct drm_device *dev = dev_priv->dev;
1149         int reg, i;
1150         u32 val;
1151
1152         if (IS_VALLEYVIEW(dev)) {
1153                 for (i = 0; i < dev_priv->num_plane; i++) {
1154                         reg = SPCNTR(pipe, i);
1155                         val = I915_READ(reg);
1156                         WARN((val & SP_ENABLE),
1157                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1158                              sprite_name(pipe, i), pipe_name(pipe));
1159                 }
1160         } else if (INTEL_INFO(dev)->gen >= 7) {
1161                 reg = SPRCTL(pipe);
1162                 val = I915_READ(reg);
1163                 WARN((val & SPRITE_ENABLE),
1164                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1165                      plane_name(pipe), pipe_name(pipe));
1166         } else if (INTEL_INFO(dev)->gen >= 5) {
1167                 reg = DVSCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN((val & DVS_ENABLE),
1170                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1171                      plane_name(pipe), pipe_name(pipe));
1172         }
1173 }
1174
1175 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1176 {
1177         u32 val;
1178         bool enabled;
1179
1180         if (HAS_PCH_LPT(dev_priv->dev)) {
1181                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1182                 return;
1183         }
1184
1185         val = I915_READ(PCH_DREF_CONTROL);
1186         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1187                             DREF_SUPERSPREAD_SOURCE_MASK));
1188         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1189 }
1190
1191 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1192                                            enum pipe pipe)
1193 {
1194         int reg;
1195         u32 val;
1196         bool enabled;
1197
1198         reg = PCH_TRANSCONF(pipe);
1199         val = I915_READ(reg);
1200         enabled = !!(val & TRANS_ENABLE);
1201         WARN(enabled,
1202              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1203              pipe_name(pipe));
1204 }
1205
1206 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1207                             enum pipe pipe, u32 port_sel, u32 val)
1208 {
1209         if ((val & DP_PORT_EN) == 0)
1210                 return false;
1211
1212         if (HAS_PCH_CPT(dev_priv->dev)) {
1213                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1214                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1215                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1216                         return false;
1217         } else {
1218                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1219                         return false;
1220         }
1221         return true;
1222 }
1223
1224 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1225                               enum pipe pipe, u32 val)
1226 {
1227         if ((val & SDVO_ENABLE) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1232                         return false;
1233         } else {
1234                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1235                         return false;
1236         }
1237         return true;
1238 }
1239
1240 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1241                               enum pipe pipe, u32 val)
1242 {
1243         if ((val & LVDS_PORT_EN) == 0)
1244                 return false;
1245
1246         if (HAS_PCH_CPT(dev_priv->dev)) {
1247                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1248                         return false;
1249         } else {
1250                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1251                         return false;
1252         }
1253         return true;
1254 }
1255
1256 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1257                               enum pipe pipe, u32 val)
1258 {
1259         if ((val & ADPA_DAC_ENABLE) == 0)
1260                 return false;
1261         if (HAS_PCH_CPT(dev_priv->dev)) {
1262                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1263                         return false;
1264         } else {
1265                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1266                         return false;
1267         }
1268         return true;
1269 }
1270
1271 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe, int reg, u32 port_sel)
1273 {
1274         u32 val = I915_READ(reg);
1275         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1276              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1277              reg, pipe_name(pipe));
1278
1279         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1280              && (val & DP_PIPEB_SELECT),
1281              "IBX PCH dp port still using transcoder B\n");
1282 }
1283
1284 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1285                                      enum pipe pipe, int reg)
1286 {
1287         u32 val = I915_READ(reg);
1288         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1289              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1290              reg, pipe_name(pipe));
1291
1292         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1293              && (val & SDVO_PIPE_B_SELECT),
1294              "IBX PCH hdmi port still using transcoder B\n");
1295 }
1296
1297 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1298                                       enum pipe pipe)
1299 {
1300         int reg;
1301         u32 val;
1302
1303         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1304         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1306
1307         reg = PCH_ADPA;
1308         val = I915_READ(reg);
1309         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1310              "PCH VGA enabled on transcoder %c, should be disabled\n",
1311              pipe_name(pipe));
1312
1313         reg = PCH_LVDS;
1314         val = I915_READ(reg);
1315         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1316              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1317              pipe_name(pipe));
1318
1319         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1320         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1322 }
1323
1324 static void vlv_enable_pll(struct intel_crtc *crtc)
1325 {
1326         struct drm_device *dev = crtc->base.dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         int reg = DPLL(crtc->pipe);
1329         u32 dpll = crtc->config.dpll_hw_state.dpll;
1330
1331         assert_pipe_disabled(dev_priv, crtc->pipe);
1332
1333         /* No really, not for ILK+ */
1334         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1335
1336         /* PLL is protected by panel, make sure we can write it */
1337         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1338                 assert_panel_unlocked(dev_priv, crtc->pipe);
1339
1340         I915_WRITE(reg, dpll);
1341         POSTING_READ(reg);
1342         udelay(150);
1343
1344         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1345                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1346
1347         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1348         POSTING_READ(DPLL_MD(crtc->pipe));
1349
1350         /* We do this three times for luck */
1351         I915_WRITE(reg, dpll);
1352         POSTING_READ(reg);
1353         udelay(150); /* wait for warmup */
1354         I915_WRITE(reg, dpll);
1355         POSTING_READ(reg);
1356         udelay(150); /* wait for warmup */
1357         I915_WRITE(reg, dpll);
1358         POSTING_READ(reg);
1359         udelay(150); /* wait for warmup */
1360 }
1361
1362 static void i9xx_enable_pll(struct intel_crtc *crtc)
1363 {
1364         struct drm_device *dev = crtc->base.dev;
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         int reg = DPLL(crtc->pipe);
1367         u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369         assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371         /* No really, not for ILK+ */
1372         BUG_ON(dev_priv->info->gen >= 5);
1373
1374         /* PLL is protected by panel, make sure we can write it */
1375         if (IS_MOBILE(dev) && !IS_I830(dev))
1376                 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378         I915_WRITE(reg, dpll);
1379
1380         /* Wait for the clocks to stabilize. */
1381         POSTING_READ(reg);
1382         udelay(150);
1383
1384         if (INTEL_INFO(dev)->gen >= 4) {
1385                 I915_WRITE(DPLL_MD(crtc->pipe),
1386                            crtc->config.dpll_hw_state.dpll_md);
1387         } else {
1388                 /* The pixel multiplier can only be updated once the
1389                  * DPLL is enabled and the clocks are stable.
1390                  *
1391                  * So write it again.
1392                  */
1393                 I915_WRITE(reg, dpll);
1394         }
1395
1396         /* We do this three times for luck */
1397         I915_WRITE(reg, dpll);
1398         POSTING_READ(reg);
1399         udelay(150); /* wait for warmup */
1400         I915_WRITE(reg, dpll);
1401         POSTING_READ(reg);
1402         udelay(150); /* wait for warmup */
1403         I915_WRITE(reg, dpll);
1404         POSTING_READ(reg);
1405         udelay(150); /* wait for warmup */
1406 }
1407
1408 /**
1409  * i9xx_disable_pll - disable a PLL
1410  * @dev_priv: i915 private structure
1411  * @pipe: pipe PLL to disable
1412  *
1413  * Disable the PLL for @pipe, making sure the pipe is off first.
1414  *
1415  * Note!  This is for pre-ILK only.
1416  */
1417 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1418 {
1419         /* Don't disable pipe A or pipe A PLLs if needed */
1420         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1421                 return;
1422
1423         /* Make sure the pipe isn't still relying on us */
1424         assert_pipe_disabled(dev_priv, pipe);
1425
1426         I915_WRITE(DPLL(pipe), 0);
1427         POSTING_READ(DPLL(pipe));
1428 }
1429
1430 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1431 {
1432         u32 port_mask;
1433
1434         if (!port)
1435                 port_mask = DPLL_PORTB_READY_MASK;
1436         else
1437                 port_mask = DPLL_PORTC_READY_MASK;
1438
1439         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1440                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1441                      'B' + port, I915_READ(DPLL(0)));
1442 }
1443
1444 /**
1445  * ironlake_enable_shared_dpll - enable PCH PLL
1446  * @dev_priv: i915 private structure
1447  * @pipe: pipe PLL to enable
1448  *
1449  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1450  * drives the transcoder clock.
1451  */
1452 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1453 {
1454         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1455         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1456
1457         /* PCH PLLs only available on ILK, SNB and IVB */
1458         BUG_ON(dev_priv->info->gen < 5);
1459         if (WARN_ON(pll == NULL))
1460                 return;
1461
1462         if (WARN_ON(pll->refcount == 0))
1463                 return;
1464
1465         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1466                       pll->name, pll->active, pll->on,
1467                       crtc->base.base.id);
1468
1469         if (pll->active++) {
1470                 WARN_ON(!pll->on);
1471                 assert_shared_dpll_enabled(dev_priv, pll);
1472                 return;
1473         }
1474         WARN_ON(pll->on);
1475
1476         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1477         pll->enable(dev_priv, pll);
1478         pll->on = true;
1479 }
1480
1481 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1482 {
1483         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1484         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1485
1486         /* PCH only available on ILK+ */
1487         BUG_ON(dev_priv->info->gen < 5);
1488         if (WARN_ON(pll == NULL))
1489                return;
1490
1491         if (WARN_ON(pll->refcount == 0))
1492                 return;
1493
1494         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1495                       pll->name, pll->active, pll->on,
1496                       crtc->base.base.id);
1497
1498         if (WARN_ON(pll->active == 0)) {
1499                 assert_shared_dpll_disabled(dev_priv, pll);
1500                 return;
1501         }
1502
1503         assert_shared_dpll_enabled(dev_priv, pll);
1504         WARN_ON(!pll->on);
1505         if (--pll->active)
1506                 return;
1507
1508         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1509         pll->disable(dev_priv, pll);
1510         pll->on = false;
1511 }
1512
1513 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1514                                            enum pipe pipe)
1515 {
1516         struct drm_device *dev = dev_priv->dev;
1517         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1519         uint32_t reg, val, pipeconf_val;
1520
1521         /* PCH only available on ILK+ */
1522         BUG_ON(dev_priv->info->gen < 5);
1523
1524         /* Make sure PCH DPLL is enabled */
1525         assert_shared_dpll_enabled(dev_priv,
1526                                    intel_crtc_to_shared_dpll(intel_crtc));
1527
1528         /* FDI must be feeding us bits for PCH ports */
1529         assert_fdi_tx_enabled(dev_priv, pipe);
1530         assert_fdi_rx_enabled(dev_priv, pipe);
1531
1532         if (HAS_PCH_CPT(dev)) {
1533                 /* Workaround: Set the timing override bit before enabling the
1534                  * pch transcoder. */
1535                 reg = TRANS_CHICKEN2(pipe);
1536                 val = I915_READ(reg);
1537                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1538                 I915_WRITE(reg, val);
1539         }
1540
1541         reg = PCH_TRANSCONF(pipe);
1542         val = I915_READ(reg);
1543         pipeconf_val = I915_READ(PIPECONF(pipe));
1544
1545         if (HAS_PCH_IBX(dev_priv->dev)) {
1546                 /*
1547                  * make the BPC in transcoder be consistent with
1548                  * that in pipeconf reg.
1549                  */
1550                 val &= ~PIPECONF_BPC_MASK;
1551                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1552         }
1553
1554         val &= ~TRANS_INTERLACE_MASK;
1555         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1556                 if (HAS_PCH_IBX(dev_priv->dev) &&
1557                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1558                         val |= TRANS_LEGACY_INTERLACED_ILK;
1559                 else
1560                         val |= TRANS_INTERLACED;
1561         else
1562                 val |= TRANS_PROGRESSIVE;
1563
1564         I915_WRITE(reg, val | TRANS_ENABLE);
1565         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1566                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1567 }
1568
1569 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1570                                       enum transcoder cpu_transcoder)
1571 {
1572         u32 val, pipeconf_val;
1573
1574         /* PCH only available on ILK+ */
1575         BUG_ON(dev_priv->info->gen < 5);
1576
1577         /* FDI must be feeding us bits for PCH ports */
1578         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1579         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1580
1581         /* Workaround: set timing override bit. */
1582         val = I915_READ(_TRANSA_CHICKEN2);
1583         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1584         I915_WRITE(_TRANSA_CHICKEN2, val);
1585
1586         val = TRANS_ENABLE;
1587         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1588
1589         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1590             PIPECONF_INTERLACED_ILK)
1591                 val |= TRANS_INTERLACED;
1592         else
1593                 val |= TRANS_PROGRESSIVE;
1594
1595         I915_WRITE(LPT_TRANSCONF, val);
1596         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1597                 DRM_ERROR("Failed to enable PCH transcoder\n");
1598 }
1599
1600 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1601                                             enum pipe pipe)
1602 {
1603         struct drm_device *dev = dev_priv->dev;
1604         uint32_t reg, val;
1605
1606         /* FDI relies on the transcoder */
1607         assert_fdi_tx_disabled(dev_priv, pipe);
1608         assert_fdi_rx_disabled(dev_priv, pipe);
1609
1610         /* Ports must be off as well */
1611         assert_pch_ports_disabled(dev_priv, pipe);
1612
1613         reg = PCH_TRANSCONF(pipe);
1614         val = I915_READ(reg);
1615         val &= ~TRANS_ENABLE;
1616         I915_WRITE(reg, val);
1617         /* wait for PCH transcoder off, transcoder state */
1618         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1619                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1620
1621         if (!HAS_PCH_IBX(dev)) {
1622                 /* Workaround: Clear the timing override chicken bit again. */
1623                 reg = TRANS_CHICKEN2(pipe);
1624                 val = I915_READ(reg);
1625                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1626                 I915_WRITE(reg, val);
1627         }
1628 }
1629
1630 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1631 {
1632         u32 val;
1633
1634         val = I915_READ(LPT_TRANSCONF);
1635         val &= ~TRANS_ENABLE;
1636         I915_WRITE(LPT_TRANSCONF, val);
1637         /* wait for PCH transcoder off, transcoder state */
1638         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1639                 DRM_ERROR("Failed to disable PCH transcoder\n");
1640
1641         /* Workaround: clear timing override bit. */
1642         val = I915_READ(_TRANSA_CHICKEN2);
1643         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1644         I915_WRITE(_TRANSA_CHICKEN2, val);
1645 }
1646
1647 /**
1648  * intel_enable_pipe - enable a pipe, asserting requirements
1649  * @dev_priv: i915 private structure
1650  * @pipe: pipe to enable
1651  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1652  *
1653  * Enable @pipe, making sure that various hardware specific requirements
1654  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1655  *
1656  * @pipe should be %PIPE_A or %PIPE_B.
1657  *
1658  * Will wait until the pipe is actually running (i.e. first vblank) before
1659  * returning.
1660  */
1661 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1662                               bool pch_port)
1663 {
1664         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1665                                                                       pipe);
1666         enum pipe pch_transcoder;
1667         int reg;
1668         u32 val;
1669
1670         assert_planes_disabled(dev_priv, pipe);
1671         assert_sprites_disabled(dev_priv, pipe);
1672
1673         if (HAS_PCH_LPT(dev_priv->dev))
1674                 pch_transcoder = TRANSCODER_A;
1675         else
1676                 pch_transcoder = pipe;
1677
1678         /*
1679          * A pipe without a PLL won't actually be able to drive bits from
1680          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1681          * need the check.
1682          */
1683         if (!HAS_PCH_SPLIT(dev_priv->dev))
1684                 assert_pll_enabled(dev_priv, pipe);
1685         else {
1686                 if (pch_port) {
1687                         /* if driving the PCH, we need FDI enabled */
1688                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1689                         assert_fdi_tx_pll_enabled(dev_priv,
1690                                                   (enum pipe) cpu_transcoder);
1691                 }
1692                 /* FIXME: assert CPU port conditions for SNB+ */
1693         }
1694
1695         reg = PIPECONF(cpu_transcoder);
1696         val = I915_READ(reg);
1697         if (val & PIPECONF_ENABLE)
1698                 return;
1699
1700         I915_WRITE(reg, val | PIPECONF_ENABLE);
1701         intel_wait_for_vblank(dev_priv->dev, pipe);
1702 }
1703
1704 /**
1705  * intel_disable_pipe - disable a pipe, asserting requirements
1706  * @dev_priv: i915 private structure
1707  * @pipe: pipe to disable
1708  *
1709  * Disable @pipe, making sure that various hardware specific requirements
1710  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1711  *
1712  * @pipe should be %PIPE_A or %PIPE_B.
1713  *
1714  * Will wait until the pipe has shut down before returning.
1715  */
1716 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1717                                enum pipe pipe)
1718 {
1719         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1720                                                                       pipe);
1721         int reg;
1722         u32 val;
1723
1724         /*
1725          * Make sure planes won't keep trying to pump pixels to us,
1726          * or we might hang the display.
1727          */
1728         assert_planes_disabled(dev_priv, pipe);
1729         assert_sprites_disabled(dev_priv, pipe);
1730
1731         /* Don't disable pipe A or pipe A PLLs if needed */
1732         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1733                 return;
1734
1735         reg = PIPECONF(cpu_transcoder);
1736         val = I915_READ(reg);
1737         if ((val & PIPECONF_ENABLE) == 0)
1738                 return;
1739
1740         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1741         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1742 }
1743
1744 /*
1745  * Plane regs are double buffered, going from enabled->disabled needs a
1746  * trigger in order to latch.  The display address reg provides this.
1747  */
1748 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1749                                       enum plane plane)
1750 {
1751         if (dev_priv->info->gen >= 4)
1752                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1753         else
1754                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1755 }
1756
1757 /**
1758  * intel_enable_plane - enable a display plane on a given pipe
1759  * @dev_priv: i915 private structure
1760  * @plane: plane to enable
1761  * @pipe: pipe being fed
1762  *
1763  * Enable @plane on @pipe, making sure that @pipe is running first.
1764  */
1765 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1766                                enum plane plane, enum pipe pipe)
1767 {
1768         int reg;
1769         u32 val;
1770
1771         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1772         assert_pipe_enabled(dev_priv, pipe);
1773
1774         reg = DSPCNTR(plane);
1775         val = I915_READ(reg);
1776         if (val & DISPLAY_PLANE_ENABLE)
1777                 return;
1778
1779         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1780         intel_flush_display_plane(dev_priv, plane);
1781         intel_wait_for_vblank(dev_priv->dev, pipe);
1782 }
1783
1784 /**
1785  * intel_disable_plane - disable a display plane
1786  * @dev_priv: i915 private structure
1787  * @plane: plane to disable
1788  * @pipe: pipe consuming the data
1789  *
1790  * Disable @plane; should be an independent operation.
1791  */
1792 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1793                                 enum plane plane, enum pipe pipe)
1794 {
1795         int reg;
1796         u32 val;
1797
1798         reg = DSPCNTR(plane);
1799         val = I915_READ(reg);
1800         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1801                 return;
1802
1803         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1804         intel_flush_display_plane(dev_priv, plane);
1805         intel_wait_for_vblank(dev_priv->dev, pipe);
1806 }
1807
1808 static bool need_vtd_wa(struct drm_device *dev)
1809 {
1810 #ifdef CONFIG_INTEL_IOMMU
1811         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1812                 return true;
1813 #endif
1814         return false;
1815 }
1816
1817 int
1818 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1819                            struct drm_i915_gem_object *obj,
1820                            struct intel_ring_buffer *pipelined)
1821 {
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         u32 alignment;
1824         int ret;
1825
1826         switch (obj->tiling_mode) {
1827         case I915_TILING_NONE:
1828                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1829                         alignment = 128 * 1024;
1830                 else if (INTEL_INFO(dev)->gen >= 4)
1831                         alignment = 4 * 1024;
1832                 else
1833                         alignment = 64 * 1024;
1834                 break;
1835         case I915_TILING_X:
1836                 /* pin() will align the object as required by fence */
1837                 alignment = 0;
1838                 break;
1839         case I915_TILING_Y:
1840                 /* Despite that we check this in framebuffer_init userspace can
1841                  * screw us over and change the tiling after the fact. Only
1842                  * pinned buffers can't change their tiling. */
1843                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1844                 return -EINVAL;
1845         default:
1846                 BUG();
1847         }
1848
1849         /* Note that the w/a also requires 64 PTE of padding following the
1850          * bo. We currently fill all unused PTE with the shadow page and so
1851          * we should always have valid PTE following the scanout preventing
1852          * the VT-d warning.
1853          */
1854         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1855                 alignment = 256 * 1024;
1856
1857         dev_priv->mm.interruptible = false;
1858         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1859         if (ret)
1860                 goto err_interruptible;
1861
1862         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1863          * fence, whereas 965+ only requires a fence if using
1864          * framebuffer compression.  For simplicity, we always install
1865          * a fence as the cost is not that onerous.
1866          */
1867         ret = i915_gem_object_get_fence(obj);
1868         if (ret)
1869                 goto err_unpin;
1870
1871         i915_gem_object_pin_fence(obj);
1872
1873         dev_priv->mm.interruptible = true;
1874         return 0;
1875
1876 err_unpin:
1877         i915_gem_object_unpin(obj);
1878 err_interruptible:
1879         dev_priv->mm.interruptible = true;
1880         return ret;
1881 }
1882
1883 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1884 {
1885         i915_gem_object_unpin_fence(obj);
1886         i915_gem_object_unpin(obj);
1887 }
1888
1889 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1890  * is assumed to be a power-of-two. */
1891 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1892                                              unsigned int tiling_mode,
1893                                              unsigned int cpp,
1894                                              unsigned int pitch)
1895 {
1896         if (tiling_mode != I915_TILING_NONE) {
1897                 unsigned int tile_rows, tiles;
1898
1899                 tile_rows = *y / 8;
1900                 *y %= 8;
1901
1902                 tiles = *x / (512/cpp);
1903                 *x %= 512/cpp;
1904
1905                 return tile_rows * pitch * 8 + tiles * 4096;
1906         } else {
1907                 unsigned int offset;
1908
1909                 offset = *y * pitch + *x * cpp;
1910                 *y = 0;
1911                 *x = (offset & 4095) / cpp;
1912                 return offset & -4096;
1913         }
1914 }
1915
1916 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1917                              int x, int y)
1918 {
1919         struct drm_device *dev = crtc->dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922         struct intel_framebuffer *intel_fb;
1923         struct drm_i915_gem_object *obj;
1924         int plane = intel_crtc->plane;
1925         unsigned long linear_offset;
1926         u32 dspcntr;
1927         u32 reg;
1928
1929         switch (plane) {
1930         case 0:
1931         case 1:
1932                 break;
1933         default:
1934                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1935                 return -EINVAL;
1936         }
1937
1938         intel_fb = to_intel_framebuffer(fb);
1939         obj = intel_fb->obj;
1940
1941         reg = DSPCNTR(plane);
1942         dspcntr = I915_READ(reg);
1943         /* Mask out pixel format bits in case we change it */
1944         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1945         switch (fb->pixel_format) {
1946         case DRM_FORMAT_C8:
1947                 dspcntr |= DISPPLANE_8BPP;
1948                 break;
1949         case DRM_FORMAT_XRGB1555:
1950         case DRM_FORMAT_ARGB1555:
1951                 dspcntr |= DISPPLANE_BGRX555;
1952                 break;
1953         case DRM_FORMAT_RGB565:
1954                 dspcntr |= DISPPLANE_BGRX565;
1955                 break;
1956         case DRM_FORMAT_XRGB8888:
1957         case DRM_FORMAT_ARGB8888:
1958                 dspcntr |= DISPPLANE_BGRX888;
1959                 break;
1960         case DRM_FORMAT_XBGR8888:
1961         case DRM_FORMAT_ABGR8888:
1962                 dspcntr |= DISPPLANE_RGBX888;
1963                 break;
1964         case DRM_FORMAT_XRGB2101010:
1965         case DRM_FORMAT_ARGB2101010:
1966                 dspcntr |= DISPPLANE_BGRX101010;
1967                 break;
1968         case DRM_FORMAT_XBGR2101010:
1969         case DRM_FORMAT_ABGR2101010:
1970                 dspcntr |= DISPPLANE_RGBX101010;
1971                 break;
1972         default:
1973                 BUG();
1974         }
1975
1976         if (INTEL_INFO(dev)->gen >= 4) {
1977                 if (obj->tiling_mode != I915_TILING_NONE)
1978                         dspcntr |= DISPPLANE_TILED;
1979                 else
1980                         dspcntr &= ~DISPPLANE_TILED;
1981         }
1982
1983         if (IS_G4X(dev))
1984                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1985
1986         I915_WRITE(reg, dspcntr);
1987
1988         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1989
1990         if (INTEL_INFO(dev)->gen >= 4) {
1991                 intel_crtc->dspaddr_offset =
1992                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1993                                                        fb->bits_per_pixel / 8,
1994                                                        fb->pitches[0]);
1995                 linear_offset -= intel_crtc->dspaddr_offset;
1996         } else {
1997                 intel_crtc->dspaddr_offset = linear_offset;
1998         }
1999
2000         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2001                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2002                       fb->pitches[0]);
2003         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2004         if (INTEL_INFO(dev)->gen >= 4) {
2005                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2006                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2007                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2009         } else
2010                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2011         POSTING_READ(reg);
2012
2013         return 0;
2014 }
2015
2016 static int ironlake_update_plane(struct drm_crtc *crtc,
2017                                  struct drm_framebuffer *fb, int x, int y)
2018 {
2019         struct drm_device *dev = crtc->dev;
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022         struct intel_framebuffer *intel_fb;
2023         struct drm_i915_gem_object *obj;
2024         int plane = intel_crtc->plane;
2025         unsigned long linear_offset;
2026         u32 dspcntr;
2027         u32 reg;
2028
2029         switch (plane) {
2030         case 0:
2031         case 1:
2032         case 2:
2033                 break;
2034         default:
2035                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2036                 return -EINVAL;
2037         }
2038
2039         intel_fb = to_intel_framebuffer(fb);
2040         obj = intel_fb->obj;
2041
2042         reg = DSPCNTR(plane);
2043         dspcntr = I915_READ(reg);
2044         /* Mask out pixel format bits in case we change it */
2045         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2046         switch (fb->pixel_format) {
2047         case DRM_FORMAT_C8:
2048                 dspcntr |= DISPPLANE_8BPP;
2049                 break;
2050         case DRM_FORMAT_RGB565:
2051                 dspcntr |= DISPPLANE_BGRX565;
2052                 break;
2053         case DRM_FORMAT_XRGB8888:
2054         case DRM_FORMAT_ARGB8888:
2055                 dspcntr |= DISPPLANE_BGRX888;
2056                 break;
2057         case DRM_FORMAT_XBGR8888:
2058         case DRM_FORMAT_ABGR8888:
2059                 dspcntr |= DISPPLANE_RGBX888;
2060                 break;
2061         case DRM_FORMAT_XRGB2101010:
2062         case DRM_FORMAT_ARGB2101010:
2063                 dspcntr |= DISPPLANE_BGRX101010;
2064                 break;
2065         case DRM_FORMAT_XBGR2101010:
2066         case DRM_FORMAT_ABGR2101010:
2067                 dspcntr |= DISPPLANE_RGBX101010;
2068                 break;
2069         default:
2070                 BUG();
2071         }
2072
2073         if (obj->tiling_mode != I915_TILING_NONE)
2074                 dspcntr |= DISPPLANE_TILED;
2075         else
2076                 dspcntr &= ~DISPPLANE_TILED;
2077
2078         /* must disable */
2079         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2080
2081         I915_WRITE(reg, dspcntr);
2082
2083         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2084         intel_crtc->dspaddr_offset =
2085                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2086                                                fb->bits_per_pixel / 8,
2087                                                fb->pitches[0]);
2088         linear_offset -= intel_crtc->dspaddr_offset;
2089
2090         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2091                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2092                       fb->pitches[0]);
2093         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2094         I915_MODIFY_DISPBASE(DSPSURF(plane),
2095                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096         if (IS_HASWELL(dev)) {
2097                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2098         } else {
2099                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2100                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2101         }
2102         POSTING_READ(reg);
2103
2104         return 0;
2105 }
2106
2107 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2108 static int
2109 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2110                            int x, int y, enum mode_set_atomic state)
2111 {
2112         struct drm_device *dev = crtc->dev;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115         if (dev_priv->display.disable_fbc)
2116                 dev_priv->display.disable_fbc(dev);
2117         intel_increase_pllclock(crtc);
2118
2119         return dev_priv->display.update_plane(crtc, fb, x, y);
2120 }
2121
2122 void intel_display_handle_reset(struct drm_device *dev)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct drm_crtc *crtc;
2126
2127         /*
2128          * Flips in the rings have been nuked by the reset,
2129          * so complete all pending flips so that user space
2130          * will get its events and not get stuck.
2131          *
2132          * Also update the base address of all primary
2133          * planes to the the last fb to make sure we're
2134          * showing the correct fb after a reset.
2135          *
2136          * Need to make two loops over the crtcs so that we
2137          * don't try to grab a crtc mutex before the
2138          * pending_flip_queue really got woken up.
2139          */
2140
2141         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2142                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143                 enum plane plane = intel_crtc->plane;
2144
2145                 intel_prepare_page_flip(dev, plane);
2146                 intel_finish_page_flip_plane(dev, plane);
2147         }
2148
2149         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2150                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
2152                 mutex_lock(&crtc->mutex);
2153                 if (intel_crtc->active)
2154                         dev_priv->display.update_plane(crtc, crtc->fb,
2155                                                        crtc->x, crtc->y);
2156                 mutex_unlock(&crtc->mutex);
2157         }
2158 }
2159
2160 static int
2161 intel_finish_fb(struct drm_framebuffer *old_fb)
2162 {
2163         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2164         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2165         bool was_interruptible = dev_priv->mm.interruptible;
2166         int ret;
2167
2168         /* Big Hammer, we also need to ensure that any pending
2169          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2170          * current scanout is retired before unpinning the old
2171          * framebuffer.
2172          *
2173          * This should only fail upon a hung GPU, in which case we
2174          * can safely continue.
2175          */
2176         dev_priv->mm.interruptible = false;
2177         ret = i915_gem_object_finish_gpu(obj);
2178         dev_priv->mm.interruptible = was_interruptible;
2179
2180         return ret;
2181 }
2182
2183 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2184 {
2185         struct drm_device *dev = crtc->dev;
2186         struct drm_i915_master_private *master_priv;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188
2189         if (!dev->primary->master)
2190                 return;
2191
2192         master_priv = dev->primary->master->driver_priv;
2193         if (!master_priv->sarea_priv)
2194                 return;
2195
2196         switch (intel_crtc->pipe) {
2197         case 0:
2198                 master_priv->sarea_priv->pipeA_x = x;
2199                 master_priv->sarea_priv->pipeA_y = y;
2200                 break;
2201         case 1:
2202                 master_priv->sarea_priv->pipeB_x = x;
2203                 master_priv->sarea_priv->pipeB_y = y;
2204                 break;
2205         default:
2206                 break;
2207         }
2208 }
2209
2210 static int
2211 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2212                     struct drm_framebuffer *fb)
2213 {
2214         struct drm_device *dev = crtc->dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2217         struct drm_framebuffer *old_fb;
2218         int ret;
2219
2220         /* no fb bound */
2221         if (!fb) {
2222                 DRM_ERROR("No FB bound\n");
2223                 return 0;
2224         }
2225
2226         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2227                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2228                           plane_name(intel_crtc->plane),
2229                           INTEL_INFO(dev)->num_pipes);
2230                 return -EINVAL;
2231         }
2232
2233         mutex_lock(&dev->struct_mutex);
2234         ret = intel_pin_and_fence_fb_obj(dev,
2235                                          to_intel_framebuffer(fb)->obj,
2236                                          NULL);
2237         if (ret != 0) {
2238                 mutex_unlock(&dev->struct_mutex);
2239                 DRM_ERROR("pin & fence failed\n");
2240                 return ret;
2241         }
2242
2243         /* Update pipe size and adjust fitter if needed */
2244         if (i915_fastboot) {
2245                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2246                            ((crtc->mode.hdisplay - 1) << 16) |
2247                            (crtc->mode.vdisplay - 1));
2248                 if (!intel_crtc->config.pch_pfit.size &&
2249                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2250                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2251                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2252                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2253                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2254                 }
2255         }
2256
2257         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2258         if (ret) {
2259                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2260                 mutex_unlock(&dev->struct_mutex);
2261                 DRM_ERROR("failed to update base address\n");
2262                 return ret;
2263         }
2264
2265         old_fb = crtc->fb;
2266         crtc->fb = fb;
2267         crtc->x = x;
2268         crtc->y = y;
2269
2270         if (old_fb) {
2271                 if (intel_crtc->active && old_fb != fb)
2272                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2273                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2274         }
2275
2276         intel_update_fbc(dev);
2277         intel_edp_psr_update(dev);
2278         mutex_unlock(&dev->struct_mutex);
2279
2280         intel_crtc_update_sarea_pos(crtc, x, y);
2281
2282         return 0;
2283 }
2284
2285 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2286 {
2287         struct drm_device *dev = crtc->dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290         int pipe = intel_crtc->pipe;
2291         u32 reg, temp;
2292
2293         /* enable normal train */
2294         reg = FDI_TX_CTL(pipe);
2295         temp = I915_READ(reg);
2296         if (IS_IVYBRIDGE(dev)) {
2297                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2298                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2299         } else {
2300                 temp &= ~FDI_LINK_TRAIN_NONE;
2301                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2302         }
2303         I915_WRITE(reg, temp);
2304
2305         reg = FDI_RX_CTL(pipe);
2306         temp = I915_READ(reg);
2307         if (HAS_PCH_CPT(dev)) {
2308                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2310         } else {
2311                 temp &= ~FDI_LINK_TRAIN_NONE;
2312                 temp |= FDI_LINK_TRAIN_NONE;
2313         }
2314         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2315
2316         /* wait one idle pattern time */
2317         POSTING_READ(reg);
2318         udelay(1000);
2319
2320         /* IVB wants error correction enabled */
2321         if (IS_IVYBRIDGE(dev))
2322                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2323                            FDI_FE_ERRC_ENABLE);
2324 }
2325
2326 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2327 {
2328         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2329 }
2330
2331 static void ivb_modeset_global_resources(struct drm_device *dev)
2332 {
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *pipe_B_crtc =
2335                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2336         struct intel_crtc *pipe_C_crtc =
2337                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2338         uint32_t temp;
2339
2340         /*
2341          * When everything is off disable fdi C so that we could enable fdi B
2342          * with all lanes. Note that we don't care about enabled pipes without
2343          * an enabled pch encoder.
2344          */
2345         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2346             !pipe_has_enabled_pch(pipe_C_crtc)) {
2347                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2348                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2349
2350                 temp = I915_READ(SOUTH_CHICKEN1);
2351                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2352                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2353                 I915_WRITE(SOUTH_CHICKEN1, temp);
2354         }
2355 }
2356
2357 /* The FDI link training functions for ILK/Ibexpeak. */
2358 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2359 {
2360         struct drm_device *dev = crtc->dev;
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2363         int pipe = intel_crtc->pipe;
2364         int plane = intel_crtc->plane;
2365         u32 reg, temp, tries;
2366
2367         /* FDI needs bits from pipe & plane first */
2368         assert_pipe_enabled(dev_priv, pipe);
2369         assert_plane_enabled(dev_priv, plane);
2370
2371         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2372            for train result */
2373         reg = FDI_RX_IMR(pipe);
2374         temp = I915_READ(reg);
2375         temp &= ~FDI_RX_SYMBOL_LOCK;
2376         temp &= ~FDI_RX_BIT_LOCK;
2377         I915_WRITE(reg, temp);
2378         I915_READ(reg);
2379         udelay(150);
2380
2381         /* enable CPU FDI TX and PCH FDI RX */
2382         reg = FDI_TX_CTL(pipe);
2383         temp = I915_READ(reg);
2384         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2385         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2386         temp &= ~FDI_LINK_TRAIN_NONE;
2387         temp |= FDI_LINK_TRAIN_PATTERN_1;
2388         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2389
2390         reg = FDI_RX_CTL(pipe);
2391         temp = I915_READ(reg);
2392         temp &= ~FDI_LINK_TRAIN_NONE;
2393         temp |= FDI_LINK_TRAIN_PATTERN_1;
2394         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2395
2396         POSTING_READ(reg);
2397         udelay(150);
2398
2399         /* Ironlake workaround, enable clock pointer after FDI enable*/
2400         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2401         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2402                    FDI_RX_PHASE_SYNC_POINTER_EN);
2403
2404         reg = FDI_RX_IIR(pipe);
2405         for (tries = 0; tries < 5; tries++) {
2406                 temp = I915_READ(reg);
2407                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2408
2409                 if ((temp & FDI_RX_BIT_LOCK)) {
2410                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2411                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2412                         break;
2413                 }
2414         }
2415         if (tries == 5)
2416                 DRM_ERROR("FDI train 1 fail!\n");
2417
2418         /* Train 2 */
2419         reg = FDI_TX_CTL(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_LINK_TRAIN_NONE;
2422         temp |= FDI_LINK_TRAIN_PATTERN_2;
2423         I915_WRITE(reg, temp);
2424
2425         reg = FDI_RX_CTL(pipe);
2426         temp = I915_READ(reg);
2427         temp &= ~FDI_LINK_TRAIN_NONE;
2428         temp |= FDI_LINK_TRAIN_PATTERN_2;
2429         I915_WRITE(reg, temp);
2430
2431         POSTING_READ(reg);
2432         udelay(150);
2433
2434         reg = FDI_RX_IIR(pipe);
2435         for (tries = 0; tries < 5; tries++) {
2436                 temp = I915_READ(reg);
2437                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2438
2439                 if (temp & FDI_RX_SYMBOL_LOCK) {
2440                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2441                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2442                         break;
2443                 }
2444         }
2445         if (tries == 5)
2446                 DRM_ERROR("FDI train 2 fail!\n");
2447
2448         DRM_DEBUG_KMS("FDI train done\n");
2449
2450 }
2451
2452 static const int snb_b_fdi_train_param[] = {
2453         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2454         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2455         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2456         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2457 };
2458
2459 /* The FDI link training functions for SNB/Cougarpoint. */
2460 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2461 {
2462         struct drm_device *dev = crtc->dev;
2463         struct drm_i915_private *dev_priv = dev->dev_private;
2464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2465         int pipe = intel_crtc->pipe;
2466         u32 reg, temp, i, retry;
2467
2468         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469            for train result */
2470         reg = FDI_RX_IMR(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_RX_SYMBOL_LOCK;
2473         temp &= ~FDI_RX_BIT_LOCK;
2474         I915_WRITE(reg, temp);
2475
2476         POSTING_READ(reg);
2477         udelay(150);
2478
2479         /* enable CPU FDI TX and PCH FDI RX */
2480         reg = FDI_TX_CTL(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2483         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2484         temp &= ~FDI_LINK_TRAIN_NONE;
2485         temp |= FDI_LINK_TRAIN_PATTERN_1;
2486         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2487         /* SNB-B */
2488         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2489         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2490
2491         I915_WRITE(FDI_RX_MISC(pipe),
2492                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2493
2494         reg = FDI_RX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         if (HAS_PCH_CPT(dev)) {
2497                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2499         } else {
2500                 temp &= ~FDI_LINK_TRAIN_NONE;
2501                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         }
2503         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2504
2505         POSTING_READ(reg);
2506         udelay(150);
2507
2508         for (i = 0; i < 4; i++) {
2509                 reg = FDI_TX_CTL(pipe);
2510                 temp = I915_READ(reg);
2511                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2512                 temp |= snb_b_fdi_train_param[i];
2513                 I915_WRITE(reg, temp);
2514
2515                 POSTING_READ(reg);
2516                 udelay(500);
2517
2518                 for (retry = 0; retry < 5; retry++) {
2519                         reg = FDI_RX_IIR(pipe);
2520                         temp = I915_READ(reg);
2521                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522                         if (temp & FDI_RX_BIT_LOCK) {
2523                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2524                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2525                                 break;
2526                         }
2527                         udelay(50);
2528                 }
2529                 if (retry < 5)
2530                         break;
2531         }
2532         if (i == 4)
2533                 DRM_ERROR("FDI train 1 fail!\n");
2534
2535         /* Train 2 */
2536         reg = FDI_TX_CTL(pipe);
2537         temp = I915_READ(reg);
2538         temp &= ~FDI_LINK_TRAIN_NONE;
2539         temp |= FDI_LINK_TRAIN_PATTERN_2;
2540         if (IS_GEN6(dev)) {
2541                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542                 /* SNB-B */
2543                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544         }
2545         I915_WRITE(reg, temp);
2546
2547         reg = FDI_RX_CTL(pipe);
2548         temp = I915_READ(reg);
2549         if (HAS_PCH_CPT(dev)) {
2550                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552         } else {
2553                 temp &= ~FDI_LINK_TRAIN_NONE;
2554                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555         }
2556         I915_WRITE(reg, temp);
2557
2558         POSTING_READ(reg);
2559         udelay(150);
2560
2561         for (i = 0; i < 4; i++) {
2562                 reg = FDI_TX_CTL(pipe);
2563                 temp = I915_READ(reg);
2564                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565                 temp |= snb_b_fdi_train_param[i];
2566                 I915_WRITE(reg, temp);
2567
2568                 POSTING_READ(reg);
2569                 udelay(500);
2570
2571                 for (retry = 0; retry < 5; retry++) {
2572                         reg = FDI_RX_IIR(pipe);
2573                         temp = I915_READ(reg);
2574                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575                         if (temp & FDI_RX_SYMBOL_LOCK) {
2576                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578                                 break;
2579                         }
2580                         udelay(50);
2581                 }
2582                 if (retry < 5)
2583                         break;
2584         }
2585         if (i == 4)
2586                 DRM_ERROR("FDI train 2 fail!\n");
2587
2588         DRM_DEBUG_KMS("FDI train done.\n");
2589 }
2590
2591 /* Manual link training for Ivy Bridge A0 parts */
2592 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2593 {
2594         struct drm_device *dev = crtc->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         int pipe = intel_crtc->pipe;
2598         u32 reg, temp, i;
2599
2600         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2601            for train result */
2602         reg = FDI_RX_IMR(pipe);
2603         temp = I915_READ(reg);
2604         temp &= ~FDI_RX_SYMBOL_LOCK;
2605         temp &= ~FDI_RX_BIT_LOCK;
2606         I915_WRITE(reg, temp);
2607
2608         POSTING_READ(reg);
2609         udelay(150);
2610
2611         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2612                       I915_READ(FDI_RX_IIR(pipe)));
2613
2614         /* enable CPU FDI TX and PCH FDI RX */
2615         reg = FDI_TX_CTL(pipe);
2616         temp = I915_READ(reg);
2617         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2618         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2619         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2620         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2621         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         temp |= FDI_COMPOSITE_SYNC;
2624         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2625
2626         I915_WRITE(FDI_RX_MISC(pipe),
2627                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2628
2629         reg = FDI_RX_CTL(pipe);
2630         temp = I915_READ(reg);
2631         temp &= ~FDI_LINK_TRAIN_AUTO;
2632         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2633         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2634         temp |= FDI_COMPOSITE_SYNC;
2635         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2636
2637         POSTING_READ(reg);
2638         udelay(150);
2639
2640         for (i = 0; i < 4; i++) {
2641                 reg = FDI_TX_CTL(pipe);
2642                 temp = I915_READ(reg);
2643                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2644                 temp |= snb_b_fdi_train_param[i];
2645                 I915_WRITE(reg, temp);
2646
2647                 POSTING_READ(reg);
2648                 udelay(500);
2649
2650                 reg = FDI_RX_IIR(pipe);
2651                 temp = I915_READ(reg);
2652                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2653
2654                 if (temp & FDI_RX_BIT_LOCK ||
2655                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2656                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2657                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2658                         break;
2659                 }
2660         }
2661         if (i == 4)
2662                 DRM_ERROR("FDI train 1 fail!\n");
2663
2664         /* Train 2 */
2665         reg = FDI_TX_CTL(pipe);
2666         temp = I915_READ(reg);
2667         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2668         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2669         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2671         I915_WRITE(reg, temp);
2672
2673         reg = FDI_RX_CTL(pipe);
2674         temp = I915_READ(reg);
2675         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2676         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2677         I915_WRITE(reg, temp);
2678
2679         POSTING_READ(reg);
2680         udelay(150);
2681
2682         for (i = 0; i < 4; i++) {
2683                 reg = FDI_TX_CTL(pipe);
2684                 temp = I915_READ(reg);
2685                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2686                 temp |= snb_b_fdi_train_param[i];
2687                 I915_WRITE(reg, temp);
2688
2689                 POSTING_READ(reg);
2690                 udelay(500);
2691
2692                 reg = FDI_RX_IIR(pipe);
2693                 temp = I915_READ(reg);
2694                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2695
2696                 if (temp & FDI_RX_SYMBOL_LOCK) {
2697                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2698                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2699                         break;
2700                 }
2701         }
2702         if (i == 4)
2703                 DRM_ERROR("FDI train 2 fail!\n");
2704
2705         DRM_DEBUG_KMS("FDI train done.\n");
2706 }
2707
2708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2709 {
2710         struct drm_device *dev = intel_crtc->base.dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         int pipe = intel_crtc->pipe;
2713         u32 reg, temp;
2714
2715
2716         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2717         reg = FDI_RX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2720         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2721         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2722         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2723
2724         POSTING_READ(reg);
2725         udelay(200);
2726
2727         /* Switch from Rawclk to PCDclk */
2728         temp = I915_READ(reg);
2729         I915_WRITE(reg, temp | FDI_PCDCLK);
2730
2731         POSTING_READ(reg);
2732         udelay(200);
2733
2734         /* Enable CPU FDI TX PLL, always on for Ironlake */
2735         reg = FDI_TX_CTL(pipe);
2736         temp = I915_READ(reg);
2737         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2738                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2739
2740                 POSTING_READ(reg);
2741                 udelay(100);
2742         }
2743 }
2744
2745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2746 {
2747         struct drm_device *dev = intel_crtc->base.dev;
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         int pipe = intel_crtc->pipe;
2750         u32 reg, temp;
2751
2752         /* Switch from PCDclk to Rawclk */
2753         reg = FDI_RX_CTL(pipe);
2754         temp = I915_READ(reg);
2755         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2756
2757         /* Disable CPU FDI TX PLL */
2758         reg = FDI_TX_CTL(pipe);
2759         temp = I915_READ(reg);
2760         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2761
2762         POSTING_READ(reg);
2763         udelay(100);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2768
2769         /* Wait for the clocks to turn off. */
2770         POSTING_READ(reg);
2771         udelay(100);
2772 }
2773
2774 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2775 {
2776         struct drm_device *dev = crtc->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779         int pipe = intel_crtc->pipe;
2780         u32 reg, temp;
2781
2782         /* disable CPU FDI tx and PCH FDI rx */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2786         POSTING_READ(reg);
2787
2788         reg = FDI_RX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~(0x7 << 16);
2791         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2792         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2793
2794         POSTING_READ(reg);
2795         udelay(100);
2796
2797         /* Ironlake workaround, disable clock pointer after downing FDI */
2798         if (HAS_PCH_IBX(dev)) {
2799                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2800         }
2801
2802         /* still set train pattern 1 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_1;
2807         I915_WRITE(reg, temp);
2808
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         if (HAS_PCH_CPT(dev)) {
2812                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2813                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2814         } else {
2815                 temp &= ~FDI_LINK_TRAIN_NONE;
2816                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2817         }
2818         /* BPC in FDI rx is consistent with that in PIPECONF */
2819         temp &= ~(0x07 << 16);
2820         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2821         I915_WRITE(reg, temp);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825 }
2826
2827 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2828 {
2829         struct drm_device *dev = crtc->dev;
2830         struct drm_i915_private *dev_priv = dev->dev_private;
2831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2832         unsigned long flags;
2833         bool pending;
2834
2835         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2836             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2837                 return false;
2838
2839         spin_lock_irqsave(&dev->event_lock, flags);
2840         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2841         spin_unlock_irqrestore(&dev->event_lock, flags);
2842
2843         return pending;
2844 }
2845
2846 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851         if (crtc->fb == NULL)
2852                 return;
2853
2854         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2855
2856         wait_event(dev_priv->pending_flip_queue,
2857                    !intel_crtc_has_pending_flip(crtc));
2858
2859         mutex_lock(&dev->struct_mutex);
2860         intel_finish_fb(crtc->fb);
2861         mutex_unlock(&dev->struct_mutex);
2862 }
2863
2864 /* Program iCLKIP clock to the desired frequency */
2865 static void lpt_program_iclkip(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2870         u32 temp;
2871
2872         mutex_lock(&dev_priv->dpio_lock);
2873
2874         /* It is necessary to ungate the pixclk gate prior to programming
2875          * the divisors, and gate it back when it is done.
2876          */
2877         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2878
2879         /* Disable SSCCTL */
2880         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2881                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2882                                 SBI_SSCCTL_DISABLE,
2883                         SBI_ICLK);
2884
2885         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2886         if (crtc->mode.clock == 20000) {
2887                 auxdiv = 1;
2888                 divsel = 0x41;
2889                 phaseinc = 0x20;
2890         } else {
2891                 /* The iCLK virtual clock root frequency is in MHz,
2892                  * but the crtc->mode.clock in in KHz. To get the divisors,
2893                  * it is necessary to divide one by another, so we
2894                  * convert the virtual clock precision to KHz here for higher
2895                  * precision.
2896                  */
2897                 u32 iclk_virtual_root_freq = 172800 * 1000;
2898                 u32 iclk_pi_range = 64;
2899                 u32 desired_divisor, msb_divisor_value, pi_value;
2900
2901                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2902                 msb_divisor_value = desired_divisor / iclk_pi_range;
2903                 pi_value = desired_divisor % iclk_pi_range;
2904
2905                 auxdiv = 0;
2906                 divsel = msb_divisor_value - 2;
2907                 phaseinc = pi_value;
2908         }
2909
2910         /* This should not happen with any sane values */
2911         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2912                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2913         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2914                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2915
2916         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2917                         crtc->mode.clock,
2918                         auxdiv,
2919                         divsel,
2920                         phasedir,
2921                         phaseinc);
2922
2923         /* Program SSCDIVINTPHASE6 */
2924         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2925         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2926         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2927         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2928         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2929         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2930         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2931         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2932
2933         /* Program SSCAUXDIV */
2934         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2935         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2936         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2937         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2938
2939         /* Enable modulator and associated divider */
2940         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2941         temp &= ~SBI_SSCCTL_DISABLE;
2942         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2943
2944         /* Wait for initialization time */
2945         udelay(24);
2946
2947         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948
2949         mutex_unlock(&dev_priv->dpio_lock);
2950 }
2951
2952 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2953                                                 enum pipe pch_transcoder)
2954 {
2955         struct drm_device *dev = crtc->base.dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2958
2959         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2960                    I915_READ(HTOTAL(cpu_transcoder)));
2961         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2962                    I915_READ(HBLANK(cpu_transcoder)));
2963         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2964                    I915_READ(HSYNC(cpu_transcoder)));
2965
2966         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2967                    I915_READ(VTOTAL(cpu_transcoder)));
2968         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2969                    I915_READ(VBLANK(cpu_transcoder)));
2970         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2971                    I915_READ(VSYNC(cpu_transcoder)));
2972         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2973                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2974 }
2975
2976 /*
2977  * Enable PCH resources required for PCH ports:
2978  *   - PCH PLLs
2979  *   - FDI training & RX/TX
2980  *   - update transcoder timings
2981  *   - DP transcoding bits
2982  *   - transcoder
2983  */
2984 static void ironlake_pch_enable(struct drm_crtc *crtc)
2985 {
2986         struct drm_device *dev = crtc->dev;
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2989         int pipe = intel_crtc->pipe;
2990         u32 reg, temp;
2991
2992         assert_pch_transcoder_disabled(dev_priv, pipe);
2993
2994         /* Write the TU size bits before fdi link training, so that error
2995          * detection works. */
2996         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2997                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2998
2999         /* For PCH output, training FDI link */
3000         dev_priv->display.fdi_link_train(crtc);
3001
3002         /* We need to program the right clock selection before writing the pixel
3003          * mutliplier into the DPLL. */
3004         if (HAS_PCH_CPT(dev)) {
3005                 u32 sel;
3006
3007                 temp = I915_READ(PCH_DPLL_SEL);
3008                 temp |= TRANS_DPLL_ENABLE(pipe);
3009                 sel = TRANS_DPLLB_SEL(pipe);
3010                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3011                         temp |= sel;
3012                 else
3013                         temp &= ~sel;
3014                 I915_WRITE(PCH_DPLL_SEL, temp);
3015         }
3016
3017         /* XXX: pch pll's can be enabled any time before we enable the PCH
3018          * transcoder, and we actually should do this to not upset any PCH
3019          * transcoder that already use the clock when we share it.
3020          *
3021          * Note that enable_shared_dpll tries to do the right thing, but
3022          * get_shared_dpll unconditionally resets the pll - we need that to have
3023          * the right LVDS enable sequence. */
3024         ironlake_enable_shared_dpll(intel_crtc);
3025
3026         /* set transcoder timing, panel must allow it */
3027         assert_panel_unlocked(dev_priv, pipe);
3028         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3029
3030         intel_fdi_normal_train(crtc);
3031
3032         /* For PCH DP, enable TRANS_DP_CTL */
3033         if (HAS_PCH_CPT(dev) &&
3034             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3035              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3036                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3037                 reg = TRANS_DP_CTL(pipe);
3038                 temp = I915_READ(reg);
3039                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3040                           TRANS_DP_SYNC_MASK |
3041                           TRANS_DP_BPC_MASK);
3042                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3043                          TRANS_DP_ENH_FRAMING);
3044                 temp |= bpc << 9; /* same format but at 11:9 */
3045
3046                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3047                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3048                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3049                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3050
3051                 switch (intel_trans_dp_port_sel(crtc)) {
3052                 case PCH_DP_B:
3053                         temp |= TRANS_DP_PORT_SEL_B;
3054                         break;
3055                 case PCH_DP_C:
3056                         temp |= TRANS_DP_PORT_SEL_C;
3057                         break;
3058                 case PCH_DP_D:
3059                         temp |= TRANS_DP_PORT_SEL_D;
3060                         break;
3061                 default:
3062                         BUG();
3063                 }
3064
3065                 I915_WRITE(reg, temp);
3066         }
3067
3068         ironlake_enable_pch_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void lpt_pch_enable(struct drm_crtc *crtc)
3072 {
3073         struct drm_device *dev = crtc->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3076         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3077
3078         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3079
3080         lpt_program_iclkip(crtc);
3081
3082         /* Set transcoder timing. */
3083         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3084
3085         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3086 }
3087
3088 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3089 {
3090         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3091
3092         if (pll == NULL)
3093                 return;
3094
3095         if (pll->refcount == 0) {
3096                 WARN(1, "bad %s refcount\n", pll->name);
3097                 return;
3098         }
3099
3100         if (--pll->refcount == 0) {
3101                 WARN_ON(pll->on);
3102                 WARN_ON(pll->active);
3103         }
3104
3105         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3106 }
3107
3108 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3109 {
3110         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3111         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3112         enum intel_dpll_id i;
3113
3114         if (pll) {
3115                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3116                               crtc->base.base.id, pll->name);
3117                 intel_put_shared_dpll(crtc);
3118         }
3119
3120         if (HAS_PCH_IBX(dev_priv->dev)) {
3121                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3122                 i = (enum intel_dpll_id) crtc->pipe;
3123                 pll = &dev_priv->shared_dplls[i];
3124
3125                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3126                               crtc->base.base.id, pll->name);
3127
3128                 goto found;
3129         }
3130
3131         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3132                 pll = &dev_priv->shared_dplls[i];
3133
3134                 /* Only want to check enabled timings first */
3135                 if (pll->refcount == 0)
3136                         continue;
3137
3138                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3139                            sizeof(pll->hw_state)) == 0) {
3140                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3141                                       crtc->base.base.id,
3142                                       pll->name, pll->refcount, pll->active);
3143
3144                         goto found;
3145                 }
3146         }
3147
3148         /* Ok no matching timings, maybe there's a free one? */
3149         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3150                 pll = &dev_priv->shared_dplls[i];
3151                 if (pll->refcount == 0) {
3152                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3153                                       crtc->base.base.id, pll->name);
3154                         goto found;
3155                 }
3156         }
3157
3158         return NULL;
3159
3160 found:
3161         crtc->config.shared_dpll = i;
3162         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3163                          pipe_name(crtc->pipe));
3164
3165         if (pll->active == 0) {
3166                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3167                        sizeof(pll->hw_state));
3168
3169                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3170                 WARN_ON(pll->on);
3171                 assert_shared_dpll_disabled(dev_priv, pll);
3172
3173                 pll->mode_set(dev_priv, pll);
3174         }
3175         pll->refcount++;
3176
3177         return pll;
3178 }
3179
3180 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3181 {
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183         int dslreg = PIPEDSL(pipe);
3184         u32 temp;
3185
3186         temp = I915_READ(dslreg);
3187         udelay(500);
3188         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3189                 if (wait_for(I915_READ(dslreg) != temp, 5))
3190                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3191         }
3192 }
3193
3194 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3195 {
3196         struct drm_device *dev = crtc->base.dev;
3197         struct drm_i915_private *dev_priv = dev->dev_private;
3198         int pipe = crtc->pipe;
3199
3200         if (crtc->config.pch_pfit.size) {
3201                 /* Force use of hard-coded filter coefficients
3202                  * as some pre-programmed values are broken,
3203                  * e.g. x201.
3204                  */
3205                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3206                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3207                                                  PF_PIPE_SEL_IVB(pipe));
3208                 else
3209                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3210                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3211                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3212         }
3213 }
3214
3215 static void intel_enable_planes(struct drm_crtc *crtc)
3216 {
3217         struct drm_device *dev = crtc->dev;
3218         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3219         struct intel_plane *intel_plane;
3220
3221         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3222                 if (intel_plane->pipe == pipe)
3223                         intel_plane_restore(&intel_plane->base);
3224 }
3225
3226 static void intel_disable_planes(struct drm_crtc *crtc)
3227 {
3228         struct drm_device *dev = crtc->dev;
3229         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3230         struct intel_plane *intel_plane;
3231
3232         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3233                 if (intel_plane->pipe == pipe)
3234                         intel_plane_disable(&intel_plane->base);
3235 }
3236
3237 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242         struct intel_encoder *encoder;
3243         int pipe = intel_crtc->pipe;
3244         int plane = intel_crtc->plane;
3245
3246         WARN_ON(!crtc->enabled);
3247
3248         if (intel_crtc->active)
3249                 return;
3250
3251         intel_crtc->active = true;
3252
3253         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3254         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3255
3256         intel_update_watermarks(dev);
3257
3258         for_each_encoder_on_crtc(dev, crtc, encoder)
3259                 if (encoder->pre_enable)
3260                         encoder->pre_enable(encoder);
3261
3262         if (intel_crtc->config.has_pch_encoder) {
3263                 /* Note: FDI PLL enabling _must_ be done before we enable the
3264                  * cpu pipes, hence this is separate from all the other fdi/pch
3265                  * enabling. */
3266                 ironlake_fdi_pll_enable(intel_crtc);
3267         } else {
3268                 assert_fdi_tx_disabled(dev_priv, pipe);
3269                 assert_fdi_rx_disabled(dev_priv, pipe);
3270         }
3271
3272         ironlake_pfit_enable(intel_crtc);
3273
3274         /*
3275          * On ILK+ LUT must be loaded before the pipe is running but with
3276          * clocks enabled
3277          */
3278         intel_crtc_load_lut(crtc);
3279
3280         intel_enable_pipe(dev_priv, pipe,
3281                           intel_crtc->config.has_pch_encoder);
3282         intel_enable_plane(dev_priv, plane, pipe);
3283         intel_enable_planes(crtc);
3284         intel_crtc_update_cursor(crtc, true);
3285
3286         if (intel_crtc->config.has_pch_encoder)
3287                 ironlake_pch_enable(crtc);
3288
3289         mutex_lock(&dev->struct_mutex);
3290         intel_update_fbc(dev);
3291         mutex_unlock(&dev->struct_mutex);
3292
3293         for_each_encoder_on_crtc(dev, crtc, encoder)
3294                 encoder->enable(encoder);
3295
3296         if (HAS_PCH_CPT(dev))
3297                 cpt_verify_modeset(dev, intel_crtc->pipe);
3298
3299         /*
3300          * There seems to be a race in PCH platform hw (at least on some
3301          * outputs) where an enabled pipe still completes any pageflip right
3302          * away (as if the pipe is off) instead of waiting for vblank. As soon
3303          * as the first vblank happend, everything works as expected. Hence just
3304          * wait for one vblank before returning to avoid strange things
3305          * happening.
3306          */
3307         intel_wait_for_vblank(dev, intel_crtc->pipe);
3308 }
3309
3310 /* IPS only exists on ULT machines and is tied to pipe A. */
3311 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3312 {
3313         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3314 }
3315
3316 static void hsw_enable_ips(struct intel_crtc *crtc)
3317 {
3318         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3319
3320         if (!crtc->config.ips_enabled)
3321                 return;
3322
3323         /* We can only enable IPS after we enable a plane and wait for a vblank.
3324          * We guarantee that the plane is enabled by calling intel_enable_ips
3325          * only after intel_enable_plane. And intel_enable_plane already waits
3326          * for a vblank, so all we need to do here is to enable the IPS bit. */
3327         assert_plane_enabled(dev_priv, crtc->plane);
3328         I915_WRITE(IPS_CTL, IPS_ENABLE);
3329 }
3330
3331 static void hsw_disable_ips(struct intel_crtc *crtc)
3332 {
3333         struct drm_device *dev = crtc->base.dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335
3336         if (!crtc->config.ips_enabled)
3337                 return;
3338
3339         assert_plane_enabled(dev_priv, crtc->plane);
3340         I915_WRITE(IPS_CTL, 0);
3341
3342         /* We need to wait for a vblank before we can disable the plane. */
3343         intel_wait_for_vblank(dev, crtc->pipe);
3344 }
3345
3346 static void haswell_crtc_enable(struct drm_crtc *crtc)
3347 {
3348         struct drm_device *dev = crtc->dev;
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351         struct intel_encoder *encoder;
3352         int pipe = intel_crtc->pipe;
3353         int plane = intel_crtc->plane;
3354
3355         WARN_ON(!crtc->enabled);
3356
3357         if (intel_crtc->active)
3358                 return;
3359
3360         intel_crtc->active = true;
3361
3362         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3363         if (intel_crtc->config.has_pch_encoder)
3364                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3365
3366         intel_update_watermarks(dev);
3367
3368         if (intel_crtc->config.has_pch_encoder)
3369                 dev_priv->display.fdi_link_train(crtc);
3370
3371         for_each_encoder_on_crtc(dev, crtc, encoder)
3372                 if (encoder->pre_enable)
3373                         encoder->pre_enable(encoder);
3374
3375         intel_ddi_enable_pipe_clock(intel_crtc);
3376
3377         ironlake_pfit_enable(intel_crtc);
3378
3379         /*
3380          * On ILK+ LUT must be loaded before the pipe is running but with
3381          * clocks enabled
3382          */
3383         intel_crtc_load_lut(crtc);
3384
3385         intel_ddi_set_pipe_settings(crtc);
3386         intel_ddi_enable_transcoder_func(crtc);
3387
3388         intel_enable_pipe(dev_priv, pipe,
3389                           intel_crtc->config.has_pch_encoder);
3390         intel_enable_plane(dev_priv, plane, pipe);
3391         intel_enable_planes(crtc);
3392         intel_crtc_update_cursor(crtc, true);
3393
3394         hsw_enable_ips(intel_crtc);
3395
3396         if (intel_crtc->config.has_pch_encoder)
3397                 lpt_pch_enable(crtc);
3398
3399         mutex_lock(&dev->struct_mutex);
3400         intel_update_fbc(dev);
3401         mutex_unlock(&dev->struct_mutex);
3402
3403         for_each_encoder_on_crtc(dev, crtc, encoder)
3404                 encoder->enable(encoder);
3405
3406         /*
3407          * There seems to be a race in PCH platform hw (at least on some
3408          * outputs) where an enabled pipe still completes any pageflip right
3409          * away (as if the pipe is off) instead of waiting for vblank. As soon
3410          * as the first vblank happend, everything works as expected. Hence just
3411          * wait for one vblank before returning to avoid strange things
3412          * happening.
3413          */
3414         intel_wait_for_vblank(dev, intel_crtc->pipe);
3415 }
3416
3417 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3418 {
3419         struct drm_device *dev = crtc->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         int pipe = crtc->pipe;
3422
3423         /* To avoid upsetting the power well on haswell only disable the pfit if
3424          * it's in use. The hw state code will make sure we get this right. */
3425         if (crtc->config.pch_pfit.size) {
3426                 I915_WRITE(PF_CTL(pipe), 0);
3427                 I915_WRITE(PF_WIN_POS(pipe), 0);
3428                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3429         }
3430 }
3431
3432 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3433 {
3434         struct drm_device *dev = crtc->dev;
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3437         struct intel_encoder *encoder;
3438         int pipe = intel_crtc->pipe;
3439         int plane = intel_crtc->plane;
3440         u32 reg, temp;
3441
3442
3443         if (!intel_crtc->active)
3444                 return;
3445
3446         for_each_encoder_on_crtc(dev, crtc, encoder)
3447                 encoder->disable(encoder);
3448
3449         intel_crtc_wait_for_pending_flips(crtc);
3450         drm_vblank_off(dev, pipe);
3451
3452         if (dev_priv->fbc.plane == plane)
3453                 intel_disable_fbc(dev);
3454
3455         intel_crtc_update_cursor(crtc, false);
3456         intel_disable_planes(crtc);
3457         intel_disable_plane(dev_priv, plane, pipe);
3458
3459         if (intel_crtc->config.has_pch_encoder)
3460                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3461
3462         intel_disable_pipe(dev_priv, pipe);
3463
3464         ironlake_pfit_disable(intel_crtc);
3465
3466         for_each_encoder_on_crtc(dev, crtc, encoder)
3467                 if (encoder->post_disable)
3468                         encoder->post_disable(encoder);
3469
3470         if (intel_crtc->config.has_pch_encoder) {
3471                 ironlake_fdi_disable(crtc);
3472
3473                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3474                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3475
3476                 if (HAS_PCH_CPT(dev)) {
3477                         /* disable TRANS_DP_CTL */
3478                         reg = TRANS_DP_CTL(pipe);
3479                         temp = I915_READ(reg);
3480                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3481                                   TRANS_DP_PORT_SEL_MASK);
3482                         temp |= TRANS_DP_PORT_SEL_NONE;
3483                         I915_WRITE(reg, temp);
3484
3485                         /* disable DPLL_SEL */
3486                         temp = I915_READ(PCH_DPLL_SEL);
3487                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3488                         I915_WRITE(PCH_DPLL_SEL, temp);
3489                 }
3490
3491                 /* disable PCH DPLL */
3492                 intel_disable_shared_dpll(intel_crtc);
3493
3494                 ironlake_fdi_pll_disable(intel_crtc);
3495         }
3496
3497         intel_crtc->active = false;
3498         intel_update_watermarks(dev);
3499
3500         mutex_lock(&dev->struct_mutex);
3501         intel_update_fbc(dev);
3502         mutex_unlock(&dev->struct_mutex);
3503 }
3504
3505 static void haswell_crtc_disable(struct drm_crtc *crtc)
3506 {
3507         struct drm_device *dev = crtc->dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3510         struct intel_encoder *encoder;
3511         int pipe = intel_crtc->pipe;
3512         int plane = intel_crtc->plane;
3513         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3514
3515         if (!intel_crtc->active)
3516                 return;
3517
3518         for_each_encoder_on_crtc(dev, crtc, encoder)
3519                 encoder->disable(encoder);
3520
3521         intel_crtc_wait_for_pending_flips(crtc);
3522         drm_vblank_off(dev, pipe);
3523
3524         /* FBC must be disabled before disabling the plane on HSW. */
3525         if (dev_priv->fbc.plane == plane)
3526                 intel_disable_fbc(dev);
3527
3528         hsw_disable_ips(intel_crtc);
3529
3530         intel_crtc_update_cursor(crtc, false);
3531         intel_disable_planes(crtc);
3532         intel_disable_plane(dev_priv, plane, pipe);
3533
3534         if (intel_crtc->config.has_pch_encoder)
3535                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3536         intel_disable_pipe(dev_priv, pipe);
3537
3538         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3539
3540         ironlake_pfit_disable(intel_crtc);
3541
3542         intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         if (intel_crtc->config.has_pch_encoder) {
3549                 lpt_disable_pch_transcoder(dev_priv);
3550                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3551                 intel_ddi_fdi_disable(crtc);
3552         }
3553
3554         intel_crtc->active = false;
3555         intel_update_watermarks(dev);
3556
3557         mutex_lock(&dev->struct_mutex);
3558         intel_update_fbc(dev);
3559         mutex_unlock(&dev->struct_mutex);
3560 }
3561
3562 static void ironlake_crtc_off(struct drm_crtc *crtc)
3563 {
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565         intel_put_shared_dpll(intel_crtc);
3566 }
3567
3568 static void haswell_crtc_off(struct drm_crtc *crtc)
3569 {
3570         intel_ddi_put_crtc_pll(crtc);
3571 }
3572
3573 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574 {
3575         if (!enable && intel_crtc->overlay) {
3576                 struct drm_device *dev = intel_crtc->base.dev;
3577                 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579                 mutex_lock(&dev->struct_mutex);
3580                 dev_priv->mm.interruptible = false;
3581                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3582                 dev_priv->mm.interruptible = true;
3583                 mutex_unlock(&dev->struct_mutex);
3584         }
3585
3586         /* Let userspace switch the overlay on again. In most cases userspace
3587          * has to recompute where to put it anyway.
3588          */
3589 }
3590
3591 /**
3592  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593  * cursor plane briefly if not already running after enabling the display
3594  * plane.
3595  * This workaround avoids occasional blank screens when self refresh is
3596  * enabled.
3597  */
3598 static void
3599 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600 {
3601         u32 cntl = I915_READ(CURCNTR(pipe));
3602
3603         if ((cntl & CURSOR_MODE) == 0) {
3604                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
3606                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608                 intel_wait_for_vblank(dev_priv->dev, pipe);
3609                 I915_WRITE(CURCNTR(pipe), cntl);
3610                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612         }
3613 }
3614
3615 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->base.dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619         struct intel_crtc_config *pipe_config = &crtc->config;
3620
3621         if (!crtc->config.gmch_pfit.control)
3622                 return;
3623
3624         /*
3625          * The panel fitter should only be adjusted whilst the pipe is disabled,
3626          * according to register description and PRM.
3627          */
3628         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3629         assert_pipe_disabled(dev_priv, crtc->pipe);
3630
3631         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3632         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3633
3634         /* Border color in case we don't scale up to the full screen. Black by
3635          * default, change to something else for debugging. */
3636         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3637 }
3638
3639 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3640 {
3641         struct drm_device *dev = crtc->dev;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         struct intel_encoder *encoder;
3645         int pipe = intel_crtc->pipe;
3646         int plane = intel_crtc->plane;
3647
3648         WARN_ON(!crtc->enabled);
3649
3650         if (intel_crtc->active)
3651                 return;
3652
3653         intel_crtc->active = true;
3654         intel_update_watermarks(dev);
3655
3656         mutex_lock(&dev_priv->dpio_lock);
3657
3658         for_each_encoder_on_crtc(dev, crtc, encoder)
3659                 if (encoder->pre_pll_enable)
3660                         encoder->pre_pll_enable(encoder);
3661
3662         vlv_enable_pll(intel_crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         /* VLV wants encoder enabling _before_ the pipe is up. */
3669         for_each_encoder_on_crtc(dev, crtc, encoder)
3670                 encoder->enable(encoder);
3671
3672         i9xx_pfit_enable(intel_crtc);
3673
3674         intel_crtc_load_lut(crtc);
3675
3676         intel_enable_pipe(dev_priv, pipe, false);
3677         intel_enable_plane(dev_priv, plane, pipe);
3678         intel_enable_planes(crtc);
3679         intel_crtc_update_cursor(crtc, true);
3680
3681         intel_update_fbc(dev);
3682
3683         mutex_unlock(&dev_priv->dpio_lock);
3684 }
3685
3686 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3687 {
3688         struct drm_device *dev = crtc->dev;
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3691         struct intel_encoder *encoder;
3692         int pipe = intel_crtc->pipe;
3693         int plane = intel_crtc->plane;
3694
3695         WARN_ON(!crtc->enabled);
3696
3697         if (intel_crtc->active)
3698                 return;
3699
3700         intel_crtc->active = true;
3701         intel_update_watermarks(dev);
3702
3703         for_each_encoder_on_crtc(dev, crtc, encoder)
3704                 if (encoder->pre_enable)
3705                         encoder->pre_enable(encoder);
3706
3707         i9xx_enable_pll(intel_crtc);
3708
3709         i9xx_pfit_enable(intel_crtc);
3710
3711         intel_crtc_load_lut(crtc);
3712
3713         intel_enable_pipe(dev_priv, pipe, false);
3714         intel_enable_plane(dev_priv, plane, pipe);
3715         intel_enable_planes(crtc);
3716         /* The fixup needs to happen before cursor is enabled */
3717         if (IS_G4X(dev))
3718                 g4x_fixup_plane(dev_priv, pipe);
3719         intel_crtc_update_cursor(crtc, true);
3720
3721         /* Give the overlay scaler a chance to enable if it's on this pipe */
3722         intel_crtc_dpms_overlay(intel_crtc, true);
3723
3724         intel_update_fbc(dev);
3725
3726         for_each_encoder_on_crtc(dev, crtc, encoder)
3727                 encoder->enable(encoder);
3728 }
3729
3730 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3731 {
3732         struct drm_device *dev = crtc->base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735         if (!crtc->config.gmch_pfit.control)
3736                 return;
3737
3738         assert_pipe_disabled(dev_priv, crtc->pipe);
3739
3740         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3741                          I915_READ(PFIT_CONTROL));
3742         I915_WRITE(PFIT_CONTROL, 0);
3743 }
3744
3745 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3746 {
3747         struct drm_device *dev = crtc->dev;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750         struct intel_encoder *encoder;
3751         int pipe = intel_crtc->pipe;
3752         int plane = intel_crtc->plane;
3753
3754         if (!intel_crtc->active)
3755                 return;
3756
3757         for_each_encoder_on_crtc(dev, crtc, encoder)
3758                 encoder->disable(encoder);
3759
3760         /* Give the overlay scaler a chance to disable if it's on this pipe */
3761         intel_crtc_wait_for_pending_flips(crtc);
3762         drm_vblank_off(dev, pipe);
3763
3764         if (dev_priv->fbc.plane == plane)
3765                 intel_disable_fbc(dev);
3766
3767         intel_crtc_dpms_overlay(intel_crtc, false);
3768         intel_crtc_update_cursor(crtc, false);
3769         intel_disable_planes(crtc);
3770         intel_disable_plane(dev_priv, plane, pipe);
3771
3772         intel_disable_pipe(dev_priv, pipe);
3773
3774         i9xx_pfit_disable(intel_crtc);
3775
3776         for_each_encoder_on_crtc(dev, crtc, encoder)
3777                 if (encoder->post_disable)
3778                         encoder->post_disable(encoder);
3779
3780         i9xx_disable_pll(dev_priv, pipe);
3781
3782         intel_crtc->active = false;
3783         intel_update_fbc(dev);
3784         intel_update_watermarks(dev);
3785 }
3786
3787 static void i9xx_crtc_off(struct drm_crtc *crtc)
3788 {
3789 }
3790
3791 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3792                                     bool enabled)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_master_private *master_priv;
3796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797         int pipe = intel_crtc->pipe;
3798
3799         if (!dev->primary->master)
3800                 return;
3801
3802         master_priv = dev->primary->master->driver_priv;
3803         if (!master_priv->sarea_priv)
3804                 return;
3805
3806         switch (pipe) {
3807         case 0:
3808                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3809                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3810                 break;
3811         case 1:
3812                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3813                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3814                 break;
3815         default:
3816                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3817                 break;
3818         }
3819 }
3820
3821 /**
3822  * Sets the power management mode of the pipe and plane.
3823  */
3824 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3825 {
3826         struct drm_device *dev = crtc->dev;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         struct intel_encoder *intel_encoder;
3829         bool enable = false;
3830
3831         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3832                 enable |= intel_encoder->connectors_active;
3833
3834         if (enable)
3835                 dev_priv->display.crtc_enable(crtc);
3836         else
3837                 dev_priv->display.crtc_disable(crtc);
3838
3839         intel_crtc_update_sarea(crtc, enable);
3840 }
3841
3842 static void intel_crtc_disable(struct drm_crtc *crtc)
3843 {
3844         struct drm_device *dev = crtc->dev;
3845         struct drm_connector *connector;
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848
3849         /* crtc should still be enabled when we disable it. */
3850         WARN_ON(!crtc->enabled);
3851
3852         dev_priv->display.crtc_disable(crtc);
3853         intel_crtc->eld_vld = false;
3854         intel_crtc_update_sarea(crtc, false);
3855         dev_priv->display.off(crtc);
3856
3857         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3858         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3859
3860         if (crtc->fb) {
3861                 mutex_lock(&dev->struct_mutex);
3862                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3863                 mutex_unlock(&dev->struct_mutex);
3864                 crtc->fb = NULL;
3865         }
3866
3867         /* Update computed state. */
3868         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3869                 if (!connector->encoder || !connector->encoder->crtc)
3870                         continue;
3871
3872                 if (connector->encoder->crtc != crtc)
3873                         continue;
3874
3875                 connector->dpms = DRM_MODE_DPMS_OFF;
3876                 to_intel_encoder(connector->encoder)->connectors_active = false;
3877         }
3878 }
3879
3880 void intel_modeset_disable(struct drm_device *dev)
3881 {
3882         struct drm_crtc *crtc;
3883
3884         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3885                 if (crtc->enabled)
3886                         intel_crtc_disable(crtc);
3887         }
3888 }
3889
3890 void intel_encoder_destroy(struct drm_encoder *encoder)
3891 {
3892         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3893
3894         drm_encoder_cleanup(encoder);
3895         kfree(intel_encoder);
3896 }
3897
3898 /* Simple dpms helper for encodres with just one connector, no cloning and only
3899  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3900  * state of the entire output pipe. */
3901 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3902 {
3903         if (mode == DRM_MODE_DPMS_ON) {
3904                 encoder->connectors_active = true;
3905
3906                 intel_crtc_update_dpms(encoder->base.crtc);
3907         } else {
3908                 encoder->connectors_active = false;
3909
3910                 intel_crtc_update_dpms(encoder->base.crtc);
3911         }
3912 }
3913
3914 /* Cross check the actual hw state with our own modeset state tracking (and it's
3915  * internal consistency). */
3916 static void intel_connector_check_state(struct intel_connector *connector)
3917 {
3918         if (connector->get_hw_state(connector)) {
3919                 struct intel_encoder *encoder = connector->encoder;
3920                 struct drm_crtc *crtc;
3921                 bool encoder_enabled;
3922                 enum pipe pipe;
3923
3924                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3925                               connector->base.base.id,
3926                               drm_get_connector_name(&connector->base));
3927
3928                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3929                      "wrong connector dpms state\n");
3930                 WARN(connector->base.encoder != &encoder->base,
3931                      "active connector not linked to encoder\n");
3932                 WARN(!encoder->connectors_active,
3933                      "encoder->connectors_active not set\n");
3934
3935                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3936                 WARN(!encoder_enabled, "encoder not enabled\n");
3937                 if (WARN_ON(!encoder->base.crtc))
3938                         return;
3939
3940                 crtc = encoder->base.crtc;
3941
3942                 WARN(!crtc->enabled, "crtc not enabled\n");
3943                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3944                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3945                      "encoder active on the wrong pipe\n");
3946         }
3947 }
3948
3949 /* Even simpler default implementation, if there's really no special case to
3950  * consider. */
3951 void intel_connector_dpms(struct drm_connector *connector, int mode)
3952 {
3953         struct intel_encoder *encoder = intel_attached_encoder(connector);
3954
3955         /* All the simple cases only support two dpms states. */
3956         if (mode != DRM_MODE_DPMS_ON)
3957                 mode = DRM_MODE_DPMS_OFF;
3958
3959         if (mode == connector->dpms)
3960                 return;
3961
3962         connector->dpms = mode;
3963
3964         /* Only need to change hw state when actually enabled */
3965         if (encoder->base.crtc)
3966                 intel_encoder_dpms(encoder, mode);
3967         else
3968                 WARN_ON(encoder->connectors_active != false);
3969
3970         intel_modeset_check_state(connector->dev);
3971 }
3972
3973 /* Simple connector->get_hw_state implementation for encoders that support only
3974  * one connector and no cloning and hence the encoder state determines the state
3975  * of the connector. */
3976 bool intel_connector_get_hw_state(struct intel_connector *connector)
3977 {
3978         enum pipe pipe = 0;
3979         struct intel_encoder *encoder = connector->encoder;
3980
3981         return encoder->get_hw_state(encoder, &pipe);
3982 }
3983
3984 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3985                                      struct intel_crtc_config *pipe_config)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         struct intel_crtc *pipe_B_crtc =
3989                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3990
3991         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3992                       pipe_name(pipe), pipe_config->fdi_lanes);
3993         if (pipe_config->fdi_lanes > 4) {
3994                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3995                               pipe_name(pipe), pipe_config->fdi_lanes);
3996                 return false;
3997         }
3998
3999         if (IS_HASWELL(dev)) {
4000                 if (pipe_config->fdi_lanes > 2) {
4001                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4002                                       pipe_config->fdi_lanes);
4003                         return false;
4004                 } else {
4005                         return true;
4006                 }
4007         }
4008
4009         if (INTEL_INFO(dev)->num_pipes == 2)
4010                 return true;
4011
4012         /* Ivybridge 3 pipe is really complicated */
4013         switch (pipe) {
4014         case PIPE_A:
4015                 return true;
4016         case PIPE_B:
4017                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4018                     pipe_config->fdi_lanes > 2) {
4019                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020                                       pipe_name(pipe), pipe_config->fdi_lanes);
4021                         return false;
4022                 }
4023                 return true;
4024         case PIPE_C:
4025                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4026                     pipe_B_crtc->config.fdi_lanes <= 2) {
4027                         if (pipe_config->fdi_lanes > 2) {
4028                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4029                                               pipe_name(pipe), pipe_config->fdi_lanes);
4030                                 return false;
4031                         }
4032                 } else {
4033                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4034                         return false;
4035                 }
4036                 return true;
4037         default:
4038                 BUG();
4039         }
4040 }
4041
4042 #define RETRY 1
4043 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4044                                        struct intel_crtc_config *pipe_config)
4045 {
4046         struct drm_device *dev = intel_crtc->base.dev;
4047         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4048         int lane, link_bw, fdi_dotclock;
4049         bool setup_ok, needs_recompute = false;
4050
4051 retry:
4052         /* FDI is a binary signal running at ~2.7GHz, encoding
4053          * each output octet as 10 bits. The actual frequency
4054          * is stored as a divider into a 100MHz clock, and the
4055          * mode pixel clock is stored in units of 1KHz.
4056          * Hence the bw of each lane in terms of the mode signal
4057          * is:
4058          */
4059         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4060
4061         fdi_dotclock = adjusted_mode->clock;
4062         fdi_dotclock /= pipe_config->pixel_multiplier;
4063
4064         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4065                                            pipe_config->pipe_bpp);
4066
4067         pipe_config->fdi_lanes = lane;
4068
4069         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4070                                link_bw, &pipe_config->fdi_m_n);
4071
4072         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4073                                             intel_crtc->pipe, pipe_config);
4074         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4075                 pipe_config->pipe_bpp -= 2*3;
4076                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4077                               pipe_config->pipe_bpp);
4078                 needs_recompute = true;
4079                 pipe_config->bw_constrained = true;
4080
4081                 goto retry;
4082         }
4083
4084         if (needs_recompute)
4085                 return RETRY;
4086
4087         return setup_ok ? 0 : -EINVAL;
4088 }
4089
4090 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4091                                    struct intel_crtc_config *pipe_config)
4092 {
4093         pipe_config->ips_enabled = i915_enable_ips &&
4094                                    hsw_crtc_supports_ips(crtc) &&
4095                                    pipe_config->pipe_bpp == 24;
4096 }
4097
4098 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4099                                      struct intel_crtc_config *pipe_config)
4100 {
4101         struct drm_device *dev = crtc->base.dev;
4102         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4103
4104         if (HAS_PCH_SPLIT(dev)) {
4105                 /* FDI link clock is fixed at 2.7G */
4106                 if (pipe_config->requested_mode.clock * 3
4107                     > IRONLAKE_FDI_FREQ * 4)
4108                         return -EINVAL;
4109         }
4110
4111         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4112          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4113          */
4114         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4115                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4116                 return -EINVAL;
4117
4118         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4119                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4120         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4121                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4122                  * for lvds. */
4123                 pipe_config->pipe_bpp = 8*3;
4124         }
4125
4126         if (HAS_IPS(dev))
4127                 hsw_compute_ips_config(crtc, pipe_config);
4128
4129         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4130          * clock survives for now. */
4131         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4132                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4133
4134         if (pipe_config->has_pch_encoder)
4135                 return ironlake_fdi_compute_config(crtc, pipe_config);
4136
4137         return 0;
4138 }
4139
4140 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4141 {
4142         return 400000; /* FIXME */
4143 }
4144
4145 static int i945_get_display_clock_speed(struct drm_device *dev)
4146 {
4147         return 400000;
4148 }
4149
4150 static int i915_get_display_clock_speed(struct drm_device *dev)
4151 {
4152         return 333000;
4153 }
4154
4155 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4156 {
4157         return 200000;
4158 }
4159
4160 static int pnv_get_display_clock_speed(struct drm_device *dev)
4161 {
4162         u16 gcfgc = 0;
4163
4164         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4165
4166         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4167         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4168                 return 267000;
4169         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4170                 return 333000;
4171         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4172                 return 444000;
4173         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4174                 return 200000;
4175         default:
4176                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4177         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4178                 return 133000;
4179         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4180                 return 167000;
4181         }
4182 }
4183
4184 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4185 {
4186         u16 gcfgc = 0;
4187
4188         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4189
4190         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4191                 return 133000;
4192         else {
4193                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4194                 case GC_DISPLAY_CLOCK_333_MHZ:
4195                         return 333000;
4196                 default:
4197                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4198                         return 190000;
4199                 }
4200         }
4201 }
4202
4203 static int i865_get_display_clock_speed(struct drm_device *dev)
4204 {
4205         return 266000;
4206 }
4207
4208 static int i855_get_display_clock_speed(struct drm_device *dev)
4209 {
4210         u16 hpllcc = 0;
4211         /* Assume that the hardware is in the high speed state.  This
4212          * should be the default.
4213          */
4214         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4215         case GC_CLOCK_133_200:
4216         case GC_CLOCK_100_200:
4217                 return 200000;
4218         case GC_CLOCK_166_250:
4219                 return 250000;
4220         case GC_CLOCK_100_133:
4221                 return 133000;
4222         }
4223
4224         /* Shouldn't happen */
4225         return 0;
4226 }
4227
4228 static int i830_get_display_clock_speed(struct drm_device *dev)
4229 {
4230         return 133000;
4231 }
4232
4233 static void
4234 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4235 {
4236         while (*num > DATA_LINK_M_N_MASK ||
4237                *den > DATA_LINK_M_N_MASK) {
4238                 *num >>= 1;
4239                 *den >>= 1;
4240         }
4241 }
4242
4243 static void compute_m_n(unsigned int m, unsigned int n,
4244                         uint32_t *ret_m, uint32_t *ret_n)
4245 {
4246         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4247         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4248         intel_reduce_m_n_ratio(ret_m, ret_n);
4249 }
4250
4251 void
4252 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4253                        int pixel_clock, int link_clock,
4254                        struct intel_link_m_n *m_n)
4255 {
4256         m_n->tu = 64;
4257
4258         compute_m_n(bits_per_pixel * pixel_clock,
4259                     link_clock * nlanes * 8,
4260                     &m_n->gmch_m, &m_n->gmch_n);
4261
4262         compute_m_n(pixel_clock, link_clock,
4263                     &m_n->link_m, &m_n->link_n);
4264 }
4265
4266 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4267 {
4268         if (i915_panel_use_ssc >= 0)
4269                 return i915_panel_use_ssc != 0;
4270         return dev_priv->vbt.lvds_use_ssc
4271                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4272 }
4273
4274 static int vlv_get_refclk(struct drm_crtc *crtc)
4275 {
4276         struct drm_device *dev = crtc->dev;
4277         struct drm_i915_private *dev_priv = dev->dev_private;
4278         int refclk = 27000; /* for DP & HDMI */
4279
4280         return 100000; /* only one validated so far */
4281
4282         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4283                 refclk = 96000;
4284         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4285                 if (intel_panel_use_ssc(dev_priv))
4286                         refclk = 100000;
4287                 else
4288                         refclk = 96000;
4289         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4290                 refclk = 100000;
4291         }
4292
4293         return refclk;
4294 }
4295
4296 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4297 {
4298         struct drm_device *dev = crtc->dev;
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         int refclk;
4301
4302         if (IS_VALLEYVIEW(dev)) {
4303                 refclk = vlv_get_refclk(crtc);
4304         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4305             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4306                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4307                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4308                               refclk / 1000);
4309         } else if (!IS_GEN2(dev)) {
4310                 refclk = 96000;
4311         } else {
4312                 refclk = 48000;
4313         }
4314
4315         return refclk;
4316 }
4317
4318 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4319 {
4320         return (1 << dpll->n) << 16 | dpll->m2;
4321 }
4322
4323 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4324 {
4325         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4326 }
4327
4328 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4329                                      intel_clock_t *reduced_clock)
4330 {
4331         struct drm_device *dev = crtc->base.dev;
4332         struct drm_i915_private *dev_priv = dev->dev_private;
4333         int pipe = crtc->pipe;
4334         u32 fp, fp2 = 0;
4335
4336         if (IS_PINEVIEW(dev)) {
4337                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4338                 if (reduced_clock)
4339                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4340         } else {
4341                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4342                 if (reduced_clock)
4343                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4344         }
4345
4346         I915_WRITE(FP0(pipe), fp);
4347         crtc->config.dpll_hw_state.fp0 = fp;
4348
4349         crtc->lowfreq_avail = false;
4350         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4351             reduced_clock && i915_powersave) {
4352                 I915_WRITE(FP1(pipe), fp2);
4353                 crtc->config.dpll_hw_state.fp1 = fp2;
4354                 crtc->lowfreq_avail = true;
4355         } else {
4356                 I915_WRITE(FP1(pipe), fp);
4357                 crtc->config.dpll_hw_state.fp1 = fp;
4358         }
4359 }
4360
4361 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4362 {
4363         u32 reg_val;
4364
4365         /*
4366          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4367          * and set it to a reasonable value instead.
4368          */
4369         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4370         reg_val &= 0xffffff00;
4371         reg_val |= 0x00000030;
4372         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4373
4374         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4375         reg_val &= 0x8cffffff;
4376         reg_val = 0x8c000000;
4377         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4378
4379         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4380         reg_val &= 0xffffff00;
4381         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4382
4383         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4384         reg_val &= 0x00ffffff;
4385         reg_val |= 0xb0000000;
4386         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4387 }
4388
4389 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4390                                          struct intel_link_m_n *m_n)
4391 {
4392         struct drm_device *dev = crtc->base.dev;
4393         struct drm_i915_private *dev_priv = dev->dev_private;
4394         int pipe = crtc->pipe;
4395
4396         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4397         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4398         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4399         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4400 }
4401
4402 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4403                                          struct intel_link_m_n *m_n)
4404 {
4405         struct drm_device *dev = crtc->base.dev;
4406         struct drm_i915_private *dev_priv = dev->dev_private;
4407         int pipe = crtc->pipe;
4408         enum transcoder transcoder = crtc->config.cpu_transcoder;
4409
4410         if (INTEL_INFO(dev)->gen >= 5) {
4411                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4412                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4413                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4414                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4415         } else {
4416                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4417                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4418                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4419                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4420         }
4421 }
4422
4423 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4424 {
4425         if (crtc->config.has_pch_encoder)
4426                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4427         else
4428                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4429 }
4430
4431 static void vlv_update_pll(struct intel_crtc *crtc)
4432 {
4433         struct drm_device *dev = crtc->base.dev;
4434         struct drm_i915_private *dev_priv = dev->dev_private;
4435         int pipe = crtc->pipe;
4436         u32 dpll, mdiv;
4437         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4438         bool is_hdmi;
4439         u32 coreclk, reg_val, dpll_md;
4440
4441         mutex_lock(&dev_priv->dpio_lock);
4442
4443         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4444
4445         bestn = crtc->config.dpll.n;
4446         bestm1 = crtc->config.dpll.m1;
4447         bestm2 = crtc->config.dpll.m2;
4448         bestp1 = crtc->config.dpll.p1;
4449         bestp2 = crtc->config.dpll.p2;
4450
4451         /* See eDP HDMI DPIO driver vbios notes doc */
4452
4453         /* PLL B needs special handling */
4454         if (pipe)
4455                 vlv_pllb_recal_opamp(dev_priv);
4456
4457         /* Set up Tx target for periodic Rcomp update */
4458         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4459
4460         /* Disable target IRef on PLL */
4461         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4462         reg_val &= 0x00ffffff;
4463         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4464
4465         /* Disable fast lock */
4466         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4467
4468         /* Set idtafcrecal before PLL is enabled */
4469         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4470         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4471         mdiv |= ((bestn << DPIO_N_SHIFT));
4472         mdiv |= (1 << DPIO_K_SHIFT);
4473
4474         /*
4475          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4476          * but we don't support that).
4477          * Note: don't use the DAC post divider as it seems unstable.
4478          */
4479         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4480         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4481
4482         mdiv |= DPIO_ENABLE_CALIBRATION;
4483         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4484
4485         /* Set HBR and RBR LPF coefficients */
4486         if (crtc->config.port_clock == 162000 ||
4487             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4488             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4489                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4490                                  0x009f0003);
4491         else
4492                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4493                                  0x00d0000f);
4494
4495         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4496             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4497                 /* Use SSC source */
4498                 if (!pipe)
4499                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4500                                          0x0df40000);
4501                 else
4502                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4503                                          0x0df70000);
4504         } else { /* HDMI or VGA */
4505                 /* Use bend source */
4506                 if (!pipe)
4507                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4508                                          0x0df70000);
4509                 else
4510                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4511                                          0x0df40000);
4512         }
4513
4514         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4515         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4516         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4517             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4518                 coreclk |= 0x01000000;
4519         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4520
4521         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4522
4523         /* Enable DPIO clock input */
4524         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4525                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4526         if (pipe)
4527                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4528
4529         dpll |= DPLL_VCO_ENABLE;
4530         crtc->config.dpll_hw_state.dpll = dpll;
4531
4532         dpll_md = (crtc->config.pixel_multiplier - 1)
4533                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4534         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4535
4536         if (crtc->config.has_dp_encoder)
4537                 intel_dp_set_m_n(crtc);
4538
4539         mutex_unlock(&dev_priv->dpio_lock);
4540 }
4541
4542 static void i9xx_update_pll(struct intel_crtc *crtc,
4543                             intel_clock_t *reduced_clock,
4544                             int num_connectors)
4545 {
4546         struct drm_device *dev = crtc->base.dev;
4547         struct drm_i915_private *dev_priv = dev->dev_private;
4548         u32 dpll;
4549         bool is_sdvo;
4550         struct dpll *clock = &crtc->config.dpll;
4551
4552         i9xx_update_pll_dividers(crtc, reduced_clock);
4553
4554         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4555                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4556
4557         dpll = DPLL_VGA_MODE_DIS;
4558
4559         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4560                 dpll |= DPLLB_MODE_LVDS;
4561         else
4562                 dpll |= DPLLB_MODE_DAC_SERIAL;
4563
4564         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4565                 dpll |= (crtc->config.pixel_multiplier - 1)
4566                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4567         }
4568
4569         if (is_sdvo)
4570                 dpll |= DPLL_SDVO_HIGH_SPEED;
4571
4572         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4573                 dpll |= DPLL_SDVO_HIGH_SPEED;
4574
4575         /* compute bitmask from p1 value */
4576         if (IS_PINEVIEW(dev))
4577                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4578         else {
4579                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4580                 if (IS_G4X(dev) && reduced_clock)
4581                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4582         }
4583         switch (clock->p2) {
4584         case 5:
4585                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4586                 break;
4587         case 7:
4588                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4589                 break;
4590         case 10:
4591                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4592                 break;
4593         case 14:
4594                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4595                 break;
4596         }
4597         if (INTEL_INFO(dev)->gen >= 4)
4598                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4599
4600         if (crtc->config.sdvo_tv_clock)
4601                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4602         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4603                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4604                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4605         else
4606                 dpll |= PLL_REF_INPUT_DREFCLK;
4607
4608         dpll |= DPLL_VCO_ENABLE;
4609         crtc->config.dpll_hw_state.dpll = dpll;
4610
4611         if (INTEL_INFO(dev)->gen >= 4) {
4612                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4613                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4614                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4615         }
4616
4617         if (crtc->config.has_dp_encoder)
4618                 intel_dp_set_m_n(crtc);
4619 }
4620
4621 static void i8xx_update_pll(struct intel_crtc *crtc,
4622                             intel_clock_t *reduced_clock,
4623                             int num_connectors)
4624 {
4625         struct drm_device *dev = crtc->base.dev;
4626         struct drm_i915_private *dev_priv = dev->dev_private;
4627         u32 dpll;
4628         struct dpll *clock = &crtc->config.dpll;
4629
4630         i9xx_update_pll_dividers(crtc, reduced_clock);
4631
4632         dpll = DPLL_VGA_MODE_DIS;
4633
4634         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4635                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4636         } else {
4637                 if (clock->p1 == 2)
4638                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4639                 else
4640                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4641                 if (clock->p2 == 4)
4642                         dpll |= PLL_P2_DIVIDE_BY_4;
4643         }
4644
4645         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4646                 dpll |= DPLL_DVO_2X_MODE;
4647
4648         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4649                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4650                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4651         else
4652                 dpll |= PLL_REF_INPUT_DREFCLK;
4653
4654         dpll |= DPLL_VCO_ENABLE;
4655         crtc->config.dpll_hw_state.dpll = dpll;
4656 }
4657
4658 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4659 {
4660         struct drm_device *dev = intel_crtc->base.dev;
4661         struct drm_i915_private *dev_priv = dev->dev_private;
4662         enum pipe pipe = intel_crtc->pipe;
4663         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4664         struct drm_display_mode *adjusted_mode =
4665                 &intel_crtc->config.adjusted_mode;
4666         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4667         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4668
4669         /* We need to be careful not to changed the adjusted mode, for otherwise
4670          * the hw state checker will get angry at the mismatch. */
4671         crtc_vtotal = adjusted_mode->crtc_vtotal;
4672         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4673
4674         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4675                 /* the chip adds 2 halflines automatically */
4676                 crtc_vtotal -= 1;
4677                 crtc_vblank_end -= 1;
4678                 vsyncshift = adjusted_mode->crtc_hsync_start
4679                              - adjusted_mode->crtc_htotal / 2;
4680         } else {
4681                 vsyncshift = 0;
4682         }
4683
4684         if (INTEL_INFO(dev)->gen > 3)
4685                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4686
4687         I915_WRITE(HTOTAL(cpu_transcoder),
4688                    (adjusted_mode->crtc_hdisplay - 1) |
4689                    ((adjusted_mode->crtc_htotal - 1) << 16));
4690         I915_WRITE(HBLANK(cpu_transcoder),
4691                    (adjusted_mode->crtc_hblank_start - 1) |
4692                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4693         I915_WRITE(HSYNC(cpu_transcoder),
4694                    (adjusted_mode->crtc_hsync_start - 1) |
4695                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4696
4697         I915_WRITE(VTOTAL(cpu_transcoder),
4698                    (adjusted_mode->crtc_vdisplay - 1) |
4699                    ((crtc_vtotal - 1) << 16));
4700         I915_WRITE(VBLANK(cpu_transcoder),
4701                    (adjusted_mode->crtc_vblank_start - 1) |
4702                    ((crtc_vblank_end - 1) << 16));
4703         I915_WRITE(VSYNC(cpu_transcoder),
4704                    (adjusted_mode->crtc_vsync_start - 1) |
4705                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4706
4707         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4708          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4709          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4710          * bits. */
4711         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4712             (pipe == PIPE_B || pipe == PIPE_C))
4713                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4714
4715         /* pipesrc controls the size that is scaled from, which should
4716          * always be the user's requested size.
4717          */
4718         I915_WRITE(PIPESRC(pipe),
4719                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4720 }
4721
4722 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4723                                    struct intel_crtc_config *pipe_config)
4724 {
4725         struct drm_device *dev = crtc->base.dev;
4726         struct drm_i915_private *dev_priv = dev->dev_private;
4727         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4728         uint32_t tmp;
4729
4730         tmp = I915_READ(HTOTAL(cpu_transcoder));
4731         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4732         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4733         tmp = I915_READ(HBLANK(cpu_transcoder));
4734         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4735         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4736         tmp = I915_READ(HSYNC(cpu_transcoder));
4737         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4738         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4739
4740         tmp = I915_READ(VTOTAL(cpu_transcoder));
4741         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4742         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4743         tmp = I915_READ(VBLANK(cpu_transcoder));
4744         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4745         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4746         tmp = I915_READ(VSYNC(cpu_transcoder));
4747         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4748         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4749
4750         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4751                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4752                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4753                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4754         }
4755
4756         tmp = I915_READ(PIPESRC(crtc->pipe));
4757         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4758         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4759 }
4760
4761 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4762                                              struct intel_crtc_config *pipe_config)
4763 {
4764         struct drm_crtc *crtc = &intel_crtc->base;
4765
4766         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4767         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4768         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4769         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4770
4771         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4772         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4773         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4774         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4775
4776         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4777
4778         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4779         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4780 }
4781
4782 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4783 {
4784         struct drm_device *dev = intel_crtc->base.dev;
4785         struct drm_i915_private *dev_priv = dev->dev_private;
4786         uint32_t pipeconf;
4787
4788         pipeconf = 0;
4789
4790         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4791                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4792                  * core speed.
4793                  *
4794                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4795                  * pipe == 0 check?
4796                  */
4797                 if (intel_crtc->config.requested_mode.clock >
4798                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4799                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4800         }
4801
4802         /* only g4x and later have fancy bpc/dither controls */
4803         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4804                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4805                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4806                         pipeconf |= PIPECONF_DITHER_EN |
4807                                     PIPECONF_DITHER_TYPE_SP;
4808
4809                 switch (intel_crtc->config.pipe_bpp) {
4810                 case 18:
4811                         pipeconf |= PIPECONF_6BPC;
4812                         break;
4813                 case 24:
4814                         pipeconf |= PIPECONF_8BPC;
4815                         break;
4816                 case 30:
4817                         pipeconf |= PIPECONF_10BPC;
4818                         break;
4819                 default:
4820                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4821                         BUG();
4822                 }
4823         }
4824
4825         if (HAS_PIPE_CXSR(dev)) {
4826                 if (intel_crtc->lowfreq_avail) {
4827                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4828                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4829                 } else {
4830                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4831                 }
4832         }
4833
4834         if (!IS_GEN2(dev) &&
4835             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4836                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4837         else
4838                 pipeconf |= PIPECONF_PROGRESSIVE;
4839
4840         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4841                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4842
4843         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4844         POSTING_READ(PIPECONF(intel_crtc->pipe));
4845 }
4846
4847 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4848                               int x, int y,
4849                               struct drm_framebuffer *fb)
4850 {
4851         struct drm_device *dev = crtc->dev;
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4855         int pipe = intel_crtc->pipe;
4856         int plane = intel_crtc->plane;
4857         int refclk, num_connectors = 0;
4858         intel_clock_t clock, reduced_clock;
4859         u32 dspcntr;
4860         bool ok, has_reduced_clock = false;
4861         bool is_lvds = false;
4862         struct intel_encoder *encoder;
4863         const intel_limit_t *limit;
4864         int ret;
4865
4866         for_each_encoder_on_crtc(dev, crtc, encoder) {
4867                 switch (encoder->type) {
4868                 case INTEL_OUTPUT_LVDS:
4869                         is_lvds = true;
4870                         break;
4871                 }
4872
4873                 num_connectors++;
4874         }
4875
4876         refclk = i9xx_get_refclk(crtc, num_connectors);
4877
4878         /*
4879          * Returns a set of divisors for the desired target clock with the given
4880          * refclk, or FALSE.  The returned values represent the clock equation:
4881          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4882          */
4883         limit = intel_limit(crtc, refclk);
4884         ok = dev_priv->display.find_dpll(limit, crtc,
4885                                          intel_crtc->config.port_clock,
4886                                          refclk, NULL, &clock);
4887         if (!ok && !intel_crtc->config.clock_set) {
4888                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4889                 return -EINVAL;
4890         }
4891
4892         /* Ensure that the cursor is valid for the new mode before changing... */
4893         intel_crtc_update_cursor(crtc, true);
4894
4895         if (is_lvds && dev_priv->lvds_downclock_avail) {
4896                 /*
4897                  * Ensure we match the reduced clock's P to the target clock.
4898                  * If the clocks don't match, we can't switch the display clock
4899                  * by using the FP0/FP1. In such case we will disable the LVDS
4900                  * downclock feature.
4901                 */
4902                 has_reduced_clock =
4903                         dev_priv->display.find_dpll(limit, crtc,
4904                                                     dev_priv->lvds_downclock,
4905                                                     refclk, &clock,
4906                                                     &reduced_clock);
4907         }
4908         /* Compat-code for transition, will disappear. */
4909         if (!intel_crtc->config.clock_set) {
4910                 intel_crtc->config.dpll.n = clock.n;
4911                 intel_crtc->config.dpll.m1 = clock.m1;
4912                 intel_crtc->config.dpll.m2 = clock.m2;
4913                 intel_crtc->config.dpll.p1 = clock.p1;
4914                 intel_crtc->config.dpll.p2 = clock.p2;
4915         }
4916
4917         if (IS_GEN2(dev))
4918                 i8xx_update_pll(intel_crtc,
4919                                 has_reduced_clock ? &reduced_clock : NULL,
4920                                 num_connectors);
4921         else if (IS_VALLEYVIEW(dev))
4922                 vlv_update_pll(intel_crtc);
4923         else
4924                 i9xx_update_pll(intel_crtc,
4925                                 has_reduced_clock ? &reduced_clock : NULL,
4926                                 num_connectors);
4927
4928         /* Set up the display plane register */
4929         dspcntr = DISPPLANE_GAMMA_ENABLE;
4930
4931         if (!IS_VALLEYVIEW(dev)) {
4932                 if (pipe == 0)
4933                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4934                 else
4935                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4936         }
4937
4938         intel_set_pipe_timings(intel_crtc);
4939
4940         /* pipesrc and dspsize control the size that is scaled from,
4941          * which should always be the user's requested size.
4942          */
4943         I915_WRITE(DSPSIZE(plane),
4944                    ((mode->vdisplay - 1) << 16) |
4945                    (mode->hdisplay - 1));
4946         I915_WRITE(DSPPOS(plane), 0);
4947
4948         i9xx_set_pipeconf(intel_crtc);
4949
4950         I915_WRITE(DSPCNTR(plane), dspcntr);
4951         POSTING_READ(DSPCNTR(plane));
4952
4953         ret = intel_pipe_set_base(crtc, x, y, fb);
4954
4955         intel_update_watermarks(dev);
4956
4957         return ret;
4958 }
4959
4960 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4961                                  struct intel_crtc_config *pipe_config)
4962 {
4963         struct drm_device *dev = crtc->base.dev;
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         uint32_t tmp;
4966
4967         tmp = I915_READ(PFIT_CONTROL);
4968         if (!(tmp & PFIT_ENABLE))
4969                 return;
4970
4971         /* Check whether the pfit is attached to our pipe. */
4972         if (INTEL_INFO(dev)->gen < 4) {
4973                 if (crtc->pipe != PIPE_B)
4974                         return;
4975         } else {
4976                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4977                         return;
4978         }
4979
4980         pipe_config->gmch_pfit.control = tmp;
4981         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4982         if (INTEL_INFO(dev)->gen < 5)
4983                 pipe_config->gmch_pfit.lvds_border_bits =
4984                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4985 }
4986
4987 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4988                                  struct intel_crtc_config *pipe_config)
4989 {
4990         struct drm_device *dev = crtc->base.dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         uint32_t tmp;
4993
4994         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4995         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4996
4997         tmp = I915_READ(PIPECONF(crtc->pipe));
4998         if (!(tmp & PIPECONF_ENABLE))
4999                 return false;
5000
5001         intel_get_pipe_timings(crtc, pipe_config);
5002
5003         i9xx_get_pfit_config(crtc, pipe_config);
5004
5005         if (INTEL_INFO(dev)->gen >= 4) {
5006                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5007                 pipe_config->pixel_multiplier =
5008                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5009                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5010                 pipe_config->dpll_hw_state.dpll_md = tmp;
5011         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5012                 tmp = I915_READ(DPLL(crtc->pipe));
5013                 pipe_config->pixel_multiplier =
5014                         ((tmp & SDVO_MULTIPLIER_MASK)
5015                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5016         } else {
5017                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5018                  * port and will be fixed up in the encoder->get_config
5019                  * function. */
5020                 pipe_config->pixel_multiplier = 1;
5021         }
5022         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5023         if (!IS_VALLEYVIEW(dev)) {
5024                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5025                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5026         } else {
5027                 /* Mask out read-only status bits. */
5028                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5029                                                      DPLL_PORTC_READY_MASK |
5030                                                      DPLL_PORTB_READY_MASK);
5031         }
5032
5033         return true;
5034 }
5035
5036 static void ironlake_init_pch_refclk(struct drm_device *dev)
5037 {
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         struct drm_mode_config *mode_config = &dev->mode_config;
5040         struct intel_encoder *encoder;
5041         u32 val, final;
5042         bool has_lvds = false;
5043         bool has_cpu_edp = false;
5044         bool has_panel = false;
5045         bool has_ck505 = false;
5046         bool can_ssc = false;
5047
5048         /* We need to take the global config into account */
5049         list_for_each_entry(encoder, &mode_config->encoder_list,
5050                             base.head) {
5051                 switch (encoder->type) {
5052                 case INTEL_OUTPUT_LVDS:
5053                         has_panel = true;
5054                         has_lvds = true;
5055                         break;
5056                 case INTEL_OUTPUT_EDP:
5057                         has_panel = true;
5058                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5059                                 has_cpu_edp = true;
5060                         break;
5061                 }
5062         }
5063
5064         if (HAS_PCH_IBX(dev)) {
5065                 has_ck505 = dev_priv->vbt.display_clock_mode;
5066                 can_ssc = has_ck505;
5067         } else {
5068                 has_ck505 = false;
5069                 can_ssc = true;
5070         }
5071
5072         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5073                       has_panel, has_lvds, has_ck505);
5074
5075         /* Ironlake: try to setup display ref clock before DPLL
5076          * enabling. This is only under driver's control after
5077          * PCH B stepping, previous chipset stepping should be
5078          * ignoring this setting.
5079          */
5080         val = I915_READ(PCH_DREF_CONTROL);
5081
5082         /* As we must carefully and slowly disable/enable each source in turn,
5083          * compute the final state we want first and check if we need to
5084          * make any changes at all.
5085          */
5086         final = val;
5087         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5088         if (has_ck505)
5089                 final |= DREF_NONSPREAD_CK505_ENABLE;
5090         else
5091                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5092
5093         final &= ~DREF_SSC_SOURCE_MASK;
5094         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5095         final &= ~DREF_SSC1_ENABLE;
5096
5097         if (has_panel) {
5098                 final |= DREF_SSC_SOURCE_ENABLE;
5099
5100                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5101                         final |= DREF_SSC1_ENABLE;
5102
5103                 if (has_cpu_edp) {
5104                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5105                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5106                         else
5107                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5108                 } else
5109                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5110         } else {
5111                 final |= DREF_SSC_SOURCE_DISABLE;
5112                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5113         }
5114
5115         if (final == val)
5116                 return;
5117
5118         /* Always enable nonspread source */
5119         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5120
5121         if (has_ck505)
5122                 val |= DREF_NONSPREAD_CK505_ENABLE;
5123         else
5124                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5125
5126         if (has_panel) {
5127                 val &= ~DREF_SSC_SOURCE_MASK;
5128                 val |= DREF_SSC_SOURCE_ENABLE;
5129
5130                 /* SSC must be turned on before enabling the CPU output  */
5131                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5132                         DRM_DEBUG_KMS("Using SSC on panel\n");
5133                         val |= DREF_SSC1_ENABLE;
5134                 } else
5135                         val &= ~DREF_SSC1_ENABLE;
5136
5137                 /* Get SSC going before enabling the outputs */
5138                 I915_WRITE(PCH_DREF_CONTROL, val);
5139                 POSTING_READ(PCH_DREF_CONTROL);
5140                 udelay(200);
5141
5142                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5143
5144                 /* Enable CPU source on CPU attached eDP */
5145                 if (has_cpu_edp) {
5146                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5147                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5148                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5149                         }
5150                         else
5151                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5152                 } else
5153                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5154
5155                 I915_WRITE(PCH_DREF_CONTROL, val);
5156                 POSTING_READ(PCH_DREF_CONTROL);
5157                 udelay(200);
5158         } else {
5159                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5160
5161                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5162
5163                 /* Turn off CPU output */
5164                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5165
5166                 I915_WRITE(PCH_DREF_CONTROL, val);
5167                 POSTING_READ(PCH_DREF_CONTROL);
5168                 udelay(200);
5169
5170                 /* Turn off the SSC source */
5171                 val &= ~DREF_SSC_SOURCE_MASK;
5172                 val |= DREF_SSC_SOURCE_DISABLE;
5173
5174                 /* Turn off SSC1 */
5175                 val &= ~DREF_SSC1_ENABLE;
5176
5177                 I915_WRITE(PCH_DREF_CONTROL, val);
5178                 POSTING_READ(PCH_DREF_CONTROL);
5179                 udelay(200);
5180         }
5181
5182         BUG_ON(val != final);
5183 }
5184
5185 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5186 {
5187         uint32_t tmp;
5188
5189         tmp = I915_READ(SOUTH_CHICKEN2);
5190         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5191         I915_WRITE(SOUTH_CHICKEN2, tmp);
5192
5193         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5194                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5195                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5196
5197         tmp = I915_READ(SOUTH_CHICKEN2);
5198         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5199         I915_WRITE(SOUTH_CHICKEN2, tmp);
5200
5201         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5202                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5203                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5204 }
5205
5206 /* WaMPhyProgramming:hsw */
5207 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5208 {
5209         uint32_t tmp;
5210
5211         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5212         tmp &= ~(0xFF << 24);
5213         tmp |= (0x12 << 24);
5214         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5215
5216         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5217         tmp |= (1 << 11);
5218         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5219
5220         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5221         tmp |= (1 << 11);
5222         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5223
5224         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5225         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5226         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5227
5228         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5229         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5230         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5231
5232         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5233         tmp &= ~(7 << 13);
5234         tmp |= (5 << 13);
5235         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5236
5237         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5238         tmp &= ~(7 << 13);
5239         tmp |= (5 << 13);
5240         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5241
5242         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5243         tmp &= ~0xFF;
5244         tmp |= 0x1C;
5245         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5246
5247         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5248         tmp &= ~0xFF;
5249         tmp |= 0x1C;
5250         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5251
5252         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5253         tmp &= ~(0xFF << 16);
5254         tmp |= (0x1C << 16);
5255         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5256
5257         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5258         tmp &= ~(0xFF << 16);
5259         tmp |= (0x1C << 16);
5260         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5261
5262         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5263         tmp |= (1 << 27);
5264         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5265
5266         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5267         tmp |= (1 << 27);
5268         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5269
5270         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5271         tmp &= ~(0xF << 28);
5272         tmp |= (4 << 28);
5273         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5274
5275         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5276         tmp &= ~(0xF << 28);
5277         tmp |= (4 << 28);
5278         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5279 }
5280
5281 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5282  * Programming" based on the parameters passed:
5283  * - Sequence to enable CLKOUT_DP
5284  * - Sequence to enable CLKOUT_DP without spread
5285  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5286  */
5287 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5288                                  bool with_fdi)
5289 {
5290         struct drm_i915_private *dev_priv = dev->dev_private;
5291         uint32_t reg, tmp;
5292
5293         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5294                 with_spread = true;
5295         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5296                  with_fdi, "LP PCH doesn't have FDI\n"))
5297                 with_fdi = false;
5298
5299         mutex_lock(&dev_priv->dpio_lock);
5300
5301         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5302         tmp &= ~SBI_SSCCTL_DISABLE;
5303         tmp |= SBI_SSCCTL_PATHALT;
5304         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5305
5306         udelay(24);
5307
5308         if (with_spread) {
5309                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5310                 tmp &= ~SBI_SSCCTL_PATHALT;
5311                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5312
5313                 if (with_fdi) {
5314                         lpt_reset_fdi_mphy(dev_priv);
5315                         lpt_program_fdi_mphy(dev_priv);
5316                 }
5317         }
5318
5319         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5320                SBI_GEN0 : SBI_DBUFF0;
5321         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5322         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5323         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5324
5325         mutex_unlock(&dev_priv->dpio_lock);
5326 }
5327
5328 /* Sequence to disable CLKOUT_DP */
5329 static void lpt_disable_clkout_dp(struct drm_device *dev)
5330 {
5331         struct drm_i915_private *dev_priv = dev->dev_private;
5332         uint32_t reg, tmp;
5333
5334         mutex_lock(&dev_priv->dpio_lock);
5335
5336         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5337                SBI_GEN0 : SBI_DBUFF0;
5338         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5339         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5340         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5341
5342         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5343         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5344                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5345                         tmp |= SBI_SSCCTL_PATHALT;
5346                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5347                         udelay(32);
5348                 }
5349                 tmp |= SBI_SSCCTL_DISABLE;
5350                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5351         }
5352
5353         mutex_unlock(&dev_priv->dpio_lock);
5354 }
5355
5356 static void lpt_init_pch_refclk(struct drm_device *dev)
5357 {
5358         struct drm_mode_config *mode_config = &dev->mode_config;
5359         struct intel_encoder *encoder;
5360         bool has_vga = false;
5361
5362         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5363                 switch (encoder->type) {
5364                 case INTEL_OUTPUT_ANALOG:
5365                         has_vga = true;
5366                         break;
5367                 }
5368         }
5369
5370         if (has_vga)
5371                 lpt_enable_clkout_dp(dev, true, true);
5372         else
5373                 lpt_disable_clkout_dp(dev);
5374 }
5375
5376 /*
5377  * Initialize reference clocks when the driver loads
5378  */
5379 void intel_init_pch_refclk(struct drm_device *dev)
5380 {
5381         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5382                 ironlake_init_pch_refclk(dev);
5383         else if (HAS_PCH_LPT(dev))
5384                 lpt_init_pch_refclk(dev);
5385 }
5386
5387 static int ironlake_get_refclk(struct drm_crtc *crtc)
5388 {
5389         struct drm_device *dev = crtc->dev;
5390         struct drm_i915_private *dev_priv = dev->dev_private;
5391         struct intel_encoder *encoder;
5392         int num_connectors = 0;
5393         bool is_lvds = false;
5394
5395         for_each_encoder_on_crtc(dev, crtc, encoder) {
5396                 switch (encoder->type) {
5397                 case INTEL_OUTPUT_LVDS:
5398                         is_lvds = true;
5399                         break;
5400                 }
5401                 num_connectors++;
5402         }
5403
5404         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5405                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5406                               dev_priv->vbt.lvds_ssc_freq);
5407                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5408         }
5409
5410         return 120000;
5411 }
5412
5413 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5414 {
5415         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5417         int pipe = intel_crtc->pipe;
5418         uint32_t val;
5419
5420         val = 0;
5421
5422         switch (intel_crtc->config.pipe_bpp) {
5423         case 18:
5424                 val |= PIPECONF_6BPC;
5425                 break;
5426         case 24:
5427                 val |= PIPECONF_8BPC;
5428                 break;
5429         case 30:
5430                 val |= PIPECONF_10BPC;
5431                 break;
5432         case 36:
5433                 val |= PIPECONF_12BPC;
5434                 break;
5435         default:
5436                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5437                 BUG();
5438         }
5439
5440         if (intel_crtc->config.dither)
5441                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5442
5443         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5444                 val |= PIPECONF_INTERLACED_ILK;
5445         else
5446                 val |= PIPECONF_PROGRESSIVE;
5447
5448         if (intel_crtc->config.limited_color_range)
5449                 val |= PIPECONF_COLOR_RANGE_SELECT;
5450
5451         I915_WRITE(PIPECONF(pipe), val);
5452         POSTING_READ(PIPECONF(pipe));
5453 }
5454
5455 /*
5456  * Set up the pipe CSC unit.
5457  *
5458  * Currently only full range RGB to limited range RGB conversion
5459  * is supported, but eventually this should handle various
5460  * RGB<->YCbCr scenarios as well.
5461  */
5462 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5463 {
5464         struct drm_device *dev = crtc->dev;
5465         struct drm_i915_private *dev_priv = dev->dev_private;
5466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5467         int pipe = intel_crtc->pipe;
5468         uint16_t coeff = 0x7800; /* 1.0 */
5469
5470         /*
5471          * TODO: Check what kind of values actually come out of the pipe
5472          * with these coeff/postoff values and adjust to get the best
5473          * accuracy. Perhaps we even need to take the bpc value into
5474          * consideration.
5475          */
5476
5477         if (intel_crtc->config.limited_color_range)
5478                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5479
5480         /*
5481          * GY/GU and RY/RU should be the other way around according
5482          * to BSpec, but reality doesn't agree. Just set them up in
5483          * a way that results in the correct picture.
5484          */
5485         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5486         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5487
5488         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5489         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5490
5491         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5492         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5493
5494         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5495         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5496         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5497
5498         if (INTEL_INFO(dev)->gen > 6) {
5499                 uint16_t postoff = 0;
5500
5501                 if (intel_crtc->config.limited_color_range)
5502                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5503
5504                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5505                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5506                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5507
5508                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5509         } else {
5510                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5511
5512                 if (intel_crtc->config.limited_color_range)
5513                         mode |= CSC_BLACK_SCREEN_OFFSET;
5514
5515                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5516         }
5517 }
5518
5519 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5520 {
5521         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5523         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5524         uint32_t val;
5525
5526         val = 0;
5527
5528         if (intel_crtc->config.dither)
5529                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5530
5531         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5532                 val |= PIPECONF_INTERLACED_ILK;
5533         else
5534                 val |= PIPECONF_PROGRESSIVE;
5535
5536         I915_WRITE(PIPECONF(cpu_transcoder), val);
5537         POSTING_READ(PIPECONF(cpu_transcoder));
5538
5539         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5540         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5541 }
5542
5543 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5544                                     intel_clock_t *clock,
5545                                     bool *has_reduced_clock,
5546                                     intel_clock_t *reduced_clock)
5547 {
5548         struct drm_device *dev = crtc->dev;
5549         struct drm_i915_private *dev_priv = dev->dev_private;
5550         struct intel_encoder *intel_encoder;
5551         int refclk;
5552         const intel_limit_t *limit;
5553         bool ret, is_lvds = false;
5554
5555         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5556                 switch (intel_encoder->type) {
5557                 case INTEL_OUTPUT_LVDS:
5558                         is_lvds = true;
5559                         break;
5560                 }
5561         }
5562
5563         refclk = ironlake_get_refclk(crtc);
5564
5565         /*
5566          * Returns a set of divisors for the desired target clock with the given
5567          * refclk, or FALSE.  The returned values represent the clock equation:
5568          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5569          */
5570         limit = intel_limit(crtc, refclk);
5571         ret = dev_priv->display.find_dpll(limit, crtc,
5572                                           to_intel_crtc(crtc)->config.port_clock,
5573                                           refclk, NULL, clock);
5574         if (!ret)
5575                 return false;
5576
5577         if (is_lvds && dev_priv->lvds_downclock_avail) {
5578                 /*
5579                  * Ensure we match the reduced clock's P to the target clock.
5580                  * If the clocks don't match, we can't switch the display clock
5581                  * by using the FP0/FP1. In such case we will disable the LVDS
5582                  * downclock feature.
5583                 */
5584                 *has_reduced_clock =
5585                         dev_priv->display.find_dpll(limit, crtc,
5586                                                     dev_priv->lvds_downclock,
5587                                                     refclk, clock,
5588                                                     reduced_clock);
5589         }
5590
5591         return true;
5592 }
5593
5594 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5595 {
5596         struct drm_i915_private *dev_priv = dev->dev_private;
5597         uint32_t temp;
5598
5599         temp = I915_READ(SOUTH_CHICKEN1);
5600         if (temp & FDI_BC_BIFURCATION_SELECT)
5601                 return;
5602
5603         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5604         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5605
5606         temp |= FDI_BC_BIFURCATION_SELECT;
5607         DRM_DEBUG_KMS("enabling fdi C rx\n");
5608         I915_WRITE(SOUTH_CHICKEN1, temp);
5609         POSTING_READ(SOUTH_CHICKEN1);
5610 }
5611
5612 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5613 {
5614         struct drm_device *dev = intel_crtc->base.dev;
5615         struct drm_i915_private *dev_priv = dev->dev_private;
5616
5617         switch (intel_crtc->pipe) {
5618         case PIPE_A:
5619                 break;
5620         case PIPE_B:
5621                 if (intel_crtc->config.fdi_lanes > 2)
5622                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5623                 else
5624                         cpt_enable_fdi_bc_bifurcation(dev);
5625
5626                 break;
5627         case PIPE_C:
5628                 cpt_enable_fdi_bc_bifurcation(dev);
5629
5630                 break;
5631         default:
5632                 BUG();
5633         }
5634 }
5635
5636 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5637 {
5638         /*
5639          * Account for spread spectrum to avoid
5640          * oversubscribing the link. Max center spread
5641          * is 2.5%; use 5% for safety's sake.
5642          */
5643         u32 bps = target_clock * bpp * 21 / 20;
5644         return bps / (link_bw * 8) + 1;
5645 }
5646
5647 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5648 {
5649         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5650 }
5651
5652 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5653                                       u32 *fp,
5654                                       intel_clock_t *reduced_clock, u32 *fp2)
5655 {
5656         struct drm_crtc *crtc = &intel_crtc->base;
5657         struct drm_device *dev = crtc->dev;
5658         struct drm_i915_private *dev_priv = dev->dev_private;
5659         struct intel_encoder *intel_encoder;
5660         uint32_t dpll;
5661         int factor, num_connectors = 0;
5662         bool is_lvds = false, is_sdvo = false;
5663
5664         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5665                 switch (intel_encoder->type) {
5666                 case INTEL_OUTPUT_LVDS:
5667                         is_lvds = true;
5668                         break;
5669                 case INTEL_OUTPUT_SDVO:
5670                 case INTEL_OUTPUT_HDMI:
5671                         is_sdvo = true;
5672                         break;
5673                 }
5674
5675                 num_connectors++;
5676         }
5677
5678         /* Enable autotuning of the PLL clock (if permissible) */
5679         factor = 21;
5680         if (is_lvds) {
5681                 if ((intel_panel_use_ssc(dev_priv) &&
5682                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5683                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5684                         factor = 25;
5685         } else if (intel_crtc->config.sdvo_tv_clock)
5686                 factor = 20;
5687
5688         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5689                 *fp |= FP_CB_TUNE;
5690
5691         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5692                 *fp2 |= FP_CB_TUNE;
5693
5694         dpll = 0;
5695
5696         if (is_lvds)
5697                 dpll |= DPLLB_MODE_LVDS;
5698         else
5699                 dpll |= DPLLB_MODE_DAC_SERIAL;
5700
5701         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5702                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5703
5704         if (is_sdvo)
5705                 dpll |= DPLL_SDVO_HIGH_SPEED;
5706         if (intel_crtc->config.has_dp_encoder)
5707                 dpll |= DPLL_SDVO_HIGH_SPEED;
5708
5709         /* compute bitmask from p1 value */
5710         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5711         /* also FPA1 */
5712         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5713
5714         switch (intel_crtc->config.dpll.p2) {
5715         case 5:
5716                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5717                 break;
5718         case 7:
5719                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5720                 break;
5721         case 10:
5722                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5723                 break;
5724         case 14:
5725                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5726                 break;
5727         }
5728
5729         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5730                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5731         else
5732                 dpll |= PLL_REF_INPUT_DREFCLK;
5733
5734         return dpll | DPLL_VCO_ENABLE;
5735 }
5736
5737 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5738                                   int x, int y,
5739                                   struct drm_framebuffer *fb)
5740 {
5741         struct drm_device *dev = crtc->dev;
5742         struct drm_i915_private *dev_priv = dev->dev_private;
5743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5744         int pipe = intel_crtc->pipe;
5745         int plane = intel_crtc->plane;
5746         int num_connectors = 0;
5747         intel_clock_t clock, reduced_clock;
5748         u32 dpll = 0, fp = 0, fp2 = 0;
5749         bool ok, has_reduced_clock = false;
5750         bool is_lvds = false;
5751         struct intel_encoder *encoder;
5752         struct intel_shared_dpll *pll;
5753         int ret;
5754
5755         for_each_encoder_on_crtc(dev, crtc, encoder) {
5756                 switch (encoder->type) {
5757                 case INTEL_OUTPUT_LVDS:
5758                         is_lvds = true;
5759                         break;
5760                 }
5761
5762                 num_connectors++;
5763         }
5764
5765         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5766              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5767
5768         ok = ironlake_compute_clocks(crtc, &clock,
5769                                      &has_reduced_clock, &reduced_clock);
5770         if (!ok && !intel_crtc->config.clock_set) {
5771                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5772                 return -EINVAL;
5773         }
5774         /* Compat-code for transition, will disappear. */
5775         if (!intel_crtc->config.clock_set) {
5776                 intel_crtc->config.dpll.n = clock.n;
5777                 intel_crtc->config.dpll.m1 = clock.m1;
5778                 intel_crtc->config.dpll.m2 = clock.m2;
5779                 intel_crtc->config.dpll.p1 = clock.p1;
5780                 intel_crtc->config.dpll.p2 = clock.p2;
5781         }
5782
5783         /* Ensure that the cursor is valid for the new mode before changing... */
5784         intel_crtc_update_cursor(crtc, true);
5785
5786         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5787         if (intel_crtc->config.has_pch_encoder) {
5788                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5789                 if (has_reduced_clock)
5790                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5791
5792                 dpll = ironlake_compute_dpll(intel_crtc,
5793                                              &fp, &reduced_clock,
5794                                              has_reduced_clock ? &fp2 : NULL);
5795
5796                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5797                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5798                 if (has_reduced_clock)
5799                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5800                 else
5801                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5802
5803                 pll = intel_get_shared_dpll(intel_crtc);
5804                 if (pll == NULL) {
5805                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5806                                          pipe_name(pipe));
5807                         return -EINVAL;
5808                 }
5809         } else
5810                 intel_put_shared_dpll(intel_crtc);
5811
5812         if (intel_crtc->config.has_dp_encoder)
5813                 intel_dp_set_m_n(intel_crtc);
5814
5815         if (is_lvds && has_reduced_clock && i915_powersave)
5816                 intel_crtc->lowfreq_avail = true;
5817         else
5818                 intel_crtc->lowfreq_avail = false;
5819
5820         if (intel_crtc->config.has_pch_encoder) {
5821                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5822
5823         }
5824
5825         intel_set_pipe_timings(intel_crtc);
5826
5827         if (intel_crtc->config.has_pch_encoder) {
5828                 intel_cpu_transcoder_set_m_n(intel_crtc,
5829                                              &intel_crtc->config.fdi_m_n);
5830         }
5831
5832         if (IS_IVYBRIDGE(dev))
5833                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5834
5835         ironlake_set_pipeconf(crtc);
5836
5837         /* Set up the display plane register */
5838         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5839         POSTING_READ(DSPCNTR(plane));
5840
5841         ret = intel_pipe_set_base(crtc, x, y, fb);
5842
5843         intel_update_watermarks(dev);
5844
5845         return ret;
5846 }
5847
5848 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5849                                         struct intel_crtc_config *pipe_config)
5850 {
5851         struct drm_device *dev = crtc->base.dev;
5852         struct drm_i915_private *dev_priv = dev->dev_private;
5853         enum transcoder transcoder = pipe_config->cpu_transcoder;
5854
5855         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5856         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5857         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5858                                         & ~TU_SIZE_MASK;
5859         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5860         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5861                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5862 }
5863
5864 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5865                                      struct intel_crtc_config *pipe_config)
5866 {
5867         struct drm_device *dev = crtc->base.dev;
5868         struct drm_i915_private *dev_priv = dev->dev_private;
5869         uint32_t tmp;
5870
5871         tmp = I915_READ(PF_CTL(crtc->pipe));
5872
5873         if (tmp & PF_ENABLE) {
5874                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5875                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5876
5877                 /* We currently do not free assignements of panel fitters on
5878                  * ivb/hsw (since we don't use the higher upscaling modes which
5879                  * differentiates them) so just WARN about this case for now. */
5880                 if (IS_GEN7(dev)) {
5881                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5882                                 PF_PIPE_SEL_IVB(crtc->pipe));
5883                 }
5884         }
5885 }
5886
5887 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5888                                      struct intel_crtc_config *pipe_config)
5889 {
5890         struct drm_device *dev = crtc->base.dev;
5891         struct drm_i915_private *dev_priv = dev->dev_private;
5892         uint32_t tmp;
5893
5894         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5895         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5896
5897         tmp = I915_READ(PIPECONF(crtc->pipe));
5898         if (!(tmp & PIPECONF_ENABLE))
5899                 return false;
5900
5901         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5902                 struct intel_shared_dpll *pll;
5903
5904                 pipe_config->has_pch_encoder = true;
5905
5906                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5907                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5908                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5909
5910                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5911
5912                 if (HAS_PCH_IBX(dev_priv->dev)) {
5913                         pipe_config->shared_dpll =
5914                                 (enum intel_dpll_id) crtc->pipe;
5915                 } else {
5916                         tmp = I915_READ(PCH_DPLL_SEL);
5917                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5918                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5919                         else
5920                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5921                 }
5922
5923                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5924
5925                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5926                                            &pipe_config->dpll_hw_state));
5927
5928                 tmp = pipe_config->dpll_hw_state.dpll;
5929                 pipe_config->pixel_multiplier =
5930                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5931                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5932         } else {
5933                 pipe_config->pixel_multiplier = 1;
5934         }
5935
5936         intel_get_pipe_timings(crtc, pipe_config);
5937
5938         ironlake_get_pfit_config(crtc, pipe_config);
5939
5940         return true;
5941 }
5942
5943 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5944 {
5945         struct drm_device *dev = dev_priv->dev;
5946         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5947         struct intel_crtc *crtc;
5948         unsigned long irqflags;
5949         uint32_t val, pch_hpd_mask;
5950
5951         pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5952         if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5953                 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5954
5955         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5956                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5957                      pipe_name(crtc->pipe));
5958
5959         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5960         WARN(plls->spll_refcount, "SPLL enabled\n");
5961         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5962         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5963         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5964         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5965              "CPU PWM1 enabled\n");
5966         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5967              "CPU PWM2 enabled\n");
5968         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5969              "PCH PWM1 enabled\n");
5970         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5971              "Utility pin enabled\n");
5972         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5973
5974         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5975         val = I915_READ(DEIMR);
5976         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5977              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5978         val = I915_READ(SDEIMR);
5979         WARN((val & ~pch_hpd_mask) != val,
5980              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5981         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5982 }
5983
5984 /*
5985  * This function implements pieces of two sequences from BSpec:
5986  * - Sequence for display software to disable LCPLL
5987  * - Sequence for display software to allow package C8+
5988  * The steps implemented here are just the steps that actually touch the LCPLL
5989  * register. Callers should take care of disabling all the display engine
5990  * functions, doing the mode unset, fixing interrupts, etc.
5991  */
5992 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5993                        bool switch_to_fclk, bool allow_power_down)
5994 {
5995         uint32_t val;
5996
5997         assert_can_disable_lcpll(dev_priv);
5998
5999         val = I915_READ(LCPLL_CTL);
6000
6001         if (switch_to_fclk) {
6002                 val |= LCPLL_CD_SOURCE_FCLK;
6003                 I915_WRITE(LCPLL_CTL, val);
6004
6005                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6006                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6007                         DRM_ERROR("Switching to FCLK failed\n");
6008
6009                 val = I915_READ(LCPLL_CTL);
6010         }
6011
6012         val |= LCPLL_PLL_DISABLE;
6013         I915_WRITE(LCPLL_CTL, val);
6014         POSTING_READ(LCPLL_CTL);
6015
6016         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6017                 DRM_ERROR("LCPLL still locked\n");
6018
6019         val = I915_READ(D_COMP);
6020         val |= D_COMP_COMP_DISABLE;
6021         I915_WRITE(D_COMP, val);
6022         POSTING_READ(D_COMP);
6023         ndelay(100);
6024
6025         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6026                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6027
6028         if (allow_power_down) {
6029                 val = I915_READ(LCPLL_CTL);
6030                 val |= LCPLL_POWER_DOWN_ALLOW;
6031                 I915_WRITE(LCPLL_CTL, val);
6032                 POSTING_READ(LCPLL_CTL);
6033         }
6034 }
6035
6036 /*
6037  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6038  * source.
6039  */
6040 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6041 {
6042         uint32_t val;
6043
6044         val = I915_READ(LCPLL_CTL);
6045
6046         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6047                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6048                 return;
6049
6050         if (val & LCPLL_POWER_DOWN_ALLOW) {
6051                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6052                 I915_WRITE(LCPLL_CTL, val);
6053         }
6054
6055         val = I915_READ(D_COMP);
6056         val |= D_COMP_COMP_FORCE;
6057         val &= ~D_COMP_COMP_DISABLE;
6058         I915_WRITE(D_COMP, val);
6059         I915_READ(D_COMP);
6060
6061         val = I915_READ(LCPLL_CTL);
6062         val &= ~LCPLL_PLL_DISABLE;
6063         I915_WRITE(LCPLL_CTL, val);
6064
6065         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6066                 DRM_ERROR("LCPLL not locked yet\n");
6067
6068         if (val & LCPLL_CD_SOURCE_FCLK) {
6069                 val = I915_READ(LCPLL_CTL);
6070                 val &= ~LCPLL_CD_SOURCE_FCLK;
6071                 I915_WRITE(LCPLL_CTL, val);
6072
6073                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6074                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6075                         DRM_ERROR("Switching back to LCPLL failed\n");
6076         }
6077 }
6078
6079 static void haswell_modeset_global_resources(struct drm_device *dev)
6080 {
6081         bool enable = false;
6082         struct intel_crtc *crtc;
6083
6084         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6085                 if (!crtc->base.enabled)
6086                         continue;
6087
6088                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6089                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6090                         enable = true;
6091         }
6092
6093         intel_set_power_well(dev, enable);
6094 }
6095
6096 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6097                                  int x, int y,
6098                                  struct drm_framebuffer *fb)
6099 {
6100         struct drm_device *dev = crtc->dev;
6101         struct drm_i915_private *dev_priv = dev->dev_private;
6102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6103         int plane = intel_crtc->plane;
6104         int ret;
6105
6106         if (!intel_ddi_pll_mode_set(crtc))
6107                 return -EINVAL;
6108
6109         /* Ensure that the cursor is valid for the new mode before changing... */
6110         intel_crtc_update_cursor(crtc, true);
6111
6112         if (intel_crtc->config.has_dp_encoder)
6113                 intel_dp_set_m_n(intel_crtc);
6114
6115         intel_crtc->lowfreq_avail = false;
6116
6117         intel_set_pipe_timings(intel_crtc);
6118
6119         if (intel_crtc->config.has_pch_encoder) {
6120                 intel_cpu_transcoder_set_m_n(intel_crtc,
6121                                              &intel_crtc->config.fdi_m_n);
6122         }
6123
6124         haswell_set_pipeconf(crtc);
6125
6126         intel_set_pipe_csc(crtc);
6127
6128         /* Set up the display plane register */
6129         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6130         POSTING_READ(DSPCNTR(plane));
6131
6132         ret = intel_pipe_set_base(crtc, x, y, fb);
6133
6134         intel_update_watermarks(dev);
6135
6136         return ret;
6137 }
6138
6139 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6140                                     struct intel_crtc_config *pipe_config)
6141 {
6142         struct drm_device *dev = crtc->base.dev;
6143         struct drm_i915_private *dev_priv = dev->dev_private;
6144         enum intel_display_power_domain pfit_domain;
6145         uint32_t tmp;
6146
6147         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6148         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6149
6150         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6151         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6152                 enum pipe trans_edp_pipe;
6153                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6154                 default:
6155                         WARN(1, "unknown pipe linked to edp transcoder\n");
6156                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6157                 case TRANS_DDI_EDP_INPUT_A_ON:
6158                         trans_edp_pipe = PIPE_A;
6159                         break;
6160                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6161                         trans_edp_pipe = PIPE_B;
6162                         break;
6163                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6164                         trans_edp_pipe = PIPE_C;
6165                         break;
6166                 }
6167
6168                 if (trans_edp_pipe == crtc->pipe)
6169                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6170         }
6171
6172         if (!intel_display_power_enabled(dev,
6173                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6174                 return false;
6175
6176         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6177         if (!(tmp & PIPECONF_ENABLE))
6178                 return false;
6179
6180         /*
6181          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6182          * DDI E. So just check whether this pipe is wired to DDI E and whether
6183          * the PCH transcoder is on.
6184          */
6185         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6186         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6187             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6188                 pipe_config->has_pch_encoder = true;
6189
6190                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6191                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6192                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6193
6194                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6195         }
6196
6197         intel_get_pipe_timings(crtc, pipe_config);
6198
6199         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6200         if (intel_display_power_enabled(dev, pfit_domain))
6201                 ironlake_get_pfit_config(crtc, pipe_config);
6202
6203         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6204                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6205
6206         pipe_config->pixel_multiplier = 1;
6207
6208         return true;
6209 }
6210
6211 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6212                                int x, int y,
6213                                struct drm_framebuffer *fb)
6214 {
6215         struct drm_device *dev = crtc->dev;
6216         struct drm_i915_private *dev_priv = dev->dev_private;
6217         struct intel_encoder *encoder;
6218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6219         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6220         int pipe = intel_crtc->pipe;
6221         int ret;
6222
6223         drm_vblank_pre_modeset(dev, pipe);
6224
6225         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6226
6227         drm_vblank_post_modeset(dev, pipe);
6228
6229         if (ret != 0)
6230                 return ret;
6231
6232         for_each_encoder_on_crtc(dev, crtc, encoder) {
6233                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6234                         encoder->base.base.id,
6235                         drm_get_encoder_name(&encoder->base),
6236                         mode->base.id, mode->name);
6237                 encoder->mode_set(encoder);
6238         }
6239
6240         return 0;
6241 }
6242
6243 static bool intel_eld_uptodate(struct drm_connector *connector,
6244                                int reg_eldv, uint32_t bits_eldv,
6245                                int reg_elda, uint32_t bits_elda,
6246                                int reg_edid)
6247 {
6248         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6249         uint8_t *eld = connector->eld;
6250         uint32_t i;
6251
6252         i = I915_READ(reg_eldv);
6253         i &= bits_eldv;
6254
6255         if (!eld[0])
6256                 return !i;
6257
6258         if (!i)
6259                 return false;
6260
6261         i = I915_READ(reg_elda);
6262         i &= ~bits_elda;
6263         I915_WRITE(reg_elda, i);
6264
6265         for (i = 0; i < eld[2]; i++)
6266                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6267                         return false;
6268
6269         return true;
6270 }
6271
6272 static void g4x_write_eld(struct drm_connector *connector,
6273                           struct drm_crtc *crtc)
6274 {
6275         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6276         uint8_t *eld = connector->eld;
6277         uint32_t eldv;
6278         uint32_t len;
6279         uint32_t i;
6280
6281         i = I915_READ(G4X_AUD_VID_DID);
6282
6283         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6284                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6285         else
6286                 eldv = G4X_ELDV_DEVCTG;
6287
6288         if (intel_eld_uptodate(connector,
6289                                G4X_AUD_CNTL_ST, eldv,
6290                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6291                                G4X_HDMIW_HDMIEDID))
6292                 return;
6293
6294         i = I915_READ(G4X_AUD_CNTL_ST);
6295         i &= ~(eldv | G4X_ELD_ADDR);
6296         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6297         I915_WRITE(G4X_AUD_CNTL_ST, i);
6298
6299         if (!eld[0])
6300                 return;
6301
6302         len = min_t(uint8_t, eld[2], len);
6303         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6304         for (i = 0; i < len; i++)
6305                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6306
6307         i = I915_READ(G4X_AUD_CNTL_ST);
6308         i |= eldv;
6309         I915_WRITE(G4X_AUD_CNTL_ST, i);
6310 }
6311
6312 static void haswell_write_eld(struct drm_connector *connector,
6313                                      struct drm_crtc *crtc)
6314 {
6315         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6316         uint8_t *eld = connector->eld;
6317         struct drm_device *dev = crtc->dev;
6318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6319         uint32_t eldv;
6320         uint32_t i;
6321         int len;
6322         int pipe = to_intel_crtc(crtc)->pipe;
6323         int tmp;
6324
6325         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6326         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6327         int aud_config = HSW_AUD_CFG(pipe);
6328         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6329
6330
6331         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6332
6333         /* Audio output enable */
6334         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6335         tmp = I915_READ(aud_cntrl_st2);
6336         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6337         I915_WRITE(aud_cntrl_st2, tmp);
6338
6339         /* Wait for 1 vertical blank */
6340         intel_wait_for_vblank(dev, pipe);
6341
6342         /* Set ELD valid state */
6343         tmp = I915_READ(aud_cntrl_st2);
6344         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6345         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6346         I915_WRITE(aud_cntrl_st2, tmp);
6347         tmp = I915_READ(aud_cntrl_st2);
6348         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6349
6350         /* Enable HDMI mode */
6351         tmp = I915_READ(aud_config);
6352         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6353         /* clear N_programing_enable and N_value_index */
6354         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6355         I915_WRITE(aud_config, tmp);
6356
6357         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6358
6359         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6360         intel_crtc->eld_vld = true;
6361
6362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6363                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6364                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6365                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6366         } else
6367                 I915_WRITE(aud_config, 0);
6368
6369         if (intel_eld_uptodate(connector,
6370                                aud_cntrl_st2, eldv,
6371                                aud_cntl_st, IBX_ELD_ADDRESS,
6372                                hdmiw_hdmiedid))
6373                 return;
6374
6375         i = I915_READ(aud_cntrl_st2);
6376         i &= ~eldv;
6377         I915_WRITE(aud_cntrl_st2, i);
6378
6379         if (!eld[0])
6380                 return;
6381
6382         i = I915_READ(aud_cntl_st);
6383         i &= ~IBX_ELD_ADDRESS;
6384         I915_WRITE(aud_cntl_st, i);
6385         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6386         DRM_DEBUG_DRIVER("port num:%d\n", i);
6387
6388         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6389         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6390         for (i = 0; i < len; i++)
6391                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6392
6393         i = I915_READ(aud_cntrl_st2);
6394         i |= eldv;
6395         I915_WRITE(aud_cntrl_st2, i);
6396
6397 }
6398
6399 static void ironlake_write_eld(struct drm_connector *connector,
6400                                      struct drm_crtc *crtc)
6401 {
6402         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6403         uint8_t *eld = connector->eld;
6404         uint32_t eldv;
6405         uint32_t i;
6406         int len;
6407         int hdmiw_hdmiedid;
6408         int aud_config;
6409         int aud_cntl_st;
6410         int aud_cntrl_st2;
6411         int pipe = to_intel_crtc(crtc)->pipe;
6412
6413         if (HAS_PCH_IBX(connector->dev)) {
6414                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6415                 aud_config = IBX_AUD_CFG(pipe);
6416                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6417                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6418         } else {
6419                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6420                 aud_config = CPT_AUD_CFG(pipe);
6421                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6422                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6423         }
6424
6425         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6426
6427         i = I915_READ(aud_cntl_st);
6428         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6429         if (!i) {
6430                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6431                 /* operate blindly on all ports */
6432                 eldv = IBX_ELD_VALIDB;
6433                 eldv |= IBX_ELD_VALIDB << 4;
6434                 eldv |= IBX_ELD_VALIDB << 8;
6435         } else {
6436                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6437                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6438         }
6439
6440         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6441                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6442                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6443                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6444         } else
6445                 I915_WRITE(aud_config, 0);
6446
6447         if (intel_eld_uptodate(connector,
6448                                aud_cntrl_st2, eldv,
6449                                aud_cntl_st, IBX_ELD_ADDRESS,
6450                                hdmiw_hdmiedid))
6451                 return;
6452
6453         i = I915_READ(aud_cntrl_st2);
6454         i &= ~eldv;
6455         I915_WRITE(aud_cntrl_st2, i);
6456
6457         if (!eld[0])
6458                 return;
6459
6460         i = I915_READ(aud_cntl_st);
6461         i &= ~IBX_ELD_ADDRESS;
6462         I915_WRITE(aud_cntl_st, i);
6463
6464         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6465         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6466         for (i = 0; i < len; i++)
6467                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6468
6469         i = I915_READ(aud_cntrl_st2);
6470         i |= eldv;
6471         I915_WRITE(aud_cntrl_st2, i);
6472 }
6473
6474 void intel_write_eld(struct drm_encoder *encoder,
6475                      struct drm_display_mode *mode)
6476 {
6477         struct drm_crtc *crtc = encoder->crtc;
6478         struct drm_connector *connector;
6479         struct drm_device *dev = encoder->dev;
6480         struct drm_i915_private *dev_priv = dev->dev_private;
6481
6482         connector = drm_select_eld(encoder, mode);
6483         if (!connector)
6484                 return;
6485
6486         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6487                          connector->base.id,
6488                          drm_get_connector_name(connector),
6489                          connector->encoder->base.id,
6490                          drm_get_encoder_name(connector->encoder));
6491
6492         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6493
6494         if (dev_priv->display.write_eld)
6495                 dev_priv->display.write_eld(connector, crtc);
6496 }
6497
6498 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6499 void intel_crtc_load_lut(struct drm_crtc *crtc)
6500 {
6501         struct drm_device *dev = crtc->dev;
6502         struct drm_i915_private *dev_priv = dev->dev_private;
6503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6504         enum pipe pipe = intel_crtc->pipe;
6505         int palreg = PALETTE(pipe);
6506         int i;
6507         bool reenable_ips = false;
6508
6509         /* The clocks have to be on to load the palette. */
6510         if (!crtc->enabled || !intel_crtc->active)
6511                 return;
6512
6513         if (!HAS_PCH_SPLIT(dev_priv->dev))
6514                 assert_pll_enabled(dev_priv, pipe);
6515
6516         /* use legacy palette for Ironlake */
6517         if (HAS_PCH_SPLIT(dev))
6518                 palreg = LGC_PALETTE(pipe);
6519
6520         /* Workaround : Do not read or write the pipe palette/gamma data while
6521          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6522          */
6523         if (intel_crtc->config.ips_enabled &&
6524             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6525              GAMMA_MODE_MODE_SPLIT)) {
6526                 hsw_disable_ips(intel_crtc);
6527                 reenable_ips = true;
6528         }
6529
6530         for (i = 0; i < 256; i++) {
6531                 I915_WRITE(palreg + 4 * i,
6532                            (intel_crtc->lut_r[i] << 16) |
6533                            (intel_crtc->lut_g[i] << 8) |
6534                            intel_crtc->lut_b[i]);
6535         }
6536
6537         if (reenable_ips)
6538                 hsw_enable_ips(intel_crtc);
6539 }
6540
6541 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6542 {
6543         struct drm_device *dev = crtc->dev;
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6546         bool visible = base != 0;
6547         u32 cntl;
6548
6549         if (intel_crtc->cursor_visible == visible)
6550                 return;
6551
6552         cntl = I915_READ(_CURACNTR);
6553         if (visible) {
6554                 /* On these chipsets we can only modify the base whilst
6555                  * the cursor is disabled.
6556                  */
6557                 I915_WRITE(_CURABASE, base);
6558
6559                 cntl &= ~(CURSOR_FORMAT_MASK);
6560                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6561                 cntl |= CURSOR_ENABLE |
6562                         CURSOR_GAMMA_ENABLE |
6563                         CURSOR_FORMAT_ARGB;
6564         } else
6565                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6566         I915_WRITE(_CURACNTR, cntl);
6567
6568         intel_crtc->cursor_visible = visible;
6569 }
6570
6571 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6572 {
6573         struct drm_device *dev = crtc->dev;
6574         struct drm_i915_private *dev_priv = dev->dev_private;
6575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6576         int pipe = intel_crtc->pipe;
6577         bool visible = base != 0;
6578
6579         if (intel_crtc->cursor_visible != visible) {
6580                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6581                 if (base) {
6582                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6583                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6584                         cntl |= pipe << 28; /* Connect to correct pipe */
6585                 } else {
6586                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6587                         cntl |= CURSOR_MODE_DISABLE;
6588                 }
6589                 I915_WRITE(CURCNTR(pipe), cntl);
6590
6591                 intel_crtc->cursor_visible = visible;
6592         }
6593         /* and commit changes on next vblank */
6594         I915_WRITE(CURBASE(pipe), base);
6595 }
6596
6597 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6598 {
6599         struct drm_device *dev = crtc->dev;
6600         struct drm_i915_private *dev_priv = dev->dev_private;
6601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6602         int pipe = intel_crtc->pipe;
6603         bool visible = base != 0;
6604
6605         if (intel_crtc->cursor_visible != visible) {
6606                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6607                 if (base) {
6608                         cntl &= ~CURSOR_MODE;
6609                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6610                 } else {
6611                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6612                         cntl |= CURSOR_MODE_DISABLE;
6613                 }
6614                 if (IS_HASWELL(dev))
6615                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6616                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6617
6618                 intel_crtc->cursor_visible = visible;
6619         }
6620         /* and commit changes on next vblank */
6621         I915_WRITE(CURBASE_IVB(pipe), base);
6622 }
6623
6624 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6625 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6626                                      bool on)
6627 {
6628         struct drm_device *dev = crtc->dev;
6629         struct drm_i915_private *dev_priv = dev->dev_private;
6630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6631         int pipe = intel_crtc->pipe;
6632         int x = intel_crtc->cursor_x;
6633         int y = intel_crtc->cursor_y;
6634         u32 base, pos;
6635         bool visible;
6636
6637         pos = 0;
6638
6639         if (on && crtc->enabled && crtc->fb) {
6640                 base = intel_crtc->cursor_addr;
6641                 if (x > (int) crtc->fb->width)
6642                         base = 0;
6643
6644                 if (y > (int) crtc->fb->height)
6645                         base = 0;
6646         } else
6647                 base = 0;
6648
6649         if (x < 0) {
6650                 if (x + intel_crtc->cursor_width < 0)
6651                         base = 0;
6652
6653                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6654                 x = -x;
6655         }
6656         pos |= x << CURSOR_X_SHIFT;
6657
6658         if (y < 0) {
6659                 if (y + intel_crtc->cursor_height < 0)
6660                         base = 0;
6661
6662                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6663                 y = -y;
6664         }
6665         pos |= y << CURSOR_Y_SHIFT;
6666
6667         visible = base != 0;
6668         if (!visible && !intel_crtc->cursor_visible)
6669                 return;
6670
6671         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6672                 I915_WRITE(CURPOS_IVB(pipe), pos);
6673                 ivb_update_cursor(crtc, base);
6674         } else {
6675                 I915_WRITE(CURPOS(pipe), pos);
6676                 if (IS_845G(dev) || IS_I865G(dev))
6677                         i845_update_cursor(crtc, base);
6678                 else
6679                         i9xx_update_cursor(crtc, base);
6680         }
6681 }
6682
6683 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6684                                  struct drm_file *file,
6685                                  uint32_t handle,
6686                                  uint32_t width, uint32_t height)
6687 {
6688         struct drm_device *dev = crtc->dev;
6689         struct drm_i915_private *dev_priv = dev->dev_private;
6690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6691         struct drm_i915_gem_object *obj;
6692         uint32_t addr;
6693         int ret;
6694
6695         /* if we want to turn off the cursor ignore width and height */
6696         if (!handle) {
6697                 DRM_DEBUG_KMS("cursor off\n");
6698                 addr = 0;
6699                 obj = NULL;
6700                 mutex_lock(&dev->struct_mutex);
6701                 goto finish;
6702         }
6703
6704         /* Currently we only support 64x64 cursors */
6705         if (width != 64 || height != 64) {
6706                 DRM_ERROR("we currently only support 64x64 cursors\n");
6707                 return -EINVAL;
6708         }
6709
6710         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6711         if (&obj->base == NULL)
6712                 return -ENOENT;
6713
6714         if (obj->base.size < width * height * 4) {
6715                 DRM_ERROR("buffer is to small\n");
6716                 ret = -ENOMEM;
6717                 goto fail;
6718         }
6719
6720         /* we only need to pin inside GTT if cursor is non-phy */
6721         mutex_lock(&dev->struct_mutex);
6722         if (!dev_priv->info->cursor_needs_physical) {
6723                 unsigned alignment;
6724
6725                 if (obj->tiling_mode) {
6726                         DRM_ERROR("cursor cannot be tiled\n");
6727                         ret = -EINVAL;
6728                         goto fail_locked;
6729                 }
6730
6731                 /* Note that the w/a also requires 2 PTE of padding following
6732                  * the bo. We currently fill all unused PTE with the shadow
6733                  * page and so we should always have valid PTE following the
6734                  * cursor preventing the VT-d warning.
6735                  */
6736                 alignment = 0;
6737                 if (need_vtd_wa(dev))
6738                         alignment = 64*1024;
6739
6740                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6741                 if (ret) {
6742                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6743                         goto fail_locked;
6744                 }
6745
6746                 ret = i915_gem_object_put_fence(obj);
6747                 if (ret) {
6748                         DRM_ERROR("failed to release fence for cursor");
6749                         goto fail_unpin;
6750                 }
6751
6752                 addr = i915_gem_obj_ggtt_offset(obj);
6753         } else {
6754                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6755                 ret = i915_gem_attach_phys_object(dev, obj,
6756                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6757                                                   align);
6758                 if (ret) {
6759                         DRM_ERROR("failed to attach phys object\n");
6760                         goto fail_locked;
6761                 }
6762                 addr = obj->phys_obj->handle->busaddr;
6763         }
6764
6765         if (IS_GEN2(dev))
6766                 I915_WRITE(CURSIZE, (height << 12) | width);
6767
6768  finish:
6769         if (intel_crtc->cursor_bo) {
6770                 if (dev_priv->info->cursor_needs_physical) {
6771                         if (intel_crtc->cursor_bo != obj)
6772                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6773                 } else
6774                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6775                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6776         }
6777
6778         mutex_unlock(&dev->struct_mutex);
6779
6780         intel_crtc->cursor_addr = addr;
6781         intel_crtc->cursor_bo = obj;
6782         intel_crtc->cursor_width = width;
6783         intel_crtc->cursor_height = height;
6784
6785         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6786
6787         return 0;
6788 fail_unpin:
6789         i915_gem_object_unpin(obj);
6790 fail_locked:
6791         mutex_unlock(&dev->struct_mutex);
6792 fail:
6793         drm_gem_object_unreference_unlocked(&obj->base);
6794         return ret;
6795 }
6796
6797 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6798 {
6799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800
6801         intel_crtc->cursor_x = x;
6802         intel_crtc->cursor_y = y;
6803
6804         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6805
6806         return 0;
6807 }
6808
6809 /** Sets the color ramps on behalf of RandR */
6810 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6811                                  u16 blue, int regno)
6812 {
6813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814
6815         intel_crtc->lut_r[regno] = red >> 8;
6816         intel_crtc->lut_g[regno] = green >> 8;
6817         intel_crtc->lut_b[regno] = blue >> 8;
6818 }
6819
6820 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6821                              u16 *blue, int regno)
6822 {
6823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6824
6825         *red = intel_crtc->lut_r[regno] << 8;
6826         *green = intel_crtc->lut_g[regno] << 8;
6827         *blue = intel_crtc->lut_b[regno] << 8;
6828 }
6829
6830 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6831                                  u16 *blue, uint32_t start, uint32_t size)
6832 {
6833         int end = (start + size > 256) ? 256 : start + size, i;
6834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6835
6836         for (i = start; i < end; i++) {
6837                 intel_crtc->lut_r[i] = red[i] >> 8;
6838                 intel_crtc->lut_g[i] = green[i] >> 8;
6839                 intel_crtc->lut_b[i] = blue[i] >> 8;
6840         }
6841
6842         intel_crtc_load_lut(crtc);
6843 }
6844
6845 /* VESA 640x480x72Hz mode to set on the pipe */
6846 static struct drm_display_mode load_detect_mode = {
6847         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6848                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6849 };
6850
6851 static struct drm_framebuffer *
6852 intel_framebuffer_create(struct drm_device *dev,
6853                          struct drm_mode_fb_cmd2 *mode_cmd,
6854                          struct drm_i915_gem_object *obj)
6855 {
6856         struct intel_framebuffer *intel_fb;
6857         int ret;
6858
6859         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6860         if (!intel_fb) {
6861                 drm_gem_object_unreference_unlocked(&obj->base);
6862                 return ERR_PTR(-ENOMEM);
6863         }
6864
6865         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6866         if (ret) {
6867                 drm_gem_object_unreference_unlocked(&obj->base);
6868                 kfree(intel_fb);
6869                 return ERR_PTR(ret);
6870         }
6871
6872         return &intel_fb->base;
6873 }
6874
6875 static u32
6876 intel_framebuffer_pitch_for_width(int width, int bpp)
6877 {
6878         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6879         return ALIGN(pitch, 64);
6880 }
6881
6882 static u32
6883 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6884 {
6885         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6886         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6887 }
6888
6889 static struct drm_framebuffer *
6890 intel_framebuffer_create_for_mode(struct drm_device *dev,
6891                                   struct drm_display_mode *mode,
6892                                   int depth, int bpp)
6893 {
6894         struct drm_i915_gem_object *obj;
6895         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6896
6897         obj = i915_gem_alloc_object(dev,
6898                                     intel_framebuffer_size_for_mode(mode, bpp));
6899         if (obj == NULL)
6900                 return ERR_PTR(-ENOMEM);
6901
6902         mode_cmd.width = mode->hdisplay;
6903         mode_cmd.height = mode->vdisplay;
6904         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6905                                                                 bpp);
6906         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6907
6908         return intel_framebuffer_create(dev, &mode_cmd, obj);
6909 }
6910
6911 static struct drm_framebuffer *
6912 mode_fits_in_fbdev(struct drm_device *dev,
6913                    struct drm_display_mode *mode)
6914 {
6915         struct drm_i915_private *dev_priv = dev->dev_private;
6916         struct drm_i915_gem_object *obj;
6917         struct drm_framebuffer *fb;
6918
6919         if (dev_priv->fbdev == NULL)
6920                 return NULL;
6921
6922         obj = dev_priv->fbdev->ifb.obj;
6923         if (obj == NULL)
6924                 return NULL;
6925
6926         fb = &dev_priv->fbdev->ifb.base;
6927         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6928                                                                fb->bits_per_pixel))
6929                 return NULL;
6930
6931         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6932                 return NULL;
6933
6934         return fb;
6935 }
6936
6937 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6938                                 struct drm_display_mode *mode,
6939                                 struct intel_load_detect_pipe *old)
6940 {
6941         struct intel_crtc *intel_crtc;
6942         struct intel_encoder *intel_encoder =
6943                 intel_attached_encoder(connector);
6944         struct drm_crtc *possible_crtc;
6945         struct drm_encoder *encoder = &intel_encoder->base;
6946         struct drm_crtc *crtc = NULL;
6947         struct drm_device *dev = encoder->dev;
6948         struct drm_framebuffer *fb;
6949         int i = -1;
6950
6951         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6952                       connector->base.id, drm_get_connector_name(connector),
6953                       encoder->base.id, drm_get_encoder_name(encoder));
6954
6955         /*
6956          * Algorithm gets a little messy:
6957          *
6958          *   - if the connector already has an assigned crtc, use it (but make
6959          *     sure it's on first)
6960          *
6961          *   - try to find the first unused crtc that can drive this connector,
6962          *     and use that if we find one
6963          */
6964
6965         /* See if we already have a CRTC for this connector */
6966         if (encoder->crtc) {
6967                 crtc = encoder->crtc;
6968
6969                 mutex_lock(&crtc->mutex);
6970
6971                 old->dpms_mode = connector->dpms;
6972                 old->load_detect_temp = false;
6973
6974                 /* Make sure the crtc and connector are running */
6975                 if (connector->dpms != DRM_MODE_DPMS_ON)
6976                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6977
6978                 return true;
6979         }
6980
6981         /* Find an unused one (if possible) */
6982         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6983                 i++;
6984                 if (!(encoder->possible_crtcs & (1 << i)))
6985                         continue;
6986                 if (!possible_crtc->enabled) {
6987                         crtc = possible_crtc;
6988                         break;
6989                 }
6990         }
6991
6992         /*
6993          * If we didn't find an unused CRTC, don't use any.
6994          */
6995         if (!crtc) {
6996                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6997                 return false;
6998         }
6999
7000         mutex_lock(&crtc->mutex);
7001         intel_encoder->new_crtc = to_intel_crtc(crtc);
7002         to_intel_connector(connector)->new_encoder = intel_encoder;
7003
7004         intel_crtc = to_intel_crtc(crtc);
7005         old->dpms_mode = connector->dpms;
7006         old->load_detect_temp = true;
7007         old->release_fb = NULL;
7008
7009         if (!mode)
7010                 mode = &load_detect_mode;
7011
7012         /* We need a framebuffer large enough to accommodate all accesses
7013          * that the plane may generate whilst we perform load detection.
7014          * We can not rely on the fbcon either being present (we get called
7015          * during its initialisation to detect all boot displays, or it may
7016          * not even exist) or that it is large enough to satisfy the
7017          * requested mode.
7018          */
7019         fb = mode_fits_in_fbdev(dev, mode);
7020         if (fb == NULL) {
7021                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7022                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7023                 old->release_fb = fb;
7024         } else
7025                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7026         if (IS_ERR(fb)) {
7027                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7028                 mutex_unlock(&crtc->mutex);
7029                 return false;
7030         }
7031
7032         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7033                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7034                 if (old->release_fb)
7035                         old->release_fb->funcs->destroy(old->release_fb);
7036                 mutex_unlock(&crtc->mutex);
7037                 return false;
7038         }
7039
7040         /* let the connector get through one full cycle before testing */
7041         intel_wait_for_vblank(dev, intel_crtc->pipe);
7042         return true;
7043 }
7044
7045 void intel_release_load_detect_pipe(struct drm_connector *connector,
7046                                     struct intel_load_detect_pipe *old)
7047 {
7048         struct intel_encoder *intel_encoder =
7049                 intel_attached_encoder(connector);
7050         struct drm_encoder *encoder = &intel_encoder->base;
7051         struct drm_crtc *crtc = encoder->crtc;
7052
7053         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7054                       connector->base.id, drm_get_connector_name(connector),
7055                       encoder->base.id, drm_get_encoder_name(encoder));
7056
7057         if (old->load_detect_temp) {
7058                 to_intel_connector(connector)->new_encoder = NULL;
7059                 intel_encoder->new_crtc = NULL;
7060                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7061
7062                 if (old->release_fb) {
7063                         drm_framebuffer_unregister_private(old->release_fb);
7064                         drm_framebuffer_unreference(old->release_fb);
7065                 }
7066
7067                 mutex_unlock(&crtc->mutex);
7068                 return;
7069         }
7070
7071         /* Switch crtc and encoder back off if necessary */
7072         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7073                 connector->funcs->dpms(connector, old->dpms_mode);
7074
7075         mutex_unlock(&crtc->mutex);
7076 }
7077
7078 /* Returns the clock of the currently programmed mode of the given pipe. */
7079 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7080                                 struct intel_crtc_config *pipe_config)
7081 {
7082         struct drm_device *dev = crtc->base.dev;
7083         struct drm_i915_private *dev_priv = dev->dev_private;
7084         int pipe = pipe_config->cpu_transcoder;
7085         u32 dpll = I915_READ(DPLL(pipe));
7086         u32 fp;
7087         intel_clock_t clock;
7088
7089         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7090                 fp = I915_READ(FP0(pipe));
7091         else
7092                 fp = I915_READ(FP1(pipe));
7093
7094         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7095         if (IS_PINEVIEW(dev)) {
7096                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7097                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7098         } else {
7099                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7100                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7101         }
7102
7103         if (!IS_GEN2(dev)) {
7104                 if (IS_PINEVIEW(dev))
7105                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7106                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7107                 else
7108                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7109                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7110
7111                 switch (dpll & DPLL_MODE_MASK) {
7112                 case DPLLB_MODE_DAC_SERIAL:
7113                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7114                                 5 : 10;
7115                         break;
7116                 case DPLLB_MODE_LVDS:
7117                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7118                                 7 : 14;
7119                         break;
7120                 default:
7121                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7122                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7123                         pipe_config->adjusted_mode.clock = 0;
7124                         return;
7125                 }
7126
7127                 if (IS_PINEVIEW(dev))
7128                         pineview_clock(96000, &clock);
7129                 else
7130                         i9xx_clock(96000, &clock);
7131         } else {
7132                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7133
7134                 if (is_lvds) {
7135                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7136                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7137                         clock.p2 = 14;
7138
7139                         if ((dpll & PLL_REF_INPUT_MASK) ==
7140                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7141                                 /* XXX: might not be 66MHz */
7142                                 i9xx_clock(66000, &clock);
7143                         } else
7144                                 i9xx_clock(48000, &clock);
7145                 } else {
7146                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7147                                 clock.p1 = 2;
7148                         else {
7149                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7150                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7151                         }
7152                         if (dpll & PLL_P2_DIVIDE_BY_4)
7153                                 clock.p2 = 4;
7154                         else
7155                                 clock.p2 = 2;
7156
7157                         i9xx_clock(48000, &clock);
7158                 }
7159         }
7160
7161         pipe_config->adjusted_mode.clock = clock.dot *
7162                 pipe_config->pixel_multiplier;
7163 }
7164
7165 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7166                                     struct intel_crtc_config *pipe_config)
7167 {
7168         struct drm_device *dev = crtc->base.dev;
7169         struct drm_i915_private *dev_priv = dev->dev_private;
7170         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7171         int link_freq, repeat;
7172         u64 clock;
7173         u32 link_m, link_n;
7174
7175         repeat = pipe_config->pixel_multiplier;
7176
7177         /*
7178          * The calculation for the data clock is:
7179          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7180          * But we want to avoid losing precison if possible, so:
7181          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7182          *
7183          * and the link clock is simpler:
7184          * link_clock = (m * link_clock * repeat) / n
7185          */
7186
7187         /*
7188          * We need to get the FDI or DP link clock here to derive
7189          * the M/N dividers.
7190          *
7191          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7192          * For DP, it's either 1.62GHz or 2.7GHz.
7193          * We do our calculations in 10*MHz since we don't need much precison.
7194          */
7195         if (pipe_config->has_pch_encoder)
7196                 link_freq = intel_fdi_link_freq(dev) * 10000;
7197         else
7198                 link_freq = pipe_config->port_clock;
7199
7200         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7201         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7202
7203         if (!link_m || !link_n)
7204                 return;
7205
7206         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7207         do_div(clock, link_n);
7208
7209         pipe_config->adjusted_mode.clock = clock;
7210 }
7211
7212 /** Returns the currently programmed mode of the given pipe. */
7213 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7214                                              struct drm_crtc *crtc)
7215 {
7216         struct drm_i915_private *dev_priv = dev->dev_private;
7217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7218         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7219         struct drm_display_mode *mode;
7220         struct intel_crtc_config pipe_config;
7221         int htot = I915_READ(HTOTAL(cpu_transcoder));
7222         int hsync = I915_READ(HSYNC(cpu_transcoder));
7223         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7224         int vsync = I915_READ(VSYNC(cpu_transcoder));
7225
7226         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7227         if (!mode)
7228                 return NULL;
7229
7230         /*
7231          * Construct a pipe_config sufficient for getting the clock info
7232          * back out of crtc_clock_get.
7233          *
7234          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7235          * to use a real value here instead.
7236          */
7237         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7238         pipe_config.pixel_multiplier = 1;
7239         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7240
7241         mode->clock = pipe_config.adjusted_mode.clock;
7242         mode->hdisplay = (htot & 0xffff) + 1;
7243         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7244         mode->hsync_start = (hsync & 0xffff) + 1;
7245         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7246         mode->vdisplay = (vtot & 0xffff) + 1;
7247         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7248         mode->vsync_start = (vsync & 0xffff) + 1;
7249         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7250
7251         drm_mode_set_name(mode);
7252
7253         return mode;
7254 }
7255
7256 static void intel_increase_pllclock(struct drm_crtc *crtc)
7257 {
7258         struct drm_device *dev = crtc->dev;
7259         drm_i915_private_t *dev_priv = dev->dev_private;
7260         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7261         int pipe = intel_crtc->pipe;
7262         int dpll_reg = DPLL(pipe);
7263         int dpll;
7264
7265         if (HAS_PCH_SPLIT(dev))
7266                 return;
7267
7268         if (!dev_priv->lvds_downclock_avail)
7269                 return;
7270
7271         dpll = I915_READ(dpll_reg);
7272         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7273                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7274
7275                 assert_panel_unlocked(dev_priv, pipe);
7276
7277                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7278                 I915_WRITE(dpll_reg, dpll);
7279                 intel_wait_for_vblank(dev, pipe);
7280
7281                 dpll = I915_READ(dpll_reg);
7282                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7283                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7284         }
7285 }
7286
7287 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7288 {
7289         struct drm_device *dev = crtc->dev;
7290         drm_i915_private_t *dev_priv = dev->dev_private;
7291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7292
7293         if (HAS_PCH_SPLIT(dev))
7294                 return;
7295
7296         if (!dev_priv->lvds_downclock_avail)
7297                 return;
7298
7299         /*
7300          * Since this is called by a timer, we should never get here in
7301          * the manual case.
7302          */
7303         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7304                 int pipe = intel_crtc->pipe;
7305                 int dpll_reg = DPLL(pipe);
7306                 int dpll;
7307
7308                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7309
7310                 assert_panel_unlocked(dev_priv, pipe);
7311
7312                 dpll = I915_READ(dpll_reg);
7313                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7314                 I915_WRITE(dpll_reg, dpll);
7315                 intel_wait_for_vblank(dev, pipe);
7316                 dpll = I915_READ(dpll_reg);
7317                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7318                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7319         }
7320
7321 }
7322
7323 void intel_mark_busy(struct drm_device *dev)
7324 {
7325         i915_update_gfx_val(dev->dev_private);
7326 }
7327
7328 void intel_mark_idle(struct drm_device *dev)
7329 {
7330         struct drm_crtc *crtc;
7331
7332         if (!i915_powersave)
7333                 return;
7334
7335         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7336                 if (!crtc->fb)
7337                         continue;
7338
7339                 intel_decrease_pllclock(crtc);
7340         }
7341 }
7342
7343 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7344                         struct intel_ring_buffer *ring)
7345 {
7346         struct drm_device *dev = obj->base.dev;
7347         struct drm_crtc *crtc;
7348
7349         if (!i915_powersave)
7350                 return;
7351
7352         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7353                 if (!crtc->fb)
7354                         continue;
7355
7356                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7357                         continue;
7358
7359                 intel_increase_pllclock(crtc);
7360                 if (ring && intel_fbc_enabled(dev))
7361                         ring->fbc_dirty = true;
7362         }
7363 }
7364
7365 static void intel_crtc_destroy(struct drm_crtc *crtc)
7366 {
7367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7368         struct drm_device *dev = crtc->dev;
7369         struct intel_unpin_work *work;
7370         unsigned long flags;
7371
7372         spin_lock_irqsave(&dev->event_lock, flags);
7373         work = intel_crtc->unpin_work;
7374         intel_crtc->unpin_work = NULL;
7375         spin_unlock_irqrestore(&dev->event_lock, flags);
7376
7377         if (work) {
7378                 cancel_work_sync(&work->work);
7379                 kfree(work);
7380         }
7381
7382         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7383
7384         drm_crtc_cleanup(crtc);
7385
7386         kfree(intel_crtc);
7387 }
7388
7389 static void intel_unpin_work_fn(struct work_struct *__work)
7390 {
7391         struct intel_unpin_work *work =
7392                 container_of(__work, struct intel_unpin_work, work);
7393         struct drm_device *dev = work->crtc->dev;
7394
7395         mutex_lock(&dev->struct_mutex);
7396         intel_unpin_fb_obj(work->old_fb_obj);
7397         drm_gem_object_unreference(&work->pending_flip_obj->base);
7398         drm_gem_object_unreference(&work->old_fb_obj->base);
7399
7400         intel_update_fbc(dev);
7401         mutex_unlock(&dev->struct_mutex);
7402
7403         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7404         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7405
7406         kfree(work);
7407 }
7408
7409 static void do_intel_finish_page_flip(struct drm_device *dev,
7410                                       struct drm_crtc *crtc)
7411 {
7412         drm_i915_private_t *dev_priv = dev->dev_private;
7413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7414         struct intel_unpin_work *work;
7415         unsigned long flags;
7416
7417         /* Ignore early vblank irqs */
7418         if (intel_crtc == NULL)
7419                 return;
7420
7421         spin_lock_irqsave(&dev->event_lock, flags);
7422         work = intel_crtc->unpin_work;
7423
7424         /* Ensure we don't miss a work->pending update ... */
7425         smp_rmb();
7426
7427         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7428                 spin_unlock_irqrestore(&dev->event_lock, flags);
7429                 return;
7430         }
7431
7432         /* and that the unpin work is consistent wrt ->pending. */
7433         smp_rmb();
7434
7435         intel_crtc->unpin_work = NULL;
7436
7437         if (work->event)
7438                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7439
7440         drm_vblank_put(dev, intel_crtc->pipe);
7441
7442         spin_unlock_irqrestore(&dev->event_lock, flags);
7443
7444         wake_up_all(&dev_priv->pending_flip_queue);
7445
7446         queue_work(dev_priv->wq, &work->work);
7447
7448         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7449 }
7450
7451 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7452 {
7453         drm_i915_private_t *dev_priv = dev->dev_private;
7454         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7455
7456         do_intel_finish_page_flip(dev, crtc);
7457 }
7458
7459 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7460 {
7461         drm_i915_private_t *dev_priv = dev->dev_private;
7462         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7463
7464         do_intel_finish_page_flip(dev, crtc);
7465 }
7466
7467 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7468 {
7469         drm_i915_private_t *dev_priv = dev->dev_private;
7470         struct intel_crtc *intel_crtc =
7471                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7472         unsigned long flags;
7473
7474         /* NB: An MMIO update of the plane base pointer will also
7475          * generate a page-flip completion irq, i.e. every modeset
7476          * is also accompanied by a spurious intel_prepare_page_flip().
7477          */
7478         spin_lock_irqsave(&dev->event_lock, flags);
7479         if (intel_crtc->unpin_work)
7480                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7481         spin_unlock_irqrestore(&dev->event_lock, flags);
7482 }
7483
7484 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7485 {
7486         /* Ensure that the work item is consistent when activating it ... */
7487         smp_wmb();
7488         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7489         /* and that it is marked active as soon as the irq could fire. */
7490         smp_wmb();
7491 }
7492
7493 static int intel_gen2_queue_flip(struct drm_device *dev,
7494                                  struct drm_crtc *crtc,
7495                                  struct drm_framebuffer *fb,
7496                                  struct drm_i915_gem_object *obj)
7497 {
7498         struct drm_i915_private *dev_priv = dev->dev_private;
7499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7500         u32 flip_mask;
7501         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7502         int ret;
7503
7504         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7505         if (ret)
7506                 goto err;
7507
7508         ret = intel_ring_begin(ring, 6);
7509         if (ret)
7510                 goto err_unpin;
7511
7512         /* Can't queue multiple flips, so wait for the previous
7513          * one to finish before executing the next.
7514          */
7515         if (intel_crtc->plane)
7516                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7517         else
7518                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7519         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7520         intel_ring_emit(ring, MI_NOOP);
7521         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7522                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7523         intel_ring_emit(ring, fb->pitches[0]);
7524         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7525         intel_ring_emit(ring, 0); /* aux display base address, unused */
7526
7527         intel_mark_page_flip_active(intel_crtc);
7528         intel_ring_advance(ring);
7529         return 0;
7530
7531 err_unpin:
7532         intel_unpin_fb_obj(obj);
7533 err:
7534         return ret;
7535 }
7536
7537 static int intel_gen3_queue_flip(struct drm_device *dev,
7538                                  struct drm_crtc *crtc,
7539                                  struct drm_framebuffer *fb,
7540                                  struct drm_i915_gem_object *obj)
7541 {
7542         struct drm_i915_private *dev_priv = dev->dev_private;
7543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7544         u32 flip_mask;
7545         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7546         int ret;
7547
7548         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7549         if (ret)
7550                 goto err;
7551
7552         ret = intel_ring_begin(ring, 6);
7553         if (ret)
7554                 goto err_unpin;
7555
7556         if (intel_crtc->plane)
7557                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7558         else
7559                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7560         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7561         intel_ring_emit(ring, MI_NOOP);
7562         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7563                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7564         intel_ring_emit(ring, fb->pitches[0]);
7565         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7566         intel_ring_emit(ring, MI_NOOP);
7567
7568         intel_mark_page_flip_active(intel_crtc);
7569         intel_ring_advance(ring);
7570         return 0;
7571
7572 err_unpin:
7573         intel_unpin_fb_obj(obj);
7574 err:
7575         return ret;
7576 }
7577
7578 static int intel_gen4_queue_flip(struct drm_device *dev,
7579                                  struct drm_crtc *crtc,
7580                                  struct drm_framebuffer *fb,
7581                                  struct drm_i915_gem_object *obj)
7582 {
7583         struct drm_i915_private *dev_priv = dev->dev_private;
7584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7585         uint32_t pf, pipesrc;
7586         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7587         int ret;
7588
7589         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7590         if (ret)
7591                 goto err;
7592
7593         ret = intel_ring_begin(ring, 4);
7594         if (ret)
7595                 goto err_unpin;
7596
7597         /* i965+ uses the linear or tiled offsets from the
7598          * Display Registers (which do not change across a page-flip)
7599          * so we need only reprogram the base address.
7600          */
7601         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7602                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7603         intel_ring_emit(ring, fb->pitches[0]);
7604         intel_ring_emit(ring,
7605                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7606                         obj->tiling_mode);
7607
7608         /* XXX Enabling the panel-fitter across page-flip is so far
7609          * untested on non-native modes, so ignore it for now.
7610          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7611          */
7612         pf = 0;
7613         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7614         intel_ring_emit(ring, pf | pipesrc);
7615
7616         intel_mark_page_flip_active(intel_crtc);
7617         intel_ring_advance(ring);
7618         return 0;
7619
7620 err_unpin:
7621         intel_unpin_fb_obj(obj);
7622 err:
7623         return ret;
7624 }
7625
7626 static int intel_gen6_queue_flip(struct drm_device *dev,
7627                                  struct drm_crtc *crtc,
7628                                  struct drm_framebuffer *fb,
7629                                  struct drm_i915_gem_object *obj)
7630 {
7631         struct drm_i915_private *dev_priv = dev->dev_private;
7632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7633         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7634         uint32_t pf, pipesrc;
7635         int ret;
7636
7637         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7638         if (ret)
7639                 goto err;
7640
7641         ret = intel_ring_begin(ring, 4);
7642         if (ret)
7643                 goto err_unpin;
7644
7645         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7646                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7647         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7648         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7649
7650         /* Contrary to the suggestions in the documentation,
7651          * "Enable Panel Fitter" does not seem to be required when page
7652          * flipping with a non-native mode, and worse causes a normal
7653          * modeset to fail.
7654          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7655          */
7656         pf = 0;
7657         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7658         intel_ring_emit(ring, pf | pipesrc);
7659
7660         intel_mark_page_flip_active(intel_crtc);
7661         intel_ring_advance(ring);
7662         return 0;
7663
7664 err_unpin:
7665         intel_unpin_fb_obj(obj);
7666 err:
7667         return ret;
7668 }
7669
7670 /*
7671  * On gen7 we currently use the blit ring because (in early silicon at least)
7672  * the render ring doesn't give us interrpts for page flip completion, which
7673  * means clients will hang after the first flip is queued.  Fortunately the
7674  * blit ring generates interrupts properly, so use it instead.
7675  */
7676 static int intel_gen7_queue_flip(struct drm_device *dev,
7677                                  struct drm_crtc *crtc,
7678                                  struct drm_framebuffer *fb,
7679                                  struct drm_i915_gem_object *obj)
7680 {
7681         struct drm_i915_private *dev_priv = dev->dev_private;
7682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7683         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7684         uint32_t plane_bit = 0;
7685         int ret;
7686
7687         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7688         if (ret)
7689                 goto err;
7690
7691         switch(intel_crtc->plane) {
7692         case PLANE_A:
7693                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7694                 break;
7695         case PLANE_B:
7696                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7697                 break;
7698         case PLANE_C:
7699                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7700                 break;
7701         default:
7702                 WARN_ONCE(1, "unknown plane in flip command\n");
7703                 ret = -ENODEV;
7704                 goto err_unpin;
7705         }
7706
7707         ret = intel_ring_begin(ring, 4);
7708         if (ret)
7709                 goto err_unpin;
7710
7711         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7712         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7713         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7714         intel_ring_emit(ring, (MI_NOOP));
7715
7716         intel_mark_page_flip_active(intel_crtc);
7717         intel_ring_advance(ring);
7718         return 0;
7719
7720 err_unpin:
7721         intel_unpin_fb_obj(obj);
7722 err:
7723         return ret;
7724 }
7725
7726 static int intel_default_queue_flip(struct drm_device *dev,
7727                                     struct drm_crtc *crtc,
7728                                     struct drm_framebuffer *fb,
7729                                     struct drm_i915_gem_object *obj)
7730 {
7731         return -ENODEV;
7732 }
7733
7734 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7735                                 struct drm_framebuffer *fb,
7736                                 struct drm_pending_vblank_event *event)
7737 {
7738         struct drm_device *dev = crtc->dev;
7739         struct drm_i915_private *dev_priv = dev->dev_private;
7740         struct drm_framebuffer *old_fb = crtc->fb;
7741         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7743         struct intel_unpin_work *work;
7744         unsigned long flags;
7745         int ret;
7746
7747         /* Can't change pixel format via MI display flips. */
7748         if (fb->pixel_format != crtc->fb->pixel_format)
7749                 return -EINVAL;
7750
7751         /*
7752          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7753          * Note that pitch changes could also affect these register.
7754          */
7755         if (INTEL_INFO(dev)->gen > 3 &&
7756             (fb->offsets[0] != crtc->fb->offsets[0] ||
7757              fb->pitches[0] != crtc->fb->pitches[0]))
7758                 return -EINVAL;
7759
7760         work = kzalloc(sizeof *work, GFP_KERNEL);
7761         if (work == NULL)
7762                 return -ENOMEM;
7763
7764         work->event = event;
7765         work->crtc = crtc;
7766         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7767         INIT_WORK(&work->work, intel_unpin_work_fn);
7768
7769         ret = drm_vblank_get(dev, intel_crtc->pipe);
7770         if (ret)
7771                 goto free_work;
7772
7773         /* We borrow the event spin lock for protecting unpin_work */
7774         spin_lock_irqsave(&dev->event_lock, flags);
7775         if (intel_crtc->unpin_work) {
7776                 spin_unlock_irqrestore(&dev->event_lock, flags);
7777                 kfree(work);
7778                 drm_vblank_put(dev, intel_crtc->pipe);
7779
7780                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7781                 return -EBUSY;
7782         }
7783         intel_crtc->unpin_work = work;
7784         spin_unlock_irqrestore(&dev->event_lock, flags);
7785
7786         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7787                 flush_workqueue(dev_priv->wq);
7788
7789         ret = i915_mutex_lock_interruptible(dev);
7790         if (ret)
7791                 goto cleanup;
7792
7793         /* Reference the objects for the scheduled work. */
7794         drm_gem_object_reference(&work->old_fb_obj->base);
7795         drm_gem_object_reference(&obj->base);
7796
7797         crtc->fb = fb;
7798
7799         work->pending_flip_obj = obj;
7800
7801         work->enable_stall_check = true;
7802
7803         atomic_inc(&intel_crtc->unpin_work_count);
7804         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7805
7806         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7807         if (ret)
7808                 goto cleanup_pending;
7809
7810         intel_disable_fbc(dev);
7811         intel_mark_fb_busy(obj, NULL);
7812         mutex_unlock(&dev->struct_mutex);
7813
7814         trace_i915_flip_request(intel_crtc->plane, obj);
7815
7816         return 0;
7817
7818 cleanup_pending:
7819         atomic_dec(&intel_crtc->unpin_work_count);
7820         crtc->fb = old_fb;
7821         drm_gem_object_unreference(&work->old_fb_obj->base);
7822         drm_gem_object_unreference(&obj->base);
7823         mutex_unlock(&dev->struct_mutex);
7824
7825 cleanup:
7826         spin_lock_irqsave(&dev->event_lock, flags);
7827         intel_crtc->unpin_work = NULL;
7828         spin_unlock_irqrestore(&dev->event_lock, flags);
7829
7830         drm_vblank_put(dev, intel_crtc->pipe);
7831 free_work:
7832         kfree(work);
7833
7834         return ret;
7835 }
7836
7837 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7838         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7839         .load_lut = intel_crtc_load_lut,
7840 };
7841
7842 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7843                                   struct drm_crtc *crtc)
7844 {
7845         struct drm_device *dev;
7846         struct drm_crtc *tmp;
7847         int crtc_mask = 1;
7848
7849         WARN(!crtc, "checking null crtc?\n");
7850
7851         dev = crtc->dev;
7852
7853         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7854                 if (tmp == crtc)
7855                         break;
7856                 crtc_mask <<= 1;
7857         }
7858
7859         if (encoder->possible_crtcs & crtc_mask)
7860                 return true;
7861         return false;
7862 }
7863
7864 /**
7865  * intel_modeset_update_staged_output_state
7866  *
7867  * Updates the staged output configuration state, e.g. after we've read out the
7868  * current hw state.
7869  */
7870 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7871 {
7872         struct intel_encoder *encoder;
7873         struct intel_connector *connector;
7874
7875         list_for_each_entry(connector, &dev->mode_config.connector_list,
7876                             base.head) {
7877                 connector->new_encoder =
7878                         to_intel_encoder(connector->base.encoder);
7879         }
7880
7881         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7882                             base.head) {
7883                 encoder->new_crtc =
7884                         to_intel_crtc(encoder->base.crtc);
7885         }
7886 }
7887
7888 /**
7889  * intel_modeset_commit_output_state
7890  *
7891  * This function copies the stage display pipe configuration to the real one.
7892  */
7893 static void intel_modeset_commit_output_state(struct drm_device *dev)
7894 {
7895         struct intel_encoder *encoder;
7896         struct intel_connector *connector;
7897
7898         list_for_each_entry(connector, &dev->mode_config.connector_list,
7899                             base.head) {
7900                 connector->base.encoder = &connector->new_encoder->base;
7901         }
7902
7903         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7904                             base.head) {
7905                 encoder->base.crtc = &encoder->new_crtc->base;
7906         }
7907 }
7908
7909 static void
7910 connected_sink_compute_bpp(struct intel_connector * connector,
7911                            struct intel_crtc_config *pipe_config)
7912 {
7913         int bpp = pipe_config->pipe_bpp;
7914
7915         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7916                 connector->base.base.id,
7917                 drm_get_connector_name(&connector->base));
7918
7919         /* Don't use an invalid EDID bpc value */
7920         if (connector->base.display_info.bpc &&
7921             connector->base.display_info.bpc * 3 < bpp) {
7922                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7923                               bpp, connector->base.display_info.bpc*3);
7924                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7925         }
7926
7927         /* Clamp bpp to 8 on screens without EDID 1.4 */
7928         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7929                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7930                               bpp);
7931                 pipe_config->pipe_bpp = 24;
7932         }
7933 }
7934
7935 static int
7936 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7937                           struct drm_framebuffer *fb,
7938                           struct intel_crtc_config *pipe_config)
7939 {
7940         struct drm_device *dev = crtc->base.dev;
7941         struct intel_connector *connector;
7942         int bpp;
7943
7944         switch (fb->pixel_format) {
7945         case DRM_FORMAT_C8:
7946                 bpp = 8*3; /* since we go through a colormap */
7947                 break;
7948         case DRM_FORMAT_XRGB1555:
7949         case DRM_FORMAT_ARGB1555:
7950                 /* checked in intel_framebuffer_init already */
7951                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7952                         return -EINVAL;
7953         case DRM_FORMAT_RGB565:
7954                 bpp = 6*3; /* min is 18bpp */
7955                 break;
7956         case DRM_FORMAT_XBGR8888:
7957         case DRM_FORMAT_ABGR8888:
7958                 /* checked in intel_framebuffer_init already */
7959                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7960                         return -EINVAL;
7961         case DRM_FORMAT_XRGB8888:
7962         case DRM_FORMAT_ARGB8888:
7963                 bpp = 8*3;
7964                 break;
7965         case DRM_FORMAT_XRGB2101010:
7966         case DRM_FORMAT_ARGB2101010:
7967         case DRM_FORMAT_XBGR2101010:
7968         case DRM_FORMAT_ABGR2101010:
7969                 /* checked in intel_framebuffer_init already */
7970                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7971                         return -EINVAL;
7972                 bpp = 10*3;
7973                 break;
7974         /* TODO: gen4+ supports 16 bpc floating point, too. */
7975         default:
7976                 DRM_DEBUG_KMS("unsupported depth\n");
7977                 return -EINVAL;
7978         }
7979
7980         pipe_config->pipe_bpp = bpp;
7981
7982         /* Clamp display bpp to EDID value */
7983         list_for_each_entry(connector, &dev->mode_config.connector_list,
7984                             base.head) {
7985                 if (!connector->new_encoder ||
7986                     connector->new_encoder->new_crtc != crtc)
7987                         continue;
7988
7989                 connected_sink_compute_bpp(connector, pipe_config);
7990         }
7991
7992         return bpp;
7993 }
7994
7995 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7996                                    struct intel_crtc_config *pipe_config,
7997                                    const char *context)
7998 {
7999         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8000                       context, pipe_name(crtc->pipe));
8001
8002         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8003         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8004                       pipe_config->pipe_bpp, pipe_config->dither);
8005         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8006                       pipe_config->has_pch_encoder,
8007                       pipe_config->fdi_lanes,
8008                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8009                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8010                       pipe_config->fdi_m_n.tu);
8011         DRM_DEBUG_KMS("requested mode:\n");
8012         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8013         DRM_DEBUG_KMS("adjusted mode:\n");
8014         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8015         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8016                       pipe_config->gmch_pfit.control,
8017                       pipe_config->gmch_pfit.pgm_ratios,
8018                       pipe_config->gmch_pfit.lvds_border_bits);
8019         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8020                       pipe_config->pch_pfit.pos,
8021                       pipe_config->pch_pfit.size);
8022         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8023 }
8024
8025 static bool check_encoder_cloning(struct drm_crtc *crtc)
8026 {
8027         int num_encoders = 0;
8028         bool uncloneable_encoders = false;
8029         struct intel_encoder *encoder;
8030
8031         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8032                             base.head) {
8033                 if (&encoder->new_crtc->base != crtc)
8034                         continue;
8035
8036                 num_encoders++;
8037                 if (!encoder->cloneable)
8038                         uncloneable_encoders = true;
8039         }
8040
8041         return !(num_encoders > 1 && uncloneable_encoders);
8042 }
8043
8044 static struct intel_crtc_config *
8045 intel_modeset_pipe_config(struct drm_crtc *crtc,
8046                           struct drm_framebuffer *fb,
8047                           struct drm_display_mode *mode)
8048 {
8049         struct drm_device *dev = crtc->dev;
8050         struct intel_encoder *encoder;
8051         struct intel_crtc_config *pipe_config;
8052         int plane_bpp, ret = -EINVAL;
8053         bool retry = true;
8054
8055         if (!check_encoder_cloning(crtc)) {
8056                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8057                 return ERR_PTR(-EINVAL);
8058         }
8059
8060         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8061         if (!pipe_config)
8062                 return ERR_PTR(-ENOMEM);
8063
8064         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8065         drm_mode_copy(&pipe_config->requested_mode, mode);
8066         pipe_config->cpu_transcoder =
8067                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8068         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8069
8070         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8071          * plane pixel format and any sink constraints into account. Returns the
8072          * source plane bpp so that dithering can be selected on mismatches
8073          * after encoders and crtc also have had their say. */
8074         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8075                                               fb, pipe_config);
8076         if (plane_bpp < 0)
8077                 goto fail;
8078
8079 encoder_retry:
8080         /* Ensure the port clock defaults are reset when retrying. */
8081         pipe_config->port_clock = 0;
8082         pipe_config->pixel_multiplier = 1;
8083
8084         /* Fill in default crtc timings, allow encoders to overwrite them. */
8085         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8086
8087         /* Pass our mode to the connectors and the CRTC to give them a chance to
8088          * adjust it according to limitations or connector properties, and also
8089          * a chance to reject the mode entirely.
8090          */
8091         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8092                             base.head) {
8093
8094                 if (&encoder->new_crtc->base != crtc)
8095                         continue;
8096
8097                 if (!(encoder->compute_config(encoder, pipe_config))) {
8098                         DRM_DEBUG_KMS("Encoder config failure\n");
8099                         goto fail;
8100                 }
8101         }
8102
8103         /* Set default port clock if not overwritten by the encoder. Needs to be
8104          * done afterwards in case the encoder adjusts the mode. */
8105         if (!pipe_config->port_clock)
8106                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8107
8108         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8109         if (ret < 0) {
8110                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8111                 goto fail;
8112         }
8113
8114         if (ret == RETRY) {
8115                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8116                         ret = -EINVAL;
8117                         goto fail;
8118                 }
8119
8120                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8121                 retry = false;
8122                 goto encoder_retry;
8123         }
8124
8125         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8126         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8127                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8128
8129         return pipe_config;
8130 fail:
8131         kfree(pipe_config);
8132         return ERR_PTR(ret);
8133 }
8134
8135 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8136  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8137 static void
8138 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8139                              unsigned *prepare_pipes, unsigned *disable_pipes)
8140 {
8141         struct intel_crtc *intel_crtc;
8142         struct drm_device *dev = crtc->dev;
8143         struct intel_encoder *encoder;
8144         struct intel_connector *connector;
8145         struct drm_crtc *tmp_crtc;
8146
8147         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8148
8149         /* Check which crtcs have changed outputs connected to them, these need
8150          * to be part of the prepare_pipes mask. We don't (yet) support global
8151          * modeset across multiple crtcs, so modeset_pipes will only have one
8152          * bit set at most. */
8153         list_for_each_entry(connector, &dev->mode_config.connector_list,
8154                             base.head) {
8155                 if (connector->base.encoder == &connector->new_encoder->base)
8156                         continue;
8157
8158                 if (connector->base.encoder) {
8159                         tmp_crtc = connector->base.encoder->crtc;
8160
8161                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8162                 }
8163
8164                 if (connector->new_encoder)
8165                         *prepare_pipes |=
8166                                 1 << connector->new_encoder->new_crtc->pipe;
8167         }
8168
8169         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8170                             base.head) {
8171                 if (encoder->base.crtc == &encoder->new_crtc->base)
8172                         continue;
8173
8174                 if (encoder->base.crtc) {
8175                         tmp_crtc = encoder->base.crtc;
8176
8177                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8178                 }
8179
8180                 if (encoder->new_crtc)
8181                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8182         }
8183
8184         /* Check for any pipes that will be fully disabled ... */
8185         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8186                             base.head) {
8187                 bool used = false;
8188
8189                 /* Don't try to disable disabled crtcs. */
8190                 if (!intel_crtc->base.enabled)
8191                         continue;
8192
8193                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8194                                     base.head) {
8195                         if (encoder->new_crtc == intel_crtc)
8196                                 used = true;
8197                 }
8198
8199                 if (!used)
8200                         *disable_pipes |= 1 << intel_crtc->pipe;
8201         }
8202
8203
8204         /* set_mode is also used to update properties on life display pipes. */
8205         intel_crtc = to_intel_crtc(crtc);
8206         if (crtc->enabled)
8207                 *prepare_pipes |= 1 << intel_crtc->pipe;
8208
8209         /*
8210          * For simplicity do a full modeset on any pipe where the output routing
8211          * changed. We could be more clever, but that would require us to be
8212          * more careful with calling the relevant encoder->mode_set functions.
8213          */
8214         if (*prepare_pipes)
8215                 *modeset_pipes = *prepare_pipes;
8216
8217         /* ... and mask these out. */
8218         *modeset_pipes &= ~(*disable_pipes);
8219         *prepare_pipes &= ~(*disable_pipes);
8220
8221         /*
8222          * HACK: We don't (yet) fully support global modesets. intel_set_config
8223          * obies this rule, but the modeset restore mode of
8224          * intel_modeset_setup_hw_state does not.
8225          */
8226         *modeset_pipes &= 1 << intel_crtc->pipe;
8227         *prepare_pipes &= 1 << intel_crtc->pipe;
8228
8229         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8230                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8231 }
8232
8233 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8234 {
8235         struct drm_encoder *encoder;
8236         struct drm_device *dev = crtc->dev;
8237
8238         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8239                 if (encoder->crtc == crtc)
8240                         return true;
8241
8242         return false;
8243 }
8244
8245 static void
8246 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8247 {
8248         struct intel_encoder *intel_encoder;
8249         struct intel_crtc *intel_crtc;
8250         struct drm_connector *connector;
8251
8252         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8253                             base.head) {
8254                 if (!intel_encoder->base.crtc)
8255                         continue;
8256
8257                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8258
8259                 if (prepare_pipes & (1 << intel_crtc->pipe))
8260                         intel_encoder->connectors_active = false;
8261         }
8262
8263         intel_modeset_commit_output_state(dev);
8264
8265         /* Update computed state. */
8266         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8267                             base.head) {
8268                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8269         }
8270
8271         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8272                 if (!connector->encoder || !connector->encoder->crtc)
8273                         continue;
8274
8275                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8276
8277                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8278                         struct drm_property *dpms_property =
8279                                 dev->mode_config.dpms_property;
8280
8281                         connector->dpms = DRM_MODE_DPMS_ON;
8282                         drm_object_property_set_value(&connector->base,
8283                                                          dpms_property,
8284                                                          DRM_MODE_DPMS_ON);
8285
8286                         intel_encoder = to_intel_encoder(connector->encoder);
8287                         intel_encoder->connectors_active = true;
8288                 }
8289         }
8290
8291 }
8292
8293 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8294                                     struct intel_crtc_config *new)
8295 {
8296         int clock1, clock2, diff;
8297
8298         clock1 = cur->adjusted_mode.clock;
8299         clock2 = new->adjusted_mode.clock;
8300
8301         if (clock1 == clock2)
8302                 return true;
8303
8304         if (!clock1 || !clock2)
8305                 return false;
8306
8307         diff = abs(clock1 - clock2);
8308
8309         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8310                 return true;
8311
8312         return false;
8313 }
8314
8315 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8316         list_for_each_entry((intel_crtc), \
8317                             &(dev)->mode_config.crtc_list, \
8318                             base.head) \
8319                 if (mask & (1 <<(intel_crtc)->pipe))
8320
8321 static bool
8322 intel_pipe_config_compare(struct drm_device *dev,
8323                           struct intel_crtc_config *current_config,
8324                           struct intel_crtc_config *pipe_config)
8325 {
8326 #define PIPE_CONF_CHECK_X(name) \
8327         if (current_config->name != pipe_config->name) { \
8328                 DRM_ERROR("mismatch in " #name " " \
8329                           "(expected 0x%08x, found 0x%08x)\n", \
8330                           current_config->name, \
8331                           pipe_config->name); \
8332                 return false; \
8333         }
8334
8335 #define PIPE_CONF_CHECK_I(name) \
8336         if (current_config->name != pipe_config->name) { \
8337                 DRM_ERROR("mismatch in " #name " " \
8338                           "(expected %i, found %i)\n", \
8339                           current_config->name, \
8340                           pipe_config->name); \
8341                 return false; \
8342         }
8343
8344 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8345         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8346                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8347                           "(expected %i, found %i)\n", \
8348                           current_config->name & (mask), \
8349                           pipe_config->name & (mask)); \
8350                 return false; \
8351         }
8352
8353 #define PIPE_CONF_QUIRK(quirk)  \
8354         ((current_config->quirks | pipe_config->quirks) & (quirk))
8355
8356         PIPE_CONF_CHECK_I(cpu_transcoder);
8357
8358         PIPE_CONF_CHECK_I(has_pch_encoder);
8359         PIPE_CONF_CHECK_I(fdi_lanes);
8360         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8361         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8362         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8363         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8364         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8365
8366         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8367         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8368         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8369         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8370         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8371         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8372
8373         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8374         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8375         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8376         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8377         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8378         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8379
8380         PIPE_CONF_CHECK_I(pixel_multiplier);
8381
8382         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8383                               DRM_MODE_FLAG_INTERLACE);
8384
8385         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8386                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8387                                       DRM_MODE_FLAG_PHSYNC);
8388                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8389                                       DRM_MODE_FLAG_NHSYNC);
8390                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8391                                       DRM_MODE_FLAG_PVSYNC);
8392                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8393                                       DRM_MODE_FLAG_NVSYNC);
8394         }
8395
8396         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8397         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8398
8399         PIPE_CONF_CHECK_I(gmch_pfit.control);
8400         /* pfit ratios are autocomputed by the hw on gen4+ */
8401         if (INTEL_INFO(dev)->gen < 4)
8402                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8403         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8404         PIPE_CONF_CHECK_I(pch_pfit.pos);
8405         PIPE_CONF_CHECK_I(pch_pfit.size);
8406
8407         PIPE_CONF_CHECK_I(ips_enabled);
8408
8409         PIPE_CONF_CHECK_I(shared_dpll);
8410         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8411         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8412         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8413         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8414
8415 #undef PIPE_CONF_CHECK_X
8416 #undef PIPE_CONF_CHECK_I
8417 #undef PIPE_CONF_CHECK_FLAGS
8418 #undef PIPE_CONF_QUIRK
8419
8420         if (!IS_HASWELL(dev)) {
8421                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8422                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8423                                   current_config->adjusted_mode.clock,
8424                                   pipe_config->adjusted_mode.clock);
8425                         return false;
8426                 }
8427         }
8428
8429         return true;
8430 }
8431
8432 static void
8433 check_connector_state(struct drm_device *dev)
8434 {
8435         struct intel_connector *connector;
8436
8437         list_for_each_entry(connector, &dev->mode_config.connector_list,
8438                             base.head) {
8439                 /* This also checks the encoder/connector hw state with the
8440                  * ->get_hw_state callbacks. */
8441                 intel_connector_check_state(connector);
8442
8443                 WARN(&connector->new_encoder->base != connector->base.encoder,
8444                      "connector's staged encoder doesn't match current encoder\n");
8445         }
8446 }
8447
8448 static void
8449 check_encoder_state(struct drm_device *dev)
8450 {
8451         struct intel_encoder *encoder;
8452         struct intel_connector *connector;
8453
8454         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8455                             base.head) {
8456                 bool enabled = false;
8457                 bool active = false;
8458                 enum pipe pipe, tracked_pipe;
8459
8460                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8461                               encoder->base.base.id,
8462                               drm_get_encoder_name(&encoder->base));
8463
8464                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8465                      "encoder's stage crtc doesn't match current crtc\n");
8466                 WARN(encoder->connectors_active && !encoder->base.crtc,
8467                      "encoder's active_connectors set, but no crtc\n");
8468
8469                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8470                                     base.head) {
8471                         if (connector->base.encoder != &encoder->base)
8472                                 continue;
8473                         enabled = true;
8474                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8475                                 active = true;
8476                 }
8477                 WARN(!!encoder->base.crtc != enabled,
8478                      "encoder's enabled state mismatch "
8479                      "(expected %i, found %i)\n",
8480                      !!encoder->base.crtc, enabled);
8481                 WARN(active && !encoder->base.crtc,
8482                      "active encoder with no crtc\n");
8483
8484                 WARN(encoder->connectors_active != active,
8485                      "encoder's computed active state doesn't match tracked active state "
8486                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8487
8488                 active = encoder->get_hw_state(encoder, &pipe);
8489                 WARN(active != encoder->connectors_active,
8490                      "encoder's hw state doesn't match sw tracking "
8491                      "(expected %i, found %i)\n",
8492                      encoder->connectors_active, active);
8493
8494                 if (!encoder->base.crtc)
8495                         continue;
8496
8497                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8498                 WARN(active && pipe != tracked_pipe,
8499                      "active encoder's pipe doesn't match"
8500                      "(expected %i, found %i)\n",
8501                      tracked_pipe, pipe);
8502
8503         }
8504 }
8505
8506 static void
8507 check_crtc_state(struct drm_device *dev)
8508 {
8509         drm_i915_private_t *dev_priv = dev->dev_private;
8510         struct intel_crtc *crtc;
8511         struct intel_encoder *encoder;
8512         struct intel_crtc_config pipe_config;
8513
8514         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8515                             base.head) {
8516                 bool enabled = false;
8517                 bool active = false;
8518
8519                 memset(&pipe_config, 0, sizeof(pipe_config));
8520
8521                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8522                               crtc->base.base.id);
8523
8524                 WARN(crtc->active && !crtc->base.enabled,
8525                      "active crtc, but not enabled in sw tracking\n");
8526
8527                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8528                                     base.head) {
8529                         if (encoder->base.crtc != &crtc->base)
8530                                 continue;
8531                         enabled = true;
8532                         if (encoder->connectors_active)
8533                                 active = true;
8534                 }
8535
8536                 WARN(active != crtc->active,
8537                      "crtc's computed active state doesn't match tracked active state "
8538                      "(expected %i, found %i)\n", active, crtc->active);
8539                 WARN(enabled != crtc->base.enabled,
8540                      "crtc's computed enabled state doesn't match tracked enabled state "
8541                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8542
8543                 active = dev_priv->display.get_pipe_config(crtc,
8544                                                            &pipe_config);
8545
8546                 /* hw state is inconsistent with the pipe A quirk */
8547                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8548                         active = crtc->active;
8549
8550                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8551                                     base.head) {
8552                         if (encoder->base.crtc != &crtc->base)
8553                                 continue;
8554                         if (encoder->get_config)
8555                                 encoder->get_config(encoder, &pipe_config);
8556                 }
8557
8558                 if (dev_priv->display.get_clock)
8559                         dev_priv->display.get_clock(crtc, &pipe_config);
8560
8561                 WARN(crtc->active != active,
8562                      "crtc active state doesn't match with hw state "
8563                      "(expected %i, found %i)\n", crtc->active, active);
8564
8565                 if (active &&
8566                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8567                         WARN(1, "pipe state doesn't match!\n");
8568                         intel_dump_pipe_config(crtc, &pipe_config,
8569                                                "[hw state]");
8570                         intel_dump_pipe_config(crtc, &crtc->config,
8571                                                "[sw state]");
8572                 }
8573         }
8574 }
8575
8576 static void
8577 check_shared_dpll_state(struct drm_device *dev)
8578 {
8579         drm_i915_private_t *dev_priv = dev->dev_private;
8580         struct intel_crtc *crtc;
8581         struct intel_dpll_hw_state dpll_hw_state;
8582         int i;
8583
8584         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8585                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8586                 int enabled_crtcs = 0, active_crtcs = 0;
8587                 bool active;
8588
8589                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8590
8591                 DRM_DEBUG_KMS("%s\n", pll->name);
8592
8593                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8594
8595                 WARN(pll->active > pll->refcount,
8596                      "more active pll users than references: %i vs %i\n",
8597                      pll->active, pll->refcount);
8598                 WARN(pll->active && !pll->on,
8599                      "pll in active use but not on in sw tracking\n");
8600                 WARN(pll->on && !pll->active,
8601                      "pll in on but not on in use in sw tracking\n");
8602                 WARN(pll->on != active,
8603                      "pll on state mismatch (expected %i, found %i)\n",
8604                      pll->on, active);
8605
8606                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8607                                     base.head) {
8608                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8609                                 enabled_crtcs++;
8610                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8611                                 active_crtcs++;
8612                 }
8613                 WARN(pll->active != active_crtcs,
8614                      "pll active crtcs mismatch (expected %i, found %i)\n",
8615                      pll->active, active_crtcs);
8616                 WARN(pll->refcount != enabled_crtcs,
8617                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8618                      pll->refcount, enabled_crtcs);
8619
8620                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8621                                        sizeof(dpll_hw_state)),
8622                      "pll hw state mismatch\n");
8623         }
8624 }
8625
8626 void
8627 intel_modeset_check_state(struct drm_device *dev)
8628 {
8629         check_connector_state(dev);
8630         check_encoder_state(dev);
8631         check_crtc_state(dev);
8632         check_shared_dpll_state(dev);
8633 }
8634
8635 static int __intel_set_mode(struct drm_crtc *crtc,
8636                             struct drm_display_mode *mode,
8637                             int x, int y, struct drm_framebuffer *fb)
8638 {
8639         struct drm_device *dev = crtc->dev;
8640         drm_i915_private_t *dev_priv = dev->dev_private;
8641         struct drm_display_mode *saved_mode, *saved_hwmode;
8642         struct intel_crtc_config *pipe_config = NULL;
8643         struct intel_crtc *intel_crtc;
8644         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8645         int ret = 0;
8646
8647         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8648         if (!saved_mode)
8649                 return -ENOMEM;
8650         saved_hwmode = saved_mode + 1;
8651
8652         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8653                                      &prepare_pipes, &disable_pipes);
8654
8655         *saved_hwmode = crtc->hwmode;
8656         *saved_mode = crtc->mode;
8657
8658         /* Hack: Because we don't (yet) support global modeset on multiple
8659          * crtcs, we don't keep track of the new mode for more than one crtc.
8660          * Hence simply check whether any bit is set in modeset_pipes in all the
8661          * pieces of code that are not yet converted to deal with mutliple crtcs
8662          * changing their mode at the same time. */
8663         if (modeset_pipes) {
8664                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8665                 if (IS_ERR(pipe_config)) {
8666                         ret = PTR_ERR(pipe_config);
8667                         pipe_config = NULL;
8668
8669                         goto out;
8670                 }
8671                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8672                                        "[modeset]");
8673         }
8674
8675         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8676                 intel_crtc_disable(&intel_crtc->base);
8677
8678         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8679                 if (intel_crtc->base.enabled)
8680                         dev_priv->display.crtc_disable(&intel_crtc->base);
8681         }
8682
8683         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8684          * to set it here already despite that we pass it down the callchain.
8685          */
8686         if (modeset_pipes) {
8687                 crtc->mode = *mode;
8688                 /* mode_set/enable/disable functions rely on a correct pipe
8689                  * config. */
8690                 to_intel_crtc(crtc)->config = *pipe_config;
8691         }
8692
8693         /* Only after disabling all output pipelines that will be changed can we
8694          * update the the output configuration. */
8695         intel_modeset_update_state(dev, prepare_pipes);
8696
8697         if (dev_priv->display.modeset_global_resources)
8698                 dev_priv->display.modeset_global_resources(dev);
8699
8700         /* Set up the DPLL and any encoders state that needs to adjust or depend
8701          * on the DPLL.
8702          */
8703         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8704                 ret = intel_crtc_mode_set(&intel_crtc->base,
8705                                           x, y, fb);
8706                 if (ret)
8707                         goto done;
8708         }
8709
8710         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8711         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8712                 dev_priv->display.crtc_enable(&intel_crtc->base);
8713
8714         if (modeset_pipes) {
8715                 /* Store real post-adjustment hardware mode. */
8716                 crtc->hwmode = pipe_config->adjusted_mode;
8717
8718                 /* Calculate and store various constants which
8719                  * are later needed by vblank and swap-completion
8720                  * timestamping. They are derived from true hwmode.
8721                  */
8722                 drm_calc_timestamping_constants(crtc);
8723         }
8724
8725         /* FIXME: add subpixel order */
8726 done:
8727         if (ret && crtc->enabled) {
8728                 crtc->hwmode = *saved_hwmode;
8729                 crtc->mode = *saved_mode;
8730         }
8731
8732 out:
8733         kfree(pipe_config);
8734         kfree(saved_mode);
8735         return ret;
8736 }
8737
8738 int intel_set_mode(struct drm_crtc *crtc,
8739                      struct drm_display_mode *mode,
8740                      int x, int y, struct drm_framebuffer *fb)
8741 {
8742         int ret;
8743
8744         ret = __intel_set_mode(crtc, mode, x, y, fb);
8745
8746         if (ret == 0)
8747                 intel_modeset_check_state(crtc->dev);
8748
8749         return ret;
8750 }
8751
8752 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8753 {
8754         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8755 }
8756
8757 #undef for_each_intel_crtc_masked
8758
8759 static void intel_set_config_free(struct intel_set_config *config)
8760 {
8761         if (!config)
8762                 return;
8763
8764         kfree(config->save_connector_encoders);
8765         kfree(config->save_encoder_crtcs);
8766         kfree(config);
8767 }
8768
8769 static int intel_set_config_save_state(struct drm_device *dev,
8770                                        struct intel_set_config *config)
8771 {
8772         struct drm_encoder *encoder;
8773         struct drm_connector *connector;
8774         int count;
8775
8776         config->save_encoder_crtcs =
8777                 kcalloc(dev->mode_config.num_encoder,
8778                         sizeof(struct drm_crtc *), GFP_KERNEL);
8779         if (!config->save_encoder_crtcs)
8780                 return -ENOMEM;
8781
8782         config->save_connector_encoders =
8783                 kcalloc(dev->mode_config.num_connector,
8784                         sizeof(struct drm_encoder *), GFP_KERNEL);
8785         if (!config->save_connector_encoders)
8786                 return -ENOMEM;
8787
8788         /* Copy data. Note that driver private data is not affected.
8789          * Should anything bad happen only the expected state is
8790          * restored, not the drivers personal bookkeeping.
8791          */
8792         count = 0;
8793         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8794                 config->save_encoder_crtcs[count++] = encoder->crtc;
8795         }
8796
8797         count = 0;
8798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8799                 config->save_connector_encoders[count++] = connector->encoder;
8800         }
8801
8802         return 0;
8803 }
8804
8805 static void intel_set_config_restore_state(struct drm_device *dev,
8806                                            struct intel_set_config *config)
8807 {
8808         struct intel_encoder *encoder;
8809         struct intel_connector *connector;
8810         int count;
8811
8812         count = 0;
8813         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8814                 encoder->new_crtc =
8815                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8816         }
8817
8818         count = 0;
8819         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8820                 connector->new_encoder =
8821                         to_intel_encoder(config->save_connector_encoders[count++]);
8822         }
8823 }
8824
8825 static bool
8826 is_crtc_connector_off(struct drm_mode_set *set)
8827 {
8828         int i;
8829
8830         if (set->num_connectors == 0)
8831                 return false;
8832
8833         if (WARN_ON(set->connectors == NULL))
8834                 return false;
8835
8836         for (i = 0; i < set->num_connectors; i++)
8837                 if (set->connectors[i]->encoder &&
8838                     set->connectors[i]->encoder->crtc == set->crtc &&
8839                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8840                         return true;
8841
8842         return false;
8843 }
8844
8845 static void
8846 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8847                                       struct intel_set_config *config)
8848 {
8849
8850         /* We should be able to check here if the fb has the same properties
8851          * and then just flip_or_move it */
8852         if (is_crtc_connector_off(set)) {
8853                 config->mode_changed = true;
8854         } else if (set->crtc->fb != set->fb) {
8855                 /* If we have no fb then treat it as a full mode set */
8856                 if (set->crtc->fb == NULL) {
8857                         struct intel_crtc *intel_crtc =
8858                                 to_intel_crtc(set->crtc);
8859
8860                         if (intel_crtc->active && i915_fastboot) {
8861                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8862                                 config->fb_changed = true;
8863                         } else {
8864                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8865                                 config->mode_changed = true;
8866                         }
8867                 } else if (set->fb == NULL) {
8868                         config->mode_changed = true;
8869                 } else if (set->fb->pixel_format !=
8870                            set->crtc->fb->pixel_format) {
8871                         config->mode_changed = true;
8872                 } else {
8873                         config->fb_changed = true;
8874                 }
8875         }
8876
8877         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8878                 config->fb_changed = true;
8879
8880         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8881                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8882                 drm_mode_debug_printmodeline(&set->crtc->mode);
8883                 drm_mode_debug_printmodeline(set->mode);
8884                 config->mode_changed = true;
8885         }
8886 }
8887
8888 static int
8889 intel_modeset_stage_output_state(struct drm_device *dev,
8890                                  struct drm_mode_set *set,
8891                                  struct intel_set_config *config)
8892 {
8893         struct drm_crtc *new_crtc;
8894         struct intel_connector *connector;
8895         struct intel_encoder *encoder;
8896         int count, ro;
8897
8898         /* The upper layers ensure that we either disable a crtc or have a list
8899          * of connectors. For paranoia, double-check this. */
8900         WARN_ON(!set->fb && (set->num_connectors != 0));
8901         WARN_ON(set->fb && (set->num_connectors == 0));
8902
8903         count = 0;
8904         list_for_each_entry(connector, &dev->mode_config.connector_list,
8905                             base.head) {
8906                 /* Otherwise traverse passed in connector list and get encoders
8907                  * for them. */
8908                 for (ro = 0; ro < set->num_connectors; ro++) {
8909                         if (set->connectors[ro] == &connector->base) {
8910                                 connector->new_encoder = connector->encoder;
8911                                 break;
8912                         }
8913                 }
8914
8915                 /* If we disable the crtc, disable all its connectors. Also, if
8916                  * the connector is on the changing crtc but not on the new
8917                  * connector list, disable it. */
8918                 if ((!set->fb || ro == set->num_connectors) &&
8919                     connector->base.encoder &&
8920                     connector->base.encoder->crtc == set->crtc) {
8921                         connector->new_encoder = NULL;
8922
8923                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8924                                 connector->base.base.id,
8925                                 drm_get_connector_name(&connector->base));
8926                 }
8927
8928
8929                 if (&connector->new_encoder->base != connector->base.encoder) {
8930                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8931                         config->mode_changed = true;
8932                 }
8933         }
8934         /* connector->new_encoder is now updated for all connectors. */
8935
8936         /* Update crtc of enabled connectors. */
8937         count = 0;
8938         list_for_each_entry(connector, &dev->mode_config.connector_list,
8939                             base.head) {
8940                 if (!connector->new_encoder)
8941                         continue;
8942
8943                 new_crtc = connector->new_encoder->base.crtc;
8944
8945                 for (ro = 0; ro < set->num_connectors; ro++) {
8946                         if (set->connectors[ro] == &connector->base)
8947                                 new_crtc = set->crtc;
8948                 }
8949
8950                 /* Make sure the new CRTC will work with the encoder */
8951                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8952                                            new_crtc)) {
8953                         return -EINVAL;
8954                 }
8955                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8956
8957                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8958                         connector->base.base.id,
8959                         drm_get_connector_name(&connector->base),
8960                         new_crtc->base.id);
8961         }
8962
8963         /* Check for any encoders that needs to be disabled. */
8964         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8965                             base.head) {
8966                 list_for_each_entry(connector,
8967                                     &dev->mode_config.connector_list,
8968                                     base.head) {
8969                         if (connector->new_encoder == encoder) {
8970                                 WARN_ON(!connector->new_encoder->new_crtc);
8971
8972                                 goto next_encoder;
8973                         }
8974                 }
8975                 encoder->new_crtc = NULL;
8976 next_encoder:
8977                 /* Only now check for crtc changes so we don't miss encoders
8978                  * that will be disabled. */
8979                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8980                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8981                         config->mode_changed = true;
8982                 }
8983         }
8984         /* Now we've also updated encoder->new_crtc for all encoders. */
8985
8986         return 0;
8987 }
8988
8989 static int intel_crtc_set_config(struct drm_mode_set *set)
8990 {
8991         struct drm_device *dev;
8992         struct drm_mode_set save_set;
8993         struct intel_set_config *config;
8994         int ret;
8995
8996         BUG_ON(!set);
8997         BUG_ON(!set->crtc);
8998         BUG_ON(!set->crtc->helper_private);
8999
9000         /* Enforce sane interface api - has been abused by the fb helper. */
9001         BUG_ON(!set->mode && set->fb);
9002         BUG_ON(set->fb && set->num_connectors == 0);
9003
9004         if (set->fb) {
9005                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9006                                 set->crtc->base.id, set->fb->base.id,
9007                                 (int)set->num_connectors, set->x, set->y);
9008         } else {
9009                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9010         }
9011
9012         dev = set->crtc->dev;
9013
9014         ret = -ENOMEM;
9015         config = kzalloc(sizeof(*config), GFP_KERNEL);
9016         if (!config)
9017                 goto out_config;
9018
9019         ret = intel_set_config_save_state(dev, config);
9020         if (ret)
9021                 goto out_config;
9022
9023         save_set.crtc = set->crtc;
9024         save_set.mode = &set->crtc->mode;
9025         save_set.x = set->crtc->x;
9026         save_set.y = set->crtc->y;
9027         save_set.fb = set->crtc->fb;
9028
9029         /* Compute whether we need a full modeset, only an fb base update or no
9030          * change at all. In the future we might also check whether only the
9031          * mode changed, e.g. for LVDS where we only change the panel fitter in
9032          * such cases. */
9033         intel_set_config_compute_mode_changes(set, config);
9034
9035         ret = intel_modeset_stage_output_state(dev, set, config);
9036         if (ret)
9037                 goto fail;
9038
9039         if (config->mode_changed) {
9040                 ret = intel_set_mode(set->crtc, set->mode,
9041                                      set->x, set->y, set->fb);
9042         } else if (config->fb_changed) {
9043                 intel_crtc_wait_for_pending_flips(set->crtc);
9044
9045                 ret = intel_pipe_set_base(set->crtc,
9046                                           set->x, set->y, set->fb);
9047         }
9048
9049         if (ret) {
9050                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9051                               set->crtc->base.id, ret);
9052 fail:
9053                 intel_set_config_restore_state(dev, config);
9054
9055                 /* Try to restore the config */
9056                 if (config->mode_changed &&
9057                     intel_set_mode(save_set.crtc, save_set.mode,
9058                                    save_set.x, save_set.y, save_set.fb))
9059                         DRM_ERROR("failed to restore config after modeset failure\n");
9060         }
9061
9062 out_config:
9063         intel_set_config_free(config);
9064         return ret;
9065 }
9066
9067 static const struct drm_crtc_funcs intel_crtc_funcs = {
9068         .cursor_set = intel_crtc_cursor_set,
9069         .cursor_move = intel_crtc_cursor_move,
9070         .gamma_set = intel_crtc_gamma_set,
9071         .set_config = intel_crtc_set_config,
9072         .destroy = intel_crtc_destroy,
9073         .page_flip = intel_crtc_page_flip,
9074 };
9075
9076 static void intel_cpu_pll_init(struct drm_device *dev)
9077 {
9078         if (HAS_DDI(dev))
9079                 intel_ddi_pll_init(dev);
9080 }
9081
9082 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9083                                       struct intel_shared_dpll *pll,
9084                                       struct intel_dpll_hw_state *hw_state)
9085 {
9086         uint32_t val;
9087
9088         val = I915_READ(PCH_DPLL(pll->id));
9089         hw_state->dpll = val;
9090         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9091         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9092
9093         return val & DPLL_VCO_ENABLE;
9094 }
9095
9096 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9097                                   struct intel_shared_dpll *pll)
9098 {
9099         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9100         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9101 }
9102
9103 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9104                                 struct intel_shared_dpll *pll)
9105 {
9106         /* PCH refclock must be enabled first */
9107         assert_pch_refclk_enabled(dev_priv);
9108
9109         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9110
9111         /* Wait for the clocks to stabilize. */
9112         POSTING_READ(PCH_DPLL(pll->id));
9113         udelay(150);
9114
9115         /* The pixel multiplier can only be updated once the
9116          * DPLL is enabled and the clocks are stable.
9117          *
9118          * So write it again.
9119          */
9120         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9121         POSTING_READ(PCH_DPLL(pll->id));
9122         udelay(200);
9123 }
9124
9125 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9126                                  struct intel_shared_dpll *pll)
9127 {
9128         struct drm_device *dev = dev_priv->dev;
9129         struct intel_crtc *crtc;
9130
9131         /* Make sure no transcoder isn't still depending on us. */
9132         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9133                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9134                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9135         }
9136
9137         I915_WRITE(PCH_DPLL(pll->id), 0);
9138         POSTING_READ(PCH_DPLL(pll->id));
9139         udelay(200);
9140 }
9141
9142 static char *ibx_pch_dpll_names[] = {
9143         "PCH DPLL A",
9144         "PCH DPLL B",
9145 };
9146
9147 static void ibx_pch_dpll_init(struct drm_device *dev)
9148 {
9149         struct drm_i915_private *dev_priv = dev->dev_private;
9150         int i;
9151
9152         dev_priv->num_shared_dpll = 2;
9153
9154         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9155                 dev_priv->shared_dplls[i].id = i;
9156                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9157                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9158                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9159                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9160                 dev_priv->shared_dplls[i].get_hw_state =
9161                         ibx_pch_dpll_get_hw_state;
9162         }
9163 }
9164
9165 static void intel_shared_dpll_init(struct drm_device *dev)
9166 {
9167         struct drm_i915_private *dev_priv = dev->dev_private;
9168
9169         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9170                 ibx_pch_dpll_init(dev);
9171         else
9172                 dev_priv->num_shared_dpll = 0;
9173
9174         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9175         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9176                       dev_priv->num_shared_dpll);
9177 }
9178
9179 static void intel_crtc_init(struct drm_device *dev, int pipe)
9180 {
9181         drm_i915_private_t *dev_priv = dev->dev_private;
9182         struct intel_crtc *intel_crtc;
9183         int i;
9184
9185         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9186         if (intel_crtc == NULL)
9187                 return;
9188
9189         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9190
9191         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9192         for (i = 0; i < 256; i++) {
9193                 intel_crtc->lut_r[i] = i;
9194                 intel_crtc->lut_g[i] = i;
9195                 intel_crtc->lut_b[i] = i;
9196         }
9197
9198         /* Swap pipes & planes for FBC on pre-965 */
9199         intel_crtc->pipe = pipe;
9200         intel_crtc->plane = pipe;
9201         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9202                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9203                 intel_crtc->plane = !pipe;
9204         }
9205
9206         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9207                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9208         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9209         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9210
9211         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9212 }
9213
9214 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9215                                 struct drm_file *file)
9216 {
9217         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9218         struct drm_mode_object *drmmode_obj;
9219         struct intel_crtc *crtc;
9220
9221         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9222                 return -ENODEV;
9223
9224         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9225                         DRM_MODE_OBJECT_CRTC);
9226
9227         if (!drmmode_obj) {
9228                 DRM_ERROR("no such CRTC id\n");
9229                 return -EINVAL;
9230         }
9231
9232         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9233         pipe_from_crtc_id->pipe = crtc->pipe;
9234
9235         return 0;
9236 }
9237
9238 static int intel_encoder_clones(struct intel_encoder *encoder)
9239 {
9240         struct drm_device *dev = encoder->base.dev;
9241         struct intel_encoder *source_encoder;
9242         int index_mask = 0;
9243         int entry = 0;
9244
9245         list_for_each_entry(source_encoder,
9246                             &dev->mode_config.encoder_list, base.head) {
9247
9248                 if (encoder == source_encoder)
9249                         index_mask |= (1 << entry);
9250
9251                 /* Intel hw has only one MUX where enocoders could be cloned. */
9252                 if (encoder->cloneable && source_encoder->cloneable)
9253                         index_mask |= (1 << entry);
9254
9255                 entry++;
9256         }
9257
9258         return index_mask;
9259 }
9260
9261 static bool has_edp_a(struct drm_device *dev)
9262 {
9263         struct drm_i915_private *dev_priv = dev->dev_private;
9264
9265         if (!IS_MOBILE(dev))
9266                 return false;
9267
9268         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9269                 return false;
9270
9271         if (IS_GEN5(dev) &&
9272             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9273                 return false;
9274
9275         return true;
9276 }
9277
9278 static void intel_setup_outputs(struct drm_device *dev)
9279 {
9280         struct drm_i915_private *dev_priv = dev->dev_private;
9281         struct intel_encoder *encoder;
9282         bool dpd_is_edp = false;
9283
9284         intel_lvds_init(dev);
9285
9286         if (!IS_ULT(dev))
9287                 intel_crt_init(dev);
9288
9289         if (HAS_DDI(dev)) {
9290                 int found;
9291
9292                 /* Haswell uses DDI functions to detect digital outputs */
9293                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9294                 /* DDI A only supports eDP */
9295                 if (found)
9296                         intel_ddi_init(dev, PORT_A);
9297
9298                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9299                  * register */
9300                 found = I915_READ(SFUSE_STRAP);
9301
9302                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9303                         intel_ddi_init(dev, PORT_B);
9304                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9305                         intel_ddi_init(dev, PORT_C);
9306                 if (found & SFUSE_STRAP_DDID_DETECTED)
9307                         intel_ddi_init(dev, PORT_D);
9308         } else if (HAS_PCH_SPLIT(dev)) {
9309                 int found;
9310                 dpd_is_edp = intel_dpd_is_edp(dev);
9311
9312                 if (has_edp_a(dev))
9313                         intel_dp_init(dev, DP_A, PORT_A);
9314
9315                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9316                         /* PCH SDVOB multiplex with HDMIB */
9317                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9318                         if (!found)
9319                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9320                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9321                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9322                 }
9323
9324                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9325                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9326
9327                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9328                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9329
9330                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9331                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9332
9333                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9334                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9335         } else if (IS_VALLEYVIEW(dev)) {
9336                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9337                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9338                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9339
9340                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9341                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9342                                         PORT_B);
9343                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9344                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9345                 }
9346         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9347                 bool found = false;
9348
9349                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9350                         DRM_DEBUG_KMS("probing SDVOB\n");
9351                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9352                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9353                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9354                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9355                         }
9356
9357                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9358                                 intel_dp_init(dev, DP_B, PORT_B);
9359                 }
9360
9361                 /* Before G4X SDVOC doesn't have its own detect register */
9362
9363                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9364                         DRM_DEBUG_KMS("probing SDVOC\n");
9365                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9366                 }
9367
9368                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9369
9370                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9371                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9372                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9373                         }
9374                         if (SUPPORTS_INTEGRATED_DP(dev))
9375                                 intel_dp_init(dev, DP_C, PORT_C);
9376                 }
9377
9378                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9379                     (I915_READ(DP_D) & DP_DETECTED))
9380                         intel_dp_init(dev, DP_D, PORT_D);
9381         } else if (IS_GEN2(dev))
9382                 intel_dvo_init(dev);
9383
9384         if (SUPPORTS_TV(dev))
9385                 intel_tv_init(dev);
9386
9387         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9388                 encoder->base.possible_crtcs = encoder->crtc_mask;
9389                 encoder->base.possible_clones =
9390                         intel_encoder_clones(encoder);
9391         }
9392
9393         intel_init_pch_refclk(dev);
9394
9395         drm_helper_move_panel_connectors_to_head(dev);
9396 }
9397
9398 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9399 {
9400         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9401
9402         drm_framebuffer_cleanup(fb);
9403         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9404
9405         kfree(intel_fb);
9406 }
9407
9408 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9409                                                 struct drm_file *file,
9410                                                 unsigned int *handle)
9411 {
9412         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9413         struct drm_i915_gem_object *obj = intel_fb->obj;
9414
9415         return drm_gem_handle_create(file, &obj->base, handle);
9416 }
9417
9418 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9419         .destroy = intel_user_framebuffer_destroy,
9420         .create_handle = intel_user_framebuffer_create_handle,
9421 };
9422
9423 int intel_framebuffer_init(struct drm_device *dev,
9424                            struct intel_framebuffer *intel_fb,
9425                            struct drm_mode_fb_cmd2 *mode_cmd,
9426                            struct drm_i915_gem_object *obj)
9427 {
9428         int pitch_limit;
9429         int ret;
9430
9431         if (obj->tiling_mode == I915_TILING_Y) {
9432                 DRM_DEBUG("hardware does not support tiling Y\n");
9433                 return -EINVAL;
9434         }
9435
9436         if (mode_cmd->pitches[0] & 63) {
9437                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9438                           mode_cmd->pitches[0]);
9439                 return -EINVAL;
9440         }
9441
9442         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9443                 pitch_limit = 32*1024;
9444         } else if (INTEL_INFO(dev)->gen >= 4) {
9445                 if (obj->tiling_mode)
9446                         pitch_limit = 16*1024;
9447                 else
9448                         pitch_limit = 32*1024;
9449         } else if (INTEL_INFO(dev)->gen >= 3) {
9450                 if (obj->tiling_mode)
9451                         pitch_limit = 8*1024;
9452                 else
9453                         pitch_limit = 16*1024;
9454         } else
9455                 /* XXX DSPC is limited to 4k tiled */
9456                 pitch_limit = 8*1024;
9457
9458         if (mode_cmd->pitches[0] > pitch_limit) {
9459                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9460                           obj->tiling_mode ? "tiled" : "linear",
9461                           mode_cmd->pitches[0], pitch_limit);
9462                 return -EINVAL;
9463         }
9464
9465         if (obj->tiling_mode != I915_TILING_NONE &&
9466             mode_cmd->pitches[0] != obj->stride) {
9467                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9468                           mode_cmd->pitches[0], obj->stride);
9469                 return -EINVAL;
9470         }
9471
9472         /* Reject formats not supported by any plane early. */
9473         switch (mode_cmd->pixel_format) {
9474         case DRM_FORMAT_C8:
9475         case DRM_FORMAT_RGB565:
9476         case DRM_FORMAT_XRGB8888:
9477         case DRM_FORMAT_ARGB8888:
9478                 break;
9479         case DRM_FORMAT_XRGB1555:
9480         case DRM_FORMAT_ARGB1555:
9481                 if (INTEL_INFO(dev)->gen > 3) {
9482                         DRM_DEBUG("unsupported pixel format: %s\n",
9483                                   drm_get_format_name(mode_cmd->pixel_format));
9484                         return -EINVAL;
9485                 }
9486                 break;
9487         case DRM_FORMAT_XBGR8888:
9488         case DRM_FORMAT_ABGR8888:
9489         case DRM_FORMAT_XRGB2101010:
9490         case DRM_FORMAT_ARGB2101010:
9491         case DRM_FORMAT_XBGR2101010:
9492         case DRM_FORMAT_ABGR2101010:
9493                 if (INTEL_INFO(dev)->gen < 4) {
9494                         DRM_DEBUG("unsupported pixel format: %s\n",
9495                                   drm_get_format_name(mode_cmd->pixel_format));
9496                         return -EINVAL;
9497                 }
9498                 break;
9499         case DRM_FORMAT_YUYV:
9500         case DRM_FORMAT_UYVY:
9501         case DRM_FORMAT_YVYU:
9502         case DRM_FORMAT_VYUY:
9503                 if (INTEL_INFO(dev)->gen < 5) {
9504                         DRM_DEBUG("unsupported pixel format: %s\n",
9505                                   drm_get_format_name(mode_cmd->pixel_format));
9506                         return -EINVAL;
9507                 }
9508                 break;
9509         default:
9510                 DRM_DEBUG("unsupported pixel format: %s\n",
9511                           drm_get_format_name(mode_cmd->pixel_format));
9512                 return -EINVAL;
9513         }
9514
9515         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9516         if (mode_cmd->offsets[0] != 0)
9517                 return -EINVAL;
9518
9519         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9520         intel_fb->obj = obj;
9521
9522         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9523         if (ret) {
9524                 DRM_ERROR("framebuffer init failed %d\n", ret);
9525                 return ret;
9526         }
9527
9528         return 0;
9529 }
9530
9531 static struct drm_framebuffer *
9532 intel_user_framebuffer_create(struct drm_device *dev,
9533                               struct drm_file *filp,
9534                               struct drm_mode_fb_cmd2 *mode_cmd)
9535 {
9536         struct drm_i915_gem_object *obj;
9537
9538         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9539                                                 mode_cmd->handles[0]));
9540         if (&obj->base == NULL)
9541                 return ERR_PTR(-ENOENT);
9542
9543         return intel_framebuffer_create(dev, mode_cmd, obj);
9544 }
9545
9546 static const struct drm_mode_config_funcs intel_mode_funcs = {
9547         .fb_create = intel_user_framebuffer_create,
9548         .output_poll_changed = intel_fb_output_poll_changed,
9549 };
9550
9551 /* Set up chip specific display functions */
9552 static void intel_init_display(struct drm_device *dev)
9553 {
9554         struct drm_i915_private *dev_priv = dev->dev_private;
9555
9556         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9557                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9558         else if (IS_VALLEYVIEW(dev))
9559                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9560         else if (IS_PINEVIEW(dev))
9561                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9562         else
9563                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9564
9565         if (HAS_DDI(dev)) {
9566                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9567                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9568                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9569                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9570                 dev_priv->display.off = haswell_crtc_off;
9571                 dev_priv->display.update_plane = ironlake_update_plane;
9572         } else if (HAS_PCH_SPLIT(dev)) {
9573                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9574                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9575                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9576                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9577                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9578                 dev_priv->display.off = ironlake_crtc_off;
9579                 dev_priv->display.update_plane = ironlake_update_plane;
9580         } else if (IS_VALLEYVIEW(dev)) {
9581                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9582                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9583                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9584                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9585                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9586                 dev_priv->display.off = i9xx_crtc_off;
9587                 dev_priv->display.update_plane = i9xx_update_plane;
9588         } else {
9589                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9590                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9591                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9592                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9593                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9594                 dev_priv->display.off = i9xx_crtc_off;
9595                 dev_priv->display.update_plane = i9xx_update_plane;
9596         }
9597
9598         /* Returns the core display clock speed */
9599         if (IS_VALLEYVIEW(dev))
9600                 dev_priv->display.get_display_clock_speed =
9601                         valleyview_get_display_clock_speed;
9602         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9603                 dev_priv->display.get_display_clock_speed =
9604                         i945_get_display_clock_speed;
9605         else if (IS_I915G(dev))
9606                 dev_priv->display.get_display_clock_speed =
9607                         i915_get_display_clock_speed;
9608         else if (IS_I945GM(dev) || IS_845G(dev))
9609                 dev_priv->display.get_display_clock_speed =
9610                         i9xx_misc_get_display_clock_speed;
9611         else if (IS_PINEVIEW(dev))
9612                 dev_priv->display.get_display_clock_speed =
9613                         pnv_get_display_clock_speed;
9614         else if (IS_I915GM(dev))
9615                 dev_priv->display.get_display_clock_speed =
9616                         i915gm_get_display_clock_speed;
9617         else if (IS_I865G(dev))
9618                 dev_priv->display.get_display_clock_speed =
9619                         i865_get_display_clock_speed;
9620         else if (IS_I85X(dev))
9621                 dev_priv->display.get_display_clock_speed =
9622                         i855_get_display_clock_speed;
9623         else /* 852, 830 */
9624                 dev_priv->display.get_display_clock_speed =
9625                         i830_get_display_clock_speed;
9626
9627         if (HAS_PCH_SPLIT(dev)) {
9628                 if (IS_GEN5(dev)) {
9629                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9630                         dev_priv->display.write_eld = ironlake_write_eld;
9631                 } else if (IS_GEN6(dev)) {
9632                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9633                         dev_priv->display.write_eld = ironlake_write_eld;
9634                 } else if (IS_IVYBRIDGE(dev)) {
9635                         /* FIXME: detect B0+ stepping and use auto training */
9636                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9637                         dev_priv->display.write_eld = ironlake_write_eld;
9638                         dev_priv->display.modeset_global_resources =
9639                                 ivb_modeset_global_resources;
9640                 } else if (IS_HASWELL(dev)) {
9641                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9642                         dev_priv->display.write_eld = haswell_write_eld;
9643                         dev_priv->display.modeset_global_resources =
9644                                 haswell_modeset_global_resources;
9645                 }
9646         } else if (IS_G4X(dev)) {
9647                 dev_priv->display.write_eld = g4x_write_eld;
9648         }
9649
9650         /* Default just returns -ENODEV to indicate unsupported */
9651         dev_priv->display.queue_flip = intel_default_queue_flip;
9652
9653         switch (INTEL_INFO(dev)->gen) {
9654         case 2:
9655                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9656                 break;
9657
9658         case 3:
9659                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9660                 break;
9661
9662         case 4:
9663         case 5:
9664                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9665                 break;
9666
9667         case 6:
9668                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9669                 break;
9670         case 7:
9671                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9672                 break;
9673         }
9674 }
9675
9676 /*
9677  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9678  * resume, or other times.  This quirk makes sure that's the case for
9679  * affected systems.
9680  */
9681 static void quirk_pipea_force(struct drm_device *dev)
9682 {
9683         struct drm_i915_private *dev_priv = dev->dev_private;
9684
9685         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9686         DRM_INFO("applying pipe a force quirk\n");
9687 }
9688
9689 /*
9690  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9691  */
9692 static void quirk_ssc_force_disable(struct drm_device *dev)
9693 {
9694         struct drm_i915_private *dev_priv = dev->dev_private;
9695         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9696         DRM_INFO("applying lvds SSC disable quirk\n");
9697 }
9698
9699 /*
9700  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9701  * brightness value
9702  */
9703 static void quirk_invert_brightness(struct drm_device *dev)
9704 {
9705         struct drm_i915_private *dev_priv = dev->dev_private;
9706         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9707         DRM_INFO("applying inverted panel brightness quirk\n");
9708 }
9709
9710 /*
9711  * Some machines (Dell XPS13) suffer broken backlight controls if
9712  * BLM_PCH_PWM_ENABLE is set.
9713  */
9714 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9715 {
9716         struct drm_i915_private *dev_priv = dev->dev_private;
9717         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9718         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9719 }
9720
9721 struct intel_quirk {
9722         int device;
9723         int subsystem_vendor;
9724         int subsystem_device;
9725         void (*hook)(struct drm_device *dev);
9726 };
9727
9728 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9729 struct intel_dmi_quirk {
9730         void (*hook)(struct drm_device *dev);
9731         const struct dmi_system_id (*dmi_id_list)[];
9732 };
9733
9734 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9735 {
9736         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9737         return 1;
9738 }
9739
9740 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9741         {
9742                 .dmi_id_list = &(const struct dmi_system_id[]) {
9743                         {
9744                                 .callback = intel_dmi_reverse_brightness,
9745                                 .ident = "NCR Corporation",
9746                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9747                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9748                                 },
9749                         },
9750                         { }  /* terminating entry */
9751                 },
9752                 .hook = quirk_invert_brightness,
9753         },
9754 };
9755
9756 static struct intel_quirk intel_quirks[] = {
9757         /* HP Mini needs pipe A force quirk (LP: #322104) */
9758         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9759
9760         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9761         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9762
9763         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9764         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9765
9766         /* 830/845 need to leave pipe A & dpll A up */
9767         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9768         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9769
9770         /* Lenovo U160 cannot use SSC on LVDS */
9771         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9772
9773         /* Sony Vaio Y cannot use SSC on LVDS */
9774         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9775
9776         /* Acer Aspire 5734Z must invert backlight brightness */
9777         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9778
9779         /* Acer/eMachines G725 */
9780         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9781
9782         /* Acer/eMachines e725 */
9783         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9784
9785         /* Acer/Packard Bell NCL20 */
9786         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9787
9788         /* Acer Aspire 4736Z */
9789         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9790
9791         /* Dell XPS13 HD Sandy Bridge */
9792         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9793         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9794         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9795 };
9796
9797 static void intel_init_quirks(struct drm_device *dev)
9798 {
9799         struct pci_dev *d = dev->pdev;
9800         int i;
9801
9802         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9803                 struct intel_quirk *q = &intel_quirks[i];
9804
9805                 if (d->device == q->device &&
9806                     (d->subsystem_vendor == q->subsystem_vendor ||
9807                      q->subsystem_vendor == PCI_ANY_ID) &&
9808                     (d->subsystem_device == q->subsystem_device ||
9809                      q->subsystem_device == PCI_ANY_ID))
9810                         q->hook(dev);
9811         }
9812         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9813                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9814                         intel_dmi_quirks[i].hook(dev);
9815         }
9816 }
9817
9818 /* Disable the VGA plane that we never use */
9819 static void i915_disable_vga(struct drm_device *dev)
9820 {
9821         struct drm_i915_private *dev_priv = dev->dev_private;
9822         u8 sr1;
9823         u32 vga_reg = i915_vgacntrl_reg(dev);
9824
9825         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9826         outb(SR01, VGA_SR_INDEX);
9827         sr1 = inb(VGA_SR_DATA);
9828         outb(sr1 | 1<<5, VGA_SR_DATA);
9829         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9830         udelay(300);
9831
9832         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9833         POSTING_READ(vga_reg);
9834 }
9835
9836 void intel_modeset_init_hw(struct drm_device *dev)
9837 {
9838         intel_init_power_well(dev);
9839
9840         intel_prepare_ddi(dev);
9841
9842         intel_init_clock_gating(dev);
9843
9844         mutex_lock(&dev->struct_mutex);
9845         intel_enable_gt_powersave(dev);
9846         mutex_unlock(&dev->struct_mutex);
9847 }
9848
9849 void intel_modeset_suspend_hw(struct drm_device *dev)
9850 {
9851         intel_suspend_hw(dev);
9852 }
9853
9854 void intel_modeset_init(struct drm_device *dev)
9855 {
9856         struct drm_i915_private *dev_priv = dev->dev_private;
9857         int i, j, ret;
9858
9859         drm_mode_config_init(dev);
9860
9861         dev->mode_config.min_width = 0;
9862         dev->mode_config.min_height = 0;
9863
9864         dev->mode_config.preferred_depth = 24;
9865         dev->mode_config.prefer_shadow = 1;
9866
9867         dev->mode_config.funcs = &intel_mode_funcs;
9868
9869         intel_init_quirks(dev);
9870
9871         intel_init_pm(dev);
9872
9873         if (INTEL_INFO(dev)->num_pipes == 0)
9874                 return;
9875
9876         intel_init_display(dev);
9877
9878         if (IS_GEN2(dev)) {
9879                 dev->mode_config.max_width = 2048;
9880                 dev->mode_config.max_height = 2048;
9881         } else if (IS_GEN3(dev)) {
9882                 dev->mode_config.max_width = 4096;
9883                 dev->mode_config.max_height = 4096;
9884         } else {
9885                 dev->mode_config.max_width = 8192;
9886                 dev->mode_config.max_height = 8192;
9887         }
9888         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9889
9890         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9891                       INTEL_INFO(dev)->num_pipes,
9892                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9893
9894         for_each_pipe(i) {
9895                 intel_crtc_init(dev, i);
9896                 for (j = 0; j < dev_priv->num_plane; j++) {
9897                         ret = intel_plane_init(dev, i, j);
9898                         if (ret)
9899                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9900                                               pipe_name(i), sprite_name(i, j), ret);
9901                 }
9902         }
9903
9904         intel_cpu_pll_init(dev);
9905         intel_shared_dpll_init(dev);
9906
9907         /* Just disable it once at startup */
9908         i915_disable_vga(dev);
9909         intel_setup_outputs(dev);
9910
9911         /* Just in case the BIOS is doing something questionable. */
9912         intel_disable_fbc(dev);
9913 }
9914
9915 static void
9916 intel_connector_break_all_links(struct intel_connector *connector)
9917 {
9918         connector->base.dpms = DRM_MODE_DPMS_OFF;
9919         connector->base.encoder = NULL;
9920         connector->encoder->connectors_active = false;
9921         connector->encoder->base.crtc = NULL;
9922 }
9923
9924 static void intel_enable_pipe_a(struct drm_device *dev)
9925 {
9926         struct intel_connector *connector;
9927         struct drm_connector *crt = NULL;
9928         struct intel_load_detect_pipe load_detect_temp;
9929
9930         /* We can't just switch on the pipe A, we need to set things up with a
9931          * proper mode and output configuration. As a gross hack, enable pipe A
9932          * by enabling the load detect pipe once. */
9933         list_for_each_entry(connector,
9934                             &dev->mode_config.connector_list,
9935                             base.head) {
9936                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9937                         crt = &connector->base;
9938                         break;
9939                 }
9940         }
9941
9942         if (!crt)
9943                 return;
9944
9945         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9946                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9947
9948
9949 }
9950
9951 static bool
9952 intel_check_plane_mapping(struct intel_crtc *crtc)
9953 {
9954         struct drm_device *dev = crtc->base.dev;
9955         struct drm_i915_private *dev_priv = dev->dev_private;
9956         u32 reg, val;
9957
9958         if (INTEL_INFO(dev)->num_pipes == 1)
9959                 return true;
9960
9961         reg = DSPCNTR(!crtc->plane);
9962         val = I915_READ(reg);
9963
9964         if ((val & DISPLAY_PLANE_ENABLE) &&
9965             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9966                 return false;
9967
9968         return true;
9969 }
9970
9971 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9972 {
9973         struct drm_device *dev = crtc->base.dev;
9974         struct drm_i915_private *dev_priv = dev->dev_private;
9975         u32 reg;
9976
9977         /* Clear any frame start delays used for debugging left by the BIOS */
9978         reg = PIPECONF(crtc->config.cpu_transcoder);
9979         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9980
9981         /* We need to sanitize the plane -> pipe mapping first because this will
9982          * disable the crtc (and hence change the state) if it is wrong. Note
9983          * that gen4+ has a fixed plane -> pipe mapping.  */
9984         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9985                 struct intel_connector *connector;
9986                 bool plane;
9987
9988                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9989                               crtc->base.base.id);
9990
9991                 /* Pipe has the wrong plane attached and the plane is active.
9992                  * Temporarily change the plane mapping and disable everything
9993                  * ...  */
9994                 plane = crtc->plane;
9995                 crtc->plane = !plane;
9996                 dev_priv->display.crtc_disable(&crtc->base);
9997                 crtc->plane = plane;
9998
9999                 /* ... and break all links. */
10000                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10001                                     base.head) {
10002                         if (connector->encoder->base.crtc != &crtc->base)
10003                                 continue;
10004
10005                         intel_connector_break_all_links(connector);
10006                 }
10007
10008                 WARN_ON(crtc->active);
10009                 crtc->base.enabled = false;
10010         }
10011
10012         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10013             crtc->pipe == PIPE_A && !crtc->active) {
10014                 /* BIOS forgot to enable pipe A, this mostly happens after
10015                  * resume. Force-enable the pipe to fix this, the update_dpms
10016                  * call below we restore the pipe to the right state, but leave
10017                  * the required bits on. */
10018                 intel_enable_pipe_a(dev);
10019         }
10020
10021         /* Adjust the state of the output pipe according to whether we
10022          * have active connectors/encoders. */
10023         intel_crtc_update_dpms(&crtc->base);
10024
10025         if (crtc->active != crtc->base.enabled) {
10026                 struct intel_encoder *encoder;
10027
10028                 /* This can happen either due to bugs in the get_hw_state
10029                  * functions or because the pipe is force-enabled due to the
10030                  * pipe A quirk. */
10031                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10032                               crtc->base.base.id,
10033                               crtc->base.enabled ? "enabled" : "disabled",
10034                               crtc->active ? "enabled" : "disabled");
10035
10036                 crtc->base.enabled = crtc->active;
10037
10038                 /* Because we only establish the connector -> encoder ->
10039                  * crtc links if something is active, this means the
10040                  * crtc is now deactivated. Break the links. connector
10041                  * -> encoder links are only establish when things are
10042                  *  actually up, hence no need to break them. */
10043                 WARN_ON(crtc->active);
10044
10045                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10046                         WARN_ON(encoder->connectors_active);
10047                         encoder->base.crtc = NULL;
10048                 }
10049         }
10050 }
10051
10052 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10053 {
10054         struct intel_connector *connector;
10055         struct drm_device *dev = encoder->base.dev;
10056
10057         /* We need to check both for a crtc link (meaning that the
10058          * encoder is active and trying to read from a pipe) and the
10059          * pipe itself being active. */
10060         bool has_active_crtc = encoder->base.crtc &&
10061                 to_intel_crtc(encoder->base.crtc)->active;
10062
10063         if (encoder->connectors_active && !has_active_crtc) {
10064                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10065                               encoder->base.base.id,
10066                               drm_get_encoder_name(&encoder->base));
10067
10068                 /* Connector is active, but has no active pipe. This is
10069                  * fallout from our resume register restoring. Disable
10070                  * the encoder manually again. */
10071                 if (encoder->base.crtc) {
10072                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10073                                       encoder->base.base.id,
10074                                       drm_get_encoder_name(&encoder->base));
10075                         encoder->disable(encoder);
10076                 }
10077
10078                 /* Inconsistent output/port/pipe state happens presumably due to
10079                  * a bug in one of the get_hw_state functions. Or someplace else
10080                  * in our code, like the register restore mess on resume. Clamp
10081                  * things to off as a safer default. */
10082                 list_for_each_entry(connector,
10083                                     &dev->mode_config.connector_list,
10084                                     base.head) {
10085                         if (connector->encoder != encoder)
10086                                 continue;
10087
10088                         intel_connector_break_all_links(connector);
10089                 }
10090         }
10091         /* Enabled encoders without active connectors will be fixed in
10092          * the crtc fixup. */
10093 }
10094
10095 void i915_redisable_vga(struct drm_device *dev)
10096 {
10097         struct drm_i915_private *dev_priv = dev->dev_private;
10098         u32 vga_reg = i915_vgacntrl_reg(dev);
10099
10100         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10101                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10102                 i915_disable_vga(dev);
10103         }
10104 }
10105
10106 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10107 {
10108         struct drm_i915_private *dev_priv = dev->dev_private;
10109         enum pipe pipe;
10110         struct intel_crtc *crtc;
10111         struct intel_encoder *encoder;
10112         struct intel_connector *connector;
10113         int i;
10114
10115         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10116                             base.head) {
10117                 memset(&crtc->config, 0, sizeof(crtc->config));
10118
10119                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10120                                                                  &crtc->config);
10121
10122                 crtc->base.enabled = crtc->active;
10123
10124                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10125                               crtc->base.base.id,
10126                               crtc->active ? "enabled" : "disabled");
10127         }
10128
10129         /* FIXME: Smash this into the new shared dpll infrastructure. */
10130         if (HAS_DDI(dev))
10131                 intel_ddi_setup_hw_pll_state(dev);
10132
10133         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10134                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10135
10136                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10137                 pll->active = 0;
10138                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10139                                     base.head) {
10140                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10141                                 pll->active++;
10142                 }
10143                 pll->refcount = pll->active;
10144
10145                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10146                               pll->name, pll->refcount, pll->on);
10147         }
10148
10149         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10150                             base.head) {
10151                 pipe = 0;
10152
10153                 if (encoder->get_hw_state(encoder, &pipe)) {
10154                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10155                         encoder->base.crtc = &crtc->base;
10156                         if (encoder->get_config)
10157                                 encoder->get_config(encoder, &crtc->config);
10158                 } else {
10159                         encoder->base.crtc = NULL;
10160                 }
10161
10162                 encoder->connectors_active = false;
10163                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10164                               encoder->base.base.id,
10165                               drm_get_encoder_name(&encoder->base),
10166                               encoder->base.crtc ? "enabled" : "disabled",
10167                               pipe);
10168         }
10169
10170         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10171                             base.head) {
10172                 if (!crtc->active)
10173                         continue;
10174                 if (dev_priv->display.get_clock)
10175                         dev_priv->display.get_clock(crtc,
10176                                                     &crtc->config);
10177         }
10178
10179         list_for_each_entry(connector, &dev->mode_config.connector_list,
10180                             base.head) {
10181                 if (connector->get_hw_state(connector)) {
10182                         connector->base.dpms = DRM_MODE_DPMS_ON;
10183                         connector->encoder->connectors_active = true;
10184                         connector->base.encoder = &connector->encoder->base;
10185                 } else {
10186                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10187                         connector->base.encoder = NULL;
10188                 }
10189                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10190                               connector->base.base.id,
10191                               drm_get_connector_name(&connector->base),
10192                               connector->base.encoder ? "enabled" : "disabled");
10193         }
10194 }
10195
10196 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10197  * and i915 state tracking structures. */
10198 void intel_modeset_setup_hw_state(struct drm_device *dev,
10199                                   bool force_restore)
10200 {
10201         struct drm_i915_private *dev_priv = dev->dev_private;
10202         enum pipe pipe;
10203         struct drm_plane *plane;
10204         struct intel_crtc *crtc;
10205         struct intel_encoder *encoder;
10206         int i;
10207
10208         intel_modeset_readout_hw_state(dev);
10209
10210         /*
10211          * Now that we have the config, copy it to each CRTC struct
10212          * Note that this could go away if we move to using crtc_config
10213          * checking everywhere.
10214          */
10215         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10216                             base.head) {
10217                 if (crtc->active && i915_fastboot) {
10218                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10219
10220                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10221                                       crtc->base.base.id);
10222                         drm_mode_debug_printmodeline(&crtc->base.mode);
10223                 }
10224         }
10225
10226         /* HW state is read out, now we need to sanitize this mess. */
10227         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10228                             base.head) {
10229                 intel_sanitize_encoder(encoder);
10230         }
10231
10232         for_each_pipe(pipe) {
10233                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10234                 intel_sanitize_crtc(crtc);
10235                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10236         }
10237
10238         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10239                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10240
10241                 if (!pll->on || pll->active)
10242                         continue;
10243
10244                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10245
10246                 pll->disable(dev_priv, pll);
10247                 pll->on = false;
10248         }
10249
10250         if (force_restore) {
10251                 /*
10252                  * We need to use raw interfaces for restoring state to avoid
10253                  * checking (bogus) intermediate states.
10254                  */
10255                 for_each_pipe(pipe) {
10256                         struct drm_crtc *crtc =
10257                                 dev_priv->pipe_to_crtc_mapping[pipe];
10258
10259                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10260                                          crtc->fb);
10261                 }
10262                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10263                         intel_plane_restore(plane);
10264
10265                 i915_redisable_vga(dev);
10266         } else {
10267                 intel_modeset_update_staged_output_state(dev);
10268         }
10269
10270         intel_modeset_check_state(dev);
10271
10272         drm_mode_config_reset(dev);
10273 }
10274
10275 void intel_modeset_gem_init(struct drm_device *dev)
10276 {
10277         intel_modeset_init_hw(dev);
10278
10279         intel_setup_overlay(dev);
10280
10281         intel_modeset_setup_hw_state(dev, false);
10282 }
10283
10284 void intel_modeset_cleanup(struct drm_device *dev)
10285 {
10286         struct drm_i915_private *dev_priv = dev->dev_private;
10287         struct drm_crtc *crtc;
10288         struct intel_crtc *intel_crtc;
10289
10290         /*
10291          * Interrupts and polling as the first thing to avoid creating havoc.
10292          * Too much stuff here (turning of rps, connectors, ...) would
10293          * experience fancy races otherwise.
10294          */
10295         drm_irq_uninstall(dev);
10296         cancel_work_sync(&dev_priv->hotplug_work);
10297         /*
10298          * Due to the hpd irq storm handling the hotplug work can re-arm the
10299          * poll handlers. Hence disable polling after hpd handling is shut down.
10300          */
10301         drm_kms_helper_poll_fini(dev);
10302
10303         mutex_lock(&dev->struct_mutex);
10304
10305         intel_unregister_dsm_handler();
10306
10307         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10308                 /* Skip inactive CRTCs */
10309                 if (!crtc->fb)
10310                         continue;
10311
10312                 intel_crtc = to_intel_crtc(crtc);
10313                 intel_increase_pllclock(crtc);
10314         }
10315
10316         intel_disable_fbc(dev);
10317
10318         intel_disable_gt_powersave(dev);
10319
10320         ironlake_teardown_rc6(dev);
10321
10322         mutex_unlock(&dev->struct_mutex);
10323
10324         /* flush any delayed tasks or pending work */
10325         flush_scheduled_work();
10326
10327         /* destroy backlight, if any, before the connectors */
10328         intel_panel_destroy_backlight(dev);
10329
10330         drm_mode_config_cleanup(dev);
10331
10332         intel_cleanup_overlay(dev);
10333 }
10334
10335 /*
10336  * Return which encoder is currently attached for connector.
10337  */
10338 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10339 {
10340         return &intel_attached_encoder(connector)->base;
10341 }
10342
10343 void intel_connector_attach_encoder(struct intel_connector *connector,
10344                                     struct intel_encoder *encoder)
10345 {
10346         connector->encoder = encoder;
10347         drm_mode_connector_attach_encoder(&connector->base,
10348                                           &encoder->base);
10349 }
10350
10351 /*
10352  * set vga decode state - true == enable VGA decode
10353  */
10354 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10355 {
10356         struct drm_i915_private *dev_priv = dev->dev_private;
10357         u16 gmch_ctrl;
10358
10359         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10360         if (state)
10361                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10362         else
10363                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10364         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10365         return 0;
10366 }
10367
10368 struct intel_display_error_state {
10369
10370         u32 power_well_driver;
10371
10372         struct intel_cursor_error_state {
10373                 u32 control;
10374                 u32 position;
10375                 u32 base;
10376                 u32 size;
10377         } cursor[I915_MAX_PIPES];
10378
10379         struct intel_pipe_error_state {
10380                 enum transcoder cpu_transcoder;
10381                 u32 conf;
10382                 u32 source;
10383
10384                 u32 htotal;
10385                 u32 hblank;
10386                 u32 hsync;
10387                 u32 vtotal;
10388                 u32 vblank;
10389                 u32 vsync;
10390         } pipe[I915_MAX_PIPES];
10391
10392         struct intel_plane_error_state {
10393                 u32 control;
10394                 u32 stride;
10395                 u32 size;
10396                 u32 pos;
10397                 u32 addr;
10398                 u32 surface;
10399                 u32 tile_offset;
10400         } plane[I915_MAX_PIPES];
10401 };
10402
10403 struct intel_display_error_state *
10404 intel_display_capture_error_state(struct drm_device *dev)
10405 {
10406         drm_i915_private_t *dev_priv = dev->dev_private;
10407         struct intel_display_error_state *error;
10408         enum transcoder cpu_transcoder;
10409         int i;
10410
10411         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10412         if (error == NULL)
10413                 return NULL;
10414
10415         if (HAS_POWER_WELL(dev))
10416                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10417
10418         for_each_pipe(i) {
10419                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10420                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10421
10422                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10423                         error->cursor[i].control = I915_READ(CURCNTR(i));
10424                         error->cursor[i].position = I915_READ(CURPOS(i));
10425                         error->cursor[i].base = I915_READ(CURBASE(i));
10426                 } else {
10427                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10428                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10429                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10430                 }
10431
10432                 error->plane[i].control = I915_READ(DSPCNTR(i));
10433                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10434                 if (INTEL_INFO(dev)->gen <= 3) {
10435                         error->plane[i].size = I915_READ(DSPSIZE(i));
10436                         error->plane[i].pos = I915_READ(DSPPOS(i));
10437                 }
10438                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10439                         error->plane[i].addr = I915_READ(DSPADDR(i));
10440                 if (INTEL_INFO(dev)->gen >= 4) {
10441                         error->plane[i].surface = I915_READ(DSPSURF(i));
10442                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10443                 }
10444
10445                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10446                 error->pipe[i].source = I915_READ(PIPESRC(i));
10447                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10448                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10449                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10450                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10451                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10452                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10453         }
10454
10455         /* In the code above we read the registers without checking if the power
10456          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10457          * prevent the next I915_WRITE from detecting it and printing an error
10458          * message. */
10459         intel_uncore_clear_errors(dev);
10460
10461         return error;
10462 }
10463
10464 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10465
10466 void
10467 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10468                                 struct drm_device *dev,
10469                                 struct intel_display_error_state *error)
10470 {
10471         int i;
10472
10473         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10474         if (HAS_POWER_WELL(dev))
10475                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10476                            error->power_well_driver);
10477         for_each_pipe(i) {
10478                 err_printf(m, "Pipe [%d]:\n", i);
10479                 err_printf(m, "  CPU transcoder: %c\n",
10480                            transcoder_name(error->pipe[i].cpu_transcoder));
10481                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10482                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10483                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10484                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10485                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10486                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10487                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10488                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10489
10490                 err_printf(m, "Plane [%d]:\n", i);
10491                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10492                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10493                 if (INTEL_INFO(dev)->gen <= 3) {
10494                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10495                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10496                 }
10497                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10498                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10499                 if (INTEL_INFO(dev)->gen >= 4) {
10500                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10501                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10502                 }
10503
10504                 err_printf(m, "Cursor [%d]:\n", i);
10505                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10506                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10507                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10508         }
10509 }