drm/i915: fix pnv display core clock readout out
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54         int     min, max;
55 } intel_range_t;
56
57 typedef struct {
58         int     dot_limit;
59         int     p2_slow, p2_fast;
60 } intel_p2_t;
61
62 #define INTEL_P2_NUM                  2
63 typedef struct intel_limit intel_limit_t;
64 struct intel_limit {
65         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
66         intel_p2_t          p2;
67 };
68
69 /* FDI */
70 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75         struct drm_i915_private *dev_priv = dev->dev_private;
76
77         WARN_ON(!HAS_PCH_SPLIT(dev));
78
79         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85         if (IS_GEN5(dev)) {
86                 struct drm_i915_private *dev_priv = dev->dev_private;
87                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88         } else
89                 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93         .dot = { .min = 25000, .max = 350000 },
94         .vco = { .min = 930000, .max = 1400000 },
95         .n = { .min = 3, .max = 16 },
96         .m = { .min = 96, .max = 140 },
97         .m1 = { .min = 18, .max = 26 },
98         .m2 = { .min = 6, .max = 16 },
99         .p = { .min = 4, .max = 128 },
100         .p1 = { .min = 2, .max = 33 },
101         .p2 = { .dot_limit = 165000,
102                 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106         .dot = { .min = 25000, .max = 350000 },
107         .vco = { .min = 930000, .max = 1400000 },
108         .n = { .min = 3, .max = 16 },
109         .m = { .min = 96, .max = 140 },
110         .m1 = { .min = 18, .max = 26 },
111         .m2 = { .min = 6, .max = 16 },
112         .p = { .min = 4, .max = 128 },
113         .p1 = { .min = 2, .max = 33 },
114         .p2 = { .dot_limit = 165000,
115                 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 1, .max = 6 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132         .dot = { .min = 20000, .max = 400000 },
133         .vco = { .min = 1400000, .max = 2800000 },
134         .n = { .min = 1, .max = 6 },
135         .m = { .min = 70, .max = 120 },
136         .m1 = { .min = 8, .max = 18 },
137         .m2 = { .min = 3, .max = 7 },
138         .p = { .min = 5, .max = 80 },
139         .p1 = { .min = 1, .max = 8 },
140         .p2 = { .dot_limit = 200000,
141                 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 8, .max = 18 },
150         .m2 = { .min = 3, .max = 7 },
151         .p = { .min = 7, .max = 98 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 112000,
154                 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159         .dot = { .min = 25000, .max = 270000 },
160         .vco = { .min = 1750000, .max = 3500000},
161         .n = { .min = 1, .max = 4 },
162         .m = { .min = 104, .max = 138 },
163         .m1 = { .min = 17, .max = 23 },
164         .m2 = { .min = 5, .max = 11 },
165         .p = { .min = 10, .max = 30 },
166         .p1 = { .min = 1, .max = 3},
167         .p2 = { .dot_limit = 270000,
168                 .p2_slow = 10,
169                 .p2_fast = 10
170         },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174         .dot = { .min = 22000, .max = 400000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 16, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 5, .max = 80 },
181         .p1 = { .min = 1, .max = 8},
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187         .dot = { .min = 20000, .max = 115000 },
188         .vco = { .min = 1750000, .max = 3500000 },
189         .n = { .min = 1, .max = 3 },
190         .m = { .min = 104, .max = 138 },
191         .m1 = { .min = 17, .max = 23 },
192         .m2 = { .min = 5, .max = 11 },
193         .p = { .min = 28, .max = 112 },
194         .p1 = { .min = 2, .max = 8 },
195         .p2 = { .dot_limit = 0,
196                 .p2_slow = 14, .p2_fast = 14
197         },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201         .dot = { .min = 80000, .max = 224000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 14, .max = 42 },
208         .p1 = { .min = 2, .max = 6 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 7, .p2_fast = 7
211         },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215         .dot = { .min = 20000, .max = 400000},
216         .vco = { .min = 1700000, .max = 3500000 },
217         /* Pineview's Ncounter is a ring counter */
218         .n = { .min = 3, .max = 6 },
219         .m = { .min = 2, .max = 256 },
220         /* Pineview only has one combined m divider, which we treat as m2. */
221         .m1 = { .min = 0, .max = 0 },
222         .m2 = { .min = 0, .max = 254 },
223         .p = { .min = 5, .max = 80 },
224         .p1 = { .min = 1, .max = 8 },
225         .p2 = { .dot_limit = 200000,
226                 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230         .dot = { .min = 20000, .max = 400000 },
231         .vco = { .min = 1700000, .max = 3500000 },
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         .m1 = { .min = 0, .max = 0 },
235         .m2 = { .min = 0, .max = 254 },
236         .p = { .min = 7, .max = 112 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 112000,
239                 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243  *
244  * We calculate clock using (register_value + 2) for N/M1/M2, so here
245  * the range value for them is (actual_value - 2).
246  */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248         .dot = { .min = 25000, .max = 350000 },
249         .vco = { .min = 1760000, .max = 3510000 },
250         .n = { .min = 1, .max = 5 },
251         .m = { .min = 79, .max = 127 },
252         .m1 = { .min = 12, .max = 22 },
253         .m2 = { .min = 5, .max = 9 },
254         .p = { .min = 5, .max = 80 },
255         .p1 = { .min = 1, .max = 8 },
256         .p2 = { .dot_limit = 225000,
257                 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261         .dot = { .min = 25000, .max = 350000 },
262         .vco = { .min = 1760000, .max = 3510000 },
263         .n = { .min = 1, .max = 3 },
264         .m = { .min = 79, .max = 118 },
265         .m1 = { .min = 12, .max = 22 },
266         .m2 = { .min = 5, .max = 9 },
267         .p = { .min = 28, .max = 112 },
268         .p1 = { .min = 2, .max = 8 },
269         .p2 = { .dot_limit = 225000,
270                 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 3 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 14, .max = 56 },
281         .p1 = { .min = 2, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 2 },
291         .m = { .min = 79, .max = 126 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 126 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 42 },
308         .p1 = { .min = 2, .max = 6 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314         .dot = { .min = 25000, .max = 270000 },
315         .vco = { .min = 4000000, .max = 6000000 },
316         .n = { .min = 1, .max = 7 },
317         .m = { .min = 22, .max = 450 }, /* guess */
318         .m1 = { .min = 2, .max = 3 },
319         .m2 = { .min = 11, .max = 156 },
320         .p = { .min = 10, .max = 30 },
321         .p1 = { .min = 1, .max = 3 },
322         .p2 = { .dot_limit = 270000,
323                 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327         .dot = { .min = 25000, .max = 270000 },
328         .vco = { .min = 4000000, .max = 6000000 },
329         .n = { .min = 1, .max = 7 },
330         .m = { .min = 60, .max = 300 }, /* guess */
331         .m1 = { .min = 2, .max = 3 },
332         .m2 = { .min = 11, .max = 156 },
333         .p = { .min = 10, .max = 30 },
334         .p1 = { .min = 2, .max = 3 },
335         .p2 = { .dot_limit = 270000,
336                 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t intel_limits_vlv_dp = {
340         .dot = { .min = 25000, .max = 270000 },
341         .vco = { .min = 4000000, .max = 6000000 },
342         .n = { .min = 1, .max = 7 },
343         .m = { .min = 22, .max = 450 },
344         .m1 = { .min = 2, .max = 3 },
345         .m2 = { .min = 11, .max = 156 },
346         .p = { .min = 10, .max = 30 },
347         .p1 = { .min = 1, .max = 3 },
348         .p2 = { .dot_limit = 270000,
349                 .p2_slow = 2, .p2_fast = 20 },
350 };
351
352 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
353                                                 int refclk)
354 {
355         struct drm_device *dev = crtc->dev;
356         const intel_limit_t *limit;
357
358         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
359                 if (intel_is_dual_link_lvds(dev)) {
360                         if (refclk == 100000)
361                                 limit = &intel_limits_ironlake_dual_lvds_100m;
362                         else
363                                 limit = &intel_limits_ironlake_dual_lvds;
364                 } else {
365                         if (refclk == 100000)
366                                 limit = &intel_limits_ironlake_single_lvds_100m;
367                         else
368                                 limit = &intel_limits_ironlake_single_lvds;
369                 }
370         } else
371                 limit = &intel_limits_ironlake_dac;
372
373         return limit;
374 }
375
376 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev))
383                         limit = &intel_limits_g4x_dual_channel_lvds;
384                 else
385                         limit = &intel_limits_g4x_single_channel_lvds;
386         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
387                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
388                 limit = &intel_limits_g4x_hdmi;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
390                 limit = &intel_limits_g4x_sdvo;
391         } else /* The option is for other outputs */
392                 limit = &intel_limits_i9xx_sdvo;
393
394         return limit;
395 }
396
397 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
398 {
399         struct drm_device *dev = crtc->dev;
400         const intel_limit_t *limit;
401
402         if (HAS_PCH_SPLIT(dev))
403                 limit = intel_ironlake_limit(crtc, refclk);
404         else if (IS_G4X(dev)) {
405                 limit = intel_g4x_limit(crtc);
406         } else if (IS_PINEVIEW(dev)) {
407                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
408                         limit = &intel_limits_pineview_lvds;
409                 else
410                         limit = &intel_limits_pineview_sdvo;
411         } else if (IS_VALLEYVIEW(dev)) {
412                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
413                         limit = &intel_limits_vlv_dac;
414                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
415                         limit = &intel_limits_vlv_hdmi;
416                 else
417                         limit = &intel_limits_vlv_dp;
418         } else if (!IS_GEN2(dev)) {
419                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
420                         limit = &intel_limits_i9xx_lvds;
421                 else
422                         limit = &intel_limits_i9xx_sdvo;
423         } else {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_i8xx_lvds;
426                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
427                         limit = &intel_limits_i8xx_dvo;
428                 else
429                         limit = &intel_limits_i8xx_dac;
430         }
431         return limit;
432 }
433
434 /* m1 is reserved as 0 in Pineview, n is a ring counter */
435 static void pineview_clock(int refclk, intel_clock_t *clock)
436 {
437         clock->m = clock->m2 + 2;
438         clock->p = clock->p1 * clock->p2;
439         clock->vco = refclk * clock->m / clock->n;
440         clock->dot = clock->vco / clock->p;
441 }
442
443 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
444 {
445         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
446 }
447
448 static void i9xx_clock(int refclk, intel_clock_t *clock)
449 {
450         clock->m = i9xx_dpll_compute_m(clock);
451         clock->p = clock->p1 * clock->p2;
452         clock->vco = refclk * clock->m / (clock->n + 2);
453         clock->dot = clock->vco / clock->p;
454 }
455
456 /**
457  * Returns whether any output on the specified pipe is of the specified type
458  */
459 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
460 {
461         struct drm_device *dev = crtc->dev;
462         struct intel_encoder *encoder;
463
464         for_each_encoder_on_crtc(dev, crtc, encoder)
465                 if (encoder->type == type)
466                         return true;
467
468         return false;
469 }
470
471 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
472 /**
473  * Returns whether the given set of divisors are valid for a given refclk with
474  * the given connectors.
475  */
476
477 static bool intel_PLL_is_valid(struct drm_device *dev,
478                                const intel_limit_t *limit,
479                                const intel_clock_t *clock)
480 {
481         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
482                 INTELPllInvalid("p1 out of range\n");
483         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
484                 INTELPllInvalid("p out of range\n");
485         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
486                 INTELPllInvalid("m2 out of range\n");
487         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
488                 INTELPllInvalid("m1 out of range\n");
489         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
490                 INTELPllInvalid("m1 <= m2\n");
491         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
492                 INTELPllInvalid("m out of range\n");
493         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
494                 INTELPllInvalid("n out of range\n");
495         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
496                 INTELPllInvalid("vco out of range\n");
497         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
498          * connector, etc., rather than just a single range.
499          */
500         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
501                 INTELPllInvalid("dot out of range\n");
502
503         return true;
504 }
505
506 static bool
507 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
508                     int target, int refclk, intel_clock_t *match_clock,
509                     intel_clock_t *best_clock)
510 {
511         struct drm_device *dev = crtc->dev;
512         intel_clock_t clock;
513         int err = target;
514
515         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
516                 /*
517                  * For LVDS just rely on its current settings for dual-channel.
518                  * We haven't figured out how to reliably set up different
519                  * single/dual channel state, if we even can.
520                  */
521                 if (intel_is_dual_link_lvds(dev))
522                         clock.p2 = limit->p2.p2_fast;
523                 else
524                         clock.p2 = limit->p2.p2_slow;
525         } else {
526                 if (target < limit->p2.dot_limit)
527                         clock.p2 = limit->p2.p2_slow;
528                 else
529                         clock.p2 = limit->p2.p2_fast;
530         }
531
532         memset(best_clock, 0, sizeof(*best_clock));
533
534         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
535              clock.m1++) {
536                 for (clock.m2 = limit->m2.min;
537                      clock.m2 <= limit->m2.max; clock.m2++) {
538                         if (clock.m2 >= clock.m1)
539                                 break;
540                         for (clock.n = limit->n.min;
541                              clock.n <= limit->n.max; clock.n++) {
542                                 for (clock.p1 = limit->p1.min;
543                                         clock.p1 <= limit->p1.max; clock.p1++) {
544                                         int this_err;
545
546                                         i9xx_clock(refclk, &clock);
547                                         if (!intel_PLL_is_valid(dev, limit,
548                                                                 &clock))
549                                                 continue;
550                                         if (match_clock &&
551                                             clock.p != match_clock->p)
552                                                 continue;
553
554                                         this_err = abs(clock.dot - target);
555                                         if (this_err < err) {
556                                                 *best_clock = clock;
557                                                 err = this_err;
558                                         }
559                                 }
560                         }
561                 }
562         }
563
564         return (err != target);
565 }
566
567 static bool
568 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
569                    int target, int refclk, intel_clock_t *match_clock,
570                    intel_clock_t *best_clock)
571 {
572         struct drm_device *dev = crtc->dev;
573         intel_clock_t clock;
574         int err = target;
575
576         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
577                 /*
578                  * For LVDS just rely on its current settings for dual-channel.
579                  * We haven't figured out how to reliably set up different
580                  * single/dual channel state, if we even can.
581                  */
582                 if (intel_is_dual_link_lvds(dev))
583                         clock.p2 = limit->p2.p2_fast;
584                 else
585                         clock.p2 = limit->p2.p2_slow;
586         } else {
587                 if (target < limit->p2.dot_limit)
588                         clock.p2 = limit->p2.p2_slow;
589                 else
590                         clock.p2 = limit->p2.p2_fast;
591         }
592
593         memset(best_clock, 0, sizeof(*best_clock));
594
595         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
596              clock.m1++) {
597                 for (clock.m2 = limit->m2.min;
598                      clock.m2 <= limit->m2.max; clock.m2++) {
599                         for (clock.n = limit->n.min;
600                              clock.n <= limit->n.max; clock.n++) {
601                                 for (clock.p1 = limit->p1.min;
602                                         clock.p1 <= limit->p1.max; clock.p1++) {
603                                         int this_err;
604
605                                         pineview_clock(refclk, &clock);
606                                         if (!intel_PLL_is_valid(dev, limit,
607                                                                 &clock))
608                                                 continue;
609                                         if (match_clock &&
610                                             clock.p != match_clock->p)
611                                                 continue;
612
613                                         this_err = abs(clock.dot - target);
614                                         if (this_err < err) {
615                                                 *best_clock = clock;
616                                                 err = this_err;
617                                         }
618                                 }
619                         }
620                 }
621         }
622
623         return (err != target);
624 }
625
626 static bool
627 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
628                    int target, int refclk, intel_clock_t *match_clock,
629                    intel_clock_t *best_clock)
630 {
631         struct drm_device *dev = crtc->dev;
632         intel_clock_t clock;
633         int max_n;
634         bool found;
635         /* approximately equals target * 0.00585 */
636         int err_most = (target >> 8) + (target >> 9);
637         found = false;
638
639         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
640                 if (intel_is_dual_link_lvds(dev))
641                         clock.p2 = limit->p2.p2_fast;
642                 else
643                         clock.p2 = limit->p2.p2_slow;
644         } else {
645                 if (target < limit->p2.dot_limit)
646                         clock.p2 = limit->p2.p2_slow;
647                 else
648                         clock.p2 = limit->p2.p2_fast;
649         }
650
651         memset(best_clock, 0, sizeof(*best_clock));
652         max_n = limit->n.max;
653         /* based on hardware requirement, prefer smaller n to precision */
654         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
655                 /* based on hardware requirement, prefere larger m1,m2 */
656                 for (clock.m1 = limit->m1.max;
657                      clock.m1 >= limit->m1.min; clock.m1--) {
658                         for (clock.m2 = limit->m2.max;
659                              clock.m2 >= limit->m2.min; clock.m2--) {
660                                 for (clock.p1 = limit->p1.max;
661                                      clock.p1 >= limit->p1.min; clock.p1--) {
662                                         int this_err;
663
664                                         i9xx_clock(refclk, &clock);
665                                         if (!intel_PLL_is_valid(dev, limit,
666                                                                 &clock))
667                                                 continue;
668
669                                         this_err = abs(clock.dot - target);
670                                         if (this_err < err_most) {
671                                                 *best_clock = clock;
672                                                 err_most = this_err;
673                                                 max_n = clock.n;
674                                                 found = true;
675                                         }
676                                 }
677                         }
678                 }
679         }
680         return found;
681 }
682
683 static bool
684 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
685                    int target, int refclk, intel_clock_t *match_clock,
686                    intel_clock_t *best_clock)
687 {
688         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
689         u32 m, n, fastclk;
690         u32 updrate, minupdate, fracbits, p;
691         unsigned long bestppm, ppm, absppm;
692         int dotclk, flag;
693
694         flag = 0;
695         dotclk = target * 1000;
696         bestppm = 1000000;
697         ppm = absppm = 0;
698         fastclk = dotclk / (2*100);
699         updrate = 0;
700         minupdate = 19200;
701         fracbits = 1;
702         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
703         bestm1 = bestm2 = bestp1 = bestp2 = 0;
704
705         /* based on hardware requirement, prefer smaller n to precision */
706         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
707                 updrate = refclk / n;
708                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
709                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
710                                 if (p2 > 10)
711                                         p2 = p2 - 1;
712                                 p = p1 * p2;
713                                 /* based on hardware requirement, prefer bigger m1,m2 values */
714                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
715                                         m2 = (((2*(fastclk * p * n / m1 )) +
716                                                refclk) / (2*refclk));
717                                         m = m1 * m2;
718                                         vco = updrate * m;
719                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
720                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
721                                                 absppm = (ppm > 0) ? ppm : (-ppm);
722                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
723                                                         bestppm = 0;
724                                                         flag = 1;
725                                                 }
726                                                 if (absppm < bestppm - 10) {
727                                                         bestppm = absppm;
728                                                         flag = 1;
729                                                 }
730                                                 if (flag) {
731                                                         bestn = n;
732                                                         bestm1 = m1;
733                                                         bestm2 = m2;
734                                                         bestp1 = p1;
735                                                         bestp2 = p2;
736                                                         flag = 0;
737                                                 }
738                                         }
739                                 }
740                         }
741                 }
742         }
743         best_clock->n = bestn;
744         best_clock->m1 = bestm1;
745         best_clock->m2 = bestm2;
746         best_clock->p1 = bestp1;
747         best_clock->p2 = bestp2;
748
749         return true;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753                                              enum pipe pipe)
754 {
755         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758         return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763         struct drm_i915_private *dev_priv = dev->dev_private;
764         u32 frame, frame_reg = PIPEFRAME(pipe);
765
766         frame = I915_READ(frame_reg);
767
768         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769                 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773  * intel_wait_for_vblank - wait for vblank on a given pipe
774  * @dev: drm device
775  * @pipe: pipe to wait for
776  *
777  * Wait for vblank to occur on a given pipe.  Needed for various bits of
778  * mode setting code.
779  */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782         struct drm_i915_private *dev_priv = dev->dev_private;
783         int pipestat_reg = PIPESTAT(pipe);
784
785         if (INTEL_INFO(dev)->gen >= 5) {
786                 ironlake_wait_for_vblank(dev, pipe);
787                 return;
788         }
789
790         /* Clear existing vblank status. Note this will clear any other
791          * sticky status fields as well.
792          *
793          * This races with i915_driver_irq_handler() with the result
794          * that either function could miss a vblank event.  Here it is not
795          * fatal, as we will either wait upon the next vblank interrupt or
796          * timeout.  Generally speaking intel_wait_for_vblank() is only
797          * called during modeset at which time the GPU should be idle and
798          * should *not* be performing page flips and thus not waiting on
799          * vblanks...
800          * Currently, the result of us stealing a vblank from the irq
801          * handler is that a single frame will be skipped during swapbuffers.
802          */
803         I915_WRITE(pipestat_reg,
804                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806         /* Wait for vblank interrupt bit to set */
807         if (wait_for(I915_READ(pipestat_reg) &
808                      PIPE_VBLANK_INTERRUPT_STATUS,
809                      50))
810                 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814  * intel_wait_for_pipe_off - wait for pipe to turn off
815  * @dev: drm device
816  * @pipe: pipe to wait for
817  *
818  * After disabling a pipe, we can't wait for vblank in the usual way,
819  * spinning on the vblank interrupt status bit, since we won't actually
820  * see an interrupt when the pipe is disabled.
821  *
822  * On Gen4 and above:
823  *   wait for the pipe register state bit to turn off
824  *
825  * Otherwise:
826  *   wait for the display line value to settle (it usually
827  *   ends up stopping at the start of the next frame).
828  *
829  */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832         struct drm_i915_private *dev_priv = dev->dev_private;
833         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834                                                                       pipe);
835
836         if (INTEL_INFO(dev)->gen >= 4) {
837                 int reg = PIPECONF(cpu_transcoder);
838
839                 /* Wait for the Pipe State to go off */
840                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841                              100))
842                         WARN(1, "pipe_off wait timed out\n");
843         } else {
844                 u32 last_line, line_mask;
845                 int reg = PIPEDSL(pipe);
846                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848                 if (IS_GEN2(dev))
849                         line_mask = DSL_LINEMASK_GEN2;
850                 else
851                         line_mask = DSL_LINEMASK_GEN3;
852
853                 /* Wait for the display line to settle */
854                 do {
855                         last_line = I915_READ(reg) & line_mask;
856                         mdelay(5);
857                 } while (((I915_READ(reg) & line_mask) != last_line) &&
858                          time_after(timeout, jiffies));
859                 if (time_after(jiffies, timeout))
860                         WARN(1, "pipe_off wait timed out\n");
861         }
862 }
863
864 /*
865  * ibx_digital_port_connected - is the specified port connected?
866  * @dev_priv: i915 private structure
867  * @port: the port to test
868  *
869  * Returns true if @port is connected, false otherwise.
870  */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872                                 struct intel_digital_port *port)
873 {
874         u32 bit;
875
876         if (HAS_PCH_IBX(dev_priv->dev)) {
877                 switch(port->port) {
878                 case PORT_B:
879                         bit = SDE_PORTB_HOTPLUG;
880                         break;
881                 case PORT_C:
882                         bit = SDE_PORTC_HOTPLUG;
883                         break;
884                 case PORT_D:
885                         bit = SDE_PORTD_HOTPLUG;
886                         break;
887                 default:
888                         return true;
889                 }
890         } else {
891                 switch(port->port) {
892                 case PORT_B:
893                         bit = SDE_PORTB_HOTPLUG_CPT;
894                         break;
895                 case PORT_C:
896                         bit = SDE_PORTC_HOTPLUG_CPT;
897                         break;
898                 case PORT_D:
899                         bit = SDE_PORTD_HOTPLUG_CPT;
900                         break;
901                 default:
902                         return true;
903                 }
904         }
905
906         return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911         return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916                 enum pipe pipe, bool state)
917 {
918         int reg;
919         u32 val;
920         bool cur_state;
921
922         reg = DPLL(pipe);
923         val = I915_READ(reg);
924         cur_state = !!(val & DPLL_VCO_ENABLE);
925         WARN(cur_state != state,
926              "PLL state assertion failure (expected %s, current %s)\n",
927              state_string(state), state_string(cur_state));
928 }
929
930 struct intel_shared_dpll *
931 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
932 {
933         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
934
935         if (crtc->config.shared_dpll < 0)
936                 return NULL;
937
938         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
939 }
940
941 /* For ILK+ */
942 void assert_shared_dpll(struct drm_i915_private *dev_priv,
943                         struct intel_shared_dpll *pll,
944                         bool state)
945 {
946         bool cur_state;
947         struct intel_dpll_hw_state hw_state;
948
949         if (HAS_PCH_LPT(dev_priv->dev)) {
950                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
951                 return;
952         }
953
954         if (WARN (!pll,
955                   "asserting DPLL %s with no DPLL\n", state_string(state)))
956                 return;
957
958         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
959         WARN(cur_state != state,
960              "%s assertion failure (expected %s, current %s)\n",
961              pll->name, state_string(state), state_string(cur_state));
962 }
963
964 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
965                           enum pipe pipe, bool state)
966 {
967         int reg;
968         u32 val;
969         bool cur_state;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (HAS_DDI(dev_priv->dev)) {
974                 /* DDI does not have a specific FDI_TX register */
975                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
976                 val = I915_READ(reg);
977                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
978         } else {
979                 reg = FDI_TX_CTL(pipe);
980                 val = I915_READ(reg);
981                 cur_state = !!(val & FDI_TX_ENABLE);
982         }
983         WARN(cur_state != state,
984              "FDI TX state assertion failure (expected %s, current %s)\n",
985              state_string(state), state_string(cur_state));
986 }
987 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
988 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
989
990 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
991                           enum pipe pipe, bool state)
992 {
993         int reg;
994         u32 val;
995         bool cur_state;
996
997         reg = FDI_RX_CTL(pipe);
998         val = I915_READ(reg);
999         cur_state = !!(val & FDI_RX_ENABLE);
1000         WARN(cur_state != state,
1001              "FDI RX state assertion failure (expected %s, current %s)\n",
1002              state_string(state), state_string(cur_state));
1003 }
1004 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1005 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1006
1007 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1008                                       enum pipe pipe)
1009 {
1010         int reg;
1011         u32 val;
1012
1013         /* ILK FDI PLL is always enabled */
1014         if (dev_priv->info->gen == 5)
1015                 return;
1016
1017         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1018         if (HAS_DDI(dev_priv->dev))
1019                 return;
1020
1021         reg = FDI_TX_CTL(pipe);
1022         val = I915_READ(reg);
1023         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1024 }
1025
1026 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1027                        enum pipe pipe, bool state)
1028 {
1029         int reg;
1030         u32 val;
1031         bool cur_state;
1032
1033         reg = FDI_RX_CTL(pipe);
1034         val = I915_READ(reg);
1035         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1036         WARN(cur_state != state,
1037              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1038              state_string(state), state_string(cur_state));
1039 }
1040
1041 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1042                                   enum pipe pipe)
1043 {
1044         int pp_reg, lvds_reg;
1045         u32 val;
1046         enum pipe panel_pipe = PIPE_A;
1047         bool locked = true;
1048
1049         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1050                 pp_reg = PCH_PP_CONTROL;
1051                 lvds_reg = PCH_LVDS;
1052         } else {
1053                 pp_reg = PP_CONTROL;
1054                 lvds_reg = LVDS;
1055         }
1056
1057         val = I915_READ(pp_reg);
1058         if (!(val & PANEL_POWER_ON) ||
1059             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1060                 locked = false;
1061
1062         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1063                 panel_pipe = PIPE_B;
1064
1065         WARN(panel_pipe == pipe && locked,
1066              "panel assertion failure, pipe %c regs locked\n",
1067              pipe_name(pipe));
1068 }
1069
1070 void assert_pipe(struct drm_i915_private *dev_priv,
1071                  enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         /* if we need the pipe A quirk it must be always on */
1080         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1081                 state = true;
1082
1083         if (!intel_display_power_enabled(dev_priv->dev,
1084                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1085                 cur_state = false;
1086         } else {
1087                 reg = PIPECONF(cpu_transcoder);
1088                 val = I915_READ(reg);
1089                 cur_state = !!(val & PIPECONF_ENABLE);
1090         }
1091
1092         WARN(cur_state != state,
1093              "pipe %c assertion failure (expected %s, current %s)\n",
1094              pipe_name(pipe), state_string(state), state_string(cur_state));
1095 }
1096
1097 static void assert_plane(struct drm_i915_private *dev_priv,
1098                          enum plane plane, bool state)
1099 {
1100         int reg;
1101         u32 val;
1102         bool cur_state;
1103
1104         reg = DSPCNTR(plane);
1105         val = I915_READ(reg);
1106         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1107         WARN(cur_state != state,
1108              "plane %c assertion failure (expected %s, current %s)\n",
1109              plane_name(plane), state_string(state), state_string(cur_state));
1110 }
1111
1112 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1113 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1114
1115 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1116                                    enum pipe pipe)
1117 {
1118         struct drm_device *dev = dev_priv->dev;
1119         int reg, i;
1120         u32 val;
1121         int cur_pipe;
1122
1123         /* Primary planes are fixed to pipes on gen4+ */
1124         if (INTEL_INFO(dev)->gen >= 4) {
1125                 reg = DSPCNTR(pipe);
1126                 val = I915_READ(reg);
1127                 WARN((val & DISPLAY_PLANE_ENABLE),
1128                      "plane %c assertion failure, should be disabled but not\n",
1129                      plane_name(pipe));
1130                 return;
1131         }
1132
1133         /* Need to check both planes against the pipe */
1134         for_each_pipe(i) {
1135                 reg = DSPCNTR(i);
1136                 val = I915_READ(reg);
1137                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1138                         DISPPLANE_SEL_PIPE_SHIFT;
1139                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1140                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1141                      plane_name(i), pipe_name(pipe));
1142         }
1143 }
1144
1145 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1146                                     enum pipe pipe)
1147 {
1148         struct drm_device *dev = dev_priv->dev;
1149         int reg, i;
1150         u32 val;
1151
1152         if (IS_VALLEYVIEW(dev)) {
1153                 for (i = 0; i < dev_priv->num_plane; i++) {
1154                         reg = SPCNTR(pipe, i);
1155                         val = I915_READ(reg);
1156                         WARN((val & SP_ENABLE),
1157                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1158                              sprite_name(pipe, i), pipe_name(pipe));
1159                 }
1160         } else if (INTEL_INFO(dev)->gen >= 7) {
1161                 reg = SPRCTL(pipe);
1162                 val = I915_READ(reg);
1163                 WARN((val & SPRITE_ENABLE),
1164                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1165                      plane_name(pipe), pipe_name(pipe));
1166         } else if (INTEL_INFO(dev)->gen >= 5) {
1167                 reg = DVSCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN((val & DVS_ENABLE),
1170                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1171                      plane_name(pipe), pipe_name(pipe));
1172         }
1173 }
1174
1175 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1176 {
1177         u32 val;
1178         bool enabled;
1179
1180         if (HAS_PCH_LPT(dev_priv->dev)) {
1181                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1182                 return;
1183         }
1184
1185         val = I915_READ(PCH_DREF_CONTROL);
1186         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1187                             DREF_SUPERSPREAD_SOURCE_MASK));
1188         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1189 }
1190
1191 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1192                                            enum pipe pipe)
1193 {
1194         int reg;
1195         u32 val;
1196         bool enabled;
1197
1198         reg = PCH_TRANSCONF(pipe);
1199         val = I915_READ(reg);
1200         enabled = !!(val & TRANS_ENABLE);
1201         WARN(enabled,
1202              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1203              pipe_name(pipe));
1204 }
1205
1206 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1207                             enum pipe pipe, u32 port_sel, u32 val)
1208 {
1209         if ((val & DP_PORT_EN) == 0)
1210                 return false;
1211
1212         if (HAS_PCH_CPT(dev_priv->dev)) {
1213                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1214                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1215                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1216                         return false;
1217         } else {
1218                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1219                         return false;
1220         }
1221         return true;
1222 }
1223
1224 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1225                               enum pipe pipe, u32 val)
1226 {
1227         if ((val & SDVO_ENABLE) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1232                         return false;
1233         } else {
1234                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1235                         return false;
1236         }
1237         return true;
1238 }
1239
1240 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1241                               enum pipe pipe, u32 val)
1242 {
1243         if ((val & LVDS_PORT_EN) == 0)
1244                 return false;
1245
1246         if (HAS_PCH_CPT(dev_priv->dev)) {
1247                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1248                         return false;
1249         } else {
1250                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1251                         return false;
1252         }
1253         return true;
1254 }
1255
1256 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1257                               enum pipe pipe, u32 val)
1258 {
1259         if ((val & ADPA_DAC_ENABLE) == 0)
1260                 return false;
1261         if (HAS_PCH_CPT(dev_priv->dev)) {
1262                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1263                         return false;
1264         } else {
1265                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1266                         return false;
1267         }
1268         return true;
1269 }
1270
1271 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe, int reg, u32 port_sel)
1273 {
1274         u32 val = I915_READ(reg);
1275         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1276              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1277              reg, pipe_name(pipe));
1278
1279         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1280              && (val & DP_PIPEB_SELECT),
1281              "IBX PCH dp port still using transcoder B\n");
1282 }
1283
1284 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1285                                      enum pipe pipe, int reg)
1286 {
1287         u32 val = I915_READ(reg);
1288         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1289              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1290              reg, pipe_name(pipe));
1291
1292         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1293              && (val & SDVO_PIPE_B_SELECT),
1294              "IBX PCH hdmi port still using transcoder B\n");
1295 }
1296
1297 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1298                                       enum pipe pipe)
1299 {
1300         int reg;
1301         u32 val;
1302
1303         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1304         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1306
1307         reg = PCH_ADPA;
1308         val = I915_READ(reg);
1309         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1310              "PCH VGA enabled on transcoder %c, should be disabled\n",
1311              pipe_name(pipe));
1312
1313         reg = PCH_LVDS;
1314         val = I915_READ(reg);
1315         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1316              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1317              pipe_name(pipe));
1318
1319         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1320         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1322 }
1323
1324 static void vlv_enable_pll(struct intel_crtc *crtc)
1325 {
1326         struct drm_device *dev = crtc->base.dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         int reg = DPLL(crtc->pipe);
1329         u32 dpll = crtc->config.dpll_hw_state.dpll;
1330
1331         assert_pipe_disabled(dev_priv, crtc->pipe);
1332
1333         /* No really, not for ILK+ */
1334         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1335
1336         /* PLL is protected by panel, make sure we can write it */
1337         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1338                 assert_panel_unlocked(dev_priv, crtc->pipe);
1339
1340         I915_WRITE(reg, dpll);
1341         POSTING_READ(reg);
1342         udelay(150);
1343
1344         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1345                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1346
1347         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1348         POSTING_READ(DPLL_MD(crtc->pipe));
1349
1350         /* We do this three times for luck */
1351         I915_WRITE(reg, dpll);
1352         POSTING_READ(reg);
1353         udelay(150); /* wait for warmup */
1354         I915_WRITE(reg, dpll);
1355         POSTING_READ(reg);
1356         udelay(150); /* wait for warmup */
1357         I915_WRITE(reg, dpll);
1358         POSTING_READ(reg);
1359         udelay(150); /* wait for warmup */
1360 }
1361
1362 static void i9xx_enable_pll(struct intel_crtc *crtc)
1363 {
1364         struct drm_device *dev = crtc->base.dev;
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         int reg = DPLL(crtc->pipe);
1367         u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369         assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371         /* No really, not for ILK+ */
1372         BUG_ON(dev_priv->info->gen >= 5);
1373
1374         /* PLL is protected by panel, make sure we can write it */
1375         if (IS_MOBILE(dev) && !IS_I830(dev))
1376                 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378         I915_WRITE(reg, dpll);
1379
1380         /* Wait for the clocks to stabilize. */
1381         POSTING_READ(reg);
1382         udelay(150);
1383
1384         if (INTEL_INFO(dev)->gen >= 4) {
1385                 I915_WRITE(DPLL_MD(crtc->pipe),
1386                            crtc->config.dpll_hw_state.dpll_md);
1387         } else {
1388                 /* The pixel multiplier can only be updated once the
1389                  * DPLL is enabled and the clocks are stable.
1390                  *
1391                  * So write it again.
1392                  */
1393                 I915_WRITE(reg, dpll);
1394         }
1395
1396         /* We do this three times for luck */
1397         I915_WRITE(reg, dpll);
1398         POSTING_READ(reg);
1399         udelay(150); /* wait for warmup */
1400         I915_WRITE(reg, dpll);
1401         POSTING_READ(reg);
1402         udelay(150); /* wait for warmup */
1403         I915_WRITE(reg, dpll);
1404         POSTING_READ(reg);
1405         udelay(150); /* wait for warmup */
1406 }
1407
1408 /**
1409  * i9xx_disable_pll - disable a PLL
1410  * @dev_priv: i915 private structure
1411  * @pipe: pipe PLL to disable
1412  *
1413  * Disable the PLL for @pipe, making sure the pipe is off first.
1414  *
1415  * Note!  This is for pre-ILK only.
1416  */
1417 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1418 {
1419         /* Don't disable pipe A or pipe A PLLs if needed */
1420         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1421                 return;
1422
1423         /* Make sure the pipe isn't still relying on us */
1424         assert_pipe_disabled(dev_priv, pipe);
1425
1426         I915_WRITE(DPLL(pipe), 0);
1427         POSTING_READ(DPLL(pipe));
1428 }
1429
1430 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1431 {
1432         u32 port_mask;
1433
1434         if (!port)
1435                 port_mask = DPLL_PORTB_READY_MASK;
1436         else
1437                 port_mask = DPLL_PORTC_READY_MASK;
1438
1439         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1440                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1441                      'B' + port, I915_READ(DPLL(0)));
1442 }
1443
1444 /**
1445  * ironlake_enable_shared_dpll - enable PCH PLL
1446  * @dev_priv: i915 private structure
1447  * @pipe: pipe PLL to enable
1448  *
1449  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1450  * drives the transcoder clock.
1451  */
1452 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1453 {
1454         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1455         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1456
1457         /* PCH PLLs only available on ILK, SNB and IVB */
1458         BUG_ON(dev_priv->info->gen < 5);
1459         if (WARN_ON(pll == NULL))
1460                 return;
1461
1462         if (WARN_ON(pll->refcount == 0))
1463                 return;
1464
1465         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1466                       pll->name, pll->active, pll->on,
1467                       crtc->base.base.id);
1468
1469         if (pll->active++) {
1470                 WARN_ON(!pll->on);
1471                 assert_shared_dpll_enabled(dev_priv, pll);
1472                 return;
1473         }
1474         WARN_ON(pll->on);
1475
1476         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1477         pll->enable(dev_priv, pll);
1478         pll->on = true;
1479 }
1480
1481 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1482 {
1483         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1484         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1485
1486         /* PCH only available on ILK+ */
1487         BUG_ON(dev_priv->info->gen < 5);
1488         if (WARN_ON(pll == NULL))
1489                return;
1490
1491         if (WARN_ON(pll->refcount == 0))
1492                 return;
1493
1494         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1495                       pll->name, pll->active, pll->on,
1496                       crtc->base.base.id);
1497
1498         if (WARN_ON(pll->active == 0)) {
1499                 assert_shared_dpll_disabled(dev_priv, pll);
1500                 return;
1501         }
1502
1503         assert_shared_dpll_enabled(dev_priv, pll);
1504         WARN_ON(!pll->on);
1505         if (--pll->active)
1506                 return;
1507
1508         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1509         pll->disable(dev_priv, pll);
1510         pll->on = false;
1511 }
1512
1513 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1514                                            enum pipe pipe)
1515 {
1516         struct drm_device *dev = dev_priv->dev;
1517         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1519         uint32_t reg, val, pipeconf_val;
1520
1521         /* PCH only available on ILK+ */
1522         BUG_ON(dev_priv->info->gen < 5);
1523
1524         /* Make sure PCH DPLL is enabled */
1525         assert_shared_dpll_enabled(dev_priv,
1526                                    intel_crtc_to_shared_dpll(intel_crtc));
1527
1528         /* FDI must be feeding us bits for PCH ports */
1529         assert_fdi_tx_enabled(dev_priv, pipe);
1530         assert_fdi_rx_enabled(dev_priv, pipe);
1531
1532         if (HAS_PCH_CPT(dev)) {
1533                 /* Workaround: Set the timing override bit before enabling the
1534                  * pch transcoder. */
1535                 reg = TRANS_CHICKEN2(pipe);
1536                 val = I915_READ(reg);
1537                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1538                 I915_WRITE(reg, val);
1539         }
1540
1541         reg = PCH_TRANSCONF(pipe);
1542         val = I915_READ(reg);
1543         pipeconf_val = I915_READ(PIPECONF(pipe));
1544
1545         if (HAS_PCH_IBX(dev_priv->dev)) {
1546                 /*
1547                  * make the BPC in transcoder be consistent with
1548                  * that in pipeconf reg.
1549                  */
1550                 val &= ~PIPECONF_BPC_MASK;
1551                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1552         }
1553
1554         val &= ~TRANS_INTERLACE_MASK;
1555         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1556                 if (HAS_PCH_IBX(dev_priv->dev) &&
1557                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1558                         val |= TRANS_LEGACY_INTERLACED_ILK;
1559                 else
1560                         val |= TRANS_INTERLACED;
1561         else
1562                 val |= TRANS_PROGRESSIVE;
1563
1564         I915_WRITE(reg, val | TRANS_ENABLE);
1565         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1566                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1567 }
1568
1569 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1570                                       enum transcoder cpu_transcoder)
1571 {
1572         u32 val, pipeconf_val;
1573
1574         /* PCH only available on ILK+ */
1575         BUG_ON(dev_priv->info->gen < 5);
1576
1577         /* FDI must be feeding us bits for PCH ports */
1578         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1579         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1580
1581         /* Workaround: set timing override bit. */
1582         val = I915_READ(_TRANSA_CHICKEN2);
1583         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1584         I915_WRITE(_TRANSA_CHICKEN2, val);
1585
1586         val = TRANS_ENABLE;
1587         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1588
1589         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1590             PIPECONF_INTERLACED_ILK)
1591                 val |= TRANS_INTERLACED;
1592         else
1593                 val |= TRANS_PROGRESSIVE;
1594
1595         I915_WRITE(LPT_TRANSCONF, val);
1596         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1597                 DRM_ERROR("Failed to enable PCH transcoder\n");
1598 }
1599
1600 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1601                                             enum pipe pipe)
1602 {
1603         struct drm_device *dev = dev_priv->dev;
1604         uint32_t reg, val;
1605
1606         /* FDI relies on the transcoder */
1607         assert_fdi_tx_disabled(dev_priv, pipe);
1608         assert_fdi_rx_disabled(dev_priv, pipe);
1609
1610         /* Ports must be off as well */
1611         assert_pch_ports_disabled(dev_priv, pipe);
1612
1613         reg = PCH_TRANSCONF(pipe);
1614         val = I915_READ(reg);
1615         val &= ~TRANS_ENABLE;
1616         I915_WRITE(reg, val);
1617         /* wait for PCH transcoder off, transcoder state */
1618         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1619                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1620
1621         if (!HAS_PCH_IBX(dev)) {
1622                 /* Workaround: Clear the timing override chicken bit again. */
1623                 reg = TRANS_CHICKEN2(pipe);
1624                 val = I915_READ(reg);
1625                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1626                 I915_WRITE(reg, val);
1627         }
1628 }
1629
1630 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1631 {
1632         u32 val;
1633
1634         val = I915_READ(LPT_TRANSCONF);
1635         val &= ~TRANS_ENABLE;
1636         I915_WRITE(LPT_TRANSCONF, val);
1637         /* wait for PCH transcoder off, transcoder state */
1638         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1639                 DRM_ERROR("Failed to disable PCH transcoder\n");
1640
1641         /* Workaround: clear timing override bit. */
1642         val = I915_READ(_TRANSA_CHICKEN2);
1643         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1644         I915_WRITE(_TRANSA_CHICKEN2, val);
1645 }
1646
1647 /**
1648  * intel_enable_pipe - enable a pipe, asserting requirements
1649  * @dev_priv: i915 private structure
1650  * @pipe: pipe to enable
1651  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1652  *
1653  * Enable @pipe, making sure that various hardware specific requirements
1654  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1655  *
1656  * @pipe should be %PIPE_A or %PIPE_B.
1657  *
1658  * Will wait until the pipe is actually running (i.e. first vblank) before
1659  * returning.
1660  */
1661 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1662                               bool pch_port)
1663 {
1664         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1665                                                                       pipe);
1666         enum pipe pch_transcoder;
1667         int reg;
1668         u32 val;
1669
1670         assert_planes_disabled(dev_priv, pipe);
1671         assert_sprites_disabled(dev_priv, pipe);
1672
1673         if (HAS_PCH_LPT(dev_priv->dev))
1674                 pch_transcoder = TRANSCODER_A;
1675         else
1676                 pch_transcoder = pipe;
1677
1678         /*
1679          * A pipe without a PLL won't actually be able to drive bits from
1680          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1681          * need the check.
1682          */
1683         if (!HAS_PCH_SPLIT(dev_priv->dev))
1684                 assert_pll_enabled(dev_priv, pipe);
1685         else {
1686                 if (pch_port) {
1687                         /* if driving the PCH, we need FDI enabled */
1688                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1689                         assert_fdi_tx_pll_enabled(dev_priv,
1690                                                   (enum pipe) cpu_transcoder);
1691                 }
1692                 /* FIXME: assert CPU port conditions for SNB+ */
1693         }
1694
1695         reg = PIPECONF(cpu_transcoder);
1696         val = I915_READ(reg);
1697         if (val & PIPECONF_ENABLE)
1698                 return;
1699
1700         I915_WRITE(reg, val | PIPECONF_ENABLE);
1701         intel_wait_for_vblank(dev_priv->dev, pipe);
1702 }
1703
1704 /**
1705  * intel_disable_pipe - disable a pipe, asserting requirements
1706  * @dev_priv: i915 private structure
1707  * @pipe: pipe to disable
1708  *
1709  * Disable @pipe, making sure that various hardware specific requirements
1710  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1711  *
1712  * @pipe should be %PIPE_A or %PIPE_B.
1713  *
1714  * Will wait until the pipe has shut down before returning.
1715  */
1716 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1717                                enum pipe pipe)
1718 {
1719         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1720                                                                       pipe);
1721         int reg;
1722         u32 val;
1723
1724         /*
1725          * Make sure planes won't keep trying to pump pixels to us,
1726          * or we might hang the display.
1727          */
1728         assert_planes_disabled(dev_priv, pipe);
1729         assert_sprites_disabled(dev_priv, pipe);
1730
1731         /* Don't disable pipe A or pipe A PLLs if needed */
1732         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1733                 return;
1734
1735         reg = PIPECONF(cpu_transcoder);
1736         val = I915_READ(reg);
1737         if ((val & PIPECONF_ENABLE) == 0)
1738                 return;
1739
1740         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1741         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1742 }
1743
1744 /*
1745  * Plane regs are double buffered, going from enabled->disabled needs a
1746  * trigger in order to latch.  The display address reg provides this.
1747  */
1748 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1749                                       enum plane plane)
1750 {
1751         if (dev_priv->info->gen >= 4)
1752                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1753         else
1754                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1755 }
1756
1757 /**
1758  * intel_enable_plane - enable a display plane on a given pipe
1759  * @dev_priv: i915 private structure
1760  * @plane: plane to enable
1761  * @pipe: pipe being fed
1762  *
1763  * Enable @plane on @pipe, making sure that @pipe is running first.
1764  */
1765 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1766                                enum plane plane, enum pipe pipe)
1767 {
1768         int reg;
1769         u32 val;
1770
1771         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1772         assert_pipe_enabled(dev_priv, pipe);
1773
1774         reg = DSPCNTR(plane);
1775         val = I915_READ(reg);
1776         if (val & DISPLAY_PLANE_ENABLE)
1777                 return;
1778
1779         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1780         intel_flush_display_plane(dev_priv, plane);
1781         intel_wait_for_vblank(dev_priv->dev, pipe);
1782 }
1783
1784 /**
1785  * intel_disable_plane - disable a display plane
1786  * @dev_priv: i915 private structure
1787  * @plane: plane to disable
1788  * @pipe: pipe consuming the data
1789  *
1790  * Disable @plane; should be an independent operation.
1791  */
1792 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1793                                 enum plane plane, enum pipe pipe)
1794 {
1795         int reg;
1796         u32 val;
1797
1798         reg = DSPCNTR(plane);
1799         val = I915_READ(reg);
1800         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1801                 return;
1802
1803         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1804         intel_flush_display_plane(dev_priv, plane);
1805         intel_wait_for_vblank(dev_priv->dev, pipe);
1806 }
1807
1808 static bool need_vtd_wa(struct drm_device *dev)
1809 {
1810 #ifdef CONFIG_INTEL_IOMMU
1811         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1812                 return true;
1813 #endif
1814         return false;
1815 }
1816
1817 int
1818 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1819                            struct drm_i915_gem_object *obj,
1820                            struct intel_ring_buffer *pipelined)
1821 {
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         u32 alignment;
1824         int ret;
1825
1826         switch (obj->tiling_mode) {
1827         case I915_TILING_NONE:
1828                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1829                         alignment = 128 * 1024;
1830                 else if (INTEL_INFO(dev)->gen >= 4)
1831                         alignment = 4 * 1024;
1832                 else
1833                         alignment = 64 * 1024;
1834                 break;
1835         case I915_TILING_X:
1836                 /* pin() will align the object as required by fence */
1837                 alignment = 0;
1838                 break;
1839         case I915_TILING_Y:
1840                 /* Despite that we check this in framebuffer_init userspace can
1841                  * screw us over and change the tiling after the fact. Only
1842                  * pinned buffers can't change their tiling. */
1843                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1844                 return -EINVAL;
1845         default:
1846                 BUG();
1847         }
1848
1849         /* Note that the w/a also requires 64 PTE of padding following the
1850          * bo. We currently fill all unused PTE with the shadow page and so
1851          * we should always have valid PTE following the scanout preventing
1852          * the VT-d warning.
1853          */
1854         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1855                 alignment = 256 * 1024;
1856
1857         dev_priv->mm.interruptible = false;
1858         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1859         if (ret)
1860                 goto err_interruptible;
1861
1862         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1863          * fence, whereas 965+ only requires a fence if using
1864          * framebuffer compression.  For simplicity, we always install
1865          * a fence as the cost is not that onerous.
1866          */
1867         ret = i915_gem_object_get_fence(obj);
1868         if (ret)
1869                 goto err_unpin;
1870
1871         i915_gem_object_pin_fence(obj);
1872
1873         dev_priv->mm.interruptible = true;
1874         return 0;
1875
1876 err_unpin:
1877         i915_gem_object_unpin(obj);
1878 err_interruptible:
1879         dev_priv->mm.interruptible = true;
1880         return ret;
1881 }
1882
1883 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1884 {
1885         i915_gem_object_unpin_fence(obj);
1886         i915_gem_object_unpin(obj);
1887 }
1888
1889 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1890  * is assumed to be a power-of-two. */
1891 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1892                                              unsigned int tiling_mode,
1893                                              unsigned int cpp,
1894                                              unsigned int pitch)
1895 {
1896         if (tiling_mode != I915_TILING_NONE) {
1897                 unsigned int tile_rows, tiles;
1898
1899                 tile_rows = *y / 8;
1900                 *y %= 8;
1901
1902                 tiles = *x / (512/cpp);
1903                 *x %= 512/cpp;
1904
1905                 return tile_rows * pitch * 8 + tiles * 4096;
1906         } else {
1907                 unsigned int offset;
1908
1909                 offset = *y * pitch + *x * cpp;
1910                 *y = 0;
1911                 *x = (offset & 4095) / cpp;
1912                 return offset & -4096;
1913         }
1914 }
1915
1916 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1917                              int x, int y)
1918 {
1919         struct drm_device *dev = crtc->dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922         struct intel_framebuffer *intel_fb;
1923         struct drm_i915_gem_object *obj;
1924         int plane = intel_crtc->plane;
1925         unsigned long linear_offset;
1926         u32 dspcntr;
1927         u32 reg;
1928
1929         switch (plane) {
1930         case 0:
1931         case 1:
1932                 break;
1933         default:
1934                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1935                 return -EINVAL;
1936         }
1937
1938         intel_fb = to_intel_framebuffer(fb);
1939         obj = intel_fb->obj;
1940
1941         reg = DSPCNTR(plane);
1942         dspcntr = I915_READ(reg);
1943         /* Mask out pixel format bits in case we change it */
1944         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1945         switch (fb->pixel_format) {
1946         case DRM_FORMAT_C8:
1947                 dspcntr |= DISPPLANE_8BPP;
1948                 break;
1949         case DRM_FORMAT_XRGB1555:
1950         case DRM_FORMAT_ARGB1555:
1951                 dspcntr |= DISPPLANE_BGRX555;
1952                 break;
1953         case DRM_FORMAT_RGB565:
1954                 dspcntr |= DISPPLANE_BGRX565;
1955                 break;
1956         case DRM_FORMAT_XRGB8888:
1957         case DRM_FORMAT_ARGB8888:
1958                 dspcntr |= DISPPLANE_BGRX888;
1959                 break;
1960         case DRM_FORMAT_XBGR8888:
1961         case DRM_FORMAT_ABGR8888:
1962                 dspcntr |= DISPPLANE_RGBX888;
1963                 break;
1964         case DRM_FORMAT_XRGB2101010:
1965         case DRM_FORMAT_ARGB2101010:
1966                 dspcntr |= DISPPLANE_BGRX101010;
1967                 break;
1968         case DRM_FORMAT_XBGR2101010:
1969         case DRM_FORMAT_ABGR2101010:
1970                 dspcntr |= DISPPLANE_RGBX101010;
1971                 break;
1972         default:
1973                 BUG();
1974         }
1975
1976         if (INTEL_INFO(dev)->gen >= 4) {
1977                 if (obj->tiling_mode != I915_TILING_NONE)
1978                         dspcntr |= DISPPLANE_TILED;
1979                 else
1980                         dspcntr &= ~DISPPLANE_TILED;
1981         }
1982
1983         if (IS_G4X(dev))
1984                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1985
1986         I915_WRITE(reg, dspcntr);
1987
1988         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1989
1990         if (INTEL_INFO(dev)->gen >= 4) {
1991                 intel_crtc->dspaddr_offset =
1992                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1993                                                        fb->bits_per_pixel / 8,
1994                                                        fb->pitches[0]);
1995                 linear_offset -= intel_crtc->dspaddr_offset;
1996         } else {
1997                 intel_crtc->dspaddr_offset = linear_offset;
1998         }
1999
2000         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2001                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2002                       fb->pitches[0]);
2003         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2004         if (INTEL_INFO(dev)->gen >= 4) {
2005                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2006                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2007                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2009         } else
2010                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2011         POSTING_READ(reg);
2012
2013         return 0;
2014 }
2015
2016 static int ironlake_update_plane(struct drm_crtc *crtc,
2017                                  struct drm_framebuffer *fb, int x, int y)
2018 {
2019         struct drm_device *dev = crtc->dev;
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022         struct intel_framebuffer *intel_fb;
2023         struct drm_i915_gem_object *obj;
2024         int plane = intel_crtc->plane;
2025         unsigned long linear_offset;
2026         u32 dspcntr;
2027         u32 reg;
2028
2029         switch (plane) {
2030         case 0:
2031         case 1:
2032         case 2:
2033                 break;
2034         default:
2035                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2036                 return -EINVAL;
2037         }
2038
2039         intel_fb = to_intel_framebuffer(fb);
2040         obj = intel_fb->obj;
2041
2042         reg = DSPCNTR(plane);
2043         dspcntr = I915_READ(reg);
2044         /* Mask out pixel format bits in case we change it */
2045         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2046         switch (fb->pixel_format) {
2047         case DRM_FORMAT_C8:
2048                 dspcntr |= DISPPLANE_8BPP;
2049                 break;
2050         case DRM_FORMAT_RGB565:
2051                 dspcntr |= DISPPLANE_BGRX565;
2052                 break;
2053         case DRM_FORMAT_XRGB8888:
2054         case DRM_FORMAT_ARGB8888:
2055                 dspcntr |= DISPPLANE_BGRX888;
2056                 break;
2057         case DRM_FORMAT_XBGR8888:
2058         case DRM_FORMAT_ABGR8888:
2059                 dspcntr |= DISPPLANE_RGBX888;
2060                 break;
2061         case DRM_FORMAT_XRGB2101010:
2062         case DRM_FORMAT_ARGB2101010:
2063                 dspcntr |= DISPPLANE_BGRX101010;
2064                 break;
2065         case DRM_FORMAT_XBGR2101010:
2066         case DRM_FORMAT_ABGR2101010:
2067                 dspcntr |= DISPPLANE_RGBX101010;
2068                 break;
2069         default:
2070                 BUG();
2071         }
2072
2073         if (obj->tiling_mode != I915_TILING_NONE)
2074                 dspcntr |= DISPPLANE_TILED;
2075         else
2076                 dspcntr &= ~DISPPLANE_TILED;
2077
2078         /* must disable */
2079         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2080
2081         I915_WRITE(reg, dspcntr);
2082
2083         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2084         intel_crtc->dspaddr_offset =
2085                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2086                                                fb->bits_per_pixel / 8,
2087                                                fb->pitches[0]);
2088         linear_offset -= intel_crtc->dspaddr_offset;
2089
2090         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2091                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2092                       fb->pitches[0]);
2093         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2094         I915_MODIFY_DISPBASE(DSPSURF(plane),
2095                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096         if (IS_HASWELL(dev)) {
2097                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2098         } else {
2099                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2100                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2101         }
2102         POSTING_READ(reg);
2103
2104         return 0;
2105 }
2106
2107 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2108 static int
2109 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2110                            int x, int y, enum mode_set_atomic state)
2111 {
2112         struct drm_device *dev = crtc->dev;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115         if (dev_priv->display.disable_fbc)
2116                 dev_priv->display.disable_fbc(dev);
2117         intel_increase_pllclock(crtc);
2118
2119         return dev_priv->display.update_plane(crtc, fb, x, y);
2120 }
2121
2122 void intel_display_handle_reset(struct drm_device *dev)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct drm_crtc *crtc;
2126
2127         /*
2128          * Flips in the rings have been nuked by the reset,
2129          * so complete all pending flips so that user space
2130          * will get its events and not get stuck.
2131          *
2132          * Also update the base address of all primary
2133          * planes to the the last fb to make sure we're
2134          * showing the correct fb after a reset.
2135          *
2136          * Need to make two loops over the crtcs so that we
2137          * don't try to grab a crtc mutex before the
2138          * pending_flip_queue really got woken up.
2139          */
2140
2141         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2142                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143                 enum plane plane = intel_crtc->plane;
2144
2145                 intel_prepare_page_flip(dev, plane);
2146                 intel_finish_page_flip_plane(dev, plane);
2147         }
2148
2149         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2150                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
2152                 mutex_lock(&crtc->mutex);
2153                 if (intel_crtc->active)
2154                         dev_priv->display.update_plane(crtc, crtc->fb,
2155                                                        crtc->x, crtc->y);
2156                 mutex_unlock(&crtc->mutex);
2157         }
2158 }
2159
2160 static int
2161 intel_finish_fb(struct drm_framebuffer *old_fb)
2162 {
2163         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2164         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2165         bool was_interruptible = dev_priv->mm.interruptible;
2166         int ret;
2167
2168         /* Big Hammer, we also need to ensure that any pending
2169          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2170          * current scanout is retired before unpinning the old
2171          * framebuffer.
2172          *
2173          * This should only fail upon a hung GPU, in which case we
2174          * can safely continue.
2175          */
2176         dev_priv->mm.interruptible = false;
2177         ret = i915_gem_object_finish_gpu(obj);
2178         dev_priv->mm.interruptible = was_interruptible;
2179
2180         return ret;
2181 }
2182
2183 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2184 {
2185         struct drm_device *dev = crtc->dev;
2186         struct drm_i915_master_private *master_priv;
2187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188
2189         if (!dev->primary->master)
2190                 return;
2191
2192         master_priv = dev->primary->master->driver_priv;
2193         if (!master_priv->sarea_priv)
2194                 return;
2195
2196         switch (intel_crtc->pipe) {
2197         case 0:
2198                 master_priv->sarea_priv->pipeA_x = x;
2199                 master_priv->sarea_priv->pipeA_y = y;
2200                 break;
2201         case 1:
2202                 master_priv->sarea_priv->pipeB_x = x;
2203                 master_priv->sarea_priv->pipeB_y = y;
2204                 break;
2205         default:
2206                 break;
2207         }
2208 }
2209
2210 static int
2211 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2212                     struct drm_framebuffer *fb)
2213 {
2214         struct drm_device *dev = crtc->dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2217         struct drm_framebuffer *old_fb;
2218         int ret;
2219
2220         /* no fb bound */
2221         if (!fb) {
2222                 DRM_ERROR("No FB bound\n");
2223                 return 0;
2224         }
2225
2226         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2227                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2228                           plane_name(intel_crtc->plane),
2229                           INTEL_INFO(dev)->num_pipes);
2230                 return -EINVAL;
2231         }
2232
2233         mutex_lock(&dev->struct_mutex);
2234         ret = intel_pin_and_fence_fb_obj(dev,
2235                                          to_intel_framebuffer(fb)->obj,
2236                                          NULL);
2237         if (ret != 0) {
2238                 mutex_unlock(&dev->struct_mutex);
2239                 DRM_ERROR("pin & fence failed\n");
2240                 return ret;
2241         }
2242
2243         /* Update pipe size and adjust fitter if needed */
2244         if (i915_fastboot) {
2245                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2246                            ((crtc->mode.hdisplay - 1) << 16) |
2247                            (crtc->mode.vdisplay - 1));
2248                 if (!intel_crtc->config.pch_pfit.size &&
2249                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2250                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2251                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2252                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2253                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2254                 }
2255         }
2256
2257         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2258         if (ret) {
2259                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2260                 mutex_unlock(&dev->struct_mutex);
2261                 DRM_ERROR("failed to update base address\n");
2262                 return ret;
2263         }
2264
2265         old_fb = crtc->fb;
2266         crtc->fb = fb;
2267         crtc->x = x;
2268         crtc->y = y;
2269
2270         if (old_fb) {
2271                 if (intel_crtc->active && old_fb != fb)
2272                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2273                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2274         }
2275
2276         intel_update_fbc(dev);
2277         intel_edp_psr_update(dev);
2278         mutex_unlock(&dev->struct_mutex);
2279
2280         intel_crtc_update_sarea_pos(crtc, x, y);
2281
2282         return 0;
2283 }
2284
2285 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2286 {
2287         struct drm_device *dev = crtc->dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290         int pipe = intel_crtc->pipe;
2291         u32 reg, temp;
2292
2293         /* enable normal train */
2294         reg = FDI_TX_CTL(pipe);
2295         temp = I915_READ(reg);
2296         if (IS_IVYBRIDGE(dev)) {
2297                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2298                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2299         } else {
2300                 temp &= ~FDI_LINK_TRAIN_NONE;
2301                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2302         }
2303         I915_WRITE(reg, temp);
2304
2305         reg = FDI_RX_CTL(pipe);
2306         temp = I915_READ(reg);
2307         if (HAS_PCH_CPT(dev)) {
2308                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2310         } else {
2311                 temp &= ~FDI_LINK_TRAIN_NONE;
2312                 temp |= FDI_LINK_TRAIN_NONE;
2313         }
2314         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2315
2316         /* wait one idle pattern time */
2317         POSTING_READ(reg);
2318         udelay(1000);
2319
2320         /* IVB wants error correction enabled */
2321         if (IS_IVYBRIDGE(dev))
2322                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2323                            FDI_FE_ERRC_ENABLE);
2324 }
2325
2326 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2327 {
2328         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2329 }
2330
2331 static void ivb_modeset_global_resources(struct drm_device *dev)
2332 {
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *pipe_B_crtc =
2335                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2336         struct intel_crtc *pipe_C_crtc =
2337                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2338         uint32_t temp;
2339
2340         /*
2341          * When everything is off disable fdi C so that we could enable fdi B
2342          * with all lanes. Note that we don't care about enabled pipes without
2343          * an enabled pch encoder.
2344          */
2345         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2346             !pipe_has_enabled_pch(pipe_C_crtc)) {
2347                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2348                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2349
2350                 temp = I915_READ(SOUTH_CHICKEN1);
2351                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2352                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2353                 I915_WRITE(SOUTH_CHICKEN1, temp);
2354         }
2355 }
2356
2357 /* The FDI link training functions for ILK/Ibexpeak. */
2358 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2359 {
2360         struct drm_device *dev = crtc->dev;
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2363         int pipe = intel_crtc->pipe;
2364         int plane = intel_crtc->plane;
2365         u32 reg, temp, tries;
2366
2367         /* FDI needs bits from pipe & plane first */
2368         assert_pipe_enabled(dev_priv, pipe);
2369         assert_plane_enabled(dev_priv, plane);
2370
2371         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2372            for train result */
2373         reg = FDI_RX_IMR(pipe);
2374         temp = I915_READ(reg);
2375         temp &= ~FDI_RX_SYMBOL_LOCK;
2376         temp &= ~FDI_RX_BIT_LOCK;
2377         I915_WRITE(reg, temp);
2378         I915_READ(reg);
2379         udelay(150);
2380
2381         /* enable CPU FDI TX and PCH FDI RX */
2382         reg = FDI_TX_CTL(pipe);
2383         temp = I915_READ(reg);
2384         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2385         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2386         temp &= ~FDI_LINK_TRAIN_NONE;
2387         temp |= FDI_LINK_TRAIN_PATTERN_1;
2388         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2389
2390         reg = FDI_RX_CTL(pipe);
2391         temp = I915_READ(reg);
2392         temp &= ~FDI_LINK_TRAIN_NONE;
2393         temp |= FDI_LINK_TRAIN_PATTERN_1;
2394         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2395
2396         POSTING_READ(reg);
2397         udelay(150);
2398
2399         /* Ironlake workaround, enable clock pointer after FDI enable*/
2400         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2401         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2402                    FDI_RX_PHASE_SYNC_POINTER_EN);
2403
2404         reg = FDI_RX_IIR(pipe);
2405         for (tries = 0; tries < 5; tries++) {
2406                 temp = I915_READ(reg);
2407                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2408
2409                 if ((temp & FDI_RX_BIT_LOCK)) {
2410                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2411                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2412                         break;
2413                 }
2414         }
2415         if (tries == 5)
2416                 DRM_ERROR("FDI train 1 fail!\n");
2417
2418         /* Train 2 */
2419         reg = FDI_TX_CTL(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_LINK_TRAIN_NONE;
2422         temp |= FDI_LINK_TRAIN_PATTERN_2;
2423         I915_WRITE(reg, temp);
2424
2425         reg = FDI_RX_CTL(pipe);
2426         temp = I915_READ(reg);
2427         temp &= ~FDI_LINK_TRAIN_NONE;
2428         temp |= FDI_LINK_TRAIN_PATTERN_2;
2429         I915_WRITE(reg, temp);
2430
2431         POSTING_READ(reg);
2432         udelay(150);
2433
2434         reg = FDI_RX_IIR(pipe);
2435         for (tries = 0; tries < 5; tries++) {
2436                 temp = I915_READ(reg);
2437                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2438
2439                 if (temp & FDI_RX_SYMBOL_LOCK) {
2440                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2441                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2442                         break;
2443                 }
2444         }
2445         if (tries == 5)
2446                 DRM_ERROR("FDI train 2 fail!\n");
2447
2448         DRM_DEBUG_KMS("FDI train done\n");
2449
2450 }
2451
2452 static const int snb_b_fdi_train_param[] = {
2453         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2454         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2455         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2456         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2457 };
2458
2459 /* The FDI link training functions for SNB/Cougarpoint. */
2460 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2461 {
2462         struct drm_device *dev = crtc->dev;
2463         struct drm_i915_private *dev_priv = dev->dev_private;
2464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2465         int pipe = intel_crtc->pipe;
2466         u32 reg, temp, i, retry;
2467
2468         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469            for train result */
2470         reg = FDI_RX_IMR(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_RX_SYMBOL_LOCK;
2473         temp &= ~FDI_RX_BIT_LOCK;
2474         I915_WRITE(reg, temp);
2475
2476         POSTING_READ(reg);
2477         udelay(150);
2478
2479         /* enable CPU FDI TX and PCH FDI RX */
2480         reg = FDI_TX_CTL(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2483         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2484         temp &= ~FDI_LINK_TRAIN_NONE;
2485         temp |= FDI_LINK_TRAIN_PATTERN_1;
2486         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2487         /* SNB-B */
2488         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2489         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2490
2491         I915_WRITE(FDI_RX_MISC(pipe),
2492                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2493
2494         reg = FDI_RX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         if (HAS_PCH_CPT(dev)) {
2497                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2499         } else {
2500                 temp &= ~FDI_LINK_TRAIN_NONE;
2501                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         }
2503         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2504
2505         POSTING_READ(reg);
2506         udelay(150);
2507
2508         for (i = 0; i < 4; i++) {
2509                 reg = FDI_TX_CTL(pipe);
2510                 temp = I915_READ(reg);
2511                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2512                 temp |= snb_b_fdi_train_param[i];
2513                 I915_WRITE(reg, temp);
2514
2515                 POSTING_READ(reg);
2516                 udelay(500);
2517
2518                 for (retry = 0; retry < 5; retry++) {
2519                         reg = FDI_RX_IIR(pipe);
2520                         temp = I915_READ(reg);
2521                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522                         if (temp & FDI_RX_BIT_LOCK) {
2523                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2524                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2525                                 break;
2526                         }
2527                         udelay(50);
2528                 }
2529                 if (retry < 5)
2530                         break;
2531         }
2532         if (i == 4)
2533                 DRM_ERROR("FDI train 1 fail!\n");
2534
2535         /* Train 2 */
2536         reg = FDI_TX_CTL(pipe);
2537         temp = I915_READ(reg);
2538         temp &= ~FDI_LINK_TRAIN_NONE;
2539         temp |= FDI_LINK_TRAIN_PATTERN_2;
2540         if (IS_GEN6(dev)) {
2541                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542                 /* SNB-B */
2543                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544         }
2545         I915_WRITE(reg, temp);
2546
2547         reg = FDI_RX_CTL(pipe);
2548         temp = I915_READ(reg);
2549         if (HAS_PCH_CPT(dev)) {
2550                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552         } else {
2553                 temp &= ~FDI_LINK_TRAIN_NONE;
2554                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555         }
2556         I915_WRITE(reg, temp);
2557
2558         POSTING_READ(reg);
2559         udelay(150);
2560
2561         for (i = 0; i < 4; i++) {
2562                 reg = FDI_TX_CTL(pipe);
2563                 temp = I915_READ(reg);
2564                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565                 temp |= snb_b_fdi_train_param[i];
2566                 I915_WRITE(reg, temp);
2567
2568                 POSTING_READ(reg);
2569                 udelay(500);
2570
2571                 for (retry = 0; retry < 5; retry++) {
2572                         reg = FDI_RX_IIR(pipe);
2573                         temp = I915_READ(reg);
2574                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575                         if (temp & FDI_RX_SYMBOL_LOCK) {
2576                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578                                 break;
2579                         }
2580                         udelay(50);
2581                 }
2582                 if (retry < 5)
2583                         break;
2584         }
2585         if (i == 4)
2586                 DRM_ERROR("FDI train 2 fail!\n");
2587
2588         DRM_DEBUG_KMS("FDI train done.\n");
2589 }
2590
2591 /* Manual link training for Ivy Bridge A0 parts */
2592 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2593 {
2594         struct drm_device *dev = crtc->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         int pipe = intel_crtc->pipe;
2598         u32 reg, temp, i;
2599
2600         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2601            for train result */
2602         reg = FDI_RX_IMR(pipe);
2603         temp = I915_READ(reg);
2604         temp &= ~FDI_RX_SYMBOL_LOCK;
2605         temp &= ~FDI_RX_BIT_LOCK;
2606         I915_WRITE(reg, temp);
2607
2608         POSTING_READ(reg);
2609         udelay(150);
2610
2611         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2612                       I915_READ(FDI_RX_IIR(pipe)));
2613
2614         /* enable CPU FDI TX and PCH FDI RX */
2615         reg = FDI_TX_CTL(pipe);
2616         temp = I915_READ(reg);
2617         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2618         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2619         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2620         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2621         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         temp |= FDI_COMPOSITE_SYNC;
2624         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2625
2626         I915_WRITE(FDI_RX_MISC(pipe),
2627                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2628
2629         reg = FDI_RX_CTL(pipe);
2630         temp = I915_READ(reg);
2631         temp &= ~FDI_LINK_TRAIN_AUTO;
2632         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2633         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2634         temp |= FDI_COMPOSITE_SYNC;
2635         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2636
2637         POSTING_READ(reg);
2638         udelay(150);
2639
2640         for (i = 0; i < 4; i++) {
2641                 reg = FDI_TX_CTL(pipe);
2642                 temp = I915_READ(reg);
2643                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2644                 temp |= snb_b_fdi_train_param[i];
2645                 I915_WRITE(reg, temp);
2646
2647                 POSTING_READ(reg);
2648                 udelay(500);
2649
2650                 reg = FDI_RX_IIR(pipe);
2651                 temp = I915_READ(reg);
2652                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2653
2654                 if (temp & FDI_RX_BIT_LOCK ||
2655                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2656                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2657                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2658                         break;
2659                 }
2660         }
2661         if (i == 4)
2662                 DRM_ERROR("FDI train 1 fail!\n");
2663
2664         /* Train 2 */
2665         reg = FDI_TX_CTL(pipe);
2666         temp = I915_READ(reg);
2667         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2668         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2669         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2671         I915_WRITE(reg, temp);
2672
2673         reg = FDI_RX_CTL(pipe);
2674         temp = I915_READ(reg);
2675         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2676         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2677         I915_WRITE(reg, temp);
2678
2679         POSTING_READ(reg);
2680         udelay(150);
2681
2682         for (i = 0; i < 4; i++) {
2683                 reg = FDI_TX_CTL(pipe);
2684                 temp = I915_READ(reg);
2685                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2686                 temp |= snb_b_fdi_train_param[i];
2687                 I915_WRITE(reg, temp);
2688
2689                 POSTING_READ(reg);
2690                 udelay(500);
2691
2692                 reg = FDI_RX_IIR(pipe);
2693                 temp = I915_READ(reg);
2694                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2695
2696                 if (temp & FDI_RX_SYMBOL_LOCK) {
2697                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2698                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2699                         break;
2700                 }
2701         }
2702         if (i == 4)
2703                 DRM_ERROR("FDI train 2 fail!\n");
2704
2705         DRM_DEBUG_KMS("FDI train done.\n");
2706 }
2707
2708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2709 {
2710         struct drm_device *dev = intel_crtc->base.dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         int pipe = intel_crtc->pipe;
2713         u32 reg, temp;
2714
2715
2716         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2717         reg = FDI_RX_CTL(pipe);
2718         temp = I915_READ(reg);
2719         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2720         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2721         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2722         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2723
2724         POSTING_READ(reg);
2725         udelay(200);
2726
2727         /* Switch from Rawclk to PCDclk */
2728         temp = I915_READ(reg);
2729         I915_WRITE(reg, temp | FDI_PCDCLK);
2730
2731         POSTING_READ(reg);
2732         udelay(200);
2733
2734         /* Enable CPU FDI TX PLL, always on for Ironlake */
2735         reg = FDI_TX_CTL(pipe);
2736         temp = I915_READ(reg);
2737         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2738                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2739
2740                 POSTING_READ(reg);
2741                 udelay(100);
2742         }
2743 }
2744
2745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2746 {
2747         struct drm_device *dev = intel_crtc->base.dev;
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         int pipe = intel_crtc->pipe;
2750         u32 reg, temp;
2751
2752         /* Switch from PCDclk to Rawclk */
2753         reg = FDI_RX_CTL(pipe);
2754         temp = I915_READ(reg);
2755         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2756
2757         /* Disable CPU FDI TX PLL */
2758         reg = FDI_TX_CTL(pipe);
2759         temp = I915_READ(reg);
2760         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2761
2762         POSTING_READ(reg);
2763         udelay(100);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2768
2769         /* Wait for the clocks to turn off. */
2770         POSTING_READ(reg);
2771         udelay(100);
2772 }
2773
2774 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2775 {
2776         struct drm_device *dev = crtc->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779         int pipe = intel_crtc->pipe;
2780         u32 reg, temp;
2781
2782         /* disable CPU FDI tx and PCH FDI rx */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2786         POSTING_READ(reg);
2787
2788         reg = FDI_RX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~(0x7 << 16);
2791         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2792         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2793
2794         POSTING_READ(reg);
2795         udelay(100);
2796
2797         /* Ironlake workaround, disable clock pointer after downing FDI */
2798         if (HAS_PCH_IBX(dev)) {
2799                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2800         }
2801
2802         /* still set train pattern 1 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_1;
2807         I915_WRITE(reg, temp);
2808
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         if (HAS_PCH_CPT(dev)) {
2812                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2813                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2814         } else {
2815                 temp &= ~FDI_LINK_TRAIN_NONE;
2816                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2817         }
2818         /* BPC in FDI rx is consistent with that in PIPECONF */
2819         temp &= ~(0x07 << 16);
2820         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2821         I915_WRITE(reg, temp);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825 }
2826
2827 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2828 {
2829         struct drm_device *dev = crtc->dev;
2830         struct drm_i915_private *dev_priv = dev->dev_private;
2831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2832         unsigned long flags;
2833         bool pending;
2834
2835         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2836             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2837                 return false;
2838
2839         spin_lock_irqsave(&dev->event_lock, flags);
2840         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2841         spin_unlock_irqrestore(&dev->event_lock, flags);
2842
2843         return pending;
2844 }
2845
2846 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851         if (crtc->fb == NULL)
2852                 return;
2853
2854         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2855
2856         wait_event(dev_priv->pending_flip_queue,
2857                    !intel_crtc_has_pending_flip(crtc));
2858
2859         mutex_lock(&dev->struct_mutex);
2860         intel_finish_fb(crtc->fb);
2861         mutex_unlock(&dev->struct_mutex);
2862 }
2863
2864 /* Program iCLKIP clock to the desired frequency */
2865 static void lpt_program_iclkip(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2870         u32 temp;
2871
2872         mutex_lock(&dev_priv->dpio_lock);
2873
2874         /* It is necessary to ungate the pixclk gate prior to programming
2875          * the divisors, and gate it back when it is done.
2876          */
2877         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2878
2879         /* Disable SSCCTL */
2880         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2881                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2882                                 SBI_SSCCTL_DISABLE,
2883                         SBI_ICLK);
2884
2885         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2886         if (crtc->mode.clock == 20000) {
2887                 auxdiv = 1;
2888                 divsel = 0x41;
2889                 phaseinc = 0x20;
2890         } else {
2891                 /* The iCLK virtual clock root frequency is in MHz,
2892                  * but the crtc->mode.clock in in KHz. To get the divisors,
2893                  * it is necessary to divide one by another, so we
2894                  * convert the virtual clock precision to KHz here for higher
2895                  * precision.
2896                  */
2897                 u32 iclk_virtual_root_freq = 172800 * 1000;
2898                 u32 iclk_pi_range = 64;
2899                 u32 desired_divisor, msb_divisor_value, pi_value;
2900
2901                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2902                 msb_divisor_value = desired_divisor / iclk_pi_range;
2903                 pi_value = desired_divisor % iclk_pi_range;
2904
2905                 auxdiv = 0;
2906                 divsel = msb_divisor_value - 2;
2907                 phaseinc = pi_value;
2908         }
2909
2910         /* This should not happen with any sane values */
2911         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2912                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2913         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2914                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2915
2916         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2917                         crtc->mode.clock,
2918                         auxdiv,
2919                         divsel,
2920                         phasedir,
2921                         phaseinc);
2922
2923         /* Program SSCDIVINTPHASE6 */
2924         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2925         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2926         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2927         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2928         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2929         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2930         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2931         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2932
2933         /* Program SSCAUXDIV */
2934         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2935         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2936         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2937         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2938
2939         /* Enable modulator and associated divider */
2940         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2941         temp &= ~SBI_SSCCTL_DISABLE;
2942         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2943
2944         /* Wait for initialization time */
2945         udelay(24);
2946
2947         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948
2949         mutex_unlock(&dev_priv->dpio_lock);
2950 }
2951
2952 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2953                                                 enum pipe pch_transcoder)
2954 {
2955         struct drm_device *dev = crtc->base.dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2958
2959         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2960                    I915_READ(HTOTAL(cpu_transcoder)));
2961         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2962                    I915_READ(HBLANK(cpu_transcoder)));
2963         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2964                    I915_READ(HSYNC(cpu_transcoder)));
2965
2966         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2967                    I915_READ(VTOTAL(cpu_transcoder)));
2968         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2969                    I915_READ(VBLANK(cpu_transcoder)));
2970         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2971                    I915_READ(VSYNC(cpu_transcoder)));
2972         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2973                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2974 }
2975
2976 /*
2977  * Enable PCH resources required for PCH ports:
2978  *   - PCH PLLs
2979  *   - FDI training & RX/TX
2980  *   - update transcoder timings
2981  *   - DP transcoding bits
2982  *   - transcoder
2983  */
2984 static void ironlake_pch_enable(struct drm_crtc *crtc)
2985 {
2986         struct drm_device *dev = crtc->dev;
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2989         int pipe = intel_crtc->pipe;
2990         u32 reg, temp;
2991
2992         assert_pch_transcoder_disabled(dev_priv, pipe);
2993
2994         /* Write the TU size bits before fdi link training, so that error
2995          * detection works. */
2996         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2997                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2998
2999         /* For PCH output, training FDI link */
3000         dev_priv->display.fdi_link_train(crtc);
3001
3002         /* We need to program the right clock selection before writing the pixel
3003          * mutliplier into the DPLL. */
3004         if (HAS_PCH_CPT(dev)) {
3005                 u32 sel;
3006
3007                 temp = I915_READ(PCH_DPLL_SEL);
3008                 temp |= TRANS_DPLL_ENABLE(pipe);
3009                 sel = TRANS_DPLLB_SEL(pipe);
3010                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3011                         temp |= sel;
3012                 else
3013                         temp &= ~sel;
3014                 I915_WRITE(PCH_DPLL_SEL, temp);
3015         }
3016
3017         /* XXX: pch pll's can be enabled any time before we enable the PCH
3018          * transcoder, and we actually should do this to not upset any PCH
3019          * transcoder that already use the clock when we share it.
3020          *
3021          * Note that enable_shared_dpll tries to do the right thing, but
3022          * get_shared_dpll unconditionally resets the pll - we need that to have
3023          * the right LVDS enable sequence. */
3024         ironlake_enable_shared_dpll(intel_crtc);
3025
3026         /* set transcoder timing, panel must allow it */
3027         assert_panel_unlocked(dev_priv, pipe);
3028         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3029
3030         intel_fdi_normal_train(crtc);
3031
3032         /* For PCH DP, enable TRANS_DP_CTL */
3033         if (HAS_PCH_CPT(dev) &&
3034             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3035              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3036                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3037                 reg = TRANS_DP_CTL(pipe);
3038                 temp = I915_READ(reg);
3039                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3040                           TRANS_DP_SYNC_MASK |
3041                           TRANS_DP_BPC_MASK);
3042                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3043                          TRANS_DP_ENH_FRAMING);
3044                 temp |= bpc << 9; /* same format but at 11:9 */
3045
3046                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3047                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3048                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3049                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3050
3051                 switch (intel_trans_dp_port_sel(crtc)) {
3052                 case PCH_DP_B:
3053                         temp |= TRANS_DP_PORT_SEL_B;
3054                         break;
3055                 case PCH_DP_C:
3056                         temp |= TRANS_DP_PORT_SEL_C;
3057                         break;
3058                 case PCH_DP_D:
3059                         temp |= TRANS_DP_PORT_SEL_D;
3060                         break;
3061                 default:
3062                         BUG();
3063                 }
3064
3065                 I915_WRITE(reg, temp);
3066         }
3067
3068         ironlake_enable_pch_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void lpt_pch_enable(struct drm_crtc *crtc)
3072 {
3073         struct drm_device *dev = crtc->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3076         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3077
3078         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3079
3080         lpt_program_iclkip(crtc);
3081
3082         /* Set transcoder timing. */
3083         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3084
3085         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3086 }
3087
3088 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3089 {
3090         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3091
3092         if (pll == NULL)
3093                 return;
3094
3095         if (pll->refcount == 0) {
3096                 WARN(1, "bad %s refcount\n", pll->name);
3097                 return;
3098         }
3099
3100         if (--pll->refcount == 0) {
3101                 WARN_ON(pll->on);
3102                 WARN_ON(pll->active);
3103         }
3104
3105         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3106 }
3107
3108 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3109 {
3110         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3111         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3112         enum intel_dpll_id i;
3113
3114         if (pll) {
3115                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3116                               crtc->base.base.id, pll->name);
3117                 intel_put_shared_dpll(crtc);
3118         }
3119
3120         if (HAS_PCH_IBX(dev_priv->dev)) {
3121                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3122                 i = (enum intel_dpll_id) crtc->pipe;
3123                 pll = &dev_priv->shared_dplls[i];
3124
3125                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3126                               crtc->base.base.id, pll->name);
3127
3128                 goto found;
3129         }
3130
3131         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3132                 pll = &dev_priv->shared_dplls[i];
3133
3134                 /* Only want to check enabled timings first */
3135                 if (pll->refcount == 0)
3136                         continue;
3137
3138                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3139                            sizeof(pll->hw_state)) == 0) {
3140                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3141                                       crtc->base.base.id,
3142                                       pll->name, pll->refcount, pll->active);
3143
3144                         goto found;
3145                 }
3146         }
3147
3148         /* Ok no matching timings, maybe there's a free one? */
3149         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3150                 pll = &dev_priv->shared_dplls[i];
3151                 if (pll->refcount == 0) {
3152                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3153                                       crtc->base.base.id, pll->name);
3154                         goto found;
3155                 }
3156         }
3157
3158         return NULL;
3159
3160 found:
3161         crtc->config.shared_dpll = i;
3162         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3163                          pipe_name(crtc->pipe));
3164
3165         if (pll->active == 0) {
3166                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3167                        sizeof(pll->hw_state));
3168
3169                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3170                 WARN_ON(pll->on);
3171                 assert_shared_dpll_disabled(dev_priv, pll);
3172
3173                 pll->mode_set(dev_priv, pll);
3174         }
3175         pll->refcount++;
3176
3177         return pll;
3178 }
3179
3180 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3181 {
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183         int dslreg = PIPEDSL(pipe);
3184         u32 temp;
3185
3186         temp = I915_READ(dslreg);
3187         udelay(500);
3188         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3189                 if (wait_for(I915_READ(dslreg) != temp, 5))
3190                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3191         }
3192 }
3193
3194 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3195 {
3196         struct drm_device *dev = crtc->base.dev;
3197         struct drm_i915_private *dev_priv = dev->dev_private;
3198         int pipe = crtc->pipe;
3199
3200         if (crtc->config.pch_pfit.size) {
3201                 /* Force use of hard-coded filter coefficients
3202                  * as some pre-programmed values are broken,
3203                  * e.g. x201.
3204                  */
3205                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3206                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3207                                                  PF_PIPE_SEL_IVB(pipe));
3208                 else
3209                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3210                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3211                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3212         }
3213 }
3214
3215 static void intel_enable_planes(struct drm_crtc *crtc)
3216 {
3217         struct drm_device *dev = crtc->dev;
3218         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3219         struct intel_plane *intel_plane;
3220
3221         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3222                 if (intel_plane->pipe == pipe)
3223                         intel_plane_restore(&intel_plane->base);
3224 }
3225
3226 static void intel_disable_planes(struct drm_crtc *crtc)
3227 {
3228         struct drm_device *dev = crtc->dev;
3229         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3230         struct intel_plane *intel_plane;
3231
3232         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3233                 if (intel_plane->pipe == pipe)
3234                         intel_plane_disable(&intel_plane->base);
3235 }
3236
3237 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3238 {
3239         struct drm_device *dev = crtc->dev;
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242         struct intel_encoder *encoder;
3243         int pipe = intel_crtc->pipe;
3244         int plane = intel_crtc->plane;
3245
3246         WARN_ON(!crtc->enabled);
3247
3248         if (intel_crtc->active)
3249                 return;
3250
3251         intel_crtc->active = true;
3252
3253         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3254         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3255
3256         intel_update_watermarks(dev);
3257
3258         for_each_encoder_on_crtc(dev, crtc, encoder)
3259                 if (encoder->pre_enable)
3260                         encoder->pre_enable(encoder);
3261
3262         if (intel_crtc->config.has_pch_encoder) {
3263                 /* Note: FDI PLL enabling _must_ be done before we enable the
3264                  * cpu pipes, hence this is separate from all the other fdi/pch
3265                  * enabling. */
3266                 ironlake_fdi_pll_enable(intel_crtc);
3267         } else {
3268                 assert_fdi_tx_disabled(dev_priv, pipe);
3269                 assert_fdi_rx_disabled(dev_priv, pipe);
3270         }
3271
3272         ironlake_pfit_enable(intel_crtc);
3273
3274         /*
3275          * On ILK+ LUT must be loaded before the pipe is running but with
3276          * clocks enabled
3277          */
3278         intel_crtc_load_lut(crtc);
3279
3280         intel_enable_pipe(dev_priv, pipe,
3281                           intel_crtc->config.has_pch_encoder);
3282         intel_enable_plane(dev_priv, plane, pipe);
3283         intel_enable_planes(crtc);
3284         intel_crtc_update_cursor(crtc, true);
3285
3286         if (intel_crtc->config.has_pch_encoder)
3287                 ironlake_pch_enable(crtc);
3288
3289         mutex_lock(&dev->struct_mutex);
3290         intel_update_fbc(dev);
3291         mutex_unlock(&dev->struct_mutex);
3292
3293         for_each_encoder_on_crtc(dev, crtc, encoder)
3294                 encoder->enable(encoder);
3295
3296         if (HAS_PCH_CPT(dev))
3297                 cpt_verify_modeset(dev, intel_crtc->pipe);
3298
3299         /*
3300          * There seems to be a race in PCH platform hw (at least on some
3301          * outputs) where an enabled pipe still completes any pageflip right
3302          * away (as if the pipe is off) instead of waiting for vblank. As soon
3303          * as the first vblank happend, everything works as expected. Hence just
3304          * wait for one vblank before returning to avoid strange things
3305          * happening.
3306          */
3307         intel_wait_for_vblank(dev, intel_crtc->pipe);
3308 }
3309
3310 /* IPS only exists on ULT machines and is tied to pipe A. */
3311 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3312 {
3313         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3314 }
3315
3316 static void hsw_enable_ips(struct intel_crtc *crtc)
3317 {
3318         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3319
3320         if (!crtc->config.ips_enabled)
3321                 return;
3322
3323         /* We can only enable IPS after we enable a plane and wait for a vblank.
3324          * We guarantee that the plane is enabled by calling intel_enable_ips
3325          * only after intel_enable_plane. And intel_enable_plane already waits
3326          * for a vblank, so all we need to do here is to enable the IPS bit. */
3327         assert_plane_enabled(dev_priv, crtc->plane);
3328         I915_WRITE(IPS_CTL, IPS_ENABLE);
3329 }
3330
3331 static void hsw_disable_ips(struct intel_crtc *crtc)
3332 {
3333         struct drm_device *dev = crtc->base.dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335
3336         if (!crtc->config.ips_enabled)
3337                 return;
3338
3339         assert_plane_enabled(dev_priv, crtc->plane);
3340         I915_WRITE(IPS_CTL, 0);
3341
3342         /* We need to wait for a vblank before we can disable the plane. */
3343         intel_wait_for_vblank(dev, crtc->pipe);
3344 }
3345
3346 static void haswell_crtc_enable(struct drm_crtc *crtc)
3347 {
3348         struct drm_device *dev = crtc->dev;
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351         struct intel_encoder *encoder;
3352         int pipe = intel_crtc->pipe;
3353         int plane = intel_crtc->plane;
3354
3355         WARN_ON(!crtc->enabled);
3356
3357         if (intel_crtc->active)
3358                 return;
3359
3360         intel_crtc->active = true;
3361
3362         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3363         if (intel_crtc->config.has_pch_encoder)
3364                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3365
3366         intel_update_watermarks(dev);
3367
3368         if (intel_crtc->config.has_pch_encoder)
3369                 dev_priv->display.fdi_link_train(crtc);
3370
3371         for_each_encoder_on_crtc(dev, crtc, encoder)
3372                 if (encoder->pre_enable)
3373                         encoder->pre_enable(encoder);
3374
3375         intel_ddi_enable_pipe_clock(intel_crtc);
3376
3377         ironlake_pfit_enable(intel_crtc);
3378
3379         /*
3380          * On ILK+ LUT must be loaded before the pipe is running but with
3381          * clocks enabled
3382          */
3383         intel_crtc_load_lut(crtc);
3384
3385         intel_ddi_set_pipe_settings(crtc);
3386         intel_ddi_enable_transcoder_func(crtc);
3387
3388         intel_enable_pipe(dev_priv, pipe,
3389                           intel_crtc->config.has_pch_encoder);
3390         intel_enable_plane(dev_priv, plane, pipe);
3391         intel_enable_planes(crtc);
3392         intel_crtc_update_cursor(crtc, true);
3393
3394         hsw_enable_ips(intel_crtc);
3395
3396         if (intel_crtc->config.has_pch_encoder)
3397                 lpt_pch_enable(crtc);
3398
3399         mutex_lock(&dev->struct_mutex);
3400         intel_update_fbc(dev);
3401         mutex_unlock(&dev->struct_mutex);
3402
3403         for_each_encoder_on_crtc(dev, crtc, encoder)
3404                 encoder->enable(encoder);
3405
3406         /*
3407          * There seems to be a race in PCH platform hw (at least on some
3408          * outputs) where an enabled pipe still completes any pageflip right
3409          * away (as if the pipe is off) instead of waiting for vblank. As soon
3410          * as the first vblank happend, everything works as expected. Hence just
3411          * wait for one vblank before returning to avoid strange things
3412          * happening.
3413          */
3414         intel_wait_for_vblank(dev, intel_crtc->pipe);
3415 }
3416
3417 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3418 {
3419         struct drm_device *dev = crtc->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         int pipe = crtc->pipe;
3422
3423         /* To avoid upsetting the power well on haswell only disable the pfit if
3424          * it's in use. The hw state code will make sure we get this right. */
3425         if (crtc->config.pch_pfit.size) {
3426                 I915_WRITE(PF_CTL(pipe), 0);
3427                 I915_WRITE(PF_WIN_POS(pipe), 0);
3428                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3429         }
3430 }
3431
3432 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3433 {
3434         struct drm_device *dev = crtc->dev;
3435         struct drm_i915_private *dev_priv = dev->dev_private;
3436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3437         struct intel_encoder *encoder;
3438         int pipe = intel_crtc->pipe;
3439         int plane = intel_crtc->plane;
3440         u32 reg, temp;
3441
3442
3443         if (!intel_crtc->active)
3444                 return;
3445
3446         for_each_encoder_on_crtc(dev, crtc, encoder)
3447                 encoder->disable(encoder);
3448
3449         intel_crtc_wait_for_pending_flips(crtc);
3450         drm_vblank_off(dev, pipe);
3451
3452         if (dev_priv->fbc.plane == plane)
3453                 intel_disable_fbc(dev);
3454
3455         intel_crtc_update_cursor(crtc, false);
3456         intel_disable_planes(crtc);
3457         intel_disable_plane(dev_priv, plane, pipe);
3458
3459         if (intel_crtc->config.has_pch_encoder)
3460                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3461
3462         intel_disable_pipe(dev_priv, pipe);
3463
3464         ironlake_pfit_disable(intel_crtc);
3465
3466         for_each_encoder_on_crtc(dev, crtc, encoder)
3467                 if (encoder->post_disable)
3468                         encoder->post_disable(encoder);
3469
3470         if (intel_crtc->config.has_pch_encoder) {
3471                 ironlake_fdi_disable(crtc);
3472
3473                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3474                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3475
3476                 if (HAS_PCH_CPT(dev)) {
3477                         /* disable TRANS_DP_CTL */
3478                         reg = TRANS_DP_CTL(pipe);
3479                         temp = I915_READ(reg);
3480                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3481                                   TRANS_DP_PORT_SEL_MASK);
3482                         temp |= TRANS_DP_PORT_SEL_NONE;
3483                         I915_WRITE(reg, temp);
3484
3485                         /* disable DPLL_SEL */
3486                         temp = I915_READ(PCH_DPLL_SEL);
3487                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3488                         I915_WRITE(PCH_DPLL_SEL, temp);
3489                 }
3490
3491                 /* disable PCH DPLL */
3492                 intel_disable_shared_dpll(intel_crtc);
3493
3494                 ironlake_fdi_pll_disable(intel_crtc);
3495         }
3496
3497         intel_crtc->active = false;
3498         intel_update_watermarks(dev);
3499
3500         mutex_lock(&dev->struct_mutex);
3501         intel_update_fbc(dev);
3502         mutex_unlock(&dev->struct_mutex);
3503 }
3504
3505 static void haswell_crtc_disable(struct drm_crtc *crtc)
3506 {
3507         struct drm_device *dev = crtc->dev;
3508         struct drm_i915_private *dev_priv = dev->dev_private;
3509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3510         struct intel_encoder *encoder;
3511         int pipe = intel_crtc->pipe;
3512         int plane = intel_crtc->plane;
3513         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3514
3515         if (!intel_crtc->active)
3516                 return;
3517
3518         for_each_encoder_on_crtc(dev, crtc, encoder)
3519                 encoder->disable(encoder);
3520
3521         intel_crtc_wait_for_pending_flips(crtc);
3522         drm_vblank_off(dev, pipe);
3523
3524         /* FBC must be disabled before disabling the plane on HSW. */
3525         if (dev_priv->fbc.plane == plane)
3526                 intel_disable_fbc(dev);
3527
3528         hsw_disable_ips(intel_crtc);
3529
3530         intel_crtc_update_cursor(crtc, false);
3531         intel_disable_planes(crtc);
3532         intel_disable_plane(dev_priv, plane, pipe);
3533
3534         if (intel_crtc->config.has_pch_encoder)
3535                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3536         intel_disable_pipe(dev_priv, pipe);
3537
3538         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3539
3540         ironlake_pfit_disable(intel_crtc);
3541
3542         intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         if (intel_crtc->config.has_pch_encoder) {
3549                 lpt_disable_pch_transcoder(dev_priv);
3550                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3551                 intel_ddi_fdi_disable(crtc);
3552         }
3553
3554         intel_crtc->active = false;
3555         intel_update_watermarks(dev);
3556
3557         mutex_lock(&dev->struct_mutex);
3558         intel_update_fbc(dev);
3559         mutex_unlock(&dev->struct_mutex);
3560 }
3561
3562 static void ironlake_crtc_off(struct drm_crtc *crtc)
3563 {
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565         intel_put_shared_dpll(intel_crtc);
3566 }
3567
3568 static void haswell_crtc_off(struct drm_crtc *crtc)
3569 {
3570         intel_ddi_put_crtc_pll(crtc);
3571 }
3572
3573 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574 {
3575         if (!enable && intel_crtc->overlay) {
3576                 struct drm_device *dev = intel_crtc->base.dev;
3577                 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579                 mutex_lock(&dev->struct_mutex);
3580                 dev_priv->mm.interruptible = false;
3581                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3582                 dev_priv->mm.interruptible = true;
3583                 mutex_unlock(&dev->struct_mutex);
3584         }
3585
3586         /* Let userspace switch the overlay on again. In most cases userspace
3587          * has to recompute where to put it anyway.
3588          */
3589 }
3590
3591 /**
3592  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593  * cursor plane briefly if not already running after enabling the display
3594  * plane.
3595  * This workaround avoids occasional blank screens when self refresh is
3596  * enabled.
3597  */
3598 static void
3599 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600 {
3601         u32 cntl = I915_READ(CURCNTR(pipe));
3602
3603         if ((cntl & CURSOR_MODE) == 0) {
3604                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
3606                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608                 intel_wait_for_vblank(dev_priv->dev, pipe);
3609                 I915_WRITE(CURCNTR(pipe), cntl);
3610                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612         }
3613 }
3614
3615 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->base.dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619         struct intel_crtc_config *pipe_config = &crtc->config;
3620
3621         if (!crtc->config.gmch_pfit.control)
3622                 return;
3623
3624         /*
3625          * The panel fitter should only be adjusted whilst the pipe is disabled,
3626          * according to register description and PRM.
3627          */
3628         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3629         assert_pipe_disabled(dev_priv, crtc->pipe);
3630
3631         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3632         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3633
3634         /* Border color in case we don't scale up to the full screen. Black by
3635          * default, change to something else for debugging. */
3636         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3637 }
3638
3639 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3640 {
3641         struct drm_device *dev = crtc->dev;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         struct intel_encoder *encoder;
3645         int pipe = intel_crtc->pipe;
3646         int plane = intel_crtc->plane;
3647
3648         WARN_ON(!crtc->enabled);
3649
3650         if (intel_crtc->active)
3651                 return;
3652
3653         intel_crtc->active = true;
3654         intel_update_watermarks(dev);
3655
3656         mutex_lock(&dev_priv->dpio_lock);
3657
3658         for_each_encoder_on_crtc(dev, crtc, encoder)
3659                 if (encoder->pre_pll_enable)
3660                         encoder->pre_pll_enable(encoder);
3661
3662         vlv_enable_pll(intel_crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         /* VLV wants encoder enabling _before_ the pipe is up. */
3669         for_each_encoder_on_crtc(dev, crtc, encoder)
3670                 encoder->enable(encoder);
3671
3672         i9xx_pfit_enable(intel_crtc);
3673
3674         intel_crtc_load_lut(crtc);
3675
3676         intel_enable_pipe(dev_priv, pipe, false);
3677         intel_enable_plane(dev_priv, plane, pipe);
3678         intel_enable_planes(crtc);
3679         intel_crtc_update_cursor(crtc, true);
3680
3681         intel_update_fbc(dev);
3682
3683         mutex_unlock(&dev_priv->dpio_lock);
3684 }
3685
3686 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3687 {
3688         struct drm_device *dev = crtc->dev;
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3691         struct intel_encoder *encoder;
3692         int pipe = intel_crtc->pipe;
3693         int plane = intel_crtc->plane;
3694
3695         WARN_ON(!crtc->enabled);
3696
3697         if (intel_crtc->active)
3698                 return;
3699
3700         intel_crtc->active = true;
3701         intel_update_watermarks(dev);
3702
3703         for_each_encoder_on_crtc(dev, crtc, encoder)
3704                 if (encoder->pre_enable)
3705                         encoder->pre_enable(encoder);
3706
3707         i9xx_enable_pll(intel_crtc);
3708
3709         i9xx_pfit_enable(intel_crtc);
3710
3711         intel_crtc_load_lut(crtc);
3712
3713         intel_enable_pipe(dev_priv, pipe, false);
3714         intel_enable_plane(dev_priv, plane, pipe);
3715         intel_enable_planes(crtc);
3716         /* The fixup needs to happen before cursor is enabled */
3717         if (IS_G4X(dev))
3718                 g4x_fixup_plane(dev_priv, pipe);
3719         intel_crtc_update_cursor(crtc, true);
3720
3721         /* Give the overlay scaler a chance to enable if it's on this pipe */
3722         intel_crtc_dpms_overlay(intel_crtc, true);
3723
3724         intel_update_fbc(dev);
3725
3726         for_each_encoder_on_crtc(dev, crtc, encoder)
3727                 encoder->enable(encoder);
3728 }
3729
3730 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3731 {
3732         struct drm_device *dev = crtc->base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735         if (!crtc->config.gmch_pfit.control)
3736                 return;
3737
3738         assert_pipe_disabled(dev_priv, crtc->pipe);
3739
3740         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3741                          I915_READ(PFIT_CONTROL));
3742         I915_WRITE(PFIT_CONTROL, 0);
3743 }
3744
3745 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3746 {
3747         struct drm_device *dev = crtc->dev;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750         struct intel_encoder *encoder;
3751         int pipe = intel_crtc->pipe;
3752         int plane = intel_crtc->plane;
3753
3754         if (!intel_crtc->active)
3755                 return;
3756
3757         for_each_encoder_on_crtc(dev, crtc, encoder)
3758                 encoder->disable(encoder);
3759
3760         /* Give the overlay scaler a chance to disable if it's on this pipe */
3761         intel_crtc_wait_for_pending_flips(crtc);
3762         drm_vblank_off(dev, pipe);
3763
3764         if (dev_priv->fbc.plane == plane)
3765                 intel_disable_fbc(dev);
3766
3767         intel_crtc_dpms_overlay(intel_crtc, false);
3768         intel_crtc_update_cursor(crtc, false);
3769         intel_disable_planes(crtc);
3770         intel_disable_plane(dev_priv, plane, pipe);
3771
3772         intel_disable_pipe(dev_priv, pipe);
3773
3774         i9xx_pfit_disable(intel_crtc);
3775
3776         for_each_encoder_on_crtc(dev, crtc, encoder)
3777                 if (encoder->post_disable)
3778                         encoder->post_disable(encoder);
3779
3780         i9xx_disable_pll(dev_priv, pipe);
3781
3782         intel_crtc->active = false;
3783         intel_update_fbc(dev);
3784         intel_update_watermarks(dev);
3785 }
3786
3787 static void i9xx_crtc_off(struct drm_crtc *crtc)
3788 {
3789 }
3790
3791 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3792                                     bool enabled)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_master_private *master_priv;
3796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797         int pipe = intel_crtc->pipe;
3798
3799         if (!dev->primary->master)
3800                 return;
3801
3802         master_priv = dev->primary->master->driver_priv;
3803         if (!master_priv->sarea_priv)
3804                 return;
3805
3806         switch (pipe) {
3807         case 0:
3808                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3809                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3810                 break;
3811         case 1:
3812                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3813                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3814                 break;
3815         default:
3816                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3817                 break;
3818         }
3819 }
3820
3821 /**
3822  * Sets the power management mode of the pipe and plane.
3823  */
3824 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3825 {
3826         struct drm_device *dev = crtc->dev;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         struct intel_encoder *intel_encoder;
3829         bool enable = false;
3830
3831         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3832                 enable |= intel_encoder->connectors_active;
3833
3834         if (enable)
3835                 dev_priv->display.crtc_enable(crtc);
3836         else
3837                 dev_priv->display.crtc_disable(crtc);
3838
3839         intel_crtc_update_sarea(crtc, enable);
3840 }
3841
3842 static void intel_crtc_disable(struct drm_crtc *crtc)
3843 {
3844         struct drm_device *dev = crtc->dev;
3845         struct drm_connector *connector;
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848
3849         /* crtc should still be enabled when we disable it. */
3850         WARN_ON(!crtc->enabled);
3851
3852         dev_priv->display.crtc_disable(crtc);
3853         intel_crtc->eld_vld = false;
3854         intel_crtc_update_sarea(crtc, false);
3855         dev_priv->display.off(crtc);
3856
3857         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3858         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3859
3860         if (crtc->fb) {
3861                 mutex_lock(&dev->struct_mutex);
3862                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3863                 mutex_unlock(&dev->struct_mutex);
3864                 crtc->fb = NULL;
3865         }
3866
3867         /* Update computed state. */
3868         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3869                 if (!connector->encoder || !connector->encoder->crtc)
3870                         continue;
3871
3872                 if (connector->encoder->crtc != crtc)
3873                         continue;
3874
3875                 connector->dpms = DRM_MODE_DPMS_OFF;
3876                 to_intel_encoder(connector->encoder)->connectors_active = false;
3877         }
3878 }
3879
3880 void intel_modeset_disable(struct drm_device *dev)
3881 {
3882         struct drm_crtc *crtc;
3883
3884         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3885                 if (crtc->enabled)
3886                         intel_crtc_disable(crtc);
3887         }
3888 }
3889
3890 void intel_encoder_destroy(struct drm_encoder *encoder)
3891 {
3892         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3893
3894         drm_encoder_cleanup(encoder);
3895         kfree(intel_encoder);
3896 }
3897
3898 /* Simple dpms helper for encodres with just one connector, no cloning and only
3899  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3900  * state of the entire output pipe. */
3901 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3902 {
3903         if (mode == DRM_MODE_DPMS_ON) {
3904                 encoder->connectors_active = true;
3905
3906                 intel_crtc_update_dpms(encoder->base.crtc);
3907         } else {
3908                 encoder->connectors_active = false;
3909
3910                 intel_crtc_update_dpms(encoder->base.crtc);
3911         }
3912 }
3913
3914 /* Cross check the actual hw state with our own modeset state tracking (and it's
3915  * internal consistency). */
3916 static void intel_connector_check_state(struct intel_connector *connector)
3917 {
3918         if (connector->get_hw_state(connector)) {
3919                 struct intel_encoder *encoder = connector->encoder;
3920                 struct drm_crtc *crtc;
3921                 bool encoder_enabled;
3922                 enum pipe pipe;
3923
3924                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3925                               connector->base.base.id,
3926                               drm_get_connector_name(&connector->base));
3927
3928                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3929                      "wrong connector dpms state\n");
3930                 WARN(connector->base.encoder != &encoder->base,
3931                      "active connector not linked to encoder\n");
3932                 WARN(!encoder->connectors_active,
3933                      "encoder->connectors_active not set\n");
3934
3935                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3936                 WARN(!encoder_enabled, "encoder not enabled\n");
3937                 if (WARN_ON(!encoder->base.crtc))
3938                         return;
3939
3940                 crtc = encoder->base.crtc;
3941
3942                 WARN(!crtc->enabled, "crtc not enabled\n");
3943                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3944                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3945                      "encoder active on the wrong pipe\n");
3946         }
3947 }
3948
3949 /* Even simpler default implementation, if there's really no special case to
3950  * consider. */
3951 void intel_connector_dpms(struct drm_connector *connector, int mode)
3952 {
3953         struct intel_encoder *encoder = intel_attached_encoder(connector);
3954
3955         /* All the simple cases only support two dpms states. */
3956         if (mode != DRM_MODE_DPMS_ON)
3957                 mode = DRM_MODE_DPMS_OFF;
3958
3959         if (mode == connector->dpms)
3960                 return;
3961
3962         connector->dpms = mode;
3963
3964         /* Only need to change hw state when actually enabled */
3965         if (encoder->base.crtc)
3966                 intel_encoder_dpms(encoder, mode);
3967         else
3968                 WARN_ON(encoder->connectors_active != false);
3969
3970         intel_modeset_check_state(connector->dev);
3971 }
3972
3973 /* Simple connector->get_hw_state implementation for encoders that support only
3974  * one connector and no cloning and hence the encoder state determines the state
3975  * of the connector. */
3976 bool intel_connector_get_hw_state(struct intel_connector *connector)
3977 {
3978         enum pipe pipe = 0;
3979         struct intel_encoder *encoder = connector->encoder;
3980
3981         return encoder->get_hw_state(encoder, &pipe);
3982 }
3983
3984 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3985                                      struct intel_crtc_config *pipe_config)
3986 {
3987         struct drm_i915_private *dev_priv = dev->dev_private;
3988         struct intel_crtc *pipe_B_crtc =
3989                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3990
3991         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3992                       pipe_name(pipe), pipe_config->fdi_lanes);
3993         if (pipe_config->fdi_lanes > 4) {
3994                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3995                               pipe_name(pipe), pipe_config->fdi_lanes);
3996                 return false;
3997         }
3998
3999         if (IS_HASWELL(dev)) {
4000                 if (pipe_config->fdi_lanes > 2) {
4001                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4002                                       pipe_config->fdi_lanes);
4003                         return false;
4004                 } else {
4005                         return true;
4006                 }
4007         }
4008
4009         if (INTEL_INFO(dev)->num_pipes == 2)
4010                 return true;
4011
4012         /* Ivybridge 3 pipe is really complicated */
4013         switch (pipe) {
4014         case PIPE_A:
4015                 return true;
4016         case PIPE_B:
4017                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4018                     pipe_config->fdi_lanes > 2) {
4019                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020                                       pipe_name(pipe), pipe_config->fdi_lanes);
4021                         return false;
4022                 }
4023                 return true;
4024         case PIPE_C:
4025                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4026                     pipe_B_crtc->config.fdi_lanes <= 2) {
4027                         if (pipe_config->fdi_lanes > 2) {
4028                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4029                                               pipe_name(pipe), pipe_config->fdi_lanes);
4030                                 return false;
4031                         }
4032                 } else {
4033                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4034                         return false;
4035                 }
4036                 return true;
4037         default:
4038                 BUG();
4039         }
4040 }
4041
4042 #define RETRY 1
4043 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4044                                        struct intel_crtc_config *pipe_config)
4045 {
4046         struct drm_device *dev = intel_crtc->base.dev;
4047         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4048         int lane, link_bw, fdi_dotclock;
4049         bool setup_ok, needs_recompute = false;
4050
4051 retry:
4052         /* FDI is a binary signal running at ~2.7GHz, encoding
4053          * each output octet as 10 bits. The actual frequency
4054          * is stored as a divider into a 100MHz clock, and the
4055          * mode pixel clock is stored in units of 1KHz.
4056          * Hence the bw of each lane in terms of the mode signal
4057          * is:
4058          */
4059         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4060
4061         fdi_dotclock = adjusted_mode->clock;
4062         fdi_dotclock /= pipe_config->pixel_multiplier;
4063
4064         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4065                                            pipe_config->pipe_bpp);
4066
4067         pipe_config->fdi_lanes = lane;
4068
4069         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4070                                link_bw, &pipe_config->fdi_m_n);
4071
4072         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4073                                             intel_crtc->pipe, pipe_config);
4074         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4075                 pipe_config->pipe_bpp -= 2*3;
4076                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4077                               pipe_config->pipe_bpp);
4078                 needs_recompute = true;
4079                 pipe_config->bw_constrained = true;
4080
4081                 goto retry;
4082         }
4083
4084         if (needs_recompute)
4085                 return RETRY;
4086
4087         return setup_ok ? 0 : -EINVAL;
4088 }
4089
4090 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4091                                    struct intel_crtc_config *pipe_config)
4092 {
4093         pipe_config->ips_enabled = i915_enable_ips &&
4094                                    hsw_crtc_supports_ips(crtc) &&
4095                                    pipe_config->pipe_bpp == 24;
4096 }
4097
4098 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4099                                      struct intel_crtc_config *pipe_config)
4100 {
4101         struct drm_device *dev = crtc->base.dev;
4102         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4103
4104         if (HAS_PCH_SPLIT(dev)) {
4105                 /* FDI link clock is fixed at 2.7G */
4106                 if (pipe_config->requested_mode.clock * 3
4107                     > IRONLAKE_FDI_FREQ * 4)
4108                         return -EINVAL;
4109         }
4110
4111         /* All interlaced capable intel hw wants timings in frames. Note though
4112          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4113          * timings, so we need to be careful not to clobber these.*/
4114         if (!pipe_config->timings_set)
4115                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4116
4117         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4118          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4119          */
4120         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4121                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4122                 return -EINVAL;
4123
4124         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4125                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4126         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4127                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4128                  * for lvds. */
4129                 pipe_config->pipe_bpp = 8*3;
4130         }
4131
4132         if (HAS_IPS(dev))
4133                 hsw_compute_ips_config(crtc, pipe_config);
4134
4135         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4136          * clock survives for now. */
4137         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4138                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4139
4140         if (pipe_config->has_pch_encoder)
4141                 return ironlake_fdi_compute_config(crtc, pipe_config);
4142
4143         return 0;
4144 }
4145
4146 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4147 {
4148         return 400000; /* FIXME */
4149 }
4150
4151 static int i945_get_display_clock_speed(struct drm_device *dev)
4152 {
4153         return 400000;
4154 }
4155
4156 static int i915_get_display_clock_speed(struct drm_device *dev)
4157 {
4158         return 333000;
4159 }
4160
4161 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4162 {
4163         return 200000;
4164 }
4165
4166 static int pnv_get_display_clock_speed(struct drm_device *dev)
4167 {
4168         u16 gcfgc = 0;
4169
4170         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4171
4172         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4173         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4174                 return 267000;
4175         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4176                 return 333000;
4177         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4178                 return 444000;
4179         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4180                 return 200000;
4181         default:
4182                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4183         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4184                 return 133000;
4185         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4186                 return 167000;
4187         }
4188 }
4189
4190 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4191 {
4192         u16 gcfgc = 0;
4193
4194         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4195
4196         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4197                 return 133000;
4198         else {
4199                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4200                 case GC_DISPLAY_CLOCK_333_MHZ:
4201                         return 333000;
4202                 default:
4203                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4204                         return 190000;
4205                 }
4206         }
4207 }
4208
4209 static int i865_get_display_clock_speed(struct drm_device *dev)
4210 {
4211         return 266000;
4212 }
4213
4214 static int i855_get_display_clock_speed(struct drm_device *dev)
4215 {
4216         u16 hpllcc = 0;
4217         /* Assume that the hardware is in the high speed state.  This
4218          * should be the default.
4219          */
4220         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4221         case GC_CLOCK_133_200:
4222         case GC_CLOCK_100_200:
4223                 return 200000;
4224         case GC_CLOCK_166_250:
4225                 return 250000;
4226         case GC_CLOCK_100_133:
4227                 return 133000;
4228         }
4229
4230         /* Shouldn't happen */
4231         return 0;
4232 }
4233
4234 static int i830_get_display_clock_speed(struct drm_device *dev)
4235 {
4236         return 133000;
4237 }
4238
4239 static void
4240 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4241 {
4242         while (*num > DATA_LINK_M_N_MASK ||
4243                *den > DATA_LINK_M_N_MASK) {
4244                 *num >>= 1;
4245                 *den >>= 1;
4246         }
4247 }
4248
4249 static void compute_m_n(unsigned int m, unsigned int n,
4250                         uint32_t *ret_m, uint32_t *ret_n)
4251 {
4252         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4253         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4254         intel_reduce_m_n_ratio(ret_m, ret_n);
4255 }
4256
4257 void
4258 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4259                        int pixel_clock, int link_clock,
4260                        struct intel_link_m_n *m_n)
4261 {
4262         m_n->tu = 64;
4263
4264         compute_m_n(bits_per_pixel * pixel_clock,
4265                     link_clock * nlanes * 8,
4266                     &m_n->gmch_m, &m_n->gmch_n);
4267
4268         compute_m_n(pixel_clock, link_clock,
4269                     &m_n->link_m, &m_n->link_n);
4270 }
4271
4272 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4273 {
4274         if (i915_panel_use_ssc >= 0)
4275                 return i915_panel_use_ssc != 0;
4276         return dev_priv->vbt.lvds_use_ssc
4277                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4278 }
4279
4280 static int vlv_get_refclk(struct drm_crtc *crtc)
4281 {
4282         struct drm_device *dev = crtc->dev;
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         int refclk = 27000; /* for DP & HDMI */
4285
4286         return 100000; /* only one validated so far */
4287
4288         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4289                 refclk = 96000;
4290         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4291                 if (intel_panel_use_ssc(dev_priv))
4292                         refclk = 100000;
4293                 else
4294                         refclk = 96000;
4295         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4296                 refclk = 100000;
4297         }
4298
4299         return refclk;
4300 }
4301
4302 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4303 {
4304         struct drm_device *dev = crtc->dev;
4305         struct drm_i915_private *dev_priv = dev->dev_private;
4306         int refclk;
4307
4308         if (IS_VALLEYVIEW(dev)) {
4309                 refclk = vlv_get_refclk(crtc);
4310         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4311             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4312                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4313                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4314                               refclk / 1000);
4315         } else if (!IS_GEN2(dev)) {
4316                 refclk = 96000;
4317         } else {
4318                 refclk = 48000;
4319         }
4320
4321         return refclk;
4322 }
4323
4324 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4325 {
4326         return (1 << dpll->n) << 16 | dpll->m2;
4327 }
4328
4329 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4330 {
4331         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4332 }
4333
4334 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4335                                      intel_clock_t *reduced_clock)
4336 {
4337         struct drm_device *dev = crtc->base.dev;
4338         struct drm_i915_private *dev_priv = dev->dev_private;
4339         int pipe = crtc->pipe;
4340         u32 fp, fp2 = 0;
4341
4342         if (IS_PINEVIEW(dev)) {
4343                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4344                 if (reduced_clock)
4345                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4346         } else {
4347                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4348                 if (reduced_clock)
4349                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4350         }
4351
4352         I915_WRITE(FP0(pipe), fp);
4353         crtc->config.dpll_hw_state.fp0 = fp;
4354
4355         crtc->lowfreq_avail = false;
4356         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4357             reduced_clock && i915_powersave) {
4358                 I915_WRITE(FP1(pipe), fp2);
4359                 crtc->config.dpll_hw_state.fp1 = fp2;
4360                 crtc->lowfreq_avail = true;
4361         } else {
4362                 I915_WRITE(FP1(pipe), fp);
4363                 crtc->config.dpll_hw_state.fp1 = fp;
4364         }
4365 }
4366
4367 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4368 {
4369         u32 reg_val;
4370
4371         /*
4372          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4373          * and set it to a reasonable value instead.
4374          */
4375         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4376         reg_val &= 0xffffff00;
4377         reg_val |= 0x00000030;
4378         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4379
4380         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4381         reg_val &= 0x8cffffff;
4382         reg_val = 0x8c000000;
4383         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4384
4385         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4386         reg_val &= 0xffffff00;
4387         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4388
4389         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4390         reg_val &= 0x00ffffff;
4391         reg_val |= 0xb0000000;
4392         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4393 }
4394
4395 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4396                                          struct intel_link_m_n *m_n)
4397 {
4398         struct drm_device *dev = crtc->base.dev;
4399         struct drm_i915_private *dev_priv = dev->dev_private;
4400         int pipe = crtc->pipe;
4401
4402         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4403         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4404         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4405         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4406 }
4407
4408 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4409                                          struct intel_link_m_n *m_n)
4410 {
4411         struct drm_device *dev = crtc->base.dev;
4412         struct drm_i915_private *dev_priv = dev->dev_private;
4413         int pipe = crtc->pipe;
4414         enum transcoder transcoder = crtc->config.cpu_transcoder;
4415
4416         if (INTEL_INFO(dev)->gen >= 5) {
4417                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4418                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4419                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4420                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4421         } else {
4422                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4423                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4424                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4425                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4426         }
4427 }
4428
4429 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4430 {
4431         if (crtc->config.has_pch_encoder)
4432                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4433         else
4434                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4435 }
4436
4437 static void vlv_update_pll(struct intel_crtc *crtc)
4438 {
4439         struct drm_device *dev = crtc->base.dev;
4440         struct drm_i915_private *dev_priv = dev->dev_private;
4441         int pipe = crtc->pipe;
4442         u32 dpll, mdiv;
4443         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4444         bool is_hdmi;
4445         u32 coreclk, reg_val, dpll_md;
4446
4447         mutex_lock(&dev_priv->dpio_lock);
4448
4449         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4450
4451         bestn = crtc->config.dpll.n;
4452         bestm1 = crtc->config.dpll.m1;
4453         bestm2 = crtc->config.dpll.m2;
4454         bestp1 = crtc->config.dpll.p1;
4455         bestp2 = crtc->config.dpll.p2;
4456
4457         /* See eDP HDMI DPIO driver vbios notes doc */
4458
4459         /* PLL B needs special handling */
4460         if (pipe)
4461                 vlv_pllb_recal_opamp(dev_priv);
4462
4463         /* Set up Tx target for periodic Rcomp update */
4464         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4465
4466         /* Disable target IRef on PLL */
4467         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4468         reg_val &= 0x00ffffff;
4469         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4470
4471         /* Disable fast lock */
4472         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4473
4474         /* Set idtafcrecal before PLL is enabled */
4475         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4476         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4477         mdiv |= ((bestn << DPIO_N_SHIFT));
4478         mdiv |= (1 << DPIO_K_SHIFT);
4479
4480         /*
4481          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4482          * but we don't support that).
4483          * Note: don't use the DAC post divider as it seems unstable.
4484          */
4485         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4486         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4487
4488         mdiv |= DPIO_ENABLE_CALIBRATION;
4489         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4490
4491         /* Set HBR and RBR LPF coefficients */
4492         if (crtc->config.port_clock == 162000 ||
4493             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4494             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4495                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4496                                  0x009f0003);
4497         else
4498                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4499                                  0x00d0000f);
4500
4501         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4502             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4503                 /* Use SSC source */
4504                 if (!pipe)
4505                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4506                                          0x0df40000);
4507                 else
4508                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4509                                          0x0df70000);
4510         } else { /* HDMI or VGA */
4511                 /* Use bend source */
4512                 if (!pipe)
4513                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4514                                          0x0df70000);
4515                 else
4516                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4517                                          0x0df40000);
4518         }
4519
4520         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4521         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4522         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4523             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4524                 coreclk |= 0x01000000;
4525         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4526
4527         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4528
4529         /* Enable DPIO clock input */
4530         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4531                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4532         if (pipe)
4533                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4534
4535         dpll |= DPLL_VCO_ENABLE;
4536         crtc->config.dpll_hw_state.dpll = dpll;
4537
4538         dpll_md = (crtc->config.pixel_multiplier - 1)
4539                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4540         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4541
4542         if (crtc->config.has_dp_encoder)
4543                 intel_dp_set_m_n(crtc);
4544
4545         mutex_unlock(&dev_priv->dpio_lock);
4546 }
4547
4548 static void i9xx_update_pll(struct intel_crtc *crtc,
4549                             intel_clock_t *reduced_clock,
4550                             int num_connectors)
4551 {
4552         struct drm_device *dev = crtc->base.dev;
4553         struct drm_i915_private *dev_priv = dev->dev_private;
4554         u32 dpll;
4555         bool is_sdvo;
4556         struct dpll *clock = &crtc->config.dpll;
4557
4558         i9xx_update_pll_dividers(crtc, reduced_clock);
4559
4560         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4561                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4562
4563         dpll = DPLL_VGA_MODE_DIS;
4564
4565         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4566                 dpll |= DPLLB_MODE_LVDS;
4567         else
4568                 dpll |= DPLLB_MODE_DAC_SERIAL;
4569
4570         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4571                 dpll |= (crtc->config.pixel_multiplier - 1)
4572                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4573         }
4574
4575         if (is_sdvo)
4576                 dpll |= DPLL_SDVO_HIGH_SPEED;
4577
4578         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4579                 dpll |= DPLL_SDVO_HIGH_SPEED;
4580
4581         /* compute bitmask from p1 value */
4582         if (IS_PINEVIEW(dev))
4583                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4584         else {
4585                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4586                 if (IS_G4X(dev) && reduced_clock)
4587                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4588         }
4589         switch (clock->p2) {
4590         case 5:
4591                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4592                 break;
4593         case 7:
4594                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4595                 break;
4596         case 10:
4597                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4598                 break;
4599         case 14:
4600                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4601                 break;
4602         }
4603         if (INTEL_INFO(dev)->gen >= 4)
4604                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4605
4606         if (crtc->config.sdvo_tv_clock)
4607                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4608         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4609                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4610                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4611         else
4612                 dpll |= PLL_REF_INPUT_DREFCLK;
4613
4614         dpll |= DPLL_VCO_ENABLE;
4615         crtc->config.dpll_hw_state.dpll = dpll;
4616
4617         if (INTEL_INFO(dev)->gen >= 4) {
4618                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4619                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4620                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4621         }
4622
4623         if (crtc->config.has_dp_encoder)
4624                 intel_dp_set_m_n(crtc);
4625 }
4626
4627 static void i8xx_update_pll(struct intel_crtc *crtc,
4628                             intel_clock_t *reduced_clock,
4629                             int num_connectors)
4630 {
4631         struct drm_device *dev = crtc->base.dev;
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633         u32 dpll;
4634         struct dpll *clock = &crtc->config.dpll;
4635
4636         i9xx_update_pll_dividers(crtc, reduced_clock);
4637
4638         dpll = DPLL_VGA_MODE_DIS;
4639
4640         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4641                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4642         } else {
4643                 if (clock->p1 == 2)
4644                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4645                 else
4646                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4647                 if (clock->p2 == 4)
4648                         dpll |= PLL_P2_DIVIDE_BY_4;
4649         }
4650
4651         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4652                 dpll |= DPLL_DVO_2X_MODE;
4653
4654         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4655                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4656                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4657         else
4658                 dpll |= PLL_REF_INPUT_DREFCLK;
4659
4660         dpll |= DPLL_VCO_ENABLE;
4661         crtc->config.dpll_hw_state.dpll = dpll;
4662 }
4663
4664 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4665 {
4666         struct drm_device *dev = intel_crtc->base.dev;
4667         struct drm_i915_private *dev_priv = dev->dev_private;
4668         enum pipe pipe = intel_crtc->pipe;
4669         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4670         struct drm_display_mode *adjusted_mode =
4671                 &intel_crtc->config.adjusted_mode;
4672         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4673         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4674
4675         /* We need to be careful not to changed the adjusted mode, for otherwise
4676          * the hw state checker will get angry at the mismatch. */
4677         crtc_vtotal = adjusted_mode->crtc_vtotal;
4678         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4679
4680         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4681                 /* the chip adds 2 halflines automatically */
4682                 crtc_vtotal -= 1;
4683                 crtc_vblank_end -= 1;
4684                 vsyncshift = adjusted_mode->crtc_hsync_start
4685                              - adjusted_mode->crtc_htotal / 2;
4686         } else {
4687                 vsyncshift = 0;
4688         }
4689
4690         if (INTEL_INFO(dev)->gen > 3)
4691                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4692
4693         I915_WRITE(HTOTAL(cpu_transcoder),
4694                    (adjusted_mode->crtc_hdisplay - 1) |
4695                    ((adjusted_mode->crtc_htotal - 1) << 16));
4696         I915_WRITE(HBLANK(cpu_transcoder),
4697                    (adjusted_mode->crtc_hblank_start - 1) |
4698                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4699         I915_WRITE(HSYNC(cpu_transcoder),
4700                    (adjusted_mode->crtc_hsync_start - 1) |
4701                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4702
4703         I915_WRITE(VTOTAL(cpu_transcoder),
4704                    (adjusted_mode->crtc_vdisplay - 1) |
4705                    ((crtc_vtotal - 1) << 16));
4706         I915_WRITE(VBLANK(cpu_transcoder),
4707                    (adjusted_mode->crtc_vblank_start - 1) |
4708                    ((crtc_vblank_end - 1) << 16));
4709         I915_WRITE(VSYNC(cpu_transcoder),
4710                    (adjusted_mode->crtc_vsync_start - 1) |
4711                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4712
4713         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4714          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4715          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4716          * bits. */
4717         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4718             (pipe == PIPE_B || pipe == PIPE_C))
4719                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4720
4721         /* pipesrc controls the size that is scaled from, which should
4722          * always be the user's requested size.
4723          */
4724         I915_WRITE(PIPESRC(pipe),
4725                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4726 }
4727
4728 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4729                                    struct intel_crtc_config *pipe_config)
4730 {
4731         struct drm_device *dev = crtc->base.dev;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4734         uint32_t tmp;
4735
4736         tmp = I915_READ(HTOTAL(cpu_transcoder));
4737         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4738         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4739         tmp = I915_READ(HBLANK(cpu_transcoder));
4740         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4741         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4742         tmp = I915_READ(HSYNC(cpu_transcoder));
4743         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4744         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4745
4746         tmp = I915_READ(VTOTAL(cpu_transcoder));
4747         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4748         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4749         tmp = I915_READ(VBLANK(cpu_transcoder));
4750         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4751         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4752         tmp = I915_READ(VSYNC(cpu_transcoder));
4753         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4754         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4755
4756         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4757                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4758                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4759                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4760         }
4761
4762         tmp = I915_READ(PIPESRC(crtc->pipe));
4763         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4764         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4765 }
4766
4767 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4768                                              struct intel_crtc_config *pipe_config)
4769 {
4770         struct drm_crtc *crtc = &intel_crtc->base;
4771
4772         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4773         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4774         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4775         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4776
4777         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4778         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4779         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4780         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4781
4782         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4783
4784         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4785         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4786 }
4787
4788 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4789 {
4790         struct drm_device *dev = intel_crtc->base.dev;
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         uint32_t pipeconf;
4793
4794         pipeconf = 0;
4795
4796         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4797                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4798                  * core speed.
4799                  *
4800                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4801                  * pipe == 0 check?
4802                  */
4803                 if (intel_crtc->config.requested_mode.clock >
4804                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4805                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4806         }
4807
4808         /* only g4x and later have fancy bpc/dither controls */
4809         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4810                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4811                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4812                         pipeconf |= PIPECONF_DITHER_EN |
4813                                     PIPECONF_DITHER_TYPE_SP;
4814
4815                 switch (intel_crtc->config.pipe_bpp) {
4816                 case 18:
4817                         pipeconf |= PIPECONF_6BPC;
4818                         break;
4819                 case 24:
4820                         pipeconf |= PIPECONF_8BPC;
4821                         break;
4822                 case 30:
4823                         pipeconf |= PIPECONF_10BPC;
4824                         break;
4825                 default:
4826                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4827                         BUG();
4828                 }
4829         }
4830
4831         if (HAS_PIPE_CXSR(dev)) {
4832                 if (intel_crtc->lowfreq_avail) {
4833                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4834                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4835                 } else {
4836                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4837                 }
4838         }
4839
4840         if (!IS_GEN2(dev) &&
4841             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4842                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4843         else
4844                 pipeconf |= PIPECONF_PROGRESSIVE;
4845
4846         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4847                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4848
4849         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4850         POSTING_READ(PIPECONF(intel_crtc->pipe));
4851 }
4852
4853 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4854                               int x, int y,
4855                               struct drm_framebuffer *fb)
4856 {
4857         struct drm_device *dev = crtc->dev;
4858         struct drm_i915_private *dev_priv = dev->dev_private;
4859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4861         int pipe = intel_crtc->pipe;
4862         int plane = intel_crtc->plane;
4863         int refclk, num_connectors = 0;
4864         intel_clock_t clock, reduced_clock;
4865         u32 dspcntr;
4866         bool ok, has_reduced_clock = false;
4867         bool is_lvds = false;
4868         struct intel_encoder *encoder;
4869         const intel_limit_t *limit;
4870         int ret;
4871
4872         for_each_encoder_on_crtc(dev, crtc, encoder) {
4873                 switch (encoder->type) {
4874                 case INTEL_OUTPUT_LVDS:
4875                         is_lvds = true;
4876                         break;
4877                 }
4878
4879                 num_connectors++;
4880         }
4881
4882         refclk = i9xx_get_refclk(crtc, num_connectors);
4883
4884         /*
4885          * Returns a set of divisors for the desired target clock with the given
4886          * refclk, or FALSE.  The returned values represent the clock equation:
4887          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4888          */
4889         limit = intel_limit(crtc, refclk);
4890         ok = dev_priv->display.find_dpll(limit, crtc,
4891                                          intel_crtc->config.port_clock,
4892                                          refclk, NULL, &clock);
4893         if (!ok && !intel_crtc->config.clock_set) {
4894                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4895                 return -EINVAL;
4896         }
4897
4898         /* Ensure that the cursor is valid for the new mode before changing... */
4899         intel_crtc_update_cursor(crtc, true);
4900
4901         if (is_lvds && dev_priv->lvds_downclock_avail) {
4902                 /*
4903                  * Ensure we match the reduced clock's P to the target clock.
4904                  * If the clocks don't match, we can't switch the display clock
4905                  * by using the FP0/FP1. In such case we will disable the LVDS
4906                  * downclock feature.
4907                 */
4908                 has_reduced_clock =
4909                         dev_priv->display.find_dpll(limit, crtc,
4910                                                     dev_priv->lvds_downclock,
4911                                                     refclk, &clock,
4912                                                     &reduced_clock);
4913         }
4914         /* Compat-code for transition, will disappear. */
4915         if (!intel_crtc->config.clock_set) {
4916                 intel_crtc->config.dpll.n = clock.n;
4917                 intel_crtc->config.dpll.m1 = clock.m1;
4918                 intel_crtc->config.dpll.m2 = clock.m2;
4919                 intel_crtc->config.dpll.p1 = clock.p1;
4920                 intel_crtc->config.dpll.p2 = clock.p2;
4921         }
4922
4923         if (IS_GEN2(dev))
4924                 i8xx_update_pll(intel_crtc,
4925                                 has_reduced_clock ? &reduced_clock : NULL,
4926                                 num_connectors);
4927         else if (IS_VALLEYVIEW(dev))
4928                 vlv_update_pll(intel_crtc);
4929         else
4930                 i9xx_update_pll(intel_crtc,
4931                                 has_reduced_clock ? &reduced_clock : NULL,
4932                                 num_connectors);
4933
4934         /* Set up the display plane register */
4935         dspcntr = DISPPLANE_GAMMA_ENABLE;
4936
4937         if (!IS_VALLEYVIEW(dev)) {
4938                 if (pipe == 0)
4939                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4940                 else
4941                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4942         }
4943
4944         intel_set_pipe_timings(intel_crtc);
4945
4946         /* pipesrc and dspsize control the size that is scaled from,
4947          * which should always be the user's requested size.
4948          */
4949         I915_WRITE(DSPSIZE(plane),
4950                    ((mode->vdisplay - 1) << 16) |
4951                    (mode->hdisplay - 1));
4952         I915_WRITE(DSPPOS(plane), 0);
4953
4954         i9xx_set_pipeconf(intel_crtc);
4955
4956         I915_WRITE(DSPCNTR(plane), dspcntr);
4957         POSTING_READ(DSPCNTR(plane));
4958
4959         ret = intel_pipe_set_base(crtc, x, y, fb);
4960
4961         intel_update_watermarks(dev);
4962
4963         return ret;
4964 }
4965
4966 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4967                                  struct intel_crtc_config *pipe_config)
4968 {
4969         struct drm_device *dev = crtc->base.dev;
4970         struct drm_i915_private *dev_priv = dev->dev_private;
4971         uint32_t tmp;
4972
4973         tmp = I915_READ(PFIT_CONTROL);
4974         if (!(tmp & PFIT_ENABLE))
4975                 return;
4976
4977         /* Check whether the pfit is attached to our pipe. */
4978         if (INTEL_INFO(dev)->gen < 4) {
4979                 if (crtc->pipe != PIPE_B)
4980                         return;
4981         } else {
4982                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4983                         return;
4984         }
4985
4986         pipe_config->gmch_pfit.control = tmp;
4987         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4988         if (INTEL_INFO(dev)->gen < 5)
4989                 pipe_config->gmch_pfit.lvds_border_bits =
4990                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4991 }
4992
4993 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4994                                  struct intel_crtc_config *pipe_config)
4995 {
4996         struct drm_device *dev = crtc->base.dev;
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         uint32_t tmp;
4999
5000         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5001         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5002
5003         tmp = I915_READ(PIPECONF(crtc->pipe));
5004         if (!(tmp & PIPECONF_ENABLE))
5005                 return false;
5006
5007         intel_get_pipe_timings(crtc, pipe_config);
5008
5009         i9xx_get_pfit_config(crtc, pipe_config);
5010
5011         if (INTEL_INFO(dev)->gen >= 4) {
5012                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5013                 pipe_config->pixel_multiplier =
5014                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5015                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5016                 pipe_config->dpll_hw_state.dpll_md = tmp;
5017         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5018                 tmp = I915_READ(DPLL(crtc->pipe));
5019                 pipe_config->pixel_multiplier =
5020                         ((tmp & SDVO_MULTIPLIER_MASK)
5021                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5022         } else {
5023                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5024                  * port and will be fixed up in the encoder->get_config
5025                  * function. */
5026                 pipe_config->pixel_multiplier = 1;
5027         }
5028         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5029         if (!IS_VALLEYVIEW(dev)) {
5030                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5031                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5032         } else {
5033                 /* Mask out read-only status bits. */
5034                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5035                                                      DPLL_PORTC_READY_MASK |
5036                                                      DPLL_PORTB_READY_MASK);
5037         }
5038
5039         return true;
5040 }
5041
5042 static void ironlake_init_pch_refclk(struct drm_device *dev)
5043 {
5044         struct drm_i915_private *dev_priv = dev->dev_private;
5045         struct drm_mode_config *mode_config = &dev->mode_config;
5046         struct intel_encoder *encoder;
5047         u32 val, final;
5048         bool has_lvds = false;
5049         bool has_cpu_edp = false;
5050         bool has_panel = false;
5051         bool has_ck505 = false;
5052         bool can_ssc = false;
5053
5054         /* We need to take the global config into account */
5055         list_for_each_entry(encoder, &mode_config->encoder_list,
5056                             base.head) {
5057                 switch (encoder->type) {
5058                 case INTEL_OUTPUT_LVDS:
5059                         has_panel = true;
5060                         has_lvds = true;
5061                         break;
5062                 case INTEL_OUTPUT_EDP:
5063                         has_panel = true;
5064                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5065                                 has_cpu_edp = true;
5066                         break;
5067                 }
5068         }
5069
5070         if (HAS_PCH_IBX(dev)) {
5071                 has_ck505 = dev_priv->vbt.display_clock_mode;
5072                 can_ssc = has_ck505;
5073         } else {
5074                 has_ck505 = false;
5075                 can_ssc = true;
5076         }
5077
5078         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5079                       has_panel, has_lvds, has_ck505);
5080
5081         /* Ironlake: try to setup display ref clock before DPLL
5082          * enabling. This is only under driver's control after
5083          * PCH B stepping, previous chipset stepping should be
5084          * ignoring this setting.
5085          */
5086         val = I915_READ(PCH_DREF_CONTROL);
5087
5088         /* As we must carefully and slowly disable/enable each source in turn,
5089          * compute the final state we want first and check if we need to
5090          * make any changes at all.
5091          */
5092         final = val;
5093         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5094         if (has_ck505)
5095                 final |= DREF_NONSPREAD_CK505_ENABLE;
5096         else
5097                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5098
5099         final &= ~DREF_SSC_SOURCE_MASK;
5100         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5101         final &= ~DREF_SSC1_ENABLE;
5102
5103         if (has_panel) {
5104                 final |= DREF_SSC_SOURCE_ENABLE;
5105
5106                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5107                         final |= DREF_SSC1_ENABLE;
5108
5109                 if (has_cpu_edp) {
5110                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5111                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5112                         else
5113                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5114                 } else
5115                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5116         } else {
5117                 final |= DREF_SSC_SOURCE_DISABLE;
5118                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5119         }
5120
5121         if (final == val)
5122                 return;
5123
5124         /* Always enable nonspread source */
5125         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5126
5127         if (has_ck505)
5128                 val |= DREF_NONSPREAD_CK505_ENABLE;
5129         else
5130                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5131
5132         if (has_panel) {
5133                 val &= ~DREF_SSC_SOURCE_MASK;
5134                 val |= DREF_SSC_SOURCE_ENABLE;
5135
5136                 /* SSC must be turned on before enabling the CPU output  */
5137                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5138                         DRM_DEBUG_KMS("Using SSC on panel\n");
5139                         val |= DREF_SSC1_ENABLE;
5140                 } else
5141                         val &= ~DREF_SSC1_ENABLE;
5142
5143                 /* Get SSC going before enabling the outputs */
5144                 I915_WRITE(PCH_DREF_CONTROL, val);
5145                 POSTING_READ(PCH_DREF_CONTROL);
5146                 udelay(200);
5147
5148                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5149
5150                 /* Enable CPU source on CPU attached eDP */
5151                 if (has_cpu_edp) {
5152                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5153                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5154                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5155                         }
5156                         else
5157                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5158                 } else
5159                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5160
5161                 I915_WRITE(PCH_DREF_CONTROL, val);
5162                 POSTING_READ(PCH_DREF_CONTROL);
5163                 udelay(200);
5164         } else {
5165                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5166
5167                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5168
5169                 /* Turn off CPU output */
5170                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5171
5172                 I915_WRITE(PCH_DREF_CONTROL, val);
5173                 POSTING_READ(PCH_DREF_CONTROL);
5174                 udelay(200);
5175
5176                 /* Turn off the SSC source */
5177                 val &= ~DREF_SSC_SOURCE_MASK;
5178                 val |= DREF_SSC_SOURCE_DISABLE;
5179
5180                 /* Turn off SSC1 */
5181                 val &= ~DREF_SSC1_ENABLE;
5182
5183                 I915_WRITE(PCH_DREF_CONTROL, val);
5184                 POSTING_READ(PCH_DREF_CONTROL);
5185                 udelay(200);
5186         }
5187
5188         BUG_ON(val != final);
5189 }
5190
5191 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5192 {
5193         uint32_t tmp;
5194
5195         tmp = I915_READ(SOUTH_CHICKEN2);
5196         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5197         I915_WRITE(SOUTH_CHICKEN2, tmp);
5198
5199         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5200                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5201                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5202
5203         tmp = I915_READ(SOUTH_CHICKEN2);
5204         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5205         I915_WRITE(SOUTH_CHICKEN2, tmp);
5206
5207         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5208                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5209                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5210 }
5211
5212 /* WaMPhyProgramming:hsw */
5213 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5214 {
5215         uint32_t tmp;
5216
5217         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5218         tmp &= ~(0xFF << 24);
5219         tmp |= (0x12 << 24);
5220         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5221
5222         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5223         tmp |= (1 << 11);
5224         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5225
5226         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5227         tmp |= (1 << 11);
5228         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5229
5230         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5231         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5232         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5233
5234         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5235         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5236         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5237
5238         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5239         tmp &= ~(7 << 13);
5240         tmp |= (5 << 13);
5241         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5242
5243         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5244         tmp &= ~(7 << 13);
5245         tmp |= (5 << 13);
5246         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5247
5248         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5249         tmp &= ~0xFF;
5250         tmp |= 0x1C;
5251         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5252
5253         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5254         tmp &= ~0xFF;
5255         tmp |= 0x1C;
5256         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5257
5258         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5259         tmp &= ~(0xFF << 16);
5260         tmp |= (0x1C << 16);
5261         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5262
5263         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5264         tmp &= ~(0xFF << 16);
5265         tmp |= (0x1C << 16);
5266         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5267
5268         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5269         tmp |= (1 << 27);
5270         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5271
5272         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5273         tmp |= (1 << 27);
5274         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5275
5276         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5277         tmp &= ~(0xF << 28);
5278         tmp |= (4 << 28);
5279         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5280
5281         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5282         tmp &= ~(0xF << 28);
5283         tmp |= (4 << 28);
5284         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5285 }
5286
5287 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5288  * Programming" based on the parameters passed:
5289  * - Sequence to enable CLKOUT_DP
5290  * - Sequence to enable CLKOUT_DP without spread
5291  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5292  */
5293 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5294                                  bool with_fdi)
5295 {
5296         struct drm_i915_private *dev_priv = dev->dev_private;
5297         uint32_t reg, tmp;
5298
5299         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5300                 with_spread = true;
5301         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5302                  with_fdi, "LP PCH doesn't have FDI\n"))
5303                 with_fdi = false;
5304
5305         mutex_lock(&dev_priv->dpio_lock);
5306
5307         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5308         tmp &= ~SBI_SSCCTL_DISABLE;
5309         tmp |= SBI_SSCCTL_PATHALT;
5310         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5311
5312         udelay(24);
5313
5314         if (with_spread) {
5315                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5316                 tmp &= ~SBI_SSCCTL_PATHALT;
5317                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5318
5319                 if (with_fdi) {
5320                         lpt_reset_fdi_mphy(dev_priv);
5321                         lpt_program_fdi_mphy(dev_priv);
5322                 }
5323         }
5324
5325         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5326                SBI_GEN0 : SBI_DBUFF0;
5327         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5328         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5329         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5330
5331         mutex_unlock(&dev_priv->dpio_lock);
5332 }
5333
5334 /* Sequence to disable CLKOUT_DP */
5335 static void lpt_disable_clkout_dp(struct drm_device *dev)
5336 {
5337         struct drm_i915_private *dev_priv = dev->dev_private;
5338         uint32_t reg, tmp;
5339
5340         mutex_lock(&dev_priv->dpio_lock);
5341
5342         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5343                SBI_GEN0 : SBI_DBUFF0;
5344         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5345         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5346         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5347
5348         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5349         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5350                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5351                         tmp |= SBI_SSCCTL_PATHALT;
5352                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5353                         udelay(32);
5354                 }
5355                 tmp |= SBI_SSCCTL_DISABLE;
5356                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5357         }
5358
5359         mutex_unlock(&dev_priv->dpio_lock);
5360 }
5361
5362 static void lpt_init_pch_refclk(struct drm_device *dev)
5363 {
5364         struct drm_mode_config *mode_config = &dev->mode_config;
5365         struct intel_encoder *encoder;
5366         bool has_vga = false;
5367
5368         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5369                 switch (encoder->type) {
5370                 case INTEL_OUTPUT_ANALOG:
5371                         has_vga = true;
5372                         break;
5373                 }
5374         }
5375
5376         if (has_vga)
5377                 lpt_enable_clkout_dp(dev, true, true);
5378         else
5379                 lpt_disable_clkout_dp(dev);
5380 }
5381
5382 /*
5383  * Initialize reference clocks when the driver loads
5384  */
5385 void intel_init_pch_refclk(struct drm_device *dev)
5386 {
5387         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5388                 ironlake_init_pch_refclk(dev);
5389         else if (HAS_PCH_LPT(dev))
5390                 lpt_init_pch_refclk(dev);
5391 }
5392
5393 static int ironlake_get_refclk(struct drm_crtc *crtc)
5394 {
5395         struct drm_device *dev = crtc->dev;
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         struct intel_encoder *encoder;
5398         int num_connectors = 0;
5399         bool is_lvds = false;
5400
5401         for_each_encoder_on_crtc(dev, crtc, encoder) {
5402                 switch (encoder->type) {
5403                 case INTEL_OUTPUT_LVDS:
5404                         is_lvds = true;
5405                         break;
5406                 }
5407                 num_connectors++;
5408         }
5409
5410         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5411                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5412                               dev_priv->vbt.lvds_ssc_freq);
5413                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5414         }
5415
5416         return 120000;
5417 }
5418
5419 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5420 {
5421         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5423         int pipe = intel_crtc->pipe;
5424         uint32_t val;
5425
5426         val = 0;
5427
5428         switch (intel_crtc->config.pipe_bpp) {
5429         case 18:
5430                 val |= PIPECONF_6BPC;
5431                 break;
5432         case 24:
5433                 val |= PIPECONF_8BPC;
5434                 break;
5435         case 30:
5436                 val |= PIPECONF_10BPC;
5437                 break;
5438         case 36:
5439                 val |= PIPECONF_12BPC;
5440                 break;
5441         default:
5442                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5443                 BUG();
5444         }
5445
5446         if (intel_crtc->config.dither)
5447                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5448
5449         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5450                 val |= PIPECONF_INTERLACED_ILK;
5451         else
5452                 val |= PIPECONF_PROGRESSIVE;
5453
5454         if (intel_crtc->config.limited_color_range)
5455                 val |= PIPECONF_COLOR_RANGE_SELECT;
5456
5457         I915_WRITE(PIPECONF(pipe), val);
5458         POSTING_READ(PIPECONF(pipe));
5459 }
5460
5461 /*
5462  * Set up the pipe CSC unit.
5463  *
5464  * Currently only full range RGB to limited range RGB conversion
5465  * is supported, but eventually this should handle various
5466  * RGB<->YCbCr scenarios as well.
5467  */
5468 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5469 {
5470         struct drm_device *dev = crtc->dev;
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5473         int pipe = intel_crtc->pipe;
5474         uint16_t coeff = 0x7800; /* 1.0 */
5475
5476         /*
5477          * TODO: Check what kind of values actually come out of the pipe
5478          * with these coeff/postoff values and adjust to get the best
5479          * accuracy. Perhaps we even need to take the bpc value into
5480          * consideration.
5481          */
5482
5483         if (intel_crtc->config.limited_color_range)
5484                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5485
5486         /*
5487          * GY/GU and RY/RU should be the other way around according
5488          * to BSpec, but reality doesn't agree. Just set them up in
5489          * a way that results in the correct picture.
5490          */
5491         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5492         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5493
5494         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5495         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5496
5497         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5498         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5499
5500         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5501         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5502         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5503
5504         if (INTEL_INFO(dev)->gen > 6) {
5505                 uint16_t postoff = 0;
5506
5507                 if (intel_crtc->config.limited_color_range)
5508                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5509
5510                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5511                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5512                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5513
5514                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5515         } else {
5516                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5517
5518                 if (intel_crtc->config.limited_color_range)
5519                         mode |= CSC_BLACK_SCREEN_OFFSET;
5520
5521                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5522         }
5523 }
5524
5525 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5526 {
5527         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5529         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5530         uint32_t val;
5531
5532         val = 0;
5533
5534         if (intel_crtc->config.dither)
5535                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5536
5537         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5538                 val |= PIPECONF_INTERLACED_ILK;
5539         else
5540                 val |= PIPECONF_PROGRESSIVE;
5541
5542         I915_WRITE(PIPECONF(cpu_transcoder), val);
5543         POSTING_READ(PIPECONF(cpu_transcoder));
5544
5545         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5546         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5547 }
5548
5549 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5550                                     intel_clock_t *clock,
5551                                     bool *has_reduced_clock,
5552                                     intel_clock_t *reduced_clock)
5553 {
5554         struct drm_device *dev = crtc->dev;
5555         struct drm_i915_private *dev_priv = dev->dev_private;
5556         struct intel_encoder *intel_encoder;
5557         int refclk;
5558         const intel_limit_t *limit;
5559         bool ret, is_lvds = false;
5560
5561         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5562                 switch (intel_encoder->type) {
5563                 case INTEL_OUTPUT_LVDS:
5564                         is_lvds = true;
5565                         break;
5566                 }
5567         }
5568
5569         refclk = ironlake_get_refclk(crtc);
5570
5571         /*
5572          * Returns a set of divisors for the desired target clock with the given
5573          * refclk, or FALSE.  The returned values represent the clock equation:
5574          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5575          */
5576         limit = intel_limit(crtc, refclk);
5577         ret = dev_priv->display.find_dpll(limit, crtc,
5578                                           to_intel_crtc(crtc)->config.port_clock,
5579                                           refclk, NULL, clock);
5580         if (!ret)
5581                 return false;
5582
5583         if (is_lvds && dev_priv->lvds_downclock_avail) {
5584                 /*
5585                  * Ensure we match the reduced clock's P to the target clock.
5586                  * If the clocks don't match, we can't switch the display clock
5587                  * by using the FP0/FP1. In such case we will disable the LVDS
5588                  * downclock feature.
5589                 */
5590                 *has_reduced_clock =
5591                         dev_priv->display.find_dpll(limit, crtc,
5592                                                     dev_priv->lvds_downclock,
5593                                                     refclk, clock,
5594                                                     reduced_clock);
5595         }
5596
5597         return true;
5598 }
5599
5600 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5601 {
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603         uint32_t temp;
5604
5605         temp = I915_READ(SOUTH_CHICKEN1);
5606         if (temp & FDI_BC_BIFURCATION_SELECT)
5607                 return;
5608
5609         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5610         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5611
5612         temp |= FDI_BC_BIFURCATION_SELECT;
5613         DRM_DEBUG_KMS("enabling fdi C rx\n");
5614         I915_WRITE(SOUTH_CHICKEN1, temp);
5615         POSTING_READ(SOUTH_CHICKEN1);
5616 }
5617
5618 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5619 {
5620         struct drm_device *dev = intel_crtc->base.dev;
5621         struct drm_i915_private *dev_priv = dev->dev_private;
5622
5623         switch (intel_crtc->pipe) {
5624         case PIPE_A:
5625                 break;
5626         case PIPE_B:
5627                 if (intel_crtc->config.fdi_lanes > 2)
5628                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5629                 else
5630                         cpt_enable_fdi_bc_bifurcation(dev);
5631
5632                 break;
5633         case PIPE_C:
5634                 cpt_enable_fdi_bc_bifurcation(dev);
5635
5636                 break;
5637         default:
5638                 BUG();
5639         }
5640 }
5641
5642 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5643 {
5644         /*
5645          * Account for spread spectrum to avoid
5646          * oversubscribing the link. Max center spread
5647          * is 2.5%; use 5% for safety's sake.
5648          */
5649         u32 bps = target_clock * bpp * 21 / 20;
5650         return bps / (link_bw * 8) + 1;
5651 }
5652
5653 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5654 {
5655         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5656 }
5657
5658 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5659                                       u32 *fp,
5660                                       intel_clock_t *reduced_clock, u32 *fp2)
5661 {
5662         struct drm_crtc *crtc = &intel_crtc->base;
5663         struct drm_device *dev = crtc->dev;
5664         struct drm_i915_private *dev_priv = dev->dev_private;
5665         struct intel_encoder *intel_encoder;
5666         uint32_t dpll;
5667         int factor, num_connectors = 0;
5668         bool is_lvds = false, is_sdvo = false;
5669
5670         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5671                 switch (intel_encoder->type) {
5672                 case INTEL_OUTPUT_LVDS:
5673                         is_lvds = true;
5674                         break;
5675                 case INTEL_OUTPUT_SDVO:
5676                 case INTEL_OUTPUT_HDMI:
5677                         is_sdvo = true;
5678                         break;
5679                 }
5680
5681                 num_connectors++;
5682         }
5683
5684         /* Enable autotuning of the PLL clock (if permissible) */
5685         factor = 21;
5686         if (is_lvds) {
5687                 if ((intel_panel_use_ssc(dev_priv) &&
5688                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5689                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5690                         factor = 25;
5691         } else if (intel_crtc->config.sdvo_tv_clock)
5692                 factor = 20;
5693
5694         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5695                 *fp |= FP_CB_TUNE;
5696
5697         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5698                 *fp2 |= FP_CB_TUNE;
5699
5700         dpll = 0;
5701
5702         if (is_lvds)
5703                 dpll |= DPLLB_MODE_LVDS;
5704         else
5705                 dpll |= DPLLB_MODE_DAC_SERIAL;
5706
5707         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5708                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5709
5710         if (is_sdvo)
5711                 dpll |= DPLL_SDVO_HIGH_SPEED;
5712         if (intel_crtc->config.has_dp_encoder)
5713                 dpll |= DPLL_SDVO_HIGH_SPEED;
5714
5715         /* compute bitmask from p1 value */
5716         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5717         /* also FPA1 */
5718         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5719
5720         switch (intel_crtc->config.dpll.p2) {
5721         case 5:
5722                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5723                 break;
5724         case 7:
5725                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5726                 break;
5727         case 10:
5728                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5729                 break;
5730         case 14:
5731                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5732                 break;
5733         }
5734
5735         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5736                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5737         else
5738                 dpll |= PLL_REF_INPUT_DREFCLK;
5739
5740         return dpll | DPLL_VCO_ENABLE;
5741 }
5742
5743 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5744                                   int x, int y,
5745                                   struct drm_framebuffer *fb)
5746 {
5747         struct drm_device *dev = crtc->dev;
5748         struct drm_i915_private *dev_priv = dev->dev_private;
5749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5750         int pipe = intel_crtc->pipe;
5751         int plane = intel_crtc->plane;
5752         int num_connectors = 0;
5753         intel_clock_t clock, reduced_clock;
5754         u32 dpll = 0, fp = 0, fp2 = 0;
5755         bool ok, has_reduced_clock = false;
5756         bool is_lvds = false;
5757         struct intel_encoder *encoder;
5758         struct intel_shared_dpll *pll;
5759         int ret;
5760
5761         for_each_encoder_on_crtc(dev, crtc, encoder) {
5762                 switch (encoder->type) {
5763                 case INTEL_OUTPUT_LVDS:
5764                         is_lvds = true;
5765                         break;
5766                 }
5767
5768                 num_connectors++;
5769         }
5770
5771         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5772              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5773
5774         ok = ironlake_compute_clocks(crtc, &clock,
5775                                      &has_reduced_clock, &reduced_clock);
5776         if (!ok && !intel_crtc->config.clock_set) {
5777                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5778                 return -EINVAL;
5779         }
5780         /* Compat-code for transition, will disappear. */
5781         if (!intel_crtc->config.clock_set) {
5782                 intel_crtc->config.dpll.n = clock.n;
5783                 intel_crtc->config.dpll.m1 = clock.m1;
5784                 intel_crtc->config.dpll.m2 = clock.m2;
5785                 intel_crtc->config.dpll.p1 = clock.p1;
5786                 intel_crtc->config.dpll.p2 = clock.p2;
5787         }
5788
5789         /* Ensure that the cursor is valid for the new mode before changing... */
5790         intel_crtc_update_cursor(crtc, true);
5791
5792         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5793         if (intel_crtc->config.has_pch_encoder) {
5794                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5795                 if (has_reduced_clock)
5796                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5797
5798                 dpll = ironlake_compute_dpll(intel_crtc,
5799                                              &fp, &reduced_clock,
5800                                              has_reduced_clock ? &fp2 : NULL);
5801
5802                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5803                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5804                 if (has_reduced_clock)
5805                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5806                 else
5807                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5808
5809                 pll = intel_get_shared_dpll(intel_crtc);
5810                 if (pll == NULL) {
5811                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5812                                          pipe_name(pipe));
5813                         return -EINVAL;
5814                 }
5815         } else
5816                 intel_put_shared_dpll(intel_crtc);
5817
5818         if (intel_crtc->config.has_dp_encoder)
5819                 intel_dp_set_m_n(intel_crtc);
5820
5821         if (is_lvds && has_reduced_clock && i915_powersave)
5822                 intel_crtc->lowfreq_avail = true;
5823         else
5824                 intel_crtc->lowfreq_avail = false;
5825
5826         if (intel_crtc->config.has_pch_encoder) {
5827                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5828
5829         }
5830
5831         intel_set_pipe_timings(intel_crtc);
5832
5833         if (intel_crtc->config.has_pch_encoder) {
5834                 intel_cpu_transcoder_set_m_n(intel_crtc,
5835                                              &intel_crtc->config.fdi_m_n);
5836         }
5837
5838         if (IS_IVYBRIDGE(dev))
5839                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5840
5841         ironlake_set_pipeconf(crtc);
5842
5843         /* Set up the display plane register */
5844         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5845         POSTING_READ(DSPCNTR(plane));
5846
5847         ret = intel_pipe_set_base(crtc, x, y, fb);
5848
5849         intel_update_watermarks(dev);
5850
5851         return ret;
5852 }
5853
5854 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5855                                         struct intel_crtc_config *pipe_config)
5856 {
5857         struct drm_device *dev = crtc->base.dev;
5858         struct drm_i915_private *dev_priv = dev->dev_private;
5859         enum transcoder transcoder = pipe_config->cpu_transcoder;
5860
5861         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5862         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5863         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5864                                         & ~TU_SIZE_MASK;
5865         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5866         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5867                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5868 }
5869
5870 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5871                                      struct intel_crtc_config *pipe_config)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         uint32_t tmp;
5876
5877         tmp = I915_READ(PF_CTL(crtc->pipe));
5878
5879         if (tmp & PF_ENABLE) {
5880                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5881                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5882
5883                 /* We currently do not free assignements of panel fitters on
5884                  * ivb/hsw (since we don't use the higher upscaling modes which
5885                  * differentiates them) so just WARN about this case for now. */
5886                 if (IS_GEN7(dev)) {
5887                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5888                                 PF_PIPE_SEL_IVB(crtc->pipe));
5889                 }
5890         }
5891 }
5892
5893 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5894                                      struct intel_crtc_config *pipe_config)
5895 {
5896         struct drm_device *dev = crtc->base.dev;
5897         struct drm_i915_private *dev_priv = dev->dev_private;
5898         uint32_t tmp;
5899
5900         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5901         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5902
5903         tmp = I915_READ(PIPECONF(crtc->pipe));
5904         if (!(tmp & PIPECONF_ENABLE))
5905                 return false;
5906
5907         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5908                 struct intel_shared_dpll *pll;
5909
5910                 pipe_config->has_pch_encoder = true;
5911
5912                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5913                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5914                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5915
5916                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5917
5918                 if (HAS_PCH_IBX(dev_priv->dev)) {
5919                         pipe_config->shared_dpll =
5920                                 (enum intel_dpll_id) crtc->pipe;
5921                 } else {
5922                         tmp = I915_READ(PCH_DPLL_SEL);
5923                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5924                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5925                         else
5926                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5927                 }
5928
5929                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5930
5931                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5932                                            &pipe_config->dpll_hw_state));
5933
5934                 tmp = pipe_config->dpll_hw_state.dpll;
5935                 pipe_config->pixel_multiplier =
5936                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5937                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5938         } else {
5939                 pipe_config->pixel_multiplier = 1;
5940         }
5941
5942         intel_get_pipe_timings(crtc, pipe_config);
5943
5944         ironlake_get_pfit_config(crtc, pipe_config);
5945
5946         return true;
5947 }
5948
5949 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5950 {
5951         struct drm_device *dev = dev_priv->dev;
5952         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5953         struct intel_crtc *crtc;
5954         unsigned long irqflags;
5955         uint32_t val, pch_hpd_mask;
5956
5957         pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5958         if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5959                 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5960
5961         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5962                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5963                      pipe_name(crtc->pipe));
5964
5965         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5966         WARN(plls->spll_refcount, "SPLL enabled\n");
5967         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5968         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5969         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5970         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5971              "CPU PWM1 enabled\n");
5972         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5973              "CPU PWM2 enabled\n");
5974         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5975              "PCH PWM1 enabled\n");
5976         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5977              "Utility pin enabled\n");
5978         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5979
5980         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5981         val = I915_READ(DEIMR);
5982         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5983              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5984         val = I915_READ(SDEIMR);
5985         WARN((val & ~pch_hpd_mask) != val,
5986              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5987         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5988 }
5989
5990 /*
5991  * This function implements pieces of two sequences from BSpec:
5992  * - Sequence for display software to disable LCPLL
5993  * - Sequence for display software to allow package C8+
5994  * The steps implemented here are just the steps that actually touch the LCPLL
5995  * register. Callers should take care of disabling all the display engine
5996  * functions, doing the mode unset, fixing interrupts, etc.
5997  */
5998 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5999                        bool switch_to_fclk, bool allow_power_down)
6000 {
6001         uint32_t val;
6002
6003         assert_can_disable_lcpll(dev_priv);
6004
6005         val = I915_READ(LCPLL_CTL);
6006
6007         if (switch_to_fclk) {
6008                 val |= LCPLL_CD_SOURCE_FCLK;
6009                 I915_WRITE(LCPLL_CTL, val);
6010
6011                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6012                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6013                         DRM_ERROR("Switching to FCLK failed\n");
6014
6015                 val = I915_READ(LCPLL_CTL);
6016         }
6017
6018         val |= LCPLL_PLL_DISABLE;
6019         I915_WRITE(LCPLL_CTL, val);
6020         POSTING_READ(LCPLL_CTL);
6021
6022         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6023                 DRM_ERROR("LCPLL still locked\n");
6024
6025         val = I915_READ(D_COMP);
6026         val |= D_COMP_COMP_DISABLE;
6027         I915_WRITE(D_COMP, val);
6028         POSTING_READ(D_COMP);
6029         ndelay(100);
6030
6031         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6032                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6033
6034         if (allow_power_down) {
6035                 val = I915_READ(LCPLL_CTL);
6036                 val |= LCPLL_POWER_DOWN_ALLOW;
6037                 I915_WRITE(LCPLL_CTL, val);
6038                 POSTING_READ(LCPLL_CTL);
6039         }
6040 }
6041
6042 /*
6043  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6044  * source.
6045  */
6046 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6047 {
6048         uint32_t val;
6049
6050         val = I915_READ(LCPLL_CTL);
6051
6052         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6053                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6054                 return;
6055
6056         if (val & LCPLL_POWER_DOWN_ALLOW) {
6057                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6058                 I915_WRITE(LCPLL_CTL, val);
6059         }
6060
6061         val = I915_READ(D_COMP);
6062         val |= D_COMP_COMP_FORCE;
6063         val &= ~D_COMP_COMP_DISABLE;
6064         I915_WRITE(D_COMP, val);
6065         I915_READ(D_COMP);
6066
6067         val = I915_READ(LCPLL_CTL);
6068         val &= ~LCPLL_PLL_DISABLE;
6069         I915_WRITE(LCPLL_CTL, val);
6070
6071         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6072                 DRM_ERROR("LCPLL not locked yet\n");
6073
6074         if (val & LCPLL_CD_SOURCE_FCLK) {
6075                 val = I915_READ(LCPLL_CTL);
6076                 val &= ~LCPLL_CD_SOURCE_FCLK;
6077                 I915_WRITE(LCPLL_CTL, val);
6078
6079                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6080                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6081                         DRM_ERROR("Switching back to LCPLL failed\n");
6082         }
6083 }
6084
6085 static void haswell_modeset_global_resources(struct drm_device *dev)
6086 {
6087         bool enable = false;
6088         struct intel_crtc *crtc;
6089
6090         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6091                 if (!crtc->base.enabled)
6092                         continue;
6093
6094                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6095                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6096                         enable = true;
6097         }
6098
6099         intel_set_power_well(dev, enable);
6100 }
6101
6102 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6103                                  int x, int y,
6104                                  struct drm_framebuffer *fb)
6105 {
6106         struct drm_device *dev = crtc->dev;
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109         int plane = intel_crtc->plane;
6110         int ret;
6111
6112         if (!intel_ddi_pll_mode_set(crtc))
6113                 return -EINVAL;
6114
6115         /* Ensure that the cursor is valid for the new mode before changing... */
6116         intel_crtc_update_cursor(crtc, true);
6117
6118         if (intel_crtc->config.has_dp_encoder)
6119                 intel_dp_set_m_n(intel_crtc);
6120
6121         intel_crtc->lowfreq_avail = false;
6122
6123         intel_set_pipe_timings(intel_crtc);
6124
6125         if (intel_crtc->config.has_pch_encoder) {
6126                 intel_cpu_transcoder_set_m_n(intel_crtc,
6127                                              &intel_crtc->config.fdi_m_n);
6128         }
6129
6130         haswell_set_pipeconf(crtc);
6131
6132         intel_set_pipe_csc(crtc);
6133
6134         /* Set up the display plane register */
6135         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6136         POSTING_READ(DSPCNTR(plane));
6137
6138         ret = intel_pipe_set_base(crtc, x, y, fb);
6139
6140         intel_update_watermarks(dev);
6141
6142         return ret;
6143 }
6144
6145 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6146                                     struct intel_crtc_config *pipe_config)
6147 {
6148         struct drm_device *dev = crtc->base.dev;
6149         struct drm_i915_private *dev_priv = dev->dev_private;
6150         enum intel_display_power_domain pfit_domain;
6151         uint32_t tmp;
6152
6153         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6154         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6155
6156         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6157         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6158                 enum pipe trans_edp_pipe;
6159                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6160                 default:
6161                         WARN(1, "unknown pipe linked to edp transcoder\n");
6162                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6163                 case TRANS_DDI_EDP_INPUT_A_ON:
6164                         trans_edp_pipe = PIPE_A;
6165                         break;
6166                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6167                         trans_edp_pipe = PIPE_B;
6168                         break;
6169                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6170                         trans_edp_pipe = PIPE_C;
6171                         break;
6172                 }
6173
6174                 if (trans_edp_pipe == crtc->pipe)
6175                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6176         }
6177
6178         if (!intel_display_power_enabled(dev,
6179                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6180                 return false;
6181
6182         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6183         if (!(tmp & PIPECONF_ENABLE))
6184                 return false;
6185
6186         /*
6187          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6188          * DDI E. So just check whether this pipe is wired to DDI E and whether
6189          * the PCH transcoder is on.
6190          */
6191         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6192         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6193             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6194                 pipe_config->has_pch_encoder = true;
6195
6196                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6197                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6198                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6199
6200                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6201         }
6202
6203         intel_get_pipe_timings(crtc, pipe_config);
6204
6205         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6206         if (intel_display_power_enabled(dev, pfit_domain))
6207                 ironlake_get_pfit_config(crtc, pipe_config);
6208
6209         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6210                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6211
6212         pipe_config->pixel_multiplier = 1;
6213
6214         return true;
6215 }
6216
6217 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6218                                int x, int y,
6219                                struct drm_framebuffer *fb)
6220 {
6221         struct drm_device *dev = crtc->dev;
6222         struct drm_i915_private *dev_priv = dev->dev_private;
6223         struct drm_encoder_helper_funcs *encoder_funcs;
6224         struct intel_encoder *encoder;
6225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6226         struct drm_display_mode *adjusted_mode =
6227                 &intel_crtc->config.adjusted_mode;
6228         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6229         int pipe = intel_crtc->pipe;
6230         int ret;
6231
6232         drm_vblank_pre_modeset(dev, pipe);
6233
6234         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6235
6236         drm_vblank_post_modeset(dev, pipe);
6237
6238         if (ret != 0)
6239                 return ret;
6240
6241         for_each_encoder_on_crtc(dev, crtc, encoder) {
6242                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6243                         encoder->base.base.id,
6244                         drm_get_encoder_name(&encoder->base),
6245                         mode->base.id, mode->name);
6246                 if (encoder->mode_set) {
6247                         encoder->mode_set(encoder);
6248                 } else {
6249                         encoder_funcs = encoder->base.helper_private;
6250                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6251                 }
6252         }
6253
6254         return 0;
6255 }
6256
6257 static bool intel_eld_uptodate(struct drm_connector *connector,
6258                                int reg_eldv, uint32_t bits_eldv,
6259                                int reg_elda, uint32_t bits_elda,
6260                                int reg_edid)
6261 {
6262         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6263         uint8_t *eld = connector->eld;
6264         uint32_t i;
6265
6266         i = I915_READ(reg_eldv);
6267         i &= bits_eldv;
6268
6269         if (!eld[0])
6270                 return !i;
6271
6272         if (!i)
6273                 return false;
6274
6275         i = I915_READ(reg_elda);
6276         i &= ~bits_elda;
6277         I915_WRITE(reg_elda, i);
6278
6279         for (i = 0; i < eld[2]; i++)
6280                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6281                         return false;
6282
6283         return true;
6284 }
6285
6286 static void g4x_write_eld(struct drm_connector *connector,
6287                           struct drm_crtc *crtc)
6288 {
6289         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6290         uint8_t *eld = connector->eld;
6291         uint32_t eldv;
6292         uint32_t len;
6293         uint32_t i;
6294
6295         i = I915_READ(G4X_AUD_VID_DID);
6296
6297         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6298                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6299         else
6300                 eldv = G4X_ELDV_DEVCTG;
6301
6302         if (intel_eld_uptodate(connector,
6303                                G4X_AUD_CNTL_ST, eldv,
6304                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6305                                G4X_HDMIW_HDMIEDID))
6306                 return;
6307
6308         i = I915_READ(G4X_AUD_CNTL_ST);
6309         i &= ~(eldv | G4X_ELD_ADDR);
6310         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6311         I915_WRITE(G4X_AUD_CNTL_ST, i);
6312
6313         if (!eld[0])
6314                 return;
6315
6316         len = min_t(uint8_t, eld[2], len);
6317         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6318         for (i = 0; i < len; i++)
6319                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6320
6321         i = I915_READ(G4X_AUD_CNTL_ST);
6322         i |= eldv;
6323         I915_WRITE(G4X_AUD_CNTL_ST, i);
6324 }
6325
6326 static void haswell_write_eld(struct drm_connector *connector,
6327                                      struct drm_crtc *crtc)
6328 {
6329         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6330         uint8_t *eld = connector->eld;
6331         struct drm_device *dev = crtc->dev;
6332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6333         uint32_t eldv;
6334         uint32_t i;
6335         int len;
6336         int pipe = to_intel_crtc(crtc)->pipe;
6337         int tmp;
6338
6339         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6340         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6341         int aud_config = HSW_AUD_CFG(pipe);
6342         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6343
6344
6345         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6346
6347         /* Audio output enable */
6348         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6349         tmp = I915_READ(aud_cntrl_st2);
6350         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6351         I915_WRITE(aud_cntrl_st2, tmp);
6352
6353         /* Wait for 1 vertical blank */
6354         intel_wait_for_vblank(dev, pipe);
6355
6356         /* Set ELD valid state */
6357         tmp = I915_READ(aud_cntrl_st2);
6358         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6359         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6360         I915_WRITE(aud_cntrl_st2, tmp);
6361         tmp = I915_READ(aud_cntrl_st2);
6362         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6363
6364         /* Enable HDMI mode */
6365         tmp = I915_READ(aud_config);
6366         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6367         /* clear N_programing_enable and N_value_index */
6368         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6369         I915_WRITE(aud_config, tmp);
6370
6371         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6372
6373         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6374         intel_crtc->eld_vld = true;
6375
6376         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6377                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6378                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6379                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6380         } else
6381                 I915_WRITE(aud_config, 0);
6382
6383         if (intel_eld_uptodate(connector,
6384                                aud_cntrl_st2, eldv,
6385                                aud_cntl_st, IBX_ELD_ADDRESS,
6386                                hdmiw_hdmiedid))
6387                 return;
6388
6389         i = I915_READ(aud_cntrl_st2);
6390         i &= ~eldv;
6391         I915_WRITE(aud_cntrl_st2, i);
6392
6393         if (!eld[0])
6394                 return;
6395
6396         i = I915_READ(aud_cntl_st);
6397         i &= ~IBX_ELD_ADDRESS;
6398         I915_WRITE(aud_cntl_st, i);
6399         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6400         DRM_DEBUG_DRIVER("port num:%d\n", i);
6401
6402         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6403         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6404         for (i = 0; i < len; i++)
6405                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6406
6407         i = I915_READ(aud_cntrl_st2);
6408         i |= eldv;
6409         I915_WRITE(aud_cntrl_st2, i);
6410
6411 }
6412
6413 static void ironlake_write_eld(struct drm_connector *connector,
6414                                      struct drm_crtc *crtc)
6415 {
6416         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6417         uint8_t *eld = connector->eld;
6418         uint32_t eldv;
6419         uint32_t i;
6420         int len;
6421         int hdmiw_hdmiedid;
6422         int aud_config;
6423         int aud_cntl_st;
6424         int aud_cntrl_st2;
6425         int pipe = to_intel_crtc(crtc)->pipe;
6426
6427         if (HAS_PCH_IBX(connector->dev)) {
6428                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6429                 aud_config = IBX_AUD_CFG(pipe);
6430                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6431                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6432         } else {
6433                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6434                 aud_config = CPT_AUD_CFG(pipe);
6435                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6436                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6437         }
6438
6439         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6440
6441         i = I915_READ(aud_cntl_st);
6442         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6443         if (!i) {
6444                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6445                 /* operate blindly on all ports */
6446                 eldv = IBX_ELD_VALIDB;
6447                 eldv |= IBX_ELD_VALIDB << 4;
6448                 eldv |= IBX_ELD_VALIDB << 8;
6449         } else {
6450                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6451                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6452         }
6453
6454         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6455                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6456                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6457                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6458         } else
6459                 I915_WRITE(aud_config, 0);
6460
6461         if (intel_eld_uptodate(connector,
6462                                aud_cntrl_st2, eldv,
6463                                aud_cntl_st, IBX_ELD_ADDRESS,
6464                                hdmiw_hdmiedid))
6465                 return;
6466
6467         i = I915_READ(aud_cntrl_st2);
6468         i &= ~eldv;
6469         I915_WRITE(aud_cntrl_st2, i);
6470
6471         if (!eld[0])
6472                 return;
6473
6474         i = I915_READ(aud_cntl_st);
6475         i &= ~IBX_ELD_ADDRESS;
6476         I915_WRITE(aud_cntl_st, i);
6477
6478         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6479         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6480         for (i = 0; i < len; i++)
6481                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6482
6483         i = I915_READ(aud_cntrl_st2);
6484         i |= eldv;
6485         I915_WRITE(aud_cntrl_st2, i);
6486 }
6487
6488 void intel_write_eld(struct drm_encoder *encoder,
6489                      struct drm_display_mode *mode)
6490 {
6491         struct drm_crtc *crtc = encoder->crtc;
6492         struct drm_connector *connector;
6493         struct drm_device *dev = encoder->dev;
6494         struct drm_i915_private *dev_priv = dev->dev_private;
6495
6496         connector = drm_select_eld(encoder, mode);
6497         if (!connector)
6498                 return;
6499
6500         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6501                          connector->base.id,
6502                          drm_get_connector_name(connector),
6503                          connector->encoder->base.id,
6504                          drm_get_encoder_name(connector->encoder));
6505
6506         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6507
6508         if (dev_priv->display.write_eld)
6509                 dev_priv->display.write_eld(connector, crtc);
6510 }
6511
6512 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6513 void intel_crtc_load_lut(struct drm_crtc *crtc)
6514 {
6515         struct drm_device *dev = crtc->dev;
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6518         enum pipe pipe = intel_crtc->pipe;
6519         int palreg = PALETTE(pipe);
6520         int i;
6521         bool reenable_ips = false;
6522
6523         /* The clocks have to be on to load the palette. */
6524         if (!crtc->enabled || !intel_crtc->active)
6525                 return;
6526
6527         if (!HAS_PCH_SPLIT(dev_priv->dev))
6528                 assert_pll_enabled(dev_priv, pipe);
6529
6530         /* use legacy palette for Ironlake */
6531         if (HAS_PCH_SPLIT(dev))
6532                 palreg = LGC_PALETTE(pipe);
6533
6534         /* Workaround : Do not read or write the pipe palette/gamma data while
6535          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6536          */
6537         if (intel_crtc->config.ips_enabled &&
6538             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6539              GAMMA_MODE_MODE_SPLIT)) {
6540                 hsw_disable_ips(intel_crtc);
6541                 reenable_ips = true;
6542         }
6543
6544         for (i = 0; i < 256; i++) {
6545                 I915_WRITE(palreg + 4 * i,
6546                            (intel_crtc->lut_r[i] << 16) |
6547                            (intel_crtc->lut_g[i] << 8) |
6548                            intel_crtc->lut_b[i]);
6549         }
6550
6551         if (reenable_ips)
6552                 hsw_enable_ips(intel_crtc);
6553 }
6554
6555 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6556 {
6557         struct drm_device *dev = crtc->dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560         bool visible = base != 0;
6561         u32 cntl;
6562
6563         if (intel_crtc->cursor_visible == visible)
6564                 return;
6565
6566         cntl = I915_READ(_CURACNTR);
6567         if (visible) {
6568                 /* On these chipsets we can only modify the base whilst
6569                  * the cursor is disabled.
6570                  */
6571                 I915_WRITE(_CURABASE, base);
6572
6573                 cntl &= ~(CURSOR_FORMAT_MASK);
6574                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6575                 cntl |= CURSOR_ENABLE |
6576                         CURSOR_GAMMA_ENABLE |
6577                         CURSOR_FORMAT_ARGB;
6578         } else
6579                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6580         I915_WRITE(_CURACNTR, cntl);
6581
6582         intel_crtc->cursor_visible = visible;
6583 }
6584
6585 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6586 {
6587         struct drm_device *dev = crtc->dev;
6588         struct drm_i915_private *dev_priv = dev->dev_private;
6589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6590         int pipe = intel_crtc->pipe;
6591         bool visible = base != 0;
6592
6593         if (intel_crtc->cursor_visible != visible) {
6594                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6595                 if (base) {
6596                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6597                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6598                         cntl |= pipe << 28; /* Connect to correct pipe */
6599                 } else {
6600                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6601                         cntl |= CURSOR_MODE_DISABLE;
6602                 }
6603                 I915_WRITE(CURCNTR(pipe), cntl);
6604
6605                 intel_crtc->cursor_visible = visible;
6606         }
6607         /* and commit changes on next vblank */
6608         I915_WRITE(CURBASE(pipe), base);
6609 }
6610
6611 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6612 {
6613         struct drm_device *dev = crtc->dev;
6614         struct drm_i915_private *dev_priv = dev->dev_private;
6615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6616         int pipe = intel_crtc->pipe;
6617         bool visible = base != 0;
6618
6619         if (intel_crtc->cursor_visible != visible) {
6620                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6621                 if (base) {
6622                         cntl &= ~CURSOR_MODE;
6623                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6624                 } else {
6625                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6626                         cntl |= CURSOR_MODE_DISABLE;
6627                 }
6628                 if (IS_HASWELL(dev))
6629                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6630                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6631
6632                 intel_crtc->cursor_visible = visible;
6633         }
6634         /* and commit changes on next vblank */
6635         I915_WRITE(CURBASE_IVB(pipe), base);
6636 }
6637
6638 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6639 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6640                                      bool on)
6641 {
6642         struct drm_device *dev = crtc->dev;
6643         struct drm_i915_private *dev_priv = dev->dev_private;
6644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6645         int pipe = intel_crtc->pipe;
6646         int x = intel_crtc->cursor_x;
6647         int y = intel_crtc->cursor_y;
6648         u32 base, pos;
6649         bool visible;
6650
6651         pos = 0;
6652
6653         if (on && crtc->enabled && crtc->fb) {
6654                 base = intel_crtc->cursor_addr;
6655                 if (x > (int) crtc->fb->width)
6656                         base = 0;
6657
6658                 if (y > (int) crtc->fb->height)
6659                         base = 0;
6660         } else
6661                 base = 0;
6662
6663         if (x < 0) {
6664                 if (x + intel_crtc->cursor_width < 0)
6665                         base = 0;
6666
6667                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6668                 x = -x;
6669         }
6670         pos |= x << CURSOR_X_SHIFT;
6671
6672         if (y < 0) {
6673                 if (y + intel_crtc->cursor_height < 0)
6674                         base = 0;
6675
6676                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6677                 y = -y;
6678         }
6679         pos |= y << CURSOR_Y_SHIFT;
6680
6681         visible = base != 0;
6682         if (!visible && !intel_crtc->cursor_visible)
6683                 return;
6684
6685         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6686                 I915_WRITE(CURPOS_IVB(pipe), pos);
6687                 ivb_update_cursor(crtc, base);
6688         } else {
6689                 I915_WRITE(CURPOS(pipe), pos);
6690                 if (IS_845G(dev) || IS_I865G(dev))
6691                         i845_update_cursor(crtc, base);
6692                 else
6693                         i9xx_update_cursor(crtc, base);
6694         }
6695 }
6696
6697 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6698                                  struct drm_file *file,
6699                                  uint32_t handle,
6700                                  uint32_t width, uint32_t height)
6701 {
6702         struct drm_device *dev = crtc->dev;
6703         struct drm_i915_private *dev_priv = dev->dev_private;
6704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6705         struct drm_i915_gem_object *obj;
6706         uint32_t addr;
6707         int ret;
6708
6709         /* if we want to turn off the cursor ignore width and height */
6710         if (!handle) {
6711                 DRM_DEBUG_KMS("cursor off\n");
6712                 addr = 0;
6713                 obj = NULL;
6714                 mutex_lock(&dev->struct_mutex);
6715                 goto finish;
6716         }
6717
6718         /* Currently we only support 64x64 cursors */
6719         if (width != 64 || height != 64) {
6720                 DRM_ERROR("we currently only support 64x64 cursors\n");
6721                 return -EINVAL;
6722         }
6723
6724         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6725         if (&obj->base == NULL)
6726                 return -ENOENT;
6727
6728         if (obj->base.size < width * height * 4) {
6729                 DRM_ERROR("buffer is to small\n");
6730                 ret = -ENOMEM;
6731                 goto fail;
6732         }
6733
6734         /* we only need to pin inside GTT if cursor is non-phy */
6735         mutex_lock(&dev->struct_mutex);
6736         if (!dev_priv->info->cursor_needs_physical) {
6737                 unsigned alignment;
6738
6739                 if (obj->tiling_mode) {
6740                         DRM_ERROR("cursor cannot be tiled\n");
6741                         ret = -EINVAL;
6742                         goto fail_locked;
6743                 }
6744
6745                 /* Note that the w/a also requires 2 PTE of padding following
6746                  * the bo. We currently fill all unused PTE with the shadow
6747                  * page and so we should always have valid PTE following the
6748                  * cursor preventing the VT-d warning.
6749                  */
6750                 alignment = 0;
6751                 if (need_vtd_wa(dev))
6752                         alignment = 64*1024;
6753
6754                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6755                 if (ret) {
6756                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6757                         goto fail_locked;
6758                 }
6759
6760                 ret = i915_gem_object_put_fence(obj);
6761                 if (ret) {
6762                         DRM_ERROR("failed to release fence for cursor");
6763                         goto fail_unpin;
6764                 }
6765
6766                 addr = i915_gem_obj_ggtt_offset(obj);
6767         } else {
6768                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6769                 ret = i915_gem_attach_phys_object(dev, obj,
6770                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6771                                                   align);
6772                 if (ret) {
6773                         DRM_ERROR("failed to attach phys object\n");
6774                         goto fail_locked;
6775                 }
6776                 addr = obj->phys_obj->handle->busaddr;
6777         }
6778
6779         if (IS_GEN2(dev))
6780                 I915_WRITE(CURSIZE, (height << 12) | width);
6781
6782  finish:
6783         if (intel_crtc->cursor_bo) {
6784                 if (dev_priv->info->cursor_needs_physical) {
6785                         if (intel_crtc->cursor_bo != obj)
6786                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6787                 } else
6788                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6789                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6790         }
6791
6792         mutex_unlock(&dev->struct_mutex);
6793
6794         intel_crtc->cursor_addr = addr;
6795         intel_crtc->cursor_bo = obj;
6796         intel_crtc->cursor_width = width;
6797         intel_crtc->cursor_height = height;
6798
6799         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6800
6801         return 0;
6802 fail_unpin:
6803         i915_gem_object_unpin(obj);
6804 fail_locked:
6805         mutex_unlock(&dev->struct_mutex);
6806 fail:
6807         drm_gem_object_unreference_unlocked(&obj->base);
6808         return ret;
6809 }
6810
6811 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6812 {
6813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814
6815         intel_crtc->cursor_x = x;
6816         intel_crtc->cursor_y = y;
6817
6818         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6819
6820         return 0;
6821 }
6822
6823 /** Sets the color ramps on behalf of RandR */
6824 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6825                                  u16 blue, int regno)
6826 {
6827         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6828
6829         intel_crtc->lut_r[regno] = red >> 8;
6830         intel_crtc->lut_g[regno] = green >> 8;
6831         intel_crtc->lut_b[regno] = blue >> 8;
6832 }
6833
6834 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6835                              u16 *blue, int regno)
6836 {
6837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6838
6839         *red = intel_crtc->lut_r[regno] << 8;
6840         *green = intel_crtc->lut_g[regno] << 8;
6841         *blue = intel_crtc->lut_b[regno] << 8;
6842 }
6843
6844 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6845                                  u16 *blue, uint32_t start, uint32_t size)
6846 {
6847         int end = (start + size > 256) ? 256 : start + size, i;
6848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6849
6850         for (i = start; i < end; i++) {
6851                 intel_crtc->lut_r[i] = red[i] >> 8;
6852                 intel_crtc->lut_g[i] = green[i] >> 8;
6853                 intel_crtc->lut_b[i] = blue[i] >> 8;
6854         }
6855
6856         intel_crtc_load_lut(crtc);
6857 }
6858
6859 /* VESA 640x480x72Hz mode to set on the pipe */
6860 static struct drm_display_mode load_detect_mode = {
6861         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6862                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6863 };
6864
6865 static struct drm_framebuffer *
6866 intel_framebuffer_create(struct drm_device *dev,
6867                          struct drm_mode_fb_cmd2 *mode_cmd,
6868                          struct drm_i915_gem_object *obj)
6869 {
6870         struct intel_framebuffer *intel_fb;
6871         int ret;
6872
6873         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6874         if (!intel_fb) {
6875                 drm_gem_object_unreference_unlocked(&obj->base);
6876                 return ERR_PTR(-ENOMEM);
6877         }
6878
6879         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6880         if (ret) {
6881                 drm_gem_object_unreference_unlocked(&obj->base);
6882                 kfree(intel_fb);
6883                 return ERR_PTR(ret);
6884         }
6885
6886         return &intel_fb->base;
6887 }
6888
6889 static u32
6890 intel_framebuffer_pitch_for_width(int width, int bpp)
6891 {
6892         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6893         return ALIGN(pitch, 64);
6894 }
6895
6896 static u32
6897 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6898 {
6899         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6900         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6901 }
6902
6903 static struct drm_framebuffer *
6904 intel_framebuffer_create_for_mode(struct drm_device *dev,
6905                                   struct drm_display_mode *mode,
6906                                   int depth, int bpp)
6907 {
6908         struct drm_i915_gem_object *obj;
6909         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6910
6911         obj = i915_gem_alloc_object(dev,
6912                                     intel_framebuffer_size_for_mode(mode, bpp));
6913         if (obj == NULL)
6914                 return ERR_PTR(-ENOMEM);
6915
6916         mode_cmd.width = mode->hdisplay;
6917         mode_cmd.height = mode->vdisplay;
6918         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6919                                                                 bpp);
6920         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6921
6922         return intel_framebuffer_create(dev, &mode_cmd, obj);
6923 }
6924
6925 static struct drm_framebuffer *
6926 mode_fits_in_fbdev(struct drm_device *dev,
6927                    struct drm_display_mode *mode)
6928 {
6929         struct drm_i915_private *dev_priv = dev->dev_private;
6930         struct drm_i915_gem_object *obj;
6931         struct drm_framebuffer *fb;
6932
6933         if (dev_priv->fbdev == NULL)
6934                 return NULL;
6935
6936         obj = dev_priv->fbdev->ifb.obj;
6937         if (obj == NULL)
6938                 return NULL;
6939
6940         fb = &dev_priv->fbdev->ifb.base;
6941         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6942                                                                fb->bits_per_pixel))
6943                 return NULL;
6944
6945         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6946                 return NULL;
6947
6948         return fb;
6949 }
6950
6951 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6952                                 struct drm_display_mode *mode,
6953                                 struct intel_load_detect_pipe *old)
6954 {
6955         struct intel_crtc *intel_crtc;
6956         struct intel_encoder *intel_encoder =
6957                 intel_attached_encoder(connector);
6958         struct drm_crtc *possible_crtc;
6959         struct drm_encoder *encoder = &intel_encoder->base;
6960         struct drm_crtc *crtc = NULL;
6961         struct drm_device *dev = encoder->dev;
6962         struct drm_framebuffer *fb;
6963         int i = -1;
6964
6965         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6966                       connector->base.id, drm_get_connector_name(connector),
6967                       encoder->base.id, drm_get_encoder_name(encoder));
6968
6969         /*
6970          * Algorithm gets a little messy:
6971          *
6972          *   - if the connector already has an assigned crtc, use it (but make
6973          *     sure it's on first)
6974          *
6975          *   - try to find the first unused crtc that can drive this connector,
6976          *     and use that if we find one
6977          */
6978
6979         /* See if we already have a CRTC for this connector */
6980         if (encoder->crtc) {
6981                 crtc = encoder->crtc;
6982
6983                 mutex_lock(&crtc->mutex);
6984
6985                 old->dpms_mode = connector->dpms;
6986                 old->load_detect_temp = false;
6987
6988                 /* Make sure the crtc and connector are running */
6989                 if (connector->dpms != DRM_MODE_DPMS_ON)
6990                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6991
6992                 return true;
6993         }
6994
6995         /* Find an unused one (if possible) */
6996         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6997                 i++;
6998                 if (!(encoder->possible_crtcs & (1 << i)))
6999                         continue;
7000                 if (!possible_crtc->enabled) {
7001                         crtc = possible_crtc;
7002                         break;
7003                 }
7004         }
7005
7006         /*
7007          * If we didn't find an unused CRTC, don't use any.
7008          */
7009         if (!crtc) {
7010                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7011                 return false;
7012         }
7013
7014         mutex_lock(&crtc->mutex);
7015         intel_encoder->new_crtc = to_intel_crtc(crtc);
7016         to_intel_connector(connector)->new_encoder = intel_encoder;
7017
7018         intel_crtc = to_intel_crtc(crtc);
7019         old->dpms_mode = connector->dpms;
7020         old->load_detect_temp = true;
7021         old->release_fb = NULL;
7022
7023         if (!mode)
7024                 mode = &load_detect_mode;
7025
7026         /* We need a framebuffer large enough to accommodate all accesses
7027          * that the plane may generate whilst we perform load detection.
7028          * We can not rely on the fbcon either being present (we get called
7029          * during its initialisation to detect all boot displays, or it may
7030          * not even exist) or that it is large enough to satisfy the
7031          * requested mode.
7032          */
7033         fb = mode_fits_in_fbdev(dev, mode);
7034         if (fb == NULL) {
7035                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7036                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7037                 old->release_fb = fb;
7038         } else
7039                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7040         if (IS_ERR(fb)) {
7041                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7042                 mutex_unlock(&crtc->mutex);
7043                 return false;
7044         }
7045
7046         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7047                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7048                 if (old->release_fb)
7049                         old->release_fb->funcs->destroy(old->release_fb);
7050                 mutex_unlock(&crtc->mutex);
7051                 return false;
7052         }
7053
7054         /* let the connector get through one full cycle before testing */
7055         intel_wait_for_vblank(dev, intel_crtc->pipe);
7056         return true;
7057 }
7058
7059 void intel_release_load_detect_pipe(struct drm_connector *connector,
7060                                     struct intel_load_detect_pipe *old)
7061 {
7062         struct intel_encoder *intel_encoder =
7063                 intel_attached_encoder(connector);
7064         struct drm_encoder *encoder = &intel_encoder->base;
7065         struct drm_crtc *crtc = encoder->crtc;
7066
7067         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7068                       connector->base.id, drm_get_connector_name(connector),
7069                       encoder->base.id, drm_get_encoder_name(encoder));
7070
7071         if (old->load_detect_temp) {
7072                 to_intel_connector(connector)->new_encoder = NULL;
7073                 intel_encoder->new_crtc = NULL;
7074                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7075
7076                 if (old->release_fb) {
7077                         drm_framebuffer_unregister_private(old->release_fb);
7078                         drm_framebuffer_unreference(old->release_fb);
7079                 }
7080
7081                 mutex_unlock(&crtc->mutex);
7082                 return;
7083         }
7084
7085         /* Switch crtc and encoder back off if necessary */
7086         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7087                 connector->funcs->dpms(connector, old->dpms_mode);
7088
7089         mutex_unlock(&crtc->mutex);
7090 }
7091
7092 /* Returns the clock of the currently programmed mode of the given pipe. */
7093 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7094                                 struct intel_crtc_config *pipe_config)
7095 {
7096         struct drm_device *dev = crtc->base.dev;
7097         struct drm_i915_private *dev_priv = dev->dev_private;
7098         int pipe = pipe_config->cpu_transcoder;
7099         u32 dpll = I915_READ(DPLL(pipe));
7100         u32 fp;
7101         intel_clock_t clock;
7102
7103         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7104                 fp = I915_READ(FP0(pipe));
7105         else
7106                 fp = I915_READ(FP1(pipe));
7107
7108         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7109         if (IS_PINEVIEW(dev)) {
7110                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7111                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7112         } else {
7113                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7114                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7115         }
7116
7117         if (!IS_GEN2(dev)) {
7118                 if (IS_PINEVIEW(dev))
7119                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7120                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7121                 else
7122                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7123                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7124
7125                 switch (dpll & DPLL_MODE_MASK) {
7126                 case DPLLB_MODE_DAC_SERIAL:
7127                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7128                                 5 : 10;
7129                         break;
7130                 case DPLLB_MODE_LVDS:
7131                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7132                                 7 : 14;
7133                         break;
7134                 default:
7135                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7136                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7137                         pipe_config->adjusted_mode.clock = 0;
7138                         return;
7139                 }
7140
7141                 if (IS_PINEVIEW(dev))
7142                         pineview_clock(96000, &clock);
7143                 else
7144                         i9xx_clock(96000, &clock);
7145         } else {
7146                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7147
7148                 if (is_lvds) {
7149                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7150                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7151                         clock.p2 = 14;
7152
7153                         if ((dpll & PLL_REF_INPUT_MASK) ==
7154                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7155                                 /* XXX: might not be 66MHz */
7156                                 i9xx_clock(66000, &clock);
7157                         } else
7158                                 i9xx_clock(48000, &clock);
7159                 } else {
7160                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7161                                 clock.p1 = 2;
7162                         else {
7163                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7164                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7165                         }
7166                         if (dpll & PLL_P2_DIVIDE_BY_4)
7167                                 clock.p2 = 4;
7168                         else
7169                                 clock.p2 = 2;
7170
7171                         i9xx_clock(48000, &clock);
7172                 }
7173         }
7174
7175         pipe_config->adjusted_mode.clock = clock.dot *
7176                 pipe_config->pixel_multiplier;
7177 }
7178
7179 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7180                                     struct intel_crtc_config *pipe_config)
7181 {
7182         struct drm_device *dev = crtc->base.dev;
7183         struct drm_i915_private *dev_priv = dev->dev_private;
7184         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7185         int link_freq, repeat;
7186         u64 clock;
7187         u32 link_m, link_n;
7188
7189         repeat = pipe_config->pixel_multiplier;
7190
7191         /*
7192          * The calculation for the data clock is:
7193          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7194          * But we want to avoid losing precison if possible, so:
7195          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7196          *
7197          * and the link clock is simpler:
7198          * link_clock = (m * link_clock * repeat) / n
7199          */
7200
7201         /*
7202          * We need to get the FDI or DP link clock here to derive
7203          * the M/N dividers.
7204          *
7205          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7206          * For DP, it's either 1.62GHz or 2.7GHz.
7207          * We do our calculations in 10*MHz since we don't need much precison.
7208          */
7209         if (pipe_config->has_pch_encoder)
7210                 link_freq = intel_fdi_link_freq(dev) * 10000;
7211         else
7212                 link_freq = pipe_config->port_clock;
7213
7214         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7215         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7216
7217         if (!link_m || !link_n)
7218                 return;
7219
7220         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7221         do_div(clock, link_n);
7222
7223         pipe_config->adjusted_mode.clock = clock;
7224 }
7225
7226 /** Returns the currently programmed mode of the given pipe. */
7227 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7228                                              struct drm_crtc *crtc)
7229 {
7230         struct drm_i915_private *dev_priv = dev->dev_private;
7231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7232         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7233         struct drm_display_mode *mode;
7234         struct intel_crtc_config pipe_config;
7235         int htot = I915_READ(HTOTAL(cpu_transcoder));
7236         int hsync = I915_READ(HSYNC(cpu_transcoder));
7237         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7238         int vsync = I915_READ(VSYNC(cpu_transcoder));
7239
7240         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7241         if (!mode)
7242                 return NULL;
7243
7244         /*
7245          * Construct a pipe_config sufficient for getting the clock info
7246          * back out of crtc_clock_get.
7247          *
7248          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7249          * to use a real value here instead.
7250          */
7251         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7252         pipe_config.pixel_multiplier = 1;
7253         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7254
7255         mode->clock = pipe_config.adjusted_mode.clock;
7256         mode->hdisplay = (htot & 0xffff) + 1;
7257         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7258         mode->hsync_start = (hsync & 0xffff) + 1;
7259         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7260         mode->vdisplay = (vtot & 0xffff) + 1;
7261         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7262         mode->vsync_start = (vsync & 0xffff) + 1;
7263         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7264
7265         drm_mode_set_name(mode);
7266
7267         return mode;
7268 }
7269
7270 static void intel_increase_pllclock(struct drm_crtc *crtc)
7271 {
7272         struct drm_device *dev = crtc->dev;
7273         drm_i915_private_t *dev_priv = dev->dev_private;
7274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7275         int pipe = intel_crtc->pipe;
7276         int dpll_reg = DPLL(pipe);
7277         int dpll;
7278
7279         if (HAS_PCH_SPLIT(dev))
7280                 return;
7281
7282         if (!dev_priv->lvds_downclock_avail)
7283                 return;
7284
7285         dpll = I915_READ(dpll_reg);
7286         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7287                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7288
7289                 assert_panel_unlocked(dev_priv, pipe);
7290
7291                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7292                 I915_WRITE(dpll_reg, dpll);
7293                 intel_wait_for_vblank(dev, pipe);
7294
7295                 dpll = I915_READ(dpll_reg);
7296                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7297                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7298         }
7299 }
7300
7301 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7302 {
7303         struct drm_device *dev = crtc->dev;
7304         drm_i915_private_t *dev_priv = dev->dev_private;
7305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7306
7307         if (HAS_PCH_SPLIT(dev))
7308                 return;
7309
7310         if (!dev_priv->lvds_downclock_avail)
7311                 return;
7312
7313         /*
7314          * Since this is called by a timer, we should never get here in
7315          * the manual case.
7316          */
7317         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7318                 int pipe = intel_crtc->pipe;
7319                 int dpll_reg = DPLL(pipe);
7320                 int dpll;
7321
7322                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7323
7324                 assert_panel_unlocked(dev_priv, pipe);
7325
7326                 dpll = I915_READ(dpll_reg);
7327                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7328                 I915_WRITE(dpll_reg, dpll);
7329                 intel_wait_for_vblank(dev, pipe);
7330                 dpll = I915_READ(dpll_reg);
7331                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7332                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7333         }
7334
7335 }
7336
7337 void intel_mark_busy(struct drm_device *dev)
7338 {
7339         i915_update_gfx_val(dev->dev_private);
7340 }
7341
7342 void intel_mark_idle(struct drm_device *dev)
7343 {
7344         struct drm_crtc *crtc;
7345
7346         if (!i915_powersave)
7347                 return;
7348
7349         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7350                 if (!crtc->fb)
7351                         continue;
7352
7353                 intel_decrease_pllclock(crtc);
7354         }
7355 }
7356
7357 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7358                         struct intel_ring_buffer *ring)
7359 {
7360         struct drm_device *dev = obj->base.dev;
7361         struct drm_crtc *crtc;
7362
7363         if (!i915_powersave)
7364                 return;
7365
7366         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7367                 if (!crtc->fb)
7368                         continue;
7369
7370                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7371                         continue;
7372
7373                 intel_increase_pllclock(crtc);
7374                 if (ring && intel_fbc_enabled(dev))
7375                         ring->fbc_dirty = true;
7376         }
7377 }
7378
7379 static void intel_crtc_destroy(struct drm_crtc *crtc)
7380 {
7381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7382         struct drm_device *dev = crtc->dev;
7383         struct intel_unpin_work *work;
7384         unsigned long flags;
7385
7386         spin_lock_irqsave(&dev->event_lock, flags);
7387         work = intel_crtc->unpin_work;
7388         intel_crtc->unpin_work = NULL;
7389         spin_unlock_irqrestore(&dev->event_lock, flags);
7390
7391         if (work) {
7392                 cancel_work_sync(&work->work);
7393                 kfree(work);
7394         }
7395
7396         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7397
7398         drm_crtc_cleanup(crtc);
7399
7400         kfree(intel_crtc);
7401 }
7402
7403 static void intel_unpin_work_fn(struct work_struct *__work)
7404 {
7405         struct intel_unpin_work *work =
7406                 container_of(__work, struct intel_unpin_work, work);
7407         struct drm_device *dev = work->crtc->dev;
7408
7409         mutex_lock(&dev->struct_mutex);
7410         intel_unpin_fb_obj(work->old_fb_obj);
7411         drm_gem_object_unreference(&work->pending_flip_obj->base);
7412         drm_gem_object_unreference(&work->old_fb_obj->base);
7413
7414         intel_update_fbc(dev);
7415         mutex_unlock(&dev->struct_mutex);
7416
7417         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7418         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7419
7420         kfree(work);
7421 }
7422
7423 static void do_intel_finish_page_flip(struct drm_device *dev,
7424                                       struct drm_crtc *crtc)
7425 {
7426         drm_i915_private_t *dev_priv = dev->dev_private;
7427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7428         struct intel_unpin_work *work;
7429         unsigned long flags;
7430
7431         /* Ignore early vblank irqs */
7432         if (intel_crtc == NULL)
7433                 return;
7434
7435         spin_lock_irqsave(&dev->event_lock, flags);
7436         work = intel_crtc->unpin_work;
7437
7438         /* Ensure we don't miss a work->pending update ... */
7439         smp_rmb();
7440
7441         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7442                 spin_unlock_irqrestore(&dev->event_lock, flags);
7443                 return;
7444         }
7445
7446         /* and that the unpin work is consistent wrt ->pending. */
7447         smp_rmb();
7448
7449         intel_crtc->unpin_work = NULL;
7450
7451         if (work->event)
7452                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7453
7454         drm_vblank_put(dev, intel_crtc->pipe);
7455
7456         spin_unlock_irqrestore(&dev->event_lock, flags);
7457
7458         wake_up_all(&dev_priv->pending_flip_queue);
7459
7460         queue_work(dev_priv->wq, &work->work);
7461
7462         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7463 }
7464
7465 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7466 {
7467         drm_i915_private_t *dev_priv = dev->dev_private;
7468         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7469
7470         do_intel_finish_page_flip(dev, crtc);
7471 }
7472
7473 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7474 {
7475         drm_i915_private_t *dev_priv = dev->dev_private;
7476         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7477
7478         do_intel_finish_page_flip(dev, crtc);
7479 }
7480
7481 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7482 {
7483         drm_i915_private_t *dev_priv = dev->dev_private;
7484         struct intel_crtc *intel_crtc =
7485                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7486         unsigned long flags;
7487
7488         /* NB: An MMIO update of the plane base pointer will also
7489          * generate a page-flip completion irq, i.e. every modeset
7490          * is also accompanied by a spurious intel_prepare_page_flip().
7491          */
7492         spin_lock_irqsave(&dev->event_lock, flags);
7493         if (intel_crtc->unpin_work)
7494                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7495         spin_unlock_irqrestore(&dev->event_lock, flags);
7496 }
7497
7498 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7499 {
7500         /* Ensure that the work item is consistent when activating it ... */
7501         smp_wmb();
7502         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7503         /* and that it is marked active as soon as the irq could fire. */
7504         smp_wmb();
7505 }
7506
7507 static int intel_gen2_queue_flip(struct drm_device *dev,
7508                                  struct drm_crtc *crtc,
7509                                  struct drm_framebuffer *fb,
7510                                  struct drm_i915_gem_object *obj)
7511 {
7512         struct drm_i915_private *dev_priv = dev->dev_private;
7513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7514         u32 flip_mask;
7515         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7516         int ret;
7517
7518         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7519         if (ret)
7520                 goto err;
7521
7522         ret = intel_ring_begin(ring, 6);
7523         if (ret)
7524                 goto err_unpin;
7525
7526         /* Can't queue multiple flips, so wait for the previous
7527          * one to finish before executing the next.
7528          */
7529         if (intel_crtc->plane)
7530                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7531         else
7532                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7533         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7534         intel_ring_emit(ring, MI_NOOP);
7535         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7536                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7537         intel_ring_emit(ring, fb->pitches[0]);
7538         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7539         intel_ring_emit(ring, 0); /* aux display base address, unused */
7540
7541         intel_mark_page_flip_active(intel_crtc);
7542         intel_ring_advance(ring);
7543         return 0;
7544
7545 err_unpin:
7546         intel_unpin_fb_obj(obj);
7547 err:
7548         return ret;
7549 }
7550
7551 static int intel_gen3_queue_flip(struct drm_device *dev,
7552                                  struct drm_crtc *crtc,
7553                                  struct drm_framebuffer *fb,
7554                                  struct drm_i915_gem_object *obj)
7555 {
7556         struct drm_i915_private *dev_priv = dev->dev_private;
7557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7558         u32 flip_mask;
7559         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7560         int ret;
7561
7562         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7563         if (ret)
7564                 goto err;
7565
7566         ret = intel_ring_begin(ring, 6);
7567         if (ret)
7568                 goto err_unpin;
7569
7570         if (intel_crtc->plane)
7571                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7572         else
7573                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7574         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7575         intel_ring_emit(ring, MI_NOOP);
7576         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7577                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7578         intel_ring_emit(ring, fb->pitches[0]);
7579         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7580         intel_ring_emit(ring, MI_NOOP);
7581
7582         intel_mark_page_flip_active(intel_crtc);
7583         intel_ring_advance(ring);
7584         return 0;
7585
7586 err_unpin:
7587         intel_unpin_fb_obj(obj);
7588 err:
7589         return ret;
7590 }
7591
7592 static int intel_gen4_queue_flip(struct drm_device *dev,
7593                                  struct drm_crtc *crtc,
7594                                  struct drm_framebuffer *fb,
7595                                  struct drm_i915_gem_object *obj)
7596 {
7597         struct drm_i915_private *dev_priv = dev->dev_private;
7598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7599         uint32_t pf, pipesrc;
7600         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7601         int ret;
7602
7603         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7604         if (ret)
7605                 goto err;
7606
7607         ret = intel_ring_begin(ring, 4);
7608         if (ret)
7609                 goto err_unpin;
7610
7611         /* i965+ uses the linear or tiled offsets from the
7612          * Display Registers (which do not change across a page-flip)
7613          * so we need only reprogram the base address.
7614          */
7615         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7616                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7617         intel_ring_emit(ring, fb->pitches[0]);
7618         intel_ring_emit(ring,
7619                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7620                         obj->tiling_mode);
7621
7622         /* XXX Enabling the panel-fitter across page-flip is so far
7623          * untested on non-native modes, so ignore it for now.
7624          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7625          */
7626         pf = 0;
7627         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7628         intel_ring_emit(ring, pf | pipesrc);
7629
7630         intel_mark_page_flip_active(intel_crtc);
7631         intel_ring_advance(ring);
7632         return 0;
7633
7634 err_unpin:
7635         intel_unpin_fb_obj(obj);
7636 err:
7637         return ret;
7638 }
7639
7640 static int intel_gen6_queue_flip(struct drm_device *dev,
7641                                  struct drm_crtc *crtc,
7642                                  struct drm_framebuffer *fb,
7643                                  struct drm_i915_gem_object *obj)
7644 {
7645         struct drm_i915_private *dev_priv = dev->dev_private;
7646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7647         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7648         uint32_t pf, pipesrc;
7649         int ret;
7650
7651         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7652         if (ret)
7653                 goto err;
7654
7655         ret = intel_ring_begin(ring, 4);
7656         if (ret)
7657                 goto err_unpin;
7658
7659         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7660                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7661         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7662         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7663
7664         /* Contrary to the suggestions in the documentation,
7665          * "Enable Panel Fitter" does not seem to be required when page
7666          * flipping with a non-native mode, and worse causes a normal
7667          * modeset to fail.
7668          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7669          */
7670         pf = 0;
7671         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7672         intel_ring_emit(ring, pf | pipesrc);
7673
7674         intel_mark_page_flip_active(intel_crtc);
7675         intel_ring_advance(ring);
7676         return 0;
7677
7678 err_unpin:
7679         intel_unpin_fb_obj(obj);
7680 err:
7681         return ret;
7682 }
7683
7684 /*
7685  * On gen7 we currently use the blit ring because (in early silicon at least)
7686  * the render ring doesn't give us interrpts for page flip completion, which
7687  * means clients will hang after the first flip is queued.  Fortunately the
7688  * blit ring generates interrupts properly, so use it instead.
7689  */
7690 static int intel_gen7_queue_flip(struct drm_device *dev,
7691                                  struct drm_crtc *crtc,
7692                                  struct drm_framebuffer *fb,
7693                                  struct drm_i915_gem_object *obj)
7694 {
7695         struct drm_i915_private *dev_priv = dev->dev_private;
7696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7697         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7698         uint32_t plane_bit = 0;
7699         int ret;
7700
7701         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7702         if (ret)
7703                 goto err;
7704
7705         switch(intel_crtc->plane) {
7706         case PLANE_A:
7707                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7708                 break;
7709         case PLANE_B:
7710                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7711                 break;
7712         case PLANE_C:
7713                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7714                 break;
7715         default:
7716                 WARN_ONCE(1, "unknown plane in flip command\n");
7717                 ret = -ENODEV;
7718                 goto err_unpin;
7719         }
7720
7721         ret = intel_ring_begin(ring, 4);
7722         if (ret)
7723                 goto err_unpin;
7724
7725         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7726         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7727         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7728         intel_ring_emit(ring, (MI_NOOP));
7729
7730         intel_mark_page_flip_active(intel_crtc);
7731         intel_ring_advance(ring);
7732         return 0;
7733
7734 err_unpin:
7735         intel_unpin_fb_obj(obj);
7736 err:
7737         return ret;
7738 }
7739
7740 static int intel_default_queue_flip(struct drm_device *dev,
7741                                     struct drm_crtc *crtc,
7742                                     struct drm_framebuffer *fb,
7743                                     struct drm_i915_gem_object *obj)
7744 {
7745         return -ENODEV;
7746 }
7747
7748 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7749                                 struct drm_framebuffer *fb,
7750                                 struct drm_pending_vblank_event *event)
7751 {
7752         struct drm_device *dev = crtc->dev;
7753         struct drm_i915_private *dev_priv = dev->dev_private;
7754         struct drm_framebuffer *old_fb = crtc->fb;
7755         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7757         struct intel_unpin_work *work;
7758         unsigned long flags;
7759         int ret;
7760
7761         /* Can't change pixel format via MI display flips. */
7762         if (fb->pixel_format != crtc->fb->pixel_format)
7763                 return -EINVAL;
7764
7765         /*
7766          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7767          * Note that pitch changes could also affect these register.
7768          */
7769         if (INTEL_INFO(dev)->gen > 3 &&
7770             (fb->offsets[0] != crtc->fb->offsets[0] ||
7771              fb->pitches[0] != crtc->fb->pitches[0]))
7772                 return -EINVAL;
7773
7774         work = kzalloc(sizeof *work, GFP_KERNEL);
7775         if (work == NULL)
7776                 return -ENOMEM;
7777
7778         work->event = event;
7779         work->crtc = crtc;
7780         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7781         INIT_WORK(&work->work, intel_unpin_work_fn);
7782
7783         ret = drm_vblank_get(dev, intel_crtc->pipe);
7784         if (ret)
7785                 goto free_work;
7786
7787         /* We borrow the event spin lock for protecting unpin_work */
7788         spin_lock_irqsave(&dev->event_lock, flags);
7789         if (intel_crtc->unpin_work) {
7790                 spin_unlock_irqrestore(&dev->event_lock, flags);
7791                 kfree(work);
7792                 drm_vblank_put(dev, intel_crtc->pipe);
7793
7794                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7795                 return -EBUSY;
7796         }
7797         intel_crtc->unpin_work = work;
7798         spin_unlock_irqrestore(&dev->event_lock, flags);
7799
7800         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7801                 flush_workqueue(dev_priv->wq);
7802
7803         ret = i915_mutex_lock_interruptible(dev);
7804         if (ret)
7805                 goto cleanup;
7806
7807         /* Reference the objects for the scheduled work. */
7808         drm_gem_object_reference(&work->old_fb_obj->base);
7809         drm_gem_object_reference(&obj->base);
7810
7811         crtc->fb = fb;
7812
7813         work->pending_flip_obj = obj;
7814
7815         work->enable_stall_check = true;
7816
7817         atomic_inc(&intel_crtc->unpin_work_count);
7818         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7819
7820         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7821         if (ret)
7822                 goto cleanup_pending;
7823
7824         intel_disable_fbc(dev);
7825         intel_mark_fb_busy(obj, NULL);
7826         mutex_unlock(&dev->struct_mutex);
7827
7828         trace_i915_flip_request(intel_crtc->plane, obj);
7829
7830         return 0;
7831
7832 cleanup_pending:
7833         atomic_dec(&intel_crtc->unpin_work_count);
7834         crtc->fb = old_fb;
7835         drm_gem_object_unreference(&work->old_fb_obj->base);
7836         drm_gem_object_unreference(&obj->base);
7837         mutex_unlock(&dev->struct_mutex);
7838
7839 cleanup:
7840         spin_lock_irqsave(&dev->event_lock, flags);
7841         intel_crtc->unpin_work = NULL;
7842         spin_unlock_irqrestore(&dev->event_lock, flags);
7843
7844         drm_vblank_put(dev, intel_crtc->pipe);
7845 free_work:
7846         kfree(work);
7847
7848         return ret;
7849 }
7850
7851 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7852         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7853         .load_lut = intel_crtc_load_lut,
7854 };
7855
7856 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7857                                   struct drm_crtc *crtc)
7858 {
7859         struct drm_device *dev;
7860         struct drm_crtc *tmp;
7861         int crtc_mask = 1;
7862
7863         WARN(!crtc, "checking null crtc?\n");
7864
7865         dev = crtc->dev;
7866
7867         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7868                 if (tmp == crtc)
7869                         break;
7870                 crtc_mask <<= 1;
7871         }
7872
7873         if (encoder->possible_crtcs & crtc_mask)
7874                 return true;
7875         return false;
7876 }
7877
7878 /**
7879  * intel_modeset_update_staged_output_state
7880  *
7881  * Updates the staged output configuration state, e.g. after we've read out the
7882  * current hw state.
7883  */
7884 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7885 {
7886         struct intel_encoder *encoder;
7887         struct intel_connector *connector;
7888
7889         list_for_each_entry(connector, &dev->mode_config.connector_list,
7890                             base.head) {
7891                 connector->new_encoder =
7892                         to_intel_encoder(connector->base.encoder);
7893         }
7894
7895         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7896                             base.head) {
7897                 encoder->new_crtc =
7898                         to_intel_crtc(encoder->base.crtc);
7899         }
7900 }
7901
7902 /**
7903  * intel_modeset_commit_output_state
7904  *
7905  * This function copies the stage display pipe configuration to the real one.
7906  */
7907 static void intel_modeset_commit_output_state(struct drm_device *dev)
7908 {
7909         struct intel_encoder *encoder;
7910         struct intel_connector *connector;
7911
7912         list_for_each_entry(connector, &dev->mode_config.connector_list,
7913                             base.head) {
7914                 connector->base.encoder = &connector->new_encoder->base;
7915         }
7916
7917         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7918                             base.head) {
7919                 encoder->base.crtc = &encoder->new_crtc->base;
7920         }
7921 }
7922
7923 static void
7924 connected_sink_compute_bpp(struct intel_connector * connector,
7925                            struct intel_crtc_config *pipe_config)
7926 {
7927         int bpp = pipe_config->pipe_bpp;
7928
7929         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7930                 connector->base.base.id,
7931                 drm_get_connector_name(&connector->base));
7932
7933         /* Don't use an invalid EDID bpc value */
7934         if (connector->base.display_info.bpc &&
7935             connector->base.display_info.bpc * 3 < bpp) {
7936                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7937                               bpp, connector->base.display_info.bpc*3);
7938                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7939         }
7940
7941         /* Clamp bpp to 8 on screens without EDID 1.4 */
7942         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7943                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7944                               bpp);
7945                 pipe_config->pipe_bpp = 24;
7946         }
7947 }
7948
7949 static int
7950 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7951                           struct drm_framebuffer *fb,
7952                           struct intel_crtc_config *pipe_config)
7953 {
7954         struct drm_device *dev = crtc->base.dev;
7955         struct intel_connector *connector;
7956         int bpp;
7957
7958         switch (fb->pixel_format) {
7959         case DRM_FORMAT_C8:
7960                 bpp = 8*3; /* since we go through a colormap */
7961                 break;
7962         case DRM_FORMAT_XRGB1555:
7963         case DRM_FORMAT_ARGB1555:
7964                 /* checked in intel_framebuffer_init already */
7965                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7966                         return -EINVAL;
7967         case DRM_FORMAT_RGB565:
7968                 bpp = 6*3; /* min is 18bpp */
7969                 break;
7970         case DRM_FORMAT_XBGR8888:
7971         case DRM_FORMAT_ABGR8888:
7972                 /* checked in intel_framebuffer_init already */
7973                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7974                         return -EINVAL;
7975         case DRM_FORMAT_XRGB8888:
7976         case DRM_FORMAT_ARGB8888:
7977                 bpp = 8*3;
7978                 break;
7979         case DRM_FORMAT_XRGB2101010:
7980         case DRM_FORMAT_ARGB2101010:
7981         case DRM_FORMAT_XBGR2101010:
7982         case DRM_FORMAT_ABGR2101010:
7983                 /* checked in intel_framebuffer_init already */
7984                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7985                         return -EINVAL;
7986                 bpp = 10*3;
7987                 break;
7988         /* TODO: gen4+ supports 16 bpc floating point, too. */
7989         default:
7990                 DRM_DEBUG_KMS("unsupported depth\n");
7991                 return -EINVAL;
7992         }
7993
7994         pipe_config->pipe_bpp = bpp;
7995
7996         /* Clamp display bpp to EDID value */
7997         list_for_each_entry(connector, &dev->mode_config.connector_list,
7998                             base.head) {
7999                 if (!connector->new_encoder ||
8000                     connector->new_encoder->new_crtc != crtc)
8001                         continue;
8002
8003                 connected_sink_compute_bpp(connector, pipe_config);
8004         }
8005
8006         return bpp;
8007 }
8008
8009 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8010                                    struct intel_crtc_config *pipe_config,
8011                                    const char *context)
8012 {
8013         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8014                       context, pipe_name(crtc->pipe));
8015
8016         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8017         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8018                       pipe_config->pipe_bpp, pipe_config->dither);
8019         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8020                       pipe_config->has_pch_encoder,
8021                       pipe_config->fdi_lanes,
8022                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8023                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8024                       pipe_config->fdi_m_n.tu);
8025         DRM_DEBUG_KMS("requested mode:\n");
8026         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8027         DRM_DEBUG_KMS("adjusted mode:\n");
8028         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8029         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8030                       pipe_config->gmch_pfit.control,
8031                       pipe_config->gmch_pfit.pgm_ratios,
8032                       pipe_config->gmch_pfit.lvds_border_bits);
8033         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8034                       pipe_config->pch_pfit.pos,
8035                       pipe_config->pch_pfit.size);
8036         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8037 }
8038
8039 static bool check_encoder_cloning(struct drm_crtc *crtc)
8040 {
8041         int num_encoders = 0;
8042         bool uncloneable_encoders = false;
8043         struct intel_encoder *encoder;
8044
8045         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8046                             base.head) {
8047                 if (&encoder->new_crtc->base != crtc)
8048                         continue;
8049
8050                 num_encoders++;
8051                 if (!encoder->cloneable)
8052                         uncloneable_encoders = true;
8053         }
8054
8055         return !(num_encoders > 1 && uncloneable_encoders);
8056 }
8057
8058 static struct intel_crtc_config *
8059 intel_modeset_pipe_config(struct drm_crtc *crtc,
8060                           struct drm_framebuffer *fb,
8061                           struct drm_display_mode *mode)
8062 {
8063         struct drm_device *dev = crtc->dev;
8064         struct drm_encoder_helper_funcs *encoder_funcs;
8065         struct intel_encoder *encoder;
8066         struct intel_crtc_config *pipe_config;
8067         int plane_bpp, ret = -EINVAL;
8068         bool retry = true;
8069
8070         if (!check_encoder_cloning(crtc)) {
8071                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8072                 return ERR_PTR(-EINVAL);
8073         }
8074
8075         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8076         if (!pipe_config)
8077                 return ERR_PTR(-ENOMEM);
8078
8079         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8080         drm_mode_copy(&pipe_config->requested_mode, mode);
8081         pipe_config->cpu_transcoder =
8082                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8083         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8084
8085         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8086          * plane pixel format and any sink constraints into account. Returns the
8087          * source plane bpp so that dithering can be selected on mismatches
8088          * after encoders and crtc also have had their say. */
8089         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8090                                               fb, pipe_config);
8091         if (plane_bpp < 0)
8092                 goto fail;
8093
8094 encoder_retry:
8095         /* Ensure the port clock defaults are reset when retrying. */
8096         pipe_config->port_clock = 0;
8097         pipe_config->pixel_multiplier = 1;
8098
8099         /* Pass our mode to the connectors and the CRTC to give them a chance to
8100          * adjust it according to limitations or connector properties, and also
8101          * a chance to reject the mode entirely.
8102          */
8103         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8104                             base.head) {
8105
8106                 if (&encoder->new_crtc->base != crtc)
8107                         continue;
8108
8109                 if (encoder->compute_config) {
8110                         if (!(encoder->compute_config(encoder, pipe_config))) {
8111                                 DRM_DEBUG_KMS("Encoder config failure\n");
8112                                 goto fail;
8113                         }
8114
8115                         continue;
8116                 }
8117
8118                 encoder_funcs = encoder->base.helper_private;
8119                 if (!(encoder_funcs->mode_fixup(&encoder->base,
8120                                                 &pipe_config->requested_mode,
8121                                                 &pipe_config->adjusted_mode))) {
8122                         DRM_DEBUG_KMS("Encoder fixup failed\n");
8123                         goto fail;
8124                 }
8125         }
8126
8127         /* Set default port clock if not overwritten by the encoder. Needs to be
8128          * done afterwards in case the encoder adjusts the mode. */
8129         if (!pipe_config->port_clock)
8130                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8131
8132         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8133         if (ret < 0) {
8134                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8135                 goto fail;
8136         }
8137
8138         if (ret == RETRY) {
8139                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8140                         ret = -EINVAL;
8141                         goto fail;
8142                 }
8143
8144                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8145                 retry = false;
8146                 goto encoder_retry;
8147         }
8148
8149         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8150         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8151                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8152
8153         return pipe_config;
8154 fail:
8155         kfree(pipe_config);
8156         return ERR_PTR(ret);
8157 }
8158
8159 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8160  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8161 static void
8162 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8163                              unsigned *prepare_pipes, unsigned *disable_pipes)
8164 {
8165         struct intel_crtc *intel_crtc;
8166         struct drm_device *dev = crtc->dev;
8167         struct intel_encoder *encoder;
8168         struct intel_connector *connector;
8169         struct drm_crtc *tmp_crtc;
8170
8171         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8172
8173         /* Check which crtcs have changed outputs connected to them, these need
8174          * to be part of the prepare_pipes mask. We don't (yet) support global
8175          * modeset across multiple crtcs, so modeset_pipes will only have one
8176          * bit set at most. */
8177         list_for_each_entry(connector, &dev->mode_config.connector_list,
8178                             base.head) {
8179                 if (connector->base.encoder == &connector->new_encoder->base)
8180                         continue;
8181
8182                 if (connector->base.encoder) {
8183                         tmp_crtc = connector->base.encoder->crtc;
8184
8185                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8186                 }
8187
8188                 if (connector->new_encoder)
8189                         *prepare_pipes |=
8190                                 1 << connector->new_encoder->new_crtc->pipe;
8191         }
8192
8193         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8194                             base.head) {
8195                 if (encoder->base.crtc == &encoder->new_crtc->base)
8196                         continue;
8197
8198                 if (encoder->base.crtc) {
8199                         tmp_crtc = encoder->base.crtc;
8200
8201                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8202                 }
8203
8204                 if (encoder->new_crtc)
8205                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8206         }
8207
8208         /* Check for any pipes that will be fully disabled ... */
8209         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8210                             base.head) {
8211                 bool used = false;
8212
8213                 /* Don't try to disable disabled crtcs. */
8214                 if (!intel_crtc->base.enabled)
8215                         continue;
8216
8217                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8218                                     base.head) {
8219                         if (encoder->new_crtc == intel_crtc)
8220                                 used = true;
8221                 }
8222
8223                 if (!used)
8224                         *disable_pipes |= 1 << intel_crtc->pipe;
8225         }
8226
8227
8228         /* set_mode is also used to update properties on life display pipes. */
8229         intel_crtc = to_intel_crtc(crtc);
8230         if (crtc->enabled)
8231                 *prepare_pipes |= 1 << intel_crtc->pipe;
8232
8233         /*
8234          * For simplicity do a full modeset on any pipe where the output routing
8235          * changed. We could be more clever, but that would require us to be
8236          * more careful with calling the relevant encoder->mode_set functions.
8237          */
8238         if (*prepare_pipes)
8239                 *modeset_pipes = *prepare_pipes;
8240
8241         /* ... and mask these out. */
8242         *modeset_pipes &= ~(*disable_pipes);
8243         *prepare_pipes &= ~(*disable_pipes);
8244
8245         /*
8246          * HACK: We don't (yet) fully support global modesets. intel_set_config
8247          * obies this rule, but the modeset restore mode of
8248          * intel_modeset_setup_hw_state does not.
8249          */
8250         *modeset_pipes &= 1 << intel_crtc->pipe;
8251         *prepare_pipes &= 1 << intel_crtc->pipe;
8252
8253         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8254                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8255 }
8256
8257 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8258 {
8259         struct drm_encoder *encoder;
8260         struct drm_device *dev = crtc->dev;
8261
8262         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8263                 if (encoder->crtc == crtc)
8264                         return true;
8265
8266         return false;
8267 }
8268
8269 static void
8270 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8271 {
8272         struct intel_encoder *intel_encoder;
8273         struct intel_crtc *intel_crtc;
8274         struct drm_connector *connector;
8275
8276         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8277                             base.head) {
8278                 if (!intel_encoder->base.crtc)
8279                         continue;
8280
8281                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8282
8283                 if (prepare_pipes & (1 << intel_crtc->pipe))
8284                         intel_encoder->connectors_active = false;
8285         }
8286
8287         intel_modeset_commit_output_state(dev);
8288
8289         /* Update computed state. */
8290         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8291                             base.head) {
8292                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8293         }
8294
8295         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8296                 if (!connector->encoder || !connector->encoder->crtc)
8297                         continue;
8298
8299                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8300
8301                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8302                         struct drm_property *dpms_property =
8303                                 dev->mode_config.dpms_property;
8304
8305                         connector->dpms = DRM_MODE_DPMS_ON;
8306                         drm_object_property_set_value(&connector->base,
8307                                                          dpms_property,
8308                                                          DRM_MODE_DPMS_ON);
8309
8310                         intel_encoder = to_intel_encoder(connector->encoder);
8311                         intel_encoder->connectors_active = true;
8312                 }
8313         }
8314
8315 }
8316
8317 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8318                                     struct intel_crtc_config *new)
8319 {
8320         int clock1, clock2, diff;
8321
8322         clock1 = cur->adjusted_mode.clock;
8323         clock2 = new->adjusted_mode.clock;
8324
8325         if (clock1 == clock2)
8326                 return true;
8327
8328         if (!clock1 || !clock2)
8329                 return false;
8330
8331         diff = abs(clock1 - clock2);
8332
8333         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8334                 return true;
8335
8336         return false;
8337 }
8338
8339 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8340         list_for_each_entry((intel_crtc), \
8341                             &(dev)->mode_config.crtc_list, \
8342                             base.head) \
8343                 if (mask & (1 <<(intel_crtc)->pipe))
8344
8345 static bool
8346 intel_pipe_config_compare(struct drm_device *dev,
8347                           struct intel_crtc_config *current_config,
8348                           struct intel_crtc_config *pipe_config)
8349 {
8350 #define PIPE_CONF_CHECK_X(name) \
8351         if (current_config->name != pipe_config->name) { \
8352                 DRM_ERROR("mismatch in " #name " " \
8353                           "(expected 0x%08x, found 0x%08x)\n", \
8354                           current_config->name, \
8355                           pipe_config->name); \
8356                 return false; \
8357         }
8358
8359 #define PIPE_CONF_CHECK_I(name) \
8360         if (current_config->name != pipe_config->name) { \
8361                 DRM_ERROR("mismatch in " #name " " \
8362                           "(expected %i, found %i)\n", \
8363                           current_config->name, \
8364                           pipe_config->name); \
8365                 return false; \
8366         }
8367
8368 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8369         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8370                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8371                           "(expected %i, found %i)\n", \
8372                           current_config->name & (mask), \
8373                           pipe_config->name & (mask)); \
8374                 return false; \
8375         }
8376
8377 #define PIPE_CONF_QUIRK(quirk)  \
8378         ((current_config->quirks | pipe_config->quirks) & (quirk))
8379
8380         PIPE_CONF_CHECK_I(cpu_transcoder);
8381
8382         PIPE_CONF_CHECK_I(has_pch_encoder);
8383         PIPE_CONF_CHECK_I(fdi_lanes);
8384         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8385         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8386         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8387         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8388         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8389
8390         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8391         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8392         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8393         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8394         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8395         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8396
8397         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8398         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8399         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8400         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8401         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8402         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8403
8404         PIPE_CONF_CHECK_I(pixel_multiplier);
8405
8406         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8407                               DRM_MODE_FLAG_INTERLACE);
8408
8409         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8410                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8411                                       DRM_MODE_FLAG_PHSYNC);
8412                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8413                                       DRM_MODE_FLAG_NHSYNC);
8414                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8415                                       DRM_MODE_FLAG_PVSYNC);
8416                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8417                                       DRM_MODE_FLAG_NVSYNC);
8418         }
8419
8420         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8421         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8422
8423         PIPE_CONF_CHECK_I(gmch_pfit.control);
8424         /* pfit ratios are autocomputed by the hw on gen4+ */
8425         if (INTEL_INFO(dev)->gen < 4)
8426                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8427         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8428         PIPE_CONF_CHECK_I(pch_pfit.pos);
8429         PIPE_CONF_CHECK_I(pch_pfit.size);
8430
8431         PIPE_CONF_CHECK_I(ips_enabled);
8432
8433         PIPE_CONF_CHECK_I(shared_dpll);
8434         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8435         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8436         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8437         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8438
8439 #undef PIPE_CONF_CHECK_X
8440 #undef PIPE_CONF_CHECK_I
8441 #undef PIPE_CONF_CHECK_FLAGS
8442 #undef PIPE_CONF_QUIRK
8443
8444         if (!IS_HASWELL(dev)) {
8445                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8446                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8447                                   current_config->adjusted_mode.clock,
8448                                   pipe_config->adjusted_mode.clock);
8449                         return false;
8450                 }
8451         }
8452
8453         return true;
8454 }
8455
8456 static void
8457 check_connector_state(struct drm_device *dev)
8458 {
8459         struct intel_connector *connector;
8460
8461         list_for_each_entry(connector, &dev->mode_config.connector_list,
8462                             base.head) {
8463                 /* This also checks the encoder/connector hw state with the
8464                  * ->get_hw_state callbacks. */
8465                 intel_connector_check_state(connector);
8466
8467                 WARN(&connector->new_encoder->base != connector->base.encoder,
8468                      "connector's staged encoder doesn't match current encoder\n");
8469         }
8470 }
8471
8472 static void
8473 check_encoder_state(struct drm_device *dev)
8474 {
8475         struct intel_encoder *encoder;
8476         struct intel_connector *connector;
8477
8478         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8479                             base.head) {
8480                 bool enabled = false;
8481                 bool active = false;
8482                 enum pipe pipe, tracked_pipe;
8483
8484                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8485                               encoder->base.base.id,
8486                               drm_get_encoder_name(&encoder->base));
8487
8488                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8489                      "encoder's stage crtc doesn't match current crtc\n");
8490                 WARN(encoder->connectors_active && !encoder->base.crtc,
8491                      "encoder's active_connectors set, but no crtc\n");
8492
8493                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8494                                     base.head) {
8495                         if (connector->base.encoder != &encoder->base)
8496                                 continue;
8497                         enabled = true;
8498                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8499                                 active = true;
8500                 }
8501                 WARN(!!encoder->base.crtc != enabled,
8502                      "encoder's enabled state mismatch "
8503                      "(expected %i, found %i)\n",
8504                      !!encoder->base.crtc, enabled);
8505                 WARN(active && !encoder->base.crtc,
8506                      "active encoder with no crtc\n");
8507
8508                 WARN(encoder->connectors_active != active,
8509                      "encoder's computed active state doesn't match tracked active state "
8510                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8511
8512                 active = encoder->get_hw_state(encoder, &pipe);
8513                 WARN(active != encoder->connectors_active,
8514                      "encoder's hw state doesn't match sw tracking "
8515                      "(expected %i, found %i)\n",
8516                      encoder->connectors_active, active);
8517
8518                 if (!encoder->base.crtc)
8519                         continue;
8520
8521                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8522                 WARN(active && pipe != tracked_pipe,
8523                      "active encoder's pipe doesn't match"
8524                      "(expected %i, found %i)\n",
8525                      tracked_pipe, pipe);
8526
8527         }
8528 }
8529
8530 static void
8531 check_crtc_state(struct drm_device *dev)
8532 {
8533         drm_i915_private_t *dev_priv = dev->dev_private;
8534         struct intel_crtc *crtc;
8535         struct intel_encoder *encoder;
8536         struct intel_crtc_config pipe_config;
8537
8538         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8539                             base.head) {
8540                 bool enabled = false;
8541                 bool active = false;
8542
8543                 memset(&pipe_config, 0, sizeof(pipe_config));
8544
8545                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8546                               crtc->base.base.id);
8547
8548                 WARN(crtc->active && !crtc->base.enabled,
8549                      "active crtc, but not enabled in sw tracking\n");
8550
8551                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8552                                     base.head) {
8553                         if (encoder->base.crtc != &crtc->base)
8554                                 continue;
8555                         enabled = true;
8556                         if (encoder->connectors_active)
8557                                 active = true;
8558                 }
8559
8560                 WARN(active != crtc->active,
8561                      "crtc's computed active state doesn't match tracked active state "
8562                      "(expected %i, found %i)\n", active, crtc->active);
8563                 WARN(enabled != crtc->base.enabled,
8564                      "crtc's computed enabled state doesn't match tracked enabled state "
8565                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8566
8567                 active = dev_priv->display.get_pipe_config(crtc,
8568                                                            &pipe_config);
8569
8570                 /* hw state is inconsistent with the pipe A quirk */
8571                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8572                         active = crtc->active;
8573
8574                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8575                                     base.head) {
8576                         if (encoder->base.crtc != &crtc->base)
8577                                 continue;
8578                         if (encoder->get_config)
8579                                 encoder->get_config(encoder, &pipe_config);
8580                 }
8581
8582                 if (dev_priv->display.get_clock)
8583                         dev_priv->display.get_clock(crtc, &pipe_config);
8584
8585                 WARN(crtc->active != active,
8586                      "crtc active state doesn't match with hw state "
8587                      "(expected %i, found %i)\n", crtc->active, active);
8588
8589                 if (active &&
8590                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8591                         WARN(1, "pipe state doesn't match!\n");
8592                         intel_dump_pipe_config(crtc, &pipe_config,
8593                                                "[hw state]");
8594                         intel_dump_pipe_config(crtc, &crtc->config,
8595                                                "[sw state]");
8596                 }
8597         }
8598 }
8599
8600 static void
8601 check_shared_dpll_state(struct drm_device *dev)
8602 {
8603         drm_i915_private_t *dev_priv = dev->dev_private;
8604         struct intel_crtc *crtc;
8605         struct intel_dpll_hw_state dpll_hw_state;
8606         int i;
8607
8608         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8609                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8610                 int enabled_crtcs = 0, active_crtcs = 0;
8611                 bool active;
8612
8613                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8614
8615                 DRM_DEBUG_KMS("%s\n", pll->name);
8616
8617                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8618
8619                 WARN(pll->active > pll->refcount,
8620                      "more active pll users than references: %i vs %i\n",
8621                      pll->active, pll->refcount);
8622                 WARN(pll->active && !pll->on,
8623                      "pll in active use but not on in sw tracking\n");
8624                 WARN(pll->on && !pll->active,
8625                      "pll in on but not on in use in sw tracking\n");
8626                 WARN(pll->on != active,
8627                      "pll on state mismatch (expected %i, found %i)\n",
8628                      pll->on, active);
8629
8630                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8631                                     base.head) {
8632                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8633                                 enabled_crtcs++;
8634                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8635                                 active_crtcs++;
8636                 }
8637                 WARN(pll->active != active_crtcs,
8638                      "pll active crtcs mismatch (expected %i, found %i)\n",
8639                      pll->active, active_crtcs);
8640                 WARN(pll->refcount != enabled_crtcs,
8641                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8642                      pll->refcount, enabled_crtcs);
8643
8644                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8645                                        sizeof(dpll_hw_state)),
8646                      "pll hw state mismatch\n");
8647         }
8648 }
8649
8650 void
8651 intel_modeset_check_state(struct drm_device *dev)
8652 {
8653         check_connector_state(dev);
8654         check_encoder_state(dev);
8655         check_crtc_state(dev);
8656         check_shared_dpll_state(dev);
8657 }
8658
8659 static int __intel_set_mode(struct drm_crtc *crtc,
8660                             struct drm_display_mode *mode,
8661                             int x, int y, struct drm_framebuffer *fb)
8662 {
8663         struct drm_device *dev = crtc->dev;
8664         drm_i915_private_t *dev_priv = dev->dev_private;
8665         struct drm_display_mode *saved_mode, *saved_hwmode;
8666         struct intel_crtc_config *pipe_config = NULL;
8667         struct intel_crtc *intel_crtc;
8668         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8669         int ret = 0;
8670
8671         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8672         if (!saved_mode)
8673                 return -ENOMEM;
8674         saved_hwmode = saved_mode + 1;
8675
8676         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8677                                      &prepare_pipes, &disable_pipes);
8678
8679         *saved_hwmode = crtc->hwmode;
8680         *saved_mode = crtc->mode;
8681
8682         /* Hack: Because we don't (yet) support global modeset on multiple
8683          * crtcs, we don't keep track of the new mode for more than one crtc.
8684          * Hence simply check whether any bit is set in modeset_pipes in all the
8685          * pieces of code that are not yet converted to deal with mutliple crtcs
8686          * changing their mode at the same time. */
8687         if (modeset_pipes) {
8688                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8689                 if (IS_ERR(pipe_config)) {
8690                         ret = PTR_ERR(pipe_config);
8691                         pipe_config = NULL;
8692
8693                         goto out;
8694                 }
8695                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8696                                        "[modeset]");
8697         }
8698
8699         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8700                 intel_crtc_disable(&intel_crtc->base);
8701
8702         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8703                 if (intel_crtc->base.enabled)
8704                         dev_priv->display.crtc_disable(&intel_crtc->base);
8705         }
8706
8707         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8708          * to set it here already despite that we pass it down the callchain.
8709          */
8710         if (modeset_pipes) {
8711                 crtc->mode = *mode;
8712                 /* mode_set/enable/disable functions rely on a correct pipe
8713                  * config. */
8714                 to_intel_crtc(crtc)->config = *pipe_config;
8715         }
8716
8717         /* Only after disabling all output pipelines that will be changed can we
8718          * update the the output configuration. */
8719         intel_modeset_update_state(dev, prepare_pipes);
8720
8721         if (dev_priv->display.modeset_global_resources)
8722                 dev_priv->display.modeset_global_resources(dev);
8723
8724         /* Set up the DPLL and any encoders state that needs to adjust or depend
8725          * on the DPLL.
8726          */
8727         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8728                 ret = intel_crtc_mode_set(&intel_crtc->base,
8729                                           x, y, fb);
8730                 if (ret)
8731                         goto done;
8732         }
8733
8734         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8735         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8736                 dev_priv->display.crtc_enable(&intel_crtc->base);
8737
8738         if (modeset_pipes) {
8739                 /* Store real post-adjustment hardware mode. */
8740                 crtc->hwmode = pipe_config->adjusted_mode;
8741
8742                 /* Calculate and store various constants which
8743                  * are later needed by vblank and swap-completion
8744                  * timestamping. They are derived from true hwmode.
8745                  */
8746                 drm_calc_timestamping_constants(crtc);
8747         }
8748
8749         /* FIXME: add subpixel order */
8750 done:
8751         if (ret && crtc->enabled) {
8752                 crtc->hwmode = *saved_hwmode;
8753                 crtc->mode = *saved_mode;
8754         }
8755
8756 out:
8757         kfree(pipe_config);
8758         kfree(saved_mode);
8759         return ret;
8760 }
8761
8762 int intel_set_mode(struct drm_crtc *crtc,
8763                      struct drm_display_mode *mode,
8764                      int x, int y, struct drm_framebuffer *fb)
8765 {
8766         int ret;
8767
8768         ret = __intel_set_mode(crtc, mode, x, y, fb);
8769
8770         if (ret == 0)
8771                 intel_modeset_check_state(crtc->dev);
8772
8773         return ret;
8774 }
8775
8776 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8777 {
8778         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8779 }
8780
8781 #undef for_each_intel_crtc_masked
8782
8783 static void intel_set_config_free(struct intel_set_config *config)
8784 {
8785         if (!config)
8786                 return;
8787
8788         kfree(config->save_connector_encoders);
8789         kfree(config->save_encoder_crtcs);
8790         kfree(config);
8791 }
8792
8793 static int intel_set_config_save_state(struct drm_device *dev,
8794                                        struct intel_set_config *config)
8795 {
8796         struct drm_encoder *encoder;
8797         struct drm_connector *connector;
8798         int count;
8799
8800         config->save_encoder_crtcs =
8801                 kcalloc(dev->mode_config.num_encoder,
8802                         sizeof(struct drm_crtc *), GFP_KERNEL);
8803         if (!config->save_encoder_crtcs)
8804                 return -ENOMEM;
8805
8806         config->save_connector_encoders =
8807                 kcalloc(dev->mode_config.num_connector,
8808                         sizeof(struct drm_encoder *), GFP_KERNEL);
8809         if (!config->save_connector_encoders)
8810                 return -ENOMEM;
8811
8812         /* Copy data. Note that driver private data is not affected.
8813          * Should anything bad happen only the expected state is
8814          * restored, not the drivers personal bookkeeping.
8815          */
8816         count = 0;
8817         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8818                 config->save_encoder_crtcs[count++] = encoder->crtc;
8819         }
8820
8821         count = 0;
8822         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8823                 config->save_connector_encoders[count++] = connector->encoder;
8824         }
8825
8826         return 0;
8827 }
8828
8829 static void intel_set_config_restore_state(struct drm_device *dev,
8830                                            struct intel_set_config *config)
8831 {
8832         struct intel_encoder *encoder;
8833         struct intel_connector *connector;
8834         int count;
8835
8836         count = 0;
8837         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8838                 encoder->new_crtc =
8839                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8840         }
8841
8842         count = 0;
8843         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8844                 connector->new_encoder =
8845                         to_intel_encoder(config->save_connector_encoders[count++]);
8846         }
8847 }
8848
8849 static bool
8850 is_crtc_connector_off(struct drm_mode_set *set)
8851 {
8852         int i;
8853
8854         if (set->num_connectors == 0)
8855                 return false;
8856
8857         if (WARN_ON(set->connectors == NULL))
8858                 return false;
8859
8860         for (i = 0; i < set->num_connectors; i++)
8861                 if (set->connectors[i]->encoder &&
8862                     set->connectors[i]->encoder->crtc == set->crtc &&
8863                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8864                         return true;
8865
8866         return false;
8867 }
8868
8869 static void
8870 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8871                                       struct intel_set_config *config)
8872 {
8873
8874         /* We should be able to check here if the fb has the same properties
8875          * and then just flip_or_move it */
8876         if (is_crtc_connector_off(set)) {
8877                 config->mode_changed = true;
8878         } else if (set->crtc->fb != set->fb) {
8879                 /* If we have no fb then treat it as a full mode set */
8880                 if (set->crtc->fb == NULL) {
8881                         struct intel_crtc *intel_crtc =
8882                                 to_intel_crtc(set->crtc);
8883
8884                         if (intel_crtc->active && i915_fastboot) {
8885                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8886                                 config->fb_changed = true;
8887                         } else {
8888                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8889                                 config->mode_changed = true;
8890                         }
8891                 } else if (set->fb == NULL) {
8892                         config->mode_changed = true;
8893                 } else if (set->fb->pixel_format !=
8894                            set->crtc->fb->pixel_format) {
8895                         config->mode_changed = true;
8896                 } else {
8897                         config->fb_changed = true;
8898                 }
8899         }
8900
8901         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8902                 config->fb_changed = true;
8903
8904         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8905                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8906                 drm_mode_debug_printmodeline(&set->crtc->mode);
8907                 drm_mode_debug_printmodeline(set->mode);
8908                 config->mode_changed = true;
8909         }
8910 }
8911
8912 static int
8913 intel_modeset_stage_output_state(struct drm_device *dev,
8914                                  struct drm_mode_set *set,
8915                                  struct intel_set_config *config)
8916 {
8917         struct drm_crtc *new_crtc;
8918         struct intel_connector *connector;
8919         struct intel_encoder *encoder;
8920         int count, ro;
8921
8922         /* The upper layers ensure that we either disable a crtc or have a list
8923          * of connectors. For paranoia, double-check this. */
8924         WARN_ON(!set->fb && (set->num_connectors != 0));
8925         WARN_ON(set->fb && (set->num_connectors == 0));
8926
8927         count = 0;
8928         list_for_each_entry(connector, &dev->mode_config.connector_list,
8929                             base.head) {
8930                 /* Otherwise traverse passed in connector list and get encoders
8931                  * for them. */
8932                 for (ro = 0; ro < set->num_connectors; ro++) {
8933                         if (set->connectors[ro] == &connector->base) {
8934                                 connector->new_encoder = connector->encoder;
8935                                 break;
8936                         }
8937                 }
8938
8939                 /* If we disable the crtc, disable all its connectors. Also, if
8940                  * the connector is on the changing crtc but not on the new
8941                  * connector list, disable it. */
8942                 if ((!set->fb || ro == set->num_connectors) &&
8943                     connector->base.encoder &&
8944                     connector->base.encoder->crtc == set->crtc) {
8945                         connector->new_encoder = NULL;
8946
8947                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8948                                 connector->base.base.id,
8949                                 drm_get_connector_name(&connector->base));
8950                 }
8951
8952
8953                 if (&connector->new_encoder->base != connector->base.encoder) {
8954                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8955                         config->mode_changed = true;
8956                 }
8957         }
8958         /* connector->new_encoder is now updated for all connectors. */
8959
8960         /* Update crtc of enabled connectors. */
8961         count = 0;
8962         list_for_each_entry(connector, &dev->mode_config.connector_list,
8963                             base.head) {
8964                 if (!connector->new_encoder)
8965                         continue;
8966
8967                 new_crtc = connector->new_encoder->base.crtc;
8968
8969                 for (ro = 0; ro < set->num_connectors; ro++) {
8970                         if (set->connectors[ro] == &connector->base)
8971                                 new_crtc = set->crtc;
8972                 }
8973
8974                 /* Make sure the new CRTC will work with the encoder */
8975                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8976                                            new_crtc)) {
8977                         return -EINVAL;
8978                 }
8979                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8980
8981                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8982                         connector->base.base.id,
8983                         drm_get_connector_name(&connector->base),
8984                         new_crtc->base.id);
8985         }
8986
8987         /* Check for any encoders that needs to be disabled. */
8988         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8989                             base.head) {
8990                 list_for_each_entry(connector,
8991                                     &dev->mode_config.connector_list,
8992                                     base.head) {
8993                         if (connector->new_encoder == encoder) {
8994                                 WARN_ON(!connector->new_encoder->new_crtc);
8995
8996                                 goto next_encoder;
8997                         }
8998                 }
8999                 encoder->new_crtc = NULL;
9000 next_encoder:
9001                 /* Only now check for crtc changes so we don't miss encoders
9002                  * that will be disabled. */
9003                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9004                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9005                         config->mode_changed = true;
9006                 }
9007         }
9008         /* Now we've also updated encoder->new_crtc for all encoders. */
9009
9010         return 0;
9011 }
9012
9013 static int intel_crtc_set_config(struct drm_mode_set *set)
9014 {
9015         struct drm_device *dev;
9016         struct drm_mode_set save_set;
9017         struct intel_set_config *config;
9018         int ret;
9019
9020         BUG_ON(!set);
9021         BUG_ON(!set->crtc);
9022         BUG_ON(!set->crtc->helper_private);
9023
9024         /* Enforce sane interface api - has been abused by the fb helper. */
9025         BUG_ON(!set->mode && set->fb);
9026         BUG_ON(set->fb && set->num_connectors == 0);
9027
9028         if (set->fb) {
9029                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9030                                 set->crtc->base.id, set->fb->base.id,
9031                                 (int)set->num_connectors, set->x, set->y);
9032         } else {
9033                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9034         }
9035
9036         dev = set->crtc->dev;
9037
9038         ret = -ENOMEM;
9039         config = kzalloc(sizeof(*config), GFP_KERNEL);
9040         if (!config)
9041                 goto out_config;
9042
9043         ret = intel_set_config_save_state(dev, config);
9044         if (ret)
9045                 goto out_config;
9046
9047         save_set.crtc = set->crtc;
9048         save_set.mode = &set->crtc->mode;
9049         save_set.x = set->crtc->x;
9050         save_set.y = set->crtc->y;
9051         save_set.fb = set->crtc->fb;
9052
9053         /* Compute whether we need a full modeset, only an fb base update or no
9054          * change at all. In the future we might also check whether only the
9055          * mode changed, e.g. for LVDS where we only change the panel fitter in
9056          * such cases. */
9057         intel_set_config_compute_mode_changes(set, config);
9058
9059         ret = intel_modeset_stage_output_state(dev, set, config);
9060         if (ret)
9061                 goto fail;
9062
9063         if (config->mode_changed) {
9064                 ret = intel_set_mode(set->crtc, set->mode,
9065                                      set->x, set->y, set->fb);
9066         } else if (config->fb_changed) {
9067                 intel_crtc_wait_for_pending_flips(set->crtc);
9068
9069                 ret = intel_pipe_set_base(set->crtc,
9070                                           set->x, set->y, set->fb);
9071         }
9072
9073         if (ret) {
9074                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9075                               set->crtc->base.id, ret);
9076 fail:
9077                 intel_set_config_restore_state(dev, config);
9078
9079                 /* Try to restore the config */
9080                 if (config->mode_changed &&
9081                     intel_set_mode(save_set.crtc, save_set.mode,
9082                                    save_set.x, save_set.y, save_set.fb))
9083                         DRM_ERROR("failed to restore config after modeset failure\n");
9084         }
9085
9086 out_config:
9087         intel_set_config_free(config);
9088         return ret;
9089 }
9090
9091 static const struct drm_crtc_funcs intel_crtc_funcs = {
9092         .cursor_set = intel_crtc_cursor_set,
9093         .cursor_move = intel_crtc_cursor_move,
9094         .gamma_set = intel_crtc_gamma_set,
9095         .set_config = intel_crtc_set_config,
9096         .destroy = intel_crtc_destroy,
9097         .page_flip = intel_crtc_page_flip,
9098 };
9099
9100 static void intel_cpu_pll_init(struct drm_device *dev)
9101 {
9102         if (HAS_DDI(dev))
9103                 intel_ddi_pll_init(dev);
9104 }
9105
9106 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9107                                       struct intel_shared_dpll *pll,
9108                                       struct intel_dpll_hw_state *hw_state)
9109 {
9110         uint32_t val;
9111
9112         val = I915_READ(PCH_DPLL(pll->id));
9113         hw_state->dpll = val;
9114         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9115         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9116
9117         return val & DPLL_VCO_ENABLE;
9118 }
9119
9120 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9121                                   struct intel_shared_dpll *pll)
9122 {
9123         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9124         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9125 }
9126
9127 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9128                                 struct intel_shared_dpll *pll)
9129 {
9130         /* PCH refclock must be enabled first */
9131         assert_pch_refclk_enabled(dev_priv);
9132
9133         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9134
9135         /* Wait for the clocks to stabilize. */
9136         POSTING_READ(PCH_DPLL(pll->id));
9137         udelay(150);
9138
9139         /* The pixel multiplier can only be updated once the
9140          * DPLL is enabled and the clocks are stable.
9141          *
9142          * So write it again.
9143          */
9144         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9145         POSTING_READ(PCH_DPLL(pll->id));
9146         udelay(200);
9147 }
9148
9149 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9150                                  struct intel_shared_dpll *pll)
9151 {
9152         struct drm_device *dev = dev_priv->dev;
9153         struct intel_crtc *crtc;
9154
9155         /* Make sure no transcoder isn't still depending on us. */
9156         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9157                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9158                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9159         }
9160
9161         I915_WRITE(PCH_DPLL(pll->id), 0);
9162         POSTING_READ(PCH_DPLL(pll->id));
9163         udelay(200);
9164 }
9165
9166 static char *ibx_pch_dpll_names[] = {
9167         "PCH DPLL A",
9168         "PCH DPLL B",
9169 };
9170
9171 static void ibx_pch_dpll_init(struct drm_device *dev)
9172 {
9173         struct drm_i915_private *dev_priv = dev->dev_private;
9174         int i;
9175
9176         dev_priv->num_shared_dpll = 2;
9177
9178         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9179                 dev_priv->shared_dplls[i].id = i;
9180                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9181                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9182                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9183                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9184                 dev_priv->shared_dplls[i].get_hw_state =
9185                         ibx_pch_dpll_get_hw_state;
9186         }
9187 }
9188
9189 static void intel_shared_dpll_init(struct drm_device *dev)
9190 {
9191         struct drm_i915_private *dev_priv = dev->dev_private;
9192
9193         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9194                 ibx_pch_dpll_init(dev);
9195         else
9196                 dev_priv->num_shared_dpll = 0;
9197
9198         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9199         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9200                       dev_priv->num_shared_dpll);
9201 }
9202
9203 static void intel_crtc_init(struct drm_device *dev, int pipe)
9204 {
9205         drm_i915_private_t *dev_priv = dev->dev_private;
9206         struct intel_crtc *intel_crtc;
9207         int i;
9208
9209         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9210         if (intel_crtc == NULL)
9211                 return;
9212
9213         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9214
9215         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9216         for (i = 0; i < 256; i++) {
9217                 intel_crtc->lut_r[i] = i;
9218                 intel_crtc->lut_g[i] = i;
9219                 intel_crtc->lut_b[i] = i;
9220         }
9221
9222         /* Swap pipes & planes for FBC on pre-965 */
9223         intel_crtc->pipe = pipe;
9224         intel_crtc->plane = pipe;
9225         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9226                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9227                 intel_crtc->plane = !pipe;
9228         }
9229
9230         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9231                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9232         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9233         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9234
9235         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9236 }
9237
9238 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9239                                 struct drm_file *file)
9240 {
9241         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9242         struct drm_mode_object *drmmode_obj;
9243         struct intel_crtc *crtc;
9244
9245         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9246                 return -ENODEV;
9247
9248         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9249                         DRM_MODE_OBJECT_CRTC);
9250
9251         if (!drmmode_obj) {
9252                 DRM_ERROR("no such CRTC id\n");
9253                 return -EINVAL;
9254         }
9255
9256         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9257         pipe_from_crtc_id->pipe = crtc->pipe;
9258
9259         return 0;
9260 }
9261
9262 static int intel_encoder_clones(struct intel_encoder *encoder)
9263 {
9264         struct drm_device *dev = encoder->base.dev;
9265         struct intel_encoder *source_encoder;
9266         int index_mask = 0;
9267         int entry = 0;
9268
9269         list_for_each_entry(source_encoder,
9270                             &dev->mode_config.encoder_list, base.head) {
9271
9272                 if (encoder == source_encoder)
9273                         index_mask |= (1 << entry);
9274
9275                 /* Intel hw has only one MUX where enocoders could be cloned. */
9276                 if (encoder->cloneable && source_encoder->cloneable)
9277                         index_mask |= (1 << entry);
9278
9279                 entry++;
9280         }
9281
9282         return index_mask;
9283 }
9284
9285 static bool has_edp_a(struct drm_device *dev)
9286 {
9287         struct drm_i915_private *dev_priv = dev->dev_private;
9288
9289         if (!IS_MOBILE(dev))
9290                 return false;
9291
9292         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9293                 return false;
9294
9295         if (IS_GEN5(dev) &&
9296             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9297                 return false;
9298
9299         return true;
9300 }
9301
9302 static void intel_setup_outputs(struct drm_device *dev)
9303 {
9304         struct drm_i915_private *dev_priv = dev->dev_private;
9305         struct intel_encoder *encoder;
9306         bool dpd_is_edp = false;
9307
9308         intel_lvds_init(dev);
9309
9310         if (!IS_ULT(dev))
9311                 intel_crt_init(dev);
9312
9313         if (HAS_DDI(dev)) {
9314                 int found;
9315
9316                 /* Haswell uses DDI functions to detect digital outputs */
9317                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9318                 /* DDI A only supports eDP */
9319                 if (found)
9320                         intel_ddi_init(dev, PORT_A);
9321
9322                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9323                  * register */
9324                 found = I915_READ(SFUSE_STRAP);
9325
9326                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9327                         intel_ddi_init(dev, PORT_B);
9328                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9329                         intel_ddi_init(dev, PORT_C);
9330                 if (found & SFUSE_STRAP_DDID_DETECTED)
9331                         intel_ddi_init(dev, PORT_D);
9332         } else if (HAS_PCH_SPLIT(dev)) {
9333                 int found;
9334                 dpd_is_edp = intel_dpd_is_edp(dev);
9335
9336                 if (has_edp_a(dev))
9337                         intel_dp_init(dev, DP_A, PORT_A);
9338
9339                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9340                         /* PCH SDVOB multiplex with HDMIB */
9341                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9342                         if (!found)
9343                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9344                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9345                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9346                 }
9347
9348                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9349                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9350
9351                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9352                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9353
9354                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9355                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9356
9357                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9358                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9359         } else if (IS_VALLEYVIEW(dev)) {
9360                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9361                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9362                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9363
9364                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9365                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9366                                         PORT_B);
9367                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9368                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9369                 }
9370         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9371                 bool found = false;
9372
9373                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9374                         DRM_DEBUG_KMS("probing SDVOB\n");
9375                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9376                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9377                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9378                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9379                         }
9380
9381                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9382                                 intel_dp_init(dev, DP_B, PORT_B);
9383                 }
9384
9385                 /* Before G4X SDVOC doesn't have its own detect register */
9386
9387                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9388                         DRM_DEBUG_KMS("probing SDVOC\n");
9389                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9390                 }
9391
9392                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9393
9394                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9395                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9396                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9397                         }
9398                         if (SUPPORTS_INTEGRATED_DP(dev))
9399                                 intel_dp_init(dev, DP_C, PORT_C);
9400                 }
9401
9402                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9403                     (I915_READ(DP_D) & DP_DETECTED))
9404                         intel_dp_init(dev, DP_D, PORT_D);
9405         } else if (IS_GEN2(dev))
9406                 intel_dvo_init(dev);
9407
9408         if (SUPPORTS_TV(dev))
9409                 intel_tv_init(dev);
9410
9411         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9412                 encoder->base.possible_crtcs = encoder->crtc_mask;
9413                 encoder->base.possible_clones =
9414                         intel_encoder_clones(encoder);
9415         }
9416
9417         intel_init_pch_refclk(dev);
9418
9419         drm_helper_move_panel_connectors_to_head(dev);
9420 }
9421
9422 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9423 {
9424         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9425
9426         drm_framebuffer_cleanup(fb);
9427         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9428
9429         kfree(intel_fb);
9430 }
9431
9432 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9433                                                 struct drm_file *file,
9434                                                 unsigned int *handle)
9435 {
9436         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9437         struct drm_i915_gem_object *obj = intel_fb->obj;
9438
9439         return drm_gem_handle_create(file, &obj->base, handle);
9440 }
9441
9442 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9443         .destroy = intel_user_framebuffer_destroy,
9444         .create_handle = intel_user_framebuffer_create_handle,
9445 };
9446
9447 int intel_framebuffer_init(struct drm_device *dev,
9448                            struct intel_framebuffer *intel_fb,
9449                            struct drm_mode_fb_cmd2 *mode_cmd,
9450                            struct drm_i915_gem_object *obj)
9451 {
9452         int pitch_limit;
9453         int ret;
9454
9455         if (obj->tiling_mode == I915_TILING_Y) {
9456                 DRM_DEBUG("hardware does not support tiling Y\n");
9457                 return -EINVAL;
9458         }
9459
9460         if (mode_cmd->pitches[0] & 63) {
9461                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9462                           mode_cmd->pitches[0]);
9463                 return -EINVAL;
9464         }
9465
9466         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9467                 pitch_limit = 32*1024;
9468         } else if (INTEL_INFO(dev)->gen >= 4) {
9469                 if (obj->tiling_mode)
9470                         pitch_limit = 16*1024;
9471                 else
9472                         pitch_limit = 32*1024;
9473         } else if (INTEL_INFO(dev)->gen >= 3) {
9474                 if (obj->tiling_mode)
9475                         pitch_limit = 8*1024;
9476                 else
9477                         pitch_limit = 16*1024;
9478         } else
9479                 /* XXX DSPC is limited to 4k tiled */
9480                 pitch_limit = 8*1024;
9481
9482         if (mode_cmd->pitches[0] > pitch_limit) {
9483                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9484                           obj->tiling_mode ? "tiled" : "linear",
9485                           mode_cmd->pitches[0], pitch_limit);
9486                 return -EINVAL;
9487         }
9488
9489         if (obj->tiling_mode != I915_TILING_NONE &&
9490             mode_cmd->pitches[0] != obj->stride) {
9491                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9492                           mode_cmd->pitches[0], obj->stride);
9493                 return -EINVAL;
9494         }
9495
9496         /* Reject formats not supported by any plane early. */
9497         switch (mode_cmd->pixel_format) {
9498         case DRM_FORMAT_C8:
9499         case DRM_FORMAT_RGB565:
9500         case DRM_FORMAT_XRGB8888:
9501         case DRM_FORMAT_ARGB8888:
9502                 break;
9503         case DRM_FORMAT_XRGB1555:
9504         case DRM_FORMAT_ARGB1555:
9505                 if (INTEL_INFO(dev)->gen > 3) {
9506                         DRM_DEBUG("unsupported pixel format: %s\n",
9507                                   drm_get_format_name(mode_cmd->pixel_format));
9508                         return -EINVAL;
9509                 }
9510                 break;
9511         case DRM_FORMAT_XBGR8888:
9512         case DRM_FORMAT_ABGR8888:
9513         case DRM_FORMAT_XRGB2101010:
9514         case DRM_FORMAT_ARGB2101010:
9515         case DRM_FORMAT_XBGR2101010:
9516         case DRM_FORMAT_ABGR2101010:
9517                 if (INTEL_INFO(dev)->gen < 4) {
9518                         DRM_DEBUG("unsupported pixel format: %s\n",
9519                                   drm_get_format_name(mode_cmd->pixel_format));
9520                         return -EINVAL;
9521                 }
9522                 break;
9523         case DRM_FORMAT_YUYV:
9524         case DRM_FORMAT_UYVY:
9525         case DRM_FORMAT_YVYU:
9526         case DRM_FORMAT_VYUY:
9527                 if (INTEL_INFO(dev)->gen < 5) {
9528                         DRM_DEBUG("unsupported pixel format: %s\n",
9529                                   drm_get_format_name(mode_cmd->pixel_format));
9530                         return -EINVAL;
9531                 }
9532                 break;
9533         default:
9534                 DRM_DEBUG("unsupported pixel format: %s\n",
9535                           drm_get_format_name(mode_cmd->pixel_format));
9536                 return -EINVAL;
9537         }
9538
9539         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9540         if (mode_cmd->offsets[0] != 0)
9541                 return -EINVAL;
9542
9543         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9544         intel_fb->obj = obj;
9545
9546         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9547         if (ret) {
9548                 DRM_ERROR("framebuffer init failed %d\n", ret);
9549                 return ret;
9550         }
9551
9552         return 0;
9553 }
9554
9555 static struct drm_framebuffer *
9556 intel_user_framebuffer_create(struct drm_device *dev,
9557                               struct drm_file *filp,
9558                               struct drm_mode_fb_cmd2 *mode_cmd)
9559 {
9560         struct drm_i915_gem_object *obj;
9561
9562         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9563                                                 mode_cmd->handles[0]));
9564         if (&obj->base == NULL)
9565                 return ERR_PTR(-ENOENT);
9566
9567         return intel_framebuffer_create(dev, mode_cmd, obj);
9568 }
9569
9570 static const struct drm_mode_config_funcs intel_mode_funcs = {
9571         .fb_create = intel_user_framebuffer_create,
9572         .output_poll_changed = intel_fb_output_poll_changed,
9573 };
9574
9575 /* Set up chip specific display functions */
9576 static void intel_init_display(struct drm_device *dev)
9577 {
9578         struct drm_i915_private *dev_priv = dev->dev_private;
9579
9580         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9581                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9582         else if (IS_VALLEYVIEW(dev))
9583                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9584         else if (IS_PINEVIEW(dev))
9585                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9586         else
9587                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9588
9589         if (HAS_DDI(dev)) {
9590                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9591                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9592                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9593                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9594                 dev_priv->display.off = haswell_crtc_off;
9595                 dev_priv->display.update_plane = ironlake_update_plane;
9596         } else if (HAS_PCH_SPLIT(dev)) {
9597                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9598                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9599                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9600                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9601                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9602                 dev_priv->display.off = ironlake_crtc_off;
9603                 dev_priv->display.update_plane = ironlake_update_plane;
9604         } else if (IS_VALLEYVIEW(dev)) {
9605                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9606                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9607                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9608                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9609                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9610                 dev_priv->display.off = i9xx_crtc_off;
9611                 dev_priv->display.update_plane = i9xx_update_plane;
9612         } else {
9613                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9614                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9615                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9616                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9617                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9618                 dev_priv->display.off = i9xx_crtc_off;
9619                 dev_priv->display.update_plane = i9xx_update_plane;
9620         }
9621
9622         /* Returns the core display clock speed */
9623         if (IS_VALLEYVIEW(dev))
9624                 dev_priv->display.get_display_clock_speed =
9625                         valleyview_get_display_clock_speed;
9626         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9627                 dev_priv->display.get_display_clock_speed =
9628                         i945_get_display_clock_speed;
9629         else if (IS_I915G(dev))
9630                 dev_priv->display.get_display_clock_speed =
9631                         i915_get_display_clock_speed;
9632         else if (IS_I945GM(dev) || IS_845G(dev))
9633                 dev_priv->display.get_display_clock_speed =
9634                         i9xx_misc_get_display_clock_speed;
9635         else if (IS_PINEVIEW(dev))
9636                 dev_priv->display.get_display_clock_speed =
9637                         pnv_get_display_clock_speed;
9638         else if (IS_I915GM(dev))
9639                 dev_priv->display.get_display_clock_speed =
9640                         i915gm_get_display_clock_speed;
9641         else if (IS_I865G(dev))
9642                 dev_priv->display.get_display_clock_speed =
9643                         i865_get_display_clock_speed;
9644         else if (IS_I85X(dev))
9645                 dev_priv->display.get_display_clock_speed =
9646                         i855_get_display_clock_speed;
9647         else /* 852, 830 */
9648                 dev_priv->display.get_display_clock_speed =
9649                         i830_get_display_clock_speed;
9650
9651         if (HAS_PCH_SPLIT(dev)) {
9652                 if (IS_GEN5(dev)) {
9653                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9654                         dev_priv->display.write_eld = ironlake_write_eld;
9655                 } else if (IS_GEN6(dev)) {
9656                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9657                         dev_priv->display.write_eld = ironlake_write_eld;
9658                 } else if (IS_IVYBRIDGE(dev)) {
9659                         /* FIXME: detect B0+ stepping and use auto training */
9660                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9661                         dev_priv->display.write_eld = ironlake_write_eld;
9662                         dev_priv->display.modeset_global_resources =
9663                                 ivb_modeset_global_resources;
9664                 } else if (IS_HASWELL(dev)) {
9665                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9666                         dev_priv->display.write_eld = haswell_write_eld;
9667                         dev_priv->display.modeset_global_resources =
9668                                 haswell_modeset_global_resources;
9669                 }
9670         } else if (IS_G4X(dev)) {
9671                 dev_priv->display.write_eld = g4x_write_eld;
9672         }
9673
9674         /* Default just returns -ENODEV to indicate unsupported */
9675         dev_priv->display.queue_flip = intel_default_queue_flip;
9676
9677         switch (INTEL_INFO(dev)->gen) {
9678         case 2:
9679                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9680                 break;
9681
9682         case 3:
9683                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9684                 break;
9685
9686         case 4:
9687         case 5:
9688                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9689                 break;
9690
9691         case 6:
9692                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9693                 break;
9694         case 7:
9695                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9696                 break;
9697         }
9698 }
9699
9700 /*
9701  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9702  * resume, or other times.  This quirk makes sure that's the case for
9703  * affected systems.
9704  */
9705 static void quirk_pipea_force(struct drm_device *dev)
9706 {
9707         struct drm_i915_private *dev_priv = dev->dev_private;
9708
9709         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9710         DRM_INFO("applying pipe a force quirk\n");
9711 }
9712
9713 /*
9714  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9715  */
9716 static void quirk_ssc_force_disable(struct drm_device *dev)
9717 {
9718         struct drm_i915_private *dev_priv = dev->dev_private;
9719         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9720         DRM_INFO("applying lvds SSC disable quirk\n");
9721 }
9722
9723 /*
9724  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9725  * brightness value
9726  */
9727 static void quirk_invert_brightness(struct drm_device *dev)
9728 {
9729         struct drm_i915_private *dev_priv = dev->dev_private;
9730         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9731         DRM_INFO("applying inverted panel brightness quirk\n");
9732 }
9733
9734 /*
9735  * Some machines (Dell XPS13) suffer broken backlight controls if
9736  * BLM_PCH_PWM_ENABLE is set.
9737  */
9738 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9739 {
9740         struct drm_i915_private *dev_priv = dev->dev_private;
9741         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9742         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9743 }
9744
9745 struct intel_quirk {
9746         int device;
9747         int subsystem_vendor;
9748         int subsystem_device;
9749         void (*hook)(struct drm_device *dev);
9750 };
9751
9752 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9753 struct intel_dmi_quirk {
9754         void (*hook)(struct drm_device *dev);
9755         const struct dmi_system_id (*dmi_id_list)[];
9756 };
9757
9758 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9759 {
9760         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9761         return 1;
9762 }
9763
9764 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9765         {
9766                 .dmi_id_list = &(const struct dmi_system_id[]) {
9767                         {
9768                                 .callback = intel_dmi_reverse_brightness,
9769                                 .ident = "NCR Corporation",
9770                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9771                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9772                                 },
9773                         },
9774                         { }  /* terminating entry */
9775                 },
9776                 .hook = quirk_invert_brightness,
9777         },
9778 };
9779
9780 static struct intel_quirk intel_quirks[] = {
9781         /* HP Mini needs pipe A force quirk (LP: #322104) */
9782         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9783
9784         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9785         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9786
9787         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9788         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9789
9790         /* 830/845 need to leave pipe A & dpll A up */
9791         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9792         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9793
9794         /* Lenovo U160 cannot use SSC on LVDS */
9795         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9796
9797         /* Sony Vaio Y cannot use SSC on LVDS */
9798         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9799
9800         /* Acer Aspire 5734Z must invert backlight brightness */
9801         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9802
9803         /* Acer/eMachines G725 */
9804         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9805
9806         /* Acer/eMachines e725 */
9807         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9808
9809         /* Acer/Packard Bell NCL20 */
9810         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9811
9812         /* Acer Aspire 4736Z */
9813         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9814
9815         /* Dell XPS13 HD Sandy Bridge */
9816         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9817         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9818         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9819 };
9820
9821 static void intel_init_quirks(struct drm_device *dev)
9822 {
9823         struct pci_dev *d = dev->pdev;
9824         int i;
9825
9826         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9827                 struct intel_quirk *q = &intel_quirks[i];
9828
9829                 if (d->device == q->device &&
9830                     (d->subsystem_vendor == q->subsystem_vendor ||
9831                      q->subsystem_vendor == PCI_ANY_ID) &&
9832                     (d->subsystem_device == q->subsystem_device ||
9833                      q->subsystem_device == PCI_ANY_ID))
9834                         q->hook(dev);
9835         }
9836         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9837                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9838                         intel_dmi_quirks[i].hook(dev);
9839         }
9840 }
9841
9842 /* Disable the VGA plane that we never use */
9843 static void i915_disable_vga(struct drm_device *dev)
9844 {
9845         struct drm_i915_private *dev_priv = dev->dev_private;
9846         u8 sr1;
9847         u32 vga_reg = i915_vgacntrl_reg(dev);
9848
9849         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9850         outb(SR01, VGA_SR_INDEX);
9851         sr1 = inb(VGA_SR_DATA);
9852         outb(sr1 | 1<<5, VGA_SR_DATA);
9853         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9854         udelay(300);
9855
9856         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9857         POSTING_READ(vga_reg);
9858 }
9859
9860 void intel_modeset_init_hw(struct drm_device *dev)
9861 {
9862         intel_init_power_well(dev);
9863
9864         intel_prepare_ddi(dev);
9865
9866         intel_init_clock_gating(dev);
9867
9868         mutex_lock(&dev->struct_mutex);
9869         intel_enable_gt_powersave(dev);
9870         mutex_unlock(&dev->struct_mutex);
9871 }
9872
9873 void intel_modeset_suspend_hw(struct drm_device *dev)
9874 {
9875         intel_suspend_hw(dev);
9876 }
9877
9878 void intel_modeset_init(struct drm_device *dev)
9879 {
9880         struct drm_i915_private *dev_priv = dev->dev_private;
9881         int i, j, ret;
9882
9883         drm_mode_config_init(dev);
9884
9885         dev->mode_config.min_width = 0;
9886         dev->mode_config.min_height = 0;
9887
9888         dev->mode_config.preferred_depth = 24;
9889         dev->mode_config.prefer_shadow = 1;
9890
9891         dev->mode_config.funcs = &intel_mode_funcs;
9892
9893         intel_init_quirks(dev);
9894
9895         intel_init_pm(dev);
9896
9897         if (INTEL_INFO(dev)->num_pipes == 0)
9898                 return;
9899
9900         intel_init_display(dev);
9901
9902         if (IS_GEN2(dev)) {
9903                 dev->mode_config.max_width = 2048;
9904                 dev->mode_config.max_height = 2048;
9905         } else if (IS_GEN3(dev)) {
9906                 dev->mode_config.max_width = 4096;
9907                 dev->mode_config.max_height = 4096;
9908         } else {
9909                 dev->mode_config.max_width = 8192;
9910                 dev->mode_config.max_height = 8192;
9911         }
9912         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9913
9914         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9915                       INTEL_INFO(dev)->num_pipes,
9916                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9917
9918         for_each_pipe(i) {
9919                 intel_crtc_init(dev, i);
9920                 for (j = 0; j < dev_priv->num_plane; j++) {
9921                         ret = intel_plane_init(dev, i, j);
9922                         if (ret)
9923                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9924                                               pipe_name(i), sprite_name(i, j), ret);
9925                 }
9926         }
9927
9928         intel_cpu_pll_init(dev);
9929         intel_shared_dpll_init(dev);
9930
9931         /* Just disable it once at startup */
9932         i915_disable_vga(dev);
9933         intel_setup_outputs(dev);
9934
9935         /* Just in case the BIOS is doing something questionable. */
9936         intel_disable_fbc(dev);
9937 }
9938
9939 static void
9940 intel_connector_break_all_links(struct intel_connector *connector)
9941 {
9942         connector->base.dpms = DRM_MODE_DPMS_OFF;
9943         connector->base.encoder = NULL;
9944         connector->encoder->connectors_active = false;
9945         connector->encoder->base.crtc = NULL;
9946 }
9947
9948 static void intel_enable_pipe_a(struct drm_device *dev)
9949 {
9950         struct intel_connector *connector;
9951         struct drm_connector *crt = NULL;
9952         struct intel_load_detect_pipe load_detect_temp;
9953
9954         /* We can't just switch on the pipe A, we need to set things up with a
9955          * proper mode and output configuration. As a gross hack, enable pipe A
9956          * by enabling the load detect pipe once. */
9957         list_for_each_entry(connector,
9958                             &dev->mode_config.connector_list,
9959                             base.head) {
9960                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9961                         crt = &connector->base;
9962                         break;
9963                 }
9964         }
9965
9966         if (!crt)
9967                 return;
9968
9969         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9970                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9971
9972
9973 }
9974
9975 static bool
9976 intel_check_plane_mapping(struct intel_crtc *crtc)
9977 {
9978         struct drm_device *dev = crtc->base.dev;
9979         struct drm_i915_private *dev_priv = dev->dev_private;
9980         u32 reg, val;
9981
9982         if (INTEL_INFO(dev)->num_pipes == 1)
9983                 return true;
9984
9985         reg = DSPCNTR(!crtc->plane);
9986         val = I915_READ(reg);
9987
9988         if ((val & DISPLAY_PLANE_ENABLE) &&
9989             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9990                 return false;
9991
9992         return true;
9993 }
9994
9995 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9996 {
9997         struct drm_device *dev = crtc->base.dev;
9998         struct drm_i915_private *dev_priv = dev->dev_private;
9999         u32 reg;
10000
10001         /* Clear any frame start delays used for debugging left by the BIOS */
10002         reg = PIPECONF(crtc->config.cpu_transcoder);
10003         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10004
10005         /* We need to sanitize the plane -> pipe mapping first because this will
10006          * disable the crtc (and hence change the state) if it is wrong. Note
10007          * that gen4+ has a fixed plane -> pipe mapping.  */
10008         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10009                 struct intel_connector *connector;
10010                 bool plane;
10011
10012                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10013                               crtc->base.base.id);
10014
10015                 /* Pipe has the wrong plane attached and the plane is active.
10016                  * Temporarily change the plane mapping and disable everything
10017                  * ...  */
10018                 plane = crtc->plane;
10019                 crtc->plane = !plane;
10020                 dev_priv->display.crtc_disable(&crtc->base);
10021                 crtc->plane = plane;
10022
10023                 /* ... and break all links. */
10024                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10025                                     base.head) {
10026                         if (connector->encoder->base.crtc != &crtc->base)
10027                                 continue;
10028
10029                         intel_connector_break_all_links(connector);
10030                 }
10031
10032                 WARN_ON(crtc->active);
10033                 crtc->base.enabled = false;
10034         }
10035
10036         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10037             crtc->pipe == PIPE_A && !crtc->active) {
10038                 /* BIOS forgot to enable pipe A, this mostly happens after
10039                  * resume. Force-enable the pipe to fix this, the update_dpms
10040                  * call below we restore the pipe to the right state, but leave
10041                  * the required bits on. */
10042                 intel_enable_pipe_a(dev);
10043         }
10044
10045         /* Adjust the state of the output pipe according to whether we
10046          * have active connectors/encoders. */
10047         intel_crtc_update_dpms(&crtc->base);
10048
10049         if (crtc->active != crtc->base.enabled) {
10050                 struct intel_encoder *encoder;
10051
10052                 /* This can happen either due to bugs in the get_hw_state
10053                  * functions or because the pipe is force-enabled due to the
10054                  * pipe A quirk. */
10055                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10056                               crtc->base.base.id,
10057                               crtc->base.enabled ? "enabled" : "disabled",
10058                               crtc->active ? "enabled" : "disabled");
10059
10060                 crtc->base.enabled = crtc->active;
10061
10062                 /* Because we only establish the connector -> encoder ->
10063                  * crtc links if something is active, this means the
10064                  * crtc is now deactivated. Break the links. connector
10065                  * -> encoder links are only establish when things are
10066                  *  actually up, hence no need to break them. */
10067                 WARN_ON(crtc->active);
10068
10069                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10070                         WARN_ON(encoder->connectors_active);
10071                         encoder->base.crtc = NULL;
10072                 }
10073         }
10074 }
10075
10076 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10077 {
10078         struct intel_connector *connector;
10079         struct drm_device *dev = encoder->base.dev;
10080
10081         /* We need to check both for a crtc link (meaning that the
10082          * encoder is active and trying to read from a pipe) and the
10083          * pipe itself being active. */
10084         bool has_active_crtc = encoder->base.crtc &&
10085                 to_intel_crtc(encoder->base.crtc)->active;
10086
10087         if (encoder->connectors_active && !has_active_crtc) {
10088                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10089                               encoder->base.base.id,
10090                               drm_get_encoder_name(&encoder->base));
10091
10092                 /* Connector is active, but has no active pipe. This is
10093                  * fallout from our resume register restoring. Disable
10094                  * the encoder manually again. */
10095                 if (encoder->base.crtc) {
10096                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10097                                       encoder->base.base.id,
10098                                       drm_get_encoder_name(&encoder->base));
10099                         encoder->disable(encoder);
10100                 }
10101
10102                 /* Inconsistent output/port/pipe state happens presumably due to
10103                  * a bug in one of the get_hw_state functions. Or someplace else
10104                  * in our code, like the register restore mess on resume. Clamp
10105                  * things to off as a safer default. */
10106                 list_for_each_entry(connector,
10107                                     &dev->mode_config.connector_list,
10108                                     base.head) {
10109                         if (connector->encoder != encoder)
10110                                 continue;
10111
10112                         intel_connector_break_all_links(connector);
10113                 }
10114         }
10115         /* Enabled encoders without active connectors will be fixed in
10116          * the crtc fixup. */
10117 }
10118
10119 void i915_redisable_vga(struct drm_device *dev)
10120 {
10121         struct drm_i915_private *dev_priv = dev->dev_private;
10122         u32 vga_reg = i915_vgacntrl_reg(dev);
10123
10124         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10125                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10126                 i915_disable_vga(dev);
10127         }
10128 }
10129
10130 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10131 {
10132         struct drm_i915_private *dev_priv = dev->dev_private;
10133         enum pipe pipe;
10134         struct intel_crtc *crtc;
10135         struct intel_encoder *encoder;
10136         struct intel_connector *connector;
10137         int i;
10138
10139         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10140                             base.head) {
10141                 memset(&crtc->config, 0, sizeof(crtc->config));
10142
10143                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10144                                                                  &crtc->config);
10145
10146                 crtc->base.enabled = crtc->active;
10147
10148                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10149                               crtc->base.base.id,
10150                               crtc->active ? "enabled" : "disabled");
10151         }
10152
10153         /* FIXME: Smash this into the new shared dpll infrastructure. */
10154         if (HAS_DDI(dev))
10155                 intel_ddi_setup_hw_pll_state(dev);
10156
10157         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10158                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10159
10160                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10161                 pll->active = 0;
10162                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10163                                     base.head) {
10164                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10165                                 pll->active++;
10166                 }
10167                 pll->refcount = pll->active;
10168
10169                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10170                               pll->name, pll->refcount, pll->on);
10171         }
10172
10173         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10174                             base.head) {
10175                 pipe = 0;
10176
10177                 if (encoder->get_hw_state(encoder, &pipe)) {
10178                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10179                         encoder->base.crtc = &crtc->base;
10180                         if (encoder->get_config)
10181                                 encoder->get_config(encoder, &crtc->config);
10182                 } else {
10183                         encoder->base.crtc = NULL;
10184                 }
10185
10186                 encoder->connectors_active = false;
10187                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10188                               encoder->base.base.id,
10189                               drm_get_encoder_name(&encoder->base),
10190                               encoder->base.crtc ? "enabled" : "disabled",
10191                               pipe);
10192         }
10193
10194         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10195                             base.head) {
10196                 if (!crtc->active)
10197                         continue;
10198                 if (dev_priv->display.get_clock)
10199                         dev_priv->display.get_clock(crtc,
10200                                                     &crtc->config);
10201         }
10202
10203         list_for_each_entry(connector, &dev->mode_config.connector_list,
10204                             base.head) {
10205                 if (connector->get_hw_state(connector)) {
10206                         connector->base.dpms = DRM_MODE_DPMS_ON;
10207                         connector->encoder->connectors_active = true;
10208                         connector->base.encoder = &connector->encoder->base;
10209                 } else {
10210                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10211                         connector->base.encoder = NULL;
10212                 }
10213                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10214                               connector->base.base.id,
10215                               drm_get_connector_name(&connector->base),
10216                               connector->base.encoder ? "enabled" : "disabled");
10217         }
10218 }
10219
10220 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10221  * and i915 state tracking structures. */
10222 void intel_modeset_setup_hw_state(struct drm_device *dev,
10223                                   bool force_restore)
10224 {
10225         struct drm_i915_private *dev_priv = dev->dev_private;
10226         enum pipe pipe;
10227         struct drm_plane *plane;
10228         struct intel_crtc *crtc;
10229         struct intel_encoder *encoder;
10230         int i;
10231
10232         intel_modeset_readout_hw_state(dev);
10233
10234         /*
10235          * Now that we have the config, copy it to each CRTC struct
10236          * Note that this could go away if we move to using crtc_config
10237          * checking everywhere.
10238          */
10239         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10240                             base.head) {
10241                 if (crtc->active && i915_fastboot) {
10242                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10243
10244                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10245                                       crtc->base.base.id);
10246                         drm_mode_debug_printmodeline(&crtc->base.mode);
10247                 }
10248         }
10249
10250         /* HW state is read out, now we need to sanitize this mess. */
10251         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10252                             base.head) {
10253                 intel_sanitize_encoder(encoder);
10254         }
10255
10256         for_each_pipe(pipe) {
10257                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10258                 intel_sanitize_crtc(crtc);
10259                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10260         }
10261
10262         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10263                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10264
10265                 if (!pll->on || pll->active)
10266                         continue;
10267
10268                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10269
10270                 pll->disable(dev_priv, pll);
10271                 pll->on = false;
10272         }
10273
10274         if (force_restore) {
10275                 /*
10276                  * We need to use raw interfaces for restoring state to avoid
10277                  * checking (bogus) intermediate states.
10278                  */
10279                 for_each_pipe(pipe) {
10280                         struct drm_crtc *crtc =
10281                                 dev_priv->pipe_to_crtc_mapping[pipe];
10282
10283                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10284                                          crtc->fb);
10285                 }
10286                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10287                         intel_plane_restore(plane);
10288
10289                 i915_redisable_vga(dev);
10290         } else {
10291                 intel_modeset_update_staged_output_state(dev);
10292         }
10293
10294         intel_modeset_check_state(dev);
10295
10296         drm_mode_config_reset(dev);
10297 }
10298
10299 void intel_modeset_gem_init(struct drm_device *dev)
10300 {
10301         intel_modeset_init_hw(dev);
10302
10303         intel_setup_overlay(dev);
10304
10305         intel_modeset_setup_hw_state(dev, false);
10306 }
10307
10308 void intel_modeset_cleanup(struct drm_device *dev)
10309 {
10310         struct drm_i915_private *dev_priv = dev->dev_private;
10311         struct drm_crtc *crtc;
10312         struct intel_crtc *intel_crtc;
10313
10314         /*
10315          * Interrupts and polling as the first thing to avoid creating havoc.
10316          * Too much stuff here (turning of rps, connectors, ...) would
10317          * experience fancy races otherwise.
10318          */
10319         drm_irq_uninstall(dev);
10320         cancel_work_sync(&dev_priv->hotplug_work);
10321         /*
10322          * Due to the hpd irq storm handling the hotplug work can re-arm the
10323          * poll handlers. Hence disable polling after hpd handling is shut down.
10324          */
10325         drm_kms_helper_poll_fini(dev);
10326
10327         mutex_lock(&dev->struct_mutex);
10328
10329         intel_unregister_dsm_handler();
10330
10331         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10332                 /* Skip inactive CRTCs */
10333                 if (!crtc->fb)
10334                         continue;
10335
10336                 intel_crtc = to_intel_crtc(crtc);
10337                 intel_increase_pllclock(crtc);
10338         }
10339
10340         intel_disable_fbc(dev);
10341
10342         intel_disable_gt_powersave(dev);
10343
10344         ironlake_teardown_rc6(dev);
10345
10346         mutex_unlock(&dev->struct_mutex);
10347
10348         /* flush any delayed tasks or pending work */
10349         flush_scheduled_work();
10350
10351         /* destroy backlight, if any, before the connectors */
10352         intel_panel_destroy_backlight(dev);
10353
10354         drm_mode_config_cleanup(dev);
10355
10356         intel_cleanup_overlay(dev);
10357 }
10358
10359 /*
10360  * Return which encoder is currently attached for connector.
10361  */
10362 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10363 {
10364         return &intel_attached_encoder(connector)->base;
10365 }
10366
10367 void intel_connector_attach_encoder(struct intel_connector *connector,
10368                                     struct intel_encoder *encoder)
10369 {
10370         connector->encoder = encoder;
10371         drm_mode_connector_attach_encoder(&connector->base,
10372                                           &encoder->base);
10373 }
10374
10375 /*
10376  * set vga decode state - true == enable VGA decode
10377  */
10378 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10379 {
10380         struct drm_i915_private *dev_priv = dev->dev_private;
10381         u16 gmch_ctrl;
10382
10383         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10384         if (state)
10385                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10386         else
10387                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10388         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10389         return 0;
10390 }
10391
10392 struct intel_display_error_state {
10393
10394         u32 power_well_driver;
10395
10396         struct intel_cursor_error_state {
10397                 u32 control;
10398                 u32 position;
10399                 u32 base;
10400                 u32 size;
10401         } cursor[I915_MAX_PIPES];
10402
10403         struct intel_pipe_error_state {
10404                 enum transcoder cpu_transcoder;
10405                 u32 conf;
10406                 u32 source;
10407
10408                 u32 htotal;
10409                 u32 hblank;
10410                 u32 hsync;
10411                 u32 vtotal;
10412                 u32 vblank;
10413                 u32 vsync;
10414         } pipe[I915_MAX_PIPES];
10415
10416         struct intel_plane_error_state {
10417                 u32 control;
10418                 u32 stride;
10419                 u32 size;
10420                 u32 pos;
10421                 u32 addr;
10422                 u32 surface;
10423                 u32 tile_offset;
10424         } plane[I915_MAX_PIPES];
10425 };
10426
10427 struct intel_display_error_state *
10428 intel_display_capture_error_state(struct drm_device *dev)
10429 {
10430         drm_i915_private_t *dev_priv = dev->dev_private;
10431         struct intel_display_error_state *error;
10432         enum transcoder cpu_transcoder;
10433         int i;
10434
10435         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10436         if (error == NULL)
10437                 return NULL;
10438
10439         if (HAS_POWER_WELL(dev))
10440                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10441
10442         for_each_pipe(i) {
10443                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10444                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10445
10446                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10447                         error->cursor[i].control = I915_READ(CURCNTR(i));
10448                         error->cursor[i].position = I915_READ(CURPOS(i));
10449                         error->cursor[i].base = I915_READ(CURBASE(i));
10450                 } else {
10451                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10452                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10453                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10454                 }
10455
10456                 error->plane[i].control = I915_READ(DSPCNTR(i));
10457                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10458                 if (INTEL_INFO(dev)->gen <= 3) {
10459                         error->plane[i].size = I915_READ(DSPSIZE(i));
10460                         error->plane[i].pos = I915_READ(DSPPOS(i));
10461                 }
10462                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10463                         error->plane[i].addr = I915_READ(DSPADDR(i));
10464                 if (INTEL_INFO(dev)->gen >= 4) {
10465                         error->plane[i].surface = I915_READ(DSPSURF(i));
10466                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10467                 }
10468
10469                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10470                 error->pipe[i].source = I915_READ(PIPESRC(i));
10471                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10472                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10473                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10474                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10475                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10476                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10477         }
10478
10479         /* In the code above we read the registers without checking if the power
10480          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10481          * prevent the next I915_WRITE from detecting it and printing an error
10482          * message. */
10483         intel_uncore_clear_errors(dev);
10484
10485         return error;
10486 }
10487
10488 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10489
10490 void
10491 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10492                                 struct drm_device *dev,
10493                                 struct intel_display_error_state *error)
10494 {
10495         int i;
10496
10497         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10498         if (HAS_POWER_WELL(dev))
10499                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10500                            error->power_well_driver);
10501         for_each_pipe(i) {
10502                 err_printf(m, "Pipe [%d]:\n", i);
10503                 err_printf(m, "  CPU transcoder: %c\n",
10504                            transcoder_name(error->pipe[i].cpu_transcoder));
10505                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10506                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10507                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10508                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10509                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10510                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10511                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10512                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10513
10514                 err_printf(m, "Plane [%d]:\n", i);
10515                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10516                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10517                 if (INTEL_INFO(dev)->gen <= 3) {
10518                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10519                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10520                 }
10521                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10522                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10523                 if (INTEL_INFO(dev)->gen >= 4) {
10524                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10525                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10526                 }
10527
10528                 err_printf(m, "Cursor [%d]:\n", i);
10529                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10530                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10531                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10532         }
10533 }