drm/i915: add sprite assertion function for VLV
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* No really, not for ILK+ */
1478         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480         /* PLL is protected by panel, make sure we can write it */
1481         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482                 assert_panel_unlocked(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val |= DPLL_VCO_ENABLE;
1487
1488         /* We do this three times for luck */
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491         udelay(150); /* wait for warmup */
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494         udelay(150); /* wait for warmup */
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497         udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501  * intel_disable_pll - disable a PLL
1502  * @dev_priv: i915 private structure
1503  * @pipe: pipe PLL to disable
1504  *
1505  * Disable the PLL for @pipe, making sure the pipe is off first.
1506  *
1507  * Note!  This is for pre-ILK only.
1508  */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         /* Don't disable pipe A or pipe A PLLs if needed */
1515         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516                 return;
1517
1518         /* Make sure the pipe isn't still relying on us */
1519         assert_pipe_disabled(dev_priv, pipe);
1520
1521         reg = DPLL(pipe);
1522         val = I915_READ(reg);
1523         val &= ~DPLL_VCO_ENABLE;
1524         I915_WRITE(reg, val);
1525         POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531                 enum intel_sbi_destination destination)
1532 {
1533         u32 tmp;
1534
1535         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 return;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544         I915_WRITE(SBI_DATA, value);
1545
1546         if (destination == SBI_ICLK)
1547                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548         else
1549                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553                                 100)) {
1554                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555                 return;
1556         }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561                enum intel_sbi_destination destination)
1562 {
1563         u32 value = 0;
1564         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569                 return 0;
1570         }
1571
1572         I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574         if (destination == SBI_ICLK)
1575                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576         else
1577                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581                                 100)) {
1582                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583                 return 0;
1584         }
1585
1586         return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590  * ironlake_enable_pch_pll - enable PCH PLL
1591  * @dev_priv: i915 private structure
1592  * @pipe: pipe PLL to enable
1593  *
1594  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595  * drives the transcoder clock.
1596  */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600         struct intel_pch_pll *pll;
1601         int reg;
1602         u32 val;
1603
1604         /* PCH PLLs only available on ILK, SNB and IVB */
1605         BUG_ON(dev_priv->info->gen < 5);
1606         pll = intel_crtc->pch_pll;
1607         if (pll == NULL)
1608                 return;
1609
1610         if (WARN_ON(pll->refcount == 0))
1611                 return;
1612
1613         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614                       pll->pll_reg, pll->active, pll->on,
1615                       intel_crtc->base.base.id);
1616
1617         /* PCH refclock must be enabled first */
1618         assert_pch_refclk_enabled(dev_priv);
1619
1620         if (pll->active++ && pll->on) {
1621                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627         reg = pll->pll_reg;
1628         val = I915_READ(reg);
1629         val |= DPLL_VCO_ENABLE;
1630         I915_WRITE(reg, val);
1631         POSTING_READ(reg);
1632         udelay(200);
1633
1634         pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641         int reg;
1642         u32 val;
1643
1644         /* PCH only available on ILK+ */
1645         BUG_ON(dev_priv->info->gen < 5);
1646         if (pll == NULL)
1647                return;
1648
1649         if (WARN_ON(pll->refcount == 0))
1650                 return;
1651
1652         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653                       pll->pll_reg, pll->active, pll->on,
1654                       intel_crtc->base.base.id);
1655
1656         if (WARN_ON(pll->active == 0)) {
1657                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658                 return;
1659         }
1660
1661         if (--pll->active) {
1662                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663                 return;
1664         }
1665
1666         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668         /* Make sure transcoder isn't still depending on us */
1669         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671         reg = pll->pll_reg;
1672         val = I915_READ(reg);
1673         val &= ~DPLL_VCO_ENABLE;
1674         I915_WRITE(reg, val);
1675         POSTING_READ(reg);
1676         udelay(200);
1677
1678         pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct drm_device *dev = dev_priv->dev;
1685         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686         uint32_t reg, val, pipeconf_val;
1687
1688         /* PCH only available on ILK+ */
1689         BUG_ON(dev_priv->info->gen < 5);
1690
1691         /* Make sure PCH DPLL is enabled */
1692         assert_pch_pll_enabled(dev_priv,
1693                                to_intel_crtc(crtc)->pch_pll,
1694                                to_intel_crtc(crtc));
1695
1696         /* FDI must be feeding us bits for PCH ports */
1697         assert_fdi_tx_enabled(dev_priv, pipe);
1698         assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700         if (HAS_PCH_CPT(dev)) {
1701                 /* Workaround: Set the timing override bit before enabling the
1702                  * pch transcoder. */
1703                 reg = TRANS_CHICKEN2(pipe);
1704                 val = I915_READ(reg);
1705                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706                 I915_WRITE(reg, val);
1707         }
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713         if (HAS_PCH_IBX(dev_priv->dev)) {
1714                 /*
1715                  * make the BPC in transcoder be consistent with
1716                  * that in pipeconf reg.
1717                  */
1718                 val &= ~PIPECONF_BPC_MASK;
1719                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv->dev) &&
1725                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738                                       enum transcoder cpu_transcoder)
1739 {
1740         u32 val, pipeconf_val;
1741
1742         /* PCH only available on ILK+ */
1743         BUG_ON(dev_priv->info->gen < 5);
1744
1745         /* FDI must be feeding us bits for PCH ports */
1746         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749         /* Workaround: set timing override bit. */
1750         val = I915_READ(_TRANSA_CHICKEN2);
1751         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752         I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754         val = TRANS_ENABLE;
1755         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758             PIPECONF_INTERLACED_ILK)
1759                 val |= TRANS_INTERLACED;
1760         else
1761                 val |= TRANS_PROGRESSIVE;
1762
1763         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765                 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769                                             enum pipe pipe)
1770 {
1771         struct drm_device *dev = dev_priv->dev;
1772         uint32_t reg, val;
1773
1774         /* FDI relies on the transcoder */
1775         assert_fdi_tx_disabled(dev_priv, pipe);
1776         assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778         /* Ports must be off as well */
1779         assert_pch_ports_disabled(dev_priv, pipe);
1780
1781         reg = TRANSCONF(pipe);
1782         val = I915_READ(reg);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(reg, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789         if (!HAS_PCH_IBX(dev)) {
1790                 /* Workaround: Clear the timing override chicken bit again. */
1791                 reg = TRANS_CHICKEN2(pipe);
1792                 val = I915_READ(reg);
1793                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794                 I915_WRITE(reg, val);
1795         }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800         u32 val;
1801
1802         val = I915_READ(_TRANSACONF);
1803         val &= ~TRANS_ENABLE;
1804         I915_WRITE(_TRANSACONF, val);
1805         /* wait for PCH transcoder off, transcoder state */
1806         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807                 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809         /* Workaround: clear timing override bit. */
1810         val = I915_READ(_TRANSA_CHICKEN2);
1811         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812         I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816  * intel_enable_pipe - enable a pipe, asserting requirements
1817  * @dev_priv: i915 private structure
1818  * @pipe: pipe to enable
1819  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820  *
1821  * Enable @pipe, making sure that various hardware specific requirements
1822  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823  *
1824  * @pipe should be %PIPE_A or %PIPE_B.
1825  *
1826  * Will wait until the pipe is actually running (i.e. first vblank) before
1827  * returning.
1828  */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830                               bool pch_port)
1831 {
1832         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833                                                                       pipe);
1834         enum pipe pch_transcoder;
1835         int reg;
1836         u32 val;
1837
1838         if (HAS_PCH_LPT(dev_priv->dev))
1839                 pch_transcoder = TRANSCODER_A;
1840         else
1841                 pch_transcoder = pipe;
1842
1843         /*
1844          * A pipe without a PLL won't actually be able to drive bits from
1845          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1846          * need the check.
1847          */
1848         if (!HAS_PCH_SPLIT(dev_priv->dev))
1849                 assert_pll_enabled(dev_priv, pipe);
1850         else {
1851                 if (pch_port) {
1852                         /* if driving the PCH, we need FDI enabled */
1853                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854                         assert_fdi_tx_pll_enabled(dev_priv,
1855                                                   (enum pipe) cpu_transcoder);
1856                 }
1857                 /* FIXME: assert CPU port conditions for SNB+ */
1858         }
1859
1860         reg = PIPECONF(cpu_transcoder);
1861         val = I915_READ(reg);
1862         if (val & PIPECONF_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | PIPECONF_ENABLE);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870  * intel_disable_pipe - disable a pipe, asserting requirements
1871  * @dev_priv: i915 private structure
1872  * @pipe: pipe to disable
1873  *
1874  * Disable @pipe, making sure that various hardware specific requirements
1875  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876  *
1877  * @pipe should be %PIPE_A or %PIPE_B.
1878  *
1879  * Will wait until the pipe has shut down before returning.
1880  */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882                                enum pipe pipe)
1883 {
1884         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885                                                                       pipe);
1886         int reg;
1887         u32 val;
1888
1889         /*
1890          * Make sure planes won't keep trying to pump pixels to us,
1891          * or we might hang the display.
1892          */
1893         assert_planes_disabled(dev_priv, pipe);
1894         assert_sprites_disabled(dev_priv, pipe);
1895
1896         /* Don't disable pipe A or pipe A PLLs if needed */
1897         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898                 return;
1899
1900         reg = PIPECONF(cpu_transcoder);
1901         val = I915_READ(reg);
1902         if ((val & PIPECONF_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910  * Plane regs are double buffered, going from enabled->disabled needs a
1911  * trigger in order to latch.  The display address reg provides this.
1912  */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914                                       enum plane plane)
1915 {
1916         if (dev_priv->info->gen >= 4)
1917                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918         else
1919                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923  * intel_enable_plane - enable a display plane on a given pipe
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to enable
1926  * @pipe: pipe being fed
1927  *
1928  * Enable @plane on @pipe, making sure that @pipe is running first.
1929  */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931                                enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937         assert_pipe_enabled(dev_priv, pipe);
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if (val & DISPLAY_PLANE_ENABLE)
1942                 return;
1943
1944         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950  * intel_disable_plane - disable a display plane
1951  * @dev_priv: i915 private structure
1952  * @plane: plane to disable
1953  * @pipe: pipe consuming the data
1954  *
1955  * Disable @plane; should be an independent operation.
1956  */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958                                 enum plane plane, enum pipe pipe)
1959 {
1960         int reg;
1961         u32 val;
1962
1963         reg = DSPCNTR(plane);
1964         val = I915_READ(reg);
1965         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966                 return;
1967
1968         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969         intel_flush_display_plane(dev_priv, plane);
1970         intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977                 return true;
1978 #endif
1979         return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984                            struct drm_i915_gem_object *obj,
1985                            struct intel_ring_buffer *pipelined)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 alignment;
1989         int ret;
1990
1991         switch (obj->tiling_mode) {
1992         case I915_TILING_NONE:
1993                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994                         alignment = 128 * 1024;
1995                 else if (INTEL_INFO(dev)->gen >= 4)
1996                         alignment = 4 * 1024;
1997                 else
1998                         alignment = 64 * 1024;
1999                 break;
2000         case I915_TILING_X:
2001                 /* pin() will align the object as required by fence */
2002                 alignment = 0;
2003                 break;
2004         case I915_TILING_Y:
2005                 /* FIXME: Is this true? */
2006                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2007                 return -EINVAL;
2008         default:
2009                 BUG();
2010         }
2011
2012         /* Note that the w/a also requires 64 PTE of padding following the
2013          * bo. We currently fill all unused PTE with the shadow page and so
2014          * we should always have valid PTE following the scanout preventing
2015          * the VT-d warning.
2016          */
2017         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2018                 alignment = 256 * 1024;
2019
2020         dev_priv->mm.interruptible = false;
2021         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2022         if (ret)
2023                 goto err_interruptible;
2024
2025         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2026          * fence, whereas 965+ only requires a fence if using
2027          * framebuffer compression.  For simplicity, we always install
2028          * a fence as the cost is not that onerous.
2029          */
2030         ret = i915_gem_object_get_fence(obj);
2031         if (ret)
2032                 goto err_unpin;
2033
2034         i915_gem_object_pin_fence(obj);
2035
2036         dev_priv->mm.interruptible = true;
2037         return 0;
2038
2039 err_unpin:
2040         i915_gem_object_unpin(obj);
2041 err_interruptible:
2042         dev_priv->mm.interruptible = true;
2043         return ret;
2044 }
2045
2046 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2047 {
2048         i915_gem_object_unpin_fence(obj);
2049         i915_gem_object_unpin(obj);
2050 }
2051
2052 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2053  * is assumed to be a power-of-two. */
2054 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2055                                              unsigned int tiling_mode,
2056                                              unsigned int cpp,
2057                                              unsigned int pitch)
2058 {
2059         if (tiling_mode != I915_TILING_NONE) {
2060                 unsigned int tile_rows, tiles;
2061
2062                 tile_rows = *y / 8;
2063                 *y %= 8;
2064
2065                 tiles = *x / (512/cpp);
2066                 *x %= 512/cpp;
2067
2068                 return tile_rows * pitch * 8 + tiles * 4096;
2069         } else {
2070                 unsigned int offset;
2071
2072                 offset = *y * pitch + *x * cpp;
2073                 *y = 0;
2074                 *x = (offset & 4095) / cpp;
2075                 return offset & -4096;
2076         }
2077 }
2078
2079 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2080                              int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095                 break;
2096         default:
2097                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2098                 return -EINVAL;
2099         }
2100
2101         intel_fb = to_intel_framebuffer(fb);
2102         obj = intel_fb->obj;
2103
2104         reg = DSPCNTR(plane);
2105         dspcntr = I915_READ(reg);
2106         /* Mask out pixel format bits in case we change it */
2107         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2108         switch (fb->pixel_format) {
2109         case DRM_FORMAT_C8:
2110                 dspcntr |= DISPPLANE_8BPP;
2111                 break;
2112         case DRM_FORMAT_XRGB1555:
2113         case DRM_FORMAT_ARGB1555:
2114                 dspcntr |= DISPPLANE_BGRX555;
2115                 break;
2116         case DRM_FORMAT_RGB565:
2117                 dspcntr |= DISPPLANE_BGRX565;
2118                 break;
2119         case DRM_FORMAT_XRGB8888:
2120         case DRM_FORMAT_ARGB8888:
2121                 dspcntr |= DISPPLANE_BGRX888;
2122                 break;
2123         case DRM_FORMAT_XBGR8888:
2124         case DRM_FORMAT_ABGR8888:
2125                 dspcntr |= DISPPLANE_RGBX888;
2126                 break;
2127         case DRM_FORMAT_XRGB2101010:
2128         case DRM_FORMAT_ARGB2101010:
2129                 dspcntr |= DISPPLANE_BGRX101010;
2130                 break;
2131         case DRM_FORMAT_XBGR2101010:
2132         case DRM_FORMAT_ABGR2101010:
2133                 dspcntr |= DISPPLANE_RGBX101010;
2134                 break;
2135         default:
2136                 BUG();
2137         }
2138
2139         if (INTEL_INFO(dev)->gen >= 4) {
2140                 if (obj->tiling_mode != I915_TILING_NONE)
2141                         dspcntr |= DISPPLANE_TILED;
2142                 else
2143                         dspcntr &= ~DISPPLANE_TILED;
2144         }
2145
2146         I915_WRITE(reg, dspcntr);
2147
2148         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2149
2150         if (INTEL_INFO(dev)->gen >= 4) {
2151                 intel_crtc->dspaddr_offset =
2152                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2153                                                        fb->bits_per_pixel / 8,
2154                                                        fb->pitches[0]);
2155                 linear_offset -= intel_crtc->dspaddr_offset;
2156         } else {
2157                 intel_crtc->dspaddr_offset = linear_offset;
2158         }
2159
2160         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2161                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2162         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2163         if (INTEL_INFO(dev)->gen >= 4) {
2164                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2165                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2166                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2167                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2168         } else
2169                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2170         POSTING_READ(reg);
2171
2172         return 0;
2173 }
2174
2175 static int ironlake_update_plane(struct drm_crtc *crtc,
2176                                  struct drm_framebuffer *fb, int x, int y)
2177 {
2178         struct drm_device *dev = crtc->dev;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181         struct intel_framebuffer *intel_fb;
2182         struct drm_i915_gem_object *obj;
2183         int plane = intel_crtc->plane;
2184         unsigned long linear_offset;
2185         u32 dspcntr;
2186         u32 reg;
2187
2188         switch (plane) {
2189         case 0:
2190         case 1:
2191         case 2:
2192                 break;
2193         default:
2194                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2195                 return -EINVAL;
2196         }
2197
2198         intel_fb = to_intel_framebuffer(fb);
2199         obj = intel_fb->obj;
2200
2201         reg = DSPCNTR(plane);
2202         dspcntr = I915_READ(reg);
2203         /* Mask out pixel format bits in case we change it */
2204         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2205         switch (fb->pixel_format) {
2206         case DRM_FORMAT_C8:
2207                 dspcntr |= DISPPLANE_8BPP;
2208                 break;
2209         case DRM_FORMAT_RGB565:
2210                 dspcntr |= DISPPLANE_BGRX565;
2211                 break;
2212         case DRM_FORMAT_XRGB8888:
2213         case DRM_FORMAT_ARGB8888:
2214                 dspcntr |= DISPPLANE_BGRX888;
2215                 break;
2216         case DRM_FORMAT_XBGR8888:
2217         case DRM_FORMAT_ABGR8888:
2218                 dspcntr |= DISPPLANE_RGBX888;
2219                 break;
2220         case DRM_FORMAT_XRGB2101010:
2221         case DRM_FORMAT_ARGB2101010:
2222                 dspcntr |= DISPPLANE_BGRX101010;
2223                 break;
2224         case DRM_FORMAT_XBGR2101010:
2225         case DRM_FORMAT_ABGR2101010:
2226                 dspcntr |= DISPPLANE_RGBX101010;
2227                 break;
2228         default:
2229                 BUG();
2230         }
2231
2232         if (obj->tiling_mode != I915_TILING_NONE)
2233                 dspcntr |= DISPPLANE_TILED;
2234         else
2235                 dspcntr &= ~DISPPLANE_TILED;
2236
2237         /* must disable */
2238         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2239
2240         I915_WRITE(reg, dspcntr);
2241
2242         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2243         intel_crtc->dspaddr_offset =
2244                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2245                                                fb->bits_per_pixel / 8,
2246                                                fb->pitches[0]);
2247         linear_offset -= intel_crtc->dspaddr_offset;
2248
2249         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2250                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2251         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2252         I915_MODIFY_DISPBASE(DSPSURF(plane),
2253                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2254         if (IS_HASWELL(dev)) {
2255                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2256         } else {
2257                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2258                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2259         }
2260         POSTING_READ(reg);
2261
2262         return 0;
2263 }
2264
2265 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2266 static int
2267 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2268                            int x, int y, enum mode_set_atomic state)
2269 {
2270         struct drm_device *dev = crtc->dev;
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272
2273         if (dev_priv->display.disable_fbc)
2274                 dev_priv->display.disable_fbc(dev);
2275         intel_increase_pllclock(crtc);
2276
2277         return dev_priv->display.update_plane(crtc, fb, x, y);
2278 }
2279
2280 void intel_display_handle_reset(struct drm_device *dev)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct drm_crtc *crtc;
2284
2285         /*
2286          * Flips in the rings have been nuked by the reset,
2287          * so complete all pending flips so that user space
2288          * will get its events and not get stuck.
2289          *
2290          * Also update the base address of all primary
2291          * planes to the the last fb to make sure we're
2292          * showing the correct fb after a reset.
2293          *
2294          * Need to make two loops over the crtcs so that we
2295          * don't try to grab a crtc mutex before the
2296          * pending_flip_queue really got woken up.
2297          */
2298
2299         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2300                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2301                 enum plane plane = intel_crtc->plane;
2302
2303                 intel_prepare_page_flip(dev, plane);
2304                 intel_finish_page_flip_plane(dev, plane);
2305         }
2306
2307         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2308                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2309
2310                 mutex_lock(&crtc->mutex);
2311                 if (intel_crtc->active)
2312                         dev_priv->display.update_plane(crtc, crtc->fb,
2313                                                        crtc->x, crtc->y);
2314                 mutex_unlock(&crtc->mutex);
2315         }
2316 }
2317
2318 static int
2319 intel_finish_fb(struct drm_framebuffer *old_fb)
2320 {
2321         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2322         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2323         bool was_interruptible = dev_priv->mm.interruptible;
2324         int ret;
2325
2326         /* Big Hammer, we also need to ensure that any pending
2327          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2328          * current scanout is retired before unpinning the old
2329          * framebuffer.
2330          *
2331          * This should only fail upon a hung GPU, in which case we
2332          * can safely continue.
2333          */
2334         dev_priv->mm.interruptible = false;
2335         ret = i915_gem_object_finish_gpu(obj);
2336         dev_priv->mm.interruptible = was_interruptible;
2337
2338         return ret;
2339 }
2340
2341 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2342 {
2343         struct drm_device *dev = crtc->dev;
2344         struct drm_i915_master_private *master_priv;
2345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2346
2347         if (!dev->primary->master)
2348                 return;
2349
2350         master_priv = dev->primary->master->driver_priv;
2351         if (!master_priv->sarea_priv)
2352                 return;
2353
2354         switch (intel_crtc->pipe) {
2355         case 0:
2356                 master_priv->sarea_priv->pipeA_x = x;
2357                 master_priv->sarea_priv->pipeA_y = y;
2358                 break;
2359         case 1:
2360                 master_priv->sarea_priv->pipeB_x = x;
2361                 master_priv->sarea_priv->pipeB_y = y;
2362                 break;
2363         default:
2364                 break;
2365         }
2366 }
2367
2368 static int
2369 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2370                     struct drm_framebuffer *fb)
2371 {
2372         struct drm_device *dev = crtc->dev;
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2375         struct drm_framebuffer *old_fb;
2376         int ret;
2377
2378         /* no fb bound */
2379         if (!fb) {
2380                 DRM_ERROR("No FB bound\n");
2381                 return 0;
2382         }
2383
2384         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2385                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2386                                 intel_crtc->plane,
2387                                 INTEL_INFO(dev)->num_pipes);
2388                 return -EINVAL;
2389         }
2390
2391         mutex_lock(&dev->struct_mutex);
2392         ret = intel_pin_and_fence_fb_obj(dev,
2393                                          to_intel_framebuffer(fb)->obj,
2394                                          NULL);
2395         if (ret != 0) {
2396                 mutex_unlock(&dev->struct_mutex);
2397                 DRM_ERROR("pin & fence failed\n");
2398                 return ret;
2399         }
2400
2401         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2402         if (ret) {
2403                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2404                 mutex_unlock(&dev->struct_mutex);
2405                 DRM_ERROR("failed to update base address\n");
2406                 return ret;
2407         }
2408
2409         old_fb = crtc->fb;
2410         crtc->fb = fb;
2411         crtc->x = x;
2412         crtc->y = y;
2413
2414         if (old_fb) {
2415                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2416                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2417         }
2418
2419         intel_update_fbc(dev);
2420         mutex_unlock(&dev->struct_mutex);
2421
2422         intel_crtc_update_sarea_pos(crtc, x, y);
2423
2424         return 0;
2425 }
2426
2427 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2428 {
2429         struct drm_device *dev = crtc->dev;
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2432         int pipe = intel_crtc->pipe;
2433         u32 reg, temp;
2434
2435         /* enable normal train */
2436         reg = FDI_TX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         if (IS_IVYBRIDGE(dev)) {
2439                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2440                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2441         } else {
2442                 temp &= ~FDI_LINK_TRAIN_NONE;
2443                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2444         }
2445         I915_WRITE(reg, temp);
2446
2447         reg = FDI_RX_CTL(pipe);
2448         temp = I915_READ(reg);
2449         if (HAS_PCH_CPT(dev)) {
2450                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2451                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2452         } else {
2453                 temp &= ~FDI_LINK_TRAIN_NONE;
2454                 temp |= FDI_LINK_TRAIN_NONE;
2455         }
2456         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2457
2458         /* wait one idle pattern time */
2459         POSTING_READ(reg);
2460         udelay(1000);
2461
2462         /* IVB wants error correction enabled */
2463         if (IS_IVYBRIDGE(dev))
2464                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2465                            FDI_FE_ERRC_ENABLE);
2466 }
2467
2468 static void ivb_modeset_global_resources(struct drm_device *dev)
2469 {
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         struct intel_crtc *pipe_B_crtc =
2472                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2473         struct intel_crtc *pipe_C_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2475         uint32_t temp;
2476
2477         /* When everything is off disable fdi C so that we could enable fdi B
2478          * with all lanes. XXX: This misses the case where a pipe is not using
2479          * any pch resources and so doesn't need any fdi lanes. */
2480         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2481                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2482                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2483
2484                 temp = I915_READ(SOUTH_CHICKEN1);
2485                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2486                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2487                 I915_WRITE(SOUTH_CHICKEN1, temp);
2488         }
2489 }
2490
2491 /* The FDI link training functions for ILK/Ibexpeak. */
2492 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2493 {
2494         struct drm_device *dev = crtc->dev;
2495         struct drm_i915_private *dev_priv = dev->dev_private;
2496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2497         int pipe = intel_crtc->pipe;
2498         int plane = intel_crtc->plane;
2499         u32 reg, temp, tries;
2500
2501         /* FDI needs bits from pipe & plane first */
2502         assert_pipe_enabled(dev_priv, pipe);
2503         assert_plane_enabled(dev_priv, plane);
2504
2505         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2506            for train result */
2507         reg = FDI_RX_IMR(pipe);
2508         temp = I915_READ(reg);
2509         temp &= ~FDI_RX_SYMBOL_LOCK;
2510         temp &= ~FDI_RX_BIT_LOCK;
2511         I915_WRITE(reg, temp);
2512         I915_READ(reg);
2513         udelay(150);
2514
2515         /* enable CPU FDI TX and PCH FDI RX */
2516         reg = FDI_TX_CTL(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~(7 << 19);
2519         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_1;
2522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_1;
2528         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         /* Ironlake workaround, enable clock pointer after FDI enable*/
2534         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2535         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2536                    FDI_RX_PHASE_SYNC_POINTER_EN);
2537
2538         reg = FDI_RX_IIR(pipe);
2539         for (tries = 0; tries < 5; tries++) {
2540                 temp = I915_READ(reg);
2541                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2542
2543                 if ((temp & FDI_RX_BIT_LOCK)) {
2544                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2545                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2546                         break;
2547                 }
2548         }
2549         if (tries == 5)
2550                 DRM_ERROR("FDI train 1 fail!\n");
2551
2552         /* Train 2 */
2553         reg = FDI_TX_CTL(pipe);
2554         temp = I915_READ(reg);
2555         temp &= ~FDI_LINK_TRAIN_NONE;
2556         temp |= FDI_LINK_TRAIN_PATTERN_2;
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         temp &= ~FDI_LINK_TRAIN_NONE;
2562         temp |= FDI_LINK_TRAIN_PATTERN_2;
2563         I915_WRITE(reg, temp);
2564
2565         POSTING_READ(reg);
2566         udelay(150);
2567
2568         reg = FDI_RX_IIR(pipe);
2569         for (tries = 0; tries < 5; tries++) {
2570                 temp = I915_READ(reg);
2571                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2572
2573                 if (temp & FDI_RX_SYMBOL_LOCK) {
2574                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2575                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2576                         break;
2577                 }
2578         }
2579         if (tries == 5)
2580                 DRM_ERROR("FDI train 2 fail!\n");
2581
2582         DRM_DEBUG_KMS("FDI train done\n");
2583
2584 }
2585
2586 static const int snb_b_fdi_train_param[] = {
2587         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2588         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2589         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2590         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2591 };
2592
2593 /* The FDI link training functions for SNB/Cougarpoint. */
2594 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2595 {
2596         struct drm_device *dev = crtc->dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2599         int pipe = intel_crtc->pipe;
2600         u32 reg, temp, i, retry;
2601
2602         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2603            for train result */
2604         reg = FDI_RX_IMR(pipe);
2605         temp = I915_READ(reg);
2606         temp &= ~FDI_RX_SYMBOL_LOCK;
2607         temp &= ~FDI_RX_BIT_LOCK;
2608         I915_WRITE(reg, temp);
2609
2610         POSTING_READ(reg);
2611         udelay(150);
2612
2613         /* enable CPU FDI TX and PCH FDI RX */
2614         reg = FDI_TX_CTL(pipe);
2615         temp = I915_READ(reg);
2616         temp &= ~(7 << 19);
2617         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2618         temp &= ~FDI_LINK_TRAIN_NONE;
2619         temp |= FDI_LINK_TRAIN_PATTERN_1;
2620         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2621         /* SNB-B */
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2624
2625         I915_WRITE(FDI_RX_MISC(pipe),
2626                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2627
2628         reg = FDI_RX_CTL(pipe);
2629         temp = I915_READ(reg);
2630         if (HAS_PCH_CPT(dev)) {
2631                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2633         } else {
2634                 temp &= ~FDI_LINK_TRAIN_NONE;
2635                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2636         }
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         for (i = 0; i < 4; i++) {
2643                 reg = FDI_TX_CTL(pipe);
2644                 temp = I915_READ(reg);
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 temp |= snb_b_fdi_train_param[i];
2647                 I915_WRITE(reg, temp);
2648
2649                 POSTING_READ(reg);
2650                 udelay(500);
2651
2652                 for (retry = 0; retry < 5; retry++) {
2653                         reg = FDI_RX_IIR(pipe);
2654                         temp = I915_READ(reg);
2655                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656                         if (temp & FDI_RX_BIT_LOCK) {
2657                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2658                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2659                                 break;
2660                         }
2661                         udelay(50);
2662                 }
2663                 if (retry < 5)
2664                         break;
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2;
2674         if (IS_GEN6(dev)) {
2675                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676                 /* SNB-B */
2677                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2678         }
2679         I915_WRITE(reg, temp);
2680
2681         reg = FDI_RX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         if (HAS_PCH_CPT(dev)) {
2684                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2685                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2686         } else {
2687                 temp &= ~FDI_LINK_TRAIN_NONE;
2688                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2689         }
2690         I915_WRITE(reg, temp);
2691
2692         POSTING_READ(reg);
2693         udelay(150);
2694
2695         for (i = 0; i < 4; i++) {
2696                 reg = FDI_TX_CTL(pipe);
2697                 temp = I915_READ(reg);
2698                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699                 temp |= snb_b_fdi_train_param[i];
2700                 I915_WRITE(reg, temp);
2701
2702                 POSTING_READ(reg);
2703                 udelay(500);
2704
2705                 for (retry = 0; retry < 5; retry++) {
2706                         reg = FDI_RX_IIR(pipe);
2707                         temp = I915_READ(reg);
2708                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709                         if (temp & FDI_RX_SYMBOL_LOCK) {
2710                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2712                                 break;
2713                         }
2714                         udelay(50);
2715                 }
2716                 if (retry < 5)
2717                         break;
2718         }
2719         if (i == 4)
2720                 DRM_ERROR("FDI train 2 fail!\n");
2721
2722         DRM_DEBUG_KMS("FDI train done.\n");
2723 }
2724
2725 /* Manual link training for Ivy Bridge A0 parts */
2726 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2727 {
2728         struct drm_device *dev = crtc->dev;
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731         int pipe = intel_crtc->pipe;
2732         u32 reg, temp, i;
2733
2734         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2735            for train result */
2736         reg = FDI_RX_IMR(pipe);
2737         temp = I915_READ(reg);
2738         temp &= ~FDI_RX_SYMBOL_LOCK;
2739         temp &= ~FDI_RX_BIT_LOCK;
2740         I915_WRITE(reg, temp);
2741
2742         POSTING_READ(reg);
2743         udelay(150);
2744
2745         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2746                       I915_READ(FDI_RX_IIR(pipe)));
2747
2748         /* enable CPU FDI TX and PCH FDI RX */
2749         reg = FDI_TX_CTL(pipe);
2750         temp = I915_READ(reg);
2751         temp &= ~(7 << 19);
2752         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2753         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2754         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2755         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2757         temp |= FDI_COMPOSITE_SYNC;
2758         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2759
2760         I915_WRITE(FDI_RX_MISC(pipe),
2761                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2762
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~FDI_LINK_TRAIN_AUTO;
2766         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2767         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2768         temp |= FDI_COMPOSITE_SYNC;
2769         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(150);
2773
2774         for (i = 0; i < 4; i++) {
2775                 reg = FDI_TX_CTL(pipe);
2776                 temp = I915_READ(reg);
2777                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2778                 temp |= snb_b_fdi_train_param[i];
2779                 I915_WRITE(reg, temp);
2780
2781                 POSTING_READ(reg);
2782                 udelay(500);
2783
2784                 reg = FDI_RX_IIR(pipe);
2785                 temp = I915_READ(reg);
2786                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2787
2788                 if (temp & FDI_RX_BIT_LOCK ||
2789                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2790                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2792                         break;
2793                 }
2794         }
2795         if (i == 4)
2796                 DRM_ERROR("FDI train 1 fail!\n");
2797
2798         /* Train 2 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2802         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2803         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2804         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2805         I915_WRITE(reg, temp);
2806
2807         reg = FDI_RX_CTL(pipe);
2808         temp = I915_READ(reg);
2809         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2810         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2811         I915_WRITE(reg, temp);
2812
2813         POSTING_READ(reg);
2814         udelay(150);
2815
2816         for (i = 0; i < 4; i++) {
2817                 reg = FDI_TX_CTL(pipe);
2818                 temp = I915_READ(reg);
2819                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2820                 temp |= snb_b_fdi_train_param[i];
2821                 I915_WRITE(reg, temp);
2822
2823                 POSTING_READ(reg);
2824                 udelay(500);
2825
2826                 reg = FDI_RX_IIR(pipe);
2827                 temp = I915_READ(reg);
2828                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2829
2830                 if (temp & FDI_RX_SYMBOL_LOCK) {
2831                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2832                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2833                         break;
2834                 }
2835         }
2836         if (i == 4)
2837                 DRM_ERROR("FDI train 2 fail!\n");
2838
2839         DRM_DEBUG_KMS("FDI train done.\n");
2840 }
2841
2842 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2843 {
2844         struct drm_device *dev = intel_crtc->base.dev;
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         int pipe = intel_crtc->pipe;
2847         u32 reg, temp;
2848
2849
2850         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2851         reg = FDI_RX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         temp &= ~((0x7 << 19) | (0x7 << 16));
2854         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2855         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2856         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2857
2858         POSTING_READ(reg);
2859         udelay(200);
2860
2861         /* Switch from Rawclk to PCDclk */
2862         temp = I915_READ(reg);
2863         I915_WRITE(reg, temp | FDI_PCDCLK);
2864
2865         POSTING_READ(reg);
2866         udelay(200);
2867
2868         /* Enable CPU FDI TX PLL, always on for Ironlake */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2872                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2873
2874                 POSTING_READ(reg);
2875                 udelay(100);
2876         }
2877 }
2878
2879 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2880 {
2881         struct drm_device *dev = intel_crtc->base.dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         int pipe = intel_crtc->pipe;
2884         u32 reg, temp;
2885
2886         /* Switch from PCDclk to Rawclk */
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2890
2891         /* Disable CPU FDI TX PLL */
2892         reg = FDI_TX_CTL(pipe);
2893         temp = I915_READ(reg);
2894         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2895
2896         POSTING_READ(reg);
2897         udelay(100);
2898
2899         reg = FDI_RX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2902
2903         /* Wait for the clocks to turn off. */
2904         POSTING_READ(reg);
2905         udelay(100);
2906 }
2907
2908 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2909 {
2910         struct drm_device *dev = crtc->dev;
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2913         int pipe = intel_crtc->pipe;
2914         u32 reg, temp;
2915
2916         /* disable CPU FDI tx and PCH FDI rx */
2917         reg = FDI_TX_CTL(pipe);
2918         temp = I915_READ(reg);
2919         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2920         POSTING_READ(reg);
2921
2922         reg = FDI_RX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         temp &= ~(0x7 << 16);
2925         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2926         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2927
2928         POSTING_READ(reg);
2929         udelay(100);
2930
2931         /* Ironlake workaround, disable clock pointer after downing FDI */
2932         if (HAS_PCH_IBX(dev)) {
2933                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2934         }
2935
2936         /* still set train pattern 1 */
2937         reg = FDI_TX_CTL(pipe);
2938         temp = I915_READ(reg);
2939         temp &= ~FDI_LINK_TRAIN_NONE;
2940         temp |= FDI_LINK_TRAIN_PATTERN_1;
2941         I915_WRITE(reg, temp);
2942
2943         reg = FDI_RX_CTL(pipe);
2944         temp = I915_READ(reg);
2945         if (HAS_PCH_CPT(dev)) {
2946                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2947                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2948         } else {
2949                 temp &= ~FDI_LINK_TRAIN_NONE;
2950                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2951         }
2952         /* BPC in FDI rx is consistent with that in PIPECONF */
2953         temp &= ~(0x07 << 16);
2954         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2955         I915_WRITE(reg, temp);
2956
2957         POSTING_READ(reg);
2958         udelay(100);
2959 }
2960
2961 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2966         unsigned long flags;
2967         bool pending;
2968
2969         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2970             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2971                 return false;
2972
2973         spin_lock_irqsave(&dev->event_lock, flags);
2974         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2975         spin_unlock_irqrestore(&dev->event_lock, flags);
2976
2977         return pending;
2978 }
2979
2980 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2981 {
2982         struct drm_device *dev = crtc->dev;
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984
2985         if (crtc->fb == NULL)
2986                 return;
2987
2988         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2989
2990         wait_event(dev_priv->pending_flip_queue,
2991                    !intel_crtc_has_pending_flip(crtc));
2992
2993         mutex_lock(&dev->struct_mutex);
2994         intel_finish_fb(crtc->fb);
2995         mutex_unlock(&dev->struct_mutex);
2996 }
2997
2998 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2999 {
3000         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3001 }
3002
3003 /* Program iCLKIP clock to the desired frequency */
3004 static void lpt_program_iclkip(struct drm_crtc *crtc)
3005 {
3006         struct drm_device *dev = crtc->dev;
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3009         u32 temp;
3010
3011         mutex_lock(&dev_priv->dpio_lock);
3012
3013         /* It is necessary to ungate the pixclk gate prior to programming
3014          * the divisors, and gate it back when it is done.
3015          */
3016         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3017
3018         /* Disable SSCCTL */
3019         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3020                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3021                                 SBI_SSCCTL_DISABLE,
3022                         SBI_ICLK);
3023
3024         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3025         if (crtc->mode.clock == 20000) {
3026                 auxdiv = 1;
3027                 divsel = 0x41;
3028                 phaseinc = 0x20;
3029         } else {
3030                 /* The iCLK virtual clock root frequency is in MHz,
3031                  * but the crtc->mode.clock in in KHz. To get the divisors,
3032                  * it is necessary to divide one by another, so we
3033                  * convert the virtual clock precision to KHz here for higher
3034                  * precision.
3035                  */
3036                 u32 iclk_virtual_root_freq = 172800 * 1000;
3037                 u32 iclk_pi_range = 64;
3038                 u32 desired_divisor, msb_divisor_value, pi_value;
3039
3040                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3041                 msb_divisor_value = desired_divisor / iclk_pi_range;
3042                 pi_value = desired_divisor % iclk_pi_range;
3043
3044                 auxdiv = 0;
3045                 divsel = msb_divisor_value - 2;
3046                 phaseinc = pi_value;
3047         }
3048
3049         /* This should not happen with any sane values */
3050         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3051                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3052         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3053                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3054
3055         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3056                         crtc->mode.clock,
3057                         auxdiv,
3058                         divsel,
3059                         phasedir,
3060                         phaseinc);
3061
3062         /* Program SSCDIVINTPHASE6 */
3063         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3064         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3065         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3066         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3067         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3068         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3069         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3070         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3071
3072         /* Program SSCAUXDIV */
3073         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3074         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3075         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3076         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3077
3078         /* Enable modulator and associated divider */
3079         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3080         temp &= ~SBI_SSCCTL_DISABLE;
3081         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3082
3083         /* Wait for initialization time */
3084         udelay(24);
3085
3086         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3087
3088         mutex_unlock(&dev_priv->dpio_lock);
3089 }
3090
3091 /*
3092  * Enable PCH resources required for PCH ports:
3093  *   - PCH PLLs
3094  *   - FDI training & RX/TX
3095  *   - update transcoder timings
3096  *   - DP transcoding bits
3097  *   - transcoder
3098  */
3099 static void ironlake_pch_enable(struct drm_crtc *crtc)
3100 {
3101         struct drm_device *dev = crtc->dev;
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104         int pipe = intel_crtc->pipe;
3105         u32 reg, temp;
3106
3107         assert_transcoder_disabled(dev_priv, pipe);
3108
3109         /* Write the TU size bits before fdi link training, so that error
3110          * detection works. */
3111         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3112                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3113
3114         /* For PCH output, training FDI link */
3115         dev_priv->display.fdi_link_train(crtc);
3116
3117         /* XXX: pch pll's can be enabled any time before we enable the PCH
3118          * transcoder, and we actually should do this to not upset any PCH
3119          * transcoder that already use the clock when we share it.
3120          *
3121          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3122          * unconditionally resets the pll - we need that to have the right LVDS
3123          * enable sequence. */
3124         ironlake_enable_pch_pll(intel_crtc);
3125
3126         if (HAS_PCH_CPT(dev)) {
3127                 u32 sel;
3128
3129                 temp = I915_READ(PCH_DPLL_SEL);
3130                 switch (pipe) {
3131                 default:
3132                 case 0:
3133                         temp |= TRANSA_DPLL_ENABLE;
3134                         sel = TRANSA_DPLLB_SEL;
3135                         break;
3136                 case 1:
3137                         temp |= TRANSB_DPLL_ENABLE;
3138                         sel = TRANSB_DPLLB_SEL;
3139                         break;
3140                 case 2:
3141                         temp |= TRANSC_DPLL_ENABLE;
3142                         sel = TRANSC_DPLLB_SEL;
3143                         break;
3144                 }
3145                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3146                         temp |= sel;
3147                 else
3148                         temp &= ~sel;
3149                 I915_WRITE(PCH_DPLL_SEL, temp);
3150         }
3151
3152         /* set transcoder timing, panel must allow it */
3153         assert_panel_unlocked(dev_priv, pipe);
3154         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3155         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3156         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3157
3158         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3159         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3160         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3161         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3162
3163         intel_fdi_normal_train(crtc);
3164
3165         /* For PCH DP, enable TRANS_DP_CTL */
3166         if (HAS_PCH_CPT(dev) &&
3167             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3168              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3169                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3170                 reg = TRANS_DP_CTL(pipe);
3171                 temp = I915_READ(reg);
3172                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3173                           TRANS_DP_SYNC_MASK |
3174                           TRANS_DP_BPC_MASK);
3175                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3176                          TRANS_DP_ENH_FRAMING);
3177                 temp |= bpc << 9; /* same format but at 11:9 */
3178
3179                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3180                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3181                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3182                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3183
3184                 switch (intel_trans_dp_port_sel(crtc)) {
3185                 case PCH_DP_B:
3186                         temp |= TRANS_DP_PORT_SEL_B;
3187                         break;
3188                 case PCH_DP_C:
3189                         temp |= TRANS_DP_PORT_SEL_C;
3190                         break;
3191                 case PCH_DP_D:
3192                         temp |= TRANS_DP_PORT_SEL_D;
3193                         break;
3194                 default:
3195                         BUG();
3196                 }
3197
3198                 I915_WRITE(reg, temp);
3199         }
3200
3201         ironlake_enable_pch_transcoder(dev_priv, pipe);
3202 }
3203
3204 static void lpt_pch_enable(struct drm_crtc *crtc)
3205 {
3206         struct drm_device *dev = crtc->dev;
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3209         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3210
3211         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3212
3213         lpt_program_iclkip(crtc);
3214
3215         /* Set transcoder timing. */
3216         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3217         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3218         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3219
3220         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3221         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3222         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3223         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3224
3225         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3226 }
3227
3228 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3229 {
3230         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3231
3232         if (pll == NULL)
3233                 return;
3234
3235         if (pll->refcount == 0) {
3236                 WARN(1, "bad PCH PLL refcount\n");
3237                 return;
3238         }
3239
3240         --pll->refcount;
3241         intel_crtc->pch_pll = NULL;
3242 }
3243
3244 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3245 {
3246         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3247         struct intel_pch_pll *pll;
3248         int i;
3249
3250         pll = intel_crtc->pch_pll;
3251         if (pll) {
3252                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3253                               intel_crtc->base.base.id, pll->pll_reg);
3254                 goto prepare;
3255         }
3256
3257         if (HAS_PCH_IBX(dev_priv->dev)) {
3258                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3259                 i = intel_crtc->pipe;
3260                 pll = &dev_priv->pch_plls[i];
3261
3262                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3263                               intel_crtc->base.base.id, pll->pll_reg);
3264
3265                 goto found;
3266         }
3267
3268         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3269                 pll = &dev_priv->pch_plls[i];
3270
3271                 /* Only want to check enabled timings first */
3272                 if (pll->refcount == 0)
3273                         continue;
3274
3275                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3276                     fp == I915_READ(pll->fp0_reg)) {
3277                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3278                                       intel_crtc->base.base.id,
3279                                       pll->pll_reg, pll->refcount, pll->active);
3280
3281                         goto found;
3282                 }
3283         }
3284
3285         /* Ok no matching timings, maybe there's a free one? */
3286         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3287                 pll = &dev_priv->pch_plls[i];
3288                 if (pll->refcount == 0) {
3289                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3290                                       intel_crtc->base.base.id, pll->pll_reg);
3291                         goto found;
3292                 }
3293         }
3294
3295         return NULL;
3296
3297 found:
3298         intel_crtc->pch_pll = pll;
3299         pll->refcount++;
3300         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3301 prepare: /* separate function? */
3302         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3303
3304         /* Wait for the clocks to stabilize before rewriting the regs */
3305         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3306         POSTING_READ(pll->pll_reg);
3307         udelay(150);
3308
3309         I915_WRITE(pll->fp0_reg, fp);
3310         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3311         pll->on = false;
3312         return pll;
3313 }
3314
3315 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3316 {
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         int dslreg = PIPEDSL(pipe);
3319         u32 temp;
3320
3321         temp = I915_READ(dslreg);
3322         udelay(500);
3323         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3324                 if (wait_for(I915_READ(dslreg) != temp, 5))
3325                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3326         }
3327 }
3328
3329 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3330 {
3331         struct drm_device *dev = crtc->dev;
3332         struct drm_i915_private *dev_priv = dev->dev_private;
3333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3334         struct intel_encoder *encoder;
3335         int pipe = intel_crtc->pipe;
3336         int plane = intel_crtc->plane;
3337         u32 temp;
3338
3339         WARN_ON(!crtc->enabled);
3340
3341         if (intel_crtc->active)
3342                 return;
3343
3344         intel_crtc->active = true;
3345         intel_update_watermarks(dev);
3346
3347         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3348                 temp = I915_READ(PCH_LVDS);
3349                 if ((temp & LVDS_PORT_EN) == 0)
3350                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3351         }
3352
3353
3354         if (intel_crtc->config.has_pch_encoder) {
3355                 /* Note: FDI PLL enabling _must_ be done before we enable the
3356                  * cpu pipes, hence this is separate from all the other fdi/pch
3357                  * enabling. */
3358                 ironlake_fdi_pll_enable(intel_crtc);
3359         } else {
3360                 assert_fdi_tx_disabled(dev_priv, pipe);
3361                 assert_fdi_rx_disabled(dev_priv, pipe);
3362         }
3363
3364         for_each_encoder_on_crtc(dev, crtc, encoder)
3365                 if (encoder->pre_enable)
3366                         encoder->pre_enable(encoder);
3367
3368         /* Enable panel fitting for LVDS */
3369         if (dev_priv->pch_pf_size &&
3370             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3371              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3372                 /* Force use of hard-coded filter coefficients
3373                  * as some pre-programmed values are broken,
3374                  * e.g. x201.
3375                  */
3376                 if (IS_IVYBRIDGE(dev))
3377                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3378                                                  PF_PIPE_SEL_IVB(pipe));
3379                 else
3380                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3381                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3382                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3383         }
3384
3385         /*
3386          * On ILK+ LUT must be loaded before the pipe is running but with
3387          * clocks enabled
3388          */
3389         intel_crtc_load_lut(crtc);
3390
3391         intel_enable_pipe(dev_priv, pipe,
3392                           intel_crtc->config.has_pch_encoder);
3393         intel_enable_plane(dev_priv, plane, pipe);
3394
3395         if (intel_crtc->config.has_pch_encoder)
3396                 ironlake_pch_enable(crtc);
3397
3398         mutex_lock(&dev->struct_mutex);
3399         intel_update_fbc(dev);
3400         mutex_unlock(&dev->struct_mutex);
3401
3402         intel_crtc_update_cursor(crtc, true);
3403
3404         for_each_encoder_on_crtc(dev, crtc, encoder)
3405                 encoder->enable(encoder);
3406
3407         if (HAS_PCH_CPT(dev))
3408                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3409
3410         /*
3411          * There seems to be a race in PCH platform hw (at least on some
3412          * outputs) where an enabled pipe still completes any pageflip right
3413          * away (as if the pipe is off) instead of waiting for vblank. As soon
3414          * as the first vblank happend, everything works as expected. Hence just
3415          * wait for one vblank before returning to avoid strange things
3416          * happening.
3417          */
3418         intel_wait_for_vblank(dev, intel_crtc->pipe);
3419 }
3420
3421 static void haswell_crtc_enable(struct drm_crtc *crtc)
3422 {
3423         struct drm_device *dev = crtc->dev;
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3426         struct intel_encoder *encoder;
3427         int pipe = intel_crtc->pipe;
3428         int plane = intel_crtc->plane;
3429
3430         WARN_ON(!crtc->enabled);
3431
3432         if (intel_crtc->active)
3433                 return;
3434
3435         intel_crtc->active = true;
3436         intel_update_watermarks(dev);
3437
3438         if (intel_crtc->config.has_pch_encoder)
3439                 dev_priv->display.fdi_link_train(crtc);
3440
3441         for_each_encoder_on_crtc(dev, crtc, encoder)
3442                 if (encoder->pre_enable)
3443                         encoder->pre_enable(encoder);
3444
3445         intel_ddi_enable_pipe_clock(intel_crtc);
3446
3447         /* Enable panel fitting for eDP */
3448         if (dev_priv->pch_pf_size &&
3449             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3450                 /* Force use of hard-coded filter coefficients
3451                  * as some pre-programmed values are broken,
3452                  * e.g. x201.
3453                  */
3454                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3455                                          PF_PIPE_SEL_IVB(pipe));
3456                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3457                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3458         }
3459
3460         /*
3461          * On ILK+ LUT must be loaded before the pipe is running but with
3462          * clocks enabled
3463          */
3464         intel_crtc_load_lut(crtc);
3465
3466         intel_ddi_set_pipe_settings(crtc);
3467         intel_ddi_enable_transcoder_func(crtc);
3468
3469         intel_enable_pipe(dev_priv, pipe,
3470                           intel_crtc->config.has_pch_encoder);
3471         intel_enable_plane(dev_priv, plane, pipe);
3472
3473         if (intel_crtc->config.has_pch_encoder)
3474                 lpt_pch_enable(crtc);
3475
3476         mutex_lock(&dev->struct_mutex);
3477         intel_update_fbc(dev);
3478         mutex_unlock(&dev->struct_mutex);
3479
3480         intel_crtc_update_cursor(crtc, true);
3481
3482         for_each_encoder_on_crtc(dev, crtc, encoder)
3483                 encoder->enable(encoder);
3484
3485         /*
3486          * There seems to be a race in PCH platform hw (at least on some
3487          * outputs) where an enabled pipe still completes any pageflip right
3488          * away (as if the pipe is off) instead of waiting for vblank. As soon
3489          * as the first vblank happend, everything works as expected. Hence just
3490          * wait for one vblank before returning to avoid strange things
3491          * happening.
3492          */
3493         intel_wait_for_vblank(dev, intel_crtc->pipe);
3494 }
3495
3496 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3497 {
3498         struct drm_device *dev = crtc->dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3501         struct intel_encoder *encoder;
3502         int pipe = intel_crtc->pipe;
3503         int plane = intel_crtc->plane;
3504         u32 reg, temp;
3505
3506
3507         if (!intel_crtc->active)
3508                 return;
3509
3510         for_each_encoder_on_crtc(dev, crtc, encoder)
3511                 encoder->disable(encoder);
3512
3513         intel_crtc_wait_for_pending_flips(crtc);
3514         drm_vblank_off(dev, pipe);
3515         intel_crtc_update_cursor(crtc, false);
3516
3517         intel_disable_plane(dev_priv, plane, pipe);
3518
3519         if (dev_priv->cfb_plane == plane)
3520                 intel_disable_fbc(dev);
3521
3522         intel_disable_pipe(dev_priv, pipe);
3523
3524         /* Disable PF */
3525         I915_WRITE(PF_CTL(pipe), 0);
3526         I915_WRITE(PF_WIN_SZ(pipe), 0);
3527
3528         for_each_encoder_on_crtc(dev, crtc, encoder)
3529                 if (encoder->post_disable)
3530                         encoder->post_disable(encoder);
3531
3532         ironlake_fdi_disable(crtc);
3533
3534         ironlake_disable_pch_transcoder(dev_priv, pipe);
3535
3536         if (HAS_PCH_CPT(dev)) {
3537                 /* disable TRANS_DP_CTL */
3538                 reg = TRANS_DP_CTL(pipe);
3539                 temp = I915_READ(reg);
3540                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3541                 temp |= TRANS_DP_PORT_SEL_NONE;
3542                 I915_WRITE(reg, temp);
3543
3544                 /* disable DPLL_SEL */
3545                 temp = I915_READ(PCH_DPLL_SEL);
3546                 switch (pipe) {
3547                 case 0:
3548                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3549                         break;
3550                 case 1:
3551                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3552                         break;
3553                 case 2:
3554                         /* C shares PLL A or B */
3555                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3556                         break;
3557                 default:
3558                         BUG(); /* wtf */
3559                 }
3560                 I915_WRITE(PCH_DPLL_SEL, temp);
3561         }
3562
3563         /* disable PCH DPLL */
3564         intel_disable_pch_pll(intel_crtc);
3565
3566         ironlake_fdi_pll_disable(intel_crtc);
3567
3568         intel_crtc->active = false;
3569         intel_update_watermarks(dev);
3570
3571         mutex_lock(&dev->struct_mutex);
3572         intel_update_fbc(dev);
3573         mutex_unlock(&dev->struct_mutex);
3574 }
3575
3576 static void haswell_crtc_disable(struct drm_crtc *crtc)
3577 {
3578         struct drm_device *dev = crtc->dev;
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581         struct intel_encoder *encoder;
3582         int pipe = intel_crtc->pipe;
3583         int plane = intel_crtc->plane;
3584         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3585         bool is_pch_port;
3586
3587         if (!intel_crtc->active)
3588                 return;
3589
3590         is_pch_port = haswell_crtc_driving_pch(crtc);
3591
3592         for_each_encoder_on_crtc(dev, crtc, encoder)
3593                 encoder->disable(encoder);
3594
3595         intel_crtc_wait_for_pending_flips(crtc);
3596         drm_vblank_off(dev, pipe);
3597         intel_crtc_update_cursor(crtc, false);
3598
3599         intel_disable_plane(dev_priv, plane, pipe);
3600
3601         if (dev_priv->cfb_plane == plane)
3602                 intel_disable_fbc(dev);
3603
3604         intel_disable_pipe(dev_priv, pipe);
3605
3606         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3607
3608         /* Disable PF */
3609         I915_WRITE(PF_CTL(pipe), 0);
3610         I915_WRITE(PF_WIN_SZ(pipe), 0);
3611
3612         intel_ddi_disable_pipe_clock(intel_crtc);
3613
3614         for_each_encoder_on_crtc(dev, crtc, encoder)
3615                 if (encoder->post_disable)
3616                         encoder->post_disable(encoder);
3617
3618         if (is_pch_port) {
3619                 lpt_disable_pch_transcoder(dev_priv);
3620                 intel_ddi_fdi_disable(crtc);
3621         }
3622
3623         intel_crtc->active = false;
3624         intel_update_watermarks(dev);
3625
3626         mutex_lock(&dev->struct_mutex);
3627         intel_update_fbc(dev);
3628         mutex_unlock(&dev->struct_mutex);
3629 }
3630
3631 static void ironlake_crtc_off(struct drm_crtc *crtc)
3632 {
3633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634         intel_put_pch_pll(intel_crtc);
3635 }
3636
3637 static void haswell_crtc_off(struct drm_crtc *crtc)
3638 {
3639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3640
3641         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3642          * start using it. */
3643         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3644
3645         intel_ddi_put_crtc_pll(crtc);
3646 }
3647
3648 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3649 {
3650         if (!enable && intel_crtc->overlay) {
3651                 struct drm_device *dev = intel_crtc->base.dev;
3652                 struct drm_i915_private *dev_priv = dev->dev_private;
3653
3654                 mutex_lock(&dev->struct_mutex);
3655                 dev_priv->mm.interruptible = false;
3656                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3657                 dev_priv->mm.interruptible = true;
3658                 mutex_unlock(&dev->struct_mutex);
3659         }
3660
3661         /* Let userspace switch the overlay on again. In most cases userspace
3662          * has to recompute where to put it anyway.
3663          */
3664 }
3665
3666 /**
3667  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3668  * cursor plane briefly if not already running after enabling the display
3669  * plane.
3670  * This workaround avoids occasional blank screens when self refresh is
3671  * enabled.
3672  */
3673 static void
3674 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3675 {
3676         u32 cntl = I915_READ(CURCNTR(pipe));
3677
3678         if ((cntl & CURSOR_MODE) == 0) {
3679                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3680
3681                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3682                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3683                 intel_wait_for_vblank(dev_priv->dev, pipe);
3684                 I915_WRITE(CURCNTR(pipe), cntl);
3685                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3686                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3687         }
3688 }
3689
3690 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3691 {
3692         struct drm_device *dev = crtc->dev;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695         struct intel_encoder *encoder;
3696         int pipe = intel_crtc->pipe;
3697         int plane = intel_crtc->plane;
3698
3699         WARN_ON(!crtc->enabled);
3700
3701         if (intel_crtc->active)
3702                 return;
3703
3704         intel_crtc->active = true;
3705         intel_update_watermarks(dev);
3706
3707         intel_enable_pll(dev_priv, pipe);
3708
3709         for_each_encoder_on_crtc(dev, crtc, encoder)
3710                 if (encoder->pre_enable)
3711                         encoder->pre_enable(encoder);
3712
3713         intel_enable_pipe(dev_priv, pipe, false);
3714         intel_enable_plane(dev_priv, plane, pipe);
3715         if (IS_G4X(dev))
3716                 g4x_fixup_plane(dev_priv, pipe);
3717
3718         intel_crtc_load_lut(crtc);
3719         intel_update_fbc(dev);
3720
3721         /* Give the overlay scaler a chance to enable if it's on this pipe */
3722         intel_crtc_dpms_overlay(intel_crtc, true);
3723         intel_crtc_update_cursor(crtc, true);
3724
3725         for_each_encoder_on_crtc(dev, crtc, encoder)
3726                 encoder->enable(encoder);
3727 }
3728
3729 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3730 {
3731         struct drm_device *dev = crtc->dev;
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3734         struct intel_encoder *encoder;
3735         int pipe = intel_crtc->pipe;
3736         int plane = intel_crtc->plane;
3737         u32 pctl;
3738
3739
3740         if (!intel_crtc->active)
3741                 return;
3742
3743         for_each_encoder_on_crtc(dev, crtc, encoder)
3744                 encoder->disable(encoder);
3745
3746         /* Give the overlay scaler a chance to disable if it's on this pipe */
3747         intel_crtc_wait_for_pending_flips(crtc);
3748         drm_vblank_off(dev, pipe);
3749         intel_crtc_dpms_overlay(intel_crtc, false);
3750         intel_crtc_update_cursor(crtc, false);
3751
3752         if (dev_priv->cfb_plane == plane)
3753                 intel_disable_fbc(dev);
3754
3755         intel_disable_plane(dev_priv, plane, pipe);
3756         intel_disable_pipe(dev_priv, pipe);
3757
3758         /* Disable pannel fitter if it is on this pipe. */
3759         pctl = I915_READ(PFIT_CONTROL);
3760         if ((pctl & PFIT_ENABLE) &&
3761             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3762                 I915_WRITE(PFIT_CONTROL, 0);
3763
3764         intel_disable_pll(dev_priv, pipe);
3765
3766         intel_crtc->active = false;
3767         intel_update_fbc(dev);
3768         intel_update_watermarks(dev);
3769 }
3770
3771 static void i9xx_crtc_off(struct drm_crtc *crtc)
3772 {
3773 }
3774
3775 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3776                                     bool enabled)
3777 {
3778         struct drm_device *dev = crtc->dev;
3779         struct drm_i915_master_private *master_priv;
3780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781         int pipe = intel_crtc->pipe;
3782
3783         if (!dev->primary->master)
3784                 return;
3785
3786         master_priv = dev->primary->master->driver_priv;
3787         if (!master_priv->sarea_priv)
3788                 return;
3789
3790         switch (pipe) {
3791         case 0:
3792                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3793                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3794                 break;
3795         case 1:
3796                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3797                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3798                 break;
3799         default:
3800                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3801                 break;
3802         }
3803 }
3804
3805 /**
3806  * Sets the power management mode of the pipe and plane.
3807  */
3808 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         struct intel_encoder *intel_encoder;
3813         bool enable = false;
3814
3815         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3816                 enable |= intel_encoder->connectors_active;
3817
3818         if (enable)
3819                 dev_priv->display.crtc_enable(crtc);
3820         else
3821                 dev_priv->display.crtc_disable(crtc);
3822
3823         intel_crtc_update_sarea(crtc, enable);
3824 }
3825
3826 static void intel_crtc_disable(struct drm_crtc *crtc)
3827 {
3828         struct drm_device *dev = crtc->dev;
3829         struct drm_connector *connector;
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3832
3833         /* crtc should still be enabled when we disable it. */
3834         WARN_ON(!crtc->enabled);
3835
3836         intel_crtc->eld_vld = false;
3837         dev_priv->display.crtc_disable(crtc);
3838         intel_crtc_update_sarea(crtc, false);
3839         dev_priv->display.off(crtc);
3840
3841         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3842         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3843
3844         if (crtc->fb) {
3845                 mutex_lock(&dev->struct_mutex);
3846                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3847                 mutex_unlock(&dev->struct_mutex);
3848                 crtc->fb = NULL;
3849         }
3850
3851         /* Update computed state. */
3852         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3853                 if (!connector->encoder || !connector->encoder->crtc)
3854                         continue;
3855
3856                 if (connector->encoder->crtc != crtc)
3857                         continue;
3858
3859                 connector->dpms = DRM_MODE_DPMS_OFF;
3860                 to_intel_encoder(connector->encoder)->connectors_active = false;
3861         }
3862 }
3863
3864 void intel_modeset_disable(struct drm_device *dev)
3865 {
3866         struct drm_crtc *crtc;
3867
3868         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3869                 if (crtc->enabled)
3870                         intel_crtc_disable(crtc);
3871         }
3872 }
3873
3874 void intel_encoder_destroy(struct drm_encoder *encoder)
3875 {
3876         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3877
3878         drm_encoder_cleanup(encoder);
3879         kfree(intel_encoder);
3880 }
3881
3882 /* Simple dpms helper for encodres with just one connector, no cloning and only
3883  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3884  * state of the entire output pipe. */
3885 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3886 {
3887         if (mode == DRM_MODE_DPMS_ON) {
3888                 encoder->connectors_active = true;
3889
3890                 intel_crtc_update_dpms(encoder->base.crtc);
3891         } else {
3892                 encoder->connectors_active = false;
3893
3894                 intel_crtc_update_dpms(encoder->base.crtc);
3895         }
3896 }
3897
3898 /* Cross check the actual hw state with our own modeset state tracking (and it's
3899  * internal consistency). */
3900 static void intel_connector_check_state(struct intel_connector *connector)
3901 {
3902         if (connector->get_hw_state(connector)) {
3903                 struct intel_encoder *encoder = connector->encoder;
3904                 struct drm_crtc *crtc;
3905                 bool encoder_enabled;
3906                 enum pipe pipe;
3907
3908                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3909                               connector->base.base.id,
3910                               drm_get_connector_name(&connector->base));
3911
3912                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3913                      "wrong connector dpms state\n");
3914                 WARN(connector->base.encoder != &encoder->base,
3915                      "active connector not linked to encoder\n");
3916                 WARN(!encoder->connectors_active,
3917                      "encoder->connectors_active not set\n");
3918
3919                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3920                 WARN(!encoder_enabled, "encoder not enabled\n");
3921                 if (WARN_ON(!encoder->base.crtc))
3922                         return;
3923
3924                 crtc = encoder->base.crtc;
3925
3926                 WARN(!crtc->enabled, "crtc not enabled\n");
3927                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3928                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3929                      "encoder active on the wrong pipe\n");
3930         }
3931 }
3932
3933 /* Even simpler default implementation, if there's really no special case to
3934  * consider. */
3935 void intel_connector_dpms(struct drm_connector *connector, int mode)
3936 {
3937         struct intel_encoder *encoder = intel_attached_encoder(connector);
3938
3939         /* All the simple cases only support two dpms states. */
3940         if (mode != DRM_MODE_DPMS_ON)
3941                 mode = DRM_MODE_DPMS_OFF;
3942
3943         if (mode == connector->dpms)
3944                 return;
3945
3946         connector->dpms = mode;
3947
3948         /* Only need to change hw state when actually enabled */
3949         if (encoder->base.crtc)
3950                 intel_encoder_dpms(encoder, mode);
3951         else
3952                 WARN_ON(encoder->connectors_active != false);
3953
3954         intel_modeset_check_state(connector->dev);
3955 }
3956
3957 /* Simple connector->get_hw_state implementation for encoders that support only
3958  * one connector and no cloning and hence the encoder state determines the state
3959  * of the connector. */
3960 bool intel_connector_get_hw_state(struct intel_connector *connector)
3961 {
3962         enum pipe pipe = 0;
3963         struct intel_encoder *encoder = connector->encoder;
3964
3965         return encoder->get_hw_state(encoder, &pipe);
3966 }
3967
3968 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3969                                       struct intel_crtc_config *pipe_config)
3970 {
3971         struct drm_device *dev = crtc->dev;
3972         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3973
3974         if (HAS_PCH_SPLIT(dev)) {
3975                 /* FDI link clock is fixed at 2.7G */
3976                 if (pipe_config->requested_mode.clock * 3
3977                     > IRONLAKE_FDI_FREQ * 4)
3978                         return false;
3979         }
3980
3981         /* All interlaced capable intel hw wants timings in frames. Note though
3982          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3983          * timings, so we need to be careful not to clobber these.*/
3984         if (!pipe_config->timings_set)
3985                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3986
3987         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3988          * with a hsync front porch of 0.
3989          */
3990         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3991                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3992                 return false;
3993
3994         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3995                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3996         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3997                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3998                  * for lvds. */
3999                 pipe_config->pipe_bpp = 8*3;
4000         }
4001
4002         return true;
4003 }
4004
4005 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4006 {
4007         return 400000; /* FIXME */
4008 }
4009
4010 static int i945_get_display_clock_speed(struct drm_device *dev)
4011 {
4012         return 400000;
4013 }
4014
4015 static int i915_get_display_clock_speed(struct drm_device *dev)
4016 {
4017         return 333000;
4018 }
4019
4020 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4021 {
4022         return 200000;
4023 }
4024
4025 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4026 {
4027         u16 gcfgc = 0;
4028
4029         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4030
4031         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4032                 return 133000;
4033         else {
4034                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4035                 case GC_DISPLAY_CLOCK_333_MHZ:
4036                         return 333000;
4037                 default:
4038                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4039                         return 190000;
4040                 }
4041         }
4042 }
4043
4044 static int i865_get_display_clock_speed(struct drm_device *dev)
4045 {
4046         return 266000;
4047 }
4048
4049 static int i855_get_display_clock_speed(struct drm_device *dev)
4050 {
4051         u16 hpllcc = 0;
4052         /* Assume that the hardware is in the high speed state.  This
4053          * should be the default.
4054          */
4055         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4056         case GC_CLOCK_133_200:
4057         case GC_CLOCK_100_200:
4058                 return 200000;
4059         case GC_CLOCK_166_250:
4060                 return 250000;
4061         case GC_CLOCK_100_133:
4062                 return 133000;
4063         }
4064
4065         /* Shouldn't happen */
4066         return 0;
4067 }
4068
4069 static int i830_get_display_clock_speed(struct drm_device *dev)
4070 {
4071         return 133000;
4072 }
4073
4074 static void
4075 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4076 {
4077         while (*num > 0xffffff || *den > 0xffffff) {
4078                 *num >>= 1;
4079                 *den >>= 1;
4080         }
4081 }
4082
4083 void
4084 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4085                        int pixel_clock, int link_clock,
4086                        struct intel_link_m_n *m_n)
4087 {
4088         m_n->tu = 64;
4089         m_n->gmch_m = bits_per_pixel * pixel_clock;
4090         m_n->gmch_n = link_clock * nlanes * 8;
4091         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4092         m_n->link_m = pixel_clock;
4093         m_n->link_n = link_clock;
4094         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4095 }
4096
4097 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4098 {
4099         if (i915_panel_use_ssc >= 0)
4100                 return i915_panel_use_ssc != 0;
4101         return dev_priv->lvds_use_ssc
4102                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4103 }
4104
4105 static int vlv_get_refclk(struct drm_crtc *crtc)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct drm_i915_private *dev_priv = dev->dev_private;
4109         int refclk = 27000; /* for DP & HDMI */
4110
4111         return 100000; /* only one validated so far */
4112
4113         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4114                 refclk = 96000;
4115         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4116                 if (intel_panel_use_ssc(dev_priv))
4117                         refclk = 100000;
4118                 else
4119                         refclk = 96000;
4120         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4121                 refclk = 100000;
4122         }
4123
4124         return refclk;
4125 }
4126
4127 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         int refclk;
4132
4133         if (IS_VALLEYVIEW(dev)) {
4134                 refclk = vlv_get_refclk(crtc);
4135         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4136             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4137                 refclk = dev_priv->lvds_ssc_freq * 1000;
4138                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4139                               refclk / 1000);
4140         } else if (!IS_GEN2(dev)) {
4141                 refclk = 96000;
4142         } else {
4143                 refclk = 48000;
4144         }
4145
4146         return refclk;
4147 }
4148
4149 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4150                                       intel_clock_t *clock)
4151 {
4152         /* SDVO TV has fixed PLL values depend on its clock range,
4153            this mirrors vbios setting. */
4154         if (adjusted_mode->clock >= 100000
4155             && adjusted_mode->clock < 140500) {
4156                 clock->p1 = 2;
4157                 clock->p2 = 10;
4158                 clock->n = 3;
4159                 clock->m1 = 16;
4160                 clock->m2 = 8;
4161         } else if (adjusted_mode->clock >= 140500
4162                    && adjusted_mode->clock <= 200000) {
4163                 clock->p1 = 1;
4164                 clock->p2 = 10;
4165                 clock->n = 6;
4166                 clock->m1 = 12;
4167                 clock->m2 = 8;
4168         }
4169 }
4170
4171 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4172                                      intel_clock_t *clock,
4173                                      intel_clock_t *reduced_clock)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         int pipe = intel_crtc->pipe;
4179         u32 fp, fp2 = 0;
4180
4181         if (IS_PINEVIEW(dev)) {
4182                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4183                 if (reduced_clock)
4184                         fp2 = (1 << reduced_clock->n) << 16 |
4185                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4186         } else {
4187                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4188                 if (reduced_clock)
4189                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4190                                 reduced_clock->m2;
4191         }
4192
4193         I915_WRITE(FP0(pipe), fp);
4194
4195         intel_crtc->lowfreq_avail = false;
4196         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4197             reduced_clock && i915_powersave) {
4198                 I915_WRITE(FP1(pipe), fp2);
4199                 intel_crtc->lowfreq_avail = true;
4200         } else {
4201                 I915_WRITE(FP1(pipe), fp);
4202         }
4203 }
4204
4205 static void vlv_update_pll(struct drm_crtc *crtc,
4206                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4207                            int num_connectors)
4208 {
4209         struct drm_device *dev = crtc->dev;
4210         struct drm_i915_private *dev_priv = dev->dev_private;
4211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4212         struct drm_display_mode *adjusted_mode =
4213                 &intel_crtc->config.adjusted_mode;
4214         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4215         int pipe = intel_crtc->pipe;
4216         u32 dpll, mdiv, pdiv;
4217         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4218         bool is_sdvo;
4219         u32 temp;
4220
4221         mutex_lock(&dev_priv->dpio_lock);
4222
4223         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4224                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4225
4226         dpll = DPLL_VGA_MODE_DIS;
4227         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4228         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4229         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4230
4231         I915_WRITE(DPLL(pipe), dpll);
4232         POSTING_READ(DPLL(pipe));
4233
4234         bestn = clock->n;
4235         bestm1 = clock->m1;
4236         bestm2 = clock->m2;
4237         bestp1 = clock->p1;
4238         bestp2 = clock->p2;
4239
4240         /*
4241          * In Valleyview PLL and program lane counter registers are exposed
4242          * through DPIO interface
4243          */
4244         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4245         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4246         mdiv |= ((bestn << DPIO_N_SHIFT));
4247         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4248         mdiv |= (1 << DPIO_K_SHIFT);
4249         mdiv |= DPIO_ENABLE_CALIBRATION;
4250         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4251
4252         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4253
4254         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4255                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4256                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4257                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4258         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4259
4260         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4261
4262         dpll |= DPLL_VCO_ENABLE;
4263         I915_WRITE(DPLL(pipe), dpll);
4264         POSTING_READ(DPLL(pipe));
4265         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4266                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4267
4268         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4269
4270         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4271                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4272
4273         I915_WRITE(DPLL(pipe), dpll);
4274
4275         /* Wait for the clocks to stabilize. */
4276         POSTING_READ(DPLL(pipe));
4277         udelay(150);
4278
4279         temp = 0;
4280         if (is_sdvo) {
4281                 temp = 0;
4282                 if (intel_crtc->config.pixel_multiplier > 1) {
4283                         temp = (intel_crtc->config.pixel_multiplier - 1)
4284                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4285                 }
4286         }
4287         I915_WRITE(DPLL_MD(pipe), temp);
4288         POSTING_READ(DPLL_MD(pipe));
4289
4290         /* Now program lane control registers */
4291         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4292                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4293         {
4294                 temp = 0x1000C4;
4295                 if(pipe == 1)
4296                         temp |= (1 << 21);
4297                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4298         }
4299         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4300         {
4301                 temp = 0x1000C4;
4302                 if(pipe == 1)
4303                         temp |= (1 << 21);
4304                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4305         }
4306
4307         mutex_unlock(&dev_priv->dpio_lock);
4308 }
4309
4310 static void i9xx_update_pll(struct drm_crtc *crtc,
4311                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4312                             int num_connectors)
4313 {
4314         struct drm_device *dev = crtc->dev;
4315         struct drm_i915_private *dev_priv = dev->dev_private;
4316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4317         struct drm_display_mode *adjusted_mode =
4318                 &intel_crtc->config.adjusted_mode;
4319         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4320         struct intel_encoder *encoder;
4321         int pipe = intel_crtc->pipe;
4322         u32 dpll;
4323         bool is_sdvo;
4324
4325         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4326
4327         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4328                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4329
4330         dpll = DPLL_VGA_MODE_DIS;
4331
4332         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4333                 dpll |= DPLLB_MODE_LVDS;
4334         else
4335                 dpll |= DPLLB_MODE_DAC_SERIAL;
4336
4337         if (is_sdvo) {
4338                 if ((intel_crtc->config.pixel_multiplier > 1) &&
4339                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4340                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
4341                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4342                 }
4343                 dpll |= DPLL_DVO_HIGH_SPEED;
4344         }
4345         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4346                 dpll |= DPLL_DVO_HIGH_SPEED;
4347
4348         /* compute bitmask from p1 value */
4349         if (IS_PINEVIEW(dev))
4350                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4351         else {
4352                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4353                 if (IS_G4X(dev) && reduced_clock)
4354                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4355         }
4356         switch (clock->p2) {
4357         case 5:
4358                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4359                 break;
4360         case 7:
4361                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4362                 break;
4363         case 10:
4364                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4365                 break;
4366         case 14:
4367                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4368                 break;
4369         }
4370         if (INTEL_INFO(dev)->gen >= 4)
4371                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4372
4373         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4374                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4375         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4376                 /* XXX: just matching BIOS for now */
4377                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4378                 dpll |= 3;
4379         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4380                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4381                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4382         else
4383                 dpll |= PLL_REF_INPUT_DREFCLK;
4384
4385         dpll |= DPLL_VCO_ENABLE;
4386         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4387         POSTING_READ(DPLL(pipe));
4388         udelay(150);
4389
4390         for_each_encoder_on_crtc(dev, crtc, encoder)
4391                 if (encoder->pre_pll_enable)
4392                         encoder->pre_pll_enable(encoder);
4393
4394         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4395                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4396
4397         I915_WRITE(DPLL(pipe), dpll);
4398
4399         /* Wait for the clocks to stabilize. */
4400         POSTING_READ(DPLL(pipe));
4401         udelay(150);
4402
4403         if (INTEL_INFO(dev)->gen >= 4) {
4404                 u32 temp = 0;
4405                 if (is_sdvo) {
4406                         temp = 0;
4407                         if (intel_crtc->config.pixel_multiplier > 1) {
4408                                 temp = (intel_crtc->config.pixel_multiplier - 1)
4409                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4410                         }
4411                 }
4412                 I915_WRITE(DPLL_MD(pipe), temp);
4413         } else {
4414                 /* The pixel multiplier can only be updated once the
4415                  * DPLL is enabled and the clocks are stable.
4416                  *
4417                  * So write it again.
4418                  */
4419                 I915_WRITE(DPLL(pipe), dpll);
4420         }
4421 }
4422
4423 static void i8xx_update_pll(struct drm_crtc *crtc,
4424                             struct drm_display_mode *adjusted_mode,
4425                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4426                             int num_connectors)
4427 {
4428         struct drm_device *dev = crtc->dev;
4429         struct drm_i915_private *dev_priv = dev->dev_private;
4430         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4431         struct intel_encoder *encoder;
4432         int pipe = intel_crtc->pipe;
4433         u32 dpll;
4434
4435         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4436
4437         dpll = DPLL_VGA_MODE_DIS;
4438
4439         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4440                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4441         } else {
4442                 if (clock->p1 == 2)
4443                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4444                 else
4445                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4446                 if (clock->p2 == 4)
4447                         dpll |= PLL_P2_DIVIDE_BY_4;
4448         }
4449
4450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4451                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4452                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4453         else
4454                 dpll |= PLL_REF_INPUT_DREFCLK;
4455
4456         dpll |= DPLL_VCO_ENABLE;
4457         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4458         POSTING_READ(DPLL(pipe));
4459         udelay(150);
4460
4461         for_each_encoder_on_crtc(dev, crtc, encoder)
4462                 if (encoder->pre_pll_enable)
4463                         encoder->pre_pll_enable(encoder);
4464
4465         I915_WRITE(DPLL(pipe), dpll);
4466
4467         /* Wait for the clocks to stabilize. */
4468         POSTING_READ(DPLL(pipe));
4469         udelay(150);
4470
4471         /* The pixel multiplier can only be updated once the
4472          * DPLL is enabled and the clocks are stable.
4473          *
4474          * So write it again.
4475          */
4476         I915_WRITE(DPLL(pipe), dpll);
4477 }
4478
4479 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4480                                    struct drm_display_mode *mode,
4481                                    struct drm_display_mode *adjusted_mode)
4482 {
4483         struct drm_device *dev = intel_crtc->base.dev;
4484         struct drm_i915_private *dev_priv = dev->dev_private;
4485         enum pipe pipe = intel_crtc->pipe;
4486         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4487         uint32_t vsyncshift;
4488
4489         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4490                 /* the chip adds 2 halflines automatically */
4491                 adjusted_mode->crtc_vtotal -= 1;
4492                 adjusted_mode->crtc_vblank_end -= 1;
4493                 vsyncshift = adjusted_mode->crtc_hsync_start
4494                              - adjusted_mode->crtc_htotal / 2;
4495         } else {
4496                 vsyncshift = 0;
4497         }
4498
4499         if (INTEL_INFO(dev)->gen > 3)
4500                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4501
4502         I915_WRITE(HTOTAL(cpu_transcoder),
4503                    (adjusted_mode->crtc_hdisplay - 1) |
4504                    ((adjusted_mode->crtc_htotal - 1) << 16));
4505         I915_WRITE(HBLANK(cpu_transcoder),
4506                    (adjusted_mode->crtc_hblank_start - 1) |
4507                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4508         I915_WRITE(HSYNC(cpu_transcoder),
4509                    (adjusted_mode->crtc_hsync_start - 1) |
4510                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4511
4512         I915_WRITE(VTOTAL(cpu_transcoder),
4513                    (adjusted_mode->crtc_vdisplay - 1) |
4514                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4515         I915_WRITE(VBLANK(cpu_transcoder),
4516                    (adjusted_mode->crtc_vblank_start - 1) |
4517                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4518         I915_WRITE(VSYNC(cpu_transcoder),
4519                    (adjusted_mode->crtc_vsync_start - 1) |
4520                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4521
4522         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4523          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4524          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4525          * bits. */
4526         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4527             (pipe == PIPE_B || pipe == PIPE_C))
4528                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4529
4530         /* pipesrc controls the size that is scaled from, which should
4531          * always be the user's requested size.
4532          */
4533         I915_WRITE(PIPESRC(pipe),
4534                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4535 }
4536
4537 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4538                               int x, int y,
4539                               struct drm_framebuffer *fb)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4544         struct drm_display_mode *adjusted_mode =
4545                 &intel_crtc->config.adjusted_mode;
4546         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4547         int pipe = intel_crtc->pipe;
4548         int plane = intel_crtc->plane;
4549         int refclk, num_connectors = 0;
4550         intel_clock_t clock, reduced_clock;
4551         u32 dspcntr, pipeconf;
4552         bool ok, has_reduced_clock = false, is_sdvo = false;
4553         bool is_lvds = false, is_tv = false, is_dp = false;
4554         struct intel_encoder *encoder;
4555         const intel_limit_t *limit;
4556         int ret;
4557
4558         for_each_encoder_on_crtc(dev, crtc, encoder) {
4559                 switch (encoder->type) {
4560                 case INTEL_OUTPUT_LVDS:
4561                         is_lvds = true;
4562                         break;
4563                 case INTEL_OUTPUT_SDVO:
4564                 case INTEL_OUTPUT_HDMI:
4565                         is_sdvo = true;
4566                         if (encoder->needs_tv_clock)
4567                                 is_tv = true;
4568                         break;
4569                 case INTEL_OUTPUT_TVOUT:
4570                         is_tv = true;
4571                         break;
4572                 case INTEL_OUTPUT_DISPLAYPORT:
4573                         is_dp = true;
4574                         break;
4575                 }
4576
4577                 num_connectors++;
4578         }
4579
4580         refclk = i9xx_get_refclk(crtc, num_connectors);
4581
4582         /*
4583          * Returns a set of divisors for the desired target clock with the given
4584          * refclk, or FALSE.  The returned values represent the clock equation:
4585          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4586          */
4587         limit = intel_limit(crtc, refclk);
4588         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4589                              &clock);
4590         if (!ok) {
4591                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4592                 return -EINVAL;
4593         }
4594
4595         /* Ensure that the cursor is valid for the new mode before changing... */
4596         intel_crtc_update_cursor(crtc, true);
4597
4598         if (is_lvds && dev_priv->lvds_downclock_avail) {
4599                 /*
4600                  * Ensure we match the reduced clock's P to the target clock.
4601                  * If the clocks don't match, we can't switch the display clock
4602                  * by using the FP0/FP1. In such case we will disable the LVDS
4603                  * downclock feature.
4604                 */
4605                 has_reduced_clock = limit->find_pll(limit, crtc,
4606                                                     dev_priv->lvds_downclock,
4607                                                     refclk,
4608                                                     &clock,
4609                                                     &reduced_clock);
4610         }
4611
4612         if (is_sdvo && is_tv)
4613                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4614
4615         if (IS_GEN2(dev))
4616                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4617                                 has_reduced_clock ? &reduced_clock : NULL,
4618                                 num_connectors);
4619         else if (IS_VALLEYVIEW(dev))
4620                 vlv_update_pll(crtc, &clock,
4621                                 has_reduced_clock ? &reduced_clock : NULL,
4622                                 num_connectors);
4623         else
4624                 i9xx_update_pll(crtc, &clock,
4625                                 has_reduced_clock ? &reduced_clock : NULL,
4626                                 num_connectors);
4627
4628         /* setup pipeconf */
4629         pipeconf = I915_READ(PIPECONF(pipe));
4630
4631         /* Set up the display plane register */
4632         dspcntr = DISPPLANE_GAMMA_ENABLE;
4633
4634         if (!IS_VALLEYVIEW(dev)) {
4635                 if (pipe == 0)
4636                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4637                 else
4638                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4639         }
4640
4641         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4642                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4643                  * core speed.
4644                  *
4645                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4646                  * pipe == 0 check?
4647                  */
4648                 if (mode->clock >
4649                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4650                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4651                 else
4652                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4653         }
4654
4655         /* default to 8bpc */
4656         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4657         if (is_dp) {
4658                 if (intel_crtc->config.dither) {
4659                         pipeconf |= PIPECONF_6BPC |
4660                                     PIPECONF_DITHER_EN |
4661                                     PIPECONF_DITHER_TYPE_SP;
4662                 }
4663         }
4664
4665         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4666                 if (intel_crtc->config.dither) {
4667                         pipeconf |= PIPECONF_6BPC |
4668                                         PIPECONF_ENABLE |
4669                                         I965_PIPECONF_ACTIVE;
4670                 }
4671         }
4672
4673         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4674         drm_mode_debug_printmodeline(mode);
4675
4676         if (HAS_PIPE_CXSR(dev)) {
4677                 if (intel_crtc->lowfreq_avail) {
4678                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4679                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4680                 } else {
4681                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4682                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4683                 }
4684         }
4685
4686         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4687         if (!IS_GEN2(dev) &&
4688             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4689                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4690         else
4691                 pipeconf |= PIPECONF_PROGRESSIVE;
4692
4693         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4694
4695         /* pipesrc and dspsize control the size that is scaled from,
4696          * which should always be the user's requested size.
4697          */
4698         I915_WRITE(DSPSIZE(plane),
4699                    ((mode->vdisplay - 1) << 16) |
4700                    (mode->hdisplay - 1));
4701         I915_WRITE(DSPPOS(plane), 0);
4702
4703         I915_WRITE(PIPECONF(pipe), pipeconf);
4704         POSTING_READ(PIPECONF(pipe));
4705         intel_enable_pipe(dev_priv, pipe, false);
4706
4707         intel_wait_for_vblank(dev, pipe);
4708
4709         I915_WRITE(DSPCNTR(plane), dspcntr);
4710         POSTING_READ(DSPCNTR(plane));
4711
4712         ret = intel_pipe_set_base(crtc, x, y, fb);
4713
4714         intel_update_watermarks(dev);
4715
4716         return ret;
4717 }
4718
4719 static void ironlake_init_pch_refclk(struct drm_device *dev)
4720 {
4721         struct drm_i915_private *dev_priv = dev->dev_private;
4722         struct drm_mode_config *mode_config = &dev->mode_config;
4723         struct intel_encoder *encoder;
4724         u32 val, final;
4725         bool has_lvds = false;
4726         bool has_cpu_edp = false;
4727         bool has_pch_edp = false;
4728         bool has_panel = false;
4729         bool has_ck505 = false;
4730         bool can_ssc = false;
4731
4732         /* We need to take the global config into account */
4733         list_for_each_entry(encoder, &mode_config->encoder_list,
4734                             base.head) {
4735                 switch (encoder->type) {
4736                 case INTEL_OUTPUT_LVDS:
4737                         has_panel = true;
4738                         has_lvds = true;
4739                         break;
4740                 case INTEL_OUTPUT_EDP:
4741                         has_panel = true;
4742                         if (intel_encoder_is_pch_edp(&encoder->base))
4743                                 has_pch_edp = true;
4744                         else
4745                                 has_cpu_edp = true;
4746                         break;
4747                 }
4748         }
4749
4750         if (HAS_PCH_IBX(dev)) {
4751                 has_ck505 = dev_priv->display_clock_mode;
4752                 can_ssc = has_ck505;
4753         } else {
4754                 has_ck505 = false;
4755                 can_ssc = true;
4756         }
4757
4758         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4759                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4760                       has_ck505);
4761
4762         /* Ironlake: try to setup display ref clock before DPLL
4763          * enabling. This is only under driver's control after
4764          * PCH B stepping, previous chipset stepping should be
4765          * ignoring this setting.
4766          */
4767         val = I915_READ(PCH_DREF_CONTROL);
4768
4769         /* As we must carefully and slowly disable/enable each source in turn,
4770          * compute the final state we want first and check if we need to
4771          * make any changes at all.
4772          */
4773         final = val;
4774         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4775         if (has_ck505)
4776                 final |= DREF_NONSPREAD_CK505_ENABLE;
4777         else
4778                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4779
4780         final &= ~DREF_SSC_SOURCE_MASK;
4781         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4782         final &= ~DREF_SSC1_ENABLE;
4783
4784         if (has_panel) {
4785                 final |= DREF_SSC_SOURCE_ENABLE;
4786
4787                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4788                         final |= DREF_SSC1_ENABLE;
4789
4790                 if (has_cpu_edp) {
4791                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4792                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4793                         else
4794                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4795                 } else
4796                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4797         } else {
4798                 final |= DREF_SSC_SOURCE_DISABLE;
4799                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4800         }
4801
4802         if (final == val)
4803                 return;
4804
4805         /* Always enable nonspread source */
4806         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4807
4808         if (has_ck505)
4809                 val |= DREF_NONSPREAD_CK505_ENABLE;
4810         else
4811                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4812
4813         if (has_panel) {
4814                 val &= ~DREF_SSC_SOURCE_MASK;
4815                 val |= DREF_SSC_SOURCE_ENABLE;
4816
4817                 /* SSC must be turned on before enabling the CPU output  */
4818                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4819                         DRM_DEBUG_KMS("Using SSC on panel\n");
4820                         val |= DREF_SSC1_ENABLE;
4821                 } else
4822                         val &= ~DREF_SSC1_ENABLE;
4823
4824                 /* Get SSC going before enabling the outputs */
4825                 I915_WRITE(PCH_DREF_CONTROL, val);
4826                 POSTING_READ(PCH_DREF_CONTROL);
4827                 udelay(200);
4828
4829                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4830
4831                 /* Enable CPU source on CPU attached eDP */
4832                 if (has_cpu_edp) {
4833                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4834                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4835                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4836                         }
4837                         else
4838                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4839                 } else
4840                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4841
4842                 I915_WRITE(PCH_DREF_CONTROL, val);
4843                 POSTING_READ(PCH_DREF_CONTROL);
4844                 udelay(200);
4845         } else {
4846                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4847
4848                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4849
4850                 /* Turn off CPU output */
4851                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4852
4853                 I915_WRITE(PCH_DREF_CONTROL, val);
4854                 POSTING_READ(PCH_DREF_CONTROL);
4855                 udelay(200);
4856
4857                 /* Turn off the SSC source */
4858                 val &= ~DREF_SSC_SOURCE_MASK;
4859                 val |= DREF_SSC_SOURCE_DISABLE;
4860
4861                 /* Turn off SSC1 */
4862                 val &= ~DREF_SSC1_ENABLE;
4863
4864                 I915_WRITE(PCH_DREF_CONTROL, val);
4865                 POSTING_READ(PCH_DREF_CONTROL);
4866                 udelay(200);
4867         }
4868
4869         BUG_ON(val != final);
4870 }
4871
4872 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4873 static void lpt_init_pch_refclk(struct drm_device *dev)
4874 {
4875         struct drm_i915_private *dev_priv = dev->dev_private;
4876         struct drm_mode_config *mode_config = &dev->mode_config;
4877         struct intel_encoder *encoder;
4878         bool has_vga = false;
4879         bool is_sdv = false;
4880         u32 tmp;
4881
4882         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4883                 switch (encoder->type) {
4884                 case INTEL_OUTPUT_ANALOG:
4885                         has_vga = true;
4886                         break;
4887                 }
4888         }
4889
4890         if (!has_vga)
4891                 return;
4892
4893         mutex_lock(&dev_priv->dpio_lock);
4894
4895         /* XXX: Rip out SDV support once Haswell ships for real. */
4896         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4897                 is_sdv = true;
4898
4899         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4900         tmp &= ~SBI_SSCCTL_DISABLE;
4901         tmp |= SBI_SSCCTL_PATHALT;
4902         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4903
4904         udelay(24);
4905
4906         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4907         tmp &= ~SBI_SSCCTL_PATHALT;
4908         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4909
4910         if (!is_sdv) {
4911                 tmp = I915_READ(SOUTH_CHICKEN2);
4912                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4913                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4914
4915                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4916                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4917                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4918
4919                 tmp = I915_READ(SOUTH_CHICKEN2);
4920                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4921                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4922
4923                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4924                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4925                                        100))
4926                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4927         }
4928
4929         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4930         tmp &= ~(0xFF << 24);
4931         tmp |= (0x12 << 24);
4932         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4933
4934         if (!is_sdv) {
4935                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4936                 tmp &= ~(0x3 << 6);
4937                 tmp |= (1 << 6) | (1 << 0);
4938                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4939         }
4940
4941         if (is_sdv) {
4942                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4943                 tmp |= 0x7FFF;
4944                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4945         }
4946
4947         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4948         tmp |= (1 << 11);
4949         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4950
4951         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4952         tmp |= (1 << 11);
4953         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4954
4955         if (is_sdv) {
4956                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4957                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4958                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4959
4960                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4961                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4962                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4963
4964                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4965                 tmp |= (0x3F << 8);
4966                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4967
4968                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4969                 tmp |= (0x3F << 8);
4970                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4971         }
4972
4973         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4974         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4975         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4976
4977         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4978         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4979         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
4980
4981         if (!is_sdv) {
4982                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
4983                 tmp &= ~(7 << 13);
4984                 tmp |= (5 << 13);
4985                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
4986
4987                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
4988                 tmp &= ~(7 << 13);
4989                 tmp |= (5 << 13);
4990                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
4991         }
4992
4993         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
4994         tmp &= ~0xFF;
4995         tmp |= 0x1C;
4996         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
4997
4998         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
4999         tmp &= ~0xFF;
5000         tmp |= 0x1C;
5001         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5002
5003         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5004         tmp &= ~(0xFF << 16);
5005         tmp |= (0x1C << 16);
5006         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5007
5008         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5009         tmp &= ~(0xFF << 16);
5010         tmp |= (0x1C << 16);
5011         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5012
5013         if (!is_sdv) {
5014                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5015                 tmp |= (1 << 27);
5016                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5017
5018                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5019                 tmp |= (1 << 27);
5020                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5021
5022                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5023                 tmp &= ~(0xF << 28);
5024                 tmp |= (4 << 28);
5025                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5026
5027                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5028                 tmp &= ~(0xF << 28);
5029                 tmp |= (4 << 28);
5030                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5031         }
5032
5033         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5034         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5035         tmp |= SBI_DBUFF0_ENABLE;
5036         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5037
5038         mutex_unlock(&dev_priv->dpio_lock);
5039 }
5040
5041 /*
5042  * Initialize reference clocks when the driver loads
5043  */
5044 void intel_init_pch_refclk(struct drm_device *dev)
5045 {
5046         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5047                 ironlake_init_pch_refclk(dev);
5048         else if (HAS_PCH_LPT(dev))
5049                 lpt_init_pch_refclk(dev);
5050 }
5051
5052 static int ironlake_get_refclk(struct drm_crtc *crtc)
5053 {
5054         struct drm_device *dev = crtc->dev;
5055         struct drm_i915_private *dev_priv = dev->dev_private;
5056         struct intel_encoder *encoder;
5057         struct intel_encoder *edp_encoder = NULL;
5058         int num_connectors = 0;
5059         bool is_lvds = false;
5060
5061         for_each_encoder_on_crtc(dev, crtc, encoder) {
5062                 switch (encoder->type) {
5063                 case INTEL_OUTPUT_LVDS:
5064                         is_lvds = true;
5065                         break;
5066                 case INTEL_OUTPUT_EDP:
5067                         edp_encoder = encoder;
5068                         break;
5069                 }
5070                 num_connectors++;
5071         }
5072
5073         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5074                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5075                               dev_priv->lvds_ssc_freq);
5076                 return dev_priv->lvds_ssc_freq * 1000;
5077         }
5078
5079         return 120000;
5080 }
5081
5082 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5083                                   struct drm_display_mode *adjusted_mode,
5084                                   bool dither)
5085 {
5086         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5088         int pipe = intel_crtc->pipe;
5089         uint32_t val;
5090
5091         val = I915_READ(PIPECONF(pipe));
5092
5093         val &= ~PIPECONF_BPC_MASK;
5094         switch (intel_crtc->config.pipe_bpp) {
5095         case 18:
5096                 val |= PIPECONF_6BPC;
5097                 break;
5098         case 24:
5099                 val |= PIPECONF_8BPC;
5100                 break;
5101         case 30:
5102                 val |= PIPECONF_10BPC;
5103                 break;
5104         case 36:
5105                 val |= PIPECONF_12BPC;
5106                 break;
5107         default:
5108                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5109                 BUG();
5110         }
5111
5112         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5113         if (dither)
5114                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5115
5116         val &= ~PIPECONF_INTERLACE_MASK;
5117         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5118                 val |= PIPECONF_INTERLACED_ILK;
5119         else
5120                 val |= PIPECONF_PROGRESSIVE;
5121
5122         if (intel_crtc->config.limited_color_range)
5123                 val |= PIPECONF_COLOR_RANGE_SELECT;
5124         else
5125                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5126
5127         I915_WRITE(PIPECONF(pipe), val);
5128         POSTING_READ(PIPECONF(pipe));
5129 }
5130
5131 /*
5132  * Set up the pipe CSC unit.
5133  *
5134  * Currently only full range RGB to limited range RGB conversion
5135  * is supported, but eventually this should handle various
5136  * RGB<->YCbCr scenarios as well.
5137  */
5138 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5139 {
5140         struct drm_device *dev = crtc->dev;
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143         int pipe = intel_crtc->pipe;
5144         uint16_t coeff = 0x7800; /* 1.0 */
5145
5146         /*
5147          * TODO: Check what kind of values actually come out of the pipe
5148          * with these coeff/postoff values and adjust to get the best
5149          * accuracy. Perhaps we even need to take the bpc value into
5150          * consideration.
5151          */
5152
5153         if (intel_crtc->config.limited_color_range)
5154                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5155
5156         /*
5157          * GY/GU and RY/RU should be the other way around according
5158          * to BSpec, but reality doesn't agree. Just set them up in
5159          * a way that results in the correct picture.
5160          */
5161         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5162         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5163
5164         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5165         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5166
5167         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5168         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5169
5170         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5171         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5172         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5173
5174         if (INTEL_INFO(dev)->gen > 6) {
5175                 uint16_t postoff = 0;
5176
5177                 if (intel_crtc->config.limited_color_range)
5178                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5179
5180                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5181                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5182                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5183
5184                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5185         } else {
5186                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5187
5188                 if (intel_crtc->config.limited_color_range)
5189                         mode |= CSC_BLACK_SCREEN_OFFSET;
5190
5191                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5192         }
5193 }
5194
5195 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5196                                  struct drm_display_mode *adjusted_mode,
5197                                  bool dither)
5198 {
5199         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5202         uint32_t val;
5203
5204         val = I915_READ(PIPECONF(cpu_transcoder));
5205
5206         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5207         if (dither)
5208                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5209
5210         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5211         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5212                 val |= PIPECONF_INTERLACED_ILK;
5213         else
5214                 val |= PIPECONF_PROGRESSIVE;
5215
5216         I915_WRITE(PIPECONF(cpu_transcoder), val);
5217         POSTING_READ(PIPECONF(cpu_transcoder));
5218 }
5219
5220 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5221                                     struct drm_display_mode *adjusted_mode,
5222                                     intel_clock_t *clock,
5223                                     bool *has_reduced_clock,
5224                                     intel_clock_t *reduced_clock)
5225 {
5226         struct drm_device *dev = crtc->dev;
5227         struct drm_i915_private *dev_priv = dev->dev_private;
5228         struct intel_encoder *intel_encoder;
5229         int refclk;
5230         const intel_limit_t *limit;
5231         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5232
5233         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5234                 switch (intel_encoder->type) {
5235                 case INTEL_OUTPUT_LVDS:
5236                         is_lvds = true;
5237                         break;
5238                 case INTEL_OUTPUT_SDVO:
5239                 case INTEL_OUTPUT_HDMI:
5240                         is_sdvo = true;
5241                         if (intel_encoder->needs_tv_clock)
5242                                 is_tv = true;
5243                         break;
5244                 case INTEL_OUTPUT_TVOUT:
5245                         is_tv = true;
5246                         break;
5247                 }
5248         }
5249
5250         refclk = ironlake_get_refclk(crtc);
5251
5252         /*
5253          * Returns a set of divisors for the desired target clock with the given
5254          * refclk, or FALSE.  The returned values represent the clock equation:
5255          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5256          */
5257         limit = intel_limit(crtc, refclk);
5258         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5259                               clock);
5260         if (!ret)
5261                 return false;
5262
5263         if (is_lvds && dev_priv->lvds_downclock_avail) {
5264                 /*
5265                  * Ensure we match the reduced clock's P to the target clock.
5266                  * If the clocks don't match, we can't switch the display clock
5267                  * by using the FP0/FP1. In such case we will disable the LVDS
5268                  * downclock feature.
5269                 */
5270                 *has_reduced_clock = limit->find_pll(limit, crtc,
5271                                                      dev_priv->lvds_downclock,
5272                                                      refclk,
5273                                                      clock,
5274                                                      reduced_clock);
5275         }
5276
5277         if (is_sdvo && is_tv)
5278                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5279
5280         return true;
5281 }
5282
5283 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5284 {
5285         struct drm_i915_private *dev_priv = dev->dev_private;
5286         uint32_t temp;
5287
5288         temp = I915_READ(SOUTH_CHICKEN1);
5289         if (temp & FDI_BC_BIFURCATION_SELECT)
5290                 return;
5291
5292         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5293         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5294
5295         temp |= FDI_BC_BIFURCATION_SELECT;
5296         DRM_DEBUG_KMS("enabling fdi C rx\n");
5297         I915_WRITE(SOUTH_CHICKEN1, temp);
5298         POSTING_READ(SOUTH_CHICKEN1);
5299 }
5300
5301 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5302 {
5303         struct drm_device *dev = intel_crtc->base.dev;
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305         struct intel_crtc *pipe_B_crtc =
5306                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5307
5308         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5309                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5310         if (intel_crtc->fdi_lanes > 4) {
5311                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5312                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5313                 /* Clamp lanes to avoid programming the hw with bogus values. */
5314                 intel_crtc->fdi_lanes = 4;
5315
5316                 return false;
5317         }
5318
5319         if (INTEL_INFO(dev)->num_pipes == 2)
5320                 return true;
5321
5322         switch (intel_crtc->pipe) {
5323         case PIPE_A:
5324                 return true;
5325         case PIPE_B:
5326                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5327                     intel_crtc->fdi_lanes > 2) {
5328                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5329                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5330                         /* Clamp lanes to avoid programming the hw with bogus values. */
5331                         intel_crtc->fdi_lanes = 2;
5332
5333                         return false;
5334                 }
5335
5336                 if (intel_crtc->fdi_lanes > 2)
5337                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5338                 else
5339                         cpt_enable_fdi_bc_bifurcation(dev);
5340
5341                 return true;
5342         case PIPE_C:
5343                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5344                         if (intel_crtc->fdi_lanes > 2) {
5345                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5346                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5347                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5348                                 intel_crtc->fdi_lanes = 2;
5349
5350                                 return false;
5351                         }
5352                 } else {
5353                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5354                         return false;
5355                 }
5356
5357                 cpt_enable_fdi_bc_bifurcation(dev);
5358
5359                 return true;
5360         default:
5361                 BUG();
5362         }
5363 }
5364
5365 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5366 {
5367         /*
5368          * Account for spread spectrum to avoid
5369          * oversubscribing the link. Max center spread
5370          * is 2.5%; use 5% for safety's sake.
5371          */
5372         u32 bps = target_clock * bpp * 21 / 20;
5373         return bps / (link_bw * 8) + 1;
5374 }
5375
5376 static void ironlake_set_m_n(struct drm_crtc *crtc)
5377 {
5378         struct drm_device *dev = crtc->dev;
5379         struct drm_i915_private *dev_priv = dev->dev_private;
5380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5381         struct drm_display_mode *adjusted_mode =
5382                 &intel_crtc->config.adjusted_mode;
5383         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5384         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5385         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5386         struct intel_link_m_n m_n = {0};
5387         int target_clock, lane, link_bw;
5388         bool is_dp = false, is_cpu_edp = false;
5389
5390         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5391                 switch (intel_encoder->type) {
5392                 case INTEL_OUTPUT_DISPLAYPORT:
5393                         is_dp = true;
5394                         break;
5395                 case INTEL_OUTPUT_EDP:
5396                         is_dp = true;
5397                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5398                                 is_cpu_edp = true;
5399                         edp_encoder = intel_encoder;
5400                         break;
5401                 }
5402         }
5403
5404         /* FDI link */
5405         lane = 0;
5406         /* CPU eDP doesn't require FDI link, so just set DP M/N
5407            according to current link config */
5408         if (is_cpu_edp) {
5409                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5410         } else {
5411                 /* FDI is a binary signal running at ~2.7GHz, encoding
5412                  * each output octet as 10 bits. The actual frequency
5413                  * is stored as a divider into a 100MHz clock, and the
5414                  * mode pixel clock is stored in units of 1KHz.
5415                  * Hence the bw of each lane in terms of the mode signal
5416                  * is:
5417                  */
5418                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5419         }
5420
5421         /* [e]DP over FDI requires target mode clock instead of link clock. */
5422         if (edp_encoder)
5423                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5424         else if (is_dp)
5425                 target_clock = mode->clock;
5426         else
5427                 target_clock = adjusted_mode->clock;
5428
5429         if (!lane)
5430                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5431                                                    intel_crtc->config.pipe_bpp);
5432
5433         intel_crtc->fdi_lanes = lane;
5434
5435         if (intel_crtc->config.pixel_multiplier > 1)
5436                 link_bw *= intel_crtc->config.pixel_multiplier;
5437         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5438                                link_bw, &m_n);
5439
5440         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5441         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5442         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5443         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5444 }
5445
5446 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5447                                       intel_clock_t *clock, u32 fp)
5448 {
5449         struct drm_crtc *crtc = &intel_crtc->base;
5450         struct drm_device *dev = crtc->dev;
5451         struct drm_i915_private *dev_priv = dev->dev_private;
5452         struct intel_encoder *intel_encoder;
5453         uint32_t dpll;
5454         int factor, num_connectors = 0;
5455         bool is_lvds = false, is_sdvo = false, is_tv = false;
5456         bool is_dp = false, is_cpu_edp = false;
5457
5458         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5459                 switch (intel_encoder->type) {
5460                 case INTEL_OUTPUT_LVDS:
5461                         is_lvds = true;
5462                         break;
5463                 case INTEL_OUTPUT_SDVO:
5464                 case INTEL_OUTPUT_HDMI:
5465                         is_sdvo = true;
5466                         if (intel_encoder->needs_tv_clock)
5467                                 is_tv = true;
5468                         break;
5469                 case INTEL_OUTPUT_TVOUT:
5470                         is_tv = true;
5471                         break;
5472                 case INTEL_OUTPUT_DISPLAYPORT:
5473                         is_dp = true;
5474                         break;
5475                 case INTEL_OUTPUT_EDP:
5476                         is_dp = true;
5477                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5478                                 is_cpu_edp = true;
5479                         break;
5480                 }
5481
5482                 num_connectors++;
5483         }
5484
5485         /* Enable autotuning of the PLL clock (if permissible) */
5486         factor = 21;
5487         if (is_lvds) {
5488                 if ((intel_panel_use_ssc(dev_priv) &&
5489                      dev_priv->lvds_ssc_freq == 100) ||
5490                     intel_is_dual_link_lvds(dev))
5491                         factor = 25;
5492         } else if (is_sdvo && is_tv)
5493                 factor = 20;
5494
5495         if (clock->m < factor * clock->n)
5496                 fp |= FP_CB_TUNE;
5497
5498         dpll = 0;
5499
5500         if (is_lvds)
5501                 dpll |= DPLLB_MODE_LVDS;
5502         else
5503                 dpll |= DPLLB_MODE_DAC_SERIAL;
5504         if (is_sdvo) {
5505                 if (intel_crtc->config.pixel_multiplier > 1) {
5506                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5507                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5508                 }
5509                 dpll |= DPLL_DVO_HIGH_SPEED;
5510         }
5511         if (is_dp && !is_cpu_edp)
5512                 dpll |= DPLL_DVO_HIGH_SPEED;
5513
5514         /* compute bitmask from p1 value */
5515         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5516         /* also FPA1 */
5517         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5518
5519         switch (clock->p2) {
5520         case 5:
5521                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5522                 break;
5523         case 7:
5524                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5525                 break;
5526         case 10:
5527                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5528                 break;
5529         case 14:
5530                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5531                 break;
5532         }
5533
5534         if (is_sdvo && is_tv)
5535                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5536         else if (is_tv)
5537                 /* XXX: just matching BIOS for now */
5538                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5539                 dpll |= 3;
5540         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5541                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5542         else
5543                 dpll |= PLL_REF_INPUT_DREFCLK;
5544
5545         return dpll;
5546 }
5547
5548 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5549                                   int x, int y,
5550                                   struct drm_framebuffer *fb)
5551 {
5552         struct drm_device *dev = crtc->dev;
5553         struct drm_i915_private *dev_priv = dev->dev_private;
5554         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5555         struct drm_display_mode *adjusted_mode =
5556                 &intel_crtc->config.adjusted_mode;
5557         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5558         int pipe = intel_crtc->pipe;
5559         int plane = intel_crtc->plane;
5560         int num_connectors = 0;
5561         intel_clock_t clock, reduced_clock;
5562         u32 dpll, fp = 0, fp2 = 0;
5563         bool ok, has_reduced_clock = false;
5564         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5565         struct intel_encoder *encoder;
5566         int ret;
5567         bool dither, fdi_config_ok;
5568
5569         for_each_encoder_on_crtc(dev, crtc, encoder) {
5570                 switch (encoder->type) {
5571                 case INTEL_OUTPUT_LVDS:
5572                         is_lvds = true;
5573                         break;
5574                 case INTEL_OUTPUT_DISPLAYPORT:
5575                         is_dp = true;
5576                         break;
5577                 case INTEL_OUTPUT_EDP:
5578                         is_dp = true;
5579                         if (!intel_encoder_is_pch_edp(&encoder->base))
5580                                 is_cpu_edp = true;
5581                         break;
5582                 }
5583
5584                 num_connectors++;
5585         }
5586
5587         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5588              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5589
5590         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5591                                      &has_reduced_clock, &reduced_clock);
5592         if (!ok) {
5593                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5594                 return -EINVAL;
5595         }
5596
5597         /* Ensure that the cursor is valid for the new mode before changing... */
5598         intel_crtc_update_cursor(crtc, true);
5599
5600         /* determine panel color depth */
5601         dither = intel_crtc->config.dither;
5602         if (is_lvds && dev_priv->lvds_dither)
5603                 dither = true;
5604
5605         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5606         if (has_reduced_clock)
5607                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5608                         reduced_clock.m2;
5609
5610         dpll = ironlake_compute_dpll(intel_crtc, &clock, fp);
5611
5612         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5613         drm_mode_debug_printmodeline(mode);
5614
5615         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5616         if (!is_cpu_edp) {
5617                 struct intel_pch_pll *pll;
5618
5619                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5620                 if (pll == NULL) {
5621                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5622                                          pipe);
5623                         return -EINVAL;
5624                 }
5625         } else
5626                 intel_put_pch_pll(intel_crtc);
5627
5628         if (is_dp && !is_cpu_edp)
5629                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5630
5631         for_each_encoder_on_crtc(dev, crtc, encoder)
5632                 if (encoder->pre_pll_enable)
5633                         encoder->pre_pll_enable(encoder);
5634
5635         if (intel_crtc->pch_pll) {
5636                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5637
5638                 /* Wait for the clocks to stabilize. */
5639                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5640                 udelay(150);
5641
5642                 /* The pixel multiplier can only be updated once the
5643                  * DPLL is enabled and the clocks are stable.
5644                  *
5645                  * So write it again.
5646                  */
5647                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5648         }
5649
5650         intel_crtc->lowfreq_avail = false;
5651         if (intel_crtc->pch_pll) {
5652                 if (is_lvds && has_reduced_clock && i915_powersave) {
5653                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5654                         intel_crtc->lowfreq_avail = true;
5655                 } else {
5656                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5657                 }
5658         }
5659
5660         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5661
5662         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5663          * ironlake_check_fdi_lanes. */
5664         ironlake_set_m_n(crtc);
5665
5666         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5667
5668         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5669
5670         intel_wait_for_vblank(dev, pipe);
5671
5672         /* Set up the display plane register */
5673         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5674         POSTING_READ(DSPCNTR(plane));
5675
5676         ret = intel_pipe_set_base(crtc, x, y, fb);
5677
5678         intel_update_watermarks(dev);
5679
5680         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5681
5682         return fdi_config_ok ? ret : -EINVAL;
5683 }
5684
5685 static void haswell_modeset_global_resources(struct drm_device *dev)
5686 {
5687         struct drm_i915_private *dev_priv = dev->dev_private;
5688         bool enable = false;
5689         struct intel_crtc *crtc;
5690         struct intel_encoder *encoder;
5691
5692         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5693                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5694                         enable = true;
5695                 /* XXX: Should check for edp transcoder here, but thanks to init
5696                  * sequence that's not yet available. Just in case desktop eDP
5697                  * on PORT D is possible on haswell, too. */
5698         }
5699
5700         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5701                             base.head) {
5702                 if (encoder->type != INTEL_OUTPUT_EDP &&
5703                     encoder->connectors_active)
5704                         enable = true;
5705         }
5706
5707         /* Even the eDP panel fitter is outside the always-on well. */
5708         if (dev_priv->pch_pf_size)
5709                 enable = true;
5710
5711         intel_set_power_well(dev, enable);
5712 }
5713
5714 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5715                                  int x, int y,
5716                                  struct drm_framebuffer *fb)
5717 {
5718         struct drm_device *dev = crtc->dev;
5719         struct drm_i915_private *dev_priv = dev->dev_private;
5720         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5721         struct drm_display_mode *adjusted_mode =
5722                 &intel_crtc->config.adjusted_mode;
5723         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5724         int pipe = intel_crtc->pipe;
5725         int plane = intel_crtc->plane;
5726         int num_connectors = 0;
5727         bool is_dp = false, is_cpu_edp = false;
5728         struct intel_encoder *encoder;
5729         int ret;
5730         bool dither;
5731
5732         for_each_encoder_on_crtc(dev, crtc, encoder) {
5733                 switch (encoder->type) {
5734                 case INTEL_OUTPUT_DISPLAYPORT:
5735                         is_dp = true;
5736                         break;
5737                 case INTEL_OUTPUT_EDP:
5738                         is_dp = true;
5739                         if (!intel_encoder_is_pch_edp(&encoder->base))
5740                                 is_cpu_edp = true;
5741                         break;
5742                 }
5743
5744                 num_connectors++;
5745         }
5746
5747         /* We are not sure yet this won't happen. */
5748         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5749              INTEL_PCH_TYPE(dev));
5750
5751         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5752              num_connectors, pipe_name(pipe));
5753
5754         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5755                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5756
5757         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5758
5759         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5760                 return -EINVAL;
5761
5762         /* Ensure that the cursor is valid for the new mode before changing... */
5763         intel_crtc_update_cursor(crtc, true);
5764
5765         /* determine panel color depth */
5766         dither = intel_crtc->config.dither;
5767
5768         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5769         drm_mode_debug_printmodeline(mode);
5770
5771         if (is_dp && !is_cpu_edp)
5772                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5773
5774         intel_crtc->lowfreq_avail = false;
5775
5776         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5777
5778         if (!is_dp || is_cpu_edp)
5779                 ironlake_set_m_n(crtc);
5780
5781         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5782
5783         intel_set_pipe_csc(crtc);
5784
5785         /* Set up the display plane register */
5786         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5787         POSTING_READ(DSPCNTR(plane));
5788
5789         ret = intel_pipe_set_base(crtc, x, y, fb);
5790
5791         intel_update_watermarks(dev);
5792
5793         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5794
5795         return ret;
5796 }
5797
5798 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5799                                int x, int y,
5800                                struct drm_framebuffer *fb)
5801 {
5802         struct drm_device *dev = crtc->dev;
5803         struct drm_i915_private *dev_priv = dev->dev_private;
5804         struct drm_encoder_helper_funcs *encoder_funcs;
5805         struct intel_encoder *encoder;
5806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5807         struct drm_display_mode *adjusted_mode =
5808                 &intel_crtc->config.adjusted_mode;
5809         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5810         int pipe = intel_crtc->pipe;
5811         int ret;
5812
5813         if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5814                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5815         else
5816                 intel_crtc->cpu_transcoder = pipe;
5817
5818         drm_vblank_pre_modeset(dev, pipe);
5819
5820         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5821
5822         drm_vblank_post_modeset(dev, pipe);
5823
5824         if (ret != 0)
5825                 return ret;
5826
5827         for_each_encoder_on_crtc(dev, crtc, encoder) {
5828                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5829                         encoder->base.base.id,
5830                         drm_get_encoder_name(&encoder->base),
5831                         mode->base.id, mode->name);
5832                 if (encoder->mode_set) {
5833                         encoder->mode_set(encoder);
5834                 } else {
5835                         encoder_funcs = encoder->base.helper_private;
5836                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5837                 }
5838         }
5839
5840         return 0;
5841 }
5842
5843 static bool intel_eld_uptodate(struct drm_connector *connector,
5844                                int reg_eldv, uint32_t bits_eldv,
5845                                int reg_elda, uint32_t bits_elda,
5846                                int reg_edid)
5847 {
5848         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5849         uint8_t *eld = connector->eld;
5850         uint32_t i;
5851
5852         i = I915_READ(reg_eldv);
5853         i &= bits_eldv;
5854
5855         if (!eld[0])
5856                 return !i;
5857
5858         if (!i)
5859                 return false;
5860
5861         i = I915_READ(reg_elda);
5862         i &= ~bits_elda;
5863         I915_WRITE(reg_elda, i);
5864
5865         for (i = 0; i < eld[2]; i++)
5866                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5867                         return false;
5868
5869         return true;
5870 }
5871
5872 static void g4x_write_eld(struct drm_connector *connector,
5873                           struct drm_crtc *crtc)
5874 {
5875         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5876         uint8_t *eld = connector->eld;
5877         uint32_t eldv;
5878         uint32_t len;
5879         uint32_t i;
5880
5881         i = I915_READ(G4X_AUD_VID_DID);
5882
5883         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5884                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5885         else
5886                 eldv = G4X_ELDV_DEVCTG;
5887
5888         if (intel_eld_uptodate(connector,
5889                                G4X_AUD_CNTL_ST, eldv,
5890                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5891                                G4X_HDMIW_HDMIEDID))
5892                 return;
5893
5894         i = I915_READ(G4X_AUD_CNTL_ST);
5895         i &= ~(eldv | G4X_ELD_ADDR);
5896         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5897         I915_WRITE(G4X_AUD_CNTL_ST, i);
5898
5899         if (!eld[0])
5900                 return;
5901
5902         len = min_t(uint8_t, eld[2], len);
5903         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5904         for (i = 0; i < len; i++)
5905                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5906
5907         i = I915_READ(G4X_AUD_CNTL_ST);
5908         i |= eldv;
5909         I915_WRITE(G4X_AUD_CNTL_ST, i);
5910 }
5911
5912 static void haswell_write_eld(struct drm_connector *connector,
5913                                      struct drm_crtc *crtc)
5914 {
5915         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5916         uint8_t *eld = connector->eld;
5917         struct drm_device *dev = crtc->dev;
5918         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5919         uint32_t eldv;
5920         uint32_t i;
5921         int len;
5922         int pipe = to_intel_crtc(crtc)->pipe;
5923         int tmp;
5924
5925         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5926         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5927         int aud_config = HSW_AUD_CFG(pipe);
5928         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5929
5930
5931         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5932
5933         /* Audio output enable */
5934         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5935         tmp = I915_READ(aud_cntrl_st2);
5936         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5937         I915_WRITE(aud_cntrl_st2, tmp);
5938
5939         /* Wait for 1 vertical blank */
5940         intel_wait_for_vblank(dev, pipe);
5941
5942         /* Set ELD valid state */
5943         tmp = I915_READ(aud_cntrl_st2);
5944         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5945         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5946         I915_WRITE(aud_cntrl_st2, tmp);
5947         tmp = I915_READ(aud_cntrl_st2);
5948         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5949
5950         /* Enable HDMI mode */
5951         tmp = I915_READ(aud_config);
5952         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5953         /* clear N_programing_enable and N_value_index */
5954         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5955         I915_WRITE(aud_config, tmp);
5956
5957         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5958
5959         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5960         intel_crtc->eld_vld = true;
5961
5962         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5963                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5964                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5965                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5966         } else
5967                 I915_WRITE(aud_config, 0);
5968
5969         if (intel_eld_uptodate(connector,
5970                                aud_cntrl_st2, eldv,
5971                                aud_cntl_st, IBX_ELD_ADDRESS,
5972                                hdmiw_hdmiedid))
5973                 return;
5974
5975         i = I915_READ(aud_cntrl_st2);
5976         i &= ~eldv;
5977         I915_WRITE(aud_cntrl_st2, i);
5978
5979         if (!eld[0])
5980                 return;
5981
5982         i = I915_READ(aud_cntl_st);
5983         i &= ~IBX_ELD_ADDRESS;
5984         I915_WRITE(aud_cntl_st, i);
5985         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5986         DRM_DEBUG_DRIVER("port num:%d\n", i);
5987
5988         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5989         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5990         for (i = 0; i < len; i++)
5991                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5992
5993         i = I915_READ(aud_cntrl_st2);
5994         i |= eldv;
5995         I915_WRITE(aud_cntrl_st2, i);
5996
5997 }
5998
5999 static void ironlake_write_eld(struct drm_connector *connector,
6000                                      struct drm_crtc *crtc)
6001 {
6002         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6003         uint8_t *eld = connector->eld;
6004         uint32_t eldv;
6005         uint32_t i;
6006         int len;
6007         int hdmiw_hdmiedid;
6008         int aud_config;
6009         int aud_cntl_st;
6010         int aud_cntrl_st2;
6011         int pipe = to_intel_crtc(crtc)->pipe;
6012
6013         if (HAS_PCH_IBX(connector->dev)) {
6014                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6015                 aud_config = IBX_AUD_CFG(pipe);
6016                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6017                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6018         } else {
6019                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6020                 aud_config = CPT_AUD_CFG(pipe);
6021                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6022                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6023         }
6024
6025         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6026
6027         i = I915_READ(aud_cntl_st);
6028         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6029         if (!i) {
6030                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6031                 /* operate blindly on all ports */
6032                 eldv = IBX_ELD_VALIDB;
6033                 eldv |= IBX_ELD_VALIDB << 4;
6034                 eldv |= IBX_ELD_VALIDB << 8;
6035         } else {
6036                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6037                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6038         }
6039
6040         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6041                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6042                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6043                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6044         } else
6045                 I915_WRITE(aud_config, 0);
6046
6047         if (intel_eld_uptodate(connector,
6048                                aud_cntrl_st2, eldv,
6049                                aud_cntl_st, IBX_ELD_ADDRESS,
6050                                hdmiw_hdmiedid))
6051                 return;
6052
6053         i = I915_READ(aud_cntrl_st2);
6054         i &= ~eldv;
6055         I915_WRITE(aud_cntrl_st2, i);
6056
6057         if (!eld[0])
6058                 return;
6059
6060         i = I915_READ(aud_cntl_st);
6061         i &= ~IBX_ELD_ADDRESS;
6062         I915_WRITE(aud_cntl_st, i);
6063
6064         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6065         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6066         for (i = 0; i < len; i++)
6067                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6068
6069         i = I915_READ(aud_cntrl_st2);
6070         i |= eldv;
6071         I915_WRITE(aud_cntrl_st2, i);
6072 }
6073
6074 void intel_write_eld(struct drm_encoder *encoder,
6075                      struct drm_display_mode *mode)
6076 {
6077         struct drm_crtc *crtc = encoder->crtc;
6078         struct drm_connector *connector;
6079         struct drm_device *dev = encoder->dev;
6080         struct drm_i915_private *dev_priv = dev->dev_private;
6081
6082         connector = drm_select_eld(encoder, mode);
6083         if (!connector)
6084                 return;
6085
6086         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6087                          connector->base.id,
6088                          drm_get_connector_name(connector),
6089                          connector->encoder->base.id,
6090                          drm_get_encoder_name(connector->encoder));
6091
6092         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6093
6094         if (dev_priv->display.write_eld)
6095                 dev_priv->display.write_eld(connector, crtc);
6096 }
6097
6098 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6099 void intel_crtc_load_lut(struct drm_crtc *crtc)
6100 {
6101         struct drm_device *dev = crtc->dev;
6102         struct drm_i915_private *dev_priv = dev->dev_private;
6103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6104         int palreg = PALETTE(intel_crtc->pipe);
6105         int i;
6106
6107         /* The clocks have to be on to load the palette. */
6108         if (!crtc->enabled || !intel_crtc->active)
6109                 return;
6110
6111         /* use legacy palette for Ironlake */
6112         if (HAS_PCH_SPLIT(dev))
6113                 palreg = LGC_PALETTE(intel_crtc->pipe);
6114
6115         for (i = 0; i < 256; i++) {
6116                 I915_WRITE(palreg + 4 * i,
6117                            (intel_crtc->lut_r[i] << 16) |
6118                            (intel_crtc->lut_g[i] << 8) |
6119                            intel_crtc->lut_b[i]);
6120         }
6121 }
6122
6123 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6124 {
6125         struct drm_device *dev = crtc->dev;
6126         struct drm_i915_private *dev_priv = dev->dev_private;
6127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6128         bool visible = base != 0;
6129         u32 cntl;
6130
6131         if (intel_crtc->cursor_visible == visible)
6132                 return;
6133
6134         cntl = I915_READ(_CURACNTR);
6135         if (visible) {
6136                 /* On these chipsets we can only modify the base whilst
6137                  * the cursor is disabled.
6138                  */
6139                 I915_WRITE(_CURABASE, base);
6140
6141                 cntl &= ~(CURSOR_FORMAT_MASK);
6142                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6143                 cntl |= CURSOR_ENABLE |
6144                         CURSOR_GAMMA_ENABLE |
6145                         CURSOR_FORMAT_ARGB;
6146         } else
6147                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6148         I915_WRITE(_CURACNTR, cntl);
6149
6150         intel_crtc->cursor_visible = visible;
6151 }
6152
6153 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6154 {
6155         struct drm_device *dev = crtc->dev;
6156         struct drm_i915_private *dev_priv = dev->dev_private;
6157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6158         int pipe = intel_crtc->pipe;
6159         bool visible = base != 0;
6160
6161         if (intel_crtc->cursor_visible != visible) {
6162                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6163                 if (base) {
6164                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6165                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6166                         cntl |= pipe << 28; /* Connect to correct pipe */
6167                 } else {
6168                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6169                         cntl |= CURSOR_MODE_DISABLE;
6170                 }
6171                 I915_WRITE(CURCNTR(pipe), cntl);
6172
6173                 intel_crtc->cursor_visible = visible;
6174         }
6175         /* and commit changes on next vblank */
6176         I915_WRITE(CURBASE(pipe), base);
6177 }
6178
6179 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6180 {
6181         struct drm_device *dev = crtc->dev;
6182         struct drm_i915_private *dev_priv = dev->dev_private;
6183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6184         int pipe = intel_crtc->pipe;
6185         bool visible = base != 0;
6186
6187         if (intel_crtc->cursor_visible != visible) {
6188                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6189                 if (base) {
6190                         cntl &= ~CURSOR_MODE;
6191                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6192                 } else {
6193                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6194                         cntl |= CURSOR_MODE_DISABLE;
6195                 }
6196                 if (IS_HASWELL(dev))
6197                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6198                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6199
6200                 intel_crtc->cursor_visible = visible;
6201         }
6202         /* and commit changes on next vblank */
6203         I915_WRITE(CURBASE_IVB(pipe), base);
6204 }
6205
6206 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6207 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6208                                      bool on)
6209 {
6210         struct drm_device *dev = crtc->dev;
6211         struct drm_i915_private *dev_priv = dev->dev_private;
6212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6213         int pipe = intel_crtc->pipe;
6214         int x = intel_crtc->cursor_x;
6215         int y = intel_crtc->cursor_y;
6216         u32 base, pos;
6217         bool visible;
6218
6219         pos = 0;
6220
6221         if (on && crtc->enabled && crtc->fb) {
6222                 base = intel_crtc->cursor_addr;
6223                 if (x > (int) crtc->fb->width)
6224                         base = 0;
6225
6226                 if (y > (int) crtc->fb->height)
6227                         base = 0;
6228         } else
6229                 base = 0;
6230
6231         if (x < 0) {
6232                 if (x + intel_crtc->cursor_width < 0)
6233                         base = 0;
6234
6235                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6236                 x = -x;
6237         }
6238         pos |= x << CURSOR_X_SHIFT;
6239
6240         if (y < 0) {
6241                 if (y + intel_crtc->cursor_height < 0)
6242                         base = 0;
6243
6244                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6245                 y = -y;
6246         }
6247         pos |= y << CURSOR_Y_SHIFT;
6248
6249         visible = base != 0;
6250         if (!visible && !intel_crtc->cursor_visible)
6251                 return;
6252
6253         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6254                 I915_WRITE(CURPOS_IVB(pipe), pos);
6255                 ivb_update_cursor(crtc, base);
6256         } else {
6257                 I915_WRITE(CURPOS(pipe), pos);
6258                 if (IS_845G(dev) || IS_I865G(dev))
6259                         i845_update_cursor(crtc, base);
6260                 else
6261                         i9xx_update_cursor(crtc, base);
6262         }
6263 }
6264
6265 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6266                                  struct drm_file *file,
6267                                  uint32_t handle,
6268                                  uint32_t width, uint32_t height)
6269 {
6270         struct drm_device *dev = crtc->dev;
6271         struct drm_i915_private *dev_priv = dev->dev_private;
6272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6273         struct drm_i915_gem_object *obj;
6274         uint32_t addr;
6275         int ret;
6276
6277         /* if we want to turn off the cursor ignore width and height */
6278         if (!handle) {
6279                 DRM_DEBUG_KMS("cursor off\n");
6280                 addr = 0;
6281                 obj = NULL;
6282                 mutex_lock(&dev->struct_mutex);
6283                 goto finish;
6284         }
6285
6286         /* Currently we only support 64x64 cursors */
6287         if (width != 64 || height != 64) {
6288                 DRM_ERROR("we currently only support 64x64 cursors\n");
6289                 return -EINVAL;
6290         }
6291
6292         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6293         if (&obj->base == NULL)
6294                 return -ENOENT;
6295
6296         if (obj->base.size < width * height * 4) {
6297                 DRM_ERROR("buffer is to small\n");
6298                 ret = -ENOMEM;
6299                 goto fail;
6300         }
6301
6302         /* we only need to pin inside GTT if cursor is non-phy */
6303         mutex_lock(&dev->struct_mutex);
6304         if (!dev_priv->info->cursor_needs_physical) {
6305                 unsigned alignment;
6306
6307                 if (obj->tiling_mode) {
6308                         DRM_ERROR("cursor cannot be tiled\n");
6309                         ret = -EINVAL;
6310                         goto fail_locked;
6311                 }
6312
6313                 /* Note that the w/a also requires 2 PTE of padding following
6314                  * the bo. We currently fill all unused PTE with the shadow
6315                  * page and so we should always have valid PTE following the
6316                  * cursor preventing the VT-d warning.
6317                  */
6318                 alignment = 0;
6319                 if (need_vtd_wa(dev))
6320                         alignment = 64*1024;
6321
6322                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6323                 if (ret) {
6324                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6325                         goto fail_locked;
6326                 }
6327
6328                 ret = i915_gem_object_put_fence(obj);
6329                 if (ret) {
6330                         DRM_ERROR("failed to release fence for cursor");
6331                         goto fail_unpin;
6332                 }
6333
6334                 addr = obj->gtt_offset;
6335         } else {
6336                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6337                 ret = i915_gem_attach_phys_object(dev, obj,
6338                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6339                                                   align);
6340                 if (ret) {
6341                         DRM_ERROR("failed to attach phys object\n");
6342                         goto fail_locked;
6343                 }
6344                 addr = obj->phys_obj->handle->busaddr;
6345         }
6346
6347         if (IS_GEN2(dev))
6348                 I915_WRITE(CURSIZE, (height << 12) | width);
6349
6350  finish:
6351         if (intel_crtc->cursor_bo) {
6352                 if (dev_priv->info->cursor_needs_physical) {
6353                         if (intel_crtc->cursor_bo != obj)
6354                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6355                 } else
6356                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6357                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6358         }
6359
6360         mutex_unlock(&dev->struct_mutex);
6361
6362         intel_crtc->cursor_addr = addr;
6363         intel_crtc->cursor_bo = obj;
6364         intel_crtc->cursor_width = width;
6365         intel_crtc->cursor_height = height;
6366
6367         intel_crtc_update_cursor(crtc, true);
6368
6369         return 0;
6370 fail_unpin:
6371         i915_gem_object_unpin(obj);
6372 fail_locked:
6373         mutex_unlock(&dev->struct_mutex);
6374 fail:
6375         drm_gem_object_unreference_unlocked(&obj->base);
6376         return ret;
6377 }
6378
6379 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6380 {
6381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6382
6383         intel_crtc->cursor_x = x;
6384         intel_crtc->cursor_y = y;
6385
6386         intel_crtc_update_cursor(crtc, true);
6387
6388         return 0;
6389 }
6390
6391 /** Sets the color ramps on behalf of RandR */
6392 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6393                                  u16 blue, int regno)
6394 {
6395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6396
6397         intel_crtc->lut_r[regno] = red >> 8;
6398         intel_crtc->lut_g[regno] = green >> 8;
6399         intel_crtc->lut_b[regno] = blue >> 8;
6400 }
6401
6402 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6403                              u16 *blue, int regno)
6404 {
6405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6406
6407         *red = intel_crtc->lut_r[regno] << 8;
6408         *green = intel_crtc->lut_g[regno] << 8;
6409         *blue = intel_crtc->lut_b[regno] << 8;
6410 }
6411
6412 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6413                                  u16 *blue, uint32_t start, uint32_t size)
6414 {
6415         int end = (start + size > 256) ? 256 : start + size, i;
6416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6417
6418         for (i = start; i < end; i++) {
6419                 intel_crtc->lut_r[i] = red[i] >> 8;
6420                 intel_crtc->lut_g[i] = green[i] >> 8;
6421                 intel_crtc->lut_b[i] = blue[i] >> 8;
6422         }
6423
6424         intel_crtc_load_lut(crtc);
6425 }
6426
6427 /* VESA 640x480x72Hz mode to set on the pipe */
6428 static struct drm_display_mode load_detect_mode = {
6429         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6430                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6431 };
6432
6433 static struct drm_framebuffer *
6434 intel_framebuffer_create(struct drm_device *dev,
6435                          struct drm_mode_fb_cmd2 *mode_cmd,
6436                          struct drm_i915_gem_object *obj)
6437 {
6438         struct intel_framebuffer *intel_fb;
6439         int ret;
6440
6441         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6442         if (!intel_fb) {
6443                 drm_gem_object_unreference_unlocked(&obj->base);
6444                 return ERR_PTR(-ENOMEM);
6445         }
6446
6447         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6448         if (ret) {
6449                 drm_gem_object_unreference_unlocked(&obj->base);
6450                 kfree(intel_fb);
6451                 return ERR_PTR(ret);
6452         }
6453
6454         return &intel_fb->base;
6455 }
6456
6457 static u32
6458 intel_framebuffer_pitch_for_width(int width, int bpp)
6459 {
6460         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6461         return ALIGN(pitch, 64);
6462 }
6463
6464 static u32
6465 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6466 {
6467         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6468         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6469 }
6470
6471 static struct drm_framebuffer *
6472 intel_framebuffer_create_for_mode(struct drm_device *dev,
6473                                   struct drm_display_mode *mode,
6474                                   int depth, int bpp)
6475 {
6476         struct drm_i915_gem_object *obj;
6477         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6478
6479         obj = i915_gem_alloc_object(dev,
6480                                     intel_framebuffer_size_for_mode(mode, bpp));
6481         if (obj == NULL)
6482                 return ERR_PTR(-ENOMEM);
6483
6484         mode_cmd.width = mode->hdisplay;
6485         mode_cmd.height = mode->vdisplay;
6486         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6487                                                                 bpp);
6488         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6489
6490         return intel_framebuffer_create(dev, &mode_cmd, obj);
6491 }
6492
6493 static struct drm_framebuffer *
6494 mode_fits_in_fbdev(struct drm_device *dev,
6495                    struct drm_display_mode *mode)
6496 {
6497         struct drm_i915_private *dev_priv = dev->dev_private;
6498         struct drm_i915_gem_object *obj;
6499         struct drm_framebuffer *fb;
6500
6501         if (dev_priv->fbdev == NULL)
6502                 return NULL;
6503
6504         obj = dev_priv->fbdev->ifb.obj;
6505         if (obj == NULL)
6506                 return NULL;
6507
6508         fb = &dev_priv->fbdev->ifb.base;
6509         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6510                                                                fb->bits_per_pixel))
6511                 return NULL;
6512
6513         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6514                 return NULL;
6515
6516         return fb;
6517 }
6518
6519 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6520                                 struct drm_display_mode *mode,
6521                                 struct intel_load_detect_pipe *old)
6522 {
6523         struct intel_crtc *intel_crtc;
6524         struct intel_encoder *intel_encoder =
6525                 intel_attached_encoder(connector);
6526         struct drm_crtc *possible_crtc;
6527         struct drm_encoder *encoder = &intel_encoder->base;
6528         struct drm_crtc *crtc = NULL;
6529         struct drm_device *dev = encoder->dev;
6530         struct drm_framebuffer *fb;
6531         int i = -1;
6532
6533         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6534                       connector->base.id, drm_get_connector_name(connector),
6535                       encoder->base.id, drm_get_encoder_name(encoder));
6536
6537         /*
6538          * Algorithm gets a little messy:
6539          *
6540          *   - if the connector already has an assigned crtc, use it (but make
6541          *     sure it's on first)
6542          *
6543          *   - try to find the first unused crtc that can drive this connector,
6544          *     and use that if we find one
6545          */
6546
6547         /* See if we already have a CRTC for this connector */
6548         if (encoder->crtc) {
6549                 crtc = encoder->crtc;
6550
6551                 mutex_lock(&crtc->mutex);
6552
6553                 old->dpms_mode = connector->dpms;
6554                 old->load_detect_temp = false;
6555
6556                 /* Make sure the crtc and connector are running */
6557                 if (connector->dpms != DRM_MODE_DPMS_ON)
6558                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6559
6560                 return true;
6561         }
6562
6563         /* Find an unused one (if possible) */
6564         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6565                 i++;
6566                 if (!(encoder->possible_crtcs & (1 << i)))
6567                         continue;
6568                 if (!possible_crtc->enabled) {
6569                         crtc = possible_crtc;
6570                         break;
6571                 }
6572         }
6573
6574         /*
6575          * If we didn't find an unused CRTC, don't use any.
6576          */
6577         if (!crtc) {
6578                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6579                 return false;
6580         }
6581
6582         mutex_lock(&crtc->mutex);
6583         intel_encoder->new_crtc = to_intel_crtc(crtc);
6584         to_intel_connector(connector)->new_encoder = intel_encoder;
6585
6586         intel_crtc = to_intel_crtc(crtc);
6587         old->dpms_mode = connector->dpms;
6588         old->load_detect_temp = true;
6589         old->release_fb = NULL;
6590
6591         if (!mode)
6592                 mode = &load_detect_mode;
6593
6594         /* We need a framebuffer large enough to accommodate all accesses
6595          * that the plane may generate whilst we perform load detection.
6596          * We can not rely on the fbcon either being present (we get called
6597          * during its initialisation to detect all boot displays, or it may
6598          * not even exist) or that it is large enough to satisfy the
6599          * requested mode.
6600          */
6601         fb = mode_fits_in_fbdev(dev, mode);
6602         if (fb == NULL) {
6603                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6604                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6605                 old->release_fb = fb;
6606         } else
6607                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6608         if (IS_ERR(fb)) {
6609                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6610                 mutex_unlock(&crtc->mutex);
6611                 return false;
6612         }
6613
6614         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6615                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6616                 if (old->release_fb)
6617                         old->release_fb->funcs->destroy(old->release_fb);
6618                 mutex_unlock(&crtc->mutex);
6619                 return false;
6620         }
6621
6622         /* let the connector get through one full cycle before testing */
6623         intel_wait_for_vblank(dev, intel_crtc->pipe);
6624         return true;
6625 }
6626
6627 void intel_release_load_detect_pipe(struct drm_connector *connector,
6628                                     struct intel_load_detect_pipe *old)
6629 {
6630         struct intel_encoder *intel_encoder =
6631                 intel_attached_encoder(connector);
6632         struct drm_encoder *encoder = &intel_encoder->base;
6633         struct drm_crtc *crtc = encoder->crtc;
6634
6635         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6636                       connector->base.id, drm_get_connector_name(connector),
6637                       encoder->base.id, drm_get_encoder_name(encoder));
6638
6639         if (old->load_detect_temp) {
6640                 to_intel_connector(connector)->new_encoder = NULL;
6641                 intel_encoder->new_crtc = NULL;
6642                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6643
6644                 if (old->release_fb) {
6645                         drm_framebuffer_unregister_private(old->release_fb);
6646                         drm_framebuffer_unreference(old->release_fb);
6647                 }
6648
6649                 mutex_unlock(&crtc->mutex);
6650                 return;
6651         }
6652
6653         /* Switch crtc and encoder back off if necessary */
6654         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6655                 connector->funcs->dpms(connector, old->dpms_mode);
6656
6657         mutex_unlock(&crtc->mutex);
6658 }
6659
6660 /* Returns the clock of the currently programmed mode of the given pipe. */
6661 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6662 {
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6665         int pipe = intel_crtc->pipe;
6666         u32 dpll = I915_READ(DPLL(pipe));
6667         u32 fp;
6668         intel_clock_t clock;
6669
6670         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6671                 fp = I915_READ(FP0(pipe));
6672         else
6673                 fp = I915_READ(FP1(pipe));
6674
6675         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6676         if (IS_PINEVIEW(dev)) {
6677                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6678                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6679         } else {
6680                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6681                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6682         }
6683
6684         if (!IS_GEN2(dev)) {
6685                 if (IS_PINEVIEW(dev))
6686                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6687                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6688                 else
6689                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6690                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6691
6692                 switch (dpll & DPLL_MODE_MASK) {
6693                 case DPLLB_MODE_DAC_SERIAL:
6694                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6695                                 5 : 10;
6696                         break;
6697                 case DPLLB_MODE_LVDS:
6698                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6699                                 7 : 14;
6700                         break;
6701                 default:
6702                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6703                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6704                         return 0;
6705                 }
6706
6707                 /* XXX: Handle the 100Mhz refclk */
6708                 intel_clock(dev, 96000, &clock);
6709         } else {
6710                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6711
6712                 if (is_lvds) {
6713                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6714                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6715                         clock.p2 = 14;
6716
6717                         if ((dpll & PLL_REF_INPUT_MASK) ==
6718                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6719                                 /* XXX: might not be 66MHz */
6720                                 intel_clock(dev, 66000, &clock);
6721                         } else
6722                                 intel_clock(dev, 48000, &clock);
6723                 } else {
6724                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6725                                 clock.p1 = 2;
6726                         else {
6727                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6728                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6729                         }
6730                         if (dpll & PLL_P2_DIVIDE_BY_4)
6731                                 clock.p2 = 4;
6732                         else
6733                                 clock.p2 = 2;
6734
6735                         intel_clock(dev, 48000, &clock);
6736                 }
6737         }
6738
6739         /* XXX: It would be nice to validate the clocks, but we can't reuse
6740          * i830PllIsValid() because it relies on the xf86_config connector
6741          * configuration being accurate, which it isn't necessarily.
6742          */
6743
6744         return clock.dot;
6745 }
6746
6747 /** Returns the currently programmed mode of the given pipe. */
6748 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6749                                              struct drm_crtc *crtc)
6750 {
6751         struct drm_i915_private *dev_priv = dev->dev_private;
6752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6753         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6754         struct drm_display_mode *mode;
6755         int htot = I915_READ(HTOTAL(cpu_transcoder));
6756         int hsync = I915_READ(HSYNC(cpu_transcoder));
6757         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6758         int vsync = I915_READ(VSYNC(cpu_transcoder));
6759
6760         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6761         if (!mode)
6762                 return NULL;
6763
6764         mode->clock = intel_crtc_clock_get(dev, crtc);
6765         mode->hdisplay = (htot & 0xffff) + 1;
6766         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6767         mode->hsync_start = (hsync & 0xffff) + 1;
6768         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6769         mode->vdisplay = (vtot & 0xffff) + 1;
6770         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6771         mode->vsync_start = (vsync & 0xffff) + 1;
6772         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6773
6774         drm_mode_set_name(mode);
6775
6776         return mode;
6777 }
6778
6779 static void intel_increase_pllclock(struct drm_crtc *crtc)
6780 {
6781         struct drm_device *dev = crtc->dev;
6782         drm_i915_private_t *dev_priv = dev->dev_private;
6783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6784         int pipe = intel_crtc->pipe;
6785         int dpll_reg = DPLL(pipe);
6786         int dpll;
6787
6788         if (HAS_PCH_SPLIT(dev))
6789                 return;
6790
6791         if (!dev_priv->lvds_downclock_avail)
6792                 return;
6793
6794         dpll = I915_READ(dpll_reg);
6795         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6796                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6797
6798                 assert_panel_unlocked(dev_priv, pipe);
6799
6800                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6801                 I915_WRITE(dpll_reg, dpll);
6802                 intel_wait_for_vblank(dev, pipe);
6803
6804                 dpll = I915_READ(dpll_reg);
6805                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6806                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6807         }
6808 }
6809
6810 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6811 {
6812         struct drm_device *dev = crtc->dev;
6813         drm_i915_private_t *dev_priv = dev->dev_private;
6814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6815
6816         if (HAS_PCH_SPLIT(dev))
6817                 return;
6818
6819         if (!dev_priv->lvds_downclock_avail)
6820                 return;
6821
6822         /*
6823          * Since this is called by a timer, we should never get here in
6824          * the manual case.
6825          */
6826         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6827                 int pipe = intel_crtc->pipe;
6828                 int dpll_reg = DPLL(pipe);
6829                 int dpll;
6830
6831                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6832
6833                 assert_panel_unlocked(dev_priv, pipe);
6834
6835                 dpll = I915_READ(dpll_reg);
6836                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6837                 I915_WRITE(dpll_reg, dpll);
6838                 intel_wait_for_vblank(dev, pipe);
6839                 dpll = I915_READ(dpll_reg);
6840                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6841                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6842         }
6843
6844 }
6845
6846 void intel_mark_busy(struct drm_device *dev)
6847 {
6848         i915_update_gfx_val(dev->dev_private);
6849 }
6850
6851 void intel_mark_idle(struct drm_device *dev)
6852 {
6853         struct drm_crtc *crtc;
6854
6855         if (!i915_powersave)
6856                 return;
6857
6858         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6859                 if (!crtc->fb)
6860                         continue;
6861
6862                 intel_decrease_pllclock(crtc);
6863         }
6864 }
6865
6866 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6867 {
6868         struct drm_device *dev = obj->base.dev;
6869         struct drm_crtc *crtc;
6870
6871         if (!i915_powersave)
6872                 return;
6873
6874         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6875                 if (!crtc->fb)
6876                         continue;
6877
6878                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6879                         intel_increase_pllclock(crtc);
6880         }
6881 }
6882
6883 static void intel_crtc_destroy(struct drm_crtc *crtc)
6884 {
6885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6886         struct drm_device *dev = crtc->dev;
6887         struct intel_unpin_work *work;
6888         unsigned long flags;
6889
6890         spin_lock_irqsave(&dev->event_lock, flags);
6891         work = intel_crtc->unpin_work;
6892         intel_crtc->unpin_work = NULL;
6893         spin_unlock_irqrestore(&dev->event_lock, flags);
6894
6895         if (work) {
6896                 cancel_work_sync(&work->work);
6897                 kfree(work);
6898         }
6899
6900         drm_crtc_cleanup(crtc);
6901
6902         kfree(intel_crtc);
6903 }
6904
6905 static void intel_unpin_work_fn(struct work_struct *__work)
6906 {
6907         struct intel_unpin_work *work =
6908                 container_of(__work, struct intel_unpin_work, work);
6909         struct drm_device *dev = work->crtc->dev;
6910
6911         mutex_lock(&dev->struct_mutex);
6912         intel_unpin_fb_obj(work->old_fb_obj);
6913         drm_gem_object_unreference(&work->pending_flip_obj->base);
6914         drm_gem_object_unreference(&work->old_fb_obj->base);
6915
6916         intel_update_fbc(dev);
6917         mutex_unlock(&dev->struct_mutex);
6918
6919         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6920         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6921
6922         kfree(work);
6923 }
6924
6925 static void do_intel_finish_page_flip(struct drm_device *dev,
6926                                       struct drm_crtc *crtc)
6927 {
6928         drm_i915_private_t *dev_priv = dev->dev_private;
6929         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6930         struct intel_unpin_work *work;
6931         unsigned long flags;
6932
6933         /* Ignore early vblank irqs */
6934         if (intel_crtc == NULL)
6935                 return;
6936
6937         spin_lock_irqsave(&dev->event_lock, flags);
6938         work = intel_crtc->unpin_work;
6939
6940         /* Ensure we don't miss a work->pending update ... */
6941         smp_rmb();
6942
6943         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6944                 spin_unlock_irqrestore(&dev->event_lock, flags);
6945                 return;
6946         }
6947
6948         /* and that the unpin work is consistent wrt ->pending. */
6949         smp_rmb();
6950
6951         intel_crtc->unpin_work = NULL;
6952
6953         if (work->event)
6954                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6955
6956         drm_vblank_put(dev, intel_crtc->pipe);
6957
6958         spin_unlock_irqrestore(&dev->event_lock, flags);
6959
6960         wake_up_all(&dev_priv->pending_flip_queue);
6961
6962         queue_work(dev_priv->wq, &work->work);
6963
6964         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6965 }
6966
6967 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6968 {
6969         drm_i915_private_t *dev_priv = dev->dev_private;
6970         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6971
6972         do_intel_finish_page_flip(dev, crtc);
6973 }
6974
6975 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6976 {
6977         drm_i915_private_t *dev_priv = dev->dev_private;
6978         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6979
6980         do_intel_finish_page_flip(dev, crtc);
6981 }
6982
6983 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6984 {
6985         drm_i915_private_t *dev_priv = dev->dev_private;
6986         struct intel_crtc *intel_crtc =
6987                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6988         unsigned long flags;
6989
6990         /* NB: An MMIO update of the plane base pointer will also
6991          * generate a page-flip completion irq, i.e. every modeset
6992          * is also accompanied by a spurious intel_prepare_page_flip().
6993          */
6994         spin_lock_irqsave(&dev->event_lock, flags);
6995         if (intel_crtc->unpin_work)
6996                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6997         spin_unlock_irqrestore(&dev->event_lock, flags);
6998 }
6999
7000 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7001 {
7002         /* Ensure that the work item is consistent when activating it ... */
7003         smp_wmb();
7004         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7005         /* and that it is marked active as soon as the irq could fire. */
7006         smp_wmb();
7007 }
7008
7009 static int intel_gen2_queue_flip(struct drm_device *dev,
7010                                  struct drm_crtc *crtc,
7011                                  struct drm_framebuffer *fb,
7012                                  struct drm_i915_gem_object *obj)
7013 {
7014         struct drm_i915_private *dev_priv = dev->dev_private;
7015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7016         u32 flip_mask;
7017         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7018         int ret;
7019
7020         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7021         if (ret)
7022                 goto err;
7023
7024         ret = intel_ring_begin(ring, 6);
7025         if (ret)
7026                 goto err_unpin;
7027
7028         /* Can't queue multiple flips, so wait for the previous
7029          * one to finish before executing the next.
7030          */
7031         if (intel_crtc->plane)
7032                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7033         else
7034                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7035         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7036         intel_ring_emit(ring, MI_NOOP);
7037         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7038                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7039         intel_ring_emit(ring, fb->pitches[0]);
7040         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7041         intel_ring_emit(ring, 0); /* aux display base address, unused */
7042
7043         intel_mark_page_flip_active(intel_crtc);
7044         intel_ring_advance(ring);
7045         return 0;
7046
7047 err_unpin:
7048         intel_unpin_fb_obj(obj);
7049 err:
7050         return ret;
7051 }
7052
7053 static int intel_gen3_queue_flip(struct drm_device *dev,
7054                                  struct drm_crtc *crtc,
7055                                  struct drm_framebuffer *fb,
7056                                  struct drm_i915_gem_object *obj)
7057 {
7058         struct drm_i915_private *dev_priv = dev->dev_private;
7059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7060         u32 flip_mask;
7061         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7062         int ret;
7063
7064         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7065         if (ret)
7066                 goto err;
7067
7068         ret = intel_ring_begin(ring, 6);
7069         if (ret)
7070                 goto err_unpin;
7071
7072         if (intel_crtc->plane)
7073                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7074         else
7075                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7076         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7077         intel_ring_emit(ring, MI_NOOP);
7078         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7079                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7080         intel_ring_emit(ring, fb->pitches[0]);
7081         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7082         intel_ring_emit(ring, MI_NOOP);
7083
7084         intel_mark_page_flip_active(intel_crtc);
7085         intel_ring_advance(ring);
7086         return 0;
7087
7088 err_unpin:
7089         intel_unpin_fb_obj(obj);
7090 err:
7091         return ret;
7092 }
7093
7094 static int intel_gen4_queue_flip(struct drm_device *dev,
7095                                  struct drm_crtc *crtc,
7096                                  struct drm_framebuffer *fb,
7097                                  struct drm_i915_gem_object *obj)
7098 {
7099         struct drm_i915_private *dev_priv = dev->dev_private;
7100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7101         uint32_t pf, pipesrc;
7102         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7103         int ret;
7104
7105         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7106         if (ret)
7107                 goto err;
7108
7109         ret = intel_ring_begin(ring, 4);
7110         if (ret)
7111                 goto err_unpin;
7112
7113         /* i965+ uses the linear or tiled offsets from the
7114          * Display Registers (which do not change across a page-flip)
7115          * so we need only reprogram the base address.
7116          */
7117         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7118                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7119         intel_ring_emit(ring, fb->pitches[0]);
7120         intel_ring_emit(ring,
7121                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7122                         obj->tiling_mode);
7123
7124         /* XXX Enabling the panel-fitter across page-flip is so far
7125          * untested on non-native modes, so ignore it for now.
7126          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7127          */
7128         pf = 0;
7129         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7130         intel_ring_emit(ring, pf | pipesrc);
7131
7132         intel_mark_page_flip_active(intel_crtc);
7133         intel_ring_advance(ring);
7134         return 0;
7135
7136 err_unpin:
7137         intel_unpin_fb_obj(obj);
7138 err:
7139         return ret;
7140 }
7141
7142 static int intel_gen6_queue_flip(struct drm_device *dev,
7143                                  struct drm_crtc *crtc,
7144                                  struct drm_framebuffer *fb,
7145                                  struct drm_i915_gem_object *obj)
7146 {
7147         struct drm_i915_private *dev_priv = dev->dev_private;
7148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7149         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7150         uint32_t pf, pipesrc;
7151         int ret;
7152
7153         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7154         if (ret)
7155                 goto err;
7156
7157         ret = intel_ring_begin(ring, 4);
7158         if (ret)
7159                 goto err_unpin;
7160
7161         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7162                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7163         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7164         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7165
7166         /* Contrary to the suggestions in the documentation,
7167          * "Enable Panel Fitter" does not seem to be required when page
7168          * flipping with a non-native mode, and worse causes a normal
7169          * modeset to fail.
7170          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7171          */
7172         pf = 0;
7173         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7174         intel_ring_emit(ring, pf | pipesrc);
7175
7176         intel_mark_page_flip_active(intel_crtc);
7177         intel_ring_advance(ring);
7178         return 0;
7179
7180 err_unpin:
7181         intel_unpin_fb_obj(obj);
7182 err:
7183         return ret;
7184 }
7185
7186 /*
7187  * On gen7 we currently use the blit ring because (in early silicon at least)
7188  * the render ring doesn't give us interrpts for page flip completion, which
7189  * means clients will hang after the first flip is queued.  Fortunately the
7190  * blit ring generates interrupts properly, so use it instead.
7191  */
7192 static int intel_gen7_queue_flip(struct drm_device *dev,
7193                                  struct drm_crtc *crtc,
7194                                  struct drm_framebuffer *fb,
7195                                  struct drm_i915_gem_object *obj)
7196 {
7197         struct drm_i915_private *dev_priv = dev->dev_private;
7198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7199         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7200         uint32_t plane_bit = 0;
7201         int ret;
7202
7203         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7204         if (ret)
7205                 goto err;
7206
7207         switch(intel_crtc->plane) {
7208         case PLANE_A:
7209                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7210                 break;
7211         case PLANE_B:
7212                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7213                 break;
7214         case PLANE_C:
7215                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7216                 break;
7217         default:
7218                 WARN_ONCE(1, "unknown plane in flip command\n");
7219                 ret = -ENODEV;
7220                 goto err_unpin;
7221         }
7222
7223         ret = intel_ring_begin(ring, 4);
7224         if (ret)
7225                 goto err_unpin;
7226
7227         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7228         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7229         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7230         intel_ring_emit(ring, (MI_NOOP));
7231
7232         intel_mark_page_flip_active(intel_crtc);
7233         intel_ring_advance(ring);
7234         return 0;
7235
7236 err_unpin:
7237         intel_unpin_fb_obj(obj);
7238 err:
7239         return ret;
7240 }
7241
7242 static int intel_default_queue_flip(struct drm_device *dev,
7243                                     struct drm_crtc *crtc,
7244                                     struct drm_framebuffer *fb,
7245                                     struct drm_i915_gem_object *obj)
7246 {
7247         return -ENODEV;
7248 }
7249
7250 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7251                                 struct drm_framebuffer *fb,
7252                                 struct drm_pending_vblank_event *event)
7253 {
7254         struct drm_device *dev = crtc->dev;
7255         struct drm_i915_private *dev_priv = dev->dev_private;
7256         struct drm_framebuffer *old_fb = crtc->fb;
7257         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7259         struct intel_unpin_work *work;
7260         unsigned long flags;
7261         int ret;
7262
7263         /* Can't change pixel format via MI display flips. */
7264         if (fb->pixel_format != crtc->fb->pixel_format)
7265                 return -EINVAL;
7266
7267         /*
7268          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7269          * Note that pitch changes could also affect these register.
7270          */
7271         if (INTEL_INFO(dev)->gen > 3 &&
7272             (fb->offsets[0] != crtc->fb->offsets[0] ||
7273              fb->pitches[0] != crtc->fb->pitches[0]))
7274                 return -EINVAL;
7275
7276         work = kzalloc(sizeof *work, GFP_KERNEL);
7277         if (work == NULL)
7278                 return -ENOMEM;
7279
7280         work->event = event;
7281         work->crtc = crtc;
7282         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7283         INIT_WORK(&work->work, intel_unpin_work_fn);
7284
7285         ret = drm_vblank_get(dev, intel_crtc->pipe);
7286         if (ret)
7287                 goto free_work;
7288
7289         /* We borrow the event spin lock for protecting unpin_work */
7290         spin_lock_irqsave(&dev->event_lock, flags);
7291         if (intel_crtc->unpin_work) {
7292                 spin_unlock_irqrestore(&dev->event_lock, flags);
7293                 kfree(work);
7294                 drm_vblank_put(dev, intel_crtc->pipe);
7295
7296                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7297                 return -EBUSY;
7298         }
7299         intel_crtc->unpin_work = work;
7300         spin_unlock_irqrestore(&dev->event_lock, flags);
7301
7302         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7303                 flush_workqueue(dev_priv->wq);
7304
7305         ret = i915_mutex_lock_interruptible(dev);
7306         if (ret)
7307                 goto cleanup;
7308
7309         /* Reference the objects for the scheduled work. */
7310         drm_gem_object_reference(&work->old_fb_obj->base);
7311         drm_gem_object_reference(&obj->base);
7312
7313         crtc->fb = fb;
7314
7315         work->pending_flip_obj = obj;
7316
7317         work->enable_stall_check = true;
7318
7319         atomic_inc(&intel_crtc->unpin_work_count);
7320         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7321
7322         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7323         if (ret)
7324                 goto cleanup_pending;
7325
7326         intel_disable_fbc(dev);
7327         intel_mark_fb_busy(obj);
7328         mutex_unlock(&dev->struct_mutex);
7329
7330         trace_i915_flip_request(intel_crtc->plane, obj);
7331
7332         return 0;
7333
7334 cleanup_pending:
7335         atomic_dec(&intel_crtc->unpin_work_count);
7336         crtc->fb = old_fb;
7337         drm_gem_object_unreference(&work->old_fb_obj->base);
7338         drm_gem_object_unreference(&obj->base);
7339         mutex_unlock(&dev->struct_mutex);
7340
7341 cleanup:
7342         spin_lock_irqsave(&dev->event_lock, flags);
7343         intel_crtc->unpin_work = NULL;
7344         spin_unlock_irqrestore(&dev->event_lock, flags);
7345
7346         drm_vblank_put(dev, intel_crtc->pipe);
7347 free_work:
7348         kfree(work);
7349
7350         return ret;
7351 }
7352
7353 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7354         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7355         .load_lut = intel_crtc_load_lut,
7356 };
7357
7358 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7359 {
7360         struct intel_encoder *other_encoder;
7361         struct drm_crtc *crtc = &encoder->new_crtc->base;
7362
7363         if (WARN_ON(!crtc))
7364                 return false;
7365
7366         list_for_each_entry(other_encoder,
7367                             &crtc->dev->mode_config.encoder_list,
7368                             base.head) {
7369
7370                 if (&other_encoder->new_crtc->base != crtc ||
7371                     encoder == other_encoder)
7372                         continue;
7373                 else
7374                         return true;
7375         }
7376
7377         return false;
7378 }
7379
7380 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7381                                   struct drm_crtc *crtc)
7382 {
7383         struct drm_device *dev;
7384         struct drm_crtc *tmp;
7385         int crtc_mask = 1;
7386
7387         WARN(!crtc, "checking null crtc?\n");
7388
7389         dev = crtc->dev;
7390
7391         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7392                 if (tmp == crtc)
7393                         break;
7394                 crtc_mask <<= 1;
7395         }
7396
7397         if (encoder->possible_crtcs & crtc_mask)
7398                 return true;
7399         return false;
7400 }
7401
7402 /**
7403  * intel_modeset_update_staged_output_state
7404  *
7405  * Updates the staged output configuration state, e.g. after we've read out the
7406  * current hw state.
7407  */
7408 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7409 {
7410         struct intel_encoder *encoder;
7411         struct intel_connector *connector;
7412
7413         list_for_each_entry(connector, &dev->mode_config.connector_list,
7414                             base.head) {
7415                 connector->new_encoder =
7416                         to_intel_encoder(connector->base.encoder);
7417         }
7418
7419         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7420                             base.head) {
7421                 encoder->new_crtc =
7422                         to_intel_crtc(encoder->base.crtc);
7423         }
7424 }
7425
7426 /**
7427  * intel_modeset_commit_output_state
7428  *
7429  * This function copies the stage display pipe configuration to the real one.
7430  */
7431 static void intel_modeset_commit_output_state(struct drm_device *dev)
7432 {
7433         struct intel_encoder *encoder;
7434         struct intel_connector *connector;
7435
7436         list_for_each_entry(connector, &dev->mode_config.connector_list,
7437                             base.head) {
7438                 connector->base.encoder = &connector->new_encoder->base;
7439         }
7440
7441         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7442                             base.head) {
7443                 encoder->base.crtc = &encoder->new_crtc->base;
7444         }
7445 }
7446
7447 static int
7448 pipe_config_set_bpp(struct drm_crtc *crtc,
7449                     struct drm_framebuffer *fb,
7450                     struct intel_crtc_config *pipe_config)
7451 {
7452         struct drm_device *dev = crtc->dev;
7453         struct drm_connector *connector;
7454         int bpp;
7455
7456         switch (fb->pixel_format) {
7457         case DRM_FORMAT_C8:
7458                 bpp = 8*3; /* since we go through a colormap */
7459                 break;
7460         case DRM_FORMAT_XRGB1555:
7461         case DRM_FORMAT_ARGB1555:
7462                 /* checked in intel_framebuffer_init already */
7463                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7464                         return -EINVAL;
7465         case DRM_FORMAT_RGB565:
7466                 bpp = 6*3; /* min is 18bpp */
7467                 break;
7468         case DRM_FORMAT_XBGR8888:
7469         case DRM_FORMAT_ABGR8888:
7470                 /* checked in intel_framebuffer_init already */
7471                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7472                         return -EINVAL;
7473         case DRM_FORMAT_XRGB8888:
7474         case DRM_FORMAT_ARGB8888:
7475                 bpp = 8*3;
7476                 break;
7477         case DRM_FORMAT_XRGB2101010:
7478         case DRM_FORMAT_ARGB2101010:
7479         case DRM_FORMAT_XBGR2101010:
7480         case DRM_FORMAT_ABGR2101010:
7481                 /* checked in intel_framebuffer_init already */
7482                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7483                         return -EINVAL;
7484                 bpp = 10*3;
7485                 break;
7486         /* TODO: gen4+ supports 16 bpc floating point, too. */
7487         default:
7488                 DRM_DEBUG_KMS("unsupported depth\n");
7489                 return -EINVAL;
7490         }
7491
7492         pipe_config->pipe_bpp = bpp;
7493
7494         /* Clamp display bpp to EDID value */
7495         list_for_each_entry(connector, &dev->mode_config.connector_list,
7496                             head) {
7497                 if (connector->encoder && connector->encoder->crtc != crtc)
7498                         continue;
7499
7500                 /* Don't use an invalid EDID bpc value */
7501                 if (connector->display_info.bpc &&
7502                     connector->display_info.bpc * 3 < bpp) {
7503                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7504                                       bpp, connector->display_info.bpc*3);
7505                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7506                 }
7507         }
7508
7509         return bpp;
7510 }
7511
7512 static struct intel_crtc_config *
7513 intel_modeset_pipe_config(struct drm_crtc *crtc,
7514                           struct drm_framebuffer *fb,
7515                           struct drm_display_mode *mode)
7516 {
7517         struct drm_device *dev = crtc->dev;
7518         struct drm_encoder_helper_funcs *encoder_funcs;
7519         struct intel_encoder *encoder;
7520         struct intel_crtc_config *pipe_config;
7521         int plane_bpp;
7522
7523         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7524         if (!pipe_config)
7525                 return ERR_PTR(-ENOMEM);
7526
7527         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7528         drm_mode_copy(&pipe_config->requested_mode, mode);
7529
7530         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7531         if (plane_bpp < 0)
7532                 goto fail;
7533
7534         /* Pass our mode to the connectors and the CRTC to give them a chance to
7535          * adjust it according to limitations or connector properties, and also
7536          * a chance to reject the mode entirely.
7537          */
7538         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7539                             base.head) {
7540
7541                 if (&encoder->new_crtc->base != crtc)
7542                         continue;
7543
7544                 if (encoder->compute_config) {
7545                         if (!(encoder->compute_config(encoder, pipe_config))) {
7546                                 DRM_DEBUG_KMS("Encoder config failure\n");
7547                                 goto fail;
7548                         }
7549
7550                         continue;
7551                 }
7552
7553                 encoder_funcs = encoder->base.helper_private;
7554                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7555                                                 &pipe_config->requested_mode,
7556                                                 &pipe_config->adjusted_mode))) {
7557                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7558                         goto fail;
7559                 }
7560         }
7561
7562         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7563                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7564                 goto fail;
7565         }
7566         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7567
7568         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7569         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7570                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7571
7572         return pipe_config;
7573 fail:
7574         kfree(pipe_config);
7575         return ERR_PTR(-EINVAL);
7576 }
7577
7578 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7579  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7580 static void
7581 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7582                              unsigned *prepare_pipes, unsigned *disable_pipes)
7583 {
7584         struct intel_crtc *intel_crtc;
7585         struct drm_device *dev = crtc->dev;
7586         struct intel_encoder *encoder;
7587         struct intel_connector *connector;
7588         struct drm_crtc *tmp_crtc;
7589
7590         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7591
7592         /* Check which crtcs have changed outputs connected to them, these need
7593          * to be part of the prepare_pipes mask. We don't (yet) support global
7594          * modeset across multiple crtcs, so modeset_pipes will only have one
7595          * bit set at most. */
7596         list_for_each_entry(connector, &dev->mode_config.connector_list,
7597                             base.head) {
7598                 if (connector->base.encoder == &connector->new_encoder->base)
7599                         continue;
7600
7601                 if (connector->base.encoder) {
7602                         tmp_crtc = connector->base.encoder->crtc;
7603
7604                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7605                 }
7606
7607                 if (connector->new_encoder)
7608                         *prepare_pipes |=
7609                                 1 << connector->new_encoder->new_crtc->pipe;
7610         }
7611
7612         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7613                             base.head) {
7614                 if (encoder->base.crtc == &encoder->new_crtc->base)
7615                         continue;
7616
7617                 if (encoder->base.crtc) {
7618                         tmp_crtc = encoder->base.crtc;
7619
7620                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7621                 }
7622
7623                 if (encoder->new_crtc)
7624                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7625         }
7626
7627         /* Check for any pipes that will be fully disabled ... */
7628         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7629                             base.head) {
7630                 bool used = false;
7631
7632                 /* Don't try to disable disabled crtcs. */
7633                 if (!intel_crtc->base.enabled)
7634                         continue;
7635
7636                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7637                                     base.head) {
7638                         if (encoder->new_crtc == intel_crtc)
7639                                 used = true;
7640                 }
7641
7642                 if (!used)
7643                         *disable_pipes |= 1 << intel_crtc->pipe;
7644         }
7645
7646
7647         /* set_mode is also used to update properties on life display pipes. */
7648         intel_crtc = to_intel_crtc(crtc);
7649         if (crtc->enabled)
7650                 *prepare_pipes |= 1 << intel_crtc->pipe;
7651
7652         /* We only support modeset on one single crtc, hence we need to do that
7653          * only for the passed in crtc iff we change anything else than just
7654          * disable crtcs.
7655          *
7656          * This is actually not true, to be fully compatible with the old crtc
7657          * helper we automatically disable _any_ output (i.e. doesn't need to be
7658          * connected to the crtc we're modesetting on) if it's disconnected.
7659          * Which is a rather nutty api (since changed the output configuration
7660          * without userspace's explicit request can lead to confusion), but
7661          * alas. Hence we currently need to modeset on all pipes we prepare. */
7662         if (*prepare_pipes)
7663                 *modeset_pipes = *prepare_pipes;
7664
7665         /* ... and mask these out. */
7666         *modeset_pipes &= ~(*disable_pipes);
7667         *prepare_pipes &= ~(*disable_pipes);
7668 }
7669
7670 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7671 {
7672         struct drm_encoder *encoder;
7673         struct drm_device *dev = crtc->dev;
7674
7675         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7676                 if (encoder->crtc == crtc)
7677                         return true;
7678
7679         return false;
7680 }
7681
7682 static void
7683 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7684 {
7685         struct intel_encoder *intel_encoder;
7686         struct intel_crtc *intel_crtc;
7687         struct drm_connector *connector;
7688
7689         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7690                             base.head) {
7691                 if (!intel_encoder->base.crtc)
7692                         continue;
7693
7694                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7695
7696                 if (prepare_pipes & (1 << intel_crtc->pipe))
7697                         intel_encoder->connectors_active = false;
7698         }
7699
7700         intel_modeset_commit_output_state(dev);
7701
7702         /* Update computed state. */
7703         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7704                             base.head) {
7705                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7706         }
7707
7708         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7709                 if (!connector->encoder || !connector->encoder->crtc)
7710                         continue;
7711
7712                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7713
7714                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7715                         struct drm_property *dpms_property =
7716                                 dev->mode_config.dpms_property;
7717
7718                         connector->dpms = DRM_MODE_DPMS_ON;
7719                         drm_object_property_set_value(&connector->base,
7720                                                          dpms_property,
7721                                                          DRM_MODE_DPMS_ON);
7722
7723                         intel_encoder = to_intel_encoder(connector->encoder);
7724                         intel_encoder->connectors_active = true;
7725                 }
7726         }
7727
7728 }
7729
7730 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7731         list_for_each_entry((intel_crtc), \
7732                             &(dev)->mode_config.crtc_list, \
7733                             base.head) \
7734                 if (mask & (1 <<(intel_crtc)->pipe)) \
7735
7736 void
7737 intel_modeset_check_state(struct drm_device *dev)
7738 {
7739         struct intel_crtc *crtc;
7740         struct intel_encoder *encoder;
7741         struct intel_connector *connector;
7742
7743         list_for_each_entry(connector, &dev->mode_config.connector_list,
7744                             base.head) {
7745                 /* This also checks the encoder/connector hw state with the
7746                  * ->get_hw_state callbacks. */
7747                 intel_connector_check_state(connector);
7748
7749                 WARN(&connector->new_encoder->base != connector->base.encoder,
7750                      "connector's staged encoder doesn't match current encoder\n");
7751         }
7752
7753         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7754                             base.head) {
7755                 bool enabled = false;
7756                 bool active = false;
7757                 enum pipe pipe, tracked_pipe;
7758
7759                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7760                               encoder->base.base.id,
7761                               drm_get_encoder_name(&encoder->base));
7762
7763                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7764                      "encoder's stage crtc doesn't match current crtc\n");
7765                 WARN(encoder->connectors_active && !encoder->base.crtc,
7766                      "encoder's active_connectors set, but no crtc\n");
7767
7768                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7769                                     base.head) {
7770                         if (connector->base.encoder != &encoder->base)
7771                                 continue;
7772                         enabled = true;
7773                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7774                                 active = true;
7775                 }
7776                 WARN(!!encoder->base.crtc != enabled,
7777                      "encoder's enabled state mismatch "
7778                      "(expected %i, found %i)\n",
7779                      !!encoder->base.crtc, enabled);
7780                 WARN(active && !encoder->base.crtc,
7781                      "active encoder with no crtc\n");
7782
7783                 WARN(encoder->connectors_active != active,
7784                      "encoder's computed active state doesn't match tracked active state "
7785                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7786
7787                 active = encoder->get_hw_state(encoder, &pipe);
7788                 WARN(active != encoder->connectors_active,
7789                      "encoder's hw state doesn't match sw tracking "
7790                      "(expected %i, found %i)\n",
7791                      encoder->connectors_active, active);
7792
7793                 if (!encoder->base.crtc)
7794                         continue;
7795
7796                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7797                 WARN(active && pipe != tracked_pipe,
7798                      "active encoder's pipe doesn't match"
7799                      "(expected %i, found %i)\n",
7800                      tracked_pipe, pipe);
7801
7802         }
7803
7804         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7805                             base.head) {
7806                 bool enabled = false;
7807                 bool active = false;
7808
7809                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7810                               crtc->base.base.id);
7811
7812                 WARN(crtc->active && !crtc->base.enabled,
7813                      "active crtc, but not enabled in sw tracking\n");
7814
7815                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7816                                     base.head) {
7817                         if (encoder->base.crtc != &crtc->base)
7818                                 continue;
7819                         enabled = true;
7820                         if (encoder->connectors_active)
7821                                 active = true;
7822                 }
7823                 WARN(active != crtc->active,
7824                      "crtc's computed active state doesn't match tracked active state "
7825                      "(expected %i, found %i)\n", active, crtc->active);
7826                 WARN(enabled != crtc->base.enabled,
7827                      "crtc's computed enabled state doesn't match tracked enabled state "
7828                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7829
7830                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7831         }
7832 }
7833
7834 int intel_set_mode(struct drm_crtc *crtc,
7835                    struct drm_display_mode *mode,
7836                    int x, int y, struct drm_framebuffer *fb)
7837 {
7838         struct drm_device *dev = crtc->dev;
7839         drm_i915_private_t *dev_priv = dev->dev_private;
7840         struct drm_display_mode *saved_mode, *saved_hwmode;
7841         struct intel_crtc_config *pipe_config = NULL;
7842         struct intel_crtc *intel_crtc;
7843         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7844         int ret = 0;
7845
7846         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7847         if (!saved_mode)
7848                 return -ENOMEM;
7849         saved_hwmode = saved_mode + 1;
7850
7851         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7852                                      &prepare_pipes, &disable_pipes);
7853
7854         *saved_hwmode = crtc->hwmode;
7855         *saved_mode = crtc->mode;
7856
7857         /* Hack: Because we don't (yet) support global modeset on multiple
7858          * crtcs, we don't keep track of the new mode for more than one crtc.
7859          * Hence simply check whether any bit is set in modeset_pipes in all the
7860          * pieces of code that are not yet converted to deal with mutliple crtcs
7861          * changing their mode at the same time. */
7862         if (modeset_pipes) {
7863                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7864                 if (IS_ERR(pipe_config)) {
7865                         ret = PTR_ERR(pipe_config);
7866                         pipe_config = NULL;
7867
7868                         goto out;
7869                 }
7870         }
7871
7872         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7873                       modeset_pipes, prepare_pipes, disable_pipes);
7874
7875         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7876                 intel_crtc_disable(&intel_crtc->base);
7877
7878         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7879                 if (intel_crtc->base.enabled)
7880                         dev_priv->display.crtc_disable(&intel_crtc->base);
7881         }
7882
7883         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7884          * to set it here already despite that we pass it down the callchain.
7885          */
7886         if (modeset_pipes) {
7887                 crtc->mode = *mode;
7888                 /* mode_set/enable/disable functions rely on a correct pipe
7889                  * config. */
7890                 to_intel_crtc(crtc)->config = *pipe_config;
7891         }
7892
7893         /* Only after disabling all output pipelines that will be changed can we
7894          * update the the output configuration. */
7895         intel_modeset_update_state(dev, prepare_pipes);
7896
7897         if (dev_priv->display.modeset_global_resources)
7898                 dev_priv->display.modeset_global_resources(dev);
7899
7900         /* Set up the DPLL and any encoders state that needs to adjust or depend
7901          * on the DPLL.
7902          */
7903         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7904                 ret = intel_crtc_mode_set(&intel_crtc->base,
7905                                           x, y, fb);
7906                 if (ret)
7907                         goto done;
7908         }
7909
7910         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7911         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7912                 dev_priv->display.crtc_enable(&intel_crtc->base);
7913
7914         if (modeset_pipes) {
7915                 /* Store real post-adjustment hardware mode. */
7916                 crtc->hwmode = pipe_config->adjusted_mode;
7917
7918                 /* Calculate and store various constants which
7919                  * are later needed by vblank and swap-completion
7920                  * timestamping. They are derived from true hwmode.
7921                  */
7922                 drm_calc_timestamping_constants(crtc);
7923         }
7924
7925         /* FIXME: add subpixel order */
7926 done:
7927         if (ret && crtc->enabled) {
7928                 crtc->hwmode = *saved_hwmode;
7929                 crtc->mode = *saved_mode;
7930         } else {
7931                 intel_modeset_check_state(dev);
7932         }
7933
7934 out:
7935         kfree(pipe_config);
7936         kfree(saved_mode);
7937         return ret;
7938 }
7939
7940 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7941 {
7942         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7943 }
7944
7945 #undef for_each_intel_crtc_masked
7946
7947 static void intel_set_config_free(struct intel_set_config *config)
7948 {
7949         if (!config)
7950                 return;
7951
7952         kfree(config->save_connector_encoders);
7953         kfree(config->save_encoder_crtcs);
7954         kfree(config);
7955 }
7956
7957 static int intel_set_config_save_state(struct drm_device *dev,
7958                                        struct intel_set_config *config)
7959 {
7960         struct drm_encoder *encoder;
7961         struct drm_connector *connector;
7962         int count;
7963
7964         config->save_encoder_crtcs =
7965                 kcalloc(dev->mode_config.num_encoder,
7966                         sizeof(struct drm_crtc *), GFP_KERNEL);
7967         if (!config->save_encoder_crtcs)
7968                 return -ENOMEM;
7969
7970         config->save_connector_encoders =
7971                 kcalloc(dev->mode_config.num_connector,
7972                         sizeof(struct drm_encoder *), GFP_KERNEL);
7973         if (!config->save_connector_encoders)
7974                 return -ENOMEM;
7975
7976         /* Copy data. Note that driver private data is not affected.
7977          * Should anything bad happen only the expected state is
7978          * restored, not the drivers personal bookkeeping.
7979          */
7980         count = 0;
7981         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7982                 config->save_encoder_crtcs[count++] = encoder->crtc;
7983         }
7984
7985         count = 0;
7986         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7987                 config->save_connector_encoders[count++] = connector->encoder;
7988         }
7989
7990         return 0;
7991 }
7992
7993 static void intel_set_config_restore_state(struct drm_device *dev,
7994                                            struct intel_set_config *config)
7995 {
7996         struct intel_encoder *encoder;
7997         struct intel_connector *connector;
7998         int count;
7999
8000         count = 0;
8001         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8002                 encoder->new_crtc =
8003                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8004         }
8005
8006         count = 0;
8007         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8008                 connector->new_encoder =
8009                         to_intel_encoder(config->save_connector_encoders[count++]);
8010         }
8011 }
8012
8013 static void
8014 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8015                                       struct intel_set_config *config)
8016 {
8017
8018         /* We should be able to check here if the fb has the same properties
8019          * and then just flip_or_move it */
8020         if (set->crtc->fb != set->fb) {
8021                 /* If we have no fb then treat it as a full mode set */
8022                 if (set->crtc->fb == NULL) {
8023                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8024                         config->mode_changed = true;
8025                 } else if (set->fb == NULL) {
8026                         config->mode_changed = true;
8027                 } else if (set->fb->pixel_format !=
8028                            set->crtc->fb->pixel_format) {
8029                         config->mode_changed = true;
8030                 } else
8031                         config->fb_changed = true;
8032         }
8033
8034         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8035                 config->fb_changed = true;
8036
8037         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8038                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8039                 drm_mode_debug_printmodeline(&set->crtc->mode);
8040                 drm_mode_debug_printmodeline(set->mode);
8041                 config->mode_changed = true;
8042         }
8043 }
8044
8045 static int
8046 intel_modeset_stage_output_state(struct drm_device *dev,
8047                                  struct drm_mode_set *set,
8048                                  struct intel_set_config *config)
8049 {
8050         struct drm_crtc *new_crtc;
8051         struct intel_connector *connector;
8052         struct intel_encoder *encoder;
8053         int count, ro;
8054
8055         /* The upper layers ensure that we either disable a crtc or have a list
8056          * of connectors. For paranoia, double-check this. */
8057         WARN_ON(!set->fb && (set->num_connectors != 0));
8058         WARN_ON(set->fb && (set->num_connectors == 0));
8059
8060         count = 0;
8061         list_for_each_entry(connector, &dev->mode_config.connector_list,
8062                             base.head) {
8063                 /* Otherwise traverse passed in connector list and get encoders
8064                  * for them. */
8065                 for (ro = 0; ro < set->num_connectors; ro++) {
8066                         if (set->connectors[ro] == &connector->base) {
8067                                 connector->new_encoder = connector->encoder;
8068                                 break;
8069                         }
8070                 }
8071
8072                 /* If we disable the crtc, disable all its connectors. Also, if
8073                  * the connector is on the changing crtc but not on the new
8074                  * connector list, disable it. */
8075                 if ((!set->fb || ro == set->num_connectors) &&
8076                     connector->base.encoder &&
8077                     connector->base.encoder->crtc == set->crtc) {
8078                         connector->new_encoder = NULL;
8079
8080                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8081                                 connector->base.base.id,
8082                                 drm_get_connector_name(&connector->base));
8083                 }
8084
8085
8086                 if (&connector->new_encoder->base != connector->base.encoder) {
8087                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8088                         config->mode_changed = true;
8089                 }
8090         }
8091         /* connector->new_encoder is now updated for all connectors. */
8092
8093         /* Update crtc of enabled connectors. */
8094         count = 0;
8095         list_for_each_entry(connector, &dev->mode_config.connector_list,
8096                             base.head) {
8097                 if (!connector->new_encoder)
8098                         continue;
8099
8100                 new_crtc = connector->new_encoder->base.crtc;
8101
8102                 for (ro = 0; ro < set->num_connectors; ro++) {
8103                         if (set->connectors[ro] == &connector->base)
8104                                 new_crtc = set->crtc;
8105                 }
8106
8107                 /* Make sure the new CRTC will work with the encoder */
8108                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8109                                            new_crtc)) {
8110                         return -EINVAL;
8111                 }
8112                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8113
8114                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8115                         connector->base.base.id,
8116                         drm_get_connector_name(&connector->base),
8117                         new_crtc->base.id);
8118         }
8119
8120         /* Check for any encoders that needs to be disabled. */
8121         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8122                             base.head) {
8123                 list_for_each_entry(connector,
8124                                     &dev->mode_config.connector_list,
8125                                     base.head) {
8126                         if (connector->new_encoder == encoder) {
8127                                 WARN_ON(!connector->new_encoder->new_crtc);
8128
8129                                 goto next_encoder;
8130                         }
8131                 }
8132                 encoder->new_crtc = NULL;
8133 next_encoder:
8134                 /* Only now check for crtc changes so we don't miss encoders
8135                  * that will be disabled. */
8136                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8137                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8138                         config->mode_changed = true;
8139                 }
8140         }
8141         /* Now we've also updated encoder->new_crtc for all encoders. */
8142
8143         return 0;
8144 }
8145
8146 static int intel_crtc_set_config(struct drm_mode_set *set)
8147 {
8148         struct drm_device *dev;
8149         struct drm_mode_set save_set;
8150         struct intel_set_config *config;
8151         int ret;
8152
8153         BUG_ON(!set);
8154         BUG_ON(!set->crtc);
8155         BUG_ON(!set->crtc->helper_private);
8156
8157         /* Enforce sane interface api - has been abused by the fb helper. */
8158         BUG_ON(!set->mode && set->fb);
8159         BUG_ON(set->fb && set->num_connectors == 0);
8160
8161         if (set->fb) {
8162                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8163                                 set->crtc->base.id, set->fb->base.id,
8164                                 (int)set->num_connectors, set->x, set->y);
8165         } else {
8166                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8167         }
8168
8169         dev = set->crtc->dev;
8170
8171         ret = -ENOMEM;
8172         config = kzalloc(sizeof(*config), GFP_KERNEL);
8173         if (!config)
8174                 goto out_config;
8175
8176         ret = intel_set_config_save_state(dev, config);
8177         if (ret)
8178                 goto out_config;
8179
8180         save_set.crtc = set->crtc;
8181         save_set.mode = &set->crtc->mode;
8182         save_set.x = set->crtc->x;
8183         save_set.y = set->crtc->y;
8184         save_set.fb = set->crtc->fb;
8185
8186         /* Compute whether we need a full modeset, only an fb base update or no
8187          * change at all. In the future we might also check whether only the
8188          * mode changed, e.g. for LVDS where we only change the panel fitter in
8189          * such cases. */
8190         intel_set_config_compute_mode_changes(set, config);
8191
8192         ret = intel_modeset_stage_output_state(dev, set, config);
8193         if (ret)
8194                 goto fail;
8195
8196         if (config->mode_changed) {
8197                 if (set->mode) {
8198                         DRM_DEBUG_KMS("attempting to set mode from"
8199                                         " userspace\n");
8200                         drm_mode_debug_printmodeline(set->mode);
8201                 }
8202
8203                 ret = intel_set_mode(set->crtc, set->mode,
8204                                      set->x, set->y, set->fb);
8205                 if (ret) {
8206                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8207                                   set->crtc->base.id, ret);
8208                         goto fail;
8209                 }
8210         } else if (config->fb_changed) {
8211                 intel_crtc_wait_for_pending_flips(set->crtc);
8212
8213                 ret = intel_pipe_set_base(set->crtc,
8214                                           set->x, set->y, set->fb);
8215         }
8216
8217         intel_set_config_free(config);
8218
8219         return 0;
8220
8221 fail:
8222         intel_set_config_restore_state(dev, config);
8223
8224         /* Try to restore the config */
8225         if (config->mode_changed &&
8226             intel_set_mode(save_set.crtc, save_set.mode,
8227                            save_set.x, save_set.y, save_set.fb))
8228                 DRM_ERROR("failed to restore config after modeset failure\n");
8229
8230 out_config:
8231         intel_set_config_free(config);
8232         return ret;
8233 }
8234
8235 static const struct drm_crtc_funcs intel_crtc_funcs = {
8236         .cursor_set = intel_crtc_cursor_set,
8237         .cursor_move = intel_crtc_cursor_move,
8238         .gamma_set = intel_crtc_gamma_set,
8239         .set_config = intel_crtc_set_config,
8240         .destroy = intel_crtc_destroy,
8241         .page_flip = intel_crtc_page_flip,
8242 };
8243
8244 static void intel_cpu_pll_init(struct drm_device *dev)
8245 {
8246         if (HAS_DDI(dev))
8247                 intel_ddi_pll_init(dev);
8248 }
8249
8250 static void intel_pch_pll_init(struct drm_device *dev)
8251 {
8252         drm_i915_private_t *dev_priv = dev->dev_private;
8253         int i;
8254
8255         if (dev_priv->num_pch_pll == 0) {
8256                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8257                 return;
8258         }
8259
8260         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8261                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8262                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8263                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8264         }
8265 }
8266
8267 static void intel_crtc_init(struct drm_device *dev, int pipe)
8268 {
8269         drm_i915_private_t *dev_priv = dev->dev_private;
8270         struct intel_crtc *intel_crtc;
8271         int i;
8272
8273         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8274         if (intel_crtc == NULL)
8275                 return;
8276
8277         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8278
8279         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8280         for (i = 0; i < 256; i++) {
8281                 intel_crtc->lut_r[i] = i;
8282                 intel_crtc->lut_g[i] = i;
8283                 intel_crtc->lut_b[i] = i;
8284         }
8285
8286         /* Swap pipes & planes for FBC on pre-965 */
8287         intel_crtc->pipe = pipe;
8288         intel_crtc->plane = pipe;
8289         intel_crtc->cpu_transcoder = pipe;
8290         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8291                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8292                 intel_crtc->plane = !pipe;
8293         }
8294
8295         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8296                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8297         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8298         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8299
8300         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8301 }
8302
8303 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8304                                 struct drm_file *file)
8305 {
8306         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8307         struct drm_mode_object *drmmode_obj;
8308         struct intel_crtc *crtc;
8309
8310         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8311                 return -ENODEV;
8312
8313         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8314                         DRM_MODE_OBJECT_CRTC);
8315
8316         if (!drmmode_obj) {
8317                 DRM_ERROR("no such CRTC id\n");
8318                 return -EINVAL;
8319         }
8320
8321         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8322         pipe_from_crtc_id->pipe = crtc->pipe;
8323
8324         return 0;
8325 }
8326
8327 static int intel_encoder_clones(struct intel_encoder *encoder)
8328 {
8329         struct drm_device *dev = encoder->base.dev;
8330         struct intel_encoder *source_encoder;
8331         int index_mask = 0;
8332         int entry = 0;
8333
8334         list_for_each_entry(source_encoder,
8335                             &dev->mode_config.encoder_list, base.head) {
8336
8337                 if (encoder == source_encoder)
8338                         index_mask |= (1 << entry);
8339
8340                 /* Intel hw has only one MUX where enocoders could be cloned. */
8341                 if (encoder->cloneable && source_encoder->cloneable)
8342                         index_mask |= (1 << entry);
8343
8344                 entry++;
8345         }
8346
8347         return index_mask;
8348 }
8349
8350 static bool has_edp_a(struct drm_device *dev)
8351 {
8352         struct drm_i915_private *dev_priv = dev->dev_private;
8353
8354         if (!IS_MOBILE(dev))
8355                 return false;
8356
8357         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8358                 return false;
8359
8360         if (IS_GEN5(dev) &&
8361             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8362                 return false;
8363
8364         return true;
8365 }
8366
8367 static void intel_setup_outputs(struct drm_device *dev)
8368 {
8369         struct drm_i915_private *dev_priv = dev->dev_private;
8370         struct intel_encoder *encoder;
8371         bool dpd_is_edp = false;
8372         bool has_lvds;
8373
8374         has_lvds = intel_lvds_init(dev);
8375         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8376                 /* disable the panel fitter on everything but LVDS */
8377                 I915_WRITE(PFIT_CONTROL, 0);
8378         }
8379
8380         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8381                 intel_crt_init(dev);
8382
8383         if (HAS_DDI(dev)) {
8384                 int found;
8385
8386                 /* Haswell uses DDI functions to detect digital outputs */
8387                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8388                 /* DDI A only supports eDP */
8389                 if (found)
8390                         intel_ddi_init(dev, PORT_A);
8391
8392                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8393                  * register */
8394                 found = I915_READ(SFUSE_STRAP);
8395
8396                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8397                         intel_ddi_init(dev, PORT_B);
8398                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8399                         intel_ddi_init(dev, PORT_C);
8400                 if (found & SFUSE_STRAP_DDID_DETECTED)
8401                         intel_ddi_init(dev, PORT_D);
8402         } else if (HAS_PCH_SPLIT(dev)) {
8403                 int found;
8404                 dpd_is_edp = intel_dpd_is_edp(dev);
8405
8406                 if (has_edp_a(dev))
8407                         intel_dp_init(dev, DP_A, PORT_A);
8408
8409                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8410                         /* PCH SDVOB multiplex with HDMIB */
8411                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8412                         if (!found)
8413                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8414                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8415                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8416                 }
8417
8418                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8419                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8420
8421                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8422                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8423
8424                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8425                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8426
8427                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8428                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8429         } else if (IS_VALLEYVIEW(dev)) {
8430                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8431                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8432                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8433
8434                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8435                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8436                                         PORT_B);
8437                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8438                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8439                 }
8440         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8441                 bool found = false;
8442
8443                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8444                         DRM_DEBUG_KMS("probing SDVOB\n");
8445                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8446                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8447                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8448                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8449                         }
8450
8451                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8452                                 DRM_DEBUG_KMS("probing DP_B\n");
8453                                 intel_dp_init(dev, DP_B, PORT_B);
8454                         }
8455                 }
8456
8457                 /* Before G4X SDVOC doesn't have its own detect register */
8458
8459                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8460                         DRM_DEBUG_KMS("probing SDVOC\n");
8461                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8462                 }
8463
8464                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8465
8466                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8467                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8468                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8469                         }
8470                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8471                                 DRM_DEBUG_KMS("probing DP_C\n");
8472                                 intel_dp_init(dev, DP_C, PORT_C);
8473                         }
8474                 }
8475
8476                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8477                     (I915_READ(DP_D) & DP_DETECTED)) {
8478                         DRM_DEBUG_KMS("probing DP_D\n");
8479                         intel_dp_init(dev, DP_D, PORT_D);
8480                 }
8481         } else if (IS_GEN2(dev))
8482                 intel_dvo_init(dev);
8483
8484         if (SUPPORTS_TV(dev))
8485                 intel_tv_init(dev);
8486
8487         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8488                 encoder->base.possible_crtcs = encoder->crtc_mask;
8489                 encoder->base.possible_clones =
8490                         intel_encoder_clones(encoder);
8491         }
8492
8493         intel_init_pch_refclk(dev);
8494
8495         drm_helper_move_panel_connectors_to_head(dev);
8496 }
8497
8498 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8499 {
8500         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8501
8502         drm_framebuffer_cleanup(fb);
8503         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8504
8505         kfree(intel_fb);
8506 }
8507
8508 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8509                                                 struct drm_file *file,
8510                                                 unsigned int *handle)
8511 {
8512         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8513         struct drm_i915_gem_object *obj = intel_fb->obj;
8514
8515         return drm_gem_handle_create(file, &obj->base, handle);
8516 }
8517
8518 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8519         .destroy = intel_user_framebuffer_destroy,
8520         .create_handle = intel_user_framebuffer_create_handle,
8521 };
8522
8523 int intel_framebuffer_init(struct drm_device *dev,
8524                            struct intel_framebuffer *intel_fb,
8525                            struct drm_mode_fb_cmd2 *mode_cmd,
8526                            struct drm_i915_gem_object *obj)
8527 {
8528         int ret;
8529
8530         if (obj->tiling_mode == I915_TILING_Y) {
8531                 DRM_DEBUG("hardware does not support tiling Y\n");
8532                 return -EINVAL;
8533         }
8534
8535         if (mode_cmd->pitches[0] & 63) {
8536                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8537                           mode_cmd->pitches[0]);
8538                 return -EINVAL;
8539         }
8540
8541         /* FIXME <= Gen4 stride limits are bit unclear */
8542         if (mode_cmd->pitches[0] > 32768) {
8543                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8544                           mode_cmd->pitches[0]);
8545                 return -EINVAL;
8546         }
8547
8548         if (obj->tiling_mode != I915_TILING_NONE &&
8549             mode_cmd->pitches[0] != obj->stride) {
8550                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8551                           mode_cmd->pitches[0], obj->stride);
8552                 return -EINVAL;
8553         }
8554
8555         /* Reject formats not supported by any plane early. */
8556         switch (mode_cmd->pixel_format) {
8557         case DRM_FORMAT_C8:
8558         case DRM_FORMAT_RGB565:
8559         case DRM_FORMAT_XRGB8888:
8560         case DRM_FORMAT_ARGB8888:
8561                 break;
8562         case DRM_FORMAT_XRGB1555:
8563         case DRM_FORMAT_ARGB1555:
8564                 if (INTEL_INFO(dev)->gen > 3) {
8565                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8566                         return -EINVAL;
8567                 }
8568                 break;
8569         case DRM_FORMAT_XBGR8888:
8570         case DRM_FORMAT_ABGR8888:
8571         case DRM_FORMAT_XRGB2101010:
8572         case DRM_FORMAT_ARGB2101010:
8573         case DRM_FORMAT_XBGR2101010:
8574         case DRM_FORMAT_ABGR2101010:
8575                 if (INTEL_INFO(dev)->gen < 4) {
8576                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8577                         return -EINVAL;
8578                 }
8579                 break;
8580         case DRM_FORMAT_YUYV:
8581         case DRM_FORMAT_UYVY:
8582         case DRM_FORMAT_YVYU:
8583         case DRM_FORMAT_VYUY:
8584                 if (INTEL_INFO(dev)->gen < 5) {
8585                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8586                         return -EINVAL;
8587                 }
8588                 break;
8589         default:
8590                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8591                 return -EINVAL;
8592         }
8593
8594         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8595         if (mode_cmd->offsets[0] != 0)
8596                 return -EINVAL;
8597
8598         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8599         intel_fb->obj = obj;
8600
8601         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8602         if (ret) {
8603                 DRM_ERROR("framebuffer init failed %d\n", ret);
8604                 return ret;
8605         }
8606
8607         return 0;
8608 }
8609
8610 static struct drm_framebuffer *
8611 intel_user_framebuffer_create(struct drm_device *dev,
8612                               struct drm_file *filp,
8613                               struct drm_mode_fb_cmd2 *mode_cmd)
8614 {
8615         struct drm_i915_gem_object *obj;
8616
8617         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8618                                                 mode_cmd->handles[0]));
8619         if (&obj->base == NULL)
8620                 return ERR_PTR(-ENOENT);
8621
8622         return intel_framebuffer_create(dev, mode_cmd, obj);
8623 }
8624
8625 static const struct drm_mode_config_funcs intel_mode_funcs = {
8626         .fb_create = intel_user_framebuffer_create,
8627         .output_poll_changed = intel_fb_output_poll_changed,
8628 };
8629
8630 /* Set up chip specific display functions */
8631 static void intel_init_display(struct drm_device *dev)
8632 {
8633         struct drm_i915_private *dev_priv = dev->dev_private;
8634
8635         if (HAS_DDI(dev)) {
8636                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8637                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8638                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8639                 dev_priv->display.off = haswell_crtc_off;
8640                 dev_priv->display.update_plane = ironlake_update_plane;
8641         } else if (HAS_PCH_SPLIT(dev)) {
8642                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8643                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8644                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8645                 dev_priv->display.off = ironlake_crtc_off;
8646                 dev_priv->display.update_plane = ironlake_update_plane;
8647         } else {
8648                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8649                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8650                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8651                 dev_priv->display.off = i9xx_crtc_off;
8652                 dev_priv->display.update_plane = i9xx_update_plane;
8653         }
8654
8655         /* Returns the core display clock speed */
8656         if (IS_VALLEYVIEW(dev))
8657                 dev_priv->display.get_display_clock_speed =
8658                         valleyview_get_display_clock_speed;
8659         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8660                 dev_priv->display.get_display_clock_speed =
8661                         i945_get_display_clock_speed;
8662         else if (IS_I915G(dev))
8663                 dev_priv->display.get_display_clock_speed =
8664                         i915_get_display_clock_speed;
8665         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8666                 dev_priv->display.get_display_clock_speed =
8667                         i9xx_misc_get_display_clock_speed;
8668         else if (IS_I915GM(dev))
8669                 dev_priv->display.get_display_clock_speed =
8670                         i915gm_get_display_clock_speed;
8671         else if (IS_I865G(dev))
8672                 dev_priv->display.get_display_clock_speed =
8673                         i865_get_display_clock_speed;
8674         else if (IS_I85X(dev))
8675                 dev_priv->display.get_display_clock_speed =
8676                         i855_get_display_clock_speed;
8677         else /* 852, 830 */
8678                 dev_priv->display.get_display_clock_speed =
8679                         i830_get_display_clock_speed;
8680
8681         if (HAS_PCH_SPLIT(dev)) {
8682                 if (IS_GEN5(dev)) {
8683                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8684                         dev_priv->display.write_eld = ironlake_write_eld;
8685                 } else if (IS_GEN6(dev)) {
8686                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8687                         dev_priv->display.write_eld = ironlake_write_eld;
8688                 } else if (IS_IVYBRIDGE(dev)) {
8689                         /* FIXME: detect B0+ stepping and use auto training */
8690                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8691                         dev_priv->display.write_eld = ironlake_write_eld;
8692                         dev_priv->display.modeset_global_resources =
8693                                 ivb_modeset_global_resources;
8694                 } else if (IS_HASWELL(dev)) {
8695                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8696                         dev_priv->display.write_eld = haswell_write_eld;
8697                         dev_priv->display.modeset_global_resources =
8698                                 haswell_modeset_global_resources;
8699                 }
8700         } else if (IS_G4X(dev)) {
8701                 dev_priv->display.write_eld = g4x_write_eld;
8702         }
8703
8704         /* Default just returns -ENODEV to indicate unsupported */
8705         dev_priv->display.queue_flip = intel_default_queue_flip;
8706
8707         switch (INTEL_INFO(dev)->gen) {
8708         case 2:
8709                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8710                 break;
8711
8712         case 3:
8713                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8714                 break;
8715
8716         case 4:
8717         case 5:
8718                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8719                 break;
8720
8721         case 6:
8722                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8723                 break;
8724         case 7:
8725                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8726                 break;
8727         }
8728 }
8729
8730 /*
8731  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8732  * resume, or other times.  This quirk makes sure that's the case for
8733  * affected systems.
8734  */
8735 static void quirk_pipea_force(struct drm_device *dev)
8736 {
8737         struct drm_i915_private *dev_priv = dev->dev_private;
8738
8739         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8740         DRM_INFO("applying pipe a force quirk\n");
8741 }
8742
8743 /*
8744  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8745  */
8746 static void quirk_ssc_force_disable(struct drm_device *dev)
8747 {
8748         struct drm_i915_private *dev_priv = dev->dev_private;
8749         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8750         DRM_INFO("applying lvds SSC disable quirk\n");
8751 }
8752
8753 /*
8754  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8755  * brightness value
8756  */
8757 static void quirk_invert_brightness(struct drm_device *dev)
8758 {
8759         struct drm_i915_private *dev_priv = dev->dev_private;
8760         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8761         DRM_INFO("applying inverted panel brightness quirk\n");
8762 }
8763
8764 struct intel_quirk {
8765         int device;
8766         int subsystem_vendor;
8767         int subsystem_device;
8768         void (*hook)(struct drm_device *dev);
8769 };
8770
8771 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8772 struct intel_dmi_quirk {
8773         void (*hook)(struct drm_device *dev);
8774         const struct dmi_system_id (*dmi_id_list)[];
8775 };
8776
8777 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8778 {
8779         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8780         return 1;
8781 }
8782
8783 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8784         {
8785                 .dmi_id_list = &(const struct dmi_system_id[]) {
8786                         {
8787                                 .callback = intel_dmi_reverse_brightness,
8788                                 .ident = "NCR Corporation",
8789                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8790                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8791                                 },
8792                         },
8793                         { }  /* terminating entry */
8794                 },
8795                 .hook = quirk_invert_brightness,
8796         },
8797 };
8798
8799 static struct intel_quirk intel_quirks[] = {
8800         /* HP Mini needs pipe A force quirk (LP: #322104) */
8801         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8802
8803         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8804         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8805
8806         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8807         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8808
8809         /* 830/845 need to leave pipe A & dpll A up */
8810         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8811         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8812
8813         /* Lenovo U160 cannot use SSC on LVDS */
8814         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8815
8816         /* Sony Vaio Y cannot use SSC on LVDS */
8817         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8818
8819         /* Acer Aspire 5734Z must invert backlight brightness */
8820         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8821
8822         /* Acer/eMachines G725 */
8823         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8824
8825         /* Acer/eMachines e725 */
8826         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8827
8828         /* Acer/Packard Bell NCL20 */
8829         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8830
8831         /* Acer Aspire 4736Z */
8832         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8833 };
8834
8835 static void intel_init_quirks(struct drm_device *dev)
8836 {
8837         struct pci_dev *d = dev->pdev;
8838         int i;
8839
8840         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8841                 struct intel_quirk *q = &intel_quirks[i];
8842
8843                 if (d->device == q->device &&
8844                     (d->subsystem_vendor == q->subsystem_vendor ||
8845                      q->subsystem_vendor == PCI_ANY_ID) &&
8846                     (d->subsystem_device == q->subsystem_device ||
8847                      q->subsystem_device == PCI_ANY_ID))
8848                         q->hook(dev);
8849         }
8850         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8851                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8852                         intel_dmi_quirks[i].hook(dev);
8853         }
8854 }
8855
8856 /* Disable the VGA plane that we never use */
8857 static void i915_disable_vga(struct drm_device *dev)
8858 {
8859         struct drm_i915_private *dev_priv = dev->dev_private;
8860         u8 sr1;
8861         u32 vga_reg = i915_vgacntrl_reg(dev);
8862
8863         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8864         outb(SR01, VGA_SR_INDEX);
8865         sr1 = inb(VGA_SR_DATA);
8866         outb(sr1 | 1<<5, VGA_SR_DATA);
8867         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8868         udelay(300);
8869
8870         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8871         POSTING_READ(vga_reg);
8872 }
8873
8874 void intel_modeset_init_hw(struct drm_device *dev)
8875 {
8876         intel_init_power_well(dev);
8877
8878         intel_prepare_ddi(dev);
8879
8880         intel_init_clock_gating(dev);
8881
8882         mutex_lock(&dev->struct_mutex);
8883         intel_enable_gt_powersave(dev);
8884         mutex_unlock(&dev->struct_mutex);
8885 }
8886
8887 void intel_modeset_init(struct drm_device *dev)
8888 {
8889         struct drm_i915_private *dev_priv = dev->dev_private;
8890         int i, j, ret;
8891
8892         drm_mode_config_init(dev);
8893
8894         dev->mode_config.min_width = 0;
8895         dev->mode_config.min_height = 0;
8896
8897         dev->mode_config.preferred_depth = 24;
8898         dev->mode_config.prefer_shadow = 1;
8899
8900         dev->mode_config.funcs = &intel_mode_funcs;
8901
8902         intel_init_quirks(dev);
8903
8904         intel_init_pm(dev);
8905
8906         intel_init_display(dev);
8907
8908         if (IS_GEN2(dev)) {
8909                 dev->mode_config.max_width = 2048;
8910                 dev->mode_config.max_height = 2048;
8911         } else if (IS_GEN3(dev)) {
8912                 dev->mode_config.max_width = 4096;
8913                 dev->mode_config.max_height = 4096;
8914         } else {
8915                 dev->mode_config.max_width = 8192;
8916                 dev->mode_config.max_height = 8192;
8917         }
8918         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8919
8920         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8921                       INTEL_INFO(dev)->num_pipes,
8922                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
8923
8924         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
8925                 intel_crtc_init(dev, i);
8926                 for (j = 0; j < dev_priv->num_plane; j++) {
8927                         ret = intel_plane_init(dev, i, j);
8928                         if (ret)
8929                                 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
8930                                               i, j, ret);
8931                 }
8932         }
8933
8934         intel_cpu_pll_init(dev);
8935         intel_pch_pll_init(dev);
8936
8937         /* Just disable it once at startup */
8938         i915_disable_vga(dev);
8939         intel_setup_outputs(dev);
8940
8941         /* Just in case the BIOS is doing something questionable. */
8942         intel_disable_fbc(dev);
8943 }
8944
8945 static void
8946 intel_connector_break_all_links(struct intel_connector *connector)
8947 {
8948         connector->base.dpms = DRM_MODE_DPMS_OFF;
8949         connector->base.encoder = NULL;
8950         connector->encoder->connectors_active = false;
8951         connector->encoder->base.crtc = NULL;
8952 }
8953
8954 static void intel_enable_pipe_a(struct drm_device *dev)
8955 {
8956         struct intel_connector *connector;
8957         struct drm_connector *crt = NULL;
8958         struct intel_load_detect_pipe load_detect_temp;
8959
8960         /* We can't just switch on the pipe A, we need to set things up with a
8961          * proper mode and output configuration. As a gross hack, enable pipe A
8962          * by enabling the load detect pipe once. */
8963         list_for_each_entry(connector,
8964                             &dev->mode_config.connector_list,
8965                             base.head) {
8966                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8967                         crt = &connector->base;
8968                         break;
8969                 }
8970         }
8971
8972         if (!crt)
8973                 return;
8974
8975         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8976                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8977
8978
8979 }
8980
8981 static bool
8982 intel_check_plane_mapping(struct intel_crtc *crtc)
8983 {
8984         struct drm_device *dev = crtc->base.dev;
8985         struct drm_i915_private *dev_priv = dev->dev_private;
8986         u32 reg, val;
8987
8988         if (INTEL_INFO(dev)->num_pipes == 1)
8989                 return true;
8990
8991         reg = DSPCNTR(!crtc->plane);
8992         val = I915_READ(reg);
8993
8994         if ((val & DISPLAY_PLANE_ENABLE) &&
8995             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8996                 return false;
8997
8998         return true;
8999 }
9000
9001 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9002 {
9003         struct drm_device *dev = crtc->base.dev;
9004         struct drm_i915_private *dev_priv = dev->dev_private;
9005         u32 reg;
9006
9007         /* Clear any frame start delays used for debugging left by the BIOS */
9008         reg = PIPECONF(crtc->cpu_transcoder);
9009         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9010
9011         /* We need to sanitize the plane -> pipe mapping first because this will
9012          * disable the crtc (and hence change the state) if it is wrong. Note
9013          * that gen4+ has a fixed plane -> pipe mapping.  */
9014         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9015                 struct intel_connector *connector;
9016                 bool plane;
9017
9018                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9019                               crtc->base.base.id);
9020
9021                 /* Pipe has the wrong plane attached and the plane is active.
9022                  * Temporarily change the plane mapping and disable everything
9023                  * ...  */
9024                 plane = crtc->plane;
9025                 crtc->plane = !plane;
9026                 dev_priv->display.crtc_disable(&crtc->base);
9027                 crtc->plane = plane;
9028
9029                 /* ... and break all links. */
9030                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9031                                     base.head) {
9032                         if (connector->encoder->base.crtc != &crtc->base)
9033                                 continue;
9034
9035                         intel_connector_break_all_links(connector);
9036                 }
9037
9038                 WARN_ON(crtc->active);
9039                 crtc->base.enabled = false;
9040         }
9041
9042         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9043             crtc->pipe == PIPE_A && !crtc->active) {
9044                 /* BIOS forgot to enable pipe A, this mostly happens after
9045                  * resume. Force-enable the pipe to fix this, the update_dpms
9046                  * call below we restore the pipe to the right state, but leave
9047                  * the required bits on. */
9048                 intel_enable_pipe_a(dev);
9049         }
9050
9051         /* Adjust the state of the output pipe according to whether we
9052          * have active connectors/encoders. */
9053         intel_crtc_update_dpms(&crtc->base);
9054
9055         if (crtc->active != crtc->base.enabled) {
9056                 struct intel_encoder *encoder;
9057
9058                 /* This can happen either due to bugs in the get_hw_state
9059                  * functions or because the pipe is force-enabled due to the
9060                  * pipe A quirk. */
9061                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9062                               crtc->base.base.id,
9063                               crtc->base.enabled ? "enabled" : "disabled",
9064                               crtc->active ? "enabled" : "disabled");
9065
9066                 crtc->base.enabled = crtc->active;
9067
9068                 /* Because we only establish the connector -> encoder ->
9069                  * crtc links if something is active, this means the
9070                  * crtc is now deactivated. Break the links. connector
9071                  * -> encoder links are only establish when things are
9072                  *  actually up, hence no need to break them. */
9073                 WARN_ON(crtc->active);
9074
9075                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9076                         WARN_ON(encoder->connectors_active);
9077                         encoder->base.crtc = NULL;
9078                 }
9079         }
9080 }
9081
9082 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9083 {
9084         struct intel_connector *connector;
9085         struct drm_device *dev = encoder->base.dev;
9086
9087         /* We need to check both for a crtc link (meaning that the
9088          * encoder is active and trying to read from a pipe) and the
9089          * pipe itself being active. */
9090         bool has_active_crtc = encoder->base.crtc &&
9091                 to_intel_crtc(encoder->base.crtc)->active;
9092
9093         if (encoder->connectors_active && !has_active_crtc) {
9094                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9095                               encoder->base.base.id,
9096                               drm_get_encoder_name(&encoder->base));
9097
9098                 /* Connector is active, but has no active pipe. This is
9099                  * fallout from our resume register restoring. Disable
9100                  * the encoder manually again. */
9101                 if (encoder->base.crtc) {
9102                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9103                                       encoder->base.base.id,
9104                                       drm_get_encoder_name(&encoder->base));
9105                         encoder->disable(encoder);
9106                 }
9107
9108                 /* Inconsistent output/port/pipe state happens presumably due to
9109                  * a bug in one of the get_hw_state functions. Or someplace else
9110                  * in our code, like the register restore mess on resume. Clamp
9111                  * things to off as a safer default. */
9112                 list_for_each_entry(connector,
9113                                     &dev->mode_config.connector_list,
9114                                     base.head) {
9115                         if (connector->encoder != encoder)
9116                                 continue;
9117
9118                         intel_connector_break_all_links(connector);
9119                 }
9120         }
9121         /* Enabled encoders without active connectors will be fixed in
9122          * the crtc fixup. */
9123 }
9124
9125 void i915_redisable_vga(struct drm_device *dev)
9126 {
9127         struct drm_i915_private *dev_priv = dev->dev_private;
9128         u32 vga_reg = i915_vgacntrl_reg(dev);
9129
9130         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9131                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9132                 i915_disable_vga(dev);
9133         }
9134 }
9135
9136 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9137  * and i915 state tracking structures. */
9138 void intel_modeset_setup_hw_state(struct drm_device *dev,
9139                                   bool force_restore)
9140 {
9141         struct drm_i915_private *dev_priv = dev->dev_private;
9142         enum pipe pipe;
9143         u32 tmp;
9144         struct drm_plane *plane;
9145         struct intel_crtc *crtc;
9146         struct intel_encoder *encoder;
9147         struct intel_connector *connector;
9148
9149         if (HAS_DDI(dev)) {
9150                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9151
9152                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9153                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9154                         case TRANS_DDI_EDP_INPUT_A_ON:
9155                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9156                                 pipe = PIPE_A;
9157                                 break;
9158                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9159                                 pipe = PIPE_B;
9160                                 break;
9161                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9162                                 pipe = PIPE_C;
9163                                 break;
9164                         default:
9165                                 /* A bogus value has been programmed, disable
9166                                  * the transcoder */
9167                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9168                                 intel_ddi_disable_transcoder_func(dev_priv,
9169                                                 TRANSCODER_EDP);
9170                                 goto setup_pipes;
9171                         }
9172
9173                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9174                         crtc->cpu_transcoder = TRANSCODER_EDP;
9175
9176                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9177                                       pipe_name(pipe));
9178                 }
9179         }
9180
9181 setup_pipes:
9182         for_each_pipe(pipe) {
9183                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9184
9185                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9186                 if (tmp & PIPECONF_ENABLE)
9187                         crtc->active = true;
9188                 else
9189                         crtc->active = false;
9190
9191                 crtc->base.enabled = crtc->active;
9192
9193                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9194                               crtc->base.base.id,
9195                               crtc->active ? "enabled" : "disabled");
9196         }
9197
9198         if (HAS_DDI(dev))
9199                 intel_ddi_setup_hw_pll_state(dev);
9200
9201         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9202                             base.head) {
9203                 pipe = 0;
9204
9205                 if (encoder->get_hw_state(encoder, &pipe)) {
9206                         encoder->base.crtc =
9207                                 dev_priv->pipe_to_crtc_mapping[pipe];
9208                 } else {
9209                         encoder->base.crtc = NULL;
9210                 }
9211
9212                 encoder->connectors_active = false;
9213                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9214                               encoder->base.base.id,
9215                               drm_get_encoder_name(&encoder->base),
9216                               encoder->base.crtc ? "enabled" : "disabled",
9217                               pipe);
9218         }
9219
9220         list_for_each_entry(connector, &dev->mode_config.connector_list,
9221                             base.head) {
9222                 if (connector->get_hw_state(connector)) {
9223                         connector->base.dpms = DRM_MODE_DPMS_ON;
9224                         connector->encoder->connectors_active = true;
9225                         connector->base.encoder = &connector->encoder->base;
9226                 } else {
9227                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9228                         connector->base.encoder = NULL;
9229                 }
9230                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9231                               connector->base.base.id,
9232                               drm_get_connector_name(&connector->base),
9233                               connector->base.encoder ? "enabled" : "disabled");
9234         }
9235
9236         /* HW state is read out, now we need to sanitize this mess. */
9237         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9238                             base.head) {
9239                 intel_sanitize_encoder(encoder);
9240         }
9241
9242         for_each_pipe(pipe) {
9243                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9244                 intel_sanitize_crtc(crtc);
9245         }
9246
9247         if (force_restore) {
9248                 for_each_pipe(pipe) {
9249                         struct drm_crtc *crtc =
9250                                 dev_priv->pipe_to_crtc_mapping[pipe];
9251                         intel_crtc_restore_mode(crtc);
9252                 }
9253                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9254                         intel_plane_restore(plane);
9255
9256                 i915_redisable_vga(dev);
9257         } else {
9258                 intel_modeset_update_staged_output_state(dev);
9259         }
9260
9261         intel_modeset_check_state(dev);
9262
9263         drm_mode_config_reset(dev);
9264 }
9265
9266 void intel_modeset_gem_init(struct drm_device *dev)
9267 {
9268         intel_modeset_init_hw(dev);
9269
9270         intel_setup_overlay(dev);
9271
9272         intel_modeset_setup_hw_state(dev, false);
9273 }
9274
9275 void intel_modeset_cleanup(struct drm_device *dev)
9276 {
9277         struct drm_i915_private *dev_priv = dev->dev_private;
9278         struct drm_crtc *crtc;
9279         struct intel_crtc *intel_crtc;
9280
9281         drm_kms_helper_poll_fini(dev);
9282         mutex_lock(&dev->struct_mutex);
9283
9284         intel_unregister_dsm_handler();
9285
9286
9287         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9288                 /* Skip inactive CRTCs */
9289                 if (!crtc->fb)
9290                         continue;
9291
9292                 intel_crtc = to_intel_crtc(crtc);
9293                 intel_increase_pllclock(crtc);
9294         }
9295
9296         intel_disable_fbc(dev);
9297
9298         intel_disable_gt_powersave(dev);
9299
9300         ironlake_teardown_rc6(dev);
9301
9302         if (IS_VALLEYVIEW(dev))
9303                 vlv_init_dpio(dev);
9304
9305         mutex_unlock(&dev->struct_mutex);
9306
9307         /* Disable the irq before mode object teardown, for the irq might
9308          * enqueue unpin/hotplug work. */
9309         drm_irq_uninstall(dev);
9310         cancel_work_sync(&dev_priv->hotplug_work);
9311         cancel_work_sync(&dev_priv->rps.work);
9312
9313         /* flush any delayed tasks or pending work */
9314         flush_scheduled_work();
9315
9316         drm_mode_config_cleanup(dev);
9317
9318         intel_cleanup_overlay(dev);
9319 }
9320
9321 /*
9322  * Return which encoder is currently attached for connector.
9323  */
9324 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9325 {
9326         return &intel_attached_encoder(connector)->base;
9327 }
9328
9329 void intel_connector_attach_encoder(struct intel_connector *connector,
9330                                     struct intel_encoder *encoder)
9331 {
9332         connector->encoder = encoder;
9333         drm_mode_connector_attach_encoder(&connector->base,
9334                                           &encoder->base);
9335 }
9336
9337 /*
9338  * set vga decode state - true == enable VGA decode
9339  */
9340 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9341 {
9342         struct drm_i915_private *dev_priv = dev->dev_private;
9343         u16 gmch_ctrl;
9344
9345         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9346         if (state)
9347                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9348         else
9349                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9350         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9351         return 0;
9352 }
9353
9354 #ifdef CONFIG_DEBUG_FS
9355 #include <linux/seq_file.h>
9356
9357 struct intel_display_error_state {
9358         struct intel_cursor_error_state {
9359                 u32 control;
9360                 u32 position;
9361                 u32 base;
9362                 u32 size;
9363         } cursor[I915_MAX_PIPES];
9364
9365         struct intel_pipe_error_state {
9366                 u32 conf;
9367                 u32 source;
9368
9369                 u32 htotal;
9370                 u32 hblank;
9371                 u32 hsync;
9372                 u32 vtotal;
9373                 u32 vblank;
9374                 u32 vsync;
9375         } pipe[I915_MAX_PIPES];
9376
9377         struct intel_plane_error_state {
9378                 u32 control;
9379                 u32 stride;
9380                 u32 size;
9381                 u32 pos;
9382                 u32 addr;
9383                 u32 surface;
9384                 u32 tile_offset;
9385         } plane[I915_MAX_PIPES];
9386 };
9387
9388 struct intel_display_error_state *
9389 intel_display_capture_error_state(struct drm_device *dev)
9390 {
9391         drm_i915_private_t *dev_priv = dev->dev_private;
9392         struct intel_display_error_state *error;
9393         enum transcoder cpu_transcoder;
9394         int i;
9395
9396         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9397         if (error == NULL)
9398                 return NULL;
9399
9400         for_each_pipe(i) {
9401                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9402
9403                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9404                         error->cursor[i].control = I915_READ(CURCNTR(i));
9405                         error->cursor[i].position = I915_READ(CURPOS(i));
9406                         error->cursor[i].base = I915_READ(CURBASE(i));
9407                 } else {
9408                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9409                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9410                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9411                 }
9412
9413                 error->plane[i].control = I915_READ(DSPCNTR(i));
9414                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9415                 if (INTEL_INFO(dev)->gen <= 3) {
9416                         error->plane[i].size = I915_READ(DSPSIZE(i));
9417                         error->plane[i].pos = I915_READ(DSPPOS(i));
9418                 }
9419                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9420                         error->plane[i].addr = I915_READ(DSPADDR(i));
9421                 if (INTEL_INFO(dev)->gen >= 4) {
9422                         error->plane[i].surface = I915_READ(DSPSURF(i));
9423                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9424                 }
9425
9426                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9427                 error->pipe[i].source = I915_READ(PIPESRC(i));
9428                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9429                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9430                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9431                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9432                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9433                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9434         }
9435
9436         return error;
9437 }
9438
9439 void
9440 intel_display_print_error_state(struct seq_file *m,
9441                                 struct drm_device *dev,
9442                                 struct intel_display_error_state *error)
9443 {
9444         int i;
9445
9446         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9447         for_each_pipe(i) {
9448                 seq_printf(m, "Pipe [%d]:\n", i);
9449                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9450                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9451                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9452                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9453                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9454                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9455                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9456                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9457
9458                 seq_printf(m, "Plane [%d]:\n", i);
9459                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9460                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9461                 if (INTEL_INFO(dev)->gen <= 3) {
9462                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9463                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9464                 }
9465                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9466                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9467                 if (INTEL_INFO(dev)->gen >= 4) {
9468                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9469                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9470                 }
9471
9472                 seq_printf(m, "Cursor [%d]:\n", i);
9473                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9474                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9475                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9476         }
9477 }
9478 #endif