drm/i915: grab force_wake when restoring LCPLL
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78         struct drm_i915_private *dev_priv = dev->dev_private;
79
80         WARN_ON(!HAS_PCH_SPLIT(dev));
81
82         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88         if (IS_GEN5(dev)) {
89                 struct drm_i915_private *dev_priv = dev->dev_private;
90                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91         } else
92                 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96         .dot = { .min = 25000, .max = 350000 },
97         .vco = { .min = 930000, .max = 1400000 },
98         .n = { .min = 3, .max = 16 },
99         .m = { .min = 96, .max = 140 },
100         .m1 = { .min = 18, .max = 26 },
101         .m2 = { .min = 6, .max = 16 },
102         .p = { .min = 4, .max = 128 },
103         .p1 = { .min = 2, .max = 33 },
104         .p2 = { .dot_limit = 165000,
105                 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 8, .max = 18 },
140         .m2 = { .min = 3, .max = 7 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 7, .max = 98 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 112000,
157                 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162         .dot = { .min = 25000, .max = 270000 },
163         .vco = { .min = 1750000, .max = 3500000},
164         .n = { .min = 1, .max = 4 },
165         .m = { .min = 104, .max = 138 },
166         .m1 = { .min = 17, .max = 23 },
167         .m2 = { .min = 5, .max = 11 },
168         .p = { .min = 10, .max = 30 },
169         .p1 = { .min = 1, .max = 3},
170         .p2 = { .dot_limit = 270000,
171                 .p2_slow = 10,
172                 .p2_fast = 10
173         },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177         .dot = { .min = 22000, .max = 400000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 16, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 5, .max = 80 },
184         .p1 = { .min = 1, .max = 8},
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190         .dot = { .min = 20000, .max = 115000 },
191         .vco = { .min = 1750000, .max = 3500000 },
192         .n = { .min = 1, .max = 3 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 17, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 28, .max = 112 },
197         .p1 = { .min = 2, .max = 8 },
198         .p2 = { .dot_limit = 0,
199                 .p2_slow = 14, .p2_fast = 14
200         },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204         .dot = { .min = 80000, .max = 224000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 14, .max = 42 },
211         .p1 = { .min = 2, .max = 6 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 7, .p2_fast = 7
214         },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218         .dot = { .min = 20000, .max = 400000},
219         .vco = { .min = 1700000, .max = 3500000 },
220         /* Pineview's Ncounter is a ring counter */
221         .n = { .min = 3, .max = 6 },
222         .m = { .min = 2, .max = 256 },
223         /* Pineview only has one combined m divider, which we treat as m2. */
224         .m1 = { .min = 0, .max = 0 },
225         .m2 = { .min = 0, .max = 254 },
226         .p = { .min = 5, .max = 80 },
227         .p1 = { .min = 1, .max = 8 },
228         .p2 = { .dot_limit = 200000,
229                 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233         .dot = { .min = 20000, .max = 400000 },
234         .vco = { .min = 1700000, .max = 3500000 },
235         .n = { .min = 3, .max = 6 },
236         .m = { .min = 2, .max = 256 },
237         .m1 = { .min = 0, .max = 0 },
238         .m2 = { .min = 0, .max = 254 },
239         .p = { .min = 7, .max = 112 },
240         .p1 = { .min = 1, .max = 8 },
241         .p2 = { .dot_limit = 112000,
242                 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246  *
247  * We calculate clock using (register_value + 2) for N/M1/M2, so here
248  * the range value for them is (actual_value - 2).
249  */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251         .dot = { .min = 25000, .max = 350000 },
252         .vco = { .min = 1760000, .max = 3510000 },
253         .n = { .min = 1, .max = 5 },
254         .m = { .min = 79, .max = 127 },
255         .m1 = { .min = 12, .max = 22 },
256         .m2 = { .min = 5, .max = 9 },
257         .p = { .min = 5, .max = 80 },
258         .p1 = { .min = 1, .max = 8 },
259         .p2 = { .dot_limit = 225000,
260                 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 1760000, .max = 3510000 },
266         .n = { .min = 1, .max = 3 },
267         .m = { .min = 79, .max = 118 },
268         .m1 = { .min = 12, .max = 22 },
269         .m2 = { .min = 5, .max = 9 },
270         .p = { .min = 28, .max = 112 },
271         .p1 = { .min = 2, .max = 8 },
272         .p2 = { .dot_limit = 225000,
273                 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 1760000, .max = 3510000 },
279         .n = { .min = 1, .max = 3 },
280         .m = { .min = 79, .max = 127 },
281         .m1 = { .min = 12, .max = 22 },
282         .m2 = { .min = 5, .max = 9 },
283         .p = { .min = 14, .max = 56 },
284         .p1 = { .min = 2, .max = 8 },
285         .p2 = { .dot_limit = 225000,
286                 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 2 },
294         .m = { .min = 79, .max = 126 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 28, .max = 112 },
298         .p1 = { .min = 2, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 126 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 42 },
311         .p1 = { .min = 2, .max = 6 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317         .dot = { .min = 25000, .max = 270000 },
318         .vco = { .min = 4000000, .max = 6000000 },
319         .n = { .min = 1, .max = 7 },
320         .m = { .min = 22, .max = 450 }, /* guess */
321         .m1 = { .min = 2, .max = 3 },
322         .m2 = { .min = 11, .max = 156 },
323         .p = { .min = 10, .max = 30 },
324         .p1 = { .min = 1, .max = 3 },
325         .p2 = { .dot_limit = 270000,
326                 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 4000000, .max = 6000000 },
332         .n = { .min = 1, .max = 7 },
333         .m = { .min = 60, .max = 300 }, /* guess */
334         .m1 = { .min = 2, .max = 3 },
335         .m2 = { .min = 11, .max = 156 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 2, .max = 3 },
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 },
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356                                                 int refclk)
357 {
358         struct drm_device *dev = crtc->dev;
359         const intel_limit_t *limit;
360
361         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362                 if (intel_is_dual_link_lvds(dev)) {
363                         if (refclk == 100000)
364                                 limit = &intel_limits_ironlake_dual_lvds_100m;
365                         else
366                                 limit = &intel_limits_ironlake_dual_lvds;
367                 } else {
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_single_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_single_lvds;
372                 }
373         } else
374                 limit = &intel_limits_ironlake_dac;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385                 if (intel_is_dual_link_lvds(dev))
386                         limit = &intel_limits_g4x_dual_channel_lvds;
387                 else
388                         limit = &intel_limits_g4x_single_channel_lvds;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391                 limit = &intel_limits_g4x_hdmi;
392         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393                 limit = &intel_limits_g4x_sdvo;
394         } else /* The option is for other outputs */
395                 limit = &intel_limits_i9xx_sdvo;
396
397         return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402         struct drm_device *dev = crtc->dev;
403         const intel_limit_t *limit;
404
405         if (HAS_PCH_SPLIT(dev))
406                 limit = intel_ironlake_limit(crtc, refclk);
407         else if (IS_G4X(dev)) {
408                 limit = intel_g4x_limit(crtc);
409         } else if (IS_PINEVIEW(dev)) {
410                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411                         limit = &intel_limits_pineview_lvds;
412                 else
413                         limit = &intel_limits_pineview_sdvo;
414         } else if (IS_VALLEYVIEW(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416                         limit = &intel_limits_vlv_dac;
417                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418                         limit = &intel_limits_vlv_hdmi;
419                 else
420                         limit = &intel_limits_vlv_dp;
421         } else if (!IS_GEN2(dev)) {
422                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423                         limit = &intel_limits_i9xx_lvds;
424                 else
425                         limit = &intel_limits_i9xx_sdvo;
426         } else {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_i8xx_lvds;
429                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430                         limit = &intel_limits_i8xx_dvo;
431                 else
432                         limit = &intel_limits_i8xx_dac;
433         }
434         return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440         clock->m = clock->m2 + 2;
441         clock->p = clock->p1 * clock->p2;
442         clock->vco = refclk * clock->m / clock->n;
443         clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453         clock->m = i9xx_dpll_compute_m(clock);
454         clock->p = clock->p1 * clock->p2;
455         clock->vco = refclk * clock->m / (clock->n + 2);
456         clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464         struct drm_device *dev = crtc->dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, crtc, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476  * Returns whether the given set of divisors are valid for a given refclk with
477  * the given connectors.
478  */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481                                const intel_limit_t *limit,
482                                const intel_clock_t *clock)
483 {
484         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
485                 INTELPllInvalid("p1 out of range\n");
486         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
487                 INTELPllInvalid("p out of range\n");
488         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
489                 INTELPllInvalid("m2 out of range\n");
490         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
491                 INTELPllInvalid("m1 out of range\n");
492         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493                 INTELPllInvalid("m1 <= m2\n");
494         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
495                 INTELPllInvalid("m out of range\n");
496         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
497                 INTELPllInvalid("n out of range\n");
498         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499                 INTELPllInvalid("vco out of range\n");
500         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501          * connector, etc., rather than just a single range.
502          */
503         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504                 INTELPllInvalid("dot out of range\n");
505
506         return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511                     int target, int refclk, intel_clock_t *match_clock,
512                     intel_clock_t *best_clock)
513 {
514         struct drm_device *dev = crtc->dev;
515         intel_clock_t clock;
516         int err = target;
517
518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519                 /*
520                  * For LVDS just rely on its current settings for dual-channel.
521                  * We haven't figured out how to reliably set up different
522                  * single/dual channel state, if we even can.
523                  */
524                 if (intel_is_dual_link_lvds(dev))
525                         clock.p2 = limit->p2.p2_fast;
526                 else
527                         clock.p2 = limit->p2.p2_slow;
528         } else {
529                 if (target < limit->p2.dot_limit)
530                         clock.p2 = limit->p2.p2_slow;
531                 else
532                         clock.p2 = limit->p2.p2_fast;
533         }
534
535         memset(best_clock, 0, sizeof(*best_clock));
536
537         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538              clock.m1++) {
539                 for (clock.m2 = limit->m2.min;
540                      clock.m2 <= limit->m2.max; clock.m2++) {
541                         if (clock.m2 >= clock.m1)
542                                 break;
543                         for (clock.n = limit->n.min;
544                              clock.n <= limit->n.max; clock.n++) {
545                                 for (clock.p1 = limit->p1.min;
546                                         clock.p1 <= limit->p1.max; clock.p1++) {
547                                         int this_err;
548
549                                         i9xx_clock(refclk, &clock);
550                                         if (!intel_PLL_is_valid(dev, limit,
551                                                                 &clock))
552                                                 continue;
553                                         if (match_clock &&
554                                             clock.p != match_clock->p)
555                                                 continue;
556
557                                         this_err = abs(clock.dot - target);
558                                         if (this_err < err) {
559                                                 *best_clock = clock;
560                                                 err = this_err;
561                                         }
562                                 }
563                         }
564                 }
565         }
566
567         return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572                    int target, int refclk, intel_clock_t *match_clock,
573                    intel_clock_t *best_clock)
574 {
575         struct drm_device *dev = crtc->dev;
576         intel_clock_t clock;
577         int err = target;
578
579         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580                 /*
581                  * For LVDS just rely on its current settings for dual-channel.
582                  * We haven't figured out how to reliably set up different
583                  * single/dual channel state, if we even can.
584                  */
585                 if (intel_is_dual_link_lvds(dev))
586                         clock.p2 = limit->p2.p2_fast;
587                 else
588                         clock.p2 = limit->p2.p2_slow;
589         } else {
590                 if (target < limit->p2.dot_limit)
591                         clock.p2 = limit->p2.p2_slow;
592                 else
593                         clock.p2 = limit->p2.p2_fast;
594         }
595
596         memset(best_clock, 0, sizeof(*best_clock));
597
598         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599              clock.m1++) {
600                 for (clock.m2 = limit->m2.min;
601                      clock.m2 <= limit->m2.max; clock.m2++) {
602                         for (clock.n = limit->n.min;
603                              clock.n <= limit->n.max; clock.n++) {
604                                 for (clock.p1 = limit->p1.min;
605                                         clock.p1 <= limit->p1.max; clock.p1++) {
606                                         int this_err;
607
608                                         pineview_clock(refclk, &clock);
609                                         if (!intel_PLL_is_valid(dev, limit,
610                                                                 &clock))
611                                                 continue;
612                                         if (match_clock &&
613                                             clock.p != match_clock->p)
614                                                 continue;
615
616                                         this_err = abs(clock.dot - target);
617                                         if (this_err < err) {
618                                                 *best_clock = clock;
619                                                 err = this_err;
620                                         }
621                                 }
622                         }
623                 }
624         }
625
626         return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631                    int target, int refclk, intel_clock_t *match_clock,
632                    intel_clock_t *best_clock)
633 {
634         struct drm_device *dev = crtc->dev;
635         intel_clock_t clock;
636         int max_n;
637         bool found;
638         /* approximately equals target * 0.00585 */
639         int err_most = (target >> 8) + (target >> 9);
640         found = false;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (intel_is_dual_link_lvds(dev))
644                         clock.p2 = limit->p2.p2_fast;
645                 else
646                         clock.p2 = limit->p2.p2_slow;
647         } else {
648                 if (target < limit->p2.dot_limit)
649                         clock.p2 = limit->p2.p2_slow;
650                 else
651                         clock.p2 = limit->p2.p2_fast;
652         }
653
654         memset(best_clock, 0, sizeof(*best_clock));
655         max_n = limit->n.max;
656         /* based on hardware requirement, prefer smaller n to precision */
657         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658                 /* based on hardware requirement, prefere larger m1,m2 */
659                 for (clock.m1 = limit->m1.max;
660                      clock.m1 >= limit->m1.min; clock.m1--) {
661                         for (clock.m2 = limit->m2.max;
662                              clock.m2 >= limit->m2.min; clock.m2--) {
663                                 for (clock.p1 = limit->p1.max;
664                                      clock.p1 >= limit->p1.min; clock.p1--) {
665                                         int this_err;
666
667                                         i9xx_clock(refclk, &clock);
668                                         if (!intel_PLL_is_valid(dev, limit,
669                                                                 &clock))
670                                                 continue;
671
672                                         this_err = abs(clock.dot - target);
673                                         if (this_err < err_most) {
674                                                 *best_clock = clock;
675                                                 err_most = this_err;
676                                                 max_n = clock.n;
677                                                 found = true;
678                                         }
679                                 }
680                         }
681                 }
682         }
683         return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688                    int target, int refclk, intel_clock_t *match_clock,
689                    intel_clock_t *best_clock)
690 {
691         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692         u32 m, n, fastclk;
693         u32 updrate, minupdate, p;
694         unsigned long bestppm, ppm, absppm;
695         int dotclk, flag;
696
697         flag = 0;
698         dotclk = target * 1000;
699         bestppm = 1000000;
700         ppm = absppm = 0;
701         fastclk = dotclk / (2*100);
702         updrate = 0;
703         minupdate = 19200;
704         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705         bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707         /* based on hardware requirement, prefer smaller n to precision */
708         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709                 updrate = refclk / n;
710                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712                                 if (p2 > 10)
713                                         p2 = p2 - 1;
714                                 p = p1 * p2;
715                                 /* based on hardware requirement, prefer bigger m1,m2 values */
716                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717                                         m2 = (((2*(fastclk * p * n / m1 )) +
718                                                refclk) / (2*refclk));
719                                         m = m1 * m2;
720                                         vco = updrate * m;
721                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
722                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723                                                 absppm = (ppm > 0) ? ppm : (-ppm);
724                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725                                                         bestppm = 0;
726                                                         flag = 1;
727                                                 }
728                                                 if (absppm < bestppm - 10) {
729                                                         bestppm = absppm;
730                                                         flag = 1;
731                                                 }
732                                                 if (flag) {
733                                                         bestn = n;
734                                                         bestm1 = m1;
735                                                         bestm2 = m2;
736                                                         bestp1 = p1;
737                                                         bestp2 = p2;
738                                                         flag = 0;
739                                                 }
740                                         }
741                                 }
742                         }
743                 }
744         }
745         best_clock->n = bestn;
746         best_clock->m1 = bestm1;
747         best_clock->m2 = bestm2;
748         best_clock->p1 = bestp1;
749         best_clock->p2 = bestp2;
750
751         return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755                                              enum pipe pipe)
756 {
757         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760         return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765         struct drm_i915_private *dev_priv = dev->dev_private;
766         u32 frame, frame_reg = PIPEFRAME(pipe);
767
768         frame = I915_READ(frame_reg);
769
770         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771                 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775  * intel_wait_for_vblank - wait for vblank on a given pipe
776  * @dev: drm device
777  * @pipe: pipe to wait for
778  *
779  * Wait for vblank to occur on a given pipe.  Needed for various bits of
780  * mode setting code.
781  */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         int pipestat_reg = PIPESTAT(pipe);
786
787         if (INTEL_INFO(dev)->gen >= 5) {
788                 ironlake_wait_for_vblank(dev, pipe);
789                 return;
790         }
791
792         /* Clear existing vblank status. Note this will clear any other
793          * sticky status fields as well.
794          *
795          * This races with i915_driver_irq_handler() with the result
796          * that either function could miss a vblank event.  Here it is not
797          * fatal, as we will either wait upon the next vblank interrupt or
798          * timeout.  Generally speaking intel_wait_for_vblank() is only
799          * called during modeset at which time the GPU should be idle and
800          * should *not* be performing page flips and thus not waiting on
801          * vblanks...
802          * Currently, the result of us stealing a vblank from the irq
803          * handler is that a single frame will be skipped during swapbuffers.
804          */
805         I915_WRITE(pipestat_reg,
806                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808         /* Wait for vblank interrupt bit to set */
809         if (wait_for(I915_READ(pipestat_reg) &
810                      PIPE_VBLANK_INTERRUPT_STATUS,
811                      50))
812                 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816  * intel_wait_for_pipe_off - wait for pipe to turn off
817  * @dev: drm device
818  * @pipe: pipe to wait for
819  *
820  * After disabling a pipe, we can't wait for vblank in the usual way,
821  * spinning on the vblank interrupt status bit, since we won't actually
822  * see an interrupt when the pipe is disabled.
823  *
824  * On Gen4 and above:
825  *   wait for the pipe register state bit to turn off
826  *
827  * Otherwise:
828  *   wait for the display line value to settle (it usually
829  *   ends up stopping at the start of the next frame).
830  *
831  */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836                                                                       pipe);
837
838         if (INTEL_INFO(dev)->gen >= 4) {
839                 int reg = PIPECONF(cpu_transcoder);
840
841                 /* Wait for the Pipe State to go off */
842                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843                              100))
844                         WARN(1, "pipe_off wait timed out\n");
845         } else {
846                 u32 last_line, line_mask;
847                 int reg = PIPEDSL(pipe);
848                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850                 if (IS_GEN2(dev))
851                         line_mask = DSL_LINEMASK_GEN2;
852                 else
853                         line_mask = DSL_LINEMASK_GEN3;
854
855                 /* Wait for the display line to settle */
856                 do {
857                         last_line = I915_READ(reg) & line_mask;
858                         mdelay(5);
859                 } while (((I915_READ(reg) & line_mask) != last_line) &&
860                          time_after(timeout, jiffies));
861                 if (time_after(jiffies, timeout))
862                         WARN(1, "pipe_off wait timed out\n");
863         }
864 }
865
866 /*
867  * ibx_digital_port_connected - is the specified port connected?
868  * @dev_priv: i915 private structure
869  * @port: the port to test
870  *
871  * Returns true if @port is connected, false otherwise.
872  */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874                                 struct intel_digital_port *port)
875 {
876         u32 bit;
877
878         if (HAS_PCH_IBX(dev_priv->dev)) {
879                 switch(port->port) {
880                 case PORT_B:
881                         bit = SDE_PORTB_HOTPLUG;
882                         break;
883                 case PORT_C:
884                         bit = SDE_PORTC_HOTPLUG;
885                         break;
886                 case PORT_D:
887                         bit = SDE_PORTD_HOTPLUG;
888                         break;
889                 default:
890                         return true;
891                 }
892         } else {
893                 switch(port->port) {
894                 case PORT_B:
895                         bit = SDE_PORTB_HOTPLUG_CPT;
896                         break;
897                 case PORT_C:
898                         bit = SDE_PORTC_HOTPLUG_CPT;
899                         break;
900                 case PORT_D:
901                         bit = SDE_PORTD_HOTPLUG_CPT;
902                         break;
903                 default:
904                         return true;
905                 }
906         }
907
908         return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913         return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918                 enum pipe pipe, bool state)
919 {
920         int reg;
921         u32 val;
922         bool cur_state;
923
924         reg = DPLL(pipe);
925         val = I915_READ(reg);
926         cur_state = !!(val & DPLL_VCO_ENABLE);
927         WARN(cur_state != state,
928              "PLL state assertion failure (expected %s, current %s)\n",
929              state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937         if (crtc->config.shared_dpll < 0)
938                 return NULL;
939
940         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945                         struct intel_shared_dpll *pll,
946                         bool state)
947 {
948         bool cur_state;
949         struct intel_dpll_hw_state hw_state;
950
951         if (HAS_PCH_LPT(dev_priv->dev)) {
952                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953                 return;
954         }
955
956         if (WARN (!pll,
957                   "asserting DPLL %s with no DPLL\n", state_string(state)))
958                 return;
959
960         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961         WARN(cur_state != state,
962              "%s assertion failure (expected %s, current %s)\n",
963              pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967                           enum pipe pipe, bool state)
968 {
969         int reg;
970         u32 val;
971         bool cur_state;
972         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973                                                                       pipe);
974
975         if (HAS_DDI(dev_priv->dev)) {
976                 /* DDI does not have a specific FDI_TX register */
977                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978                 val = I915_READ(reg);
979                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980         } else {
981                 reg = FDI_TX_CTL(pipe);
982                 val = I915_READ(reg);
983                 cur_state = !!(val & FDI_TX_ENABLE);
984         }
985         WARN(cur_state != state,
986              "FDI TX state assertion failure (expected %s, current %s)\n",
987              state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993                           enum pipe pipe, bool state)
994 {
995         int reg;
996         u32 val;
997         bool cur_state;
998
999         reg = FDI_RX_CTL(pipe);
1000         val = I915_READ(reg);
1001         cur_state = !!(val & FDI_RX_ENABLE);
1002         WARN(cur_state != state,
1003              "FDI RX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010                                       enum pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014
1015         /* ILK FDI PLL is always enabled */
1016         if (dev_priv->info->gen == 5)
1017                 return;
1018
1019         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020         if (HAS_DDI(dev_priv->dev))
1021                 return;
1022
1023         reg = FDI_TX_CTL(pipe);
1024         val = I915_READ(reg);
1025         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029                        enum pipe pipe, bool state)
1030 {
1031         int reg;
1032         u32 val;
1033         bool cur_state;
1034
1035         reg = FDI_RX_CTL(pipe);
1036         val = I915_READ(reg);
1037         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038         WARN(cur_state != state,
1039              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044                                   enum pipe pipe)
1045 {
1046         int pp_reg, lvds_reg;
1047         u32 val;
1048         enum pipe panel_pipe = PIPE_A;
1049         bool locked = true;
1050
1051         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052                 pp_reg = PCH_PP_CONTROL;
1053                 lvds_reg = PCH_LVDS;
1054         } else {
1055                 pp_reg = PP_CONTROL;
1056                 lvds_reg = LVDS;
1057         }
1058
1059         val = I915_READ(pp_reg);
1060         if (!(val & PANEL_POWER_ON) ||
1061             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062                 locked = false;
1063
1064         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065                 panel_pipe = PIPE_B;
1066
1067         WARN(panel_pipe == pipe && locked,
1068              "panel assertion failure, pipe %c regs locked\n",
1069              pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073                  enum pipe pipe, bool state)
1074 {
1075         int reg;
1076         u32 val;
1077         bool cur_state;
1078         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079                                                                       pipe);
1080
1081         /* if we need the pipe A quirk it must be always on */
1082         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083                 state = true;
1084
1085         if (!intel_display_power_enabled(dev_priv->dev,
1086                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087                 cur_state = false;
1088         } else {
1089                 reg = PIPECONF(cpu_transcoder);
1090                 val = I915_READ(reg);
1091                 cur_state = !!(val & PIPECONF_ENABLE);
1092         }
1093
1094         WARN(cur_state != state,
1095              "pipe %c assertion failure (expected %s, current %s)\n",
1096              pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100                          enum plane plane, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105
1106         reg = DSPCNTR(plane);
1107         val = I915_READ(reg);
1108         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109         WARN(cur_state != state,
1110              "plane %c assertion failure (expected %s, current %s)\n",
1111              plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118                                    enum pipe pipe)
1119 {
1120         struct drm_device *dev = dev_priv->dev;
1121         int reg, i;
1122         u32 val;
1123         int cur_pipe;
1124
1125         /* Primary planes are fixed to pipes on gen4+ */
1126         if (INTEL_INFO(dev)->gen >= 4) {
1127                 reg = DSPCNTR(pipe);
1128                 val = I915_READ(reg);
1129                 WARN((val & DISPLAY_PLANE_ENABLE),
1130                      "plane %c assertion failure, should be disabled but not\n",
1131                      plane_name(pipe));
1132                 return;
1133         }
1134
1135         /* Need to check both planes against the pipe */
1136         for_each_pipe(i) {
1137                 reg = DSPCNTR(i);
1138                 val = I915_READ(reg);
1139                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140                         DISPPLANE_SEL_PIPE_SHIFT;
1141                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143                      plane_name(i), pipe_name(pipe));
1144         }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148                                     enum pipe pipe)
1149 {
1150         struct drm_device *dev = dev_priv->dev;
1151         int reg, i;
1152         u32 val;
1153
1154         if (IS_VALLEYVIEW(dev)) {
1155                 for (i = 0; i < dev_priv->num_plane; i++) {
1156                         reg = SPCNTR(pipe, i);
1157                         val = I915_READ(reg);
1158                         WARN((val & SP_ENABLE),
1159                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160                              sprite_name(pipe, i), pipe_name(pipe));
1161                 }
1162         } else if (INTEL_INFO(dev)->gen >= 7) {
1163                 reg = SPRCTL(pipe);
1164                 val = I915_READ(reg);
1165                 WARN((val & SPRITE_ENABLE),
1166                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167                      plane_name(pipe), pipe_name(pipe));
1168         } else if (INTEL_INFO(dev)->gen >= 5) {
1169                 reg = DVSCNTR(pipe);
1170                 val = I915_READ(reg);
1171                 WARN((val & DVS_ENABLE),
1172                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173                      plane_name(pipe), pipe_name(pipe));
1174         }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179         u32 val;
1180         bool enabled;
1181
1182         if (HAS_PCH_LPT(dev_priv->dev)) {
1183                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184                 return;
1185         }
1186
1187         val = I915_READ(PCH_DREF_CONTROL);
1188         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189                             DREF_SUPERSPREAD_SOURCE_MASK));
1190         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194                                            enum pipe pipe)
1195 {
1196         int reg;
1197         u32 val;
1198         bool enabled;
1199
1200         reg = PCH_TRANSCONF(pipe);
1201         val = I915_READ(reg);
1202         enabled = !!(val & TRANS_ENABLE);
1203         WARN(enabled,
1204              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205              pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209                             enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211         if ((val & DP_PORT_EN) == 0)
1212                 return false;
1213
1214         if (HAS_PCH_CPT(dev_priv->dev)) {
1215                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218                         return false;
1219         } else {
1220                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221                         return false;
1222         }
1223         return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227                               enum pipe pipe, u32 val)
1228 {
1229         if ((val & SDVO_ENABLE) == 0)
1230                 return false;
1231
1232         if (HAS_PCH_CPT(dev_priv->dev)) {
1233                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234                         return false;
1235         } else {
1236                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & LVDS_PORT_EN) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & ADPA_DAC_ENABLE) == 0)
1262                 return false;
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274                                    enum pipe pipe, int reg, u32 port_sel)
1275 {
1276         u32 val = I915_READ(reg);
1277         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279              reg, pipe_name(pipe));
1280
1281         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282              && (val & DP_PIPEB_SELECT),
1283              "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287                                      enum pipe pipe, int reg)
1288 {
1289         u32 val = I915_READ(reg);
1290         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292              reg, pipe_name(pipe));
1293
1294         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295              && (val & SDVO_PIPE_B_SELECT),
1296              "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300                                       enum pipe pipe)
1301 {
1302         int reg;
1303         u32 val;
1304
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309         reg = PCH_ADPA;
1310         val = I915_READ(reg);
1311         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312              "PCH VGA enabled on transcoder %c, should be disabled\n",
1313              pipe_name(pipe));
1314
1315         reg = PCH_LVDS;
1316         val = I915_READ(reg);
1317         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319              pipe_name(pipe));
1320
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328         struct drm_device *dev = crtc->base.dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         int reg = DPLL(crtc->pipe);
1331         u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333         assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335         /* No really, not for ILK+ */
1336         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338         /* PLL is protected by panel, make sure we can write it */
1339         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340                 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342         I915_WRITE(reg, dpll);
1343         POSTING_READ(reg);
1344         udelay(150);
1345
1346         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350         POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352         /* We do this three times for luck */
1353         I915_WRITE(reg, dpll);
1354         POSTING_READ(reg);
1355         udelay(150); /* wait for warmup */
1356         I915_WRITE(reg, dpll);
1357         POSTING_READ(reg);
1358         udelay(150); /* wait for warmup */
1359         I915_WRITE(reg, dpll);
1360         POSTING_READ(reg);
1361         udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->base.dev;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         int reg = DPLL(crtc->pipe);
1369         u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371         assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373         /* No really, not for ILK+ */
1374         BUG_ON(dev_priv->info->gen >= 5);
1375
1376         /* PLL is protected by panel, make sure we can write it */
1377         if (IS_MOBILE(dev) && !IS_I830(dev))
1378                 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380         I915_WRITE(reg, dpll);
1381
1382         /* Wait for the clocks to stabilize. */
1383         POSTING_READ(reg);
1384         udelay(150);
1385
1386         if (INTEL_INFO(dev)->gen >= 4) {
1387                 I915_WRITE(DPLL_MD(crtc->pipe),
1388                            crtc->config.dpll_hw_state.dpll_md);
1389         } else {
1390                 /* The pixel multiplier can only be updated once the
1391                  * DPLL is enabled and the clocks are stable.
1392                  *
1393                  * So write it again.
1394                  */
1395                 I915_WRITE(reg, dpll);
1396         }
1397
1398         /* We do this three times for luck */
1399         I915_WRITE(reg, dpll);
1400         POSTING_READ(reg);
1401         udelay(150); /* wait for warmup */
1402         I915_WRITE(reg, dpll);
1403         POSTING_READ(reg);
1404         udelay(150); /* wait for warmup */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411  * i9xx_disable_pll - disable a PLL
1412  * @dev_priv: i915 private structure
1413  * @pipe: pipe PLL to disable
1414  *
1415  * Disable the PLL for @pipe, making sure the pipe is off first.
1416  *
1417  * Note!  This is for pre-ILK only.
1418  */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421         /* Don't disable pipe A or pipe A PLLs if needed */
1422         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423                 return;
1424
1425         /* Make sure the pipe isn't still relying on us */
1426         assert_pipe_disabled(dev_priv, pipe);
1427
1428         I915_WRITE(DPLL(pipe), 0);
1429         POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434         u32 port_mask;
1435
1436         if (!port)
1437                 port_mask = DPLL_PORTB_READY_MASK;
1438         else
1439                 port_mask = DPLL_PORTC_READY_MASK;
1440
1441         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443                      'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447  * ironlake_enable_shared_dpll - enable PCH PLL
1448  * @dev_priv: i915 private structure
1449  * @pipe: pipe PLL to enable
1450  *
1451  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452  * drives the transcoder clock.
1453  */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459         /* PCH PLLs only available on ILK, SNB and IVB */
1460         BUG_ON(dev_priv->info->gen < 5);
1461         if (WARN_ON(pll == NULL))
1462                 return;
1463
1464         if (WARN_ON(pll->refcount == 0))
1465                 return;
1466
1467         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468                       pll->name, pll->active, pll->on,
1469                       crtc->base.base.id);
1470
1471         if (pll->active++) {
1472                 WARN_ON(!pll->on);
1473                 assert_shared_dpll_enabled(dev_priv, pll);
1474                 return;
1475         }
1476         WARN_ON(pll->on);
1477
1478         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479         pll->enable(dev_priv, pll);
1480         pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488         /* PCH only available on ILK+ */
1489         BUG_ON(dev_priv->info->gen < 5);
1490         if (WARN_ON(pll == NULL))
1491                return;
1492
1493         if (WARN_ON(pll->refcount == 0))
1494                 return;
1495
1496         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497                       pll->name, pll->active, pll->on,
1498                       crtc->base.base.id);
1499
1500         if (WARN_ON(pll->active == 0)) {
1501                 assert_shared_dpll_disabled(dev_priv, pll);
1502                 return;
1503         }
1504
1505         assert_shared_dpll_enabled(dev_priv, pll);
1506         WARN_ON(!pll->on);
1507         if (--pll->active)
1508                 return;
1509
1510         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511         pll->disable(dev_priv, pll);
1512         pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516                                            enum pipe pipe)
1517 {
1518         struct drm_device *dev = dev_priv->dev;
1519         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521         uint32_t reg, val, pipeconf_val;
1522
1523         /* PCH only available on ILK+ */
1524         BUG_ON(dev_priv->info->gen < 5);
1525
1526         /* Make sure PCH DPLL is enabled */
1527         assert_shared_dpll_enabled(dev_priv,
1528                                    intel_crtc_to_shared_dpll(intel_crtc));
1529
1530         /* FDI must be feeding us bits for PCH ports */
1531         assert_fdi_tx_enabled(dev_priv, pipe);
1532         assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534         if (HAS_PCH_CPT(dev)) {
1535                 /* Workaround: Set the timing override bit before enabling the
1536                  * pch transcoder. */
1537                 reg = TRANS_CHICKEN2(pipe);
1538                 val = I915_READ(reg);
1539                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540                 I915_WRITE(reg, val);
1541         }
1542
1543         reg = PCH_TRANSCONF(pipe);
1544         val = I915_READ(reg);
1545         pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547         if (HAS_PCH_IBX(dev_priv->dev)) {
1548                 /*
1549                  * make the BPC in transcoder be consistent with
1550                  * that in pipeconf reg.
1551                  */
1552                 val &= ~PIPECONF_BPC_MASK;
1553                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554         }
1555
1556         val &= ~TRANS_INTERLACE_MASK;
1557         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558                 if (HAS_PCH_IBX(dev_priv->dev) &&
1559                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560                         val |= TRANS_LEGACY_INTERLACED_ILK;
1561                 else
1562                         val |= TRANS_INTERLACED;
1563         else
1564                 val |= TRANS_PROGRESSIVE;
1565
1566         I915_WRITE(reg, val | TRANS_ENABLE);
1567         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572                                       enum transcoder cpu_transcoder)
1573 {
1574         u32 val, pipeconf_val;
1575
1576         /* PCH only available on ILK+ */
1577         BUG_ON(dev_priv->info->gen < 5);
1578
1579         /* FDI must be feeding us bits for PCH ports */
1580         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583         /* Workaround: set timing override bit. */
1584         val = I915_READ(_TRANSA_CHICKEN2);
1585         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586         I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588         val = TRANS_ENABLE;
1589         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592             PIPECONF_INTERLACED_ILK)
1593                 val |= TRANS_INTERLACED;
1594         else
1595                 val |= TRANS_PROGRESSIVE;
1596
1597         I915_WRITE(LPT_TRANSCONF, val);
1598         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599                 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603                                             enum pipe pipe)
1604 {
1605         struct drm_device *dev = dev_priv->dev;
1606         uint32_t reg, val;
1607
1608         /* FDI relies on the transcoder */
1609         assert_fdi_tx_disabled(dev_priv, pipe);
1610         assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612         /* Ports must be off as well */
1613         assert_pch_ports_disabled(dev_priv, pipe);
1614
1615         reg = PCH_TRANSCONF(pipe);
1616         val = I915_READ(reg);
1617         val &= ~TRANS_ENABLE;
1618         I915_WRITE(reg, val);
1619         /* wait for PCH transcoder off, transcoder state */
1620         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623         if (!HAS_PCH_IBX(dev)) {
1624                 /* Workaround: Clear the timing override chicken bit again. */
1625                 reg = TRANS_CHICKEN2(pipe);
1626                 val = I915_READ(reg);
1627                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628                 I915_WRITE(reg, val);
1629         }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634         u32 val;
1635
1636         val = I915_READ(LPT_TRANSCONF);
1637         val &= ~TRANS_ENABLE;
1638         I915_WRITE(LPT_TRANSCONF, val);
1639         /* wait for PCH transcoder off, transcoder state */
1640         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641                 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643         /* Workaround: clear timing override bit. */
1644         val = I915_READ(_TRANSA_CHICKEN2);
1645         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646         I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650  * intel_enable_pipe - enable a pipe, asserting requirements
1651  * @dev_priv: i915 private structure
1652  * @pipe: pipe to enable
1653  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654  *
1655  * Enable @pipe, making sure that various hardware specific requirements
1656  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657  *
1658  * @pipe should be %PIPE_A or %PIPE_B.
1659  *
1660  * Will wait until the pipe is actually running (i.e. first vblank) before
1661  * returning.
1662  */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664                               bool pch_port)
1665 {
1666         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667                                                                       pipe);
1668         enum pipe pch_transcoder;
1669         int reg;
1670         u32 val;
1671
1672         assert_planes_disabled(dev_priv, pipe);
1673         assert_sprites_disabled(dev_priv, pipe);
1674
1675         if (HAS_PCH_LPT(dev_priv->dev))
1676                 pch_transcoder = TRANSCODER_A;
1677         else
1678                 pch_transcoder = pipe;
1679
1680         /*
1681          * A pipe without a PLL won't actually be able to drive bits from
1682          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1683          * need the check.
1684          */
1685         if (!HAS_PCH_SPLIT(dev_priv->dev))
1686                 assert_pll_enabled(dev_priv, pipe);
1687         else {
1688                 if (pch_port) {
1689                         /* if driving the PCH, we need FDI enabled */
1690                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691                         assert_fdi_tx_pll_enabled(dev_priv,
1692                                                   (enum pipe) cpu_transcoder);
1693                 }
1694                 /* FIXME: assert CPU port conditions for SNB+ */
1695         }
1696
1697         reg = PIPECONF(cpu_transcoder);
1698         val = I915_READ(reg);
1699         if (val & PIPECONF_ENABLE)
1700                 return;
1701
1702         I915_WRITE(reg, val | PIPECONF_ENABLE);
1703         intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707  * intel_disable_pipe - disable a pipe, asserting requirements
1708  * @dev_priv: i915 private structure
1709  * @pipe: pipe to disable
1710  *
1711  * Disable @pipe, making sure that various hardware specific requirements
1712  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713  *
1714  * @pipe should be %PIPE_A or %PIPE_B.
1715  *
1716  * Will wait until the pipe has shut down before returning.
1717  */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719                                enum pipe pipe)
1720 {
1721         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722                                                                       pipe);
1723         int reg;
1724         u32 val;
1725
1726         /*
1727          * Make sure planes won't keep trying to pump pixels to us,
1728          * or we might hang the display.
1729          */
1730         assert_planes_disabled(dev_priv, pipe);
1731         assert_sprites_disabled(dev_priv, pipe);
1732
1733         /* Don't disable pipe A or pipe A PLLs if needed */
1734         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735                 return;
1736
1737         reg = PIPECONF(cpu_transcoder);
1738         val = I915_READ(reg);
1739         if ((val & PIPECONF_ENABLE) == 0)
1740                 return;
1741
1742         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747  * Plane regs are double buffered, going from enabled->disabled needs a
1748  * trigger in order to latch.  The display address reg provides this.
1749  */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751                                       enum plane plane)
1752 {
1753         if (dev_priv->info->gen >= 4)
1754                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755         else
1756                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760  * intel_enable_plane - enable a display plane on a given pipe
1761  * @dev_priv: i915 private structure
1762  * @plane: plane to enable
1763  * @pipe: pipe being fed
1764  *
1765  * Enable @plane on @pipe, making sure that @pipe is running first.
1766  */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768                                enum plane plane, enum pipe pipe)
1769 {
1770         int reg;
1771         u32 val;
1772
1773         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774         assert_pipe_enabled(dev_priv, pipe);
1775
1776         reg = DSPCNTR(plane);
1777         val = I915_READ(reg);
1778         if (val & DISPLAY_PLANE_ENABLE)
1779                 return;
1780
1781         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782         intel_flush_display_plane(dev_priv, plane);
1783         intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787  * intel_disable_plane - disable a display plane
1788  * @dev_priv: i915 private structure
1789  * @plane: plane to disable
1790  * @pipe: pipe consuming the data
1791  *
1792  * Disable @plane; should be an independent operation.
1793  */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795                                 enum plane plane, enum pipe pipe)
1796 {
1797         int reg;
1798         u32 val;
1799
1800         reg = DSPCNTR(plane);
1801         val = I915_READ(reg);
1802         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803                 return;
1804
1805         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806         intel_flush_display_plane(dev_priv, plane);
1807         intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814                 return true;
1815 #endif
1816         return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821                            struct drm_i915_gem_object *obj,
1822                            struct intel_ring_buffer *pipelined)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 alignment;
1826         int ret;
1827
1828         switch (obj->tiling_mode) {
1829         case I915_TILING_NONE:
1830                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831                         alignment = 128 * 1024;
1832                 else if (INTEL_INFO(dev)->gen >= 4)
1833                         alignment = 4 * 1024;
1834                 else
1835                         alignment = 64 * 1024;
1836                 break;
1837         case I915_TILING_X:
1838                 /* pin() will align the object as required by fence */
1839                 alignment = 0;
1840                 break;
1841         case I915_TILING_Y:
1842                 /* Despite that we check this in framebuffer_init userspace can
1843                  * screw us over and change the tiling after the fact. Only
1844                  * pinned buffers can't change their tiling. */
1845                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846                 return -EINVAL;
1847         default:
1848                 BUG();
1849         }
1850
1851         /* Note that the w/a also requires 64 PTE of padding following the
1852          * bo. We currently fill all unused PTE with the shadow page and so
1853          * we should always have valid PTE following the scanout preventing
1854          * the VT-d warning.
1855          */
1856         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857                 alignment = 256 * 1024;
1858
1859         dev_priv->mm.interruptible = false;
1860         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861         if (ret)
1862                 goto err_interruptible;
1863
1864         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865          * fence, whereas 965+ only requires a fence if using
1866          * framebuffer compression.  For simplicity, we always install
1867          * a fence as the cost is not that onerous.
1868          */
1869         ret = i915_gem_object_get_fence(obj);
1870         if (ret)
1871                 goto err_unpin;
1872
1873         i915_gem_object_pin_fence(obj);
1874
1875         dev_priv->mm.interruptible = true;
1876         return 0;
1877
1878 err_unpin:
1879         i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881         dev_priv->mm.interruptible = true;
1882         return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887         i915_gem_object_unpin_fence(obj);
1888         i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892  * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894                                              unsigned int tiling_mode,
1895                                              unsigned int cpp,
1896                                              unsigned int pitch)
1897 {
1898         if (tiling_mode != I915_TILING_NONE) {
1899                 unsigned int tile_rows, tiles;
1900
1901                 tile_rows = *y / 8;
1902                 *y %= 8;
1903
1904                 tiles = *x / (512/cpp);
1905                 *x %= 512/cpp;
1906
1907                 return tile_rows * pitch * 8 + tiles * 4096;
1908         } else {
1909                 unsigned int offset;
1910
1911                 offset = *y * pitch + *x * cpp;
1912                 *y = 0;
1913                 *x = (offset & 4095) / cpp;
1914                 return offset & -4096;
1915         }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919                              int x, int y)
1920 {
1921         struct drm_device *dev = crtc->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924         struct intel_framebuffer *intel_fb;
1925         struct drm_i915_gem_object *obj;
1926         int plane = intel_crtc->plane;
1927         unsigned long linear_offset;
1928         u32 dspcntr;
1929         u32 reg;
1930
1931         switch (plane) {
1932         case 0:
1933         case 1:
1934                 break;
1935         default:
1936                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937                 return -EINVAL;
1938         }
1939
1940         intel_fb = to_intel_framebuffer(fb);
1941         obj = intel_fb->obj;
1942
1943         reg = DSPCNTR(plane);
1944         dspcntr = I915_READ(reg);
1945         /* Mask out pixel format bits in case we change it */
1946         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947         switch (fb->pixel_format) {
1948         case DRM_FORMAT_C8:
1949                 dspcntr |= DISPPLANE_8BPP;
1950                 break;
1951         case DRM_FORMAT_XRGB1555:
1952         case DRM_FORMAT_ARGB1555:
1953                 dspcntr |= DISPPLANE_BGRX555;
1954                 break;
1955         case DRM_FORMAT_RGB565:
1956                 dspcntr |= DISPPLANE_BGRX565;
1957                 break;
1958         case DRM_FORMAT_XRGB8888:
1959         case DRM_FORMAT_ARGB8888:
1960                 dspcntr |= DISPPLANE_BGRX888;
1961                 break;
1962         case DRM_FORMAT_XBGR8888:
1963         case DRM_FORMAT_ABGR8888:
1964                 dspcntr |= DISPPLANE_RGBX888;
1965                 break;
1966         case DRM_FORMAT_XRGB2101010:
1967         case DRM_FORMAT_ARGB2101010:
1968                 dspcntr |= DISPPLANE_BGRX101010;
1969                 break;
1970         case DRM_FORMAT_XBGR2101010:
1971         case DRM_FORMAT_ABGR2101010:
1972                 dspcntr |= DISPPLANE_RGBX101010;
1973                 break;
1974         default:
1975                 BUG();
1976         }
1977
1978         if (INTEL_INFO(dev)->gen >= 4) {
1979                 if (obj->tiling_mode != I915_TILING_NONE)
1980                         dspcntr |= DISPPLANE_TILED;
1981                 else
1982                         dspcntr &= ~DISPPLANE_TILED;
1983         }
1984
1985         if (IS_G4X(dev))
1986                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988         I915_WRITE(reg, dspcntr);
1989
1990         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992         if (INTEL_INFO(dev)->gen >= 4) {
1993                 intel_crtc->dspaddr_offset =
1994                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995                                                        fb->bits_per_pixel / 8,
1996                                                        fb->pitches[0]);
1997                 linear_offset -= intel_crtc->dspaddr_offset;
1998         } else {
1999                 intel_crtc->dspaddr_offset = linear_offset;
2000         }
2001
2002         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004                       fb->pitches[0]);
2005         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006         if (INTEL_INFO(dev)->gen >= 4) {
2007                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011         } else
2012                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013         POSTING_READ(reg);
2014
2015         return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019                                  struct drm_framebuffer *fb, int x, int y)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         struct intel_framebuffer *intel_fb;
2025         struct drm_i915_gem_object *obj;
2026         int plane = intel_crtc->plane;
2027         unsigned long linear_offset;
2028         u32 dspcntr;
2029         u32 reg;
2030
2031         switch (plane) {
2032         case 0:
2033         case 1:
2034         case 2:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->pixel_format) {
2049         case DRM_FORMAT_C8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case DRM_FORMAT_RGB565:
2053                 dspcntr |= DISPPLANE_BGRX565;
2054                 break;
2055         case DRM_FORMAT_XRGB8888:
2056         case DRM_FORMAT_ARGB8888:
2057                 dspcntr |= DISPPLANE_BGRX888;
2058                 break;
2059         case DRM_FORMAT_XBGR8888:
2060         case DRM_FORMAT_ABGR8888:
2061                 dspcntr |= DISPPLANE_RGBX888;
2062                 break;
2063         case DRM_FORMAT_XRGB2101010:
2064         case DRM_FORMAT_ARGB2101010:
2065                 dspcntr |= DISPPLANE_BGRX101010;
2066                 break;
2067         case DRM_FORMAT_XBGR2101010:
2068         case DRM_FORMAT_ABGR2101010:
2069                 dspcntr |= DISPPLANE_RGBX101010;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         if (obj->tiling_mode != I915_TILING_NONE)
2076                 dspcntr |= DISPPLANE_TILED;
2077         else
2078                 dspcntr &= ~DISPPLANE_TILED;
2079
2080         /* must disable */
2081         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2082
2083         I915_WRITE(reg, dspcntr);
2084
2085         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2086         intel_crtc->dspaddr_offset =
2087                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2088                                                fb->bits_per_pixel / 8,
2089                                                fb->pitches[0]);
2090         linear_offset -= intel_crtc->dspaddr_offset;
2091
2092         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2093                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2094                       fb->pitches[0]);
2095         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2096         I915_MODIFY_DISPBASE(DSPSURF(plane),
2097                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2098         if (IS_HASWELL(dev)) {
2099                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2100         } else {
2101                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2102                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2103         }
2104         POSTING_READ(reg);
2105
2106         return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112                            int x, int y, enum mode_set_atomic state)
2113 {
2114         struct drm_device *dev = crtc->dev;
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117         if (dev_priv->display.disable_fbc)
2118                 dev_priv->display.disable_fbc(dev);
2119         intel_increase_pllclock(crtc);
2120
2121         return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 void intel_display_handle_reset(struct drm_device *dev)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         struct drm_crtc *crtc;
2128
2129         /*
2130          * Flips in the rings have been nuked by the reset,
2131          * so complete all pending flips so that user space
2132          * will get its events and not get stuck.
2133          *
2134          * Also update the base address of all primary
2135          * planes to the the last fb to make sure we're
2136          * showing the correct fb after a reset.
2137          *
2138          * Need to make two loops over the crtcs so that we
2139          * don't try to grab a crtc mutex before the
2140          * pending_flip_queue really got woken up.
2141          */
2142
2143         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2144                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145                 enum plane plane = intel_crtc->plane;
2146
2147                 intel_prepare_page_flip(dev, plane);
2148                 intel_finish_page_flip_plane(dev, plane);
2149         }
2150
2151         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2152                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2153
2154                 mutex_lock(&crtc->mutex);
2155                 if (intel_crtc->active)
2156                         dev_priv->display.update_plane(crtc, crtc->fb,
2157                                                        crtc->x, crtc->y);
2158                 mutex_unlock(&crtc->mutex);
2159         }
2160 }
2161
2162 static int
2163 intel_finish_fb(struct drm_framebuffer *old_fb)
2164 {
2165         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2166         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2167         bool was_interruptible = dev_priv->mm.interruptible;
2168         int ret;
2169
2170         /* Big Hammer, we also need to ensure that any pending
2171          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2172          * current scanout is retired before unpinning the old
2173          * framebuffer.
2174          *
2175          * This should only fail upon a hung GPU, in which case we
2176          * can safely continue.
2177          */
2178         dev_priv->mm.interruptible = false;
2179         ret = i915_gem_object_finish_gpu(obj);
2180         dev_priv->mm.interruptible = was_interruptible;
2181
2182         return ret;
2183 }
2184
2185 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2186 {
2187         struct drm_device *dev = crtc->dev;
2188         struct drm_i915_master_private *master_priv;
2189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2190
2191         if (!dev->primary->master)
2192                 return;
2193
2194         master_priv = dev->primary->master->driver_priv;
2195         if (!master_priv->sarea_priv)
2196                 return;
2197
2198         switch (intel_crtc->pipe) {
2199         case 0:
2200                 master_priv->sarea_priv->pipeA_x = x;
2201                 master_priv->sarea_priv->pipeA_y = y;
2202                 break;
2203         case 1:
2204                 master_priv->sarea_priv->pipeB_x = x;
2205                 master_priv->sarea_priv->pipeB_y = y;
2206                 break;
2207         default:
2208                 break;
2209         }
2210 }
2211
2212 static int
2213 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2214                     struct drm_framebuffer *fb)
2215 {
2216         struct drm_device *dev = crtc->dev;
2217         struct drm_i915_private *dev_priv = dev->dev_private;
2218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2219         struct drm_framebuffer *old_fb;
2220         int ret;
2221
2222         /* no fb bound */
2223         if (!fb) {
2224                 DRM_ERROR("No FB bound\n");
2225                 return 0;
2226         }
2227
2228         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2229                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2230                           plane_name(intel_crtc->plane),
2231                           INTEL_INFO(dev)->num_pipes);
2232                 return -EINVAL;
2233         }
2234
2235         mutex_lock(&dev->struct_mutex);
2236         ret = intel_pin_and_fence_fb_obj(dev,
2237                                          to_intel_framebuffer(fb)->obj,
2238                                          NULL);
2239         if (ret != 0) {
2240                 mutex_unlock(&dev->struct_mutex);
2241                 DRM_ERROR("pin & fence failed\n");
2242                 return ret;
2243         }
2244
2245         /* Update pipe size and adjust fitter if needed */
2246         if (i915_fastboot) {
2247                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2248                            ((crtc->mode.hdisplay - 1) << 16) |
2249                            (crtc->mode.vdisplay - 1));
2250                 if (!intel_crtc->config.pch_pfit.size &&
2251                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2252                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2253                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2254                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2255                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2256                 }
2257         }
2258
2259         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2260         if (ret) {
2261                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2262                 mutex_unlock(&dev->struct_mutex);
2263                 DRM_ERROR("failed to update base address\n");
2264                 return ret;
2265         }
2266
2267         old_fb = crtc->fb;
2268         crtc->fb = fb;
2269         crtc->x = x;
2270         crtc->y = y;
2271
2272         if (old_fb) {
2273                 if (intel_crtc->active && old_fb != fb)
2274                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2275                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2276         }
2277
2278         intel_update_fbc(dev);
2279         intel_edp_psr_update(dev);
2280         mutex_unlock(&dev->struct_mutex);
2281
2282         intel_crtc_update_sarea_pos(crtc, x, y);
2283
2284         return 0;
2285 }
2286
2287 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2288 {
2289         struct drm_device *dev = crtc->dev;
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292         int pipe = intel_crtc->pipe;
2293         u32 reg, temp;
2294
2295         /* enable normal train */
2296         reg = FDI_TX_CTL(pipe);
2297         temp = I915_READ(reg);
2298         if (IS_IVYBRIDGE(dev)) {
2299                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2300                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2301         } else {
2302                 temp &= ~FDI_LINK_TRAIN_NONE;
2303                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2304         }
2305         I915_WRITE(reg, temp);
2306
2307         reg = FDI_RX_CTL(pipe);
2308         temp = I915_READ(reg);
2309         if (HAS_PCH_CPT(dev)) {
2310                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2311                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2312         } else {
2313                 temp &= ~FDI_LINK_TRAIN_NONE;
2314                 temp |= FDI_LINK_TRAIN_NONE;
2315         }
2316         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2317
2318         /* wait one idle pattern time */
2319         POSTING_READ(reg);
2320         udelay(1000);
2321
2322         /* IVB wants error correction enabled */
2323         if (IS_IVYBRIDGE(dev))
2324                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2325                            FDI_FE_ERRC_ENABLE);
2326 }
2327
2328 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2329 {
2330         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2331 }
2332
2333 static void ivb_modeset_global_resources(struct drm_device *dev)
2334 {
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct intel_crtc *pipe_B_crtc =
2337                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2338         struct intel_crtc *pipe_C_crtc =
2339                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2340         uint32_t temp;
2341
2342         /*
2343          * When everything is off disable fdi C so that we could enable fdi B
2344          * with all lanes. Note that we don't care about enabled pipes without
2345          * an enabled pch encoder.
2346          */
2347         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2348             !pipe_has_enabled_pch(pipe_C_crtc)) {
2349                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2350                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2351
2352                 temp = I915_READ(SOUTH_CHICKEN1);
2353                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2354                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2355                 I915_WRITE(SOUTH_CHICKEN1, temp);
2356         }
2357 }
2358
2359 /* The FDI link training functions for ILK/Ibexpeak. */
2360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2361 {
2362         struct drm_device *dev = crtc->dev;
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365         int pipe = intel_crtc->pipe;
2366         int plane = intel_crtc->plane;
2367         u32 reg, temp, tries;
2368
2369         /* FDI needs bits from pipe & plane first */
2370         assert_pipe_enabled(dev_priv, pipe);
2371         assert_plane_enabled(dev_priv, plane);
2372
2373         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2374            for train result */
2375         reg = FDI_RX_IMR(pipe);
2376         temp = I915_READ(reg);
2377         temp &= ~FDI_RX_SYMBOL_LOCK;
2378         temp &= ~FDI_RX_BIT_LOCK;
2379         I915_WRITE(reg, temp);
2380         I915_READ(reg);
2381         udelay(150);
2382
2383         /* enable CPU FDI TX and PCH FDI RX */
2384         reg = FDI_TX_CTL(pipe);
2385         temp = I915_READ(reg);
2386         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2387         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2388         temp &= ~FDI_LINK_TRAIN_NONE;
2389         temp |= FDI_LINK_TRAIN_PATTERN_1;
2390         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2391
2392         reg = FDI_RX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         temp &= ~FDI_LINK_TRAIN_NONE;
2395         temp |= FDI_LINK_TRAIN_PATTERN_1;
2396         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2397
2398         POSTING_READ(reg);
2399         udelay(150);
2400
2401         /* Ironlake workaround, enable clock pointer after FDI enable*/
2402         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2403         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2404                    FDI_RX_PHASE_SYNC_POINTER_EN);
2405
2406         reg = FDI_RX_IIR(pipe);
2407         for (tries = 0; tries < 5; tries++) {
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if ((temp & FDI_RX_BIT_LOCK)) {
2412                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2413                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2414                         break;
2415                 }
2416         }
2417         if (tries == 5)
2418                 DRM_ERROR("FDI train 1 fail!\n");
2419
2420         /* Train 2 */
2421         reg = FDI_TX_CTL(pipe);
2422         temp = I915_READ(reg);
2423         temp &= ~FDI_LINK_TRAIN_NONE;
2424         temp |= FDI_LINK_TRAIN_PATTERN_2;
2425         I915_WRITE(reg, temp);
2426
2427         reg = FDI_RX_CTL(pipe);
2428         temp = I915_READ(reg);
2429         temp &= ~FDI_LINK_TRAIN_NONE;
2430         temp |= FDI_LINK_TRAIN_PATTERN_2;
2431         I915_WRITE(reg, temp);
2432
2433         POSTING_READ(reg);
2434         udelay(150);
2435
2436         reg = FDI_RX_IIR(pipe);
2437         for (tries = 0; tries < 5; tries++) {
2438                 temp = I915_READ(reg);
2439                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2440
2441                 if (temp & FDI_RX_SYMBOL_LOCK) {
2442                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2443                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2444                         break;
2445                 }
2446         }
2447         if (tries == 5)
2448                 DRM_ERROR("FDI train 2 fail!\n");
2449
2450         DRM_DEBUG_KMS("FDI train done\n");
2451
2452 }
2453
2454 static const int snb_b_fdi_train_param[] = {
2455         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2456         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2457         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2458         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2459 };
2460
2461 /* The FDI link training functions for SNB/Cougarpoint. */
2462 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2463 {
2464         struct drm_device *dev = crtc->dev;
2465         struct drm_i915_private *dev_priv = dev->dev_private;
2466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2467         int pipe = intel_crtc->pipe;
2468         u32 reg, temp, i, retry;
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477
2478         POSTING_READ(reg);
2479         udelay(150);
2480
2481         /* enable CPU FDI TX and PCH FDI RX */
2482         reg = FDI_TX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2485         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2486         temp &= ~FDI_LINK_TRAIN_NONE;
2487         temp |= FDI_LINK_TRAIN_PATTERN_1;
2488         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2489         /* SNB-B */
2490         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2491         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2492
2493         I915_WRITE(FDI_RX_MISC(pipe),
2494                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2495
2496         reg = FDI_RX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         if (HAS_PCH_CPT(dev)) {
2499                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2501         } else {
2502                 temp &= ~FDI_LINK_TRAIN_NONE;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         }
2505         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507         POSTING_READ(reg);
2508         udelay(150);
2509
2510         for (i = 0; i < 4; i++) {
2511                 reg = FDI_TX_CTL(pipe);
2512                 temp = I915_READ(reg);
2513                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2514                 temp |= snb_b_fdi_train_param[i];
2515                 I915_WRITE(reg, temp);
2516
2517                 POSTING_READ(reg);
2518                 udelay(500);
2519
2520                 for (retry = 0; retry < 5; retry++) {
2521                         reg = FDI_RX_IIR(pipe);
2522                         temp = I915_READ(reg);
2523                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2524                         if (temp & FDI_RX_BIT_LOCK) {
2525                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2526                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2527                                 break;
2528                         }
2529                         udelay(50);
2530                 }
2531                 if (retry < 5)
2532                         break;
2533         }
2534         if (i == 4)
2535                 DRM_ERROR("FDI train 1 fail!\n");
2536
2537         /* Train 2 */
2538         reg = FDI_TX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         temp &= ~FDI_LINK_TRAIN_NONE;
2541         temp |= FDI_LINK_TRAIN_PATTERN_2;
2542         if (IS_GEN6(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2544                 /* SNB-B */
2545                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2546         }
2547         I915_WRITE(reg, temp);
2548
2549         reg = FDI_RX_CTL(pipe);
2550         temp = I915_READ(reg);
2551         if (HAS_PCH_CPT(dev)) {
2552                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2553                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2554         } else {
2555                 temp &= ~FDI_LINK_TRAIN_NONE;
2556                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2557         }
2558         I915_WRITE(reg, temp);
2559
2560         POSTING_READ(reg);
2561         udelay(150);
2562
2563         for (i = 0; i < 4; i++) {
2564                 reg = FDI_TX_CTL(pipe);
2565                 temp = I915_READ(reg);
2566                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2567                 temp |= snb_b_fdi_train_param[i];
2568                 I915_WRITE(reg, temp);
2569
2570                 POSTING_READ(reg);
2571                 udelay(500);
2572
2573                 for (retry = 0; retry < 5; retry++) {
2574                         reg = FDI_RX_IIR(pipe);
2575                         temp = I915_READ(reg);
2576                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2577                         if (temp & FDI_RX_SYMBOL_LOCK) {
2578                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2579                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2580                                 break;
2581                         }
2582                         udelay(50);
2583                 }
2584                 if (retry < 5)
2585                         break;
2586         }
2587         if (i == 4)
2588                 DRM_ERROR("FDI train 2 fail!\n");
2589
2590         DRM_DEBUG_KMS("FDI train done.\n");
2591 }
2592
2593 /* Manual link training for Ivy Bridge A0 parts */
2594 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2595 {
2596         struct drm_device *dev = crtc->dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2599         int pipe = intel_crtc->pipe;
2600         u32 reg, temp, i, j;
2601
2602         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2603            for train result */
2604         reg = FDI_RX_IMR(pipe);
2605         temp = I915_READ(reg);
2606         temp &= ~FDI_RX_SYMBOL_LOCK;
2607         temp &= ~FDI_RX_BIT_LOCK;
2608         I915_WRITE(reg, temp);
2609
2610         POSTING_READ(reg);
2611         udelay(150);
2612
2613         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2614                       I915_READ(FDI_RX_IIR(pipe)));
2615
2616         /* Try each vswing and preemphasis setting twice before moving on */
2617         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2618                 /* disable first in case we need to retry */
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2622                 temp &= ~FDI_TX_ENABLE;
2623                 I915_WRITE(reg, temp);
2624
2625                 reg = FDI_RX_CTL(pipe);
2626                 temp = I915_READ(reg);
2627                 temp &= ~FDI_LINK_TRAIN_AUTO;
2628                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2629                 temp &= ~FDI_RX_ENABLE;
2630                 I915_WRITE(reg, temp);
2631
2632                 /* enable CPU FDI TX and PCH FDI RX */
2633                 reg = FDI_TX_CTL(pipe);
2634                 temp = I915_READ(reg);
2635                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2636                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2637                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2638                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639                 temp |= snb_b_fdi_train_param[j/2];
2640                 temp |= FDI_COMPOSITE_SYNC;
2641                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2642
2643                 I915_WRITE(FDI_RX_MISC(pipe),
2644                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2645
2646                 reg = FDI_RX_CTL(pipe);
2647                 temp = I915_READ(reg);
2648                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2649                 temp |= FDI_COMPOSITE_SYNC;
2650                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2651
2652                 POSTING_READ(reg);
2653                 udelay(1); /* should be 0.5us */
2654
2655                 for (i = 0; i < 4; i++) {
2656                         reg = FDI_RX_IIR(pipe);
2657                         temp = I915_READ(reg);
2658                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2659
2660                         if (temp & FDI_RX_BIT_LOCK ||
2661                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2662                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2663                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2664                                               i);
2665                                 break;
2666                         }
2667                         udelay(1); /* should be 0.5us */
2668                 }
2669                 if (i == 4) {
2670                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2671                         continue;
2672                 }
2673
2674                 /* Train 2 */
2675                 reg = FDI_TX_CTL(pipe);
2676                 temp = I915_READ(reg);
2677                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2678                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2679                 I915_WRITE(reg, temp);
2680
2681                 reg = FDI_RX_CTL(pipe);
2682                 temp = I915_READ(reg);
2683                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2684                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2685                 I915_WRITE(reg, temp);
2686
2687                 POSTING_READ(reg);
2688                 udelay(2); /* should be 1.5us */
2689
2690                 for (i = 0; i < 4; i++) {
2691                         reg = FDI_RX_IIR(pipe);
2692                         temp = I915_READ(reg);
2693                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2694
2695                         if (temp & FDI_RX_SYMBOL_LOCK ||
2696                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2697                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2698                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2699                                               i);
2700                                 goto train_done;
2701                         }
2702                         udelay(2); /* should be 1.5us */
2703                 }
2704                 if (i == 4)
2705                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2706         }
2707
2708 train_done:
2709         DRM_DEBUG_KMS("FDI train done.\n");
2710 }
2711
2712 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2713 {
2714         struct drm_device *dev = intel_crtc->base.dev;
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         int pipe = intel_crtc->pipe;
2717         u32 reg, temp;
2718
2719
2720         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2721         reg = FDI_RX_CTL(pipe);
2722         temp = I915_READ(reg);
2723         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2724         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2725         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2726         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2727
2728         POSTING_READ(reg);
2729         udelay(200);
2730
2731         /* Switch from Rawclk to PCDclk */
2732         temp = I915_READ(reg);
2733         I915_WRITE(reg, temp | FDI_PCDCLK);
2734
2735         POSTING_READ(reg);
2736         udelay(200);
2737
2738         /* Enable CPU FDI TX PLL, always on for Ironlake */
2739         reg = FDI_TX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2742                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2743
2744                 POSTING_READ(reg);
2745                 udelay(100);
2746         }
2747 }
2748
2749 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2750 {
2751         struct drm_device *dev = intel_crtc->base.dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         int pipe = intel_crtc->pipe;
2754         u32 reg, temp;
2755
2756         /* Switch from PCDclk to Rawclk */
2757         reg = FDI_RX_CTL(pipe);
2758         temp = I915_READ(reg);
2759         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2760
2761         /* Disable CPU FDI TX PLL */
2762         reg = FDI_TX_CTL(pipe);
2763         temp = I915_READ(reg);
2764         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2765
2766         POSTING_READ(reg);
2767         udelay(100);
2768
2769         reg = FDI_RX_CTL(pipe);
2770         temp = I915_READ(reg);
2771         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2772
2773         /* Wait for the clocks to turn off. */
2774         POSTING_READ(reg);
2775         udelay(100);
2776 }
2777
2778 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2779 {
2780         struct drm_device *dev = crtc->dev;
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2783         int pipe = intel_crtc->pipe;
2784         u32 reg, temp;
2785
2786         /* disable CPU FDI tx and PCH FDI rx */
2787         reg = FDI_TX_CTL(pipe);
2788         temp = I915_READ(reg);
2789         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2790         POSTING_READ(reg);
2791
2792         reg = FDI_RX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         temp &= ~(0x7 << 16);
2795         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2796         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2797
2798         POSTING_READ(reg);
2799         udelay(100);
2800
2801         /* Ironlake workaround, disable clock pointer after downing FDI */
2802         if (HAS_PCH_IBX(dev)) {
2803                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2804         }
2805
2806         /* still set train pattern 1 */
2807         reg = FDI_TX_CTL(pipe);
2808         temp = I915_READ(reg);
2809         temp &= ~FDI_LINK_TRAIN_NONE;
2810         temp |= FDI_LINK_TRAIN_PATTERN_1;
2811         I915_WRITE(reg, temp);
2812
2813         reg = FDI_RX_CTL(pipe);
2814         temp = I915_READ(reg);
2815         if (HAS_PCH_CPT(dev)) {
2816                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2818         } else {
2819                 temp &= ~FDI_LINK_TRAIN_NONE;
2820                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2821         }
2822         /* BPC in FDI rx is consistent with that in PIPECONF */
2823         temp &= ~(0x07 << 16);
2824         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2825         I915_WRITE(reg, temp);
2826
2827         POSTING_READ(reg);
2828         udelay(100);
2829 }
2830
2831 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2832 {
2833         struct drm_device *dev = crtc->dev;
2834         struct drm_i915_private *dev_priv = dev->dev_private;
2835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2836         unsigned long flags;
2837         bool pending;
2838
2839         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2840             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2841                 return false;
2842
2843         spin_lock_irqsave(&dev->event_lock, flags);
2844         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2845         spin_unlock_irqrestore(&dev->event_lock, flags);
2846
2847         return pending;
2848 }
2849
2850 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2851 {
2852         struct drm_device *dev = crtc->dev;
2853         struct drm_i915_private *dev_priv = dev->dev_private;
2854
2855         if (crtc->fb == NULL)
2856                 return;
2857
2858         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2859
2860         wait_event(dev_priv->pending_flip_queue,
2861                    !intel_crtc_has_pending_flip(crtc));
2862
2863         mutex_lock(&dev->struct_mutex);
2864         intel_finish_fb(crtc->fb);
2865         mutex_unlock(&dev->struct_mutex);
2866 }
2867
2868 /* Program iCLKIP clock to the desired frequency */
2869 static void lpt_program_iclkip(struct drm_crtc *crtc)
2870 {
2871         struct drm_device *dev = crtc->dev;
2872         struct drm_i915_private *dev_priv = dev->dev_private;
2873         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2874         u32 temp;
2875
2876         mutex_lock(&dev_priv->dpio_lock);
2877
2878         /* It is necessary to ungate the pixclk gate prior to programming
2879          * the divisors, and gate it back when it is done.
2880          */
2881         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2882
2883         /* Disable SSCCTL */
2884         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2885                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2886                                 SBI_SSCCTL_DISABLE,
2887                         SBI_ICLK);
2888
2889         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2890         if (crtc->mode.clock == 20000) {
2891                 auxdiv = 1;
2892                 divsel = 0x41;
2893                 phaseinc = 0x20;
2894         } else {
2895                 /* The iCLK virtual clock root frequency is in MHz,
2896                  * but the crtc->mode.clock in in KHz. To get the divisors,
2897                  * it is necessary to divide one by another, so we
2898                  * convert the virtual clock precision to KHz here for higher
2899                  * precision.
2900                  */
2901                 u32 iclk_virtual_root_freq = 172800 * 1000;
2902                 u32 iclk_pi_range = 64;
2903                 u32 desired_divisor, msb_divisor_value, pi_value;
2904
2905                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2906                 msb_divisor_value = desired_divisor / iclk_pi_range;
2907                 pi_value = desired_divisor % iclk_pi_range;
2908
2909                 auxdiv = 0;
2910                 divsel = msb_divisor_value - 2;
2911                 phaseinc = pi_value;
2912         }
2913
2914         /* This should not happen with any sane values */
2915         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2916                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2917         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2918                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2919
2920         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2921                         crtc->mode.clock,
2922                         auxdiv,
2923                         divsel,
2924                         phasedir,
2925                         phaseinc);
2926
2927         /* Program SSCDIVINTPHASE6 */
2928         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2929         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2930         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2931         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2932         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2933         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2934         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2935         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2936
2937         /* Program SSCAUXDIV */
2938         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2939         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2940         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2941         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2942
2943         /* Enable modulator and associated divider */
2944         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2945         temp &= ~SBI_SSCCTL_DISABLE;
2946         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2947
2948         /* Wait for initialization time */
2949         udelay(24);
2950
2951         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2952
2953         mutex_unlock(&dev_priv->dpio_lock);
2954 }
2955
2956 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2957                                                 enum pipe pch_transcoder)
2958 {
2959         struct drm_device *dev = crtc->base.dev;
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2962
2963         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2964                    I915_READ(HTOTAL(cpu_transcoder)));
2965         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2966                    I915_READ(HBLANK(cpu_transcoder)));
2967         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2968                    I915_READ(HSYNC(cpu_transcoder)));
2969
2970         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2971                    I915_READ(VTOTAL(cpu_transcoder)));
2972         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2973                    I915_READ(VBLANK(cpu_transcoder)));
2974         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2975                    I915_READ(VSYNC(cpu_transcoder)));
2976         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2977                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2978 }
2979
2980 /*
2981  * Enable PCH resources required for PCH ports:
2982  *   - PCH PLLs
2983  *   - FDI training & RX/TX
2984  *   - update transcoder timings
2985  *   - DP transcoding bits
2986  *   - transcoder
2987  */
2988 static void ironlake_pch_enable(struct drm_crtc *crtc)
2989 {
2990         struct drm_device *dev = crtc->dev;
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2993         int pipe = intel_crtc->pipe;
2994         u32 reg, temp;
2995
2996         assert_pch_transcoder_disabled(dev_priv, pipe);
2997
2998         /* Write the TU size bits before fdi link training, so that error
2999          * detection works. */
3000         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3001                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3002
3003         /* For PCH output, training FDI link */
3004         dev_priv->display.fdi_link_train(crtc);
3005
3006         /* We need to program the right clock selection before writing the pixel
3007          * mutliplier into the DPLL. */
3008         if (HAS_PCH_CPT(dev)) {
3009                 u32 sel;
3010
3011                 temp = I915_READ(PCH_DPLL_SEL);
3012                 temp |= TRANS_DPLL_ENABLE(pipe);
3013                 sel = TRANS_DPLLB_SEL(pipe);
3014                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3015                         temp |= sel;
3016                 else
3017                         temp &= ~sel;
3018                 I915_WRITE(PCH_DPLL_SEL, temp);
3019         }
3020
3021         /* XXX: pch pll's can be enabled any time before we enable the PCH
3022          * transcoder, and we actually should do this to not upset any PCH
3023          * transcoder that already use the clock when we share it.
3024          *
3025          * Note that enable_shared_dpll tries to do the right thing, but
3026          * get_shared_dpll unconditionally resets the pll - we need that to have
3027          * the right LVDS enable sequence. */
3028         ironlake_enable_shared_dpll(intel_crtc);
3029
3030         /* set transcoder timing, panel must allow it */
3031         assert_panel_unlocked(dev_priv, pipe);
3032         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3033
3034         intel_fdi_normal_train(crtc);
3035
3036         /* For PCH DP, enable TRANS_DP_CTL */
3037         if (HAS_PCH_CPT(dev) &&
3038             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3039              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3040                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3041                 reg = TRANS_DP_CTL(pipe);
3042                 temp = I915_READ(reg);
3043                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3044                           TRANS_DP_SYNC_MASK |
3045                           TRANS_DP_BPC_MASK);
3046                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3047                          TRANS_DP_ENH_FRAMING);
3048                 temp |= bpc << 9; /* same format but at 11:9 */
3049
3050                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3051                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3052                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3053                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3054
3055                 switch (intel_trans_dp_port_sel(crtc)) {
3056                 case PCH_DP_B:
3057                         temp |= TRANS_DP_PORT_SEL_B;
3058                         break;
3059                 case PCH_DP_C:
3060                         temp |= TRANS_DP_PORT_SEL_C;
3061                         break;
3062                 case PCH_DP_D:
3063                         temp |= TRANS_DP_PORT_SEL_D;
3064                         break;
3065                 default:
3066                         BUG();
3067                 }
3068
3069                 I915_WRITE(reg, temp);
3070         }
3071
3072         ironlake_enable_pch_transcoder(dev_priv, pipe);
3073 }
3074
3075 static void lpt_pch_enable(struct drm_crtc *crtc)
3076 {
3077         struct drm_device *dev = crtc->dev;
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3081
3082         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3083
3084         lpt_program_iclkip(crtc);
3085
3086         /* Set transcoder timing. */
3087         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3088
3089         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3090 }
3091
3092 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3093 {
3094         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3095
3096         if (pll == NULL)
3097                 return;
3098
3099         if (pll->refcount == 0) {
3100                 WARN(1, "bad %s refcount\n", pll->name);
3101                 return;
3102         }
3103
3104         if (--pll->refcount == 0) {
3105                 WARN_ON(pll->on);
3106                 WARN_ON(pll->active);
3107         }
3108
3109         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3110 }
3111
3112 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3113 {
3114         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3115         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3116         enum intel_dpll_id i;
3117
3118         if (pll) {
3119                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3120                               crtc->base.base.id, pll->name);
3121                 intel_put_shared_dpll(crtc);
3122         }
3123
3124         if (HAS_PCH_IBX(dev_priv->dev)) {
3125                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3126                 i = (enum intel_dpll_id) crtc->pipe;
3127                 pll = &dev_priv->shared_dplls[i];
3128
3129                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3130                               crtc->base.base.id, pll->name);
3131
3132                 goto found;
3133         }
3134
3135         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3136                 pll = &dev_priv->shared_dplls[i];
3137
3138                 /* Only want to check enabled timings first */
3139                 if (pll->refcount == 0)
3140                         continue;
3141
3142                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3143                            sizeof(pll->hw_state)) == 0) {
3144                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3145                                       crtc->base.base.id,
3146                                       pll->name, pll->refcount, pll->active);
3147
3148                         goto found;
3149                 }
3150         }
3151
3152         /* Ok no matching timings, maybe there's a free one? */
3153         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3154                 pll = &dev_priv->shared_dplls[i];
3155                 if (pll->refcount == 0) {
3156                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3157                                       crtc->base.base.id, pll->name);
3158                         goto found;
3159                 }
3160         }
3161
3162         return NULL;
3163
3164 found:
3165         crtc->config.shared_dpll = i;
3166         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3167                          pipe_name(crtc->pipe));
3168
3169         if (pll->active == 0) {
3170                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3171                        sizeof(pll->hw_state));
3172
3173                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3174                 WARN_ON(pll->on);
3175                 assert_shared_dpll_disabled(dev_priv, pll);
3176
3177                 pll->mode_set(dev_priv, pll);
3178         }
3179         pll->refcount++;
3180
3181         return pll;
3182 }
3183
3184 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3185 {
3186         struct drm_i915_private *dev_priv = dev->dev_private;
3187         int dslreg = PIPEDSL(pipe);
3188         u32 temp;
3189
3190         temp = I915_READ(dslreg);
3191         udelay(500);
3192         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3193                 if (wait_for(I915_READ(dslreg) != temp, 5))
3194                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3195         }
3196 }
3197
3198 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3199 {
3200         struct drm_device *dev = crtc->base.dev;
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         int pipe = crtc->pipe;
3203
3204         if (crtc->config.pch_pfit.size) {
3205                 /* Force use of hard-coded filter coefficients
3206                  * as some pre-programmed values are broken,
3207                  * e.g. x201.
3208                  */
3209                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3210                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3211                                                  PF_PIPE_SEL_IVB(pipe));
3212                 else
3213                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3214                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3215                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3216         }
3217 }
3218
3219 static void intel_enable_planes(struct drm_crtc *crtc)
3220 {
3221         struct drm_device *dev = crtc->dev;
3222         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3223         struct intel_plane *intel_plane;
3224
3225         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3226                 if (intel_plane->pipe == pipe)
3227                         intel_plane_restore(&intel_plane->base);
3228 }
3229
3230 static void intel_disable_planes(struct drm_crtc *crtc)
3231 {
3232         struct drm_device *dev = crtc->dev;
3233         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3234         struct intel_plane *intel_plane;
3235
3236         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3237                 if (intel_plane->pipe == pipe)
3238                         intel_plane_disable(&intel_plane->base);
3239 }
3240
3241 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3242 {
3243         struct drm_device *dev = crtc->dev;
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3246         struct intel_encoder *encoder;
3247         int pipe = intel_crtc->pipe;
3248         int plane = intel_crtc->plane;
3249
3250         WARN_ON(!crtc->enabled);
3251
3252         if (intel_crtc->active)
3253                 return;
3254
3255         intel_crtc->active = true;
3256
3257         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3258         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3259
3260         intel_update_watermarks(dev);
3261
3262         for_each_encoder_on_crtc(dev, crtc, encoder)
3263                 if (encoder->pre_enable)
3264                         encoder->pre_enable(encoder);
3265
3266         if (intel_crtc->config.has_pch_encoder) {
3267                 /* Note: FDI PLL enabling _must_ be done before we enable the
3268                  * cpu pipes, hence this is separate from all the other fdi/pch
3269                  * enabling. */
3270                 ironlake_fdi_pll_enable(intel_crtc);
3271         } else {
3272                 assert_fdi_tx_disabled(dev_priv, pipe);
3273                 assert_fdi_rx_disabled(dev_priv, pipe);
3274         }
3275
3276         ironlake_pfit_enable(intel_crtc);
3277
3278         /*
3279          * On ILK+ LUT must be loaded before the pipe is running but with
3280          * clocks enabled
3281          */
3282         intel_crtc_load_lut(crtc);
3283
3284         intel_enable_pipe(dev_priv, pipe,
3285                           intel_crtc->config.has_pch_encoder);
3286         intel_enable_plane(dev_priv, plane, pipe);
3287         intel_enable_planes(crtc);
3288         intel_crtc_update_cursor(crtc, true);
3289
3290         if (intel_crtc->config.has_pch_encoder)
3291                 ironlake_pch_enable(crtc);
3292
3293         mutex_lock(&dev->struct_mutex);
3294         intel_update_fbc(dev);
3295         mutex_unlock(&dev->struct_mutex);
3296
3297         for_each_encoder_on_crtc(dev, crtc, encoder)
3298                 encoder->enable(encoder);
3299
3300         if (HAS_PCH_CPT(dev))
3301                 cpt_verify_modeset(dev, intel_crtc->pipe);
3302
3303         /*
3304          * There seems to be a race in PCH platform hw (at least on some
3305          * outputs) where an enabled pipe still completes any pageflip right
3306          * away (as if the pipe is off) instead of waiting for vblank. As soon
3307          * as the first vblank happend, everything works as expected. Hence just
3308          * wait for one vblank before returning to avoid strange things
3309          * happening.
3310          */
3311         intel_wait_for_vblank(dev, intel_crtc->pipe);
3312 }
3313
3314 /* IPS only exists on ULT machines and is tied to pipe A. */
3315 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3316 {
3317         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3318 }
3319
3320 static void hsw_enable_ips(struct intel_crtc *crtc)
3321 {
3322         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3323
3324         if (!crtc->config.ips_enabled)
3325                 return;
3326
3327         /* We can only enable IPS after we enable a plane and wait for a vblank.
3328          * We guarantee that the plane is enabled by calling intel_enable_ips
3329          * only after intel_enable_plane. And intel_enable_plane already waits
3330          * for a vblank, so all we need to do here is to enable the IPS bit. */
3331         assert_plane_enabled(dev_priv, crtc->plane);
3332         I915_WRITE(IPS_CTL, IPS_ENABLE);
3333 }
3334
3335 static void hsw_disable_ips(struct intel_crtc *crtc)
3336 {
3337         struct drm_device *dev = crtc->base.dev;
3338         struct drm_i915_private *dev_priv = dev->dev_private;
3339
3340         if (!crtc->config.ips_enabled)
3341                 return;
3342
3343         assert_plane_enabled(dev_priv, crtc->plane);
3344         I915_WRITE(IPS_CTL, 0);
3345
3346         /* We need to wait for a vblank before we can disable the plane. */
3347         intel_wait_for_vblank(dev, crtc->pipe);
3348 }
3349
3350 static void haswell_crtc_enable(struct drm_crtc *crtc)
3351 {
3352         struct drm_device *dev = crtc->dev;
3353         struct drm_i915_private *dev_priv = dev->dev_private;
3354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355         struct intel_encoder *encoder;
3356         int pipe = intel_crtc->pipe;
3357         int plane = intel_crtc->plane;
3358
3359         WARN_ON(!crtc->enabled);
3360
3361         if (intel_crtc->active)
3362                 return;
3363
3364         intel_crtc->active = true;
3365
3366         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3367         if (intel_crtc->config.has_pch_encoder)
3368                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3369
3370         intel_update_watermarks(dev);
3371
3372         if (intel_crtc->config.has_pch_encoder)
3373                 dev_priv->display.fdi_link_train(crtc);
3374
3375         for_each_encoder_on_crtc(dev, crtc, encoder)
3376                 if (encoder->pre_enable)
3377                         encoder->pre_enable(encoder);
3378
3379         intel_ddi_enable_pipe_clock(intel_crtc);
3380
3381         ironlake_pfit_enable(intel_crtc);
3382
3383         /*
3384          * On ILK+ LUT must be loaded before the pipe is running but with
3385          * clocks enabled
3386          */
3387         intel_crtc_load_lut(crtc);
3388
3389         intel_ddi_set_pipe_settings(crtc);
3390         intel_ddi_enable_transcoder_func(crtc);
3391
3392         intel_enable_pipe(dev_priv, pipe,
3393                           intel_crtc->config.has_pch_encoder);
3394         intel_enable_plane(dev_priv, plane, pipe);
3395         intel_enable_planes(crtc);
3396         intel_crtc_update_cursor(crtc, true);
3397
3398         hsw_enable_ips(intel_crtc);
3399
3400         if (intel_crtc->config.has_pch_encoder)
3401                 lpt_pch_enable(crtc);
3402
3403         mutex_lock(&dev->struct_mutex);
3404         intel_update_fbc(dev);
3405         mutex_unlock(&dev->struct_mutex);
3406
3407         for_each_encoder_on_crtc(dev, crtc, encoder)
3408                 encoder->enable(encoder);
3409
3410         /*
3411          * There seems to be a race in PCH platform hw (at least on some
3412          * outputs) where an enabled pipe still completes any pageflip right
3413          * away (as if the pipe is off) instead of waiting for vblank. As soon
3414          * as the first vblank happend, everything works as expected. Hence just
3415          * wait for one vblank before returning to avoid strange things
3416          * happening.
3417          */
3418         intel_wait_for_vblank(dev, intel_crtc->pipe);
3419 }
3420
3421 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3422 {
3423         struct drm_device *dev = crtc->base.dev;
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         int pipe = crtc->pipe;
3426
3427         /* To avoid upsetting the power well on haswell only disable the pfit if
3428          * it's in use. The hw state code will make sure we get this right. */
3429         if (crtc->config.pch_pfit.size) {
3430                 I915_WRITE(PF_CTL(pipe), 0);
3431                 I915_WRITE(PF_WIN_POS(pipe), 0);
3432                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3433         }
3434 }
3435
3436 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3437 {
3438         struct drm_device *dev = crtc->dev;
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3441         struct intel_encoder *encoder;
3442         int pipe = intel_crtc->pipe;
3443         int plane = intel_crtc->plane;
3444         u32 reg, temp;
3445
3446
3447         if (!intel_crtc->active)
3448                 return;
3449
3450         for_each_encoder_on_crtc(dev, crtc, encoder)
3451                 encoder->disable(encoder);
3452
3453         intel_crtc_wait_for_pending_flips(crtc);
3454         drm_vblank_off(dev, pipe);
3455
3456         if (dev_priv->fbc.plane == plane)
3457                 intel_disable_fbc(dev);
3458
3459         intel_crtc_update_cursor(crtc, false);
3460         intel_disable_planes(crtc);
3461         intel_disable_plane(dev_priv, plane, pipe);
3462
3463         if (intel_crtc->config.has_pch_encoder)
3464                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3465
3466         intel_disable_pipe(dev_priv, pipe);
3467
3468         ironlake_pfit_disable(intel_crtc);
3469
3470         for_each_encoder_on_crtc(dev, crtc, encoder)
3471                 if (encoder->post_disable)
3472                         encoder->post_disable(encoder);
3473
3474         if (intel_crtc->config.has_pch_encoder) {
3475                 ironlake_fdi_disable(crtc);
3476
3477                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3478                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3479
3480                 if (HAS_PCH_CPT(dev)) {
3481                         /* disable TRANS_DP_CTL */
3482                         reg = TRANS_DP_CTL(pipe);
3483                         temp = I915_READ(reg);
3484                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3485                                   TRANS_DP_PORT_SEL_MASK);
3486                         temp |= TRANS_DP_PORT_SEL_NONE;
3487                         I915_WRITE(reg, temp);
3488
3489                         /* disable DPLL_SEL */
3490                         temp = I915_READ(PCH_DPLL_SEL);
3491                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3492                         I915_WRITE(PCH_DPLL_SEL, temp);
3493                 }
3494
3495                 /* disable PCH DPLL */
3496                 intel_disable_shared_dpll(intel_crtc);
3497
3498                 ironlake_fdi_pll_disable(intel_crtc);
3499         }
3500
3501         intel_crtc->active = false;
3502         intel_update_watermarks(dev);
3503
3504         mutex_lock(&dev->struct_mutex);
3505         intel_update_fbc(dev);
3506         mutex_unlock(&dev->struct_mutex);
3507 }
3508
3509 static void haswell_crtc_disable(struct drm_crtc *crtc)
3510 {
3511         struct drm_device *dev = crtc->dev;
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514         struct intel_encoder *encoder;
3515         int pipe = intel_crtc->pipe;
3516         int plane = intel_crtc->plane;
3517         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3518
3519         if (!intel_crtc->active)
3520                 return;
3521
3522         for_each_encoder_on_crtc(dev, crtc, encoder)
3523                 encoder->disable(encoder);
3524
3525         intel_crtc_wait_for_pending_flips(crtc);
3526         drm_vblank_off(dev, pipe);
3527
3528         /* FBC must be disabled before disabling the plane on HSW. */
3529         if (dev_priv->fbc.plane == plane)
3530                 intel_disable_fbc(dev);
3531
3532         hsw_disable_ips(intel_crtc);
3533
3534         intel_crtc_update_cursor(crtc, false);
3535         intel_disable_planes(crtc);
3536         intel_disable_plane(dev_priv, plane, pipe);
3537
3538         if (intel_crtc->config.has_pch_encoder)
3539                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3540         intel_disable_pipe(dev_priv, pipe);
3541
3542         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3543
3544         ironlake_pfit_disable(intel_crtc);
3545
3546         intel_ddi_disable_pipe_clock(intel_crtc);
3547
3548         for_each_encoder_on_crtc(dev, crtc, encoder)
3549                 if (encoder->post_disable)
3550                         encoder->post_disable(encoder);
3551
3552         if (intel_crtc->config.has_pch_encoder) {
3553                 lpt_disable_pch_transcoder(dev_priv);
3554                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3555                 intel_ddi_fdi_disable(crtc);
3556         }
3557
3558         intel_crtc->active = false;
3559         intel_update_watermarks(dev);
3560
3561         mutex_lock(&dev->struct_mutex);
3562         intel_update_fbc(dev);
3563         mutex_unlock(&dev->struct_mutex);
3564 }
3565
3566 static void ironlake_crtc_off(struct drm_crtc *crtc)
3567 {
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         intel_put_shared_dpll(intel_crtc);
3570 }
3571
3572 static void haswell_crtc_off(struct drm_crtc *crtc)
3573 {
3574         intel_ddi_put_crtc_pll(crtc);
3575 }
3576
3577 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3578 {
3579         if (!enable && intel_crtc->overlay) {
3580                 struct drm_device *dev = intel_crtc->base.dev;
3581                 struct drm_i915_private *dev_priv = dev->dev_private;
3582
3583                 mutex_lock(&dev->struct_mutex);
3584                 dev_priv->mm.interruptible = false;
3585                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3586                 dev_priv->mm.interruptible = true;
3587                 mutex_unlock(&dev->struct_mutex);
3588         }
3589
3590         /* Let userspace switch the overlay on again. In most cases userspace
3591          * has to recompute where to put it anyway.
3592          */
3593 }
3594
3595 /**
3596  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3597  * cursor plane briefly if not already running after enabling the display
3598  * plane.
3599  * This workaround avoids occasional blank screens when self refresh is
3600  * enabled.
3601  */
3602 static void
3603 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3604 {
3605         u32 cntl = I915_READ(CURCNTR(pipe));
3606
3607         if ((cntl & CURSOR_MODE) == 0) {
3608                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3609
3610                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3611                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3612                 intel_wait_for_vblank(dev_priv->dev, pipe);
3613                 I915_WRITE(CURCNTR(pipe), cntl);
3614                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3615                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3616         }
3617 }
3618
3619 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3620 {
3621         struct drm_device *dev = crtc->base.dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         struct intel_crtc_config *pipe_config = &crtc->config;
3624
3625         if (!crtc->config.gmch_pfit.control)
3626                 return;
3627
3628         /*
3629          * The panel fitter should only be adjusted whilst the pipe is disabled,
3630          * according to register description and PRM.
3631          */
3632         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3633         assert_pipe_disabled(dev_priv, crtc->pipe);
3634
3635         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3636         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3637
3638         /* Border color in case we don't scale up to the full screen. Black by
3639          * default, change to something else for debugging. */
3640         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3641 }
3642
3643 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3644 {
3645         struct drm_device *dev = crtc->dev;
3646         struct drm_i915_private *dev_priv = dev->dev_private;
3647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3648         struct intel_encoder *encoder;
3649         int pipe = intel_crtc->pipe;
3650         int plane = intel_crtc->plane;
3651
3652         WARN_ON(!crtc->enabled);
3653
3654         if (intel_crtc->active)
3655                 return;
3656
3657         intel_crtc->active = true;
3658         intel_update_watermarks(dev);
3659
3660         for_each_encoder_on_crtc(dev, crtc, encoder)
3661                 if (encoder->pre_pll_enable)
3662                         encoder->pre_pll_enable(encoder);
3663
3664         vlv_enable_pll(intel_crtc);
3665
3666         for_each_encoder_on_crtc(dev, crtc, encoder)
3667                 if (encoder->pre_enable)
3668                         encoder->pre_enable(encoder);
3669
3670         i9xx_pfit_enable(intel_crtc);
3671
3672         intel_crtc_load_lut(crtc);
3673
3674         intel_enable_pipe(dev_priv, pipe, false);
3675         intel_enable_plane(dev_priv, plane, pipe);
3676         intel_enable_planes(crtc);
3677         intel_crtc_update_cursor(crtc, true);
3678
3679         intel_update_fbc(dev);
3680
3681         for_each_encoder_on_crtc(dev, crtc, encoder)
3682                 encoder->enable(encoder);
3683 }
3684
3685 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3686 {
3687         struct drm_device *dev = crtc->dev;
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3690         struct intel_encoder *encoder;
3691         int pipe = intel_crtc->pipe;
3692         int plane = intel_crtc->plane;
3693
3694         WARN_ON(!crtc->enabled);
3695
3696         if (intel_crtc->active)
3697                 return;
3698
3699         intel_crtc->active = true;
3700         intel_update_watermarks(dev);
3701
3702         for_each_encoder_on_crtc(dev, crtc, encoder)
3703                 if (encoder->pre_enable)
3704                         encoder->pre_enable(encoder);
3705
3706         i9xx_enable_pll(intel_crtc);
3707
3708         i9xx_pfit_enable(intel_crtc);
3709
3710         intel_crtc_load_lut(crtc);
3711
3712         intel_enable_pipe(dev_priv, pipe, false);
3713         intel_enable_plane(dev_priv, plane, pipe);
3714         intel_enable_planes(crtc);
3715         /* The fixup needs to happen before cursor is enabled */
3716         if (IS_G4X(dev))
3717                 g4x_fixup_plane(dev_priv, pipe);
3718         intel_crtc_update_cursor(crtc, true);
3719
3720         /* Give the overlay scaler a chance to enable if it's on this pipe */
3721         intel_crtc_dpms_overlay(intel_crtc, true);
3722
3723         intel_update_fbc(dev);
3724
3725         for_each_encoder_on_crtc(dev, crtc, encoder)
3726                 encoder->enable(encoder);
3727 }
3728
3729 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3730 {
3731         struct drm_device *dev = crtc->base.dev;
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733
3734         if (!crtc->config.gmch_pfit.control)
3735                 return;
3736
3737         assert_pipe_disabled(dev_priv, crtc->pipe);
3738
3739         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3740                          I915_READ(PFIT_CONTROL));
3741         I915_WRITE(PFIT_CONTROL, 0);
3742 }
3743
3744 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3745 {
3746         struct drm_device *dev = crtc->dev;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3749         struct intel_encoder *encoder;
3750         int pipe = intel_crtc->pipe;
3751         int plane = intel_crtc->plane;
3752
3753         if (!intel_crtc->active)
3754                 return;
3755
3756         for_each_encoder_on_crtc(dev, crtc, encoder)
3757                 encoder->disable(encoder);
3758
3759         /* Give the overlay scaler a chance to disable if it's on this pipe */
3760         intel_crtc_wait_for_pending_flips(crtc);
3761         drm_vblank_off(dev, pipe);
3762
3763         if (dev_priv->fbc.plane == plane)
3764                 intel_disable_fbc(dev);
3765
3766         intel_crtc_dpms_overlay(intel_crtc, false);
3767         intel_crtc_update_cursor(crtc, false);
3768         intel_disable_planes(crtc);
3769         intel_disable_plane(dev_priv, plane, pipe);
3770
3771         intel_disable_pipe(dev_priv, pipe);
3772
3773         i9xx_pfit_disable(intel_crtc);
3774
3775         for_each_encoder_on_crtc(dev, crtc, encoder)
3776                 if (encoder->post_disable)
3777                         encoder->post_disable(encoder);
3778
3779         i9xx_disable_pll(dev_priv, pipe);
3780
3781         intel_crtc->active = false;
3782         intel_update_fbc(dev);
3783         intel_update_watermarks(dev);
3784 }
3785
3786 static void i9xx_crtc_off(struct drm_crtc *crtc)
3787 {
3788 }
3789
3790 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3791                                     bool enabled)
3792 {
3793         struct drm_device *dev = crtc->dev;
3794         struct drm_i915_master_private *master_priv;
3795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3796         int pipe = intel_crtc->pipe;
3797
3798         if (!dev->primary->master)
3799                 return;
3800
3801         master_priv = dev->primary->master->driver_priv;
3802         if (!master_priv->sarea_priv)
3803                 return;
3804
3805         switch (pipe) {
3806         case 0:
3807                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3808                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3809                 break;
3810         case 1:
3811                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3812                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3813                 break;
3814         default:
3815                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3816                 break;
3817         }
3818 }
3819
3820 /**
3821  * Sets the power management mode of the pipe and plane.
3822  */
3823 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3824 {
3825         struct drm_device *dev = crtc->dev;
3826         struct drm_i915_private *dev_priv = dev->dev_private;
3827         struct intel_encoder *intel_encoder;
3828         bool enable = false;
3829
3830         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3831                 enable |= intel_encoder->connectors_active;
3832
3833         if (enable)
3834                 dev_priv->display.crtc_enable(crtc);
3835         else
3836                 dev_priv->display.crtc_disable(crtc);
3837
3838         intel_crtc_update_sarea(crtc, enable);
3839 }
3840
3841 static void intel_crtc_disable(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         struct drm_connector *connector;
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847
3848         /* crtc should still be enabled when we disable it. */
3849         WARN_ON(!crtc->enabled);
3850
3851         dev_priv->display.crtc_disable(crtc);
3852         intel_crtc->eld_vld = false;
3853         intel_crtc_update_sarea(crtc, false);
3854         dev_priv->display.off(crtc);
3855
3856         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3857         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3858
3859         if (crtc->fb) {
3860                 mutex_lock(&dev->struct_mutex);
3861                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3862                 mutex_unlock(&dev->struct_mutex);
3863                 crtc->fb = NULL;
3864         }
3865
3866         /* Update computed state. */
3867         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3868                 if (!connector->encoder || !connector->encoder->crtc)
3869                         continue;
3870
3871                 if (connector->encoder->crtc != crtc)
3872                         continue;
3873
3874                 connector->dpms = DRM_MODE_DPMS_OFF;
3875                 to_intel_encoder(connector->encoder)->connectors_active = false;
3876         }
3877 }
3878
3879 void intel_encoder_destroy(struct drm_encoder *encoder)
3880 {
3881         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3882
3883         drm_encoder_cleanup(encoder);
3884         kfree(intel_encoder);
3885 }
3886
3887 /* Simple dpms helper for encoders with just one connector, no cloning and only
3888  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3889  * state of the entire output pipe. */
3890 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3891 {
3892         if (mode == DRM_MODE_DPMS_ON) {
3893                 encoder->connectors_active = true;
3894
3895                 intel_crtc_update_dpms(encoder->base.crtc);
3896         } else {
3897                 encoder->connectors_active = false;
3898
3899                 intel_crtc_update_dpms(encoder->base.crtc);
3900         }
3901 }
3902
3903 /* Cross check the actual hw state with our own modeset state tracking (and it's
3904  * internal consistency). */
3905 static void intel_connector_check_state(struct intel_connector *connector)
3906 {
3907         if (connector->get_hw_state(connector)) {
3908                 struct intel_encoder *encoder = connector->encoder;
3909                 struct drm_crtc *crtc;
3910                 bool encoder_enabled;
3911                 enum pipe pipe;
3912
3913                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3914                               connector->base.base.id,
3915                               drm_get_connector_name(&connector->base));
3916
3917                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3918                      "wrong connector dpms state\n");
3919                 WARN(connector->base.encoder != &encoder->base,
3920                      "active connector not linked to encoder\n");
3921                 WARN(!encoder->connectors_active,
3922                      "encoder->connectors_active not set\n");
3923
3924                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3925                 WARN(!encoder_enabled, "encoder not enabled\n");
3926                 if (WARN_ON(!encoder->base.crtc))
3927                         return;
3928
3929                 crtc = encoder->base.crtc;
3930
3931                 WARN(!crtc->enabled, "crtc not enabled\n");
3932                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3933                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3934                      "encoder active on the wrong pipe\n");
3935         }
3936 }
3937
3938 /* Even simpler default implementation, if there's really no special case to
3939  * consider. */
3940 void intel_connector_dpms(struct drm_connector *connector, int mode)
3941 {
3942         struct intel_encoder *encoder = intel_attached_encoder(connector);
3943
3944         /* All the simple cases only support two dpms states. */
3945         if (mode != DRM_MODE_DPMS_ON)
3946                 mode = DRM_MODE_DPMS_OFF;
3947
3948         if (mode == connector->dpms)
3949                 return;
3950
3951         connector->dpms = mode;
3952
3953         /* Only need to change hw state when actually enabled */
3954         if (encoder->base.crtc)
3955                 intel_encoder_dpms(encoder, mode);
3956         else
3957                 WARN_ON(encoder->connectors_active != false);
3958
3959         intel_modeset_check_state(connector->dev);
3960 }
3961
3962 /* Simple connector->get_hw_state implementation for encoders that support only
3963  * one connector and no cloning and hence the encoder state determines the state
3964  * of the connector. */
3965 bool intel_connector_get_hw_state(struct intel_connector *connector)
3966 {
3967         enum pipe pipe = 0;
3968         struct intel_encoder *encoder = connector->encoder;
3969
3970         return encoder->get_hw_state(encoder, &pipe);
3971 }
3972
3973 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3974                                      struct intel_crtc_config *pipe_config)
3975 {
3976         struct drm_i915_private *dev_priv = dev->dev_private;
3977         struct intel_crtc *pipe_B_crtc =
3978                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3979
3980         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3981                       pipe_name(pipe), pipe_config->fdi_lanes);
3982         if (pipe_config->fdi_lanes > 4) {
3983                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3984                               pipe_name(pipe), pipe_config->fdi_lanes);
3985                 return false;
3986         }
3987
3988         if (IS_HASWELL(dev)) {
3989                 if (pipe_config->fdi_lanes > 2) {
3990                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3991                                       pipe_config->fdi_lanes);
3992                         return false;
3993                 } else {
3994                         return true;
3995                 }
3996         }
3997
3998         if (INTEL_INFO(dev)->num_pipes == 2)
3999                 return true;
4000
4001         /* Ivybridge 3 pipe is really complicated */
4002         switch (pipe) {
4003         case PIPE_A:
4004                 return true;
4005         case PIPE_B:
4006                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4007                     pipe_config->fdi_lanes > 2) {
4008                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4009                                       pipe_name(pipe), pipe_config->fdi_lanes);
4010                         return false;
4011                 }
4012                 return true;
4013         case PIPE_C:
4014                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4015                     pipe_B_crtc->config.fdi_lanes <= 2) {
4016                         if (pipe_config->fdi_lanes > 2) {
4017                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4018                                               pipe_name(pipe), pipe_config->fdi_lanes);
4019                                 return false;
4020                         }
4021                 } else {
4022                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4023                         return false;
4024                 }
4025                 return true;
4026         default:
4027                 BUG();
4028         }
4029 }
4030
4031 #define RETRY 1
4032 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4033                                        struct intel_crtc_config *pipe_config)
4034 {
4035         struct drm_device *dev = intel_crtc->base.dev;
4036         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4037         int lane, link_bw, fdi_dotclock;
4038         bool setup_ok, needs_recompute = false;
4039
4040 retry:
4041         /* FDI is a binary signal running at ~2.7GHz, encoding
4042          * each output octet as 10 bits. The actual frequency
4043          * is stored as a divider into a 100MHz clock, and the
4044          * mode pixel clock is stored in units of 1KHz.
4045          * Hence the bw of each lane in terms of the mode signal
4046          * is:
4047          */
4048         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4049
4050         fdi_dotclock = adjusted_mode->clock;
4051         fdi_dotclock /= pipe_config->pixel_multiplier;
4052
4053         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4054                                            pipe_config->pipe_bpp);
4055
4056         pipe_config->fdi_lanes = lane;
4057
4058         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4059                                link_bw, &pipe_config->fdi_m_n);
4060
4061         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4062                                             intel_crtc->pipe, pipe_config);
4063         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4064                 pipe_config->pipe_bpp -= 2*3;
4065                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4066                               pipe_config->pipe_bpp);
4067                 needs_recompute = true;
4068                 pipe_config->bw_constrained = true;
4069
4070                 goto retry;
4071         }
4072
4073         if (needs_recompute)
4074                 return RETRY;
4075
4076         return setup_ok ? 0 : -EINVAL;
4077 }
4078
4079 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4080                                    struct intel_crtc_config *pipe_config)
4081 {
4082         pipe_config->ips_enabled = i915_enable_ips &&
4083                                    hsw_crtc_supports_ips(crtc) &&
4084                                    pipe_config->pipe_bpp <= 24;
4085 }
4086
4087 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4088                                      struct intel_crtc_config *pipe_config)
4089 {
4090         struct drm_device *dev = crtc->base.dev;
4091         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4092
4093         if (HAS_PCH_SPLIT(dev)) {
4094                 /* FDI link clock is fixed at 2.7G */
4095                 if (pipe_config->requested_mode.clock * 3
4096                     > IRONLAKE_FDI_FREQ * 4)
4097                         return -EINVAL;
4098         }
4099
4100         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4101          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4102          */
4103         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4104                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4105                 return -EINVAL;
4106
4107         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4108                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4109         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4110                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4111                  * for lvds. */
4112                 pipe_config->pipe_bpp = 8*3;
4113         }
4114
4115         if (HAS_IPS(dev))
4116                 hsw_compute_ips_config(crtc, pipe_config);
4117
4118         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4119          * clock survives for now. */
4120         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4121                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4122
4123         if (pipe_config->has_pch_encoder)
4124                 return ironlake_fdi_compute_config(crtc, pipe_config);
4125
4126         return 0;
4127 }
4128
4129 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4130 {
4131         return 400000; /* FIXME */
4132 }
4133
4134 static int i945_get_display_clock_speed(struct drm_device *dev)
4135 {
4136         return 400000;
4137 }
4138
4139 static int i915_get_display_clock_speed(struct drm_device *dev)
4140 {
4141         return 333000;
4142 }
4143
4144 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4145 {
4146         return 200000;
4147 }
4148
4149 static int pnv_get_display_clock_speed(struct drm_device *dev)
4150 {
4151         u16 gcfgc = 0;
4152
4153         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4154
4155         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4156         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4157                 return 267000;
4158         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4159                 return 333000;
4160         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4161                 return 444000;
4162         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4163                 return 200000;
4164         default:
4165                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4166         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4167                 return 133000;
4168         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4169                 return 167000;
4170         }
4171 }
4172
4173 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4174 {
4175         u16 gcfgc = 0;
4176
4177         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4178
4179         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4180                 return 133000;
4181         else {
4182                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4183                 case GC_DISPLAY_CLOCK_333_MHZ:
4184                         return 333000;
4185                 default:
4186                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4187                         return 190000;
4188                 }
4189         }
4190 }
4191
4192 static int i865_get_display_clock_speed(struct drm_device *dev)
4193 {
4194         return 266000;
4195 }
4196
4197 static int i855_get_display_clock_speed(struct drm_device *dev)
4198 {
4199         u16 hpllcc = 0;
4200         /* Assume that the hardware is in the high speed state.  This
4201          * should be the default.
4202          */
4203         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4204         case GC_CLOCK_133_200:
4205         case GC_CLOCK_100_200:
4206                 return 200000;
4207         case GC_CLOCK_166_250:
4208                 return 250000;
4209         case GC_CLOCK_100_133:
4210                 return 133000;
4211         }
4212
4213         /* Shouldn't happen */
4214         return 0;
4215 }
4216
4217 static int i830_get_display_clock_speed(struct drm_device *dev)
4218 {
4219         return 133000;
4220 }
4221
4222 static void
4223 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4224 {
4225         while (*num > DATA_LINK_M_N_MASK ||
4226                *den > DATA_LINK_M_N_MASK) {
4227                 *num >>= 1;
4228                 *den >>= 1;
4229         }
4230 }
4231
4232 static void compute_m_n(unsigned int m, unsigned int n,
4233                         uint32_t *ret_m, uint32_t *ret_n)
4234 {
4235         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4236         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4237         intel_reduce_m_n_ratio(ret_m, ret_n);
4238 }
4239
4240 void
4241 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4242                        int pixel_clock, int link_clock,
4243                        struct intel_link_m_n *m_n)
4244 {
4245         m_n->tu = 64;
4246
4247         compute_m_n(bits_per_pixel * pixel_clock,
4248                     link_clock * nlanes * 8,
4249                     &m_n->gmch_m, &m_n->gmch_n);
4250
4251         compute_m_n(pixel_clock, link_clock,
4252                     &m_n->link_m, &m_n->link_n);
4253 }
4254
4255 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4256 {
4257         if (i915_panel_use_ssc >= 0)
4258                 return i915_panel_use_ssc != 0;
4259         return dev_priv->vbt.lvds_use_ssc
4260                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4261 }
4262
4263 static int vlv_get_refclk(struct drm_crtc *crtc)
4264 {
4265         struct drm_device *dev = crtc->dev;
4266         struct drm_i915_private *dev_priv = dev->dev_private;
4267         int refclk = 27000; /* for DP & HDMI */
4268
4269         return 100000; /* only one validated so far */
4270
4271         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4272                 refclk = 96000;
4273         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4274                 if (intel_panel_use_ssc(dev_priv))
4275                         refclk = 100000;
4276                 else
4277                         refclk = 96000;
4278         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4279                 refclk = 100000;
4280         }
4281
4282         return refclk;
4283 }
4284
4285 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4286 {
4287         struct drm_device *dev = crtc->dev;
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         int refclk;
4290
4291         if (IS_VALLEYVIEW(dev)) {
4292                 refclk = vlv_get_refclk(crtc);
4293         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4294             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4295                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4296                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4297                               refclk / 1000);
4298         } else if (!IS_GEN2(dev)) {
4299                 refclk = 96000;
4300         } else {
4301                 refclk = 48000;
4302         }
4303
4304         return refclk;
4305 }
4306
4307 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4308 {
4309         return (1 << dpll->n) << 16 | dpll->m2;
4310 }
4311
4312 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4313 {
4314         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4315 }
4316
4317 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4318                                      intel_clock_t *reduced_clock)
4319 {
4320         struct drm_device *dev = crtc->base.dev;
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322         int pipe = crtc->pipe;
4323         u32 fp, fp2 = 0;
4324
4325         if (IS_PINEVIEW(dev)) {
4326                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4327                 if (reduced_clock)
4328                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4329         } else {
4330                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4331                 if (reduced_clock)
4332                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4333         }
4334
4335         I915_WRITE(FP0(pipe), fp);
4336         crtc->config.dpll_hw_state.fp0 = fp;
4337
4338         crtc->lowfreq_avail = false;
4339         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4340             reduced_clock && i915_powersave) {
4341                 I915_WRITE(FP1(pipe), fp2);
4342                 crtc->config.dpll_hw_state.fp1 = fp2;
4343                 crtc->lowfreq_avail = true;
4344         } else {
4345                 I915_WRITE(FP1(pipe), fp);
4346                 crtc->config.dpll_hw_state.fp1 = fp;
4347         }
4348 }
4349
4350 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4351 {
4352         u32 reg_val;
4353
4354         /*
4355          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4356          * and set it to a reasonable value instead.
4357          */
4358         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4359         reg_val &= 0xffffff00;
4360         reg_val |= 0x00000030;
4361         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4362
4363         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4364         reg_val &= 0x8cffffff;
4365         reg_val = 0x8c000000;
4366         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4367
4368         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4369         reg_val &= 0xffffff00;
4370         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4371
4372         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4373         reg_val &= 0x00ffffff;
4374         reg_val |= 0xb0000000;
4375         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4376 }
4377
4378 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4379                                          struct intel_link_m_n *m_n)
4380 {
4381         struct drm_device *dev = crtc->base.dev;
4382         struct drm_i915_private *dev_priv = dev->dev_private;
4383         int pipe = crtc->pipe;
4384
4385         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4386         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4387         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4388         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4389 }
4390
4391 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4392                                          struct intel_link_m_n *m_n)
4393 {
4394         struct drm_device *dev = crtc->base.dev;
4395         struct drm_i915_private *dev_priv = dev->dev_private;
4396         int pipe = crtc->pipe;
4397         enum transcoder transcoder = crtc->config.cpu_transcoder;
4398
4399         if (INTEL_INFO(dev)->gen >= 5) {
4400                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4401                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4402                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4403                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4404         } else {
4405                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4406                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4407                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4408                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4409         }
4410 }
4411
4412 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4413 {
4414         if (crtc->config.has_pch_encoder)
4415                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4416         else
4417                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4418 }
4419
4420 static void vlv_update_pll(struct intel_crtc *crtc)
4421 {
4422         struct drm_device *dev = crtc->base.dev;
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         int pipe = crtc->pipe;
4425         u32 dpll, mdiv;
4426         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4427         u32 coreclk, reg_val, dpll_md;
4428
4429         mutex_lock(&dev_priv->dpio_lock);
4430
4431         bestn = crtc->config.dpll.n;
4432         bestm1 = crtc->config.dpll.m1;
4433         bestm2 = crtc->config.dpll.m2;
4434         bestp1 = crtc->config.dpll.p1;
4435         bestp2 = crtc->config.dpll.p2;
4436
4437         /* See eDP HDMI DPIO driver vbios notes doc */
4438
4439         /* PLL B needs special handling */
4440         if (pipe)
4441                 vlv_pllb_recal_opamp(dev_priv);
4442
4443         /* Set up Tx target for periodic Rcomp update */
4444         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4445
4446         /* Disable target IRef on PLL */
4447         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4448         reg_val &= 0x00ffffff;
4449         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4450
4451         /* Disable fast lock */
4452         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4453
4454         /* Set idtafcrecal before PLL is enabled */
4455         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4456         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4457         mdiv |= ((bestn << DPIO_N_SHIFT));
4458         mdiv |= (1 << DPIO_K_SHIFT);
4459
4460         /*
4461          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4462          * but we don't support that).
4463          * Note: don't use the DAC post divider as it seems unstable.
4464          */
4465         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4466         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4467
4468         mdiv |= DPIO_ENABLE_CALIBRATION;
4469         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4470
4471         /* Set HBR and RBR LPF coefficients */
4472         if (crtc->config.port_clock == 162000 ||
4473             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4474             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4475                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4476                                  0x009f0003);
4477         else
4478                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4479                                  0x00d0000f);
4480
4481         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4482             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4483                 /* Use SSC source */
4484                 if (!pipe)
4485                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4486                                          0x0df40000);
4487                 else
4488                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4489                                          0x0df70000);
4490         } else { /* HDMI or VGA */
4491                 /* Use bend source */
4492                 if (!pipe)
4493                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4494                                          0x0df70000);
4495                 else
4496                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4497                                          0x0df40000);
4498         }
4499
4500         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4501         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4502         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4503             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4504                 coreclk |= 0x01000000;
4505         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4506
4507         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4508
4509         /* Enable DPIO clock input */
4510         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4511                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4512         if (pipe)
4513                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4514
4515         dpll |= DPLL_VCO_ENABLE;
4516         crtc->config.dpll_hw_state.dpll = dpll;
4517
4518         dpll_md = (crtc->config.pixel_multiplier - 1)
4519                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4520         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4521
4522         if (crtc->config.has_dp_encoder)
4523                 intel_dp_set_m_n(crtc);
4524
4525         mutex_unlock(&dev_priv->dpio_lock);
4526 }
4527
4528 static void i9xx_update_pll(struct intel_crtc *crtc,
4529                             intel_clock_t *reduced_clock,
4530                             int num_connectors)
4531 {
4532         struct drm_device *dev = crtc->base.dev;
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534         u32 dpll;
4535         bool is_sdvo;
4536         struct dpll *clock = &crtc->config.dpll;
4537
4538         i9xx_update_pll_dividers(crtc, reduced_clock);
4539
4540         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4541                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4542
4543         dpll = DPLL_VGA_MODE_DIS;
4544
4545         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4546                 dpll |= DPLLB_MODE_LVDS;
4547         else
4548                 dpll |= DPLLB_MODE_DAC_SERIAL;
4549
4550         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4551                 dpll |= (crtc->config.pixel_multiplier - 1)
4552                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4553         }
4554
4555         if (is_sdvo)
4556                 dpll |= DPLL_SDVO_HIGH_SPEED;
4557
4558         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4559                 dpll |= DPLL_SDVO_HIGH_SPEED;
4560
4561         /* compute bitmask from p1 value */
4562         if (IS_PINEVIEW(dev))
4563                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4564         else {
4565                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4566                 if (IS_G4X(dev) && reduced_clock)
4567                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4568         }
4569         switch (clock->p2) {
4570         case 5:
4571                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4572                 break;
4573         case 7:
4574                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4575                 break;
4576         case 10:
4577                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4578                 break;
4579         case 14:
4580                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4581                 break;
4582         }
4583         if (INTEL_INFO(dev)->gen >= 4)
4584                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4585
4586         if (crtc->config.sdvo_tv_clock)
4587                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4588         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4589                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4590                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4591         else
4592                 dpll |= PLL_REF_INPUT_DREFCLK;
4593
4594         dpll |= DPLL_VCO_ENABLE;
4595         crtc->config.dpll_hw_state.dpll = dpll;
4596
4597         if (INTEL_INFO(dev)->gen >= 4) {
4598                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4599                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4600                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4601         }
4602
4603         if (crtc->config.has_dp_encoder)
4604                 intel_dp_set_m_n(crtc);
4605 }
4606
4607 static void i8xx_update_pll(struct intel_crtc *crtc,
4608                             intel_clock_t *reduced_clock,
4609                             int num_connectors)
4610 {
4611         struct drm_device *dev = crtc->base.dev;
4612         struct drm_i915_private *dev_priv = dev->dev_private;
4613         u32 dpll;
4614         struct dpll *clock = &crtc->config.dpll;
4615
4616         i9xx_update_pll_dividers(crtc, reduced_clock);
4617
4618         dpll = DPLL_VGA_MODE_DIS;
4619
4620         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4621                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4622         } else {
4623                 if (clock->p1 == 2)
4624                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4625                 else
4626                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4627                 if (clock->p2 == 4)
4628                         dpll |= PLL_P2_DIVIDE_BY_4;
4629         }
4630
4631         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4632                 dpll |= DPLL_DVO_2X_MODE;
4633
4634         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4635                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4636                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4637         else
4638                 dpll |= PLL_REF_INPUT_DREFCLK;
4639
4640         dpll |= DPLL_VCO_ENABLE;
4641         crtc->config.dpll_hw_state.dpll = dpll;
4642 }
4643
4644 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4645 {
4646         struct drm_device *dev = intel_crtc->base.dev;
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         enum pipe pipe = intel_crtc->pipe;
4649         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4650         struct drm_display_mode *adjusted_mode =
4651                 &intel_crtc->config.adjusted_mode;
4652         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4653         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4654
4655         /* We need to be careful not to changed the adjusted mode, for otherwise
4656          * the hw state checker will get angry at the mismatch. */
4657         crtc_vtotal = adjusted_mode->crtc_vtotal;
4658         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4659
4660         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4661                 /* the chip adds 2 halflines automatically */
4662                 crtc_vtotal -= 1;
4663                 crtc_vblank_end -= 1;
4664                 vsyncshift = adjusted_mode->crtc_hsync_start
4665                              - adjusted_mode->crtc_htotal / 2;
4666         } else {
4667                 vsyncshift = 0;
4668         }
4669
4670         if (INTEL_INFO(dev)->gen > 3)
4671                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4672
4673         I915_WRITE(HTOTAL(cpu_transcoder),
4674                    (adjusted_mode->crtc_hdisplay - 1) |
4675                    ((adjusted_mode->crtc_htotal - 1) << 16));
4676         I915_WRITE(HBLANK(cpu_transcoder),
4677                    (adjusted_mode->crtc_hblank_start - 1) |
4678                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4679         I915_WRITE(HSYNC(cpu_transcoder),
4680                    (adjusted_mode->crtc_hsync_start - 1) |
4681                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4682
4683         I915_WRITE(VTOTAL(cpu_transcoder),
4684                    (adjusted_mode->crtc_vdisplay - 1) |
4685                    ((crtc_vtotal - 1) << 16));
4686         I915_WRITE(VBLANK(cpu_transcoder),
4687                    (adjusted_mode->crtc_vblank_start - 1) |
4688                    ((crtc_vblank_end - 1) << 16));
4689         I915_WRITE(VSYNC(cpu_transcoder),
4690                    (adjusted_mode->crtc_vsync_start - 1) |
4691                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4692
4693         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4694          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4695          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4696          * bits. */
4697         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4698             (pipe == PIPE_B || pipe == PIPE_C))
4699                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4700
4701         /* pipesrc controls the size that is scaled from, which should
4702          * always be the user's requested size.
4703          */
4704         I915_WRITE(PIPESRC(pipe),
4705                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4706 }
4707
4708 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4709                                    struct intel_crtc_config *pipe_config)
4710 {
4711         struct drm_device *dev = crtc->base.dev;
4712         struct drm_i915_private *dev_priv = dev->dev_private;
4713         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4714         uint32_t tmp;
4715
4716         tmp = I915_READ(HTOTAL(cpu_transcoder));
4717         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4718         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4719         tmp = I915_READ(HBLANK(cpu_transcoder));
4720         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4721         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4722         tmp = I915_READ(HSYNC(cpu_transcoder));
4723         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4724         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4725
4726         tmp = I915_READ(VTOTAL(cpu_transcoder));
4727         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4728         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4729         tmp = I915_READ(VBLANK(cpu_transcoder));
4730         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4731         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4732         tmp = I915_READ(VSYNC(cpu_transcoder));
4733         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4734         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4735
4736         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4737                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4738                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4739                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4740         }
4741
4742         tmp = I915_READ(PIPESRC(crtc->pipe));
4743         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4744         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4745 }
4746
4747 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4748                                              struct intel_crtc_config *pipe_config)
4749 {
4750         struct drm_crtc *crtc = &intel_crtc->base;
4751
4752         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4753         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4754         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4755         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4756
4757         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4758         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4759         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4760         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4761
4762         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4763
4764         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4765         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4766 }
4767
4768 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4769 {
4770         struct drm_device *dev = intel_crtc->base.dev;
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         uint32_t pipeconf;
4773
4774         pipeconf = 0;
4775
4776         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4777                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4778                  * core speed.
4779                  *
4780                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4781                  * pipe == 0 check?
4782                  */
4783                 if (intel_crtc->config.requested_mode.clock >
4784                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4785                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4786         }
4787
4788         /* only g4x and later have fancy bpc/dither controls */
4789         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4790                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4791                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4792                         pipeconf |= PIPECONF_DITHER_EN |
4793                                     PIPECONF_DITHER_TYPE_SP;
4794
4795                 switch (intel_crtc->config.pipe_bpp) {
4796                 case 18:
4797                         pipeconf |= PIPECONF_6BPC;
4798                         break;
4799                 case 24:
4800                         pipeconf |= PIPECONF_8BPC;
4801                         break;
4802                 case 30:
4803                         pipeconf |= PIPECONF_10BPC;
4804                         break;
4805                 default:
4806                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4807                         BUG();
4808                 }
4809         }
4810
4811         if (HAS_PIPE_CXSR(dev)) {
4812                 if (intel_crtc->lowfreq_avail) {
4813                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4814                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4815                 } else {
4816                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4817                 }
4818         }
4819
4820         if (!IS_GEN2(dev) &&
4821             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4822                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4823         else
4824                 pipeconf |= PIPECONF_PROGRESSIVE;
4825
4826         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4827                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4828
4829         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4830         POSTING_READ(PIPECONF(intel_crtc->pipe));
4831 }
4832
4833 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4834                               int x, int y,
4835                               struct drm_framebuffer *fb)
4836 {
4837         struct drm_device *dev = crtc->dev;
4838         struct drm_i915_private *dev_priv = dev->dev_private;
4839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4840         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4841         int pipe = intel_crtc->pipe;
4842         int plane = intel_crtc->plane;
4843         int refclk, num_connectors = 0;
4844         intel_clock_t clock, reduced_clock;
4845         u32 dspcntr;
4846         bool ok, has_reduced_clock = false;
4847         bool is_lvds = false;
4848         struct intel_encoder *encoder;
4849         const intel_limit_t *limit;
4850         int ret;
4851
4852         for_each_encoder_on_crtc(dev, crtc, encoder) {
4853                 switch (encoder->type) {
4854                 case INTEL_OUTPUT_LVDS:
4855                         is_lvds = true;
4856                         break;
4857                 }
4858
4859                 num_connectors++;
4860         }
4861
4862         refclk = i9xx_get_refclk(crtc, num_connectors);
4863
4864         /*
4865          * Returns a set of divisors for the desired target clock with the given
4866          * refclk, or FALSE.  The returned values represent the clock equation:
4867          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4868          */
4869         limit = intel_limit(crtc, refclk);
4870         ok = dev_priv->display.find_dpll(limit, crtc,
4871                                          intel_crtc->config.port_clock,
4872                                          refclk, NULL, &clock);
4873         if (!ok && !intel_crtc->config.clock_set) {
4874                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4875                 return -EINVAL;
4876         }
4877
4878         /* Ensure that the cursor is valid for the new mode before changing... */
4879         intel_crtc_update_cursor(crtc, true);
4880
4881         if (is_lvds && dev_priv->lvds_downclock_avail) {
4882                 /*
4883                  * Ensure we match the reduced clock's P to the target clock.
4884                  * If the clocks don't match, we can't switch the display clock
4885                  * by using the FP0/FP1. In such case we will disable the LVDS
4886                  * downclock feature.
4887                 */
4888                 has_reduced_clock =
4889                         dev_priv->display.find_dpll(limit, crtc,
4890                                                     dev_priv->lvds_downclock,
4891                                                     refclk, &clock,
4892                                                     &reduced_clock);
4893         }
4894         /* Compat-code for transition, will disappear. */
4895         if (!intel_crtc->config.clock_set) {
4896                 intel_crtc->config.dpll.n = clock.n;
4897                 intel_crtc->config.dpll.m1 = clock.m1;
4898                 intel_crtc->config.dpll.m2 = clock.m2;
4899                 intel_crtc->config.dpll.p1 = clock.p1;
4900                 intel_crtc->config.dpll.p2 = clock.p2;
4901         }
4902
4903         if (IS_GEN2(dev))
4904                 i8xx_update_pll(intel_crtc,
4905                                 has_reduced_clock ? &reduced_clock : NULL,
4906                                 num_connectors);
4907         else if (IS_VALLEYVIEW(dev))
4908                 vlv_update_pll(intel_crtc);
4909         else
4910                 i9xx_update_pll(intel_crtc,
4911                                 has_reduced_clock ? &reduced_clock : NULL,
4912                                 num_connectors);
4913
4914         /* Set up the display plane register */
4915         dspcntr = DISPPLANE_GAMMA_ENABLE;
4916
4917         if (!IS_VALLEYVIEW(dev)) {
4918                 if (pipe == 0)
4919                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4920                 else
4921                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4922         }
4923
4924         intel_set_pipe_timings(intel_crtc);
4925
4926         /* pipesrc and dspsize control the size that is scaled from,
4927          * which should always be the user's requested size.
4928          */
4929         I915_WRITE(DSPSIZE(plane),
4930                    ((mode->vdisplay - 1) << 16) |
4931                    (mode->hdisplay - 1));
4932         I915_WRITE(DSPPOS(plane), 0);
4933
4934         i9xx_set_pipeconf(intel_crtc);
4935
4936         I915_WRITE(DSPCNTR(plane), dspcntr);
4937         POSTING_READ(DSPCNTR(plane));
4938
4939         ret = intel_pipe_set_base(crtc, x, y, fb);
4940
4941         intel_update_watermarks(dev);
4942
4943         return ret;
4944 }
4945
4946 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4947                                  struct intel_crtc_config *pipe_config)
4948 {
4949         struct drm_device *dev = crtc->base.dev;
4950         struct drm_i915_private *dev_priv = dev->dev_private;
4951         uint32_t tmp;
4952
4953         tmp = I915_READ(PFIT_CONTROL);
4954         if (!(tmp & PFIT_ENABLE))
4955                 return;
4956
4957         /* Check whether the pfit is attached to our pipe. */
4958         if (INTEL_INFO(dev)->gen < 4) {
4959                 if (crtc->pipe != PIPE_B)
4960                         return;
4961         } else {
4962                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4963                         return;
4964         }
4965
4966         pipe_config->gmch_pfit.control = tmp;
4967         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4968         if (INTEL_INFO(dev)->gen < 5)
4969                 pipe_config->gmch_pfit.lvds_border_bits =
4970                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4971 }
4972
4973 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4974                                  struct intel_crtc_config *pipe_config)
4975 {
4976         struct drm_device *dev = crtc->base.dev;
4977         struct drm_i915_private *dev_priv = dev->dev_private;
4978         uint32_t tmp;
4979
4980         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4981         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4982
4983         tmp = I915_READ(PIPECONF(crtc->pipe));
4984         if (!(tmp & PIPECONF_ENABLE))
4985                 return false;
4986
4987         intel_get_pipe_timings(crtc, pipe_config);
4988
4989         i9xx_get_pfit_config(crtc, pipe_config);
4990
4991         if (INTEL_INFO(dev)->gen >= 4) {
4992                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4993                 pipe_config->pixel_multiplier =
4994                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4995                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4996                 pipe_config->dpll_hw_state.dpll_md = tmp;
4997         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4998                 tmp = I915_READ(DPLL(crtc->pipe));
4999                 pipe_config->pixel_multiplier =
5000                         ((tmp & SDVO_MULTIPLIER_MASK)
5001                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5002         } else {
5003                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5004                  * port and will be fixed up in the encoder->get_config
5005                  * function. */
5006                 pipe_config->pixel_multiplier = 1;
5007         }
5008         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5009         if (!IS_VALLEYVIEW(dev)) {
5010                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5011                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5012         } else {
5013                 /* Mask out read-only status bits. */
5014                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5015                                                      DPLL_PORTC_READY_MASK |
5016                                                      DPLL_PORTB_READY_MASK);
5017         }
5018
5019         return true;
5020 }
5021
5022 static void ironlake_init_pch_refclk(struct drm_device *dev)
5023 {
5024         struct drm_i915_private *dev_priv = dev->dev_private;
5025         struct drm_mode_config *mode_config = &dev->mode_config;
5026         struct intel_encoder *encoder;
5027         u32 val, final;
5028         bool has_lvds = false;
5029         bool has_cpu_edp = false;
5030         bool has_panel = false;
5031         bool has_ck505 = false;
5032         bool can_ssc = false;
5033
5034         /* We need to take the global config into account */
5035         list_for_each_entry(encoder, &mode_config->encoder_list,
5036                             base.head) {
5037                 switch (encoder->type) {
5038                 case INTEL_OUTPUT_LVDS:
5039                         has_panel = true;
5040                         has_lvds = true;
5041                         break;
5042                 case INTEL_OUTPUT_EDP:
5043                         has_panel = true;
5044                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5045                                 has_cpu_edp = true;
5046                         break;
5047                 }
5048         }
5049
5050         if (HAS_PCH_IBX(dev)) {
5051                 has_ck505 = dev_priv->vbt.display_clock_mode;
5052                 can_ssc = has_ck505;
5053         } else {
5054                 has_ck505 = false;
5055                 can_ssc = true;
5056         }
5057
5058         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5059                       has_panel, has_lvds, has_ck505);
5060
5061         /* Ironlake: try to setup display ref clock before DPLL
5062          * enabling. This is only under driver's control after
5063          * PCH B stepping, previous chipset stepping should be
5064          * ignoring this setting.
5065          */
5066         val = I915_READ(PCH_DREF_CONTROL);
5067
5068         /* As we must carefully and slowly disable/enable each source in turn,
5069          * compute the final state we want first and check if we need to
5070          * make any changes at all.
5071          */
5072         final = val;
5073         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5074         if (has_ck505)
5075                 final |= DREF_NONSPREAD_CK505_ENABLE;
5076         else
5077                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5078
5079         final &= ~DREF_SSC_SOURCE_MASK;
5080         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5081         final &= ~DREF_SSC1_ENABLE;
5082
5083         if (has_panel) {
5084                 final |= DREF_SSC_SOURCE_ENABLE;
5085
5086                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5087                         final |= DREF_SSC1_ENABLE;
5088
5089                 if (has_cpu_edp) {
5090                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5091                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5092                         else
5093                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5094                 } else
5095                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5096         } else {
5097                 final |= DREF_SSC_SOURCE_DISABLE;
5098                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5099         }
5100
5101         if (final == val)
5102                 return;
5103
5104         /* Always enable nonspread source */
5105         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5106
5107         if (has_ck505)
5108                 val |= DREF_NONSPREAD_CK505_ENABLE;
5109         else
5110                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5111
5112         if (has_panel) {
5113                 val &= ~DREF_SSC_SOURCE_MASK;
5114                 val |= DREF_SSC_SOURCE_ENABLE;
5115
5116                 /* SSC must be turned on before enabling the CPU output  */
5117                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5118                         DRM_DEBUG_KMS("Using SSC on panel\n");
5119                         val |= DREF_SSC1_ENABLE;
5120                 } else
5121                         val &= ~DREF_SSC1_ENABLE;
5122
5123                 /* Get SSC going before enabling the outputs */
5124                 I915_WRITE(PCH_DREF_CONTROL, val);
5125                 POSTING_READ(PCH_DREF_CONTROL);
5126                 udelay(200);
5127
5128                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5129
5130                 /* Enable CPU source on CPU attached eDP */
5131                 if (has_cpu_edp) {
5132                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5133                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5134                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5135                         }
5136                         else
5137                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5138                 } else
5139                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5140
5141                 I915_WRITE(PCH_DREF_CONTROL, val);
5142                 POSTING_READ(PCH_DREF_CONTROL);
5143                 udelay(200);
5144         } else {
5145                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5146
5147                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5148
5149                 /* Turn off CPU output */
5150                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5151
5152                 I915_WRITE(PCH_DREF_CONTROL, val);
5153                 POSTING_READ(PCH_DREF_CONTROL);
5154                 udelay(200);
5155
5156                 /* Turn off the SSC source */
5157                 val &= ~DREF_SSC_SOURCE_MASK;
5158                 val |= DREF_SSC_SOURCE_DISABLE;
5159
5160                 /* Turn off SSC1 */
5161                 val &= ~DREF_SSC1_ENABLE;
5162
5163                 I915_WRITE(PCH_DREF_CONTROL, val);
5164                 POSTING_READ(PCH_DREF_CONTROL);
5165                 udelay(200);
5166         }
5167
5168         BUG_ON(val != final);
5169 }
5170
5171 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5172 {
5173         uint32_t tmp;
5174
5175         tmp = I915_READ(SOUTH_CHICKEN2);
5176         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5177         I915_WRITE(SOUTH_CHICKEN2, tmp);
5178
5179         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5180                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5181                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5182
5183         tmp = I915_READ(SOUTH_CHICKEN2);
5184         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5185         I915_WRITE(SOUTH_CHICKEN2, tmp);
5186
5187         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5188                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5189                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5190 }
5191
5192 /* WaMPhyProgramming:hsw */
5193 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5194 {
5195         uint32_t tmp;
5196
5197         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5198         tmp &= ~(0xFF << 24);
5199         tmp |= (0x12 << 24);
5200         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5201
5202         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5203         tmp |= (1 << 11);
5204         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5205
5206         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5207         tmp |= (1 << 11);
5208         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5209
5210         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5211         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5212         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5213
5214         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5215         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5216         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5217
5218         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5219         tmp &= ~(7 << 13);
5220         tmp |= (5 << 13);
5221         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5222
5223         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5224         tmp &= ~(7 << 13);
5225         tmp |= (5 << 13);
5226         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5227
5228         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5229         tmp &= ~0xFF;
5230         tmp |= 0x1C;
5231         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5232
5233         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5234         tmp &= ~0xFF;
5235         tmp |= 0x1C;
5236         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5237
5238         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5239         tmp &= ~(0xFF << 16);
5240         tmp |= (0x1C << 16);
5241         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5242
5243         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5244         tmp &= ~(0xFF << 16);
5245         tmp |= (0x1C << 16);
5246         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5247
5248         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5249         tmp |= (1 << 27);
5250         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5251
5252         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5253         tmp |= (1 << 27);
5254         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5255
5256         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5257         tmp &= ~(0xF << 28);
5258         tmp |= (4 << 28);
5259         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5260
5261         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5262         tmp &= ~(0xF << 28);
5263         tmp |= (4 << 28);
5264         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5265 }
5266
5267 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5268  * Programming" based on the parameters passed:
5269  * - Sequence to enable CLKOUT_DP
5270  * - Sequence to enable CLKOUT_DP without spread
5271  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5272  */
5273 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5274                                  bool with_fdi)
5275 {
5276         struct drm_i915_private *dev_priv = dev->dev_private;
5277         uint32_t reg, tmp;
5278
5279         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5280                 with_spread = true;
5281         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5282                  with_fdi, "LP PCH doesn't have FDI\n"))
5283                 with_fdi = false;
5284
5285         mutex_lock(&dev_priv->dpio_lock);
5286
5287         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5288         tmp &= ~SBI_SSCCTL_DISABLE;
5289         tmp |= SBI_SSCCTL_PATHALT;
5290         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5291
5292         udelay(24);
5293
5294         if (with_spread) {
5295                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5296                 tmp &= ~SBI_SSCCTL_PATHALT;
5297                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5298
5299                 if (with_fdi) {
5300                         lpt_reset_fdi_mphy(dev_priv);
5301                         lpt_program_fdi_mphy(dev_priv);
5302                 }
5303         }
5304
5305         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5306                SBI_GEN0 : SBI_DBUFF0;
5307         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5308         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5309         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5310
5311         mutex_unlock(&dev_priv->dpio_lock);
5312 }
5313
5314 /* Sequence to disable CLKOUT_DP */
5315 static void lpt_disable_clkout_dp(struct drm_device *dev)
5316 {
5317         struct drm_i915_private *dev_priv = dev->dev_private;
5318         uint32_t reg, tmp;
5319
5320         mutex_lock(&dev_priv->dpio_lock);
5321
5322         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5323                SBI_GEN0 : SBI_DBUFF0;
5324         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5325         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5326         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5327
5328         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5329         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5330                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5331                         tmp |= SBI_SSCCTL_PATHALT;
5332                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5333                         udelay(32);
5334                 }
5335                 tmp |= SBI_SSCCTL_DISABLE;
5336                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5337         }
5338
5339         mutex_unlock(&dev_priv->dpio_lock);
5340 }
5341
5342 static void lpt_init_pch_refclk(struct drm_device *dev)
5343 {
5344         struct drm_mode_config *mode_config = &dev->mode_config;
5345         struct intel_encoder *encoder;
5346         bool has_vga = false;
5347
5348         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5349                 switch (encoder->type) {
5350                 case INTEL_OUTPUT_ANALOG:
5351                         has_vga = true;
5352                         break;
5353                 }
5354         }
5355
5356         if (has_vga)
5357                 lpt_enable_clkout_dp(dev, true, true);
5358         else
5359                 lpt_disable_clkout_dp(dev);
5360 }
5361
5362 /*
5363  * Initialize reference clocks when the driver loads
5364  */
5365 void intel_init_pch_refclk(struct drm_device *dev)
5366 {
5367         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5368                 ironlake_init_pch_refclk(dev);
5369         else if (HAS_PCH_LPT(dev))
5370                 lpt_init_pch_refclk(dev);
5371 }
5372
5373 static int ironlake_get_refclk(struct drm_crtc *crtc)
5374 {
5375         struct drm_device *dev = crtc->dev;
5376         struct drm_i915_private *dev_priv = dev->dev_private;
5377         struct intel_encoder *encoder;
5378         int num_connectors = 0;
5379         bool is_lvds = false;
5380
5381         for_each_encoder_on_crtc(dev, crtc, encoder) {
5382                 switch (encoder->type) {
5383                 case INTEL_OUTPUT_LVDS:
5384                         is_lvds = true;
5385                         break;
5386                 }
5387                 num_connectors++;
5388         }
5389
5390         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5391                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5392                               dev_priv->vbt.lvds_ssc_freq);
5393                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5394         }
5395
5396         return 120000;
5397 }
5398
5399 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5400 {
5401         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5403         int pipe = intel_crtc->pipe;
5404         uint32_t val;
5405
5406         val = 0;
5407
5408         switch (intel_crtc->config.pipe_bpp) {
5409         case 18:
5410                 val |= PIPECONF_6BPC;
5411                 break;
5412         case 24:
5413                 val |= PIPECONF_8BPC;
5414                 break;
5415         case 30:
5416                 val |= PIPECONF_10BPC;
5417                 break;
5418         case 36:
5419                 val |= PIPECONF_12BPC;
5420                 break;
5421         default:
5422                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5423                 BUG();
5424         }
5425
5426         if (intel_crtc->config.dither)
5427                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5428
5429         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5430                 val |= PIPECONF_INTERLACED_ILK;
5431         else
5432                 val |= PIPECONF_PROGRESSIVE;
5433
5434         if (intel_crtc->config.limited_color_range)
5435                 val |= PIPECONF_COLOR_RANGE_SELECT;
5436
5437         I915_WRITE(PIPECONF(pipe), val);
5438         POSTING_READ(PIPECONF(pipe));
5439 }
5440
5441 /*
5442  * Set up the pipe CSC unit.
5443  *
5444  * Currently only full range RGB to limited range RGB conversion
5445  * is supported, but eventually this should handle various
5446  * RGB<->YCbCr scenarios as well.
5447  */
5448 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5449 {
5450         struct drm_device *dev = crtc->dev;
5451         struct drm_i915_private *dev_priv = dev->dev_private;
5452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5453         int pipe = intel_crtc->pipe;
5454         uint16_t coeff = 0x7800; /* 1.0 */
5455
5456         /*
5457          * TODO: Check what kind of values actually come out of the pipe
5458          * with these coeff/postoff values and adjust to get the best
5459          * accuracy. Perhaps we even need to take the bpc value into
5460          * consideration.
5461          */
5462
5463         if (intel_crtc->config.limited_color_range)
5464                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5465
5466         /*
5467          * GY/GU and RY/RU should be the other way around according
5468          * to BSpec, but reality doesn't agree. Just set them up in
5469          * a way that results in the correct picture.
5470          */
5471         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5472         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5473
5474         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5475         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5476
5477         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5478         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5479
5480         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5481         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5482         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5483
5484         if (INTEL_INFO(dev)->gen > 6) {
5485                 uint16_t postoff = 0;
5486
5487                 if (intel_crtc->config.limited_color_range)
5488                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5489
5490                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5491                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5492                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5493
5494                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5495         } else {
5496                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5497
5498                 if (intel_crtc->config.limited_color_range)
5499                         mode |= CSC_BLACK_SCREEN_OFFSET;
5500
5501                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5502         }
5503 }
5504
5505 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5506 {
5507         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5509         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5510         uint32_t val;
5511
5512         val = 0;
5513
5514         if (intel_crtc->config.dither)
5515                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5516
5517         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5518                 val |= PIPECONF_INTERLACED_ILK;
5519         else
5520                 val |= PIPECONF_PROGRESSIVE;
5521
5522         I915_WRITE(PIPECONF(cpu_transcoder), val);
5523         POSTING_READ(PIPECONF(cpu_transcoder));
5524
5525         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5526         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5527 }
5528
5529 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5530                                     intel_clock_t *clock,
5531                                     bool *has_reduced_clock,
5532                                     intel_clock_t *reduced_clock)
5533 {
5534         struct drm_device *dev = crtc->dev;
5535         struct drm_i915_private *dev_priv = dev->dev_private;
5536         struct intel_encoder *intel_encoder;
5537         int refclk;
5538         const intel_limit_t *limit;
5539         bool ret, is_lvds = false;
5540
5541         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5542                 switch (intel_encoder->type) {
5543                 case INTEL_OUTPUT_LVDS:
5544                         is_lvds = true;
5545                         break;
5546                 }
5547         }
5548
5549         refclk = ironlake_get_refclk(crtc);
5550
5551         /*
5552          * Returns a set of divisors for the desired target clock with the given
5553          * refclk, or FALSE.  The returned values represent the clock equation:
5554          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5555          */
5556         limit = intel_limit(crtc, refclk);
5557         ret = dev_priv->display.find_dpll(limit, crtc,
5558                                           to_intel_crtc(crtc)->config.port_clock,
5559                                           refclk, NULL, clock);
5560         if (!ret)
5561                 return false;
5562
5563         if (is_lvds && dev_priv->lvds_downclock_avail) {
5564                 /*
5565                  * Ensure we match the reduced clock's P to the target clock.
5566                  * If the clocks don't match, we can't switch the display clock
5567                  * by using the FP0/FP1. In such case we will disable the LVDS
5568                  * downclock feature.
5569                 */
5570                 *has_reduced_clock =
5571                         dev_priv->display.find_dpll(limit, crtc,
5572                                                     dev_priv->lvds_downclock,
5573                                                     refclk, clock,
5574                                                     reduced_clock);
5575         }
5576
5577         return true;
5578 }
5579
5580 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5581 {
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         uint32_t temp;
5584
5585         temp = I915_READ(SOUTH_CHICKEN1);
5586         if (temp & FDI_BC_BIFURCATION_SELECT)
5587                 return;
5588
5589         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5590         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5591
5592         temp |= FDI_BC_BIFURCATION_SELECT;
5593         DRM_DEBUG_KMS("enabling fdi C rx\n");
5594         I915_WRITE(SOUTH_CHICKEN1, temp);
5595         POSTING_READ(SOUTH_CHICKEN1);
5596 }
5597
5598 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5599 {
5600         struct drm_device *dev = intel_crtc->base.dev;
5601         struct drm_i915_private *dev_priv = dev->dev_private;
5602
5603         switch (intel_crtc->pipe) {
5604         case PIPE_A:
5605                 break;
5606         case PIPE_B:
5607                 if (intel_crtc->config.fdi_lanes > 2)
5608                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5609                 else
5610                         cpt_enable_fdi_bc_bifurcation(dev);
5611
5612                 break;
5613         case PIPE_C:
5614                 cpt_enable_fdi_bc_bifurcation(dev);
5615
5616                 break;
5617         default:
5618                 BUG();
5619         }
5620 }
5621
5622 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5623 {
5624         /*
5625          * Account for spread spectrum to avoid
5626          * oversubscribing the link. Max center spread
5627          * is 2.5%; use 5% for safety's sake.
5628          */
5629         u32 bps = target_clock * bpp * 21 / 20;
5630         return bps / (link_bw * 8) + 1;
5631 }
5632
5633 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5634 {
5635         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5636 }
5637
5638 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5639                                       u32 *fp,
5640                                       intel_clock_t *reduced_clock, u32 *fp2)
5641 {
5642         struct drm_crtc *crtc = &intel_crtc->base;
5643         struct drm_device *dev = crtc->dev;
5644         struct drm_i915_private *dev_priv = dev->dev_private;
5645         struct intel_encoder *intel_encoder;
5646         uint32_t dpll;
5647         int factor, num_connectors = 0;
5648         bool is_lvds = false, is_sdvo = false;
5649
5650         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5651                 switch (intel_encoder->type) {
5652                 case INTEL_OUTPUT_LVDS:
5653                         is_lvds = true;
5654                         break;
5655                 case INTEL_OUTPUT_SDVO:
5656                 case INTEL_OUTPUT_HDMI:
5657                         is_sdvo = true;
5658                         break;
5659                 }
5660
5661                 num_connectors++;
5662         }
5663
5664         /* Enable autotuning of the PLL clock (if permissible) */
5665         factor = 21;
5666         if (is_lvds) {
5667                 if ((intel_panel_use_ssc(dev_priv) &&
5668                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5669                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5670                         factor = 25;
5671         } else if (intel_crtc->config.sdvo_tv_clock)
5672                 factor = 20;
5673
5674         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5675                 *fp |= FP_CB_TUNE;
5676
5677         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5678                 *fp2 |= FP_CB_TUNE;
5679
5680         dpll = 0;
5681
5682         if (is_lvds)
5683                 dpll |= DPLLB_MODE_LVDS;
5684         else
5685                 dpll |= DPLLB_MODE_DAC_SERIAL;
5686
5687         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5688                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5689
5690         if (is_sdvo)
5691                 dpll |= DPLL_SDVO_HIGH_SPEED;
5692         if (intel_crtc->config.has_dp_encoder)
5693                 dpll |= DPLL_SDVO_HIGH_SPEED;
5694
5695         /* compute bitmask from p1 value */
5696         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5697         /* also FPA1 */
5698         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5699
5700         switch (intel_crtc->config.dpll.p2) {
5701         case 5:
5702                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5703                 break;
5704         case 7:
5705                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5706                 break;
5707         case 10:
5708                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5709                 break;
5710         case 14:
5711                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5712                 break;
5713         }
5714
5715         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5716                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5717         else
5718                 dpll |= PLL_REF_INPUT_DREFCLK;
5719
5720         return dpll | DPLL_VCO_ENABLE;
5721 }
5722
5723 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5724                                   int x, int y,
5725                                   struct drm_framebuffer *fb)
5726 {
5727         struct drm_device *dev = crtc->dev;
5728         struct drm_i915_private *dev_priv = dev->dev_private;
5729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5730         int pipe = intel_crtc->pipe;
5731         int plane = intel_crtc->plane;
5732         int num_connectors = 0;
5733         intel_clock_t clock, reduced_clock;
5734         u32 dpll = 0, fp = 0, fp2 = 0;
5735         bool ok, has_reduced_clock = false;
5736         bool is_lvds = false;
5737         struct intel_encoder *encoder;
5738         struct intel_shared_dpll *pll;
5739         int ret;
5740
5741         for_each_encoder_on_crtc(dev, crtc, encoder) {
5742                 switch (encoder->type) {
5743                 case INTEL_OUTPUT_LVDS:
5744                         is_lvds = true;
5745                         break;
5746                 }
5747
5748                 num_connectors++;
5749         }
5750
5751         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5752              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5753
5754         ok = ironlake_compute_clocks(crtc, &clock,
5755                                      &has_reduced_clock, &reduced_clock);
5756         if (!ok && !intel_crtc->config.clock_set) {
5757                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5758                 return -EINVAL;
5759         }
5760         /* Compat-code for transition, will disappear. */
5761         if (!intel_crtc->config.clock_set) {
5762                 intel_crtc->config.dpll.n = clock.n;
5763                 intel_crtc->config.dpll.m1 = clock.m1;
5764                 intel_crtc->config.dpll.m2 = clock.m2;
5765                 intel_crtc->config.dpll.p1 = clock.p1;
5766                 intel_crtc->config.dpll.p2 = clock.p2;
5767         }
5768
5769         /* Ensure that the cursor is valid for the new mode before changing... */
5770         intel_crtc_update_cursor(crtc, true);
5771
5772         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5773         if (intel_crtc->config.has_pch_encoder) {
5774                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5775                 if (has_reduced_clock)
5776                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5777
5778                 dpll = ironlake_compute_dpll(intel_crtc,
5779                                              &fp, &reduced_clock,
5780                                              has_reduced_clock ? &fp2 : NULL);
5781
5782                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5783                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5784                 if (has_reduced_clock)
5785                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5786                 else
5787                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5788
5789                 pll = intel_get_shared_dpll(intel_crtc);
5790                 if (pll == NULL) {
5791                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5792                                          pipe_name(pipe));
5793                         return -EINVAL;
5794                 }
5795         } else
5796                 intel_put_shared_dpll(intel_crtc);
5797
5798         if (intel_crtc->config.has_dp_encoder)
5799                 intel_dp_set_m_n(intel_crtc);
5800
5801         if (is_lvds && has_reduced_clock && i915_powersave)
5802                 intel_crtc->lowfreq_avail = true;
5803         else
5804                 intel_crtc->lowfreq_avail = false;
5805
5806         if (intel_crtc->config.has_pch_encoder) {
5807                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5808
5809         }
5810
5811         intel_set_pipe_timings(intel_crtc);
5812
5813         if (intel_crtc->config.has_pch_encoder) {
5814                 intel_cpu_transcoder_set_m_n(intel_crtc,
5815                                              &intel_crtc->config.fdi_m_n);
5816         }
5817
5818         if (IS_IVYBRIDGE(dev))
5819                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5820
5821         ironlake_set_pipeconf(crtc);
5822
5823         /* Set up the display plane register */
5824         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5825         POSTING_READ(DSPCNTR(plane));
5826
5827         ret = intel_pipe_set_base(crtc, x, y, fb);
5828
5829         intel_update_watermarks(dev);
5830
5831         return ret;
5832 }
5833
5834 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5835                                         struct intel_crtc_config *pipe_config)
5836 {
5837         struct drm_device *dev = crtc->base.dev;
5838         struct drm_i915_private *dev_priv = dev->dev_private;
5839         enum transcoder transcoder = pipe_config->cpu_transcoder;
5840
5841         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5842         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5843         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5844                                         & ~TU_SIZE_MASK;
5845         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5846         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5847                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5848 }
5849
5850 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5851                                      struct intel_crtc_config *pipe_config)
5852 {
5853         struct drm_device *dev = crtc->base.dev;
5854         struct drm_i915_private *dev_priv = dev->dev_private;
5855         uint32_t tmp;
5856
5857         tmp = I915_READ(PF_CTL(crtc->pipe));
5858
5859         if (tmp & PF_ENABLE) {
5860                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5861                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5862
5863                 /* We currently do not free assignements of panel fitters on
5864                  * ivb/hsw (since we don't use the higher upscaling modes which
5865                  * differentiates them) so just WARN about this case for now. */
5866                 if (IS_GEN7(dev)) {
5867                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5868                                 PF_PIPE_SEL_IVB(crtc->pipe));
5869                 }
5870         }
5871 }
5872
5873 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5874                                      struct intel_crtc_config *pipe_config)
5875 {
5876         struct drm_device *dev = crtc->base.dev;
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         uint32_t tmp;
5879
5880         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5881         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5882
5883         tmp = I915_READ(PIPECONF(crtc->pipe));
5884         if (!(tmp & PIPECONF_ENABLE))
5885                 return false;
5886
5887         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5888                 struct intel_shared_dpll *pll;
5889
5890                 pipe_config->has_pch_encoder = true;
5891
5892                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5893                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5894                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5895
5896                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5897
5898                 if (HAS_PCH_IBX(dev_priv->dev)) {
5899                         pipe_config->shared_dpll =
5900                                 (enum intel_dpll_id) crtc->pipe;
5901                 } else {
5902                         tmp = I915_READ(PCH_DPLL_SEL);
5903                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5904                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5905                         else
5906                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5907                 }
5908
5909                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5910
5911                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5912                                            &pipe_config->dpll_hw_state));
5913
5914                 tmp = pipe_config->dpll_hw_state.dpll;
5915                 pipe_config->pixel_multiplier =
5916                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5917                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5918         } else {
5919                 pipe_config->pixel_multiplier = 1;
5920         }
5921
5922         intel_get_pipe_timings(crtc, pipe_config);
5923
5924         ironlake_get_pfit_config(crtc, pipe_config);
5925
5926         return true;
5927 }
5928
5929 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5930 {
5931         struct drm_device *dev = dev_priv->dev;
5932         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5933         struct intel_crtc *crtc;
5934         unsigned long irqflags;
5935         uint32_t val, pch_hpd_mask;
5936
5937         pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5938         if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5939                 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5940
5941         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5942                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5943                      pipe_name(crtc->pipe));
5944
5945         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5946         WARN(plls->spll_refcount, "SPLL enabled\n");
5947         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5948         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5949         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5950         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5951              "CPU PWM1 enabled\n");
5952         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5953              "CPU PWM2 enabled\n");
5954         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5955              "PCH PWM1 enabled\n");
5956         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5957              "Utility pin enabled\n");
5958         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5959
5960         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5961         val = I915_READ(DEIMR);
5962         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5963              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5964         val = I915_READ(SDEIMR);
5965         WARN((val & ~pch_hpd_mask) != val,
5966              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5967         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5968 }
5969
5970 /*
5971  * This function implements pieces of two sequences from BSpec:
5972  * - Sequence for display software to disable LCPLL
5973  * - Sequence for display software to allow package C8+
5974  * The steps implemented here are just the steps that actually touch the LCPLL
5975  * register. Callers should take care of disabling all the display engine
5976  * functions, doing the mode unset, fixing interrupts, etc.
5977  */
5978 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5979                        bool switch_to_fclk, bool allow_power_down)
5980 {
5981         uint32_t val;
5982
5983         assert_can_disable_lcpll(dev_priv);
5984
5985         val = I915_READ(LCPLL_CTL);
5986
5987         if (switch_to_fclk) {
5988                 val |= LCPLL_CD_SOURCE_FCLK;
5989                 I915_WRITE(LCPLL_CTL, val);
5990
5991                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5992                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
5993                         DRM_ERROR("Switching to FCLK failed\n");
5994
5995                 val = I915_READ(LCPLL_CTL);
5996         }
5997
5998         val |= LCPLL_PLL_DISABLE;
5999         I915_WRITE(LCPLL_CTL, val);
6000         POSTING_READ(LCPLL_CTL);
6001
6002         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6003                 DRM_ERROR("LCPLL still locked\n");
6004
6005         val = I915_READ(D_COMP);
6006         val |= D_COMP_COMP_DISABLE;
6007         I915_WRITE(D_COMP, val);
6008         POSTING_READ(D_COMP);
6009         ndelay(100);
6010
6011         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6012                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6013
6014         if (allow_power_down) {
6015                 val = I915_READ(LCPLL_CTL);
6016                 val |= LCPLL_POWER_DOWN_ALLOW;
6017                 I915_WRITE(LCPLL_CTL, val);
6018                 POSTING_READ(LCPLL_CTL);
6019         }
6020 }
6021
6022 /*
6023  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6024  * source.
6025  */
6026 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6027 {
6028         uint32_t val;
6029
6030         val = I915_READ(LCPLL_CTL);
6031
6032         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6033                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6034                 return;
6035
6036         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6037          * we'll hang the machine! */
6038         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6039
6040         if (val & LCPLL_POWER_DOWN_ALLOW) {
6041                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6042                 I915_WRITE(LCPLL_CTL, val);
6043         }
6044
6045         val = I915_READ(D_COMP);
6046         val |= D_COMP_COMP_FORCE;
6047         val &= ~D_COMP_COMP_DISABLE;
6048         I915_WRITE(D_COMP, val);
6049         I915_READ(D_COMP);
6050
6051         val = I915_READ(LCPLL_CTL);
6052         val &= ~LCPLL_PLL_DISABLE;
6053         I915_WRITE(LCPLL_CTL, val);
6054
6055         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6056                 DRM_ERROR("LCPLL not locked yet\n");
6057
6058         if (val & LCPLL_CD_SOURCE_FCLK) {
6059                 val = I915_READ(LCPLL_CTL);
6060                 val &= ~LCPLL_CD_SOURCE_FCLK;
6061                 I915_WRITE(LCPLL_CTL, val);
6062
6063                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6064                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6065                         DRM_ERROR("Switching back to LCPLL failed\n");
6066         }
6067
6068         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6069 }
6070
6071 static void haswell_modeset_global_resources(struct drm_device *dev)
6072 {
6073         bool enable = false;
6074         struct intel_crtc *crtc;
6075
6076         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6077                 if (!crtc->base.enabled)
6078                         continue;
6079
6080                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6081                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6082                         enable = true;
6083         }
6084
6085         intel_set_power_well(dev, enable);
6086 }
6087
6088 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6089                                  int x, int y,
6090                                  struct drm_framebuffer *fb)
6091 {
6092         struct drm_device *dev = crtc->dev;
6093         struct drm_i915_private *dev_priv = dev->dev_private;
6094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6095         int plane = intel_crtc->plane;
6096         int ret;
6097
6098         if (!intel_ddi_pll_mode_set(crtc))
6099                 return -EINVAL;
6100
6101         /* Ensure that the cursor is valid for the new mode before changing... */
6102         intel_crtc_update_cursor(crtc, true);
6103
6104         if (intel_crtc->config.has_dp_encoder)
6105                 intel_dp_set_m_n(intel_crtc);
6106
6107         intel_crtc->lowfreq_avail = false;
6108
6109         intel_set_pipe_timings(intel_crtc);
6110
6111         if (intel_crtc->config.has_pch_encoder) {
6112                 intel_cpu_transcoder_set_m_n(intel_crtc,
6113                                              &intel_crtc->config.fdi_m_n);
6114         }
6115
6116         haswell_set_pipeconf(crtc);
6117
6118         intel_set_pipe_csc(crtc);
6119
6120         /* Set up the display plane register */
6121         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6122         POSTING_READ(DSPCNTR(plane));
6123
6124         ret = intel_pipe_set_base(crtc, x, y, fb);
6125
6126         intel_update_watermarks(dev);
6127
6128         return ret;
6129 }
6130
6131 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6132                                     struct intel_crtc_config *pipe_config)
6133 {
6134         struct drm_device *dev = crtc->base.dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136         enum intel_display_power_domain pfit_domain;
6137         uint32_t tmp;
6138
6139         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6140         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6141
6142         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6143         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6144                 enum pipe trans_edp_pipe;
6145                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6146                 default:
6147                         WARN(1, "unknown pipe linked to edp transcoder\n");
6148                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6149                 case TRANS_DDI_EDP_INPUT_A_ON:
6150                         trans_edp_pipe = PIPE_A;
6151                         break;
6152                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6153                         trans_edp_pipe = PIPE_B;
6154                         break;
6155                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6156                         trans_edp_pipe = PIPE_C;
6157                         break;
6158                 }
6159
6160                 if (trans_edp_pipe == crtc->pipe)
6161                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6162         }
6163
6164         if (!intel_display_power_enabled(dev,
6165                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6166                 return false;
6167
6168         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6169         if (!(tmp & PIPECONF_ENABLE))
6170                 return false;
6171
6172         /*
6173          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6174          * DDI E. So just check whether this pipe is wired to DDI E and whether
6175          * the PCH transcoder is on.
6176          */
6177         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6178         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6179             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6180                 pipe_config->has_pch_encoder = true;
6181
6182                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6183                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6184                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6185
6186                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6187         }
6188
6189         intel_get_pipe_timings(crtc, pipe_config);
6190
6191         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6192         if (intel_display_power_enabled(dev, pfit_domain))
6193                 ironlake_get_pfit_config(crtc, pipe_config);
6194
6195         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6196                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6197
6198         pipe_config->pixel_multiplier = 1;
6199
6200         return true;
6201 }
6202
6203 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6204                                int x, int y,
6205                                struct drm_framebuffer *fb)
6206 {
6207         struct drm_device *dev = crtc->dev;
6208         struct drm_i915_private *dev_priv = dev->dev_private;
6209         struct intel_encoder *encoder;
6210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6211         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6212         int pipe = intel_crtc->pipe;
6213         int ret;
6214
6215         drm_vblank_pre_modeset(dev, pipe);
6216
6217         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6218
6219         drm_vblank_post_modeset(dev, pipe);
6220
6221         if (ret != 0)
6222                 return ret;
6223
6224         for_each_encoder_on_crtc(dev, crtc, encoder) {
6225                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6226                         encoder->base.base.id,
6227                         drm_get_encoder_name(&encoder->base),
6228                         mode->base.id, mode->name);
6229                 encoder->mode_set(encoder);
6230         }
6231
6232         return 0;
6233 }
6234
6235 static bool intel_eld_uptodate(struct drm_connector *connector,
6236                                int reg_eldv, uint32_t bits_eldv,
6237                                int reg_elda, uint32_t bits_elda,
6238                                int reg_edid)
6239 {
6240         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6241         uint8_t *eld = connector->eld;
6242         uint32_t i;
6243
6244         i = I915_READ(reg_eldv);
6245         i &= bits_eldv;
6246
6247         if (!eld[0])
6248                 return !i;
6249
6250         if (!i)
6251                 return false;
6252
6253         i = I915_READ(reg_elda);
6254         i &= ~bits_elda;
6255         I915_WRITE(reg_elda, i);
6256
6257         for (i = 0; i < eld[2]; i++)
6258                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6259                         return false;
6260
6261         return true;
6262 }
6263
6264 static void g4x_write_eld(struct drm_connector *connector,
6265                           struct drm_crtc *crtc)
6266 {
6267         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6268         uint8_t *eld = connector->eld;
6269         uint32_t eldv;
6270         uint32_t len;
6271         uint32_t i;
6272
6273         i = I915_READ(G4X_AUD_VID_DID);
6274
6275         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6276                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6277         else
6278                 eldv = G4X_ELDV_DEVCTG;
6279
6280         if (intel_eld_uptodate(connector,
6281                                G4X_AUD_CNTL_ST, eldv,
6282                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6283                                G4X_HDMIW_HDMIEDID))
6284                 return;
6285
6286         i = I915_READ(G4X_AUD_CNTL_ST);
6287         i &= ~(eldv | G4X_ELD_ADDR);
6288         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6289         I915_WRITE(G4X_AUD_CNTL_ST, i);
6290
6291         if (!eld[0])
6292                 return;
6293
6294         len = min_t(uint8_t, eld[2], len);
6295         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6296         for (i = 0; i < len; i++)
6297                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6298
6299         i = I915_READ(G4X_AUD_CNTL_ST);
6300         i |= eldv;
6301         I915_WRITE(G4X_AUD_CNTL_ST, i);
6302 }
6303
6304 static void haswell_write_eld(struct drm_connector *connector,
6305                                      struct drm_crtc *crtc)
6306 {
6307         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6308         uint8_t *eld = connector->eld;
6309         struct drm_device *dev = crtc->dev;
6310         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6311         uint32_t eldv;
6312         uint32_t i;
6313         int len;
6314         int pipe = to_intel_crtc(crtc)->pipe;
6315         int tmp;
6316
6317         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6318         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6319         int aud_config = HSW_AUD_CFG(pipe);
6320         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6321
6322
6323         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6324
6325         /* Audio output enable */
6326         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6327         tmp = I915_READ(aud_cntrl_st2);
6328         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6329         I915_WRITE(aud_cntrl_st2, tmp);
6330
6331         /* Wait for 1 vertical blank */
6332         intel_wait_for_vblank(dev, pipe);
6333
6334         /* Set ELD valid state */
6335         tmp = I915_READ(aud_cntrl_st2);
6336         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6337         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6338         I915_WRITE(aud_cntrl_st2, tmp);
6339         tmp = I915_READ(aud_cntrl_st2);
6340         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6341
6342         /* Enable HDMI mode */
6343         tmp = I915_READ(aud_config);
6344         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6345         /* clear N_programing_enable and N_value_index */
6346         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6347         I915_WRITE(aud_config, tmp);
6348
6349         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6350
6351         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6352         intel_crtc->eld_vld = true;
6353
6354         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6355                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6356                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6357                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6358         } else
6359                 I915_WRITE(aud_config, 0);
6360
6361         if (intel_eld_uptodate(connector,
6362                                aud_cntrl_st2, eldv,
6363                                aud_cntl_st, IBX_ELD_ADDRESS,
6364                                hdmiw_hdmiedid))
6365                 return;
6366
6367         i = I915_READ(aud_cntrl_st2);
6368         i &= ~eldv;
6369         I915_WRITE(aud_cntrl_st2, i);
6370
6371         if (!eld[0])
6372                 return;
6373
6374         i = I915_READ(aud_cntl_st);
6375         i &= ~IBX_ELD_ADDRESS;
6376         I915_WRITE(aud_cntl_st, i);
6377         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6378         DRM_DEBUG_DRIVER("port num:%d\n", i);
6379
6380         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6381         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6382         for (i = 0; i < len; i++)
6383                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6384
6385         i = I915_READ(aud_cntrl_st2);
6386         i |= eldv;
6387         I915_WRITE(aud_cntrl_st2, i);
6388
6389 }
6390
6391 static void ironlake_write_eld(struct drm_connector *connector,
6392                                      struct drm_crtc *crtc)
6393 {
6394         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6395         uint8_t *eld = connector->eld;
6396         uint32_t eldv;
6397         uint32_t i;
6398         int len;
6399         int hdmiw_hdmiedid;
6400         int aud_config;
6401         int aud_cntl_st;
6402         int aud_cntrl_st2;
6403         int pipe = to_intel_crtc(crtc)->pipe;
6404
6405         if (HAS_PCH_IBX(connector->dev)) {
6406                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6407                 aud_config = IBX_AUD_CFG(pipe);
6408                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6409                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6410         } else {
6411                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6412                 aud_config = CPT_AUD_CFG(pipe);
6413                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6414                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6415         }
6416
6417         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6418
6419         i = I915_READ(aud_cntl_st);
6420         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6421         if (!i) {
6422                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6423                 /* operate blindly on all ports */
6424                 eldv = IBX_ELD_VALIDB;
6425                 eldv |= IBX_ELD_VALIDB << 4;
6426                 eldv |= IBX_ELD_VALIDB << 8;
6427         } else {
6428                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6429                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6430         }
6431
6432         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6433                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6434                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6435                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6436         } else
6437                 I915_WRITE(aud_config, 0);
6438
6439         if (intel_eld_uptodate(connector,
6440                                aud_cntrl_st2, eldv,
6441                                aud_cntl_st, IBX_ELD_ADDRESS,
6442                                hdmiw_hdmiedid))
6443                 return;
6444
6445         i = I915_READ(aud_cntrl_st2);
6446         i &= ~eldv;
6447         I915_WRITE(aud_cntrl_st2, i);
6448
6449         if (!eld[0])
6450                 return;
6451
6452         i = I915_READ(aud_cntl_st);
6453         i &= ~IBX_ELD_ADDRESS;
6454         I915_WRITE(aud_cntl_st, i);
6455
6456         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6457         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6458         for (i = 0; i < len; i++)
6459                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6460
6461         i = I915_READ(aud_cntrl_st2);
6462         i |= eldv;
6463         I915_WRITE(aud_cntrl_st2, i);
6464 }
6465
6466 void intel_write_eld(struct drm_encoder *encoder,
6467                      struct drm_display_mode *mode)
6468 {
6469         struct drm_crtc *crtc = encoder->crtc;
6470         struct drm_connector *connector;
6471         struct drm_device *dev = encoder->dev;
6472         struct drm_i915_private *dev_priv = dev->dev_private;
6473
6474         connector = drm_select_eld(encoder, mode);
6475         if (!connector)
6476                 return;
6477
6478         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6479                          connector->base.id,
6480                          drm_get_connector_name(connector),
6481                          connector->encoder->base.id,
6482                          drm_get_encoder_name(connector->encoder));
6483
6484         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6485
6486         if (dev_priv->display.write_eld)
6487                 dev_priv->display.write_eld(connector, crtc);
6488 }
6489
6490 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6491 void intel_crtc_load_lut(struct drm_crtc *crtc)
6492 {
6493         struct drm_device *dev = crtc->dev;
6494         struct drm_i915_private *dev_priv = dev->dev_private;
6495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6496         enum pipe pipe = intel_crtc->pipe;
6497         int palreg = PALETTE(pipe);
6498         int i;
6499         bool reenable_ips = false;
6500
6501         /* The clocks have to be on to load the palette. */
6502         if (!crtc->enabled || !intel_crtc->active)
6503                 return;
6504
6505         if (!HAS_PCH_SPLIT(dev_priv->dev))
6506                 assert_pll_enabled(dev_priv, pipe);
6507
6508         /* use legacy palette for Ironlake */
6509         if (HAS_PCH_SPLIT(dev))
6510                 palreg = LGC_PALETTE(pipe);
6511
6512         /* Workaround : Do not read or write the pipe palette/gamma data while
6513          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6514          */
6515         if (intel_crtc->config.ips_enabled &&
6516             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6517              GAMMA_MODE_MODE_SPLIT)) {
6518                 hsw_disable_ips(intel_crtc);
6519                 reenable_ips = true;
6520         }
6521
6522         for (i = 0; i < 256; i++) {
6523                 I915_WRITE(palreg + 4 * i,
6524                            (intel_crtc->lut_r[i] << 16) |
6525                            (intel_crtc->lut_g[i] << 8) |
6526                            intel_crtc->lut_b[i]);
6527         }
6528
6529         if (reenable_ips)
6530                 hsw_enable_ips(intel_crtc);
6531 }
6532
6533 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6534 {
6535         struct drm_device *dev = crtc->dev;
6536         struct drm_i915_private *dev_priv = dev->dev_private;
6537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6538         bool visible = base != 0;
6539         u32 cntl;
6540
6541         if (intel_crtc->cursor_visible == visible)
6542                 return;
6543
6544         cntl = I915_READ(_CURACNTR);
6545         if (visible) {
6546                 /* On these chipsets we can only modify the base whilst
6547                  * the cursor is disabled.
6548                  */
6549                 I915_WRITE(_CURABASE, base);
6550
6551                 cntl &= ~(CURSOR_FORMAT_MASK);
6552                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6553                 cntl |= CURSOR_ENABLE |
6554                         CURSOR_GAMMA_ENABLE |
6555                         CURSOR_FORMAT_ARGB;
6556         } else
6557                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6558         I915_WRITE(_CURACNTR, cntl);
6559
6560         intel_crtc->cursor_visible = visible;
6561 }
6562
6563 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6564 {
6565         struct drm_device *dev = crtc->dev;
6566         struct drm_i915_private *dev_priv = dev->dev_private;
6567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6568         int pipe = intel_crtc->pipe;
6569         bool visible = base != 0;
6570
6571         if (intel_crtc->cursor_visible != visible) {
6572                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6573                 if (base) {
6574                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6575                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6576                         cntl |= pipe << 28; /* Connect to correct pipe */
6577                 } else {
6578                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6579                         cntl |= CURSOR_MODE_DISABLE;
6580                 }
6581                 I915_WRITE(CURCNTR(pipe), cntl);
6582
6583                 intel_crtc->cursor_visible = visible;
6584         }
6585         /* and commit changes on next vblank */
6586         I915_WRITE(CURBASE(pipe), base);
6587 }
6588
6589 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6590 {
6591         struct drm_device *dev = crtc->dev;
6592         struct drm_i915_private *dev_priv = dev->dev_private;
6593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6594         int pipe = intel_crtc->pipe;
6595         bool visible = base != 0;
6596
6597         if (intel_crtc->cursor_visible != visible) {
6598                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6599                 if (base) {
6600                         cntl &= ~CURSOR_MODE;
6601                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6602                 } else {
6603                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6604                         cntl |= CURSOR_MODE_DISABLE;
6605                 }
6606                 if (IS_HASWELL(dev))
6607                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6608                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6609
6610                 intel_crtc->cursor_visible = visible;
6611         }
6612         /* and commit changes on next vblank */
6613         I915_WRITE(CURBASE_IVB(pipe), base);
6614 }
6615
6616 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6617 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6618                                      bool on)
6619 {
6620         struct drm_device *dev = crtc->dev;
6621         struct drm_i915_private *dev_priv = dev->dev_private;
6622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6623         int pipe = intel_crtc->pipe;
6624         int x = intel_crtc->cursor_x;
6625         int y = intel_crtc->cursor_y;
6626         u32 base, pos;
6627         bool visible;
6628
6629         pos = 0;
6630
6631         if (on && crtc->enabled && crtc->fb) {
6632                 base = intel_crtc->cursor_addr;
6633                 if (x > (int) crtc->fb->width)
6634                         base = 0;
6635
6636                 if (y > (int) crtc->fb->height)
6637                         base = 0;
6638         } else
6639                 base = 0;
6640
6641         if (x < 0) {
6642                 if (x + intel_crtc->cursor_width < 0)
6643                         base = 0;
6644
6645                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6646                 x = -x;
6647         }
6648         pos |= x << CURSOR_X_SHIFT;
6649
6650         if (y < 0) {
6651                 if (y + intel_crtc->cursor_height < 0)
6652                         base = 0;
6653
6654                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6655                 y = -y;
6656         }
6657         pos |= y << CURSOR_Y_SHIFT;
6658
6659         visible = base != 0;
6660         if (!visible && !intel_crtc->cursor_visible)
6661                 return;
6662
6663         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6664                 I915_WRITE(CURPOS_IVB(pipe), pos);
6665                 ivb_update_cursor(crtc, base);
6666         } else {
6667                 I915_WRITE(CURPOS(pipe), pos);
6668                 if (IS_845G(dev) || IS_I865G(dev))
6669                         i845_update_cursor(crtc, base);
6670                 else
6671                         i9xx_update_cursor(crtc, base);
6672         }
6673 }
6674
6675 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6676                                  struct drm_file *file,
6677                                  uint32_t handle,
6678                                  uint32_t width, uint32_t height)
6679 {
6680         struct drm_device *dev = crtc->dev;
6681         struct drm_i915_private *dev_priv = dev->dev_private;
6682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6683         struct drm_i915_gem_object *obj;
6684         uint32_t addr;
6685         int ret;
6686
6687         /* if we want to turn off the cursor ignore width and height */
6688         if (!handle) {
6689                 DRM_DEBUG_KMS("cursor off\n");
6690                 addr = 0;
6691                 obj = NULL;
6692                 mutex_lock(&dev->struct_mutex);
6693                 goto finish;
6694         }
6695
6696         /* Currently we only support 64x64 cursors */
6697         if (width != 64 || height != 64) {
6698                 DRM_ERROR("we currently only support 64x64 cursors\n");
6699                 return -EINVAL;
6700         }
6701
6702         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6703         if (&obj->base == NULL)
6704                 return -ENOENT;
6705
6706         if (obj->base.size < width * height * 4) {
6707                 DRM_ERROR("buffer is to small\n");
6708                 ret = -ENOMEM;
6709                 goto fail;
6710         }
6711
6712         /* we only need to pin inside GTT if cursor is non-phy */
6713         mutex_lock(&dev->struct_mutex);
6714         if (!dev_priv->info->cursor_needs_physical) {
6715                 unsigned alignment;
6716
6717                 if (obj->tiling_mode) {
6718                         DRM_ERROR("cursor cannot be tiled\n");
6719                         ret = -EINVAL;
6720                         goto fail_locked;
6721                 }
6722
6723                 /* Note that the w/a also requires 2 PTE of padding following
6724                  * the bo. We currently fill all unused PTE with the shadow
6725                  * page and so we should always have valid PTE following the
6726                  * cursor preventing the VT-d warning.
6727                  */
6728                 alignment = 0;
6729                 if (need_vtd_wa(dev))
6730                         alignment = 64*1024;
6731
6732                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6733                 if (ret) {
6734                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6735                         goto fail_locked;
6736                 }
6737
6738                 ret = i915_gem_object_put_fence(obj);
6739                 if (ret) {
6740                         DRM_ERROR("failed to release fence for cursor");
6741                         goto fail_unpin;
6742                 }
6743
6744                 addr = i915_gem_obj_ggtt_offset(obj);
6745         } else {
6746                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6747                 ret = i915_gem_attach_phys_object(dev, obj,
6748                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6749                                                   align);
6750                 if (ret) {
6751                         DRM_ERROR("failed to attach phys object\n");
6752                         goto fail_locked;
6753                 }
6754                 addr = obj->phys_obj->handle->busaddr;
6755         }
6756
6757         if (IS_GEN2(dev))
6758                 I915_WRITE(CURSIZE, (height << 12) | width);
6759
6760  finish:
6761         if (intel_crtc->cursor_bo) {
6762                 if (dev_priv->info->cursor_needs_physical) {
6763                         if (intel_crtc->cursor_bo != obj)
6764                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6765                 } else
6766                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6767                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6768         }
6769
6770         mutex_unlock(&dev->struct_mutex);
6771
6772         intel_crtc->cursor_addr = addr;
6773         intel_crtc->cursor_bo = obj;
6774         intel_crtc->cursor_width = width;
6775         intel_crtc->cursor_height = height;
6776
6777         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6778
6779         return 0;
6780 fail_unpin:
6781         i915_gem_object_unpin_from_display_plane(obj);
6782 fail_locked:
6783         mutex_unlock(&dev->struct_mutex);
6784 fail:
6785         drm_gem_object_unreference_unlocked(&obj->base);
6786         return ret;
6787 }
6788
6789 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6790 {
6791         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6792
6793         intel_crtc->cursor_x = x;
6794         intel_crtc->cursor_y = y;
6795
6796         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6797
6798         return 0;
6799 }
6800
6801 /** Sets the color ramps on behalf of RandR */
6802 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6803                                  u16 blue, int regno)
6804 {
6805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6806
6807         intel_crtc->lut_r[regno] = red >> 8;
6808         intel_crtc->lut_g[regno] = green >> 8;
6809         intel_crtc->lut_b[regno] = blue >> 8;
6810 }
6811
6812 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6813                              u16 *blue, int regno)
6814 {
6815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816
6817         *red = intel_crtc->lut_r[regno] << 8;
6818         *green = intel_crtc->lut_g[regno] << 8;
6819         *blue = intel_crtc->lut_b[regno] << 8;
6820 }
6821
6822 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6823                                  u16 *blue, uint32_t start, uint32_t size)
6824 {
6825         int end = (start + size > 256) ? 256 : start + size, i;
6826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6827
6828         for (i = start; i < end; i++) {
6829                 intel_crtc->lut_r[i] = red[i] >> 8;
6830                 intel_crtc->lut_g[i] = green[i] >> 8;
6831                 intel_crtc->lut_b[i] = blue[i] >> 8;
6832         }
6833
6834         intel_crtc_load_lut(crtc);
6835 }
6836
6837 /* VESA 640x480x72Hz mode to set on the pipe */
6838 static struct drm_display_mode load_detect_mode = {
6839         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6840                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6841 };
6842
6843 static struct drm_framebuffer *
6844 intel_framebuffer_create(struct drm_device *dev,
6845                          struct drm_mode_fb_cmd2 *mode_cmd,
6846                          struct drm_i915_gem_object *obj)
6847 {
6848         struct intel_framebuffer *intel_fb;
6849         int ret;
6850
6851         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6852         if (!intel_fb) {
6853                 drm_gem_object_unreference_unlocked(&obj->base);
6854                 return ERR_PTR(-ENOMEM);
6855         }
6856
6857         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6858         if (ret) {
6859                 drm_gem_object_unreference_unlocked(&obj->base);
6860                 kfree(intel_fb);
6861                 return ERR_PTR(ret);
6862         }
6863
6864         return &intel_fb->base;
6865 }
6866
6867 static u32
6868 intel_framebuffer_pitch_for_width(int width, int bpp)
6869 {
6870         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6871         return ALIGN(pitch, 64);
6872 }
6873
6874 static u32
6875 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6876 {
6877         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6878         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6879 }
6880
6881 static struct drm_framebuffer *
6882 intel_framebuffer_create_for_mode(struct drm_device *dev,
6883                                   struct drm_display_mode *mode,
6884                                   int depth, int bpp)
6885 {
6886         struct drm_i915_gem_object *obj;
6887         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6888
6889         obj = i915_gem_alloc_object(dev,
6890                                     intel_framebuffer_size_for_mode(mode, bpp));
6891         if (obj == NULL)
6892                 return ERR_PTR(-ENOMEM);
6893
6894         mode_cmd.width = mode->hdisplay;
6895         mode_cmd.height = mode->vdisplay;
6896         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6897                                                                 bpp);
6898         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6899
6900         return intel_framebuffer_create(dev, &mode_cmd, obj);
6901 }
6902
6903 static struct drm_framebuffer *
6904 mode_fits_in_fbdev(struct drm_device *dev,
6905                    struct drm_display_mode *mode)
6906 {
6907         struct drm_i915_private *dev_priv = dev->dev_private;
6908         struct drm_i915_gem_object *obj;
6909         struct drm_framebuffer *fb;
6910
6911         if (dev_priv->fbdev == NULL)
6912                 return NULL;
6913
6914         obj = dev_priv->fbdev->ifb.obj;
6915         if (obj == NULL)
6916                 return NULL;
6917
6918         fb = &dev_priv->fbdev->ifb.base;
6919         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6920                                                                fb->bits_per_pixel))
6921                 return NULL;
6922
6923         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6924                 return NULL;
6925
6926         return fb;
6927 }
6928
6929 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6930                                 struct drm_display_mode *mode,
6931                                 struct intel_load_detect_pipe *old)
6932 {
6933         struct intel_crtc *intel_crtc;
6934         struct intel_encoder *intel_encoder =
6935                 intel_attached_encoder(connector);
6936         struct drm_crtc *possible_crtc;
6937         struct drm_encoder *encoder = &intel_encoder->base;
6938         struct drm_crtc *crtc = NULL;
6939         struct drm_device *dev = encoder->dev;
6940         struct drm_framebuffer *fb;
6941         int i = -1;
6942
6943         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6944                       connector->base.id, drm_get_connector_name(connector),
6945                       encoder->base.id, drm_get_encoder_name(encoder));
6946
6947         /*
6948          * Algorithm gets a little messy:
6949          *
6950          *   - if the connector already has an assigned crtc, use it (but make
6951          *     sure it's on first)
6952          *
6953          *   - try to find the first unused crtc that can drive this connector,
6954          *     and use that if we find one
6955          */
6956
6957         /* See if we already have a CRTC for this connector */
6958         if (encoder->crtc) {
6959                 crtc = encoder->crtc;
6960
6961                 mutex_lock(&crtc->mutex);
6962
6963                 old->dpms_mode = connector->dpms;
6964                 old->load_detect_temp = false;
6965
6966                 /* Make sure the crtc and connector are running */
6967                 if (connector->dpms != DRM_MODE_DPMS_ON)
6968                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6969
6970                 return true;
6971         }
6972
6973         /* Find an unused one (if possible) */
6974         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6975                 i++;
6976                 if (!(encoder->possible_crtcs & (1 << i)))
6977                         continue;
6978                 if (!possible_crtc->enabled) {
6979                         crtc = possible_crtc;
6980                         break;
6981                 }
6982         }
6983
6984         /*
6985          * If we didn't find an unused CRTC, don't use any.
6986          */
6987         if (!crtc) {
6988                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6989                 return false;
6990         }
6991
6992         mutex_lock(&crtc->mutex);
6993         intel_encoder->new_crtc = to_intel_crtc(crtc);
6994         to_intel_connector(connector)->new_encoder = intel_encoder;
6995
6996         intel_crtc = to_intel_crtc(crtc);
6997         old->dpms_mode = connector->dpms;
6998         old->load_detect_temp = true;
6999         old->release_fb = NULL;
7000
7001         if (!mode)
7002                 mode = &load_detect_mode;
7003
7004         /* We need a framebuffer large enough to accommodate all accesses
7005          * that the plane may generate whilst we perform load detection.
7006          * We can not rely on the fbcon either being present (we get called
7007          * during its initialisation to detect all boot displays, or it may
7008          * not even exist) or that it is large enough to satisfy the
7009          * requested mode.
7010          */
7011         fb = mode_fits_in_fbdev(dev, mode);
7012         if (fb == NULL) {
7013                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7014                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7015                 old->release_fb = fb;
7016         } else
7017                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7018         if (IS_ERR(fb)) {
7019                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7020                 mutex_unlock(&crtc->mutex);
7021                 return false;
7022         }
7023
7024         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7025                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7026                 if (old->release_fb)
7027                         old->release_fb->funcs->destroy(old->release_fb);
7028                 mutex_unlock(&crtc->mutex);
7029                 return false;
7030         }
7031
7032         /* let the connector get through one full cycle before testing */
7033         intel_wait_for_vblank(dev, intel_crtc->pipe);
7034         return true;
7035 }
7036
7037 void intel_release_load_detect_pipe(struct drm_connector *connector,
7038                                     struct intel_load_detect_pipe *old)
7039 {
7040         struct intel_encoder *intel_encoder =
7041                 intel_attached_encoder(connector);
7042         struct drm_encoder *encoder = &intel_encoder->base;
7043         struct drm_crtc *crtc = encoder->crtc;
7044
7045         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7046                       connector->base.id, drm_get_connector_name(connector),
7047                       encoder->base.id, drm_get_encoder_name(encoder));
7048
7049         if (old->load_detect_temp) {
7050                 to_intel_connector(connector)->new_encoder = NULL;
7051                 intel_encoder->new_crtc = NULL;
7052                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7053
7054                 if (old->release_fb) {
7055                         drm_framebuffer_unregister_private(old->release_fb);
7056                         drm_framebuffer_unreference(old->release_fb);
7057                 }
7058
7059                 mutex_unlock(&crtc->mutex);
7060                 return;
7061         }
7062
7063         /* Switch crtc and encoder back off if necessary */
7064         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7065                 connector->funcs->dpms(connector, old->dpms_mode);
7066
7067         mutex_unlock(&crtc->mutex);
7068 }
7069
7070 /* Returns the clock of the currently programmed mode of the given pipe. */
7071 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7072                                 struct intel_crtc_config *pipe_config)
7073 {
7074         struct drm_device *dev = crtc->base.dev;
7075         struct drm_i915_private *dev_priv = dev->dev_private;
7076         int pipe = pipe_config->cpu_transcoder;
7077         u32 dpll = I915_READ(DPLL(pipe));
7078         u32 fp;
7079         intel_clock_t clock;
7080
7081         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7082                 fp = I915_READ(FP0(pipe));
7083         else
7084                 fp = I915_READ(FP1(pipe));
7085
7086         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7087         if (IS_PINEVIEW(dev)) {
7088                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7089                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7090         } else {
7091                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7092                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7093         }
7094
7095         if (!IS_GEN2(dev)) {
7096                 if (IS_PINEVIEW(dev))
7097                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7098                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7099                 else
7100                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7101                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7102
7103                 switch (dpll & DPLL_MODE_MASK) {
7104                 case DPLLB_MODE_DAC_SERIAL:
7105                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7106                                 5 : 10;
7107                         break;
7108                 case DPLLB_MODE_LVDS:
7109                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7110                                 7 : 14;
7111                         break;
7112                 default:
7113                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7114                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7115                         pipe_config->adjusted_mode.clock = 0;
7116                         return;
7117                 }
7118
7119                 if (IS_PINEVIEW(dev))
7120                         pineview_clock(96000, &clock);
7121                 else
7122                         i9xx_clock(96000, &clock);
7123         } else {
7124                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7125
7126                 if (is_lvds) {
7127                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7128                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7129                         clock.p2 = 14;
7130
7131                         if ((dpll & PLL_REF_INPUT_MASK) ==
7132                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7133                                 /* XXX: might not be 66MHz */
7134                                 i9xx_clock(66000, &clock);
7135                         } else
7136                                 i9xx_clock(48000, &clock);
7137                 } else {
7138                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7139                                 clock.p1 = 2;
7140                         else {
7141                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7142                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7143                         }
7144                         if (dpll & PLL_P2_DIVIDE_BY_4)
7145                                 clock.p2 = 4;
7146                         else
7147                                 clock.p2 = 2;
7148
7149                         i9xx_clock(48000, &clock);
7150                 }
7151         }
7152
7153         pipe_config->adjusted_mode.clock = clock.dot *
7154                 pipe_config->pixel_multiplier;
7155 }
7156
7157 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7158                                     struct intel_crtc_config *pipe_config)
7159 {
7160         struct drm_device *dev = crtc->base.dev;
7161         struct drm_i915_private *dev_priv = dev->dev_private;
7162         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7163         int link_freq, repeat;
7164         u64 clock;
7165         u32 link_m, link_n;
7166
7167         repeat = pipe_config->pixel_multiplier;
7168
7169         /*
7170          * The calculation for the data clock is:
7171          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7172          * But we want to avoid losing precison if possible, so:
7173          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7174          *
7175          * and the link clock is simpler:
7176          * link_clock = (m * link_clock * repeat) / n
7177          */
7178
7179         /*
7180          * We need to get the FDI or DP link clock here to derive
7181          * the M/N dividers.
7182          *
7183          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7184          * For DP, it's either 1.62GHz or 2.7GHz.
7185          * We do our calculations in 10*MHz since we don't need much precison.
7186          */
7187         if (pipe_config->has_pch_encoder)
7188                 link_freq = intel_fdi_link_freq(dev) * 10000;
7189         else
7190                 link_freq = pipe_config->port_clock;
7191
7192         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7193         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7194
7195         if (!link_m || !link_n)
7196                 return;
7197
7198         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7199         do_div(clock, link_n);
7200
7201         pipe_config->adjusted_mode.clock = clock;
7202 }
7203
7204 /** Returns the currently programmed mode of the given pipe. */
7205 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7206                                              struct drm_crtc *crtc)
7207 {
7208         struct drm_i915_private *dev_priv = dev->dev_private;
7209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7210         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7211         struct drm_display_mode *mode;
7212         struct intel_crtc_config pipe_config;
7213         int htot = I915_READ(HTOTAL(cpu_transcoder));
7214         int hsync = I915_READ(HSYNC(cpu_transcoder));
7215         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7216         int vsync = I915_READ(VSYNC(cpu_transcoder));
7217
7218         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7219         if (!mode)
7220                 return NULL;
7221
7222         /*
7223          * Construct a pipe_config sufficient for getting the clock info
7224          * back out of crtc_clock_get.
7225          *
7226          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7227          * to use a real value here instead.
7228          */
7229         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7230         pipe_config.pixel_multiplier = 1;
7231         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7232
7233         mode->clock = pipe_config.adjusted_mode.clock;
7234         mode->hdisplay = (htot & 0xffff) + 1;
7235         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7236         mode->hsync_start = (hsync & 0xffff) + 1;
7237         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7238         mode->vdisplay = (vtot & 0xffff) + 1;
7239         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7240         mode->vsync_start = (vsync & 0xffff) + 1;
7241         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7242
7243         drm_mode_set_name(mode);
7244
7245         return mode;
7246 }
7247
7248 static void intel_increase_pllclock(struct drm_crtc *crtc)
7249 {
7250         struct drm_device *dev = crtc->dev;
7251         drm_i915_private_t *dev_priv = dev->dev_private;
7252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253         int pipe = intel_crtc->pipe;
7254         int dpll_reg = DPLL(pipe);
7255         int dpll;
7256
7257         if (HAS_PCH_SPLIT(dev))
7258                 return;
7259
7260         if (!dev_priv->lvds_downclock_avail)
7261                 return;
7262
7263         dpll = I915_READ(dpll_reg);
7264         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7265                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7266
7267                 assert_panel_unlocked(dev_priv, pipe);
7268
7269                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7270                 I915_WRITE(dpll_reg, dpll);
7271                 intel_wait_for_vblank(dev, pipe);
7272
7273                 dpll = I915_READ(dpll_reg);
7274                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7275                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7276         }
7277 }
7278
7279 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7280 {
7281         struct drm_device *dev = crtc->dev;
7282         drm_i915_private_t *dev_priv = dev->dev_private;
7283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7284
7285         if (HAS_PCH_SPLIT(dev))
7286                 return;
7287
7288         if (!dev_priv->lvds_downclock_avail)
7289                 return;
7290
7291         /*
7292          * Since this is called by a timer, we should never get here in
7293          * the manual case.
7294          */
7295         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7296                 int pipe = intel_crtc->pipe;
7297                 int dpll_reg = DPLL(pipe);
7298                 int dpll;
7299
7300                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7301
7302                 assert_panel_unlocked(dev_priv, pipe);
7303
7304                 dpll = I915_READ(dpll_reg);
7305                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7306                 I915_WRITE(dpll_reg, dpll);
7307                 intel_wait_for_vblank(dev, pipe);
7308                 dpll = I915_READ(dpll_reg);
7309                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7310                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7311         }
7312
7313 }
7314
7315 void intel_mark_busy(struct drm_device *dev)
7316 {
7317         i915_update_gfx_val(dev->dev_private);
7318 }
7319
7320 void intel_mark_idle(struct drm_device *dev)
7321 {
7322         struct drm_crtc *crtc;
7323
7324         if (!i915_powersave)
7325                 return;
7326
7327         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7328                 if (!crtc->fb)
7329                         continue;
7330
7331                 intel_decrease_pllclock(crtc);
7332         }
7333 }
7334
7335 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7336                         struct intel_ring_buffer *ring)
7337 {
7338         struct drm_device *dev = obj->base.dev;
7339         struct drm_crtc *crtc;
7340
7341         if (!i915_powersave)
7342                 return;
7343
7344         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7345                 if (!crtc->fb)
7346                         continue;
7347
7348                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7349                         continue;
7350
7351                 intel_increase_pllclock(crtc);
7352                 if (ring && intel_fbc_enabled(dev))
7353                         ring->fbc_dirty = true;
7354         }
7355 }
7356
7357 static void intel_crtc_destroy(struct drm_crtc *crtc)
7358 {
7359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7360         struct drm_device *dev = crtc->dev;
7361         struct intel_unpin_work *work;
7362         unsigned long flags;
7363
7364         spin_lock_irqsave(&dev->event_lock, flags);
7365         work = intel_crtc->unpin_work;
7366         intel_crtc->unpin_work = NULL;
7367         spin_unlock_irqrestore(&dev->event_lock, flags);
7368
7369         if (work) {
7370                 cancel_work_sync(&work->work);
7371                 kfree(work);
7372         }
7373
7374         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7375
7376         drm_crtc_cleanup(crtc);
7377
7378         kfree(intel_crtc);
7379 }
7380
7381 static void intel_unpin_work_fn(struct work_struct *__work)
7382 {
7383         struct intel_unpin_work *work =
7384                 container_of(__work, struct intel_unpin_work, work);
7385         struct drm_device *dev = work->crtc->dev;
7386
7387         mutex_lock(&dev->struct_mutex);
7388         intel_unpin_fb_obj(work->old_fb_obj);
7389         drm_gem_object_unreference(&work->pending_flip_obj->base);
7390         drm_gem_object_unreference(&work->old_fb_obj->base);
7391
7392         intel_update_fbc(dev);
7393         mutex_unlock(&dev->struct_mutex);
7394
7395         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7396         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7397
7398         kfree(work);
7399 }
7400
7401 static void do_intel_finish_page_flip(struct drm_device *dev,
7402                                       struct drm_crtc *crtc)
7403 {
7404         drm_i915_private_t *dev_priv = dev->dev_private;
7405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7406         struct intel_unpin_work *work;
7407         unsigned long flags;
7408
7409         /* Ignore early vblank irqs */
7410         if (intel_crtc == NULL)
7411                 return;
7412
7413         spin_lock_irqsave(&dev->event_lock, flags);
7414         work = intel_crtc->unpin_work;
7415
7416         /* Ensure we don't miss a work->pending update ... */
7417         smp_rmb();
7418
7419         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7420                 spin_unlock_irqrestore(&dev->event_lock, flags);
7421                 return;
7422         }
7423
7424         /* and that the unpin work is consistent wrt ->pending. */
7425         smp_rmb();
7426
7427         intel_crtc->unpin_work = NULL;
7428
7429         if (work->event)
7430                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7431
7432         drm_vblank_put(dev, intel_crtc->pipe);
7433
7434         spin_unlock_irqrestore(&dev->event_lock, flags);
7435
7436         wake_up_all(&dev_priv->pending_flip_queue);
7437
7438         queue_work(dev_priv->wq, &work->work);
7439
7440         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7441 }
7442
7443 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7444 {
7445         drm_i915_private_t *dev_priv = dev->dev_private;
7446         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7447
7448         do_intel_finish_page_flip(dev, crtc);
7449 }
7450
7451 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7452 {
7453         drm_i915_private_t *dev_priv = dev->dev_private;
7454         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7455
7456         do_intel_finish_page_flip(dev, crtc);
7457 }
7458
7459 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7460 {
7461         drm_i915_private_t *dev_priv = dev->dev_private;
7462         struct intel_crtc *intel_crtc =
7463                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7464         unsigned long flags;
7465
7466         /* NB: An MMIO update of the plane base pointer will also
7467          * generate a page-flip completion irq, i.e. every modeset
7468          * is also accompanied by a spurious intel_prepare_page_flip().
7469          */
7470         spin_lock_irqsave(&dev->event_lock, flags);
7471         if (intel_crtc->unpin_work)
7472                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7473         spin_unlock_irqrestore(&dev->event_lock, flags);
7474 }
7475
7476 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7477 {
7478         /* Ensure that the work item is consistent when activating it ... */
7479         smp_wmb();
7480         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7481         /* and that it is marked active as soon as the irq could fire. */
7482         smp_wmb();
7483 }
7484
7485 static int intel_gen2_queue_flip(struct drm_device *dev,
7486                                  struct drm_crtc *crtc,
7487                                  struct drm_framebuffer *fb,
7488                                  struct drm_i915_gem_object *obj)
7489 {
7490         struct drm_i915_private *dev_priv = dev->dev_private;
7491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7492         u32 flip_mask;
7493         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7494         int ret;
7495
7496         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7497         if (ret)
7498                 goto err;
7499
7500         ret = intel_ring_begin(ring, 6);
7501         if (ret)
7502                 goto err_unpin;
7503
7504         /* Can't queue multiple flips, so wait for the previous
7505          * one to finish before executing the next.
7506          */
7507         if (intel_crtc->plane)
7508                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7509         else
7510                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7511         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7512         intel_ring_emit(ring, MI_NOOP);
7513         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7514                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7515         intel_ring_emit(ring, fb->pitches[0]);
7516         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7517         intel_ring_emit(ring, 0); /* aux display base address, unused */
7518
7519         intel_mark_page_flip_active(intel_crtc);
7520         intel_ring_advance(ring);
7521         return 0;
7522
7523 err_unpin:
7524         intel_unpin_fb_obj(obj);
7525 err:
7526         return ret;
7527 }
7528
7529 static int intel_gen3_queue_flip(struct drm_device *dev,
7530                                  struct drm_crtc *crtc,
7531                                  struct drm_framebuffer *fb,
7532                                  struct drm_i915_gem_object *obj)
7533 {
7534         struct drm_i915_private *dev_priv = dev->dev_private;
7535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7536         u32 flip_mask;
7537         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7538         int ret;
7539
7540         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7541         if (ret)
7542                 goto err;
7543
7544         ret = intel_ring_begin(ring, 6);
7545         if (ret)
7546                 goto err_unpin;
7547
7548         if (intel_crtc->plane)
7549                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7550         else
7551                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7552         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7553         intel_ring_emit(ring, MI_NOOP);
7554         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7555                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7556         intel_ring_emit(ring, fb->pitches[0]);
7557         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7558         intel_ring_emit(ring, MI_NOOP);
7559
7560         intel_mark_page_flip_active(intel_crtc);
7561         intel_ring_advance(ring);
7562         return 0;
7563
7564 err_unpin:
7565         intel_unpin_fb_obj(obj);
7566 err:
7567         return ret;
7568 }
7569
7570 static int intel_gen4_queue_flip(struct drm_device *dev,
7571                                  struct drm_crtc *crtc,
7572                                  struct drm_framebuffer *fb,
7573                                  struct drm_i915_gem_object *obj)
7574 {
7575         struct drm_i915_private *dev_priv = dev->dev_private;
7576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7577         uint32_t pf, pipesrc;
7578         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7579         int ret;
7580
7581         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7582         if (ret)
7583                 goto err;
7584
7585         ret = intel_ring_begin(ring, 4);
7586         if (ret)
7587                 goto err_unpin;
7588
7589         /* i965+ uses the linear or tiled offsets from the
7590          * Display Registers (which do not change across a page-flip)
7591          * so we need only reprogram the base address.
7592          */
7593         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7594                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7595         intel_ring_emit(ring, fb->pitches[0]);
7596         intel_ring_emit(ring,
7597                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7598                         obj->tiling_mode);
7599
7600         /* XXX Enabling the panel-fitter across page-flip is so far
7601          * untested on non-native modes, so ignore it for now.
7602          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7603          */
7604         pf = 0;
7605         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7606         intel_ring_emit(ring, pf | pipesrc);
7607
7608         intel_mark_page_flip_active(intel_crtc);
7609         intel_ring_advance(ring);
7610         return 0;
7611
7612 err_unpin:
7613         intel_unpin_fb_obj(obj);
7614 err:
7615         return ret;
7616 }
7617
7618 static int intel_gen6_queue_flip(struct drm_device *dev,
7619                                  struct drm_crtc *crtc,
7620                                  struct drm_framebuffer *fb,
7621                                  struct drm_i915_gem_object *obj)
7622 {
7623         struct drm_i915_private *dev_priv = dev->dev_private;
7624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7625         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7626         uint32_t pf, pipesrc;
7627         int ret;
7628
7629         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7630         if (ret)
7631                 goto err;
7632
7633         ret = intel_ring_begin(ring, 4);
7634         if (ret)
7635                 goto err_unpin;
7636
7637         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7638                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7639         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7640         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7641
7642         /* Contrary to the suggestions in the documentation,
7643          * "Enable Panel Fitter" does not seem to be required when page
7644          * flipping with a non-native mode, and worse causes a normal
7645          * modeset to fail.
7646          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7647          */
7648         pf = 0;
7649         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7650         intel_ring_emit(ring, pf | pipesrc);
7651
7652         intel_mark_page_flip_active(intel_crtc);
7653         intel_ring_advance(ring);
7654         return 0;
7655
7656 err_unpin:
7657         intel_unpin_fb_obj(obj);
7658 err:
7659         return ret;
7660 }
7661
7662 /*
7663  * On gen7 we currently use the blit ring because (in early silicon at least)
7664  * the render ring doesn't give us interrpts for page flip completion, which
7665  * means clients will hang after the first flip is queued.  Fortunately the
7666  * blit ring generates interrupts properly, so use it instead.
7667  */
7668 static int intel_gen7_queue_flip(struct drm_device *dev,
7669                                  struct drm_crtc *crtc,
7670                                  struct drm_framebuffer *fb,
7671                                  struct drm_i915_gem_object *obj)
7672 {
7673         struct drm_i915_private *dev_priv = dev->dev_private;
7674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7675         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7676         uint32_t plane_bit = 0;
7677         int ret;
7678
7679         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7680         if (ret)
7681                 goto err;
7682
7683         switch(intel_crtc->plane) {
7684         case PLANE_A:
7685                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7686                 break;
7687         case PLANE_B:
7688                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7689                 break;
7690         case PLANE_C:
7691                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7692                 break;
7693         default:
7694                 WARN_ONCE(1, "unknown plane in flip command\n");
7695                 ret = -ENODEV;
7696                 goto err_unpin;
7697         }
7698
7699         ret = intel_ring_begin(ring, 4);
7700         if (ret)
7701                 goto err_unpin;
7702
7703         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7704         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7705         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7706         intel_ring_emit(ring, (MI_NOOP));
7707
7708         intel_mark_page_flip_active(intel_crtc);
7709         intel_ring_advance(ring);
7710         return 0;
7711
7712 err_unpin:
7713         intel_unpin_fb_obj(obj);
7714 err:
7715         return ret;
7716 }
7717
7718 static int intel_default_queue_flip(struct drm_device *dev,
7719                                     struct drm_crtc *crtc,
7720                                     struct drm_framebuffer *fb,
7721                                     struct drm_i915_gem_object *obj)
7722 {
7723         return -ENODEV;
7724 }
7725
7726 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7727                                 struct drm_framebuffer *fb,
7728                                 struct drm_pending_vblank_event *event)
7729 {
7730         struct drm_device *dev = crtc->dev;
7731         struct drm_i915_private *dev_priv = dev->dev_private;
7732         struct drm_framebuffer *old_fb = crtc->fb;
7733         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7734         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7735         struct intel_unpin_work *work;
7736         unsigned long flags;
7737         int ret;
7738
7739         /* Can't change pixel format via MI display flips. */
7740         if (fb->pixel_format != crtc->fb->pixel_format)
7741                 return -EINVAL;
7742
7743         /*
7744          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7745          * Note that pitch changes could also affect these register.
7746          */
7747         if (INTEL_INFO(dev)->gen > 3 &&
7748             (fb->offsets[0] != crtc->fb->offsets[0] ||
7749              fb->pitches[0] != crtc->fb->pitches[0]))
7750                 return -EINVAL;
7751
7752         work = kzalloc(sizeof *work, GFP_KERNEL);
7753         if (work == NULL)
7754                 return -ENOMEM;
7755
7756         work->event = event;
7757         work->crtc = crtc;
7758         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7759         INIT_WORK(&work->work, intel_unpin_work_fn);
7760
7761         ret = drm_vblank_get(dev, intel_crtc->pipe);
7762         if (ret)
7763                 goto free_work;
7764
7765         /* We borrow the event spin lock for protecting unpin_work */
7766         spin_lock_irqsave(&dev->event_lock, flags);
7767         if (intel_crtc->unpin_work) {
7768                 spin_unlock_irqrestore(&dev->event_lock, flags);
7769                 kfree(work);
7770                 drm_vblank_put(dev, intel_crtc->pipe);
7771
7772                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7773                 return -EBUSY;
7774         }
7775         intel_crtc->unpin_work = work;
7776         spin_unlock_irqrestore(&dev->event_lock, flags);
7777
7778         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7779                 flush_workqueue(dev_priv->wq);
7780
7781         ret = i915_mutex_lock_interruptible(dev);
7782         if (ret)
7783                 goto cleanup;
7784
7785         /* Reference the objects for the scheduled work. */
7786         drm_gem_object_reference(&work->old_fb_obj->base);
7787         drm_gem_object_reference(&obj->base);
7788
7789         crtc->fb = fb;
7790
7791         work->pending_flip_obj = obj;
7792
7793         work->enable_stall_check = true;
7794
7795         atomic_inc(&intel_crtc->unpin_work_count);
7796         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7797
7798         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7799         if (ret)
7800                 goto cleanup_pending;
7801
7802         intel_disable_fbc(dev);
7803         intel_mark_fb_busy(obj, NULL);
7804         mutex_unlock(&dev->struct_mutex);
7805
7806         trace_i915_flip_request(intel_crtc->plane, obj);
7807
7808         return 0;
7809
7810 cleanup_pending:
7811         atomic_dec(&intel_crtc->unpin_work_count);
7812         crtc->fb = old_fb;
7813         drm_gem_object_unreference(&work->old_fb_obj->base);
7814         drm_gem_object_unreference(&obj->base);
7815         mutex_unlock(&dev->struct_mutex);
7816
7817 cleanup:
7818         spin_lock_irqsave(&dev->event_lock, flags);
7819         intel_crtc->unpin_work = NULL;
7820         spin_unlock_irqrestore(&dev->event_lock, flags);
7821
7822         drm_vblank_put(dev, intel_crtc->pipe);
7823 free_work:
7824         kfree(work);
7825
7826         return ret;
7827 }
7828
7829 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7830         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7831         .load_lut = intel_crtc_load_lut,
7832 };
7833
7834 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7835                                   struct drm_crtc *crtc)
7836 {
7837         struct drm_device *dev;
7838         struct drm_crtc *tmp;
7839         int crtc_mask = 1;
7840
7841         WARN(!crtc, "checking null crtc?\n");
7842
7843         dev = crtc->dev;
7844
7845         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7846                 if (tmp == crtc)
7847                         break;
7848                 crtc_mask <<= 1;
7849         }
7850
7851         if (encoder->possible_crtcs & crtc_mask)
7852                 return true;
7853         return false;
7854 }
7855
7856 /**
7857  * intel_modeset_update_staged_output_state
7858  *
7859  * Updates the staged output configuration state, e.g. after we've read out the
7860  * current hw state.
7861  */
7862 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7863 {
7864         struct intel_encoder *encoder;
7865         struct intel_connector *connector;
7866
7867         list_for_each_entry(connector, &dev->mode_config.connector_list,
7868                             base.head) {
7869                 connector->new_encoder =
7870                         to_intel_encoder(connector->base.encoder);
7871         }
7872
7873         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7874                             base.head) {
7875                 encoder->new_crtc =
7876                         to_intel_crtc(encoder->base.crtc);
7877         }
7878 }
7879
7880 /**
7881  * intel_modeset_commit_output_state
7882  *
7883  * This function copies the stage display pipe configuration to the real one.
7884  */
7885 static void intel_modeset_commit_output_state(struct drm_device *dev)
7886 {
7887         struct intel_encoder *encoder;
7888         struct intel_connector *connector;
7889
7890         list_for_each_entry(connector, &dev->mode_config.connector_list,
7891                             base.head) {
7892                 connector->base.encoder = &connector->new_encoder->base;
7893         }
7894
7895         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7896                             base.head) {
7897                 encoder->base.crtc = &encoder->new_crtc->base;
7898         }
7899 }
7900
7901 static void
7902 connected_sink_compute_bpp(struct intel_connector * connector,
7903                            struct intel_crtc_config *pipe_config)
7904 {
7905         int bpp = pipe_config->pipe_bpp;
7906
7907         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7908                 connector->base.base.id,
7909                 drm_get_connector_name(&connector->base));
7910
7911         /* Don't use an invalid EDID bpc value */
7912         if (connector->base.display_info.bpc &&
7913             connector->base.display_info.bpc * 3 < bpp) {
7914                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7915                               bpp, connector->base.display_info.bpc*3);
7916                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7917         }
7918
7919         /* Clamp bpp to 8 on screens without EDID 1.4 */
7920         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7921                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7922                               bpp);
7923                 pipe_config->pipe_bpp = 24;
7924         }
7925 }
7926
7927 static int
7928 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7929                           struct drm_framebuffer *fb,
7930                           struct intel_crtc_config *pipe_config)
7931 {
7932         struct drm_device *dev = crtc->base.dev;
7933         struct intel_connector *connector;
7934         int bpp;
7935
7936         switch (fb->pixel_format) {
7937         case DRM_FORMAT_C8:
7938                 bpp = 8*3; /* since we go through a colormap */
7939                 break;
7940         case DRM_FORMAT_XRGB1555:
7941         case DRM_FORMAT_ARGB1555:
7942                 /* checked in intel_framebuffer_init already */
7943                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7944                         return -EINVAL;
7945         case DRM_FORMAT_RGB565:
7946                 bpp = 6*3; /* min is 18bpp */
7947                 break;
7948         case DRM_FORMAT_XBGR8888:
7949         case DRM_FORMAT_ABGR8888:
7950                 /* checked in intel_framebuffer_init already */
7951                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7952                         return -EINVAL;
7953         case DRM_FORMAT_XRGB8888:
7954         case DRM_FORMAT_ARGB8888:
7955                 bpp = 8*3;
7956                 break;
7957         case DRM_FORMAT_XRGB2101010:
7958         case DRM_FORMAT_ARGB2101010:
7959         case DRM_FORMAT_XBGR2101010:
7960         case DRM_FORMAT_ABGR2101010:
7961                 /* checked in intel_framebuffer_init already */
7962                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7963                         return -EINVAL;
7964                 bpp = 10*3;
7965                 break;
7966         /* TODO: gen4+ supports 16 bpc floating point, too. */
7967         default:
7968                 DRM_DEBUG_KMS("unsupported depth\n");
7969                 return -EINVAL;
7970         }
7971
7972         pipe_config->pipe_bpp = bpp;
7973
7974         /* Clamp display bpp to EDID value */
7975         list_for_each_entry(connector, &dev->mode_config.connector_list,
7976                             base.head) {
7977                 if (!connector->new_encoder ||
7978                     connector->new_encoder->new_crtc != crtc)
7979                         continue;
7980
7981                 connected_sink_compute_bpp(connector, pipe_config);
7982         }
7983
7984         return bpp;
7985 }
7986
7987 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7988                                    struct intel_crtc_config *pipe_config,
7989                                    const char *context)
7990 {
7991         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7992                       context, pipe_name(crtc->pipe));
7993
7994         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7995         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7996                       pipe_config->pipe_bpp, pipe_config->dither);
7997         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7998                       pipe_config->has_pch_encoder,
7999                       pipe_config->fdi_lanes,
8000                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8001                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8002                       pipe_config->fdi_m_n.tu);
8003         DRM_DEBUG_KMS("requested mode:\n");
8004         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8005         DRM_DEBUG_KMS("adjusted mode:\n");
8006         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8007         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8008                       pipe_config->gmch_pfit.control,
8009                       pipe_config->gmch_pfit.pgm_ratios,
8010                       pipe_config->gmch_pfit.lvds_border_bits);
8011         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8012                       pipe_config->pch_pfit.pos,
8013                       pipe_config->pch_pfit.size);
8014         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8015 }
8016
8017 static bool check_encoder_cloning(struct drm_crtc *crtc)
8018 {
8019         int num_encoders = 0;
8020         bool uncloneable_encoders = false;
8021         struct intel_encoder *encoder;
8022
8023         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8024                             base.head) {
8025                 if (&encoder->new_crtc->base != crtc)
8026                         continue;
8027
8028                 num_encoders++;
8029                 if (!encoder->cloneable)
8030                         uncloneable_encoders = true;
8031         }
8032
8033         return !(num_encoders > 1 && uncloneable_encoders);
8034 }
8035
8036 static struct intel_crtc_config *
8037 intel_modeset_pipe_config(struct drm_crtc *crtc,
8038                           struct drm_framebuffer *fb,
8039                           struct drm_display_mode *mode)
8040 {
8041         struct drm_device *dev = crtc->dev;
8042         struct intel_encoder *encoder;
8043         struct intel_crtc_config *pipe_config;
8044         int plane_bpp, ret = -EINVAL;
8045         bool retry = true;
8046
8047         if (!check_encoder_cloning(crtc)) {
8048                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8049                 return ERR_PTR(-EINVAL);
8050         }
8051
8052         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8053         if (!pipe_config)
8054                 return ERR_PTR(-ENOMEM);
8055
8056         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8057         drm_mode_copy(&pipe_config->requested_mode, mode);
8058         pipe_config->cpu_transcoder =
8059                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8060         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8061
8062         /*
8063          * Sanitize sync polarity flags based on requested ones. If neither
8064          * positive or negative polarity is requested, treat this as meaning
8065          * negative polarity.
8066          */
8067         if (!(pipe_config->adjusted_mode.flags &
8068               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8069                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8070
8071         if (!(pipe_config->adjusted_mode.flags &
8072               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8073                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8074
8075         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8076          * plane pixel format and any sink constraints into account. Returns the
8077          * source plane bpp so that dithering can be selected on mismatches
8078          * after encoders and crtc also have had their say. */
8079         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8080                                               fb, pipe_config);
8081         if (plane_bpp < 0)
8082                 goto fail;
8083
8084 encoder_retry:
8085         /* Ensure the port clock defaults are reset when retrying. */
8086         pipe_config->port_clock = 0;
8087         pipe_config->pixel_multiplier = 1;
8088
8089         /* Fill in default crtc timings, allow encoders to overwrite them. */
8090         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8091
8092         /* Pass our mode to the connectors and the CRTC to give them a chance to
8093          * adjust it according to limitations or connector properties, and also
8094          * a chance to reject the mode entirely.
8095          */
8096         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8097                             base.head) {
8098
8099                 if (&encoder->new_crtc->base != crtc)
8100                         continue;
8101
8102                 if (!(encoder->compute_config(encoder, pipe_config))) {
8103                         DRM_DEBUG_KMS("Encoder config failure\n");
8104                         goto fail;
8105                 }
8106         }
8107
8108         /* Set default port clock if not overwritten by the encoder. Needs to be
8109          * done afterwards in case the encoder adjusts the mode. */
8110         if (!pipe_config->port_clock)
8111                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8112
8113         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8114         if (ret < 0) {
8115                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8116                 goto fail;
8117         }
8118
8119         if (ret == RETRY) {
8120                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8121                         ret = -EINVAL;
8122                         goto fail;
8123                 }
8124
8125                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8126                 retry = false;
8127                 goto encoder_retry;
8128         }
8129
8130         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8131         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8132                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8133
8134         return pipe_config;
8135 fail:
8136         kfree(pipe_config);
8137         return ERR_PTR(ret);
8138 }
8139
8140 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8141  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8142 static void
8143 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8144                              unsigned *prepare_pipes, unsigned *disable_pipes)
8145 {
8146         struct intel_crtc *intel_crtc;
8147         struct drm_device *dev = crtc->dev;
8148         struct intel_encoder *encoder;
8149         struct intel_connector *connector;
8150         struct drm_crtc *tmp_crtc;
8151
8152         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8153
8154         /* Check which crtcs have changed outputs connected to them, these need
8155          * to be part of the prepare_pipes mask. We don't (yet) support global
8156          * modeset across multiple crtcs, so modeset_pipes will only have one
8157          * bit set at most. */
8158         list_for_each_entry(connector, &dev->mode_config.connector_list,
8159                             base.head) {
8160                 if (connector->base.encoder == &connector->new_encoder->base)
8161                         continue;
8162
8163                 if (connector->base.encoder) {
8164                         tmp_crtc = connector->base.encoder->crtc;
8165
8166                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8167                 }
8168
8169                 if (connector->new_encoder)
8170                         *prepare_pipes |=
8171                                 1 << connector->new_encoder->new_crtc->pipe;
8172         }
8173
8174         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8175                             base.head) {
8176                 if (encoder->base.crtc == &encoder->new_crtc->base)
8177                         continue;
8178
8179                 if (encoder->base.crtc) {
8180                         tmp_crtc = encoder->base.crtc;
8181
8182                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8183                 }
8184
8185                 if (encoder->new_crtc)
8186                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8187         }
8188
8189         /* Check for any pipes that will be fully disabled ... */
8190         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8191                             base.head) {
8192                 bool used = false;
8193
8194                 /* Don't try to disable disabled crtcs. */
8195                 if (!intel_crtc->base.enabled)
8196                         continue;
8197
8198                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8199                                     base.head) {
8200                         if (encoder->new_crtc == intel_crtc)
8201                                 used = true;
8202                 }
8203
8204                 if (!used)
8205                         *disable_pipes |= 1 << intel_crtc->pipe;
8206         }
8207
8208
8209         /* set_mode is also used to update properties on life display pipes. */
8210         intel_crtc = to_intel_crtc(crtc);
8211         if (crtc->enabled)
8212                 *prepare_pipes |= 1 << intel_crtc->pipe;
8213
8214         /*
8215          * For simplicity do a full modeset on any pipe where the output routing
8216          * changed. We could be more clever, but that would require us to be
8217          * more careful with calling the relevant encoder->mode_set functions.
8218          */
8219         if (*prepare_pipes)
8220                 *modeset_pipes = *prepare_pipes;
8221
8222         /* ... and mask these out. */
8223         *modeset_pipes &= ~(*disable_pipes);
8224         *prepare_pipes &= ~(*disable_pipes);
8225
8226         /*
8227          * HACK: We don't (yet) fully support global modesets. intel_set_config
8228          * obies this rule, but the modeset restore mode of
8229          * intel_modeset_setup_hw_state does not.
8230          */
8231         *modeset_pipes &= 1 << intel_crtc->pipe;
8232         *prepare_pipes &= 1 << intel_crtc->pipe;
8233
8234         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8235                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8236 }
8237
8238 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8239 {
8240         struct drm_encoder *encoder;
8241         struct drm_device *dev = crtc->dev;
8242
8243         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8244                 if (encoder->crtc == crtc)
8245                         return true;
8246
8247         return false;
8248 }
8249
8250 static void
8251 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8252 {
8253         struct intel_encoder *intel_encoder;
8254         struct intel_crtc *intel_crtc;
8255         struct drm_connector *connector;
8256
8257         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8258                             base.head) {
8259                 if (!intel_encoder->base.crtc)
8260                         continue;
8261
8262                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8263
8264                 if (prepare_pipes & (1 << intel_crtc->pipe))
8265                         intel_encoder->connectors_active = false;
8266         }
8267
8268         intel_modeset_commit_output_state(dev);
8269
8270         /* Update computed state. */
8271         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8272                             base.head) {
8273                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8274         }
8275
8276         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8277                 if (!connector->encoder || !connector->encoder->crtc)
8278                         continue;
8279
8280                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8281
8282                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8283                         struct drm_property *dpms_property =
8284                                 dev->mode_config.dpms_property;
8285
8286                         connector->dpms = DRM_MODE_DPMS_ON;
8287                         drm_object_property_set_value(&connector->base,
8288                                                          dpms_property,
8289                                                          DRM_MODE_DPMS_ON);
8290
8291                         intel_encoder = to_intel_encoder(connector->encoder);
8292                         intel_encoder->connectors_active = true;
8293                 }
8294         }
8295
8296 }
8297
8298 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8299                                     struct intel_crtc_config *new)
8300 {
8301         int clock1, clock2, diff;
8302
8303         clock1 = cur->adjusted_mode.clock;
8304         clock2 = new->adjusted_mode.clock;
8305
8306         if (clock1 == clock2)
8307                 return true;
8308
8309         if (!clock1 || !clock2)
8310                 return false;
8311
8312         diff = abs(clock1 - clock2);
8313
8314         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8315                 return true;
8316
8317         return false;
8318 }
8319
8320 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8321         list_for_each_entry((intel_crtc), \
8322                             &(dev)->mode_config.crtc_list, \
8323                             base.head) \
8324                 if (mask & (1 <<(intel_crtc)->pipe))
8325
8326 static bool
8327 intel_pipe_config_compare(struct drm_device *dev,
8328                           struct intel_crtc_config *current_config,
8329                           struct intel_crtc_config *pipe_config)
8330 {
8331 #define PIPE_CONF_CHECK_X(name) \
8332         if (current_config->name != pipe_config->name) { \
8333                 DRM_ERROR("mismatch in " #name " " \
8334                           "(expected 0x%08x, found 0x%08x)\n", \
8335                           current_config->name, \
8336                           pipe_config->name); \
8337                 return false; \
8338         }
8339
8340 #define PIPE_CONF_CHECK_I(name) \
8341         if (current_config->name != pipe_config->name) { \
8342                 DRM_ERROR("mismatch in " #name " " \
8343                           "(expected %i, found %i)\n", \
8344                           current_config->name, \
8345                           pipe_config->name); \
8346                 return false; \
8347         }
8348
8349 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8350         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8351                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8352                           "(expected %i, found %i)\n", \
8353                           current_config->name & (mask), \
8354                           pipe_config->name & (mask)); \
8355                 return false; \
8356         }
8357
8358 #define PIPE_CONF_QUIRK(quirk)  \
8359         ((current_config->quirks | pipe_config->quirks) & (quirk))
8360
8361         PIPE_CONF_CHECK_I(cpu_transcoder);
8362
8363         PIPE_CONF_CHECK_I(has_pch_encoder);
8364         PIPE_CONF_CHECK_I(fdi_lanes);
8365         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8366         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8367         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8368         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8369         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8370
8371         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8372         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8373         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8374         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8375         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8376         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8377
8378         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8379         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8380         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8381         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8382         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8383         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8384
8385         PIPE_CONF_CHECK_I(pixel_multiplier);
8386
8387         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8388                               DRM_MODE_FLAG_INTERLACE);
8389
8390         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8391                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8392                                       DRM_MODE_FLAG_PHSYNC);
8393                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8394                                       DRM_MODE_FLAG_NHSYNC);
8395                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8396                                       DRM_MODE_FLAG_PVSYNC);
8397                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8398                                       DRM_MODE_FLAG_NVSYNC);
8399         }
8400
8401         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8402         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8403
8404         PIPE_CONF_CHECK_I(gmch_pfit.control);
8405         /* pfit ratios are autocomputed by the hw on gen4+ */
8406         if (INTEL_INFO(dev)->gen < 4)
8407                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8408         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8409         PIPE_CONF_CHECK_I(pch_pfit.pos);
8410         PIPE_CONF_CHECK_I(pch_pfit.size);
8411
8412         PIPE_CONF_CHECK_I(ips_enabled);
8413
8414         PIPE_CONF_CHECK_I(shared_dpll);
8415         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8416         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8417         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8418         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8419
8420 #undef PIPE_CONF_CHECK_X
8421 #undef PIPE_CONF_CHECK_I
8422 #undef PIPE_CONF_CHECK_FLAGS
8423 #undef PIPE_CONF_QUIRK
8424
8425         if (!IS_HASWELL(dev)) {
8426                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8427                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8428                                   current_config->adjusted_mode.clock,
8429                                   pipe_config->adjusted_mode.clock);
8430                         return false;
8431                 }
8432         }
8433
8434         return true;
8435 }
8436
8437 static void
8438 check_connector_state(struct drm_device *dev)
8439 {
8440         struct intel_connector *connector;
8441
8442         list_for_each_entry(connector, &dev->mode_config.connector_list,
8443                             base.head) {
8444                 /* This also checks the encoder/connector hw state with the
8445                  * ->get_hw_state callbacks. */
8446                 intel_connector_check_state(connector);
8447
8448                 WARN(&connector->new_encoder->base != connector->base.encoder,
8449                      "connector's staged encoder doesn't match current encoder\n");
8450         }
8451 }
8452
8453 static void
8454 check_encoder_state(struct drm_device *dev)
8455 {
8456         struct intel_encoder *encoder;
8457         struct intel_connector *connector;
8458
8459         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8460                             base.head) {
8461                 bool enabled = false;
8462                 bool active = false;
8463                 enum pipe pipe, tracked_pipe;
8464
8465                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8466                               encoder->base.base.id,
8467                               drm_get_encoder_name(&encoder->base));
8468
8469                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8470                      "encoder's stage crtc doesn't match current crtc\n");
8471                 WARN(encoder->connectors_active && !encoder->base.crtc,
8472                      "encoder's active_connectors set, but no crtc\n");
8473
8474                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8475                                     base.head) {
8476                         if (connector->base.encoder != &encoder->base)
8477                                 continue;
8478                         enabled = true;
8479                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8480                                 active = true;
8481                 }
8482                 WARN(!!encoder->base.crtc != enabled,
8483                      "encoder's enabled state mismatch "
8484                      "(expected %i, found %i)\n",
8485                      !!encoder->base.crtc, enabled);
8486                 WARN(active && !encoder->base.crtc,
8487                      "active encoder with no crtc\n");
8488
8489                 WARN(encoder->connectors_active != active,
8490                      "encoder's computed active state doesn't match tracked active state "
8491                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8492
8493                 active = encoder->get_hw_state(encoder, &pipe);
8494                 WARN(active != encoder->connectors_active,
8495                      "encoder's hw state doesn't match sw tracking "
8496                      "(expected %i, found %i)\n",
8497                      encoder->connectors_active, active);
8498
8499                 if (!encoder->base.crtc)
8500                         continue;
8501
8502                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8503                 WARN(active && pipe != tracked_pipe,
8504                      "active encoder's pipe doesn't match"
8505                      "(expected %i, found %i)\n",
8506                      tracked_pipe, pipe);
8507
8508         }
8509 }
8510
8511 static void
8512 check_crtc_state(struct drm_device *dev)
8513 {
8514         drm_i915_private_t *dev_priv = dev->dev_private;
8515         struct intel_crtc *crtc;
8516         struct intel_encoder *encoder;
8517         struct intel_crtc_config pipe_config;
8518
8519         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8520                             base.head) {
8521                 bool enabled = false;
8522                 bool active = false;
8523
8524                 memset(&pipe_config, 0, sizeof(pipe_config));
8525
8526                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8527                               crtc->base.base.id);
8528
8529                 WARN(crtc->active && !crtc->base.enabled,
8530                      "active crtc, but not enabled in sw tracking\n");
8531
8532                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8533                                     base.head) {
8534                         if (encoder->base.crtc != &crtc->base)
8535                                 continue;
8536                         enabled = true;
8537                         if (encoder->connectors_active)
8538                                 active = true;
8539                 }
8540
8541                 WARN(active != crtc->active,
8542                      "crtc's computed active state doesn't match tracked active state "
8543                      "(expected %i, found %i)\n", active, crtc->active);
8544                 WARN(enabled != crtc->base.enabled,
8545                      "crtc's computed enabled state doesn't match tracked enabled state "
8546                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8547
8548                 active = dev_priv->display.get_pipe_config(crtc,
8549                                                            &pipe_config);
8550
8551                 /* hw state is inconsistent with the pipe A quirk */
8552                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8553                         active = crtc->active;
8554
8555                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8556                                     base.head) {
8557                         if (encoder->base.crtc != &crtc->base)
8558                                 continue;
8559                         if (encoder->get_config)
8560                                 encoder->get_config(encoder, &pipe_config);
8561                 }
8562
8563                 if (dev_priv->display.get_clock)
8564                         dev_priv->display.get_clock(crtc, &pipe_config);
8565
8566                 WARN(crtc->active != active,
8567                      "crtc active state doesn't match with hw state "
8568                      "(expected %i, found %i)\n", crtc->active, active);
8569
8570                 if (active &&
8571                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8572                         WARN(1, "pipe state doesn't match!\n");
8573                         intel_dump_pipe_config(crtc, &pipe_config,
8574                                                "[hw state]");
8575                         intel_dump_pipe_config(crtc, &crtc->config,
8576                                                "[sw state]");
8577                 }
8578         }
8579 }
8580
8581 static void
8582 check_shared_dpll_state(struct drm_device *dev)
8583 {
8584         drm_i915_private_t *dev_priv = dev->dev_private;
8585         struct intel_crtc *crtc;
8586         struct intel_dpll_hw_state dpll_hw_state;
8587         int i;
8588
8589         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8590                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8591                 int enabled_crtcs = 0, active_crtcs = 0;
8592                 bool active;
8593
8594                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8595
8596                 DRM_DEBUG_KMS("%s\n", pll->name);
8597
8598                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8599
8600                 WARN(pll->active > pll->refcount,
8601                      "more active pll users than references: %i vs %i\n",
8602                      pll->active, pll->refcount);
8603                 WARN(pll->active && !pll->on,
8604                      "pll in active use but not on in sw tracking\n");
8605                 WARN(pll->on && !pll->active,
8606                      "pll in on but not on in use in sw tracking\n");
8607                 WARN(pll->on != active,
8608                      "pll on state mismatch (expected %i, found %i)\n",
8609                      pll->on, active);
8610
8611                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8612                                     base.head) {
8613                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8614                                 enabled_crtcs++;
8615                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8616                                 active_crtcs++;
8617                 }
8618                 WARN(pll->active != active_crtcs,
8619                      "pll active crtcs mismatch (expected %i, found %i)\n",
8620                      pll->active, active_crtcs);
8621                 WARN(pll->refcount != enabled_crtcs,
8622                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8623                      pll->refcount, enabled_crtcs);
8624
8625                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8626                                        sizeof(dpll_hw_state)),
8627                      "pll hw state mismatch\n");
8628         }
8629 }
8630
8631 void
8632 intel_modeset_check_state(struct drm_device *dev)
8633 {
8634         check_connector_state(dev);
8635         check_encoder_state(dev);
8636         check_crtc_state(dev);
8637         check_shared_dpll_state(dev);
8638 }
8639
8640 static int __intel_set_mode(struct drm_crtc *crtc,
8641                             struct drm_display_mode *mode,
8642                             int x, int y, struct drm_framebuffer *fb)
8643 {
8644         struct drm_device *dev = crtc->dev;
8645         drm_i915_private_t *dev_priv = dev->dev_private;
8646         struct drm_display_mode *saved_mode, *saved_hwmode;
8647         struct intel_crtc_config *pipe_config = NULL;
8648         struct intel_crtc *intel_crtc;
8649         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8650         int ret = 0;
8651
8652         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8653         if (!saved_mode)
8654                 return -ENOMEM;
8655         saved_hwmode = saved_mode + 1;
8656
8657         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8658                                      &prepare_pipes, &disable_pipes);
8659
8660         *saved_hwmode = crtc->hwmode;
8661         *saved_mode = crtc->mode;
8662
8663         /* Hack: Because we don't (yet) support global modeset on multiple
8664          * crtcs, we don't keep track of the new mode for more than one crtc.
8665          * Hence simply check whether any bit is set in modeset_pipes in all the
8666          * pieces of code that are not yet converted to deal with mutliple crtcs
8667          * changing their mode at the same time. */
8668         if (modeset_pipes) {
8669                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8670                 if (IS_ERR(pipe_config)) {
8671                         ret = PTR_ERR(pipe_config);
8672                         pipe_config = NULL;
8673
8674                         goto out;
8675                 }
8676                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8677                                        "[modeset]");
8678         }
8679
8680         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8681                 intel_crtc_disable(&intel_crtc->base);
8682
8683         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8684                 if (intel_crtc->base.enabled)
8685                         dev_priv->display.crtc_disable(&intel_crtc->base);
8686         }
8687
8688         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8689          * to set it here already despite that we pass it down the callchain.
8690          */
8691         if (modeset_pipes) {
8692                 crtc->mode = *mode;
8693                 /* mode_set/enable/disable functions rely on a correct pipe
8694                  * config. */
8695                 to_intel_crtc(crtc)->config = *pipe_config;
8696         }
8697
8698         /* Only after disabling all output pipelines that will be changed can we
8699          * update the the output configuration. */
8700         intel_modeset_update_state(dev, prepare_pipes);
8701
8702         if (dev_priv->display.modeset_global_resources)
8703                 dev_priv->display.modeset_global_resources(dev);
8704
8705         /* Set up the DPLL and any encoders state that needs to adjust or depend
8706          * on the DPLL.
8707          */
8708         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8709                 ret = intel_crtc_mode_set(&intel_crtc->base,
8710                                           x, y, fb);
8711                 if (ret)
8712                         goto done;
8713         }
8714
8715         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8716         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8717                 dev_priv->display.crtc_enable(&intel_crtc->base);
8718
8719         if (modeset_pipes) {
8720                 /* Store real post-adjustment hardware mode. */
8721                 crtc->hwmode = pipe_config->adjusted_mode;
8722
8723                 /* Calculate and store various constants which
8724                  * are later needed by vblank and swap-completion
8725                  * timestamping. They are derived from true hwmode.
8726                  */
8727                 drm_calc_timestamping_constants(crtc);
8728         }
8729
8730         /* FIXME: add subpixel order */
8731 done:
8732         if (ret && crtc->enabled) {
8733                 crtc->hwmode = *saved_hwmode;
8734                 crtc->mode = *saved_mode;
8735         }
8736
8737 out:
8738         kfree(pipe_config);
8739         kfree(saved_mode);
8740         return ret;
8741 }
8742
8743 static int intel_set_mode(struct drm_crtc *crtc,
8744                           struct drm_display_mode *mode,
8745                           int x, int y, struct drm_framebuffer *fb)
8746 {
8747         int ret;
8748
8749         ret = __intel_set_mode(crtc, mode, x, y, fb);
8750
8751         if (ret == 0)
8752                 intel_modeset_check_state(crtc->dev);
8753
8754         return ret;
8755 }
8756
8757 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8758 {
8759         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8760 }
8761
8762 #undef for_each_intel_crtc_masked
8763
8764 static void intel_set_config_free(struct intel_set_config *config)
8765 {
8766         if (!config)
8767                 return;
8768
8769         kfree(config->save_connector_encoders);
8770         kfree(config->save_encoder_crtcs);
8771         kfree(config);
8772 }
8773
8774 static int intel_set_config_save_state(struct drm_device *dev,
8775                                        struct intel_set_config *config)
8776 {
8777         struct drm_encoder *encoder;
8778         struct drm_connector *connector;
8779         int count;
8780
8781         config->save_encoder_crtcs =
8782                 kcalloc(dev->mode_config.num_encoder,
8783                         sizeof(struct drm_crtc *), GFP_KERNEL);
8784         if (!config->save_encoder_crtcs)
8785                 return -ENOMEM;
8786
8787         config->save_connector_encoders =
8788                 kcalloc(dev->mode_config.num_connector,
8789                         sizeof(struct drm_encoder *), GFP_KERNEL);
8790         if (!config->save_connector_encoders)
8791                 return -ENOMEM;
8792
8793         /* Copy data. Note that driver private data is not affected.
8794          * Should anything bad happen only the expected state is
8795          * restored, not the drivers personal bookkeeping.
8796          */
8797         count = 0;
8798         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8799                 config->save_encoder_crtcs[count++] = encoder->crtc;
8800         }
8801
8802         count = 0;
8803         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8804                 config->save_connector_encoders[count++] = connector->encoder;
8805         }
8806
8807         return 0;
8808 }
8809
8810 static void intel_set_config_restore_state(struct drm_device *dev,
8811                                            struct intel_set_config *config)
8812 {
8813         struct intel_encoder *encoder;
8814         struct intel_connector *connector;
8815         int count;
8816
8817         count = 0;
8818         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8819                 encoder->new_crtc =
8820                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8821         }
8822
8823         count = 0;
8824         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8825                 connector->new_encoder =
8826                         to_intel_encoder(config->save_connector_encoders[count++]);
8827         }
8828 }
8829
8830 static bool
8831 is_crtc_connector_off(struct drm_mode_set *set)
8832 {
8833         int i;
8834
8835         if (set->num_connectors == 0)
8836                 return false;
8837
8838         if (WARN_ON(set->connectors == NULL))
8839                 return false;
8840
8841         for (i = 0; i < set->num_connectors; i++)
8842                 if (set->connectors[i]->encoder &&
8843                     set->connectors[i]->encoder->crtc == set->crtc &&
8844                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8845                         return true;
8846
8847         return false;
8848 }
8849
8850 static void
8851 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8852                                       struct intel_set_config *config)
8853 {
8854
8855         /* We should be able to check here if the fb has the same properties
8856          * and then just flip_or_move it */
8857         if (is_crtc_connector_off(set)) {
8858                 config->mode_changed = true;
8859         } else if (set->crtc->fb != set->fb) {
8860                 /* If we have no fb then treat it as a full mode set */
8861                 if (set->crtc->fb == NULL) {
8862                         struct intel_crtc *intel_crtc =
8863                                 to_intel_crtc(set->crtc);
8864
8865                         if (intel_crtc->active && i915_fastboot) {
8866                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8867                                 config->fb_changed = true;
8868                         } else {
8869                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8870                                 config->mode_changed = true;
8871                         }
8872                 } else if (set->fb == NULL) {
8873                         config->mode_changed = true;
8874                 } else if (set->fb->pixel_format !=
8875                            set->crtc->fb->pixel_format) {
8876                         config->mode_changed = true;
8877                 } else {
8878                         config->fb_changed = true;
8879                 }
8880         }
8881
8882         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8883                 config->fb_changed = true;
8884
8885         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8886                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8887                 drm_mode_debug_printmodeline(&set->crtc->mode);
8888                 drm_mode_debug_printmodeline(set->mode);
8889                 config->mode_changed = true;
8890         }
8891
8892         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
8893                         set->crtc->base.id, config->mode_changed, config->fb_changed);
8894 }
8895
8896 static int
8897 intel_modeset_stage_output_state(struct drm_device *dev,
8898                                  struct drm_mode_set *set,
8899                                  struct intel_set_config *config)
8900 {
8901         struct drm_crtc *new_crtc;
8902         struct intel_connector *connector;
8903         struct intel_encoder *encoder;
8904         int ro;
8905
8906         /* The upper layers ensure that we either disable a crtc or have a list
8907          * of connectors. For paranoia, double-check this. */
8908         WARN_ON(!set->fb && (set->num_connectors != 0));
8909         WARN_ON(set->fb && (set->num_connectors == 0));
8910
8911         list_for_each_entry(connector, &dev->mode_config.connector_list,
8912                             base.head) {
8913                 /* Otherwise traverse passed in connector list and get encoders
8914                  * for them. */
8915                 for (ro = 0; ro < set->num_connectors; ro++) {
8916                         if (set->connectors[ro] == &connector->base) {
8917                                 connector->new_encoder = connector->encoder;
8918                                 break;
8919                         }
8920                 }
8921
8922                 /* If we disable the crtc, disable all its connectors. Also, if
8923                  * the connector is on the changing crtc but not on the new
8924                  * connector list, disable it. */
8925                 if ((!set->fb || ro == set->num_connectors) &&
8926                     connector->base.encoder &&
8927                     connector->base.encoder->crtc == set->crtc) {
8928                         connector->new_encoder = NULL;
8929
8930                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8931                                 connector->base.base.id,
8932                                 drm_get_connector_name(&connector->base));
8933                 }
8934
8935
8936                 if (&connector->new_encoder->base != connector->base.encoder) {
8937                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8938                         config->mode_changed = true;
8939                 }
8940         }
8941         /* connector->new_encoder is now updated for all connectors. */
8942
8943         /* Update crtc of enabled connectors. */
8944         list_for_each_entry(connector, &dev->mode_config.connector_list,
8945                             base.head) {
8946                 if (!connector->new_encoder)
8947                         continue;
8948
8949                 new_crtc = connector->new_encoder->base.crtc;
8950
8951                 for (ro = 0; ro < set->num_connectors; ro++) {
8952                         if (set->connectors[ro] == &connector->base)
8953                                 new_crtc = set->crtc;
8954                 }
8955
8956                 /* Make sure the new CRTC will work with the encoder */
8957                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8958                                            new_crtc)) {
8959                         return -EINVAL;
8960                 }
8961                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8962
8963                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8964                         connector->base.base.id,
8965                         drm_get_connector_name(&connector->base),
8966                         new_crtc->base.id);
8967         }
8968
8969         /* Check for any encoders that needs to be disabled. */
8970         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8971                             base.head) {
8972                 list_for_each_entry(connector,
8973                                     &dev->mode_config.connector_list,
8974                                     base.head) {
8975                         if (connector->new_encoder == encoder) {
8976                                 WARN_ON(!connector->new_encoder->new_crtc);
8977
8978                                 goto next_encoder;
8979                         }
8980                 }
8981                 encoder->new_crtc = NULL;
8982 next_encoder:
8983                 /* Only now check for crtc changes so we don't miss encoders
8984                  * that will be disabled. */
8985                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8986                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8987                         config->mode_changed = true;
8988                 }
8989         }
8990         /* Now we've also updated encoder->new_crtc for all encoders. */
8991
8992         return 0;
8993 }
8994
8995 static int intel_crtc_set_config(struct drm_mode_set *set)
8996 {
8997         struct drm_device *dev;
8998         struct drm_mode_set save_set;
8999         struct intel_set_config *config;
9000         int ret;
9001
9002         BUG_ON(!set);
9003         BUG_ON(!set->crtc);
9004         BUG_ON(!set->crtc->helper_private);
9005
9006         /* Enforce sane interface api - has been abused by the fb helper. */
9007         BUG_ON(!set->mode && set->fb);
9008         BUG_ON(set->fb && set->num_connectors == 0);
9009
9010         if (set->fb) {
9011                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9012                                 set->crtc->base.id, set->fb->base.id,
9013                                 (int)set->num_connectors, set->x, set->y);
9014         } else {
9015                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9016         }
9017
9018         dev = set->crtc->dev;
9019
9020         ret = -ENOMEM;
9021         config = kzalloc(sizeof(*config), GFP_KERNEL);
9022         if (!config)
9023                 goto out_config;
9024
9025         ret = intel_set_config_save_state(dev, config);
9026         if (ret)
9027                 goto out_config;
9028
9029         save_set.crtc = set->crtc;
9030         save_set.mode = &set->crtc->mode;
9031         save_set.x = set->crtc->x;
9032         save_set.y = set->crtc->y;
9033         save_set.fb = set->crtc->fb;
9034
9035         /* Compute whether we need a full modeset, only an fb base update or no
9036          * change at all. In the future we might also check whether only the
9037          * mode changed, e.g. for LVDS where we only change the panel fitter in
9038          * such cases. */
9039         intel_set_config_compute_mode_changes(set, config);
9040
9041         ret = intel_modeset_stage_output_state(dev, set, config);
9042         if (ret)
9043                 goto fail;
9044
9045         if (config->mode_changed) {
9046                 ret = intel_set_mode(set->crtc, set->mode,
9047                                      set->x, set->y, set->fb);
9048         } else if (config->fb_changed) {
9049                 intel_crtc_wait_for_pending_flips(set->crtc);
9050
9051                 ret = intel_pipe_set_base(set->crtc,
9052                                           set->x, set->y, set->fb);
9053         }
9054
9055         if (ret) {
9056                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9057                               set->crtc->base.id, ret);
9058 fail:
9059                 intel_set_config_restore_state(dev, config);
9060
9061                 /* Try to restore the config */
9062                 if (config->mode_changed &&
9063                     intel_set_mode(save_set.crtc, save_set.mode,
9064                                    save_set.x, save_set.y, save_set.fb))
9065                         DRM_ERROR("failed to restore config after modeset failure\n");
9066         }
9067
9068 out_config:
9069         intel_set_config_free(config);
9070         return ret;
9071 }
9072
9073 static const struct drm_crtc_funcs intel_crtc_funcs = {
9074         .cursor_set = intel_crtc_cursor_set,
9075         .cursor_move = intel_crtc_cursor_move,
9076         .gamma_set = intel_crtc_gamma_set,
9077         .set_config = intel_crtc_set_config,
9078         .destroy = intel_crtc_destroy,
9079         .page_flip = intel_crtc_page_flip,
9080 };
9081
9082 static void intel_cpu_pll_init(struct drm_device *dev)
9083 {
9084         if (HAS_DDI(dev))
9085                 intel_ddi_pll_init(dev);
9086 }
9087
9088 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9089                                       struct intel_shared_dpll *pll,
9090                                       struct intel_dpll_hw_state *hw_state)
9091 {
9092         uint32_t val;
9093
9094         val = I915_READ(PCH_DPLL(pll->id));
9095         hw_state->dpll = val;
9096         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9097         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9098
9099         return val & DPLL_VCO_ENABLE;
9100 }
9101
9102 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9103                                   struct intel_shared_dpll *pll)
9104 {
9105         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9106         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9107 }
9108
9109 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9110                                 struct intel_shared_dpll *pll)
9111 {
9112         /* PCH refclock must be enabled first */
9113         assert_pch_refclk_enabled(dev_priv);
9114
9115         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9116
9117         /* Wait for the clocks to stabilize. */
9118         POSTING_READ(PCH_DPLL(pll->id));
9119         udelay(150);
9120
9121         /* The pixel multiplier can only be updated once the
9122          * DPLL is enabled and the clocks are stable.
9123          *
9124          * So write it again.
9125          */
9126         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9127         POSTING_READ(PCH_DPLL(pll->id));
9128         udelay(200);
9129 }
9130
9131 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9132                                  struct intel_shared_dpll *pll)
9133 {
9134         struct drm_device *dev = dev_priv->dev;
9135         struct intel_crtc *crtc;
9136
9137         /* Make sure no transcoder isn't still depending on us. */
9138         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9139                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9140                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9141         }
9142
9143         I915_WRITE(PCH_DPLL(pll->id), 0);
9144         POSTING_READ(PCH_DPLL(pll->id));
9145         udelay(200);
9146 }
9147
9148 static char *ibx_pch_dpll_names[] = {
9149         "PCH DPLL A",
9150         "PCH DPLL B",
9151 };
9152
9153 static void ibx_pch_dpll_init(struct drm_device *dev)
9154 {
9155         struct drm_i915_private *dev_priv = dev->dev_private;
9156         int i;
9157
9158         dev_priv->num_shared_dpll = 2;
9159
9160         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9161                 dev_priv->shared_dplls[i].id = i;
9162                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9163                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9164                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9165                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9166                 dev_priv->shared_dplls[i].get_hw_state =
9167                         ibx_pch_dpll_get_hw_state;
9168         }
9169 }
9170
9171 static void intel_shared_dpll_init(struct drm_device *dev)
9172 {
9173         struct drm_i915_private *dev_priv = dev->dev_private;
9174
9175         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9176                 ibx_pch_dpll_init(dev);
9177         else
9178                 dev_priv->num_shared_dpll = 0;
9179
9180         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9181         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9182                       dev_priv->num_shared_dpll);
9183 }
9184
9185 static void intel_crtc_init(struct drm_device *dev, int pipe)
9186 {
9187         drm_i915_private_t *dev_priv = dev->dev_private;
9188         struct intel_crtc *intel_crtc;
9189         int i;
9190
9191         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9192         if (intel_crtc == NULL)
9193                 return;
9194
9195         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9196
9197         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9198         for (i = 0; i < 256; i++) {
9199                 intel_crtc->lut_r[i] = i;
9200                 intel_crtc->lut_g[i] = i;
9201                 intel_crtc->lut_b[i] = i;
9202         }
9203
9204         /* Swap pipes & planes for FBC on pre-965 */
9205         intel_crtc->pipe = pipe;
9206         intel_crtc->plane = pipe;
9207         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9208                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9209                 intel_crtc->plane = !pipe;
9210         }
9211
9212         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9213                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9214         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9215         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9216
9217         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9218 }
9219
9220 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9221                                 struct drm_file *file)
9222 {
9223         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9224         struct drm_mode_object *drmmode_obj;
9225         struct intel_crtc *crtc;
9226
9227         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9228                 return -ENODEV;
9229
9230         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9231                         DRM_MODE_OBJECT_CRTC);
9232
9233         if (!drmmode_obj) {
9234                 DRM_ERROR("no such CRTC id\n");
9235                 return -EINVAL;
9236         }
9237
9238         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9239         pipe_from_crtc_id->pipe = crtc->pipe;
9240
9241         return 0;
9242 }
9243
9244 static int intel_encoder_clones(struct intel_encoder *encoder)
9245 {
9246         struct drm_device *dev = encoder->base.dev;
9247         struct intel_encoder *source_encoder;
9248         int index_mask = 0;
9249         int entry = 0;
9250
9251         list_for_each_entry(source_encoder,
9252                             &dev->mode_config.encoder_list, base.head) {
9253
9254                 if (encoder == source_encoder)
9255                         index_mask |= (1 << entry);
9256
9257                 /* Intel hw has only one MUX where enocoders could be cloned. */
9258                 if (encoder->cloneable && source_encoder->cloneable)
9259                         index_mask |= (1 << entry);
9260
9261                 entry++;
9262         }
9263
9264         return index_mask;
9265 }
9266
9267 static bool has_edp_a(struct drm_device *dev)
9268 {
9269         struct drm_i915_private *dev_priv = dev->dev_private;
9270
9271         if (!IS_MOBILE(dev))
9272                 return false;
9273
9274         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9275                 return false;
9276
9277         if (IS_GEN5(dev) &&
9278             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9279                 return false;
9280
9281         return true;
9282 }
9283
9284 static void intel_setup_outputs(struct drm_device *dev)
9285 {
9286         struct drm_i915_private *dev_priv = dev->dev_private;
9287         struct intel_encoder *encoder;
9288         bool dpd_is_edp = false;
9289
9290         intel_lvds_init(dev);
9291
9292         if (!IS_ULT(dev))
9293                 intel_crt_init(dev);
9294
9295         if (HAS_DDI(dev)) {
9296                 int found;
9297
9298                 /* Haswell uses DDI functions to detect digital outputs */
9299                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9300                 /* DDI A only supports eDP */
9301                 if (found)
9302                         intel_ddi_init(dev, PORT_A);
9303
9304                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9305                  * register */
9306                 found = I915_READ(SFUSE_STRAP);
9307
9308                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9309                         intel_ddi_init(dev, PORT_B);
9310                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9311                         intel_ddi_init(dev, PORT_C);
9312                 if (found & SFUSE_STRAP_DDID_DETECTED)
9313                         intel_ddi_init(dev, PORT_D);
9314         } else if (HAS_PCH_SPLIT(dev)) {
9315                 int found;
9316                 dpd_is_edp = intel_dpd_is_edp(dev);
9317
9318                 if (has_edp_a(dev))
9319                         intel_dp_init(dev, DP_A, PORT_A);
9320
9321                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9322                         /* PCH SDVOB multiplex with HDMIB */
9323                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9324                         if (!found)
9325                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9326                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9327                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9328                 }
9329
9330                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9331                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9332
9333                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9334                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9335
9336                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9337                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9338
9339                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9340                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9341         } else if (IS_VALLEYVIEW(dev)) {
9342                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9343                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9344                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9345                                         PORT_C);
9346                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9347                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9348                                               PORT_C);
9349                 }
9350
9351                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9352                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9353                                         PORT_B);
9354                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9355                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9356                 }
9357         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9358                 bool found = false;
9359
9360                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9361                         DRM_DEBUG_KMS("probing SDVOB\n");
9362                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9363                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9364                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9365                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9366                         }
9367
9368                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9369                                 intel_dp_init(dev, DP_B, PORT_B);
9370                 }
9371
9372                 /* Before G4X SDVOC doesn't have its own detect register */
9373
9374                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9375                         DRM_DEBUG_KMS("probing SDVOC\n");
9376                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9377                 }
9378
9379                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9380
9381                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9382                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9383                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9384                         }
9385                         if (SUPPORTS_INTEGRATED_DP(dev))
9386                                 intel_dp_init(dev, DP_C, PORT_C);
9387                 }
9388
9389                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9390                     (I915_READ(DP_D) & DP_DETECTED))
9391                         intel_dp_init(dev, DP_D, PORT_D);
9392         } else if (IS_GEN2(dev))
9393                 intel_dvo_init(dev);
9394
9395         if (SUPPORTS_TV(dev))
9396                 intel_tv_init(dev);
9397
9398         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9399                 encoder->base.possible_crtcs = encoder->crtc_mask;
9400                 encoder->base.possible_clones =
9401                         intel_encoder_clones(encoder);
9402         }
9403
9404         intel_init_pch_refclk(dev);
9405
9406         drm_helper_move_panel_connectors_to_head(dev);
9407 }
9408
9409 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9410 {
9411         drm_framebuffer_cleanup(&fb->base);
9412         drm_gem_object_unreference_unlocked(&fb->obj->base);
9413 }
9414
9415 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9416 {
9417         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9418
9419         intel_framebuffer_fini(intel_fb);
9420         kfree(intel_fb);
9421 }
9422
9423 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9424                                                 struct drm_file *file,
9425                                                 unsigned int *handle)
9426 {
9427         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9428         struct drm_i915_gem_object *obj = intel_fb->obj;
9429
9430         return drm_gem_handle_create(file, &obj->base, handle);
9431 }
9432
9433 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9434         .destroy = intel_user_framebuffer_destroy,
9435         .create_handle = intel_user_framebuffer_create_handle,
9436 };
9437
9438 int intel_framebuffer_init(struct drm_device *dev,
9439                            struct intel_framebuffer *intel_fb,
9440                            struct drm_mode_fb_cmd2 *mode_cmd,
9441                            struct drm_i915_gem_object *obj)
9442 {
9443         int pitch_limit;
9444         int ret;
9445
9446         if (obj->tiling_mode == I915_TILING_Y) {
9447                 DRM_DEBUG("hardware does not support tiling Y\n");
9448                 return -EINVAL;
9449         }
9450
9451         if (mode_cmd->pitches[0] & 63) {
9452                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9453                           mode_cmd->pitches[0]);
9454                 return -EINVAL;
9455         }
9456
9457         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9458                 pitch_limit = 32*1024;
9459         } else if (INTEL_INFO(dev)->gen >= 4) {
9460                 if (obj->tiling_mode)
9461                         pitch_limit = 16*1024;
9462                 else
9463                         pitch_limit = 32*1024;
9464         } else if (INTEL_INFO(dev)->gen >= 3) {
9465                 if (obj->tiling_mode)
9466                         pitch_limit = 8*1024;
9467                 else
9468                         pitch_limit = 16*1024;
9469         } else
9470                 /* XXX DSPC is limited to 4k tiled */
9471                 pitch_limit = 8*1024;
9472
9473         if (mode_cmd->pitches[0] > pitch_limit) {
9474                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9475                           obj->tiling_mode ? "tiled" : "linear",
9476                           mode_cmd->pitches[0], pitch_limit);
9477                 return -EINVAL;
9478         }
9479
9480         if (obj->tiling_mode != I915_TILING_NONE &&
9481             mode_cmd->pitches[0] != obj->stride) {
9482                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9483                           mode_cmd->pitches[0], obj->stride);
9484                 return -EINVAL;
9485         }
9486
9487         /* Reject formats not supported by any plane early. */
9488         switch (mode_cmd->pixel_format) {
9489         case DRM_FORMAT_C8:
9490         case DRM_FORMAT_RGB565:
9491         case DRM_FORMAT_XRGB8888:
9492         case DRM_FORMAT_ARGB8888:
9493                 break;
9494         case DRM_FORMAT_XRGB1555:
9495         case DRM_FORMAT_ARGB1555:
9496                 if (INTEL_INFO(dev)->gen > 3) {
9497                         DRM_DEBUG("unsupported pixel format: %s\n",
9498                                   drm_get_format_name(mode_cmd->pixel_format));
9499                         return -EINVAL;
9500                 }
9501                 break;
9502         case DRM_FORMAT_XBGR8888:
9503         case DRM_FORMAT_ABGR8888:
9504         case DRM_FORMAT_XRGB2101010:
9505         case DRM_FORMAT_ARGB2101010:
9506         case DRM_FORMAT_XBGR2101010:
9507         case DRM_FORMAT_ABGR2101010:
9508                 if (INTEL_INFO(dev)->gen < 4) {
9509                         DRM_DEBUG("unsupported pixel format: %s\n",
9510                                   drm_get_format_name(mode_cmd->pixel_format));
9511                         return -EINVAL;
9512                 }
9513                 break;
9514         case DRM_FORMAT_YUYV:
9515         case DRM_FORMAT_UYVY:
9516         case DRM_FORMAT_YVYU:
9517         case DRM_FORMAT_VYUY:
9518                 if (INTEL_INFO(dev)->gen < 5) {
9519                         DRM_DEBUG("unsupported pixel format: %s\n",
9520                                   drm_get_format_name(mode_cmd->pixel_format));
9521                         return -EINVAL;
9522                 }
9523                 break;
9524         default:
9525                 DRM_DEBUG("unsupported pixel format: %s\n",
9526                           drm_get_format_name(mode_cmd->pixel_format));
9527                 return -EINVAL;
9528         }
9529
9530         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9531         if (mode_cmd->offsets[0] != 0)
9532                 return -EINVAL;
9533
9534         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9535         intel_fb->obj = obj;
9536
9537         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9538         if (ret) {
9539                 DRM_ERROR("framebuffer init failed %d\n", ret);
9540                 return ret;
9541         }
9542
9543         return 0;
9544 }
9545
9546 static struct drm_framebuffer *
9547 intel_user_framebuffer_create(struct drm_device *dev,
9548                               struct drm_file *filp,
9549                               struct drm_mode_fb_cmd2 *mode_cmd)
9550 {
9551         struct drm_i915_gem_object *obj;
9552
9553         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9554                                                 mode_cmd->handles[0]));
9555         if (&obj->base == NULL)
9556                 return ERR_PTR(-ENOENT);
9557
9558         return intel_framebuffer_create(dev, mode_cmd, obj);
9559 }
9560
9561 static const struct drm_mode_config_funcs intel_mode_funcs = {
9562         .fb_create = intel_user_framebuffer_create,
9563         .output_poll_changed = intel_fb_output_poll_changed,
9564 };
9565
9566 /* Set up chip specific display functions */
9567 static void intel_init_display(struct drm_device *dev)
9568 {
9569         struct drm_i915_private *dev_priv = dev->dev_private;
9570
9571         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9572                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9573         else if (IS_VALLEYVIEW(dev))
9574                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9575         else if (IS_PINEVIEW(dev))
9576                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9577         else
9578                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9579
9580         if (HAS_DDI(dev)) {
9581                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9582                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9583                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9584                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9585                 dev_priv->display.off = haswell_crtc_off;
9586                 dev_priv->display.update_plane = ironlake_update_plane;
9587         } else if (HAS_PCH_SPLIT(dev)) {
9588                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9589                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9590                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9591                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9592                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9593                 dev_priv->display.off = ironlake_crtc_off;
9594                 dev_priv->display.update_plane = ironlake_update_plane;
9595         } else if (IS_VALLEYVIEW(dev)) {
9596                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9597                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9598                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9599                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9600                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9601                 dev_priv->display.off = i9xx_crtc_off;
9602                 dev_priv->display.update_plane = i9xx_update_plane;
9603         } else {
9604                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9605                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9606                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9607                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9608                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9609                 dev_priv->display.off = i9xx_crtc_off;
9610                 dev_priv->display.update_plane = i9xx_update_plane;
9611         }
9612
9613         /* Returns the core display clock speed */
9614         if (IS_VALLEYVIEW(dev))
9615                 dev_priv->display.get_display_clock_speed =
9616                         valleyview_get_display_clock_speed;
9617         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9618                 dev_priv->display.get_display_clock_speed =
9619                         i945_get_display_clock_speed;
9620         else if (IS_I915G(dev))
9621                 dev_priv->display.get_display_clock_speed =
9622                         i915_get_display_clock_speed;
9623         else if (IS_I945GM(dev) || IS_845G(dev))
9624                 dev_priv->display.get_display_clock_speed =
9625                         i9xx_misc_get_display_clock_speed;
9626         else if (IS_PINEVIEW(dev))
9627                 dev_priv->display.get_display_clock_speed =
9628                         pnv_get_display_clock_speed;
9629         else if (IS_I915GM(dev))
9630                 dev_priv->display.get_display_clock_speed =
9631                         i915gm_get_display_clock_speed;
9632         else if (IS_I865G(dev))
9633                 dev_priv->display.get_display_clock_speed =
9634                         i865_get_display_clock_speed;
9635         else if (IS_I85X(dev))
9636                 dev_priv->display.get_display_clock_speed =
9637                         i855_get_display_clock_speed;
9638         else /* 852, 830 */
9639                 dev_priv->display.get_display_clock_speed =
9640                         i830_get_display_clock_speed;
9641
9642         if (HAS_PCH_SPLIT(dev)) {
9643                 if (IS_GEN5(dev)) {
9644                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9645                         dev_priv->display.write_eld = ironlake_write_eld;
9646                 } else if (IS_GEN6(dev)) {
9647                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9648                         dev_priv->display.write_eld = ironlake_write_eld;
9649                 } else if (IS_IVYBRIDGE(dev)) {
9650                         /* FIXME: detect B0+ stepping and use auto training */
9651                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9652                         dev_priv->display.write_eld = ironlake_write_eld;
9653                         dev_priv->display.modeset_global_resources =
9654                                 ivb_modeset_global_resources;
9655                 } else if (IS_HASWELL(dev)) {
9656                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9657                         dev_priv->display.write_eld = haswell_write_eld;
9658                         dev_priv->display.modeset_global_resources =
9659                                 haswell_modeset_global_resources;
9660                 }
9661         } else if (IS_G4X(dev)) {
9662                 dev_priv->display.write_eld = g4x_write_eld;
9663         }
9664
9665         /* Default just returns -ENODEV to indicate unsupported */
9666         dev_priv->display.queue_flip = intel_default_queue_flip;
9667
9668         switch (INTEL_INFO(dev)->gen) {
9669         case 2:
9670                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9671                 break;
9672
9673         case 3:
9674                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9675                 break;
9676
9677         case 4:
9678         case 5:
9679                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9680                 break;
9681
9682         case 6:
9683                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9684                 break;
9685         case 7:
9686                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9687                 break;
9688         }
9689 }
9690
9691 /*
9692  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9693  * resume, or other times.  This quirk makes sure that's the case for
9694  * affected systems.
9695  */
9696 static void quirk_pipea_force(struct drm_device *dev)
9697 {
9698         struct drm_i915_private *dev_priv = dev->dev_private;
9699
9700         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9701         DRM_INFO("applying pipe a force quirk\n");
9702 }
9703
9704 /*
9705  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9706  */
9707 static void quirk_ssc_force_disable(struct drm_device *dev)
9708 {
9709         struct drm_i915_private *dev_priv = dev->dev_private;
9710         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9711         DRM_INFO("applying lvds SSC disable quirk\n");
9712 }
9713
9714 /*
9715  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9716  * brightness value
9717  */
9718 static void quirk_invert_brightness(struct drm_device *dev)
9719 {
9720         struct drm_i915_private *dev_priv = dev->dev_private;
9721         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9722         DRM_INFO("applying inverted panel brightness quirk\n");
9723 }
9724
9725 /*
9726  * Some machines (Dell XPS13) suffer broken backlight controls if
9727  * BLM_PCH_PWM_ENABLE is set.
9728  */
9729 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9730 {
9731         struct drm_i915_private *dev_priv = dev->dev_private;
9732         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9733         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9734 }
9735
9736 struct intel_quirk {
9737         int device;
9738         int subsystem_vendor;
9739         int subsystem_device;
9740         void (*hook)(struct drm_device *dev);
9741 };
9742
9743 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9744 struct intel_dmi_quirk {
9745         void (*hook)(struct drm_device *dev);
9746         const struct dmi_system_id (*dmi_id_list)[];
9747 };
9748
9749 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9750 {
9751         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9752         return 1;
9753 }
9754
9755 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9756         {
9757                 .dmi_id_list = &(const struct dmi_system_id[]) {
9758                         {
9759                                 .callback = intel_dmi_reverse_brightness,
9760                                 .ident = "NCR Corporation",
9761                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9762                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9763                                 },
9764                         },
9765                         { }  /* terminating entry */
9766                 },
9767                 .hook = quirk_invert_brightness,
9768         },
9769 };
9770
9771 static struct intel_quirk intel_quirks[] = {
9772         /* HP Mini needs pipe A force quirk (LP: #322104) */
9773         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9774
9775         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9776         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9777
9778         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9779         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9780
9781         /* 830/845 need to leave pipe A & dpll A up */
9782         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9783         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9784
9785         /* Lenovo U160 cannot use SSC on LVDS */
9786         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9787
9788         /* Sony Vaio Y cannot use SSC on LVDS */
9789         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9790
9791         /* Acer Aspire 5734Z must invert backlight brightness */
9792         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9793
9794         /* Acer/eMachines G725 */
9795         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9796
9797         /* Acer/eMachines e725 */
9798         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9799
9800         /* Acer/Packard Bell NCL20 */
9801         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9802
9803         /* Acer Aspire 4736Z */
9804         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9805
9806         /* Dell XPS13 HD Sandy Bridge */
9807         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9808         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9809         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9810 };
9811
9812 static void intel_init_quirks(struct drm_device *dev)
9813 {
9814         struct pci_dev *d = dev->pdev;
9815         int i;
9816
9817         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9818                 struct intel_quirk *q = &intel_quirks[i];
9819
9820                 if (d->device == q->device &&
9821                     (d->subsystem_vendor == q->subsystem_vendor ||
9822                      q->subsystem_vendor == PCI_ANY_ID) &&
9823                     (d->subsystem_device == q->subsystem_device ||
9824                      q->subsystem_device == PCI_ANY_ID))
9825                         q->hook(dev);
9826         }
9827         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9828                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9829                         intel_dmi_quirks[i].hook(dev);
9830         }
9831 }
9832
9833 /* Disable the VGA plane that we never use */
9834 static void i915_disable_vga(struct drm_device *dev)
9835 {
9836         struct drm_i915_private *dev_priv = dev->dev_private;
9837         u8 sr1;
9838         u32 vga_reg = i915_vgacntrl_reg(dev);
9839
9840         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9841         outb(SR01, VGA_SR_INDEX);
9842         sr1 = inb(VGA_SR_DATA);
9843         outb(sr1 | 1<<5, VGA_SR_DATA);
9844         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9845         udelay(300);
9846
9847         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9848         POSTING_READ(vga_reg);
9849 }
9850
9851 void intel_modeset_init_hw(struct drm_device *dev)
9852 {
9853         intel_init_power_well(dev);
9854
9855         intel_prepare_ddi(dev);
9856
9857         intel_init_clock_gating(dev);
9858
9859         mutex_lock(&dev->struct_mutex);
9860         intel_enable_gt_powersave(dev);
9861         mutex_unlock(&dev->struct_mutex);
9862 }
9863
9864 void intel_modeset_suspend_hw(struct drm_device *dev)
9865 {
9866         intel_suspend_hw(dev);
9867 }
9868
9869 void intel_modeset_init(struct drm_device *dev)
9870 {
9871         struct drm_i915_private *dev_priv = dev->dev_private;
9872         int i, j, ret;
9873
9874         drm_mode_config_init(dev);
9875
9876         dev->mode_config.min_width = 0;
9877         dev->mode_config.min_height = 0;
9878
9879         dev->mode_config.preferred_depth = 24;
9880         dev->mode_config.prefer_shadow = 1;
9881
9882         dev->mode_config.funcs = &intel_mode_funcs;
9883
9884         intel_init_quirks(dev);
9885
9886         intel_init_pm(dev);
9887
9888         if (INTEL_INFO(dev)->num_pipes == 0)
9889                 return;
9890
9891         intel_init_display(dev);
9892
9893         if (IS_GEN2(dev)) {
9894                 dev->mode_config.max_width = 2048;
9895                 dev->mode_config.max_height = 2048;
9896         } else if (IS_GEN3(dev)) {
9897                 dev->mode_config.max_width = 4096;
9898                 dev->mode_config.max_height = 4096;
9899         } else {
9900                 dev->mode_config.max_width = 8192;
9901                 dev->mode_config.max_height = 8192;
9902         }
9903         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9904
9905         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9906                       INTEL_INFO(dev)->num_pipes,
9907                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9908
9909         for_each_pipe(i) {
9910                 intel_crtc_init(dev, i);
9911                 for (j = 0; j < dev_priv->num_plane; j++) {
9912                         ret = intel_plane_init(dev, i, j);
9913                         if (ret)
9914                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9915                                               pipe_name(i), sprite_name(i, j), ret);
9916                 }
9917         }
9918
9919         intel_cpu_pll_init(dev);
9920         intel_shared_dpll_init(dev);
9921
9922         /* Just disable it once at startup */
9923         i915_disable_vga(dev);
9924         intel_setup_outputs(dev);
9925
9926         /* Just in case the BIOS is doing something questionable. */
9927         intel_disable_fbc(dev);
9928 }
9929
9930 static void
9931 intel_connector_break_all_links(struct intel_connector *connector)
9932 {
9933         connector->base.dpms = DRM_MODE_DPMS_OFF;
9934         connector->base.encoder = NULL;
9935         connector->encoder->connectors_active = false;
9936         connector->encoder->base.crtc = NULL;
9937 }
9938
9939 static void intel_enable_pipe_a(struct drm_device *dev)
9940 {
9941         struct intel_connector *connector;
9942         struct drm_connector *crt = NULL;
9943         struct intel_load_detect_pipe load_detect_temp;
9944
9945         /* We can't just switch on the pipe A, we need to set things up with a
9946          * proper mode and output configuration. As a gross hack, enable pipe A
9947          * by enabling the load detect pipe once. */
9948         list_for_each_entry(connector,
9949                             &dev->mode_config.connector_list,
9950                             base.head) {
9951                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9952                         crt = &connector->base;
9953                         break;
9954                 }
9955         }
9956
9957         if (!crt)
9958                 return;
9959
9960         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9961                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9962
9963
9964 }
9965
9966 static bool
9967 intel_check_plane_mapping(struct intel_crtc *crtc)
9968 {
9969         struct drm_device *dev = crtc->base.dev;
9970         struct drm_i915_private *dev_priv = dev->dev_private;
9971         u32 reg, val;
9972
9973         if (INTEL_INFO(dev)->num_pipes == 1)
9974                 return true;
9975
9976         reg = DSPCNTR(!crtc->plane);
9977         val = I915_READ(reg);
9978
9979         if ((val & DISPLAY_PLANE_ENABLE) &&
9980             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9981                 return false;
9982
9983         return true;
9984 }
9985
9986 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9987 {
9988         struct drm_device *dev = crtc->base.dev;
9989         struct drm_i915_private *dev_priv = dev->dev_private;
9990         u32 reg;
9991
9992         /* Clear any frame start delays used for debugging left by the BIOS */
9993         reg = PIPECONF(crtc->config.cpu_transcoder);
9994         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9995
9996         /* We need to sanitize the plane -> pipe mapping first because this will
9997          * disable the crtc (and hence change the state) if it is wrong. Note
9998          * that gen4+ has a fixed plane -> pipe mapping.  */
9999         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10000                 struct intel_connector *connector;
10001                 bool plane;
10002
10003                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10004                               crtc->base.base.id);
10005
10006                 /* Pipe has the wrong plane attached and the plane is active.
10007                  * Temporarily change the plane mapping and disable everything
10008                  * ...  */
10009                 plane = crtc->plane;
10010                 crtc->plane = !plane;
10011                 dev_priv->display.crtc_disable(&crtc->base);
10012                 crtc->plane = plane;
10013
10014                 /* ... and break all links. */
10015                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10016                                     base.head) {
10017                         if (connector->encoder->base.crtc != &crtc->base)
10018                                 continue;
10019
10020                         intel_connector_break_all_links(connector);
10021                 }
10022
10023                 WARN_ON(crtc->active);
10024                 crtc->base.enabled = false;
10025         }
10026
10027         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10028             crtc->pipe == PIPE_A && !crtc->active) {
10029                 /* BIOS forgot to enable pipe A, this mostly happens after
10030                  * resume. Force-enable the pipe to fix this, the update_dpms
10031                  * call below we restore the pipe to the right state, but leave
10032                  * the required bits on. */
10033                 intel_enable_pipe_a(dev);
10034         }
10035
10036         /* Adjust the state of the output pipe according to whether we
10037          * have active connectors/encoders. */
10038         intel_crtc_update_dpms(&crtc->base);
10039
10040         if (crtc->active != crtc->base.enabled) {
10041                 struct intel_encoder *encoder;
10042
10043                 /* This can happen either due to bugs in the get_hw_state
10044                  * functions or because the pipe is force-enabled due to the
10045                  * pipe A quirk. */
10046                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10047                               crtc->base.base.id,
10048                               crtc->base.enabled ? "enabled" : "disabled",
10049                               crtc->active ? "enabled" : "disabled");
10050
10051                 crtc->base.enabled = crtc->active;
10052
10053                 /* Because we only establish the connector -> encoder ->
10054                  * crtc links if something is active, this means the
10055                  * crtc is now deactivated. Break the links. connector
10056                  * -> encoder links are only establish when things are
10057                  *  actually up, hence no need to break them. */
10058                 WARN_ON(crtc->active);
10059
10060                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10061                         WARN_ON(encoder->connectors_active);
10062                         encoder->base.crtc = NULL;
10063                 }
10064         }
10065 }
10066
10067 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10068 {
10069         struct intel_connector *connector;
10070         struct drm_device *dev = encoder->base.dev;
10071
10072         /* We need to check both for a crtc link (meaning that the
10073          * encoder is active and trying to read from a pipe) and the
10074          * pipe itself being active. */
10075         bool has_active_crtc = encoder->base.crtc &&
10076                 to_intel_crtc(encoder->base.crtc)->active;
10077
10078         if (encoder->connectors_active && !has_active_crtc) {
10079                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10080                               encoder->base.base.id,
10081                               drm_get_encoder_name(&encoder->base));
10082
10083                 /* Connector is active, but has no active pipe. This is
10084                  * fallout from our resume register restoring. Disable
10085                  * the encoder manually again. */
10086                 if (encoder->base.crtc) {
10087                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10088                                       encoder->base.base.id,
10089                                       drm_get_encoder_name(&encoder->base));
10090                         encoder->disable(encoder);
10091                 }
10092
10093                 /* Inconsistent output/port/pipe state happens presumably due to
10094                  * a bug in one of the get_hw_state functions. Or someplace else
10095                  * in our code, like the register restore mess on resume. Clamp
10096                  * things to off as a safer default. */
10097                 list_for_each_entry(connector,
10098                                     &dev->mode_config.connector_list,
10099                                     base.head) {
10100                         if (connector->encoder != encoder)
10101                                 continue;
10102
10103                         intel_connector_break_all_links(connector);
10104                 }
10105         }
10106         /* Enabled encoders without active connectors will be fixed in
10107          * the crtc fixup. */
10108 }
10109
10110 void i915_redisable_vga(struct drm_device *dev)
10111 {
10112         struct drm_i915_private *dev_priv = dev->dev_private;
10113         u32 vga_reg = i915_vgacntrl_reg(dev);
10114
10115         /* This function can be called both from intel_modeset_setup_hw_state or
10116          * at a very early point in our resume sequence, where the power well
10117          * structures are not yet restored. Since this function is at a very
10118          * paranoid "someone might have enabled VGA while we were not looking"
10119          * level, just check if the power well is enabled instead of trying to
10120          * follow the "don't touch the power well if we don't need it" policy
10121          * the rest of the driver uses. */
10122         if (HAS_POWER_WELL(dev) &&
10123             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10124                 return;
10125
10126         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10127                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10128                 i915_disable_vga(dev);
10129         }
10130 }
10131
10132 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10133 {
10134         struct drm_i915_private *dev_priv = dev->dev_private;
10135         enum pipe pipe;
10136         struct intel_crtc *crtc;
10137         struct intel_encoder *encoder;
10138         struct intel_connector *connector;
10139         int i;
10140
10141         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10142                             base.head) {
10143                 memset(&crtc->config, 0, sizeof(crtc->config));
10144
10145                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10146                                                                  &crtc->config);
10147
10148                 crtc->base.enabled = crtc->active;
10149
10150                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10151                               crtc->base.base.id,
10152                               crtc->active ? "enabled" : "disabled");
10153         }
10154
10155         /* FIXME: Smash this into the new shared dpll infrastructure. */
10156         if (HAS_DDI(dev))
10157                 intel_ddi_setup_hw_pll_state(dev);
10158
10159         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10160                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10161
10162                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10163                 pll->active = 0;
10164                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10165                                     base.head) {
10166                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10167                                 pll->active++;
10168                 }
10169                 pll->refcount = pll->active;
10170
10171                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10172                               pll->name, pll->refcount, pll->on);
10173         }
10174
10175         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10176                             base.head) {
10177                 pipe = 0;
10178
10179                 if (encoder->get_hw_state(encoder, &pipe)) {
10180                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10181                         encoder->base.crtc = &crtc->base;
10182                         if (encoder->get_config)
10183                                 encoder->get_config(encoder, &crtc->config);
10184                 } else {
10185                         encoder->base.crtc = NULL;
10186                 }
10187
10188                 encoder->connectors_active = false;
10189                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10190                               encoder->base.base.id,
10191                               drm_get_encoder_name(&encoder->base),
10192                               encoder->base.crtc ? "enabled" : "disabled",
10193                               pipe);
10194         }
10195
10196         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10197                             base.head) {
10198                 if (!crtc->active)
10199                         continue;
10200                 if (dev_priv->display.get_clock)
10201                         dev_priv->display.get_clock(crtc,
10202                                                     &crtc->config);
10203         }
10204
10205         list_for_each_entry(connector, &dev->mode_config.connector_list,
10206                             base.head) {
10207                 if (connector->get_hw_state(connector)) {
10208                         connector->base.dpms = DRM_MODE_DPMS_ON;
10209                         connector->encoder->connectors_active = true;
10210                         connector->base.encoder = &connector->encoder->base;
10211                 } else {
10212                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10213                         connector->base.encoder = NULL;
10214                 }
10215                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10216                               connector->base.base.id,
10217                               drm_get_connector_name(&connector->base),
10218                               connector->base.encoder ? "enabled" : "disabled");
10219         }
10220 }
10221
10222 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10223  * and i915 state tracking structures. */
10224 void intel_modeset_setup_hw_state(struct drm_device *dev,
10225                                   bool force_restore)
10226 {
10227         struct drm_i915_private *dev_priv = dev->dev_private;
10228         enum pipe pipe;
10229         struct drm_plane *plane;
10230         struct intel_crtc *crtc;
10231         struct intel_encoder *encoder;
10232         int i;
10233
10234         intel_modeset_readout_hw_state(dev);
10235
10236         /*
10237          * Now that we have the config, copy it to each CRTC struct
10238          * Note that this could go away if we move to using crtc_config
10239          * checking everywhere.
10240          */
10241         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10242                             base.head) {
10243                 if (crtc->active && i915_fastboot) {
10244                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10245
10246                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10247                                       crtc->base.base.id);
10248                         drm_mode_debug_printmodeline(&crtc->base.mode);
10249                 }
10250         }
10251
10252         /* HW state is read out, now we need to sanitize this mess. */
10253         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10254                             base.head) {
10255                 intel_sanitize_encoder(encoder);
10256         }
10257
10258         for_each_pipe(pipe) {
10259                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10260                 intel_sanitize_crtc(crtc);
10261                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10262         }
10263
10264         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10265                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10266
10267                 if (!pll->on || pll->active)
10268                         continue;
10269
10270                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10271
10272                 pll->disable(dev_priv, pll);
10273                 pll->on = false;
10274         }
10275
10276         if (force_restore) {
10277                 /*
10278                  * We need to use raw interfaces for restoring state to avoid
10279                  * checking (bogus) intermediate states.
10280                  */
10281                 for_each_pipe(pipe) {
10282                         struct drm_crtc *crtc =
10283                                 dev_priv->pipe_to_crtc_mapping[pipe];
10284
10285                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10286                                          crtc->fb);
10287                 }
10288                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10289                         intel_plane_restore(plane);
10290
10291                 i915_redisable_vga(dev);
10292         } else {
10293                 intel_modeset_update_staged_output_state(dev);
10294         }
10295
10296         intel_modeset_check_state(dev);
10297
10298         drm_mode_config_reset(dev);
10299 }
10300
10301 void intel_modeset_gem_init(struct drm_device *dev)
10302 {
10303         intel_modeset_init_hw(dev);
10304
10305         intel_setup_overlay(dev);
10306
10307         intel_modeset_setup_hw_state(dev, false);
10308 }
10309
10310 void intel_modeset_cleanup(struct drm_device *dev)
10311 {
10312         struct drm_i915_private *dev_priv = dev->dev_private;
10313         struct drm_crtc *crtc;
10314
10315         /*
10316          * Interrupts and polling as the first thing to avoid creating havoc.
10317          * Too much stuff here (turning of rps, connectors, ...) would
10318          * experience fancy races otherwise.
10319          */
10320         drm_irq_uninstall(dev);
10321         cancel_work_sync(&dev_priv->hotplug_work);
10322         /*
10323          * Due to the hpd irq storm handling the hotplug work can re-arm the
10324          * poll handlers. Hence disable polling after hpd handling is shut down.
10325          */
10326         drm_kms_helper_poll_fini(dev);
10327
10328         mutex_lock(&dev->struct_mutex);
10329
10330         intel_unregister_dsm_handler();
10331
10332         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10333                 /* Skip inactive CRTCs */
10334                 if (!crtc->fb)
10335                         continue;
10336
10337                 intel_increase_pllclock(crtc);
10338         }
10339
10340         intel_disable_fbc(dev);
10341
10342         intel_disable_gt_powersave(dev);
10343
10344         ironlake_teardown_rc6(dev);
10345
10346         mutex_unlock(&dev->struct_mutex);
10347
10348         /* flush any delayed tasks or pending work */
10349         flush_scheduled_work();
10350
10351         /* destroy backlight, if any, before the connectors */
10352         intel_panel_destroy_backlight(dev);
10353
10354         drm_mode_config_cleanup(dev);
10355
10356         intel_cleanup_overlay(dev);
10357 }
10358
10359 /*
10360  * Return which encoder is currently attached for connector.
10361  */
10362 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10363 {
10364         return &intel_attached_encoder(connector)->base;
10365 }
10366
10367 void intel_connector_attach_encoder(struct intel_connector *connector,
10368                                     struct intel_encoder *encoder)
10369 {
10370         connector->encoder = encoder;
10371         drm_mode_connector_attach_encoder(&connector->base,
10372                                           &encoder->base);
10373 }
10374
10375 /*
10376  * set vga decode state - true == enable VGA decode
10377  */
10378 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10379 {
10380         struct drm_i915_private *dev_priv = dev->dev_private;
10381         u16 gmch_ctrl;
10382
10383         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10384         if (state)
10385                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10386         else
10387                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10388         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10389         return 0;
10390 }
10391
10392 struct intel_display_error_state {
10393
10394         u32 power_well_driver;
10395
10396         struct intel_cursor_error_state {
10397                 u32 control;
10398                 u32 position;
10399                 u32 base;
10400                 u32 size;
10401         } cursor[I915_MAX_PIPES];
10402
10403         struct intel_pipe_error_state {
10404                 enum transcoder cpu_transcoder;
10405                 u32 conf;
10406                 u32 source;
10407
10408                 u32 htotal;
10409                 u32 hblank;
10410                 u32 hsync;
10411                 u32 vtotal;
10412                 u32 vblank;
10413                 u32 vsync;
10414         } pipe[I915_MAX_PIPES];
10415
10416         struct intel_plane_error_state {
10417                 u32 control;
10418                 u32 stride;
10419                 u32 size;
10420                 u32 pos;
10421                 u32 addr;
10422                 u32 surface;
10423                 u32 tile_offset;
10424         } plane[I915_MAX_PIPES];
10425 };
10426
10427 struct intel_display_error_state *
10428 intel_display_capture_error_state(struct drm_device *dev)
10429 {
10430         drm_i915_private_t *dev_priv = dev->dev_private;
10431         struct intel_display_error_state *error;
10432         enum transcoder cpu_transcoder;
10433         int i;
10434
10435         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10436         if (error == NULL)
10437                 return NULL;
10438
10439         if (HAS_POWER_WELL(dev))
10440                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10441
10442         for_each_pipe(i) {
10443                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10444                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10445
10446                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10447                         error->cursor[i].control = I915_READ(CURCNTR(i));
10448                         error->cursor[i].position = I915_READ(CURPOS(i));
10449                         error->cursor[i].base = I915_READ(CURBASE(i));
10450                 } else {
10451                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10452                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10453                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10454                 }
10455
10456                 error->plane[i].control = I915_READ(DSPCNTR(i));
10457                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10458                 if (INTEL_INFO(dev)->gen <= 3) {
10459                         error->plane[i].size = I915_READ(DSPSIZE(i));
10460                         error->plane[i].pos = I915_READ(DSPPOS(i));
10461                 }
10462                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10463                         error->plane[i].addr = I915_READ(DSPADDR(i));
10464                 if (INTEL_INFO(dev)->gen >= 4) {
10465                         error->plane[i].surface = I915_READ(DSPSURF(i));
10466                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10467                 }
10468
10469                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10470                 error->pipe[i].source = I915_READ(PIPESRC(i));
10471                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10472                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10473                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10474                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10475                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10476                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10477         }
10478
10479         /* In the code above we read the registers without checking if the power
10480          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10481          * prevent the next I915_WRITE from detecting it and printing an error
10482          * message. */
10483         intel_uncore_clear_errors(dev);
10484
10485         return error;
10486 }
10487
10488 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10489
10490 void
10491 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10492                                 struct drm_device *dev,
10493                                 struct intel_display_error_state *error)
10494 {
10495         int i;
10496
10497         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10498         if (HAS_POWER_WELL(dev))
10499                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10500                            error->power_well_driver);
10501         for_each_pipe(i) {
10502                 err_printf(m, "Pipe [%d]:\n", i);
10503                 err_printf(m, "  CPU transcoder: %c\n",
10504                            transcoder_name(error->pipe[i].cpu_transcoder));
10505                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10506                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10507                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10508                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10509                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10510                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10511                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10512                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10513
10514                 err_printf(m, "Plane [%d]:\n", i);
10515                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10516                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10517                 if (INTEL_INFO(dev)->gen <= 3) {
10518                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10519                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10520                 }
10521                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10522                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10523                 if (INTEL_INFO(dev)->gen >= 4) {
10524                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10525                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10526                 }
10527
10528                 err_printf(m, "Cursor [%d]:\n", i);
10529                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10530                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10531                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10532         }
10533 }