drm/i915: Make ->update_primary_plane infallible
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74         intel_p2_t          p2;
75 };
76
77 int
78 intel_pch_rawclk(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81
82         WARN_ON(!HAS_PCH_SPLIT(dev));
83
84         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
85 }
86
87 static inline u32 /* units of 100MHz */
88 intel_fdi_link_freq(struct drm_device *dev)
89 {
90         if (IS_GEN5(dev)) {
91                 struct drm_i915_private *dev_priv = dev->dev_private;
92                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
93         } else
94                 return 27;
95 }
96
97 static const intel_limit_t intel_limits_i8xx_dac = {
98         .dot = { .min = 25000, .max = 350000 },
99         .vco = { .min = 908000, .max = 1512000 },
100         .n = { .min = 2, .max = 16 },
101         .m = { .min = 96, .max = 140 },
102         .m1 = { .min = 18, .max = 26 },
103         .m2 = { .min = 6, .max = 16 },
104         .p = { .min = 4, .max = 128 },
105         .p1 = { .min = 2, .max = 33 },
106         .p2 = { .dot_limit = 165000,
107                 .p2_slow = 4, .p2_fast = 2 },
108 };
109
110 static const intel_limit_t intel_limits_i8xx_dvo = {
111         .dot = { .min = 25000, .max = 350000 },
112         .vco = { .min = 908000, .max = 1512000 },
113         .n = { .min = 2, .max = 16 },
114         .m = { .min = 96, .max = 140 },
115         .m1 = { .min = 18, .max = 26 },
116         .m2 = { .min = 6, .max = 16 },
117         .p = { .min = 4, .max = 128 },
118         .p1 = { .min = 2, .max = 33 },
119         .p2 = { .dot_limit = 165000,
120                 .p2_slow = 4, .p2_fast = 4 },
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 908000, .max = 1512000 },
126         .n = { .min = 2, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 8, .max = 18 },
142         .m2 = { .min = 3, .max = 7 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 8, .max = 18 },
155         .m2 = { .min = 3, .max = 7 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176 };
177
178 static const intel_limit_t intel_limits_g4x_hdmi = {
179         .dot = { .min = 22000, .max = 400000 },
180         .vco = { .min = 1750000, .max = 3500000},
181         .n = { .min = 1, .max = 4 },
182         .m = { .min = 104, .max = 138 },
183         .m1 = { .min = 16, .max = 23 },
184         .m2 = { .min = 5, .max = 11 },
185         .p = { .min = 5, .max = 80 },
186         .p1 = { .min = 1, .max = 8},
187         .p2 = { .dot_limit = 165000,
188                 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
192         .dot = { .min = 20000, .max = 115000 },
193         .vco = { .min = 1750000, .max = 3500000 },
194         .n = { .min = 1, .max = 3 },
195         .m = { .min = 104, .max = 138 },
196         .m1 = { .min = 17, .max = 23 },
197         .m2 = { .min = 5, .max = 11 },
198         .p = { .min = 28, .max = 112 },
199         .p1 = { .min = 2, .max = 8 },
200         .p2 = { .dot_limit = 0,
201                 .p2_slow = 14, .p2_fast = 14
202         },
203 };
204
205 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
206         .dot = { .min = 80000, .max = 224000 },
207         .vco = { .min = 1750000, .max = 3500000 },
208         .n = { .min = 1, .max = 3 },
209         .m = { .min = 104, .max = 138 },
210         .m1 = { .min = 17, .max = 23 },
211         .m2 = { .min = 5, .max = 11 },
212         .p = { .min = 14, .max = 42 },
213         .p1 = { .min = 2, .max = 6 },
214         .p2 = { .dot_limit = 0,
215                 .p2_slow = 7, .p2_fast = 7
216         },
217 };
218
219 static const intel_limit_t intel_limits_pineview_sdvo = {
220         .dot = { .min = 20000, .max = 400000},
221         .vco = { .min = 1700000, .max = 3500000 },
222         /* Pineview's Ncounter is a ring counter */
223         .n = { .min = 3, .max = 6 },
224         .m = { .min = 2, .max = 256 },
225         /* Pineview only has one combined m divider, which we treat as m2. */
226         .m1 = { .min = 0, .max = 0 },
227         .m2 = { .min = 0, .max = 254 },
228         .p = { .min = 5, .max = 80 },
229         .p1 = { .min = 1, .max = 8 },
230         .p2 = { .dot_limit = 200000,
231                 .p2_slow = 10, .p2_fast = 5 },
232 };
233
234 static const intel_limit_t intel_limits_pineview_lvds = {
235         .dot = { .min = 20000, .max = 400000 },
236         .vco = { .min = 1700000, .max = 3500000 },
237         .n = { .min = 3, .max = 6 },
238         .m = { .min = 2, .max = 256 },
239         .m1 = { .min = 0, .max = 0 },
240         .m2 = { .min = 0, .max = 254 },
241         .p = { .min = 7, .max = 112 },
242         .p1 = { .min = 1, .max = 8 },
243         .p2 = { .dot_limit = 112000,
244                 .p2_slow = 14, .p2_fast = 14 },
245 };
246
247 /* Ironlake / Sandybridge
248  *
249  * We calculate clock using (register_value + 2) for N/M1/M2, so here
250  * the range value for them is (actual_value - 2).
251  */
252 static const intel_limit_t intel_limits_ironlake_dac = {
253         .dot = { .min = 25000, .max = 350000 },
254         .vco = { .min = 1760000, .max = 3510000 },
255         .n = { .min = 1, .max = 5 },
256         .m = { .min = 79, .max = 127 },
257         .m1 = { .min = 12, .max = 22 },
258         .m2 = { .min = 5, .max = 9 },
259         .p = { .min = 5, .max = 80 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 225000,
262                 .p2_slow = 10, .p2_fast = 5 },
263 };
264
265 static const intel_limit_t intel_limits_ironlake_single_lvds = {
266         .dot = { .min = 25000, .max = 350000 },
267         .vco = { .min = 1760000, .max = 3510000 },
268         .n = { .min = 1, .max = 3 },
269         .m = { .min = 79, .max = 118 },
270         .m1 = { .min = 12, .max = 22 },
271         .m2 = { .min = 5, .max = 9 },
272         .p = { .min = 28, .max = 112 },
273         .p1 = { .min = 2, .max = 8 },
274         .p2 = { .dot_limit = 225000,
275                 .p2_slow = 14, .p2_fast = 14 },
276 };
277
278 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 3 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 14, .max = 56 },
286         .p1 = { .min = 2, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 7, .p2_fast = 7 },
289 };
290
291 /* LVDS 100mhz refclk limits. */
292 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 2 },
296         .m = { .min = 79, .max = 126 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 126 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 42 },
313         .p1 = { .min = 2, .max = 6 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316 };
317
318 static const intel_limit_t intel_limits_vlv = {
319          /*
320           * These are the data rate limits (measured in fast clocks)
321           * since those are the strictest limits we have. The fast
322           * clock and actual rate limits are more relaxed, so checking
323           * them would make no difference.
324           */
325         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
326         .vco = { .min = 4000000, .max = 6000000 },
327         .n = { .min = 1, .max = 7 },
328         .m1 = { .min = 2, .max = 3 },
329         .m2 = { .min = 11, .max = 156 },
330         .p1 = { .min = 2, .max = 3 },
331         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
332 };
333
334 static const intel_limit_t intel_limits_chv = {
335         /*
336          * These are the data rate limits (measured in fast clocks)
337          * since those are the strictest limits we have.  The fast
338          * clock and actual rate limits are more relaxed, so checking
339          * them would make no difference.
340          */
341         .dot = { .min = 25000 * 5, .max = 540000 * 5},
342         .vco = { .min = 4860000, .max = 6700000 },
343         .n = { .min = 1, .max = 1 },
344         .m1 = { .min = 2, .max = 2 },
345         .m2 = { .min = 24 << 22, .max = 175 << 22 },
346         .p1 = { .min = 2, .max = 4 },
347         .p2 = { .p2_slow = 1, .p2_fast = 14 },
348 };
349
350 static void vlv_clock(int refclk, intel_clock_t *clock)
351 {
352         clock->m = clock->m1 * clock->m2;
353         clock->p = clock->p1 * clock->p2;
354         if (WARN_ON(clock->n == 0 || clock->p == 0))
355                 return;
356         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
357         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
358 }
359
360 /**
361  * Returns whether any output on the specified pipe is of the specified type
362  */
363 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
364 {
365         struct drm_device *dev = crtc->dev;
366         struct intel_encoder *encoder;
367
368         for_each_encoder_on_crtc(dev, crtc, encoder)
369                 if (encoder->type == type)
370                         return true;
371
372         return false;
373 }
374
375 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
376                                                 int refclk)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev)) {
383                         if (refclk == 100000)
384                                 limit = &intel_limits_ironlake_dual_lvds_100m;
385                         else
386                                 limit = &intel_limits_ironlake_dual_lvds;
387                 } else {
388                         if (refclk == 100000)
389                                 limit = &intel_limits_ironlake_single_lvds_100m;
390                         else
391                                 limit = &intel_limits_ironlake_single_lvds;
392                 }
393         } else
394                 limit = &intel_limits_ironlake_dac;
395
396         return limit;
397 }
398
399 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
400 {
401         struct drm_device *dev = crtc->dev;
402         const intel_limit_t *limit;
403
404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
405                 if (intel_is_dual_link_lvds(dev))
406                         limit = &intel_limits_g4x_dual_channel_lvds;
407                 else
408                         limit = &intel_limits_g4x_single_channel_lvds;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
410                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
411                 limit = &intel_limits_g4x_hdmi;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
413                 limit = &intel_limits_g4x_sdvo;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (IS_CHERRYVIEW(dev)) {
435                 limit = &intel_limits_chv;
436         } else if (IS_VALLEYVIEW(dev)) {
437                 limit = &intel_limits_vlv;
438         } else if (!IS_GEN2(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_i9xx_lvds;
441                 else
442                         limit = &intel_limits_i9xx_sdvo;
443         } else {
444                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
445                         limit = &intel_limits_i8xx_lvds;
446                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
447                         limit = &intel_limits_i8xx_dvo;
448                 else
449                         limit = &intel_limits_i8xx_dac;
450         }
451         return limit;
452 }
453
454 /* m1 is reserved as 0 in Pineview, n is a ring counter */
455 static void pineview_clock(int refclk, intel_clock_t *clock)
456 {
457         clock->m = clock->m2 + 2;
458         clock->p = clock->p1 * clock->p2;
459         if (WARN_ON(clock->n == 0 || clock->p == 0))
460                 return;
461         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
462         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
463 }
464
465 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
466 {
467         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
468 }
469
470 static void i9xx_clock(int refclk, intel_clock_t *clock)
471 {
472         clock->m = i9xx_dpll_compute_m(clock);
473         clock->p = clock->p1 * clock->p2;
474         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
475                 return;
476         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
477         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
478 }
479
480 static void chv_clock(int refclk, intel_clock_t *clock)
481 {
482         clock->m = clock->m1 * clock->m2;
483         clock->p = clock->p1 * clock->p2;
484         if (WARN_ON(clock->n == 0 || clock->p == 0))
485                 return;
486         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
487                         clock->n << 22);
488         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
489 }
490
491 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
492 /**
493  * Returns whether the given set of divisors are valid for a given refclk with
494  * the given connectors.
495  */
496
497 static bool intel_PLL_is_valid(struct drm_device *dev,
498                                const intel_limit_t *limit,
499                                const intel_clock_t *clock)
500 {
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid("n out of range\n");
503         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
504                 INTELPllInvalid("p1 out of range\n");
505         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
506                 INTELPllInvalid("m2 out of range\n");
507         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
508                 INTELPllInvalid("m1 out of range\n");
509
510         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
511                 if (clock->m1 <= clock->m2)
512                         INTELPllInvalid("m1 <= m2\n");
513
514         if (!IS_VALLEYVIEW(dev)) {
515                 if (clock->p < limit->p.min || limit->p.max < clock->p)
516                         INTELPllInvalid("p out of range\n");
517                 if (clock->m < limit->m.min || limit->m.max < clock->m)
518                         INTELPllInvalid("m out of range\n");
519         }
520
521         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
522                 INTELPllInvalid("vco out of range\n");
523         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
524          * connector, etc., rather than just a single range.
525          */
526         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
527                 INTELPllInvalid("dot out of range\n");
528
529         return true;
530 }
531
532 static bool
533 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
534                     int target, int refclk, intel_clock_t *match_clock,
535                     intel_clock_t *best_clock)
536 {
537         struct drm_device *dev = crtc->dev;
538         intel_clock_t clock;
539         int err = target;
540
541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
542                 /*
543                  * For LVDS just rely on its current settings for dual-channel.
544                  * We haven't figured out how to reliably set up different
545                  * single/dual channel state, if we even can.
546                  */
547                 if (intel_is_dual_link_lvds(dev))
548                         clock.p2 = limit->p2.p2_fast;
549                 else
550                         clock.p2 = limit->p2.p2_slow;
551         } else {
552                 if (target < limit->p2.dot_limit)
553                         clock.p2 = limit->p2.p2_slow;
554                 else
555                         clock.p2 = limit->p2.p2_fast;
556         }
557
558         memset(best_clock, 0, sizeof(*best_clock));
559
560         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
561              clock.m1++) {
562                 for (clock.m2 = limit->m2.min;
563                      clock.m2 <= limit->m2.max; clock.m2++) {
564                         if (clock.m2 >= clock.m1)
565                                 break;
566                         for (clock.n = limit->n.min;
567                              clock.n <= limit->n.max; clock.n++) {
568                                 for (clock.p1 = limit->p1.min;
569                                         clock.p1 <= limit->p1.max; clock.p1++) {
570                                         int this_err;
571
572                                         i9xx_clock(refclk, &clock);
573                                         if (!intel_PLL_is_valid(dev, limit,
574                                                                 &clock))
575                                                 continue;
576                                         if (match_clock &&
577                                             clock.p != match_clock->p)
578                                                 continue;
579
580                                         this_err = abs(clock.dot - target);
581                                         if (this_err < err) {
582                                                 *best_clock = clock;
583                                                 err = this_err;
584                                         }
585                                 }
586                         }
587                 }
588         }
589
590         return (err != target);
591 }
592
593 static bool
594 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
595                    int target, int refclk, intel_clock_t *match_clock,
596                    intel_clock_t *best_clock)
597 {
598         struct drm_device *dev = crtc->dev;
599         intel_clock_t clock;
600         int err = target;
601
602         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
603                 /*
604                  * For LVDS just rely on its current settings for dual-channel.
605                  * We haven't figured out how to reliably set up different
606                  * single/dual channel state, if we even can.
607                  */
608                 if (intel_is_dual_link_lvds(dev))
609                         clock.p2 = limit->p2.p2_fast;
610                 else
611                         clock.p2 = limit->p2.p2_slow;
612         } else {
613                 if (target < limit->p2.dot_limit)
614                         clock.p2 = limit->p2.p2_slow;
615                 else
616                         clock.p2 = limit->p2.p2_fast;
617         }
618
619         memset(best_clock, 0, sizeof(*best_clock));
620
621         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
622              clock.m1++) {
623                 for (clock.m2 = limit->m2.min;
624                      clock.m2 <= limit->m2.max; clock.m2++) {
625                         for (clock.n = limit->n.min;
626                              clock.n <= limit->n.max; clock.n++) {
627                                 for (clock.p1 = limit->p1.min;
628                                         clock.p1 <= limit->p1.max; clock.p1++) {
629                                         int this_err;
630
631                                         pineview_clock(refclk, &clock);
632                                         if (!intel_PLL_is_valid(dev, limit,
633                                                                 &clock))
634                                                 continue;
635                                         if (match_clock &&
636                                             clock.p != match_clock->p)
637                                                 continue;
638
639                                         this_err = abs(clock.dot - target);
640                                         if (this_err < err) {
641                                                 *best_clock = clock;
642                                                 err = this_err;
643                                         }
644                                 }
645                         }
646                 }
647         }
648
649         return (err != target);
650 }
651
652 static bool
653 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
654                    int target, int refclk, intel_clock_t *match_clock,
655                    intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659         int max_n;
660         bool found;
661         /* approximately equals target * 0.00585 */
662         int err_most = (target >> 8) + (target >> 9);
663         found = false;
664
665         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
666                 if (intel_is_dual_link_lvds(dev))
667                         clock.p2 = limit->p2.p2_fast;
668                 else
669                         clock.p2 = limit->p2.p2_slow;
670         } else {
671                 if (target < limit->p2.dot_limit)
672                         clock.p2 = limit->p2.p2_slow;
673                 else
674                         clock.p2 = limit->p2.p2_fast;
675         }
676
677         memset(best_clock, 0, sizeof(*best_clock));
678         max_n = limit->n.max;
679         /* based on hardware requirement, prefer smaller n to precision */
680         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
681                 /* based on hardware requirement, prefere larger m1,m2 */
682                 for (clock.m1 = limit->m1.max;
683                      clock.m1 >= limit->m1.min; clock.m1--) {
684                         for (clock.m2 = limit->m2.max;
685                              clock.m2 >= limit->m2.min; clock.m2--) {
686                                 for (clock.p1 = limit->p1.max;
687                                      clock.p1 >= limit->p1.min; clock.p1--) {
688                                         int this_err;
689
690                                         i9xx_clock(refclk, &clock);
691                                         if (!intel_PLL_is_valid(dev, limit,
692                                                                 &clock))
693                                                 continue;
694
695                                         this_err = abs(clock.dot - target);
696                                         if (this_err < err_most) {
697                                                 *best_clock = clock;
698                                                 err_most = this_err;
699                                                 max_n = clock.n;
700                                                 found = true;
701                                         }
702                                 }
703                         }
704                 }
705         }
706         return found;
707 }
708
709 static bool
710 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
711                    int target, int refclk, intel_clock_t *match_clock,
712                    intel_clock_t *best_clock)
713 {
714         struct drm_device *dev = crtc->dev;
715         intel_clock_t clock;
716         unsigned int bestppm = 1000000;
717         /* min update 19.2 MHz */
718         int max_n = min(limit->n.max, refclk / 19200);
719         bool found = false;
720
721         target *= 5; /* fast clock */
722
723         memset(best_clock, 0, sizeof(*best_clock));
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
727                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
728                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
729                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
730                                 clock.p = clock.p1 * clock.p2;
731                                 /* based on hardware requirement, prefer bigger m1,m2 values */
732                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
733                                         unsigned int ppm, diff;
734
735                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
736                                                                      refclk * clock.m1);
737
738                                         vlv_clock(refclk, &clock);
739
740                                         if (!intel_PLL_is_valid(dev, limit,
741                                                                 &clock))
742                                                 continue;
743
744                                         diff = abs(clock.dot - target);
745                                         ppm = div_u64(1000000ULL * diff, target);
746
747                                         if (ppm < 100 && clock.p > best_clock->p) {
748                                                 bestppm = 0;
749                                                 *best_clock = clock;
750                                                 found = true;
751                                         }
752
753                                         if (bestppm >= 10 && ppm < bestppm - 10) {
754                                                 bestppm = ppm;
755                                                 *best_clock = clock;
756                                                 found = true;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return found;
764 }
765
766 static bool
767 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc->dev;
772         intel_clock_t clock;
773         uint64_t m2;
774         int found = false;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         /*
779          * Based on hardware doc, the n always set to 1, and m1 always
780          * set to 2.  If requires to support 200Mhz refclk, we need to
781          * revisit this because n may not 1 anymore.
782          */
783         clock.n = 1, clock.m1 = 2;
784         target *= 5;    /* fast clock */
785
786         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
787                 for (clock.p2 = limit->p2.p2_fast;
788                                 clock.p2 >= limit->p2.p2_slow;
789                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
790
791                         clock.p = clock.p1 * clock.p2;
792
793                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
794                                         clock.n) << 22, refclk * clock.m1);
795
796                         if (m2 > INT_MAX/clock.m1)
797                                 continue;
798
799                         clock.m2 = m2;
800
801                         chv_clock(refclk, &clock);
802
803                         if (!intel_PLL_is_valid(dev, limit, &clock))
804                                 continue;
805
806                         /* based on hardware requirement, prefer bigger p
807                          */
808                         if (clock.p > best_clock->p) {
809                                 *best_clock = clock;
810                                 found = true;
811                         }
812                 }
813         }
814
815         return found;
816 }
817
818 bool intel_crtc_active(struct drm_crtc *crtc)
819 {
820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822         /* Be paranoid as we can arrive here with only partial
823          * state retrieved from the hardware during setup.
824          *
825          * We can ditch the adjusted_mode.crtc_clock check as soon
826          * as Haswell has gained clock readout/fastboot support.
827          *
828          * We can ditch the crtc->primary->fb check as soon as we can
829          * properly reconstruct framebuffers.
830          */
831         return intel_crtc->active && crtc->primary->fb &&
832                 intel_crtc->config.adjusted_mode.crtc_clock;
833 }
834
835 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
836                                              enum pipe pipe)
837 {
838         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
840
841         return intel_crtc->config.cpu_transcoder;
842 }
843
844 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
848
849         frame = I915_READ(frame_reg);
850
851         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
852                 WARN(1, "vblank wait timed out\n");
853 }
854
855 /**
856  * intel_wait_for_vblank - wait for vblank on a given pipe
857  * @dev: drm device
858  * @pipe: pipe to wait for
859  *
860  * Wait for vblank to occur on a given pipe.  Needed for various bits of
861  * mode setting code.
862  */
863 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int pipestat_reg = PIPESTAT(pipe);
867
868         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
869                 g4x_wait_for_vblank(dev, pipe);
870                 return;
871         }
872
873         /* Clear existing vblank status. Note this will clear any other
874          * sticky status fields as well.
875          *
876          * This races with i915_driver_irq_handler() with the result
877          * that either function could miss a vblank event.  Here it is not
878          * fatal, as we will either wait upon the next vblank interrupt or
879          * timeout.  Generally speaking intel_wait_for_vblank() is only
880          * called during modeset at which time the GPU should be idle and
881          * should *not* be performing page flips and thus not waiting on
882          * vblanks...
883          * Currently, the result of us stealing a vblank from the irq
884          * handler is that a single frame will be skipped during swapbuffers.
885          */
886         I915_WRITE(pipestat_reg,
887                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
888
889         /* Wait for vblank interrupt bit to set */
890         if (wait_for(I915_READ(pipestat_reg) &
891                      PIPE_VBLANK_INTERRUPT_STATUS,
892                      50))
893                 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
897 {
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         u32 reg = PIPEDSL(pipe);
900         u32 line1, line2;
901         u32 line_mask;
902
903         if (IS_GEN2(dev))
904                 line_mask = DSL_LINEMASK_GEN2;
905         else
906                 line_mask = DSL_LINEMASK_GEN3;
907
908         line1 = I915_READ(reg) & line_mask;
909         mdelay(5);
910         line2 = I915_READ(reg) & line_mask;
911
912         return line1 == line2;
913 }
914
915 /*
916  * intel_wait_for_pipe_off - wait for pipe to turn off
917  * @dev: drm device
918  * @pipe: pipe to wait for
919  *
920  * After disabling a pipe, we can't wait for vblank in the usual way,
921  * spinning on the vblank interrupt status bit, since we won't actually
922  * see an interrupt when the pipe is disabled.
923  *
924  * On Gen4 and above:
925  *   wait for the pipe register state bit to turn off
926  *
927  * Otherwise:
928  *   wait for the display line value to settle (it usually
929  *   ends up stopping at the start of the next frame).
930  *
931  */
932 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
933 {
934         struct drm_i915_private *dev_priv = dev->dev_private;
935         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
936                                                                       pipe);
937
938         if (INTEL_INFO(dev)->gen >= 4) {
939                 int reg = PIPECONF(cpu_transcoder);
940
941                 /* Wait for the Pipe State to go off */
942                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
943                              100))
944                         WARN(1, "pipe_off wait timed out\n");
945         } else {
946                 /* Wait for the display line to settle */
947                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
948                         WARN(1, "pipe_off wait timed out\n");
949         }
950 }
951
952 /*
953  * ibx_digital_port_connected - is the specified port connected?
954  * @dev_priv: i915 private structure
955  * @port: the port to test
956  *
957  * Returns true if @port is connected, false otherwise.
958  */
959 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
960                                 struct intel_digital_port *port)
961 {
962         u32 bit;
963
964         if (HAS_PCH_IBX(dev_priv->dev)) {
965                 switch(port->port) {
966                 case PORT_B:
967                         bit = SDE_PORTB_HOTPLUG;
968                         break;
969                 case PORT_C:
970                         bit = SDE_PORTC_HOTPLUG;
971                         break;
972                 case PORT_D:
973                         bit = SDE_PORTD_HOTPLUG;
974                         break;
975                 default:
976                         return true;
977                 }
978         } else {
979                 switch(port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG_CPT;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG_CPT;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG_CPT;
988                         break;
989                 default:
990                         return true;
991                 }
992         }
993
994         return I915_READ(SDEISR) & bit;
995 }
996
997 static const char *state_string(bool enabled)
998 {
999         return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 void assert_pll(struct drm_i915_private *dev_priv,
1004                 enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = DPLL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & DPLL_VCO_ENABLE);
1013         WARN(cur_state != state,
1014              "PLL state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017
1018 /* XXX: the dsi pll is shared between MIPI DSI ports */
1019 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1020 {
1021         u32 val;
1022         bool cur_state;
1023
1024         mutex_lock(&dev_priv->dpio_lock);
1025         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1026         mutex_unlock(&dev_priv->dpio_lock);
1027
1028         cur_state = val & DSI_PLL_VCO_EN;
1029         WARN(cur_state != state,
1030              "DSI PLL state assertion failure (expected %s, current %s)\n",
1031              state_string(state), state_string(cur_state));
1032 }
1033 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1034 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1035
1036 struct intel_shared_dpll *
1037 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1038 {
1039         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1040
1041         if (crtc->config.shared_dpll < 0)
1042                 return NULL;
1043
1044         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1045 }
1046
1047 /* For ILK+ */
1048 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1049                         struct intel_shared_dpll *pll,
1050                         bool state)
1051 {
1052         bool cur_state;
1053         struct intel_dpll_hw_state hw_state;
1054
1055         if (HAS_PCH_LPT(dev_priv->dev)) {
1056                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1057                 return;
1058         }
1059
1060         if (WARN (!pll,
1061                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1062                 return;
1063
1064         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1065         WARN(cur_state != state,
1066              "%s assertion failure (expected %s, current %s)\n",
1067              pll->name, state_string(state), state_string(cur_state));
1068 }
1069
1070 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1071                           enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         if (HAS_DDI(dev_priv->dev)) {
1080                 /* DDI does not have a specific FDI_TX register */
1081                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1082                 val = I915_READ(reg);
1083                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1084         } else {
1085                 reg = FDI_TX_CTL(pipe);
1086                 val = I915_READ(reg);
1087                 cur_state = !!(val & FDI_TX_ENABLE);
1088         }
1089         WARN(cur_state != state,
1090              "FDI TX state assertion failure (expected %s, current %s)\n",
1091              state_string(state), state_string(cur_state));
1092 }
1093 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1094 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1095
1096 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1097                           enum pipe pipe, bool state)
1098 {
1099         int reg;
1100         u32 val;
1101         bool cur_state;
1102
1103         reg = FDI_RX_CTL(pipe);
1104         val = I915_READ(reg);
1105         cur_state = !!(val & FDI_RX_ENABLE);
1106         WARN(cur_state != state,
1107              "FDI RX state assertion failure (expected %s, current %s)\n",
1108              state_string(state), state_string(cur_state));
1109 }
1110 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1111 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1112
1113 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1114                                       enum pipe pipe)
1115 {
1116         int reg;
1117         u32 val;
1118
1119         /* ILK FDI PLL is always enabled */
1120         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1121                 return;
1122
1123         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1124         if (HAS_DDI(dev_priv->dev))
1125                 return;
1126
1127         reg = FDI_TX_CTL(pipe);
1128         val = I915_READ(reg);
1129         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1130 }
1131
1132 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1133                        enum pipe pipe, bool state)
1134 {
1135         int reg;
1136         u32 val;
1137         bool cur_state;
1138
1139         reg = FDI_RX_CTL(pipe);
1140         val = I915_READ(reg);
1141         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1142         WARN(cur_state != state,
1143              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1144              state_string(state), state_string(cur_state));
1145 }
1146
1147 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1148                                   enum pipe pipe)
1149 {
1150         int pp_reg, lvds_reg;
1151         u32 val;
1152         enum pipe panel_pipe = PIPE_A;
1153         bool locked = true;
1154
1155         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1156                 pp_reg = PCH_PP_CONTROL;
1157                 lvds_reg = PCH_LVDS;
1158         } else {
1159                 pp_reg = PP_CONTROL;
1160                 lvds_reg = LVDS;
1161         }
1162
1163         val = I915_READ(pp_reg);
1164         if (!(val & PANEL_POWER_ON) ||
1165             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1166                 locked = false;
1167
1168         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1169                 panel_pipe = PIPE_B;
1170
1171         WARN(panel_pipe == pipe && locked,
1172              "panel assertion failure, pipe %c regs locked\n",
1173              pipe_name(pipe));
1174 }
1175
1176 static void assert_cursor(struct drm_i915_private *dev_priv,
1177                           enum pipe pipe, bool state)
1178 {
1179         struct drm_device *dev = dev_priv->dev;
1180         bool cur_state;
1181
1182         if (IS_845G(dev) || IS_I865G(dev))
1183                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1184         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1185                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1186         else
1187                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1188
1189         WARN(cur_state != state,
1190              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191              pipe_name(pipe), state_string(state), state_string(cur_state));
1192 }
1193 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
1196 void assert_pipe(struct drm_i915_private *dev_priv,
1197                  enum pipe pipe, bool state)
1198 {
1199         int reg;
1200         u32 val;
1201         bool cur_state;
1202         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203                                                                       pipe);
1204
1205         /* if we need the pipe A quirk it must be always on */
1206         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1207                 state = true;
1208
1209         if (!intel_display_power_enabled(dev_priv,
1210                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1211                 cur_state = false;
1212         } else {
1213                 reg = PIPECONF(cpu_transcoder);
1214                 val = I915_READ(reg);
1215                 cur_state = !!(val & PIPECONF_ENABLE);
1216         }
1217
1218         WARN(cur_state != state,
1219              "pipe %c assertion failure (expected %s, current %s)\n",
1220              pipe_name(pipe), state_string(state), state_string(cur_state));
1221 }
1222
1223 static void assert_plane(struct drm_i915_private *dev_priv,
1224                          enum plane plane, bool state)
1225 {
1226         int reg;
1227         u32 val;
1228         bool cur_state;
1229
1230         reg = DSPCNTR(plane);
1231         val = I915_READ(reg);
1232         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1233         WARN(cur_state != state,
1234              "plane %c assertion failure (expected %s, current %s)\n",
1235              plane_name(plane), state_string(state), state_string(cur_state));
1236 }
1237
1238 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1239 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1240
1241 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1242                                    enum pipe pipe)
1243 {
1244         struct drm_device *dev = dev_priv->dev;
1245         int reg, i;
1246         u32 val;
1247         int cur_pipe;
1248
1249         /* Primary planes are fixed to pipes on gen4+ */
1250         if (INTEL_INFO(dev)->gen >= 4) {
1251                 reg = DSPCNTR(pipe);
1252                 val = I915_READ(reg);
1253                 WARN(val & DISPLAY_PLANE_ENABLE,
1254                      "plane %c assertion failure, should be disabled but not\n",
1255                      plane_name(pipe));
1256                 return;
1257         }
1258
1259         /* Need to check both planes against the pipe */
1260         for_each_pipe(i) {
1261                 reg = DSPCNTR(i);
1262                 val = I915_READ(reg);
1263                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1264                         DISPPLANE_SEL_PIPE_SHIFT;
1265                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1266                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1267                      plane_name(i), pipe_name(pipe));
1268         }
1269 }
1270
1271 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1272                                     enum pipe pipe)
1273 {
1274         struct drm_device *dev = dev_priv->dev;
1275         int reg, sprite;
1276         u32 val;
1277
1278         if (IS_VALLEYVIEW(dev)) {
1279                 for_each_sprite(pipe, sprite) {
1280                         reg = SPCNTR(pipe, sprite);
1281                         val = I915_READ(reg);
1282                         WARN(val & SP_ENABLE,
1283                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                              sprite_name(pipe, sprite), pipe_name(pipe));
1285                 }
1286         } else if (INTEL_INFO(dev)->gen >= 7) {
1287                 reg = SPRCTL(pipe);
1288                 val = I915_READ(reg);
1289                 WARN(val & SPRITE_ENABLE,
1290                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                      plane_name(pipe), pipe_name(pipe));
1292         } else if (INTEL_INFO(dev)->gen >= 5) {
1293                 reg = DVSCNTR(pipe);
1294                 val = I915_READ(reg);
1295                 WARN(val & DVS_ENABLE,
1296                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1297                      plane_name(pipe), pipe_name(pipe));
1298         }
1299 }
1300
1301 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1302 {
1303         u32 val;
1304         bool enabled;
1305
1306         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                            enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = PCH_TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1341                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1342                         return false;
1343         } else {
1344                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1351                               enum pipe pipe, u32 val)
1352 {
1353         if ((val & SDVO_ENABLE) == 0)
1354                 return false;
1355
1356         if (HAS_PCH_CPT(dev_priv->dev)) {
1357                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1358                         return false;
1359         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1360                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1361                         return false;
1362         } else {
1363                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1364                         return false;
1365         }
1366         return true;
1367 }
1368
1369 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1370                               enum pipe pipe, u32 val)
1371 {
1372         if ((val & LVDS_PORT_EN) == 0)
1373                 return false;
1374
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1386                               enum pipe pipe, u32 val)
1387 {
1388         if ((val & ADPA_DAC_ENABLE) == 0)
1389                 return false;
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1392                         return false;
1393         } else {
1394                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1395                         return false;
1396         }
1397         return true;
1398 }
1399
1400 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1401                                    enum pipe pipe, int reg, u32 port_sel)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1405              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1409              && (val & DP_PIPEB_SELECT),
1410              "IBX PCH dp port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1414                                      enum pipe pipe, int reg)
1415 {
1416         u32 val = I915_READ(reg);
1417         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1418              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1419              reg, pipe_name(pipe));
1420
1421         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1422              && (val & SDVO_PIPE_B_SELECT),
1423              "IBX PCH hdmi port still using transcoder B\n");
1424 }
1425
1426 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1427                                       enum pipe pipe)
1428 {
1429         int reg;
1430         u32 val;
1431
1432         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1433         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1434         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1435
1436         reg = PCH_ADPA;
1437         val = I915_READ(reg);
1438         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1439              "PCH VGA enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         reg = PCH_LVDS;
1443         val = I915_READ(reg);
1444         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1445              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1449         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1450         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1451 }
1452
1453 static void intel_init_dpio(struct drm_device *dev)
1454 {
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457         if (!IS_VALLEYVIEW(dev))
1458                 return;
1459
1460         /*
1461          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1462          * CHV x1 PHY (DP/HDMI D)
1463          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1464          */
1465         if (IS_CHERRYVIEW(dev)) {
1466                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1467                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1468         } else {
1469                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1470         }
1471 }
1472
1473 static void intel_reset_dpio(struct drm_device *dev)
1474 {
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477         if (!IS_VALLEYVIEW(dev))
1478                 return;
1479
1480         /*
1481          * Enable the CRI clock source so we can get at the display and the
1482          * reference clock for VGA hotplug / manual detection.
1483          */
1484         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1485                    DPLL_REFA_CLK_ENABLE_VLV |
1486                    DPLL_INTEGRATED_CRI_CLK_VLV);
1487
1488         if (IS_CHERRYVIEW(dev)) {
1489                 enum dpio_phy phy;
1490                 u32 val;
1491
1492                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1493                         /* Poll for phypwrgood signal */
1494                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1495                                                 PHY_POWERGOOD(phy), 1))
1496                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1497
1498                         /*
1499                          * Deassert common lane reset for PHY.
1500                          *
1501                          * This should only be done on init and resume from S3
1502                          * with both PLLs disabled, or we risk losing DPIO and
1503                          * PLL synchronization.
1504                          */
1505                         val = I915_READ(DISPLAY_PHY_CONTROL);
1506                         I915_WRITE(DISPLAY_PHY_CONTROL,
1507                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1508                 }
1509
1510         } else {
1511                 /*
1512                  * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1513                  *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1514                  *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1515                  *   b. The other bits such as sfr settings / modesel may all
1516                  *      be set to 0.
1517                  *
1518                  * This should only be done on init and resume from S3 with
1519                  * both PLLs disabled, or we risk losing DPIO and PLL
1520                  * synchronization.
1521                  */
1522                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1523         }
1524 }
1525
1526 static void vlv_enable_pll(struct intel_crtc *crtc)
1527 {
1528         struct drm_device *dev = crtc->base.dev;
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         int reg = DPLL(crtc->pipe);
1531         u32 dpll = crtc->config.dpll_hw_state.dpll;
1532
1533         assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535         /* No really, not for ILK+ */
1536         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1537
1538         /* PLL is protected by panel, make sure we can write it */
1539         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1540                 assert_panel_unlocked(dev_priv, crtc->pipe);
1541
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150);
1545
1546         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1547                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1548
1549         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1550         POSTING_READ(DPLL_MD(crtc->pipe));
1551
1552         /* We do this three times for luck */
1553         I915_WRITE(reg, dpll);
1554         POSTING_READ(reg);
1555         udelay(150); /* wait for warmup */
1556         I915_WRITE(reg, dpll);
1557         POSTING_READ(reg);
1558         udelay(150); /* wait for warmup */
1559         I915_WRITE(reg, dpll);
1560         POSTING_READ(reg);
1561         udelay(150); /* wait for warmup */
1562 }
1563
1564 static void chv_enable_pll(struct intel_crtc *crtc)
1565 {
1566         struct drm_device *dev = crtc->base.dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         int pipe = crtc->pipe;
1569         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1570         int dpll = DPLL(crtc->pipe);
1571         u32 tmp;
1572
1573         assert_pipe_disabled(dev_priv, crtc->pipe);
1574
1575         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1576
1577         mutex_lock(&dev_priv->dpio_lock);
1578
1579         /* Enable back the 10bit clock to display controller */
1580         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1581         tmp |= DPIO_DCLKP_EN;
1582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         tmp = I915_READ(dpll);
1591         tmp |= DPLL_VCO_ENABLE;
1592         I915_WRITE(dpll, tmp);
1593
1594         /* Check PLL is locked */
1595         if (wait_for(((I915_READ(dpll) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1596                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1597
1598         /* Deassert soft data lane reset*/
1599         tmp = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
1600         tmp |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1601         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), tmp);
1602
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         int dpll = DPLL(pipe);
1696         u32 val;
1697
1698         /* Set PLL en = 0 */
1699         val = I915_READ(dpll);
1700         val &= ~DPLL_VCO_ENABLE;
1701         I915_WRITE(dpll, val);
1702
1703 }
1704
1705 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1706                 struct intel_digital_port *dport)
1707 {
1708         u32 port_mask;
1709         int dpll_reg;
1710
1711         switch (dport->port) {
1712         case PORT_B:
1713                 port_mask = DPLL_PORTB_READY_MASK;
1714                 dpll_reg = DPLL(0);
1715                 break;
1716         case PORT_C:
1717                 port_mask = DPLL_PORTC_READY_MASK;
1718                 dpll_reg = DPLL(0);
1719                 break;
1720         case PORT_D:
1721                 port_mask = DPLL_PORTD_READY_MASK;
1722                 dpll_reg = DPIO_PHY_STATUS;
1723                 break;
1724         default:
1725                 BUG();
1726         }
1727
1728         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1729                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1730                      port_name(dport->port), I915_READ(dpll_reg));
1731 }
1732
1733 /**
1734  * ironlake_enable_shared_dpll - enable PCH PLL
1735  * @dev_priv: i915 private structure
1736  * @pipe: pipe PLL to enable
1737  *
1738  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1739  * drives the transcoder clock.
1740  */
1741 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1742 {
1743         struct drm_device *dev = crtc->base.dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1746
1747         /* PCH PLLs only available on ILK, SNB and IVB */
1748         BUG_ON(INTEL_INFO(dev)->gen < 5);
1749         if (WARN_ON(pll == NULL))
1750                 return;
1751
1752         if (WARN_ON(pll->refcount == 0))
1753                 return;
1754
1755         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1756                       pll->name, pll->active, pll->on,
1757                       crtc->base.base.id);
1758
1759         if (pll->active++) {
1760                 WARN_ON(!pll->on);
1761                 assert_shared_dpll_enabled(dev_priv, pll);
1762                 return;
1763         }
1764         WARN_ON(pll->on);
1765
1766         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1767         pll->enable(dev_priv, pll);
1768         pll->on = true;
1769 }
1770
1771 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1772 {
1773         struct drm_device *dev = crtc->base.dev;
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1776
1777         /* PCH only available on ILK+ */
1778         BUG_ON(INTEL_INFO(dev)->gen < 5);
1779         if (WARN_ON(pll == NULL))
1780                return;
1781
1782         if (WARN_ON(pll->refcount == 0))
1783                 return;
1784
1785         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1786                       pll->name, pll->active, pll->on,
1787                       crtc->base.base.id);
1788
1789         if (WARN_ON(pll->active == 0)) {
1790                 assert_shared_dpll_disabled(dev_priv, pll);
1791                 return;
1792         }
1793
1794         assert_shared_dpll_enabled(dev_priv, pll);
1795         WARN_ON(!pll->on);
1796         if (--pll->active)
1797                 return;
1798
1799         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1800         pll->disable(dev_priv, pll);
1801         pll->on = false;
1802 }
1803
1804 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1805                                            enum pipe pipe)
1806 {
1807         struct drm_device *dev = dev_priv->dev;
1808         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810         uint32_t reg, val, pipeconf_val;
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814
1815         /* Make sure PCH DPLL is enabled */
1816         assert_shared_dpll_enabled(dev_priv,
1817                                    intel_crtc_to_shared_dpll(intel_crtc));
1818
1819         /* FDI must be feeding us bits for PCH ports */
1820         assert_fdi_tx_enabled(dev_priv, pipe);
1821         assert_fdi_rx_enabled(dev_priv, pipe);
1822
1823         if (HAS_PCH_CPT(dev)) {
1824                 /* Workaround: Set the timing override bit before enabling the
1825                  * pch transcoder. */
1826                 reg = TRANS_CHICKEN2(pipe);
1827                 val = I915_READ(reg);
1828                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1829                 I915_WRITE(reg, val);
1830         }
1831
1832         reg = PCH_TRANSCONF(pipe);
1833         val = I915_READ(reg);
1834         pipeconf_val = I915_READ(PIPECONF(pipe));
1835
1836         if (HAS_PCH_IBX(dev_priv->dev)) {
1837                 /*
1838                  * make the BPC in transcoder be consistent with
1839                  * that in pipeconf reg.
1840                  */
1841                 val &= ~PIPECONF_BPC_MASK;
1842                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1843         }
1844
1845         val &= ~TRANS_INTERLACE_MASK;
1846         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1847                 if (HAS_PCH_IBX(dev_priv->dev) &&
1848                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1849                         val |= TRANS_LEGACY_INTERLACED_ILK;
1850                 else
1851                         val |= TRANS_INTERLACED;
1852         else
1853                 val |= TRANS_PROGRESSIVE;
1854
1855         I915_WRITE(reg, val | TRANS_ENABLE);
1856         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1857                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1858 }
1859
1860 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1861                                       enum transcoder cpu_transcoder)
1862 {
1863         u32 val, pipeconf_val;
1864
1865         /* PCH only available on ILK+ */
1866         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1867
1868         /* FDI must be feeding us bits for PCH ports */
1869         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1870         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1871
1872         /* Workaround: set timing override bit. */
1873         val = I915_READ(_TRANSA_CHICKEN2);
1874         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875         I915_WRITE(_TRANSA_CHICKEN2, val);
1876
1877         val = TRANS_ENABLE;
1878         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1879
1880         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1881             PIPECONF_INTERLACED_ILK)
1882                 val |= TRANS_INTERLACED;
1883         else
1884                 val |= TRANS_PROGRESSIVE;
1885
1886         I915_WRITE(LPT_TRANSCONF, val);
1887         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1888                 DRM_ERROR("Failed to enable PCH transcoder\n");
1889 }
1890
1891 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1892                                             enum pipe pipe)
1893 {
1894         struct drm_device *dev = dev_priv->dev;
1895         uint32_t reg, val;
1896
1897         /* FDI relies on the transcoder */
1898         assert_fdi_tx_disabled(dev_priv, pipe);
1899         assert_fdi_rx_disabled(dev_priv, pipe);
1900
1901         /* Ports must be off as well */
1902         assert_pch_ports_disabled(dev_priv, pipe);
1903
1904         reg = PCH_TRANSCONF(pipe);
1905         val = I915_READ(reg);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(reg, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1910                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1911
1912         if (!HAS_PCH_IBX(dev)) {
1913                 /* Workaround: Clear the timing override chicken bit again. */
1914                 reg = TRANS_CHICKEN2(pipe);
1915                 val = I915_READ(reg);
1916                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                 I915_WRITE(reg, val);
1918         }
1919 }
1920
1921 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1922 {
1923         u32 val;
1924
1925         val = I915_READ(LPT_TRANSCONF);
1926         val &= ~TRANS_ENABLE;
1927         I915_WRITE(LPT_TRANSCONF, val);
1928         /* wait for PCH transcoder off, transcoder state */
1929         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1930                 DRM_ERROR("Failed to disable PCH transcoder\n");
1931
1932         /* Workaround: clear timing override bit. */
1933         val = I915_READ(_TRANSA_CHICKEN2);
1934         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1935         I915_WRITE(_TRANSA_CHICKEN2, val);
1936 }
1937
1938 /**
1939  * intel_enable_pipe - enable a pipe, asserting requirements
1940  * @crtc: crtc responsible for the pipe
1941  *
1942  * Enable @crtc's pipe, making sure that various hardware specific requirements
1943  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1944  */
1945 static void intel_enable_pipe(struct intel_crtc *crtc)
1946 {
1947         struct drm_device *dev = crtc->base.dev;
1948         struct drm_i915_private *dev_priv = dev->dev_private;
1949         enum pipe pipe = crtc->pipe;
1950         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1951                                                                       pipe);
1952         enum pipe pch_transcoder;
1953         int reg;
1954         u32 val;
1955
1956         assert_planes_disabled(dev_priv, pipe);
1957         assert_cursor_disabled(dev_priv, pipe);
1958         assert_sprites_disabled(dev_priv, pipe);
1959
1960         if (HAS_PCH_LPT(dev_priv->dev))
1961                 pch_transcoder = TRANSCODER_A;
1962         else
1963                 pch_transcoder = pipe;
1964
1965         /*
1966          * A pipe without a PLL won't actually be able to drive bits from
1967          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1968          * need the check.
1969          */
1970         if (!HAS_PCH_SPLIT(dev_priv->dev))
1971                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1972                         assert_dsi_pll_enabled(dev_priv);
1973                 else
1974                         assert_pll_enabled(dev_priv, pipe);
1975         else {
1976                 if (crtc->config.has_pch_encoder) {
1977                         /* if driving the PCH, we need FDI enabled */
1978                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1979                         assert_fdi_tx_pll_enabled(dev_priv,
1980                                                   (enum pipe) cpu_transcoder);
1981                 }
1982                 /* FIXME: assert CPU port conditions for SNB+ */
1983         }
1984
1985         reg = PIPECONF(cpu_transcoder);
1986         val = I915_READ(reg);
1987         if (val & PIPECONF_ENABLE) {
1988                 WARN_ON(!(pipe == PIPE_A &&
1989                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1990                 return;
1991         }
1992
1993         I915_WRITE(reg, val | PIPECONF_ENABLE);
1994         POSTING_READ(reg);
1995 }
1996
1997 /**
1998  * intel_disable_pipe - disable a pipe, asserting requirements
1999  * @dev_priv: i915 private structure
2000  * @pipe: pipe to disable
2001  *
2002  * Disable @pipe, making sure that various hardware specific requirements
2003  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2004  *
2005  * @pipe should be %PIPE_A or %PIPE_B.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2010                                enum pipe pipe)
2011 {
2012         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2013                                                                       pipe);
2014         int reg;
2015         u32 val;
2016
2017         /*
2018          * Make sure planes won't keep trying to pump pixels to us,
2019          * or we might hang the display.
2020          */
2021         assert_planes_disabled(dev_priv, pipe);
2022         assert_cursor_disabled(dev_priv, pipe);
2023         assert_sprites_disabled(dev_priv, pipe);
2024
2025         /* Don't disable pipe A or pipe A PLLs if needed */
2026         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2027                 return;
2028
2029         reg = PIPECONF(cpu_transcoder);
2030         val = I915_READ(reg);
2031         if ((val & PIPECONF_ENABLE) == 0)
2032                 return;
2033
2034         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2035         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2036 }
2037
2038 /*
2039  * Plane regs are double buffered, going from enabled->disabled needs a
2040  * trigger in order to latch.  The display address reg provides this.
2041  */
2042 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2043                                enum plane plane)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2047
2048         I915_WRITE(reg, I915_READ(reg));
2049         POSTING_READ(reg);
2050 }
2051
2052 /**
2053  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2054  * @dev_priv: i915 private structure
2055  * @plane: plane to enable
2056  * @pipe: pipe being fed
2057  *
2058  * Enable @plane on @pipe, making sure that @pipe is running first.
2059  */
2060 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2061                                           enum plane plane, enum pipe pipe)
2062 {
2063         struct intel_crtc *intel_crtc =
2064                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2065         int reg;
2066         u32 val;
2067
2068         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2069         assert_pipe_enabled(dev_priv, pipe);
2070
2071         if (intel_crtc->primary_enabled)
2072                 return;
2073
2074         intel_crtc->primary_enabled = true;
2075
2076         reg = DSPCNTR(plane);
2077         val = I915_READ(reg);
2078         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2079
2080         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2081         intel_flush_primary_plane(dev_priv, plane);
2082         intel_wait_for_vblank(dev_priv->dev, pipe);
2083 }
2084
2085 /**
2086  * intel_disable_primary_hw_plane - disable the primary hardware plane
2087  * @dev_priv: i915 private structure
2088  * @plane: plane to disable
2089  * @pipe: pipe consuming the data
2090  *
2091  * Disable @plane; should be an independent operation.
2092  */
2093 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2094                                            enum plane plane, enum pipe pipe)
2095 {
2096         struct intel_crtc *intel_crtc =
2097                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2098         int reg;
2099         u32 val;
2100
2101         if (!intel_crtc->primary_enabled)
2102                 return;
2103
2104         intel_crtc->primary_enabled = false;
2105
2106         reg = DSPCNTR(plane);
2107         val = I915_READ(reg);
2108         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2109
2110         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2111         intel_flush_primary_plane(dev_priv, plane);
2112         intel_wait_for_vblank(dev_priv->dev, pipe);
2113 }
2114
2115 static bool need_vtd_wa(struct drm_device *dev)
2116 {
2117 #ifdef CONFIG_INTEL_IOMMU
2118         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2119                 return true;
2120 #endif
2121         return false;
2122 }
2123
2124 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2125 {
2126         int tile_height;
2127
2128         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2129         return ALIGN(height, tile_height);
2130 }
2131
2132 int
2133 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2134                            struct drm_i915_gem_object *obj,
2135                            struct intel_ring_buffer *pipelined)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         u32 alignment;
2139         int ret;
2140
2141         switch (obj->tiling_mode) {
2142         case I915_TILING_NONE:
2143                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2144                         alignment = 128 * 1024;
2145                 else if (INTEL_INFO(dev)->gen >= 4)
2146                         alignment = 4 * 1024;
2147                 else
2148                         alignment = 64 * 1024;
2149                 break;
2150         case I915_TILING_X:
2151                 /* pin() will align the object as required by fence */
2152                 alignment = 0;
2153                 break;
2154         case I915_TILING_Y:
2155                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2156                 return -EINVAL;
2157         default:
2158                 BUG();
2159         }
2160
2161         /* Note that the w/a also requires 64 PTE of padding following the
2162          * bo. We currently fill all unused PTE with the shadow page and so
2163          * we should always have valid PTE following the scanout preventing
2164          * the VT-d warning.
2165          */
2166         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2167                 alignment = 256 * 1024;
2168
2169         dev_priv->mm.interruptible = false;
2170         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2171         if (ret)
2172                 goto err_interruptible;
2173
2174         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2175          * fence, whereas 965+ only requires a fence if using
2176          * framebuffer compression.  For simplicity, we always install
2177          * a fence as the cost is not that onerous.
2178          */
2179         ret = i915_gem_object_get_fence(obj);
2180         if (ret)
2181                 goto err_unpin;
2182
2183         i915_gem_object_pin_fence(obj);
2184
2185         dev_priv->mm.interruptible = true;
2186         return 0;
2187
2188 err_unpin:
2189         i915_gem_object_unpin_from_display_plane(obj);
2190 err_interruptible:
2191         dev_priv->mm.interruptible = true;
2192         return ret;
2193 }
2194
2195 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2196 {
2197         i915_gem_object_unpin_fence(obj);
2198         i915_gem_object_unpin_from_display_plane(obj);
2199 }
2200
2201 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2202  * is assumed to be a power-of-two. */
2203 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2204                                              unsigned int tiling_mode,
2205                                              unsigned int cpp,
2206                                              unsigned int pitch)
2207 {
2208         if (tiling_mode != I915_TILING_NONE) {
2209                 unsigned int tile_rows, tiles;
2210
2211                 tile_rows = *y / 8;
2212                 *y %= 8;
2213
2214                 tiles = *x / (512/cpp);
2215                 *x %= 512/cpp;
2216
2217                 return tile_rows * pitch * 8 + tiles * 4096;
2218         } else {
2219                 unsigned int offset;
2220
2221                 offset = *y * pitch + *x * cpp;
2222                 *y = 0;
2223                 *x = (offset & 4095) / cpp;
2224                 return offset & -4096;
2225         }
2226 }
2227
2228 int intel_format_to_fourcc(int format)
2229 {
2230         switch (format) {
2231         case DISPPLANE_8BPP:
2232                 return DRM_FORMAT_C8;
2233         case DISPPLANE_BGRX555:
2234                 return DRM_FORMAT_XRGB1555;
2235         case DISPPLANE_BGRX565:
2236                 return DRM_FORMAT_RGB565;
2237         default:
2238         case DISPPLANE_BGRX888:
2239                 return DRM_FORMAT_XRGB8888;
2240         case DISPPLANE_RGBX888:
2241                 return DRM_FORMAT_XBGR8888;
2242         case DISPPLANE_BGRX101010:
2243                 return DRM_FORMAT_XRGB2101010;
2244         case DISPPLANE_RGBX101010:
2245                 return DRM_FORMAT_XBGR2101010;
2246         }
2247 }
2248
2249 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2250                                   struct intel_plane_config *plane_config)
2251 {
2252         struct drm_device *dev = crtc->base.dev;
2253         struct drm_i915_gem_object *obj = NULL;
2254         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2255         u32 base = plane_config->base;
2256
2257         if (plane_config->size == 0)
2258                 return false;
2259
2260         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2261                                                              plane_config->size);
2262         if (!obj)
2263                 return false;
2264
2265         if (plane_config->tiled) {
2266                 obj->tiling_mode = I915_TILING_X;
2267                 obj->stride = crtc->base.primary->fb->pitches[0];
2268         }
2269
2270         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2271         mode_cmd.width = crtc->base.primary->fb->width;
2272         mode_cmd.height = crtc->base.primary->fb->height;
2273         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2274
2275         mutex_lock(&dev->struct_mutex);
2276
2277         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2278                                    &mode_cmd, obj)) {
2279                 DRM_DEBUG_KMS("intel fb init failed\n");
2280                 goto out_unref_obj;
2281         }
2282
2283         mutex_unlock(&dev->struct_mutex);
2284
2285         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2286         return true;
2287
2288 out_unref_obj:
2289         drm_gem_object_unreference(&obj->base);
2290         mutex_unlock(&dev->struct_mutex);
2291         return false;
2292 }
2293
2294 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2295                                  struct intel_plane_config *plane_config)
2296 {
2297         struct drm_device *dev = intel_crtc->base.dev;
2298         struct drm_crtc *c;
2299         struct intel_crtc *i;
2300         struct intel_framebuffer *fb;
2301
2302         if (!intel_crtc->base.primary->fb)
2303                 return;
2304
2305         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2306                 return;
2307
2308         kfree(intel_crtc->base.primary->fb);
2309         intel_crtc->base.primary->fb = NULL;
2310
2311         /*
2312          * Failed to alloc the obj, check to see if we should share
2313          * an fb with another CRTC instead
2314          */
2315         for_each_crtc(dev, c) {
2316                 i = to_intel_crtc(c);
2317
2318                 if (c == &intel_crtc->base)
2319                         continue;
2320
2321                 if (!i->active || !c->primary->fb)
2322                         continue;
2323
2324                 fb = to_intel_framebuffer(c->primary->fb);
2325                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2326                         drm_framebuffer_reference(c->primary->fb);
2327                         intel_crtc->base.primary->fb = c->primary->fb;
2328                         break;
2329                 }
2330         }
2331 }
2332
2333 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2334                                       struct drm_framebuffer *fb,
2335                                       int x, int y)
2336 {
2337         struct drm_device *dev = crtc->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2340         struct intel_framebuffer *intel_fb;
2341         struct drm_i915_gem_object *obj;
2342         int plane = intel_crtc->plane;
2343         unsigned long linear_offset;
2344         u32 dspcntr;
2345         u32 reg;
2346
2347         intel_fb = to_intel_framebuffer(fb);
2348         obj = intel_fb->obj;
2349
2350         reg = DSPCNTR(plane);
2351         dspcntr = I915_READ(reg);
2352         /* Mask out pixel format bits in case we change it */
2353         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2354         switch (fb->pixel_format) {
2355         case DRM_FORMAT_C8:
2356                 dspcntr |= DISPPLANE_8BPP;
2357                 break;
2358         case DRM_FORMAT_XRGB1555:
2359         case DRM_FORMAT_ARGB1555:
2360                 dspcntr |= DISPPLANE_BGRX555;
2361                 break;
2362         case DRM_FORMAT_RGB565:
2363                 dspcntr |= DISPPLANE_BGRX565;
2364                 break;
2365         case DRM_FORMAT_XRGB8888:
2366         case DRM_FORMAT_ARGB8888:
2367                 dspcntr |= DISPPLANE_BGRX888;
2368                 break;
2369         case DRM_FORMAT_XBGR8888:
2370         case DRM_FORMAT_ABGR8888:
2371                 dspcntr |= DISPPLANE_RGBX888;
2372                 break;
2373         case DRM_FORMAT_XRGB2101010:
2374         case DRM_FORMAT_ARGB2101010:
2375                 dspcntr |= DISPPLANE_BGRX101010;
2376                 break;
2377         case DRM_FORMAT_XBGR2101010:
2378         case DRM_FORMAT_ABGR2101010:
2379                 dspcntr |= DISPPLANE_RGBX101010;
2380                 break;
2381         default:
2382                 BUG();
2383         }
2384
2385         if (INTEL_INFO(dev)->gen >= 4) {
2386                 if (obj->tiling_mode != I915_TILING_NONE)
2387                         dspcntr |= DISPPLANE_TILED;
2388                 else
2389                         dspcntr &= ~DISPPLANE_TILED;
2390         }
2391
2392         if (IS_G4X(dev))
2393                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2394
2395         I915_WRITE(reg, dspcntr);
2396
2397         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2398
2399         if (INTEL_INFO(dev)->gen >= 4) {
2400                 intel_crtc->dspaddr_offset =
2401                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2402                                                        fb->bits_per_pixel / 8,
2403                                                        fb->pitches[0]);
2404                 linear_offset -= intel_crtc->dspaddr_offset;
2405         } else {
2406                 intel_crtc->dspaddr_offset = linear_offset;
2407         }
2408
2409         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2410                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2411                       fb->pitches[0]);
2412         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2413         if (INTEL_INFO(dev)->gen >= 4) {
2414                 I915_WRITE(DSPSURF(plane),
2415                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2416                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2417                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2418         } else
2419                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2420         POSTING_READ(reg);
2421 }
2422
2423 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2424                                           struct drm_framebuffer *fb,
2425                                           int x, int y)
2426 {
2427         struct drm_device *dev = crtc->dev;
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2430         struct intel_framebuffer *intel_fb;
2431         struct drm_i915_gem_object *obj;
2432         int plane = intel_crtc->plane;
2433         unsigned long linear_offset;
2434         u32 dspcntr;
2435         u32 reg;
2436
2437         intel_fb = to_intel_framebuffer(fb);
2438         obj = intel_fb->obj;
2439
2440         reg = DSPCNTR(plane);
2441         dspcntr = I915_READ(reg);
2442         /* Mask out pixel format bits in case we change it */
2443         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2444         switch (fb->pixel_format) {
2445         case DRM_FORMAT_C8:
2446                 dspcntr |= DISPPLANE_8BPP;
2447                 break;
2448         case DRM_FORMAT_RGB565:
2449                 dspcntr |= DISPPLANE_BGRX565;
2450                 break;
2451         case DRM_FORMAT_XRGB8888:
2452         case DRM_FORMAT_ARGB8888:
2453                 dspcntr |= DISPPLANE_BGRX888;
2454                 break;
2455         case DRM_FORMAT_XBGR8888:
2456         case DRM_FORMAT_ABGR8888:
2457                 dspcntr |= DISPPLANE_RGBX888;
2458                 break;
2459         case DRM_FORMAT_XRGB2101010:
2460         case DRM_FORMAT_ARGB2101010:
2461                 dspcntr |= DISPPLANE_BGRX101010;
2462                 break;
2463         case DRM_FORMAT_XBGR2101010:
2464         case DRM_FORMAT_ABGR2101010:
2465                 dspcntr |= DISPPLANE_RGBX101010;
2466                 break;
2467         default:
2468                 BUG();
2469         }
2470
2471         if (obj->tiling_mode != I915_TILING_NONE)
2472                 dspcntr |= DISPPLANE_TILED;
2473         else
2474                 dspcntr &= ~DISPPLANE_TILED;
2475
2476         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2477                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2478         else
2479                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2480
2481         I915_WRITE(reg, dspcntr);
2482
2483         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2484         intel_crtc->dspaddr_offset =
2485                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2486                                                fb->bits_per_pixel / 8,
2487                                                fb->pitches[0]);
2488         linear_offset -= intel_crtc->dspaddr_offset;
2489
2490         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2491                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2492                       fb->pitches[0]);
2493         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2494         I915_WRITE(DSPSURF(plane),
2495                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2496         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2497                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2498         } else {
2499                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2500                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2501         }
2502         POSTING_READ(reg);
2503 }
2504
2505 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2506 static int
2507 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2508                            int x, int y, enum mode_set_atomic state)
2509 {
2510         struct drm_device *dev = crtc->dev;
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513         if (dev_priv->display.disable_fbc)
2514                 dev_priv->display.disable_fbc(dev);
2515         intel_increase_pllclock(crtc);
2516
2517         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2518
2519         return 0;
2520 }
2521
2522 void intel_display_handle_reset(struct drm_device *dev)
2523 {
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct drm_crtc *crtc;
2526
2527         /*
2528          * Flips in the rings have been nuked by the reset,
2529          * so complete all pending flips so that user space
2530          * will get its events and not get stuck.
2531          *
2532          * Also update the base address of all primary
2533          * planes to the the last fb to make sure we're
2534          * showing the correct fb after a reset.
2535          *
2536          * Need to make two loops over the crtcs so that we
2537          * don't try to grab a crtc mutex before the
2538          * pending_flip_queue really got woken up.
2539          */
2540
2541         for_each_crtc(dev, crtc) {
2542                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2543                 enum plane plane = intel_crtc->plane;
2544
2545                 intel_prepare_page_flip(dev, plane);
2546                 intel_finish_page_flip_plane(dev, plane);
2547         }
2548
2549         for_each_crtc(dev, crtc) {
2550                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551
2552                 mutex_lock(&crtc->mutex);
2553                 /*
2554                  * FIXME: Once we have proper support for primary planes (and
2555                  * disabling them without disabling the entire crtc) allow again
2556                  * a NULL crtc->primary->fb.
2557                  */
2558                 if (intel_crtc->active && crtc->primary->fb)
2559                         dev_priv->display.update_primary_plane(crtc,
2560                                                                crtc->primary->fb,
2561                                                                crtc->x,
2562                                                                crtc->y);
2563                 mutex_unlock(&crtc->mutex);
2564         }
2565 }
2566
2567 static int
2568 intel_finish_fb(struct drm_framebuffer *old_fb)
2569 {
2570         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2571         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2572         bool was_interruptible = dev_priv->mm.interruptible;
2573         int ret;
2574
2575         /* Big Hammer, we also need to ensure that any pending
2576          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2577          * current scanout is retired before unpinning the old
2578          * framebuffer.
2579          *
2580          * This should only fail upon a hung GPU, in which case we
2581          * can safely continue.
2582          */
2583         dev_priv->mm.interruptible = false;
2584         ret = i915_gem_object_finish_gpu(obj);
2585         dev_priv->mm.interruptible = was_interruptible;
2586
2587         return ret;
2588 }
2589
2590 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2591 {
2592         struct drm_device *dev = crtc->dev;
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2595         unsigned long flags;
2596         bool pending;
2597
2598         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2599             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2600                 return false;
2601
2602         spin_lock_irqsave(&dev->event_lock, flags);
2603         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2604         spin_unlock_irqrestore(&dev->event_lock, flags);
2605
2606         return pending;
2607 }
2608
2609 static int
2610 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2611                     struct drm_framebuffer *fb)
2612 {
2613         struct drm_device *dev = crtc->dev;
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2616         struct drm_framebuffer *old_fb;
2617         int ret;
2618
2619         if (intel_crtc_has_pending_flip(crtc)) {
2620                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2621                 return -EBUSY;
2622         }
2623
2624         /* no fb bound */
2625         if (!fb) {
2626                 DRM_ERROR("No FB bound\n");
2627                 return 0;
2628         }
2629
2630         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2631                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2632                           plane_name(intel_crtc->plane),
2633                           INTEL_INFO(dev)->num_pipes);
2634                 return -EINVAL;
2635         }
2636
2637         mutex_lock(&dev->struct_mutex);
2638         ret = intel_pin_and_fence_fb_obj(dev,
2639                                          to_intel_framebuffer(fb)->obj,
2640                                          NULL);
2641         mutex_unlock(&dev->struct_mutex);
2642         if (ret != 0) {
2643                 DRM_ERROR("pin & fence failed\n");
2644                 return ret;
2645         }
2646
2647         /*
2648          * Update pipe size and adjust fitter if needed: the reason for this is
2649          * that in compute_mode_changes we check the native mode (not the pfit
2650          * mode) to see if we can flip rather than do a full mode set. In the
2651          * fastboot case, we'll flip, but if we don't update the pipesrc and
2652          * pfit state, we'll end up with a big fb scanned out into the wrong
2653          * sized surface.
2654          *
2655          * To fix this properly, we need to hoist the checks up into
2656          * compute_mode_changes (or above), check the actual pfit state and
2657          * whether the platform allows pfit disable with pipe active, and only
2658          * then update the pipesrc and pfit state, even on the flip path.
2659          */
2660         if (i915.fastboot) {
2661                 const struct drm_display_mode *adjusted_mode =
2662                         &intel_crtc->config.adjusted_mode;
2663
2664                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2665                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2666                            (adjusted_mode->crtc_vdisplay - 1));
2667                 if (!intel_crtc->config.pch_pfit.enabled &&
2668                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2669                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2670                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2671                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2672                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2673                 }
2674                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2675                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2676         }
2677
2678         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2679
2680         old_fb = crtc->primary->fb;
2681         crtc->primary->fb = fb;
2682         crtc->x = x;
2683         crtc->y = y;
2684
2685         if (old_fb) {
2686                 if (intel_crtc->active && old_fb != fb)
2687                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2688                 mutex_lock(&dev->struct_mutex);
2689                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2690                 mutex_unlock(&dev->struct_mutex);
2691         }
2692
2693         mutex_lock(&dev->struct_mutex);
2694         intel_update_fbc(dev);
2695         intel_edp_psr_update(dev);
2696         mutex_unlock(&dev->struct_mutex);
2697
2698         return 0;
2699 }
2700
2701 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2702 {
2703         struct drm_device *dev = crtc->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2706         int pipe = intel_crtc->pipe;
2707         u32 reg, temp;
2708
2709         /* enable normal train */
2710         reg = FDI_TX_CTL(pipe);
2711         temp = I915_READ(reg);
2712         if (IS_IVYBRIDGE(dev)) {
2713                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2714                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2715         } else {
2716                 temp &= ~FDI_LINK_TRAIN_NONE;
2717                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2718         }
2719         I915_WRITE(reg, temp);
2720
2721         reg = FDI_RX_CTL(pipe);
2722         temp = I915_READ(reg);
2723         if (HAS_PCH_CPT(dev)) {
2724                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2725                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2726         } else {
2727                 temp &= ~FDI_LINK_TRAIN_NONE;
2728                 temp |= FDI_LINK_TRAIN_NONE;
2729         }
2730         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2731
2732         /* wait one idle pattern time */
2733         POSTING_READ(reg);
2734         udelay(1000);
2735
2736         /* IVB wants error correction enabled */
2737         if (IS_IVYBRIDGE(dev))
2738                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2739                            FDI_FE_ERRC_ENABLE);
2740 }
2741
2742 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2743 {
2744         return crtc->base.enabled && crtc->active &&
2745                 crtc->config.has_pch_encoder;
2746 }
2747
2748 static void ivb_modeset_global_resources(struct drm_device *dev)
2749 {
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         struct intel_crtc *pipe_B_crtc =
2752                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2753         struct intel_crtc *pipe_C_crtc =
2754                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2755         uint32_t temp;
2756
2757         /*
2758          * When everything is off disable fdi C so that we could enable fdi B
2759          * with all lanes. Note that we don't care about enabled pipes without
2760          * an enabled pch encoder.
2761          */
2762         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2763             !pipe_has_enabled_pch(pipe_C_crtc)) {
2764                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2765                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2766
2767                 temp = I915_READ(SOUTH_CHICKEN1);
2768                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2769                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2770                 I915_WRITE(SOUTH_CHICKEN1, temp);
2771         }
2772 }
2773
2774 /* The FDI link training functions for ILK/Ibexpeak. */
2775 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2776 {
2777         struct drm_device *dev = crtc->dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         int pipe = intel_crtc->pipe;
2781         u32 reg, temp, tries;
2782
2783         /* FDI needs bits from pipe first */
2784         assert_pipe_enabled(dev_priv, pipe);
2785
2786         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2787            for train result */
2788         reg = FDI_RX_IMR(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~FDI_RX_SYMBOL_LOCK;
2791         temp &= ~FDI_RX_BIT_LOCK;
2792         I915_WRITE(reg, temp);
2793         I915_READ(reg);
2794         udelay(150);
2795
2796         /* enable CPU FDI TX and PCH FDI RX */
2797         reg = FDI_TX_CTL(pipe);
2798         temp = I915_READ(reg);
2799         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2800         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~FDI_LINK_TRAIN_NONE;
2808         temp |= FDI_LINK_TRAIN_PATTERN_1;
2809         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2810
2811         POSTING_READ(reg);
2812         udelay(150);
2813
2814         /* Ironlake workaround, enable clock pointer after FDI enable*/
2815         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2816         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2817                    FDI_RX_PHASE_SYNC_POINTER_EN);
2818
2819         reg = FDI_RX_IIR(pipe);
2820         for (tries = 0; tries < 5; tries++) {
2821                 temp = I915_READ(reg);
2822                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2823
2824                 if ((temp & FDI_RX_BIT_LOCK)) {
2825                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2826                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2827                         break;
2828                 }
2829         }
2830         if (tries == 5)
2831                 DRM_ERROR("FDI train 1 fail!\n");
2832
2833         /* Train 2 */
2834         reg = FDI_TX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         temp &= ~FDI_LINK_TRAIN_NONE;
2837         temp |= FDI_LINK_TRAIN_PATTERN_2;
2838         I915_WRITE(reg, temp);
2839
2840         reg = FDI_RX_CTL(pipe);
2841         temp = I915_READ(reg);
2842         temp &= ~FDI_LINK_TRAIN_NONE;
2843         temp |= FDI_LINK_TRAIN_PATTERN_2;
2844         I915_WRITE(reg, temp);
2845
2846         POSTING_READ(reg);
2847         udelay(150);
2848
2849         reg = FDI_RX_IIR(pipe);
2850         for (tries = 0; tries < 5; tries++) {
2851                 temp = I915_READ(reg);
2852                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2853
2854                 if (temp & FDI_RX_SYMBOL_LOCK) {
2855                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2856                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2857                         break;
2858                 }
2859         }
2860         if (tries == 5)
2861                 DRM_ERROR("FDI train 2 fail!\n");
2862
2863         DRM_DEBUG_KMS("FDI train done\n");
2864
2865 }
2866
2867 static const int snb_b_fdi_train_param[] = {
2868         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2869         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2870         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2871         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2872 };
2873
2874 /* The FDI link training functions for SNB/Cougarpoint. */
2875 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp, i, retry;
2882
2883         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2884            for train result */
2885         reg = FDI_RX_IMR(pipe);
2886         temp = I915_READ(reg);
2887         temp &= ~FDI_RX_SYMBOL_LOCK;
2888         temp &= ~FDI_RX_BIT_LOCK;
2889         I915_WRITE(reg, temp);
2890
2891         POSTING_READ(reg);
2892         udelay(150);
2893
2894         /* enable CPU FDI TX and PCH FDI RX */
2895         reg = FDI_TX_CTL(pipe);
2896         temp = I915_READ(reg);
2897         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2898         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2899         temp &= ~FDI_LINK_TRAIN_NONE;
2900         temp |= FDI_LINK_TRAIN_PATTERN_1;
2901         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2902         /* SNB-B */
2903         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2904         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2905
2906         I915_WRITE(FDI_RX_MISC(pipe),
2907                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2908
2909         reg = FDI_RX_CTL(pipe);
2910         temp = I915_READ(reg);
2911         if (HAS_PCH_CPT(dev)) {
2912                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914         } else {
2915                 temp &= ~FDI_LINK_TRAIN_NONE;
2916                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2917         }
2918         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2919
2920         POSTING_READ(reg);
2921         udelay(150);
2922
2923         for (i = 0; i < 4; i++) {
2924                 reg = FDI_TX_CTL(pipe);
2925                 temp = I915_READ(reg);
2926                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2927                 temp |= snb_b_fdi_train_param[i];
2928                 I915_WRITE(reg, temp);
2929
2930                 POSTING_READ(reg);
2931                 udelay(500);
2932
2933                 for (retry = 0; retry < 5; retry++) {
2934                         reg = FDI_RX_IIR(pipe);
2935                         temp = I915_READ(reg);
2936                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2937                         if (temp & FDI_RX_BIT_LOCK) {
2938                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2939                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2940                                 break;
2941                         }
2942                         udelay(50);
2943                 }
2944                 if (retry < 5)
2945                         break;
2946         }
2947         if (i == 4)
2948                 DRM_ERROR("FDI train 1 fail!\n");
2949
2950         /* Train 2 */
2951         reg = FDI_TX_CTL(pipe);
2952         temp = I915_READ(reg);
2953         temp &= ~FDI_LINK_TRAIN_NONE;
2954         temp |= FDI_LINK_TRAIN_PATTERN_2;
2955         if (IS_GEN6(dev)) {
2956                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2957                 /* SNB-B */
2958                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2959         }
2960         I915_WRITE(reg, temp);
2961
2962         reg = FDI_RX_CTL(pipe);
2963         temp = I915_READ(reg);
2964         if (HAS_PCH_CPT(dev)) {
2965                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2966                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2967         } else {
2968                 temp &= ~FDI_LINK_TRAIN_NONE;
2969                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2970         }
2971         I915_WRITE(reg, temp);
2972
2973         POSTING_READ(reg);
2974         udelay(150);
2975
2976         for (i = 0; i < 4; i++) {
2977                 reg = FDI_TX_CTL(pipe);
2978                 temp = I915_READ(reg);
2979                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2980                 temp |= snb_b_fdi_train_param[i];
2981                 I915_WRITE(reg, temp);
2982
2983                 POSTING_READ(reg);
2984                 udelay(500);
2985
2986                 for (retry = 0; retry < 5; retry++) {
2987                         reg = FDI_RX_IIR(pipe);
2988                         temp = I915_READ(reg);
2989                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2990                         if (temp & FDI_RX_SYMBOL_LOCK) {
2991                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2992                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2993                                 break;
2994                         }
2995                         udelay(50);
2996                 }
2997                 if (retry < 5)
2998                         break;
2999         }
3000         if (i == 4)
3001                 DRM_ERROR("FDI train 2 fail!\n");
3002
3003         DRM_DEBUG_KMS("FDI train done.\n");
3004 }
3005
3006 /* Manual link training for Ivy Bridge A0 parts */
3007 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3008 {
3009         struct drm_device *dev = crtc->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3012         int pipe = intel_crtc->pipe;
3013         u32 reg, temp, i, j;
3014
3015         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3016            for train result */
3017         reg = FDI_RX_IMR(pipe);
3018         temp = I915_READ(reg);
3019         temp &= ~FDI_RX_SYMBOL_LOCK;
3020         temp &= ~FDI_RX_BIT_LOCK;
3021         I915_WRITE(reg, temp);
3022
3023         POSTING_READ(reg);
3024         udelay(150);
3025
3026         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3027                       I915_READ(FDI_RX_IIR(pipe)));
3028
3029         /* Try each vswing and preemphasis setting twice before moving on */
3030         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3031                 /* disable first in case we need to retry */
3032                 reg = FDI_TX_CTL(pipe);
3033                 temp = I915_READ(reg);
3034                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3035                 temp &= ~FDI_TX_ENABLE;
3036                 I915_WRITE(reg, temp);
3037
3038                 reg = FDI_RX_CTL(pipe);
3039                 temp = I915_READ(reg);
3040                 temp &= ~FDI_LINK_TRAIN_AUTO;
3041                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3042                 temp &= ~FDI_RX_ENABLE;
3043                 I915_WRITE(reg, temp);
3044
3045                 /* enable CPU FDI TX and PCH FDI RX */
3046                 reg = FDI_TX_CTL(pipe);
3047                 temp = I915_READ(reg);
3048                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3049                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3050                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3051                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3052                 temp |= snb_b_fdi_train_param[j/2];
3053                 temp |= FDI_COMPOSITE_SYNC;
3054                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3055
3056                 I915_WRITE(FDI_RX_MISC(pipe),
3057                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3058
3059                 reg = FDI_RX_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3062                 temp |= FDI_COMPOSITE_SYNC;
3063                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3064
3065                 POSTING_READ(reg);
3066                 udelay(1); /* should be 0.5us */
3067
3068                 for (i = 0; i < 4; i++) {
3069                         reg = FDI_RX_IIR(pipe);
3070                         temp = I915_READ(reg);
3071                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072
3073                         if (temp & FDI_RX_BIT_LOCK ||
3074                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3075                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3076                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3077                                               i);
3078                                 break;
3079                         }
3080                         udelay(1); /* should be 0.5us */
3081                 }
3082                 if (i == 4) {
3083                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3084                         continue;
3085                 }
3086
3087                 /* Train 2 */
3088                 reg = FDI_TX_CTL(pipe);
3089                 temp = I915_READ(reg);
3090                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3092                 I915_WRITE(reg, temp);
3093
3094                 reg = FDI_RX_CTL(pipe);
3095                 temp = I915_READ(reg);
3096                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3097                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3098                 I915_WRITE(reg, temp);
3099
3100                 POSTING_READ(reg);
3101                 udelay(2); /* should be 1.5us */
3102
3103                 for (i = 0; i < 4; i++) {
3104                         reg = FDI_RX_IIR(pipe);
3105                         temp = I915_READ(reg);
3106                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3107
3108                         if (temp & FDI_RX_SYMBOL_LOCK ||
3109                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3110                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3111                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3112                                               i);
3113                                 goto train_done;
3114                         }
3115                         udelay(2); /* should be 1.5us */
3116                 }
3117                 if (i == 4)
3118                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3119         }
3120
3121 train_done:
3122         DRM_DEBUG_KMS("FDI train done.\n");
3123 }
3124
3125 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3126 {
3127         struct drm_device *dev = intel_crtc->base.dev;
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129         int pipe = intel_crtc->pipe;
3130         u32 reg, temp;
3131
3132
3133         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3134         reg = FDI_RX_CTL(pipe);
3135         temp = I915_READ(reg);
3136         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3137         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3138         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3139         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3140
3141         POSTING_READ(reg);
3142         udelay(200);
3143
3144         /* Switch from Rawclk to PCDclk */
3145         temp = I915_READ(reg);
3146         I915_WRITE(reg, temp | FDI_PCDCLK);
3147
3148         POSTING_READ(reg);
3149         udelay(200);
3150
3151         /* Enable CPU FDI TX PLL, always on for Ironlake */
3152         reg = FDI_TX_CTL(pipe);
3153         temp = I915_READ(reg);
3154         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3155                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3156
3157                 POSTING_READ(reg);
3158                 udelay(100);
3159         }
3160 }
3161
3162 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3163 {
3164         struct drm_device *dev = intel_crtc->base.dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         int pipe = intel_crtc->pipe;
3167         u32 reg, temp;
3168
3169         /* Switch from PCDclk to Rawclk */
3170         reg = FDI_RX_CTL(pipe);
3171         temp = I915_READ(reg);
3172         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3173
3174         /* Disable CPU FDI TX PLL */
3175         reg = FDI_TX_CTL(pipe);
3176         temp = I915_READ(reg);
3177         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3178
3179         POSTING_READ(reg);
3180         udelay(100);
3181
3182         reg = FDI_RX_CTL(pipe);
3183         temp = I915_READ(reg);
3184         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3185
3186         /* Wait for the clocks to turn off. */
3187         POSTING_READ(reg);
3188         udelay(100);
3189 }
3190
3191 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3192 {
3193         struct drm_device *dev = crtc->dev;
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3196         int pipe = intel_crtc->pipe;
3197         u32 reg, temp;
3198
3199         /* disable CPU FDI tx and PCH FDI rx */
3200         reg = FDI_TX_CTL(pipe);
3201         temp = I915_READ(reg);
3202         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3203         POSTING_READ(reg);
3204
3205         reg = FDI_RX_CTL(pipe);
3206         temp = I915_READ(reg);
3207         temp &= ~(0x7 << 16);
3208         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3209         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3210
3211         POSTING_READ(reg);
3212         udelay(100);
3213
3214         /* Ironlake workaround, disable clock pointer after downing FDI */
3215         if (HAS_PCH_IBX(dev)) {
3216                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3217         }
3218
3219         /* still set train pattern 1 */
3220         reg = FDI_TX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         temp &= ~FDI_LINK_TRAIN_NONE;
3223         temp |= FDI_LINK_TRAIN_PATTERN_1;
3224         I915_WRITE(reg, temp);
3225
3226         reg = FDI_RX_CTL(pipe);
3227         temp = I915_READ(reg);
3228         if (HAS_PCH_CPT(dev)) {
3229                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3230                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3231         } else {
3232                 temp &= ~FDI_LINK_TRAIN_NONE;
3233                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3234         }
3235         /* BPC in FDI rx is consistent with that in PIPECONF */
3236         temp &= ~(0x07 << 16);
3237         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3238         I915_WRITE(reg, temp);
3239
3240         POSTING_READ(reg);
3241         udelay(100);
3242 }
3243
3244 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3245 {
3246         struct intel_crtc *crtc;
3247
3248         /* Note that we don't need to be called with mode_config.lock here
3249          * as our list of CRTC objects is static for the lifetime of the
3250          * device and so cannot disappear as we iterate. Similarly, we can
3251          * happily treat the predicates as racy, atomic checks as userspace
3252          * cannot claim and pin a new fb without at least acquring the
3253          * struct_mutex and so serialising with us.
3254          */
3255         for_each_intel_crtc(dev, crtc) {
3256                 if (atomic_read(&crtc->unpin_work_count) == 0)
3257                         continue;
3258
3259                 if (crtc->unpin_work)
3260                         intel_wait_for_vblank(dev, crtc->pipe);
3261
3262                 return true;
3263         }
3264
3265         return false;
3266 }
3267
3268 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3269 {
3270         struct drm_device *dev = crtc->dev;
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272
3273         if (crtc->primary->fb == NULL)
3274                 return;
3275
3276         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3277
3278         wait_event(dev_priv->pending_flip_queue,
3279                    !intel_crtc_has_pending_flip(crtc));
3280
3281         mutex_lock(&dev->struct_mutex);
3282         intel_finish_fb(crtc->primary->fb);
3283         mutex_unlock(&dev->struct_mutex);
3284 }
3285
3286 /* Program iCLKIP clock to the desired frequency */
3287 static void lpt_program_iclkip(struct drm_crtc *crtc)
3288 {
3289         struct drm_device *dev = crtc->dev;
3290         struct drm_i915_private *dev_priv = dev->dev_private;
3291         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3292         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3293         u32 temp;
3294
3295         mutex_lock(&dev_priv->dpio_lock);
3296
3297         /* It is necessary to ungate the pixclk gate prior to programming
3298          * the divisors, and gate it back when it is done.
3299          */
3300         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3301
3302         /* Disable SSCCTL */
3303         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3304                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3305                                 SBI_SSCCTL_DISABLE,
3306                         SBI_ICLK);
3307
3308         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3309         if (clock == 20000) {
3310                 auxdiv = 1;
3311                 divsel = 0x41;
3312                 phaseinc = 0x20;
3313         } else {
3314                 /* The iCLK virtual clock root frequency is in MHz,
3315                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3316                  * divisors, it is necessary to divide one by another, so we
3317                  * convert the virtual clock precision to KHz here for higher
3318                  * precision.
3319                  */
3320                 u32 iclk_virtual_root_freq = 172800 * 1000;
3321                 u32 iclk_pi_range = 64;
3322                 u32 desired_divisor, msb_divisor_value, pi_value;
3323
3324                 desired_divisor = (iclk_virtual_root_freq / clock);
3325                 msb_divisor_value = desired_divisor / iclk_pi_range;
3326                 pi_value = desired_divisor % iclk_pi_range;
3327
3328                 auxdiv = 0;
3329                 divsel = msb_divisor_value - 2;
3330                 phaseinc = pi_value;
3331         }
3332
3333         /* This should not happen with any sane values */
3334         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3335                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3336         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3337                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3338
3339         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3340                         clock,
3341                         auxdiv,
3342                         divsel,
3343                         phasedir,
3344                         phaseinc);
3345
3346         /* Program SSCDIVINTPHASE6 */
3347         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3348         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3349         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3350         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3351         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3352         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3353         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3354         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3355
3356         /* Program SSCAUXDIV */
3357         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3358         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3359         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3360         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3361
3362         /* Enable modulator and associated divider */
3363         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3364         temp &= ~SBI_SSCCTL_DISABLE;
3365         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3366
3367         /* Wait for initialization time */
3368         udelay(24);
3369
3370         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3371
3372         mutex_unlock(&dev_priv->dpio_lock);
3373 }
3374
3375 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3376                                                 enum pipe pch_transcoder)
3377 {
3378         struct drm_device *dev = crtc->base.dev;
3379         struct drm_i915_private *dev_priv = dev->dev_private;
3380         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3381
3382         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3383                    I915_READ(HTOTAL(cpu_transcoder)));
3384         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3385                    I915_READ(HBLANK(cpu_transcoder)));
3386         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3387                    I915_READ(HSYNC(cpu_transcoder)));
3388
3389         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3390                    I915_READ(VTOTAL(cpu_transcoder)));
3391         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3392                    I915_READ(VBLANK(cpu_transcoder)));
3393         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3394                    I915_READ(VSYNC(cpu_transcoder)));
3395         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3396                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3397 }
3398
3399 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         uint32_t temp;
3403
3404         temp = I915_READ(SOUTH_CHICKEN1);
3405         if (temp & FDI_BC_BIFURCATION_SELECT)
3406                 return;
3407
3408         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3409         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3410
3411         temp |= FDI_BC_BIFURCATION_SELECT;
3412         DRM_DEBUG_KMS("enabling fdi C rx\n");
3413         I915_WRITE(SOUTH_CHICKEN1, temp);
3414         POSTING_READ(SOUTH_CHICKEN1);
3415 }
3416
3417 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3418 {
3419         struct drm_device *dev = intel_crtc->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421
3422         switch (intel_crtc->pipe) {
3423         case PIPE_A:
3424                 break;
3425         case PIPE_B:
3426                 if (intel_crtc->config.fdi_lanes > 2)
3427                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3428                 else
3429                         cpt_enable_fdi_bc_bifurcation(dev);
3430
3431                 break;
3432         case PIPE_C:
3433                 cpt_enable_fdi_bc_bifurcation(dev);
3434
3435                 break;
3436         default:
3437                 BUG();
3438         }
3439 }
3440
3441 /*
3442  * Enable PCH resources required for PCH ports:
3443  *   - PCH PLLs
3444  *   - FDI training & RX/TX
3445  *   - update transcoder timings
3446  *   - DP transcoding bits
3447  *   - transcoder
3448  */
3449 static void ironlake_pch_enable(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         assert_pch_transcoder_disabled(dev_priv, pipe);
3458
3459         if (IS_IVYBRIDGE(dev))
3460                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3461
3462         /* Write the TU size bits before fdi link training, so that error
3463          * detection works. */
3464         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3465                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3466
3467         /* For PCH output, training FDI link */
3468         dev_priv->display.fdi_link_train(crtc);
3469
3470         /* We need to program the right clock selection before writing the pixel
3471          * mutliplier into the DPLL. */
3472         if (HAS_PCH_CPT(dev)) {
3473                 u32 sel;
3474
3475                 temp = I915_READ(PCH_DPLL_SEL);
3476                 temp |= TRANS_DPLL_ENABLE(pipe);
3477                 sel = TRANS_DPLLB_SEL(pipe);
3478                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3479                         temp |= sel;
3480                 else
3481                         temp &= ~sel;
3482                 I915_WRITE(PCH_DPLL_SEL, temp);
3483         }
3484
3485         /* XXX: pch pll's can be enabled any time before we enable the PCH
3486          * transcoder, and we actually should do this to not upset any PCH
3487          * transcoder that already use the clock when we share it.
3488          *
3489          * Note that enable_shared_dpll tries to do the right thing, but
3490          * get_shared_dpll unconditionally resets the pll - we need that to have
3491          * the right LVDS enable sequence. */
3492         ironlake_enable_shared_dpll(intel_crtc);
3493
3494         /* set transcoder timing, panel must allow it */
3495         assert_panel_unlocked(dev_priv, pipe);
3496         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3497
3498         intel_fdi_normal_train(crtc);
3499
3500         /* For PCH DP, enable TRANS_DP_CTL */
3501         if (HAS_PCH_CPT(dev) &&
3502             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3503              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3504                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3505                 reg = TRANS_DP_CTL(pipe);
3506                 temp = I915_READ(reg);
3507                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3508                           TRANS_DP_SYNC_MASK |
3509                           TRANS_DP_BPC_MASK);
3510                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3511                          TRANS_DP_ENH_FRAMING);
3512                 temp |= bpc << 9; /* same format but at 11:9 */
3513
3514                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3515                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3516                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3517                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3518
3519                 switch (intel_trans_dp_port_sel(crtc)) {
3520                 case PCH_DP_B:
3521                         temp |= TRANS_DP_PORT_SEL_B;
3522                         break;
3523                 case PCH_DP_C:
3524                         temp |= TRANS_DP_PORT_SEL_C;
3525                         break;
3526                 case PCH_DP_D:
3527                         temp |= TRANS_DP_PORT_SEL_D;
3528                         break;
3529                 default:
3530                         BUG();
3531                 }
3532
3533                 I915_WRITE(reg, temp);
3534         }
3535
3536         ironlake_enable_pch_transcoder(dev_priv, pipe);
3537 }
3538
3539 static void lpt_pch_enable(struct drm_crtc *crtc)
3540 {
3541         struct drm_device *dev = crtc->dev;
3542         struct drm_i915_private *dev_priv = dev->dev_private;
3543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3544         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3545
3546         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3547
3548         lpt_program_iclkip(crtc);
3549
3550         /* Set transcoder timing. */
3551         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3552
3553         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3554 }
3555
3556 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3557 {
3558         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3559
3560         if (pll == NULL)
3561                 return;
3562
3563         if (pll->refcount == 0) {
3564                 WARN(1, "bad %s refcount\n", pll->name);
3565                 return;
3566         }
3567
3568         if (--pll->refcount == 0) {
3569                 WARN_ON(pll->on);
3570                 WARN_ON(pll->active);
3571         }
3572
3573         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3574 }
3575
3576 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3577 {
3578         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3579         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3580         enum intel_dpll_id i;
3581
3582         if (pll) {
3583                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3584                               crtc->base.base.id, pll->name);
3585                 intel_put_shared_dpll(crtc);
3586         }
3587
3588         if (HAS_PCH_IBX(dev_priv->dev)) {
3589                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3590                 i = (enum intel_dpll_id) crtc->pipe;
3591                 pll = &dev_priv->shared_dplls[i];
3592
3593                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3594                               crtc->base.base.id, pll->name);
3595
3596                 goto found;
3597         }
3598
3599         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3600                 pll = &dev_priv->shared_dplls[i];
3601
3602                 /* Only want to check enabled timings first */
3603                 if (pll->refcount == 0)
3604                         continue;
3605
3606                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3607                            sizeof(pll->hw_state)) == 0) {
3608                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3609                                       crtc->base.base.id,
3610                                       pll->name, pll->refcount, pll->active);
3611
3612                         goto found;
3613                 }
3614         }
3615
3616         /* Ok no matching timings, maybe there's a free one? */
3617         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3618                 pll = &dev_priv->shared_dplls[i];
3619                 if (pll->refcount == 0) {
3620                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3621                                       crtc->base.base.id, pll->name);
3622                         goto found;
3623                 }
3624         }
3625
3626         return NULL;
3627
3628 found:
3629         crtc->config.shared_dpll = i;
3630         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3631                          pipe_name(crtc->pipe));
3632
3633         if (pll->active == 0) {
3634                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3635                        sizeof(pll->hw_state));
3636
3637                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3638                 WARN_ON(pll->on);
3639                 assert_shared_dpll_disabled(dev_priv, pll);
3640
3641                 pll->mode_set(dev_priv, pll);
3642         }
3643         pll->refcount++;
3644
3645         return pll;
3646 }
3647
3648 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651         int dslreg = PIPEDSL(pipe);
3652         u32 temp;
3653
3654         temp = I915_READ(dslreg);
3655         udelay(500);
3656         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3657                 if (wait_for(I915_READ(dslreg) != temp, 5))
3658                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3659         }
3660 }
3661
3662 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3663 {
3664         struct drm_device *dev = crtc->base.dev;
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666         int pipe = crtc->pipe;
3667
3668         if (crtc->config.pch_pfit.enabled) {
3669                 /* Force use of hard-coded filter coefficients
3670                  * as some pre-programmed values are broken,
3671                  * e.g. x201.
3672                  */
3673                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3674                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3675                                                  PF_PIPE_SEL_IVB(pipe));
3676                 else
3677                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3678                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3679                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3680         }
3681 }
3682
3683 static void intel_enable_planes(struct drm_crtc *crtc)
3684 {
3685         struct drm_device *dev = crtc->dev;
3686         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3687         struct drm_plane *plane;
3688         struct intel_plane *intel_plane;
3689
3690         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3691                 intel_plane = to_intel_plane(plane);
3692                 if (intel_plane->pipe == pipe)
3693                         intel_plane_restore(&intel_plane->base);
3694         }
3695 }
3696
3697 static void intel_disable_planes(struct drm_crtc *crtc)
3698 {
3699         struct drm_device *dev = crtc->dev;
3700         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3701         struct drm_plane *plane;
3702         struct intel_plane *intel_plane;
3703
3704         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3705                 intel_plane = to_intel_plane(plane);
3706                 if (intel_plane->pipe == pipe)
3707                         intel_plane_disable(&intel_plane->base);
3708         }
3709 }
3710
3711 void hsw_enable_ips(struct intel_crtc *crtc)
3712 {
3713         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3714
3715         if (!crtc->config.ips_enabled)
3716                 return;
3717
3718         /* We can only enable IPS after we enable a plane and wait for a vblank.
3719          * We guarantee that the plane is enabled by calling intel_enable_ips
3720          * only after intel_enable_plane. And intel_enable_plane already waits
3721          * for a vblank, so all we need to do here is to enable the IPS bit. */
3722         assert_plane_enabled(dev_priv, crtc->plane);
3723         if (IS_BROADWELL(crtc->base.dev)) {
3724                 mutex_lock(&dev_priv->rps.hw_lock);
3725                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3726                 mutex_unlock(&dev_priv->rps.hw_lock);
3727                 /* Quoting Art Runyan: "its not safe to expect any particular
3728                  * value in IPS_CTL bit 31 after enabling IPS through the
3729                  * mailbox." Moreover, the mailbox may return a bogus state,
3730                  * so we need to just enable it and continue on.
3731                  */
3732         } else {
3733                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3734                 /* The bit only becomes 1 in the next vblank, so this wait here
3735                  * is essentially intel_wait_for_vblank. If we don't have this
3736                  * and don't wait for vblanks until the end of crtc_enable, then
3737                  * the HW state readout code will complain that the expected
3738                  * IPS_CTL value is not the one we read. */
3739                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3740                         DRM_ERROR("Timed out waiting for IPS enable\n");
3741         }
3742 }
3743
3744 void hsw_disable_ips(struct intel_crtc *crtc)
3745 {
3746         struct drm_device *dev = crtc->base.dev;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748
3749         if (!crtc->config.ips_enabled)
3750                 return;
3751
3752         assert_plane_enabled(dev_priv, crtc->plane);
3753         if (IS_BROADWELL(dev)) {
3754                 mutex_lock(&dev_priv->rps.hw_lock);
3755                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3756                 mutex_unlock(&dev_priv->rps.hw_lock);
3757                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3758                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3759                         DRM_ERROR("Timed out waiting for IPS disable\n");
3760         } else {
3761                 I915_WRITE(IPS_CTL, 0);
3762                 POSTING_READ(IPS_CTL);
3763         }
3764
3765         /* We need to wait for a vblank before we can disable the plane. */
3766         intel_wait_for_vblank(dev, crtc->pipe);
3767 }
3768
3769 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3770 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3771 {
3772         struct drm_device *dev = crtc->dev;
3773         struct drm_i915_private *dev_priv = dev->dev_private;
3774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775         enum pipe pipe = intel_crtc->pipe;
3776         int palreg = PALETTE(pipe);
3777         int i;
3778         bool reenable_ips = false;
3779
3780         /* The clocks have to be on to load the palette. */
3781         if (!crtc->enabled || !intel_crtc->active)
3782                 return;
3783
3784         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3785                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3786                         assert_dsi_pll_enabled(dev_priv);
3787                 else
3788                         assert_pll_enabled(dev_priv, pipe);
3789         }
3790
3791         /* use legacy palette for Ironlake */
3792         if (HAS_PCH_SPLIT(dev))
3793                 palreg = LGC_PALETTE(pipe);
3794
3795         /* Workaround : Do not read or write the pipe palette/gamma data while
3796          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3797          */
3798         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3799             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3800              GAMMA_MODE_MODE_SPLIT)) {
3801                 hsw_disable_ips(intel_crtc);
3802                 reenable_ips = true;
3803         }
3804
3805         for (i = 0; i < 256; i++) {
3806                 I915_WRITE(palreg + 4 * i,
3807                            (intel_crtc->lut_r[i] << 16) |
3808                            (intel_crtc->lut_g[i] << 8) |
3809                            intel_crtc->lut_b[i]);
3810         }
3811
3812         if (reenable_ips)
3813                 hsw_enable_ips(intel_crtc);
3814 }
3815
3816 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3817 {
3818         if (!enable && intel_crtc->overlay) {
3819                 struct drm_device *dev = intel_crtc->base.dev;
3820                 struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822                 mutex_lock(&dev->struct_mutex);
3823                 dev_priv->mm.interruptible = false;
3824                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3825                 dev_priv->mm.interruptible = true;
3826                 mutex_unlock(&dev->struct_mutex);
3827         }
3828
3829         /* Let userspace switch the overlay on again. In most cases userspace
3830          * has to recompute where to put it anyway.
3831          */
3832 }
3833
3834 /**
3835  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3836  * cursor plane briefly if not already running after enabling the display
3837  * plane.
3838  * This workaround avoids occasional blank screens when self refresh is
3839  * enabled.
3840  */
3841 static void
3842 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3843 {
3844         u32 cntl = I915_READ(CURCNTR(pipe));
3845
3846         if ((cntl & CURSOR_MODE) == 0) {
3847                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3848
3849                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3850                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3851                 intel_wait_for_vblank(dev_priv->dev, pipe);
3852                 I915_WRITE(CURCNTR(pipe), cntl);
3853                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3854                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3855         }
3856 }
3857
3858 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3859 {
3860         struct drm_device *dev = crtc->dev;
3861         struct drm_i915_private *dev_priv = dev->dev_private;
3862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863         int pipe = intel_crtc->pipe;
3864         int plane = intel_crtc->plane;
3865
3866         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3867         intel_enable_planes(crtc);
3868         /* The fixup needs to happen before cursor is enabled */
3869         if (IS_G4X(dev))
3870                 g4x_fixup_plane(dev_priv, pipe);
3871         intel_crtc_update_cursor(crtc, true);
3872         intel_crtc_dpms_overlay(intel_crtc, true);
3873
3874         hsw_enable_ips(intel_crtc);
3875
3876         mutex_lock(&dev->struct_mutex);
3877         intel_update_fbc(dev);
3878         mutex_unlock(&dev->struct_mutex);
3879 }
3880
3881 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3882 {
3883         struct drm_device *dev = crtc->dev;
3884         struct drm_i915_private *dev_priv = dev->dev_private;
3885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3886         int pipe = intel_crtc->pipe;
3887         int plane = intel_crtc->plane;
3888
3889         intel_crtc_wait_for_pending_flips(crtc);
3890         drm_vblank_off(dev, pipe);
3891
3892         if (dev_priv->fbc.plane == plane)
3893                 intel_disable_fbc(dev);
3894
3895         hsw_disable_ips(intel_crtc);
3896
3897         intel_crtc_dpms_overlay(intel_crtc, false);
3898         intel_crtc_update_cursor(crtc, false);
3899         intel_disable_planes(crtc);
3900         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3901 }
3902
3903 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3904 {
3905         struct drm_device *dev = crtc->dev;
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3908         struct intel_encoder *encoder;
3909         int pipe = intel_crtc->pipe;
3910
3911         WARN_ON(!crtc->enabled);
3912
3913         if (intel_crtc->active)
3914                 return;
3915
3916         intel_crtc->active = true;
3917
3918         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3919         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3920
3921         for_each_encoder_on_crtc(dev, crtc, encoder)
3922                 if (encoder->pre_enable)
3923                         encoder->pre_enable(encoder);
3924
3925         if (intel_crtc->config.has_pch_encoder) {
3926                 /* Note: FDI PLL enabling _must_ be done before we enable the
3927                  * cpu pipes, hence this is separate from all the other fdi/pch
3928                  * enabling. */
3929                 ironlake_fdi_pll_enable(intel_crtc);
3930         } else {
3931                 assert_fdi_tx_disabled(dev_priv, pipe);
3932                 assert_fdi_rx_disabled(dev_priv, pipe);
3933         }
3934
3935         ironlake_pfit_enable(intel_crtc);
3936
3937         /*
3938          * On ILK+ LUT must be loaded before the pipe is running but with
3939          * clocks enabled
3940          */
3941         intel_crtc_load_lut(crtc);
3942
3943         intel_update_watermarks(crtc);
3944         intel_enable_pipe(intel_crtc);
3945
3946         if (intel_crtc->config.has_pch_encoder)
3947                 ironlake_pch_enable(crtc);
3948
3949         for_each_encoder_on_crtc(dev, crtc, encoder)
3950                 encoder->enable(encoder);
3951
3952         if (HAS_PCH_CPT(dev))
3953                 cpt_verify_modeset(dev, intel_crtc->pipe);
3954
3955         intel_crtc_enable_planes(crtc);
3956
3957         /*
3958          * There seems to be a race in PCH platform hw (at least on some
3959          * outputs) where an enabled pipe still completes any pageflip right
3960          * away (as if the pipe is off) instead of waiting for vblank. As soon
3961          * as the first vblank happend, everything works as expected. Hence just
3962          * wait for one vblank before returning to avoid strange things
3963          * happening.
3964          */
3965         intel_wait_for_vblank(dev, intel_crtc->pipe);
3966 }
3967
3968 /* IPS only exists on ULT machines and is tied to pipe A. */
3969 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3970 {
3971         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3972 }
3973
3974 /*
3975  * This implements the workaround described in the "notes" section of the mode
3976  * set sequence documentation. When going from no pipes or single pipe to
3977  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3978  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3979  */
3980 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3981 {
3982         struct drm_device *dev = crtc->base.dev;
3983         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3984
3985         /* We want to get the other_active_crtc only if there's only 1 other
3986          * active crtc. */
3987         for_each_intel_crtc(dev, crtc_it) {
3988                 if (!crtc_it->active || crtc_it == crtc)
3989                         continue;
3990
3991                 if (other_active_crtc)
3992                         return;
3993
3994                 other_active_crtc = crtc_it;
3995         }
3996         if (!other_active_crtc)
3997                 return;
3998
3999         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4000         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4001 }
4002
4003 static void haswell_crtc_enable(struct drm_crtc *crtc)
4004 {
4005         struct drm_device *dev = crtc->dev;
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4008         struct intel_encoder *encoder;
4009         int pipe = intel_crtc->pipe;
4010
4011         WARN_ON(!crtc->enabled);
4012
4013         if (intel_crtc->active)
4014                 return;
4015
4016         intel_crtc->active = true;
4017
4018         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4019         if (intel_crtc->config.has_pch_encoder)
4020                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4021
4022         if (intel_crtc->config.has_pch_encoder)
4023                 dev_priv->display.fdi_link_train(crtc);
4024
4025         for_each_encoder_on_crtc(dev, crtc, encoder)
4026                 if (encoder->pre_enable)
4027                         encoder->pre_enable(encoder);
4028
4029         intel_ddi_enable_pipe_clock(intel_crtc);
4030
4031         ironlake_pfit_enable(intel_crtc);
4032
4033         /*
4034          * On ILK+ LUT must be loaded before the pipe is running but with
4035          * clocks enabled
4036          */
4037         intel_crtc_load_lut(crtc);
4038
4039         intel_ddi_set_pipe_settings(crtc);
4040         intel_ddi_enable_transcoder_func(crtc);
4041
4042         intel_update_watermarks(crtc);
4043         intel_enable_pipe(intel_crtc);
4044
4045         if (intel_crtc->config.has_pch_encoder)
4046                 lpt_pch_enable(crtc);
4047
4048         for_each_encoder_on_crtc(dev, crtc, encoder) {
4049                 encoder->enable(encoder);
4050                 intel_opregion_notify_encoder(encoder, true);
4051         }
4052
4053         /* If we change the relative order between pipe/planes enabling, we need
4054          * to change the workaround. */
4055         haswell_mode_set_planes_workaround(intel_crtc);
4056         intel_crtc_enable_planes(crtc);
4057 }
4058
4059 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4060 {
4061         struct drm_device *dev = crtc->base.dev;
4062         struct drm_i915_private *dev_priv = dev->dev_private;
4063         int pipe = crtc->pipe;
4064
4065         /* To avoid upsetting the power well on haswell only disable the pfit if
4066          * it's in use. The hw state code will make sure we get this right. */
4067         if (crtc->config.pch_pfit.enabled) {
4068                 I915_WRITE(PF_CTL(pipe), 0);
4069                 I915_WRITE(PF_WIN_POS(pipe), 0);
4070                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4071         }
4072 }
4073
4074 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4075 {
4076         struct drm_device *dev = crtc->dev;
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4079         struct intel_encoder *encoder;
4080         int pipe = intel_crtc->pipe;
4081         u32 reg, temp;
4082
4083         if (!intel_crtc->active)
4084                 return;
4085
4086         intel_crtc_disable_planes(crtc);
4087
4088         for_each_encoder_on_crtc(dev, crtc, encoder)
4089                 encoder->disable(encoder);
4090
4091         if (intel_crtc->config.has_pch_encoder)
4092                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4093
4094         intel_disable_pipe(dev_priv, pipe);
4095
4096         ironlake_pfit_disable(intel_crtc);
4097
4098         for_each_encoder_on_crtc(dev, crtc, encoder)
4099                 if (encoder->post_disable)
4100                         encoder->post_disable(encoder);
4101
4102         if (intel_crtc->config.has_pch_encoder) {
4103                 ironlake_fdi_disable(crtc);
4104
4105                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4106                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4107
4108                 if (HAS_PCH_CPT(dev)) {
4109                         /* disable TRANS_DP_CTL */
4110                         reg = TRANS_DP_CTL(pipe);
4111                         temp = I915_READ(reg);
4112                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4113                                   TRANS_DP_PORT_SEL_MASK);
4114                         temp |= TRANS_DP_PORT_SEL_NONE;
4115                         I915_WRITE(reg, temp);
4116
4117                         /* disable DPLL_SEL */
4118                         temp = I915_READ(PCH_DPLL_SEL);
4119                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4120                         I915_WRITE(PCH_DPLL_SEL, temp);
4121                 }
4122
4123                 /* disable PCH DPLL */
4124                 intel_disable_shared_dpll(intel_crtc);
4125
4126                 ironlake_fdi_pll_disable(intel_crtc);
4127         }
4128
4129         intel_crtc->active = false;
4130         intel_update_watermarks(crtc);
4131
4132         mutex_lock(&dev->struct_mutex);
4133         intel_update_fbc(dev);
4134         mutex_unlock(&dev->struct_mutex);
4135 }
4136
4137 static void haswell_crtc_disable(struct drm_crtc *crtc)
4138 {
4139         struct drm_device *dev = crtc->dev;
4140         struct drm_i915_private *dev_priv = dev->dev_private;
4141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4142         struct intel_encoder *encoder;
4143         int pipe = intel_crtc->pipe;
4144         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4145
4146         if (!intel_crtc->active)
4147                 return;
4148
4149         intel_crtc_disable_planes(crtc);
4150
4151         for_each_encoder_on_crtc(dev, crtc, encoder) {
4152                 intel_opregion_notify_encoder(encoder, false);
4153                 encoder->disable(encoder);
4154         }
4155
4156         if (intel_crtc->config.has_pch_encoder)
4157                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4158         intel_disable_pipe(dev_priv, pipe);
4159
4160         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4161
4162         ironlake_pfit_disable(intel_crtc);
4163
4164         intel_ddi_disable_pipe_clock(intel_crtc);
4165
4166         for_each_encoder_on_crtc(dev, crtc, encoder)
4167                 if (encoder->post_disable)
4168                         encoder->post_disable(encoder);
4169
4170         if (intel_crtc->config.has_pch_encoder) {
4171                 lpt_disable_pch_transcoder(dev_priv);
4172                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4173                 intel_ddi_fdi_disable(crtc);
4174         }
4175
4176         intel_crtc->active = false;
4177         intel_update_watermarks(crtc);
4178
4179         mutex_lock(&dev->struct_mutex);
4180         intel_update_fbc(dev);
4181         mutex_unlock(&dev->struct_mutex);
4182 }
4183
4184 static void ironlake_crtc_off(struct drm_crtc *crtc)
4185 {
4186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187         intel_put_shared_dpll(intel_crtc);
4188 }
4189
4190 static void haswell_crtc_off(struct drm_crtc *crtc)
4191 {
4192         intel_ddi_put_crtc_pll(crtc);
4193 }
4194
4195 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4196 {
4197         struct drm_device *dev = crtc->base.dev;
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199         struct intel_crtc_config *pipe_config = &crtc->config;
4200
4201         if (!crtc->config.gmch_pfit.control)
4202                 return;
4203
4204         /*
4205          * The panel fitter should only be adjusted whilst the pipe is disabled,
4206          * according to register description and PRM.
4207          */
4208         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4209         assert_pipe_disabled(dev_priv, crtc->pipe);
4210
4211         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4212         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4213
4214         /* Border color in case we don't scale up to the full screen. Black by
4215          * default, change to something else for debugging. */
4216         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4217 }
4218
4219 #define for_each_power_domain(domain, mask)                             \
4220         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4221                 if ((1 << (domain)) & (mask))
4222
4223 enum intel_display_power_domain
4224 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4225 {
4226         struct drm_device *dev = intel_encoder->base.dev;
4227         struct intel_digital_port *intel_dig_port;
4228
4229         switch (intel_encoder->type) {
4230         case INTEL_OUTPUT_UNKNOWN:
4231                 /* Only DDI platforms should ever use this output type */
4232                 WARN_ON_ONCE(!HAS_DDI(dev));
4233         case INTEL_OUTPUT_DISPLAYPORT:
4234         case INTEL_OUTPUT_HDMI:
4235         case INTEL_OUTPUT_EDP:
4236                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4237                 switch (intel_dig_port->port) {
4238                 case PORT_A:
4239                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4240                 case PORT_B:
4241                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4242                 case PORT_C:
4243                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4244                 case PORT_D:
4245                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4246                 default:
4247                         WARN_ON_ONCE(1);
4248                         return POWER_DOMAIN_PORT_OTHER;
4249                 }
4250         case INTEL_OUTPUT_ANALOG:
4251                 return POWER_DOMAIN_PORT_CRT;
4252         case INTEL_OUTPUT_DSI:
4253                 return POWER_DOMAIN_PORT_DSI;
4254         default:
4255                 return POWER_DOMAIN_PORT_OTHER;
4256         }
4257 }
4258
4259 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4260 {
4261         struct drm_device *dev = crtc->dev;
4262         struct intel_encoder *intel_encoder;
4263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4264         enum pipe pipe = intel_crtc->pipe;
4265         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4266         unsigned long mask;
4267         enum transcoder transcoder;
4268
4269         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4270
4271         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4272         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4273         if (pfit_enabled)
4274                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4275
4276         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4277                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4278
4279         return mask;
4280 }
4281
4282 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4283                                   bool enable)
4284 {
4285         if (dev_priv->power_domains.init_power_on == enable)
4286                 return;
4287
4288         if (enable)
4289                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4290         else
4291                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4292
4293         dev_priv->power_domains.init_power_on = enable;
4294 }
4295
4296 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4297 {
4298         struct drm_i915_private *dev_priv = dev->dev_private;
4299         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4300         struct intel_crtc *crtc;
4301
4302         /*
4303          * First get all needed power domains, then put all unneeded, to avoid
4304          * any unnecessary toggling of the power wells.
4305          */
4306         for_each_intel_crtc(dev, crtc) {
4307                 enum intel_display_power_domain domain;
4308
4309                 if (!crtc->base.enabled)
4310                         continue;
4311
4312                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4313
4314                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4315                         intel_display_power_get(dev_priv, domain);
4316         }
4317
4318         for_each_intel_crtc(dev, crtc) {
4319                 enum intel_display_power_domain domain;
4320
4321                 for_each_power_domain(domain, crtc->enabled_power_domains)
4322                         intel_display_power_put(dev_priv, domain);
4323
4324                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4325         }
4326
4327         intel_display_set_init_power(dev_priv, false);
4328 }
4329
4330 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4331 {
4332         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4333
4334         /* Obtain SKU information */
4335         mutex_lock(&dev_priv->dpio_lock);
4336         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4337                 CCK_FUSE_HPLL_FREQ_MASK;
4338         mutex_unlock(&dev_priv->dpio_lock);
4339
4340         return vco_freq[hpll_freq];
4341 }
4342
4343 /* Adjust CDclk dividers to allow high res or save power if possible */
4344 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4345 {
4346         struct drm_i915_private *dev_priv = dev->dev_private;
4347         u32 val, cmd;
4348
4349         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4350         dev_priv->vlv_cdclk_freq = cdclk;
4351
4352         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4353                 cmd = 2;
4354         else if (cdclk == 266)
4355                 cmd = 1;
4356         else
4357                 cmd = 0;
4358
4359         mutex_lock(&dev_priv->rps.hw_lock);
4360         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4361         val &= ~DSPFREQGUAR_MASK;
4362         val |= (cmd << DSPFREQGUAR_SHIFT);
4363         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4364         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4365                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4366                      50)) {
4367                 DRM_ERROR("timed out waiting for CDclk change\n");
4368         }
4369         mutex_unlock(&dev_priv->rps.hw_lock);
4370
4371         if (cdclk == 400) {
4372                 u32 divider, vco;
4373
4374                 vco = valleyview_get_vco(dev_priv);
4375                 divider = ((vco << 1) / cdclk) - 1;
4376
4377                 mutex_lock(&dev_priv->dpio_lock);
4378                 /* adjust cdclk divider */
4379                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4380                 val &= ~0xf;
4381                 val |= divider;
4382                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4383                 mutex_unlock(&dev_priv->dpio_lock);
4384         }
4385
4386         mutex_lock(&dev_priv->dpio_lock);
4387         /* adjust self-refresh exit latency value */
4388         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4389         val &= ~0x7f;
4390
4391         /*
4392          * For high bandwidth configs, we set a higher latency in the bunit
4393          * so that the core display fetch happens in time to avoid underruns.
4394          */
4395         if (cdclk == 400)
4396                 val |= 4500 / 250; /* 4.5 usec */
4397         else
4398                 val |= 3000 / 250; /* 3.0 usec */
4399         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4400         mutex_unlock(&dev_priv->dpio_lock);
4401
4402         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4403         intel_i2c_reset(dev);
4404 }
4405
4406 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4407 {
4408         int cur_cdclk, vco;
4409         int divider;
4410
4411         vco = valleyview_get_vco(dev_priv);
4412
4413         mutex_lock(&dev_priv->dpio_lock);
4414         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4415         mutex_unlock(&dev_priv->dpio_lock);
4416
4417         divider &= 0xf;
4418
4419         cur_cdclk = (vco << 1) / (divider + 1);
4420
4421         return cur_cdclk;
4422 }
4423
4424 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4425                                  int max_pixclk)
4426 {
4427         /*
4428          * Really only a few cases to deal with, as only 4 CDclks are supported:
4429          *   200MHz
4430          *   267MHz
4431          *   320MHz
4432          *   400MHz
4433          * So we check to see whether we're above 90% of the lower bin and
4434          * adjust if needed.
4435          */
4436         if (max_pixclk > 288000) {
4437                 return 400;
4438         } else if (max_pixclk > 240000) {
4439                 return 320;
4440         } else
4441                 return 266;
4442         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4443 }
4444
4445 /* compute the max pixel clock for new configuration */
4446 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4447 {
4448         struct drm_device *dev = dev_priv->dev;
4449         struct intel_crtc *intel_crtc;
4450         int max_pixclk = 0;
4451
4452         for_each_intel_crtc(dev, intel_crtc) {
4453                 if (intel_crtc->new_enabled)
4454                         max_pixclk = max(max_pixclk,
4455                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4456         }
4457
4458         return max_pixclk;
4459 }
4460
4461 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4462                                             unsigned *prepare_pipes)
4463 {
4464         struct drm_i915_private *dev_priv = dev->dev_private;
4465         struct intel_crtc *intel_crtc;
4466         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4467
4468         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4469             dev_priv->vlv_cdclk_freq)
4470                 return;
4471
4472         /* disable/enable all currently active pipes while we change cdclk */
4473         for_each_intel_crtc(dev, intel_crtc)
4474                 if (intel_crtc->base.enabled)
4475                         *prepare_pipes |= (1 << intel_crtc->pipe);
4476 }
4477
4478 static void valleyview_modeset_global_resources(struct drm_device *dev)
4479 {
4480         struct drm_i915_private *dev_priv = dev->dev_private;
4481         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4482         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4483
4484         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4485                 valleyview_set_cdclk(dev, req_cdclk);
4486         modeset_update_crtc_power_domains(dev);
4487 }
4488
4489 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4490 {
4491         struct drm_device *dev = crtc->dev;
4492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4493         struct intel_encoder *encoder;
4494         int pipe = intel_crtc->pipe;
4495         bool is_dsi;
4496
4497         WARN_ON(!crtc->enabled);
4498
4499         if (intel_crtc->active)
4500                 return;
4501
4502         intel_crtc->active = true;
4503
4504         for_each_encoder_on_crtc(dev, crtc, encoder)
4505                 if (encoder->pre_pll_enable)
4506                         encoder->pre_pll_enable(encoder);
4507
4508         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4509
4510         if (!is_dsi) {
4511                 if (IS_CHERRYVIEW(dev))
4512                         chv_enable_pll(intel_crtc);
4513                 else
4514                         vlv_enable_pll(intel_crtc);
4515         }
4516
4517         for_each_encoder_on_crtc(dev, crtc, encoder)
4518                 if (encoder->pre_enable)
4519                         encoder->pre_enable(encoder);
4520
4521         i9xx_pfit_enable(intel_crtc);
4522
4523         intel_crtc_load_lut(crtc);
4524
4525         intel_update_watermarks(crtc);
4526         intel_enable_pipe(intel_crtc);
4527         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4528
4529         for_each_encoder_on_crtc(dev, crtc, encoder)
4530                 encoder->enable(encoder);
4531
4532         intel_crtc_enable_planes(crtc);
4533 }
4534
4535 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4536 {
4537         struct drm_device *dev = crtc->dev;
4538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4539         struct intel_encoder *encoder;
4540         int pipe = intel_crtc->pipe;
4541
4542         WARN_ON(!crtc->enabled);
4543
4544         if (intel_crtc->active)
4545                 return;
4546
4547         intel_crtc->active = true;
4548
4549         for_each_encoder_on_crtc(dev, crtc, encoder)
4550                 if (encoder->pre_enable)
4551                         encoder->pre_enable(encoder);
4552
4553         i9xx_enable_pll(intel_crtc);
4554
4555         i9xx_pfit_enable(intel_crtc);
4556
4557         intel_crtc_load_lut(crtc);
4558
4559         intel_update_watermarks(crtc);
4560         intel_enable_pipe(intel_crtc);
4561         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4562
4563         for_each_encoder_on_crtc(dev, crtc, encoder)
4564                 encoder->enable(encoder);
4565
4566         intel_crtc_enable_planes(crtc);
4567 }
4568
4569 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4570 {
4571         struct drm_device *dev = crtc->base.dev;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573
4574         if (!crtc->config.gmch_pfit.control)
4575                 return;
4576
4577         assert_pipe_disabled(dev_priv, crtc->pipe);
4578
4579         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4580                          I915_READ(PFIT_CONTROL));
4581         I915_WRITE(PFIT_CONTROL, 0);
4582 }
4583
4584 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4585 {
4586         struct drm_device *dev = crtc->dev;
4587         struct drm_i915_private *dev_priv = dev->dev_private;
4588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4589         struct intel_encoder *encoder;
4590         int pipe = intel_crtc->pipe;
4591
4592         if (!intel_crtc->active)
4593                 return;
4594
4595         intel_crtc_disable_planes(crtc);
4596
4597         for_each_encoder_on_crtc(dev, crtc, encoder)
4598                 encoder->disable(encoder);
4599
4600         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4601         intel_disable_pipe(dev_priv, pipe);
4602
4603         i9xx_pfit_disable(intel_crtc);
4604
4605         for_each_encoder_on_crtc(dev, crtc, encoder)
4606                 if (encoder->post_disable)
4607                         encoder->post_disable(encoder);
4608
4609         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4610                 if (IS_CHERRYVIEW(dev))
4611                         chv_disable_pll(dev_priv, pipe);
4612                 else if (IS_VALLEYVIEW(dev))
4613                         vlv_disable_pll(dev_priv, pipe);
4614                 else
4615                         i9xx_disable_pll(dev_priv, pipe);
4616         }
4617
4618         intel_crtc->active = false;
4619         intel_update_watermarks(crtc);
4620
4621         intel_update_fbc(dev);
4622 }
4623
4624 static void i9xx_crtc_off(struct drm_crtc *crtc)
4625 {
4626 }
4627
4628 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4629                                     bool enabled)
4630 {
4631         struct drm_device *dev = crtc->dev;
4632         struct drm_i915_master_private *master_priv;
4633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634         int pipe = intel_crtc->pipe;
4635
4636         if (!dev->primary->master)
4637                 return;
4638
4639         master_priv = dev->primary->master->driver_priv;
4640         if (!master_priv->sarea_priv)
4641                 return;
4642
4643         switch (pipe) {
4644         case 0:
4645                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4646                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4647                 break;
4648         case 1:
4649                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4650                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4651                 break;
4652         default:
4653                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4654                 break;
4655         }
4656 }
4657
4658 /**
4659  * Sets the power management mode of the pipe and plane.
4660  */
4661 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4662 {
4663         struct drm_device *dev = crtc->dev;
4664         struct drm_i915_private *dev_priv = dev->dev_private;
4665         struct intel_encoder *intel_encoder;
4666         bool enable = false;
4667
4668         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4669                 enable |= intel_encoder->connectors_active;
4670
4671         if (enable)
4672                 dev_priv->display.crtc_enable(crtc);
4673         else
4674                 dev_priv->display.crtc_disable(crtc);
4675
4676         intel_crtc_update_sarea(crtc, enable);
4677 }
4678
4679 static void intel_crtc_disable(struct drm_crtc *crtc)
4680 {
4681         struct drm_device *dev = crtc->dev;
4682         struct drm_connector *connector;
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684
4685         /* crtc should still be enabled when we disable it. */
4686         WARN_ON(!crtc->enabled);
4687
4688         dev_priv->display.crtc_disable(crtc);
4689         intel_crtc_update_sarea(crtc, false);
4690         dev_priv->display.off(crtc);
4691
4692         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4693         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4694         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4695
4696         if (crtc->primary->fb) {
4697                 mutex_lock(&dev->struct_mutex);
4698                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4699                 mutex_unlock(&dev->struct_mutex);
4700                 crtc->primary->fb = NULL;
4701         }
4702
4703         /* Update computed state. */
4704         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4705                 if (!connector->encoder || !connector->encoder->crtc)
4706                         continue;
4707
4708                 if (connector->encoder->crtc != crtc)
4709                         continue;
4710
4711                 connector->dpms = DRM_MODE_DPMS_OFF;
4712                 to_intel_encoder(connector->encoder)->connectors_active = false;
4713         }
4714 }
4715
4716 void intel_encoder_destroy(struct drm_encoder *encoder)
4717 {
4718         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4719
4720         drm_encoder_cleanup(encoder);
4721         kfree(intel_encoder);
4722 }
4723
4724 /* Simple dpms helper for encoders with just one connector, no cloning and only
4725  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4726  * state of the entire output pipe. */
4727 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4728 {
4729         if (mode == DRM_MODE_DPMS_ON) {
4730                 encoder->connectors_active = true;
4731
4732                 intel_crtc_update_dpms(encoder->base.crtc);
4733         } else {
4734                 encoder->connectors_active = false;
4735
4736                 intel_crtc_update_dpms(encoder->base.crtc);
4737         }
4738 }
4739
4740 /* Cross check the actual hw state with our own modeset state tracking (and it's
4741  * internal consistency). */
4742 static void intel_connector_check_state(struct intel_connector *connector)
4743 {
4744         if (connector->get_hw_state(connector)) {
4745                 struct intel_encoder *encoder = connector->encoder;
4746                 struct drm_crtc *crtc;
4747                 bool encoder_enabled;
4748                 enum pipe pipe;
4749
4750                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4751                               connector->base.base.id,
4752                               drm_get_connector_name(&connector->base));
4753
4754                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4755                      "wrong connector dpms state\n");
4756                 WARN(connector->base.encoder != &encoder->base,
4757                      "active connector not linked to encoder\n");
4758                 WARN(!encoder->connectors_active,
4759                      "encoder->connectors_active not set\n");
4760
4761                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4762                 WARN(!encoder_enabled, "encoder not enabled\n");
4763                 if (WARN_ON(!encoder->base.crtc))
4764                         return;
4765
4766                 crtc = encoder->base.crtc;
4767
4768                 WARN(!crtc->enabled, "crtc not enabled\n");
4769                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4770                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4771                      "encoder active on the wrong pipe\n");
4772         }
4773 }
4774
4775 /* Even simpler default implementation, if there's really no special case to
4776  * consider. */
4777 void intel_connector_dpms(struct drm_connector *connector, int mode)
4778 {
4779         /* All the simple cases only support two dpms states. */
4780         if (mode != DRM_MODE_DPMS_ON)
4781                 mode = DRM_MODE_DPMS_OFF;
4782
4783         if (mode == connector->dpms)
4784                 return;
4785
4786         connector->dpms = mode;
4787
4788         /* Only need to change hw state when actually enabled */
4789         if (connector->encoder)
4790                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4791
4792         intel_modeset_check_state(connector->dev);
4793 }
4794
4795 /* Simple connector->get_hw_state implementation for encoders that support only
4796  * one connector and no cloning and hence the encoder state determines the state
4797  * of the connector. */
4798 bool intel_connector_get_hw_state(struct intel_connector *connector)
4799 {
4800         enum pipe pipe = 0;
4801         struct intel_encoder *encoder = connector->encoder;
4802
4803         return encoder->get_hw_state(encoder, &pipe);
4804 }
4805
4806 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4807                                      struct intel_crtc_config *pipe_config)
4808 {
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810         struct intel_crtc *pipe_B_crtc =
4811                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4812
4813         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4814                       pipe_name(pipe), pipe_config->fdi_lanes);
4815         if (pipe_config->fdi_lanes > 4) {
4816                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4817                               pipe_name(pipe), pipe_config->fdi_lanes);
4818                 return false;
4819         }
4820
4821         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4822                 if (pipe_config->fdi_lanes > 2) {
4823                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4824                                       pipe_config->fdi_lanes);
4825                         return false;
4826                 } else {
4827                         return true;
4828                 }
4829         }
4830
4831         if (INTEL_INFO(dev)->num_pipes == 2)
4832                 return true;
4833
4834         /* Ivybridge 3 pipe is really complicated */
4835         switch (pipe) {
4836         case PIPE_A:
4837                 return true;
4838         case PIPE_B:
4839                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4840                     pipe_config->fdi_lanes > 2) {
4841                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4842                                       pipe_name(pipe), pipe_config->fdi_lanes);
4843                         return false;
4844                 }
4845                 return true;
4846         case PIPE_C:
4847                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4848                     pipe_B_crtc->config.fdi_lanes <= 2) {
4849                         if (pipe_config->fdi_lanes > 2) {
4850                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4851                                               pipe_name(pipe), pipe_config->fdi_lanes);
4852                                 return false;
4853                         }
4854                 } else {
4855                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4856                         return false;
4857                 }
4858                 return true;
4859         default:
4860                 BUG();
4861         }
4862 }
4863
4864 #define RETRY 1
4865 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4866                                        struct intel_crtc_config *pipe_config)
4867 {
4868         struct drm_device *dev = intel_crtc->base.dev;
4869         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4870         int lane, link_bw, fdi_dotclock;
4871         bool setup_ok, needs_recompute = false;
4872
4873 retry:
4874         /* FDI is a binary signal running at ~2.7GHz, encoding
4875          * each output octet as 10 bits. The actual frequency
4876          * is stored as a divider into a 100MHz clock, and the
4877          * mode pixel clock is stored in units of 1KHz.
4878          * Hence the bw of each lane in terms of the mode signal
4879          * is:
4880          */
4881         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4882
4883         fdi_dotclock = adjusted_mode->crtc_clock;
4884
4885         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4886                                            pipe_config->pipe_bpp);
4887
4888         pipe_config->fdi_lanes = lane;
4889
4890         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4891                                link_bw, &pipe_config->fdi_m_n);
4892
4893         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4894                                             intel_crtc->pipe, pipe_config);
4895         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4896                 pipe_config->pipe_bpp -= 2*3;
4897                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4898                               pipe_config->pipe_bpp);
4899                 needs_recompute = true;
4900                 pipe_config->bw_constrained = true;
4901
4902                 goto retry;
4903         }
4904
4905         if (needs_recompute)
4906                 return RETRY;
4907
4908         return setup_ok ? 0 : -EINVAL;
4909 }
4910
4911 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4912                                    struct intel_crtc_config *pipe_config)
4913 {
4914         pipe_config->ips_enabled = i915.enable_ips &&
4915                                    hsw_crtc_supports_ips(crtc) &&
4916                                    pipe_config->pipe_bpp <= 24;
4917 }
4918
4919 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4920                                      struct intel_crtc_config *pipe_config)
4921 {
4922         struct drm_device *dev = crtc->base.dev;
4923         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4924
4925         /* FIXME should check pixel clock limits on all platforms */
4926         if (INTEL_INFO(dev)->gen < 4) {
4927                 struct drm_i915_private *dev_priv = dev->dev_private;
4928                 int clock_limit =
4929                         dev_priv->display.get_display_clock_speed(dev);
4930
4931                 /*
4932                  * Enable pixel doubling when the dot clock
4933                  * is > 90% of the (display) core speed.
4934                  *
4935                  * GDG double wide on either pipe,
4936                  * otherwise pipe A only.
4937                  */
4938                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4939                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4940                         clock_limit *= 2;
4941                         pipe_config->double_wide = true;
4942                 }
4943
4944                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4945                         return -EINVAL;
4946         }
4947
4948         /*
4949          * Pipe horizontal size must be even in:
4950          * - DVO ganged mode
4951          * - LVDS dual channel mode
4952          * - Double wide pipe
4953          */
4954         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4955              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4956                 pipe_config->pipe_src_w &= ~1;
4957
4958         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4959          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4960          */
4961         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4962                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4963                 return -EINVAL;
4964
4965         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4966                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4967         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4968                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4969                  * for lvds. */
4970                 pipe_config->pipe_bpp = 8*3;
4971         }
4972
4973         if (HAS_IPS(dev))
4974                 hsw_compute_ips_config(crtc, pipe_config);
4975
4976         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4977          * clock survives for now. */
4978         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4979                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4980
4981         if (pipe_config->has_pch_encoder)
4982                 return ironlake_fdi_compute_config(crtc, pipe_config);
4983
4984         return 0;
4985 }
4986
4987 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4988 {
4989         return 400000; /* FIXME */
4990 }
4991
4992 static int i945_get_display_clock_speed(struct drm_device *dev)
4993 {
4994         return 400000;
4995 }
4996
4997 static int i915_get_display_clock_speed(struct drm_device *dev)
4998 {
4999         return 333000;
5000 }
5001
5002 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5003 {
5004         return 200000;
5005 }
5006
5007 static int pnv_get_display_clock_speed(struct drm_device *dev)
5008 {
5009         u16 gcfgc = 0;
5010
5011         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5012
5013         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5014         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5015                 return 267000;
5016         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5017                 return 333000;
5018         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5019                 return 444000;
5020         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5021                 return 200000;
5022         default:
5023                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5024         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5025                 return 133000;
5026         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5027                 return 167000;
5028         }
5029 }
5030
5031 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5032 {
5033         u16 gcfgc = 0;
5034
5035         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5036
5037         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5038                 return 133000;
5039         else {
5040                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5041                 case GC_DISPLAY_CLOCK_333_MHZ:
5042                         return 333000;
5043                 default:
5044                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5045                         return 190000;
5046                 }
5047         }
5048 }
5049
5050 static int i865_get_display_clock_speed(struct drm_device *dev)
5051 {
5052         return 266000;
5053 }
5054
5055 static int i855_get_display_clock_speed(struct drm_device *dev)
5056 {
5057         u16 hpllcc = 0;
5058         /* Assume that the hardware is in the high speed state.  This
5059          * should be the default.
5060          */
5061         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5062         case GC_CLOCK_133_200:
5063         case GC_CLOCK_100_200:
5064                 return 200000;
5065         case GC_CLOCK_166_250:
5066                 return 250000;
5067         case GC_CLOCK_100_133:
5068                 return 133000;
5069         }
5070
5071         /* Shouldn't happen */
5072         return 0;
5073 }
5074
5075 static int i830_get_display_clock_speed(struct drm_device *dev)
5076 {
5077         return 133000;
5078 }
5079
5080 static void
5081 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5082 {
5083         while (*num > DATA_LINK_M_N_MASK ||
5084                *den > DATA_LINK_M_N_MASK) {
5085                 *num >>= 1;
5086                 *den >>= 1;
5087         }
5088 }
5089
5090 static void compute_m_n(unsigned int m, unsigned int n,
5091                         uint32_t *ret_m, uint32_t *ret_n)
5092 {
5093         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5094         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5095         intel_reduce_m_n_ratio(ret_m, ret_n);
5096 }
5097
5098 void
5099 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5100                        int pixel_clock, int link_clock,
5101                        struct intel_link_m_n *m_n)
5102 {
5103         m_n->tu = 64;
5104
5105         compute_m_n(bits_per_pixel * pixel_clock,
5106                     link_clock * nlanes * 8,
5107                     &m_n->gmch_m, &m_n->gmch_n);
5108
5109         compute_m_n(pixel_clock, link_clock,
5110                     &m_n->link_m, &m_n->link_n);
5111 }
5112
5113 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5114 {
5115         if (i915.panel_use_ssc >= 0)
5116                 return i915.panel_use_ssc != 0;
5117         return dev_priv->vbt.lvds_use_ssc
5118                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5119 }
5120
5121 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5122 {
5123         struct drm_device *dev = crtc->dev;
5124         struct drm_i915_private *dev_priv = dev->dev_private;
5125         int refclk;
5126
5127         if (IS_VALLEYVIEW(dev)) {
5128                 refclk = 100000;
5129         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5130             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5131                 refclk = dev_priv->vbt.lvds_ssc_freq;
5132                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5133         } else if (!IS_GEN2(dev)) {
5134                 refclk = 96000;
5135         } else {
5136                 refclk = 48000;
5137         }
5138
5139         return refclk;
5140 }
5141
5142 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5143 {
5144         return (1 << dpll->n) << 16 | dpll->m2;
5145 }
5146
5147 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5148 {
5149         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5150 }
5151
5152 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5153                                      intel_clock_t *reduced_clock)
5154 {
5155         struct drm_device *dev = crtc->base.dev;
5156         struct drm_i915_private *dev_priv = dev->dev_private;
5157         int pipe = crtc->pipe;
5158         u32 fp, fp2 = 0;
5159
5160         if (IS_PINEVIEW(dev)) {
5161                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5162                 if (reduced_clock)
5163                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5164         } else {
5165                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5166                 if (reduced_clock)
5167                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5168         }
5169
5170         I915_WRITE(FP0(pipe), fp);
5171         crtc->config.dpll_hw_state.fp0 = fp;
5172
5173         crtc->lowfreq_avail = false;
5174         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5175             reduced_clock && i915.powersave) {
5176                 I915_WRITE(FP1(pipe), fp2);
5177                 crtc->config.dpll_hw_state.fp1 = fp2;
5178                 crtc->lowfreq_avail = true;
5179         } else {
5180                 I915_WRITE(FP1(pipe), fp);
5181                 crtc->config.dpll_hw_state.fp1 = fp;
5182         }
5183 }
5184
5185 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5186                 pipe)
5187 {
5188         u32 reg_val;
5189
5190         /*
5191          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5192          * and set it to a reasonable value instead.
5193          */
5194         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5195         reg_val &= 0xffffff00;
5196         reg_val |= 0x00000030;
5197         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5198
5199         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5200         reg_val &= 0x8cffffff;
5201         reg_val = 0x8c000000;
5202         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5203
5204         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5205         reg_val &= 0xffffff00;
5206         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5207
5208         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5209         reg_val &= 0x00ffffff;
5210         reg_val |= 0xb0000000;
5211         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5212 }
5213
5214 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5215                                          struct intel_link_m_n *m_n)
5216 {
5217         struct drm_device *dev = crtc->base.dev;
5218         struct drm_i915_private *dev_priv = dev->dev_private;
5219         int pipe = crtc->pipe;
5220
5221         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5222         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5223         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5224         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5225 }
5226
5227 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5228                                          struct intel_link_m_n *m_n)
5229 {
5230         struct drm_device *dev = crtc->base.dev;
5231         struct drm_i915_private *dev_priv = dev->dev_private;
5232         int pipe = crtc->pipe;
5233         enum transcoder transcoder = crtc->config.cpu_transcoder;
5234
5235         if (INTEL_INFO(dev)->gen >= 5) {
5236                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5237                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5238                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5239                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5240         } else {
5241                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5242                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5243                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5244                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5245         }
5246 }
5247
5248 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5249 {
5250         if (crtc->config.has_pch_encoder)
5251                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5252         else
5253                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5254 }
5255
5256 static void vlv_update_pll(struct intel_crtc *crtc)
5257 {
5258         struct drm_device *dev = crtc->base.dev;
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260         int pipe = crtc->pipe;
5261         u32 dpll, mdiv;
5262         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5263         u32 coreclk, reg_val, dpll_md;
5264
5265         mutex_lock(&dev_priv->dpio_lock);
5266
5267         bestn = crtc->config.dpll.n;
5268         bestm1 = crtc->config.dpll.m1;
5269         bestm2 = crtc->config.dpll.m2;
5270         bestp1 = crtc->config.dpll.p1;
5271         bestp2 = crtc->config.dpll.p2;
5272
5273         /* See eDP HDMI DPIO driver vbios notes doc */
5274
5275         /* PLL B needs special handling */
5276         if (pipe)
5277                 vlv_pllb_recal_opamp(dev_priv, pipe);
5278
5279         /* Set up Tx target for periodic Rcomp update */
5280         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5281
5282         /* Disable target IRef on PLL */
5283         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5284         reg_val &= 0x00ffffff;
5285         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5286
5287         /* Disable fast lock */
5288         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5289
5290         /* Set idtafcrecal before PLL is enabled */
5291         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5292         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5293         mdiv |= ((bestn << DPIO_N_SHIFT));
5294         mdiv |= (1 << DPIO_K_SHIFT);
5295
5296         /*
5297          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5298          * but we don't support that).
5299          * Note: don't use the DAC post divider as it seems unstable.
5300          */
5301         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5302         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5303
5304         mdiv |= DPIO_ENABLE_CALIBRATION;
5305         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5306
5307         /* Set HBR and RBR LPF coefficients */
5308         if (crtc->config.port_clock == 162000 ||
5309             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5310             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5311                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5312                                  0x009f0003);
5313         else
5314                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5315                                  0x00d0000f);
5316
5317         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5318             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5319                 /* Use SSC source */
5320                 if (!pipe)
5321                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5322                                          0x0df40000);
5323                 else
5324                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5325                                          0x0df70000);
5326         } else { /* HDMI or VGA */
5327                 /* Use bend source */
5328                 if (!pipe)
5329                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5330                                          0x0df70000);
5331                 else
5332                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5333                                          0x0df40000);
5334         }
5335
5336         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5337         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5338         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5339             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5340                 coreclk |= 0x01000000;
5341         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5342
5343         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5344
5345         /*
5346          * Enable DPIO clock input. We should never disable the reference
5347          * clock for pipe B, since VGA hotplug / manual detection depends
5348          * on it.
5349          */
5350         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5351                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5352         /* We should never disable this, set it here for state tracking */
5353         if (pipe == PIPE_B)
5354                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5355         dpll |= DPLL_VCO_ENABLE;
5356         crtc->config.dpll_hw_state.dpll = dpll;
5357
5358         dpll_md = (crtc->config.pixel_multiplier - 1)
5359                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5360         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5361
5362         mutex_unlock(&dev_priv->dpio_lock);
5363 }
5364
5365 static void chv_update_pll(struct intel_crtc *crtc)
5366 {
5367         struct drm_device *dev = crtc->base.dev;
5368         struct drm_i915_private *dev_priv = dev->dev_private;
5369         int pipe = crtc->pipe;
5370         int dpll_reg = DPLL(crtc->pipe);
5371         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5372         u32 val, loopfilter, intcoeff;
5373         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5374         int refclk;
5375
5376         mutex_lock(&dev_priv->dpio_lock);
5377
5378         bestn = crtc->config.dpll.n;
5379         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5380         bestm1 = crtc->config.dpll.m1;
5381         bestm2 = crtc->config.dpll.m2 >> 22;
5382         bestp1 = crtc->config.dpll.p1;
5383         bestp2 = crtc->config.dpll.p2;
5384
5385         /*
5386          * Enable Refclk and SSC
5387          */
5388         val = I915_READ(dpll_reg);
5389         val |= (DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV);
5390         I915_WRITE(dpll_reg, val);
5391
5392         /* Propagate soft reset to data lane reset */
5393         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
5394         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
5395         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), val);
5396
5397         /* Disable 10bit clock to display controller */
5398         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
5399         val &= ~DPIO_DCLKP_EN;
5400         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
5401
5402         /* p1 and p2 divider */
5403         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5404                         5 << DPIO_CHV_S1_DIV_SHIFT |
5405                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5406                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5407                         1 << DPIO_CHV_K_DIV_SHIFT);
5408
5409         /* Feedback post-divider - m2 */
5410         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5411
5412         /* Feedback refclk divider - n and m1 */
5413         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5414                         DPIO_CHV_M1_DIV_BY_2 |
5415                         1 << DPIO_CHV_N_DIV_SHIFT);
5416
5417         /* M2 fraction division */
5418         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5419
5420         /* M2 fraction division enable */
5421         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5422                        DPIO_CHV_FRAC_DIV_EN |
5423                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5424
5425         /* Loop filter */
5426         refclk = i9xx_get_refclk(&crtc->base, 0);
5427         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5428                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5429         if (refclk == 100000)
5430                 intcoeff = 11;
5431         else if (refclk == 38400)
5432                 intcoeff = 10;
5433         else
5434                 intcoeff = 9;
5435         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5436         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5437
5438         /* AFC Recal */
5439         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5440                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5441                         DPIO_AFC_RECAL);
5442
5443         mutex_unlock(&dev_priv->dpio_lock);
5444 }
5445
5446 static void i9xx_update_pll(struct intel_crtc *crtc,
5447                             intel_clock_t *reduced_clock,
5448                             int num_connectors)
5449 {
5450         struct drm_device *dev = crtc->base.dev;
5451         struct drm_i915_private *dev_priv = dev->dev_private;
5452         u32 dpll;
5453         bool is_sdvo;
5454         struct dpll *clock = &crtc->config.dpll;
5455
5456         i9xx_update_pll_dividers(crtc, reduced_clock);
5457
5458         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5459                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5460
5461         dpll = DPLL_VGA_MODE_DIS;
5462
5463         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5464                 dpll |= DPLLB_MODE_LVDS;
5465         else
5466                 dpll |= DPLLB_MODE_DAC_SERIAL;
5467
5468         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5469                 dpll |= (crtc->config.pixel_multiplier - 1)
5470                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5471         }
5472
5473         if (is_sdvo)
5474                 dpll |= DPLL_SDVO_HIGH_SPEED;
5475
5476         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5477                 dpll |= DPLL_SDVO_HIGH_SPEED;
5478
5479         /* compute bitmask from p1 value */
5480         if (IS_PINEVIEW(dev))
5481                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5482         else {
5483                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5484                 if (IS_G4X(dev) && reduced_clock)
5485                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5486         }
5487         switch (clock->p2) {
5488         case 5:
5489                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5490                 break;
5491         case 7:
5492                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5493                 break;
5494         case 10:
5495                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5496                 break;
5497         case 14:
5498                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5499                 break;
5500         }
5501         if (INTEL_INFO(dev)->gen >= 4)
5502                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5503
5504         if (crtc->config.sdvo_tv_clock)
5505                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5506         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5507                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5508                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5509         else
5510                 dpll |= PLL_REF_INPUT_DREFCLK;
5511
5512         dpll |= DPLL_VCO_ENABLE;
5513         crtc->config.dpll_hw_state.dpll = dpll;
5514
5515         if (INTEL_INFO(dev)->gen >= 4) {
5516                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5517                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5518                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5519         }
5520 }
5521
5522 static void i8xx_update_pll(struct intel_crtc *crtc,
5523                             intel_clock_t *reduced_clock,
5524                             int num_connectors)
5525 {
5526         struct drm_device *dev = crtc->base.dev;
5527         struct drm_i915_private *dev_priv = dev->dev_private;
5528         u32 dpll;
5529         struct dpll *clock = &crtc->config.dpll;
5530
5531         i9xx_update_pll_dividers(crtc, reduced_clock);
5532
5533         dpll = DPLL_VGA_MODE_DIS;
5534
5535         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5536                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5537         } else {
5538                 if (clock->p1 == 2)
5539                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5540                 else
5541                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5542                 if (clock->p2 == 4)
5543                         dpll |= PLL_P2_DIVIDE_BY_4;
5544         }
5545
5546         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5547                 dpll |= DPLL_DVO_2X_MODE;
5548
5549         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5550                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5551                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5552         else
5553                 dpll |= PLL_REF_INPUT_DREFCLK;
5554
5555         dpll |= DPLL_VCO_ENABLE;
5556         crtc->config.dpll_hw_state.dpll = dpll;
5557 }
5558
5559 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5560 {
5561         struct drm_device *dev = intel_crtc->base.dev;
5562         struct drm_i915_private *dev_priv = dev->dev_private;
5563         enum pipe pipe = intel_crtc->pipe;
5564         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5565         struct drm_display_mode *adjusted_mode =
5566                 &intel_crtc->config.adjusted_mode;
5567         uint32_t crtc_vtotal, crtc_vblank_end;
5568         int vsyncshift = 0;
5569
5570         /* We need to be careful not to changed the adjusted mode, for otherwise
5571          * the hw state checker will get angry at the mismatch. */
5572         crtc_vtotal = adjusted_mode->crtc_vtotal;
5573         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5574
5575         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5576                 /* the chip adds 2 halflines automatically */
5577                 crtc_vtotal -= 1;
5578                 crtc_vblank_end -= 1;
5579
5580                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5581                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5582                 else
5583                         vsyncshift = adjusted_mode->crtc_hsync_start -
5584                                 adjusted_mode->crtc_htotal / 2;
5585                 if (vsyncshift < 0)
5586                         vsyncshift += adjusted_mode->crtc_htotal;
5587         }
5588
5589         if (INTEL_INFO(dev)->gen > 3)
5590                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5591
5592         I915_WRITE(HTOTAL(cpu_transcoder),
5593                    (adjusted_mode->crtc_hdisplay - 1) |
5594                    ((adjusted_mode->crtc_htotal - 1) << 16));
5595         I915_WRITE(HBLANK(cpu_transcoder),
5596                    (adjusted_mode->crtc_hblank_start - 1) |
5597                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5598         I915_WRITE(HSYNC(cpu_transcoder),
5599                    (adjusted_mode->crtc_hsync_start - 1) |
5600                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5601
5602         I915_WRITE(VTOTAL(cpu_transcoder),
5603                    (adjusted_mode->crtc_vdisplay - 1) |
5604                    ((crtc_vtotal - 1) << 16));
5605         I915_WRITE(VBLANK(cpu_transcoder),
5606                    (adjusted_mode->crtc_vblank_start - 1) |
5607                    ((crtc_vblank_end - 1) << 16));
5608         I915_WRITE(VSYNC(cpu_transcoder),
5609                    (adjusted_mode->crtc_vsync_start - 1) |
5610                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5611
5612         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5613          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5614          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5615          * bits. */
5616         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5617             (pipe == PIPE_B || pipe == PIPE_C))
5618                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5619
5620         /* pipesrc controls the size that is scaled from, which should
5621          * always be the user's requested size.
5622          */
5623         I915_WRITE(PIPESRC(pipe),
5624                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5625                    (intel_crtc->config.pipe_src_h - 1));
5626 }
5627
5628 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5629                                    struct intel_crtc_config *pipe_config)
5630 {
5631         struct drm_device *dev = crtc->base.dev;
5632         struct drm_i915_private *dev_priv = dev->dev_private;
5633         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5634         uint32_t tmp;
5635
5636         tmp = I915_READ(HTOTAL(cpu_transcoder));
5637         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5638         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5639         tmp = I915_READ(HBLANK(cpu_transcoder));
5640         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5641         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5642         tmp = I915_READ(HSYNC(cpu_transcoder));
5643         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5644         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5645
5646         tmp = I915_READ(VTOTAL(cpu_transcoder));
5647         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5648         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5649         tmp = I915_READ(VBLANK(cpu_transcoder));
5650         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5651         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5652         tmp = I915_READ(VSYNC(cpu_transcoder));
5653         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5654         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5655
5656         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5657                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5658                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5659                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5660         }
5661
5662         tmp = I915_READ(PIPESRC(crtc->pipe));
5663         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5664         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5665
5666         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5667         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5668 }
5669
5670 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5671                                  struct intel_crtc_config *pipe_config)
5672 {
5673         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5674         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5675         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5676         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5677
5678         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5679         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5680         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5681         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5682
5683         mode->flags = pipe_config->adjusted_mode.flags;
5684
5685         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5686         mode->flags |= pipe_config->adjusted_mode.flags;
5687 }
5688
5689 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5690 {
5691         struct drm_device *dev = intel_crtc->base.dev;
5692         struct drm_i915_private *dev_priv = dev->dev_private;
5693         uint32_t pipeconf;
5694
5695         pipeconf = 0;
5696
5697         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5698             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5699                 pipeconf |= PIPECONF_ENABLE;
5700
5701         if (intel_crtc->config.double_wide)
5702                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5703
5704         /* only g4x and later have fancy bpc/dither controls */
5705         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5706                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5707                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5708                         pipeconf |= PIPECONF_DITHER_EN |
5709                                     PIPECONF_DITHER_TYPE_SP;
5710
5711                 switch (intel_crtc->config.pipe_bpp) {
5712                 case 18:
5713                         pipeconf |= PIPECONF_6BPC;
5714                         break;
5715                 case 24:
5716                         pipeconf |= PIPECONF_8BPC;
5717                         break;
5718                 case 30:
5719                         pipeconf |= PIPECONF_10BPC;
5720                         break;
5721                 default:
5722                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5723                         BUG();
5724                 }
5725         }
5726
5727         if (HAS_PIPE_CXSR(dev)) {
5728                 if (intel_crtc->lowfreq_avail) {
5729                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5730                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5731                 } else {
5732                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5733                 }
5734         }
5735
5736         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5737                 if (INTEL_INFO(dev)->gen < 4 ||
5738                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5739                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5740                 else
5741                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5742         } else
5743                 pipeconf |= PIPECONF_PROGRESSIVE;
5744
5745         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5746                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5747
5748         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5749         POSTING_READ(PIPECONF(intel_crtc->pipe));
5750 }
5751
5752 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5753                               int x, int y,
5754                               struct drm_framebuffer *fb)
5755 {
5756         struct drm_device *dev = crtc->dev;
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759         int pipe = intel_crtc->pipe;
5760         int plane = intel_crtc->plane;
5761         int refclk, num_connectors = 0;
5762         intel_clock_t clock, reduced_clock;
5763         u32 dspcntr;
5764         bool ok, has_reduced_clock = false;
5765         bool is_lvds = false, is_dsi = false;
5766         struct intel_encoder *encoder;
5767         const intel_limit_t *limit;
5768         int ret;
5769
5770         for_each_encoder_on_crtc(dev, crtc, encoder) {
5771                 switch (encoder->type) {
5772                 case INTEL_OUTPUT_LVDS:
5773                         is_lvds = true;
5774                         break;
5775                 case INTEL_OUTPUT_DSI:
5776                         is_dsi = true;
5777                         break;
5778                 }
5779
5780                 num_connectors++;
5781         }
5782
5783         if (is_dsi)
5784                 goto skip_dpll;
5785
5786         if (!intel_crtc->config.clock_set) {
5787                 refclk = i9xx_get_refclk(crtc, num_connectors);
5788
5789                 /*
5790                  * Returns a set of divisors for the desired target clock with
5791                  * the given refclk, or FALSE.  The returned values represent
5792                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5793                  * 2) / p1 / p2.
5794                  */
5795                 limit = intel_limit(crtc, refclk);
5796                 ok = dev_priv->display.find_dpll(limit, crtc,
5797                                                  intel_crtc->config.port_clock,
5798                                                  refclk, NULL, &clock);
5799                 if (!ok) {
5800                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5801                         return -EINVAL;
5802                 }
5803
5804                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5805                         /*
5806                          * Ensure we match the reduced clock's P to the target
5807                          * clock.  If the clocks don't match, we can't switch
5808                          * the display clock by using the FP0/FP1. In such case
5809                          * we will disable the LVDS downclock feature.
5810                          */
5811                         has_reduced_clock =
5812                                 dev_priv->display.find_dpll(limit, crtc,
5813                                                             dev_priv->lvds_downclock,
5814                                                             refclk, &clock,
5815                                                             &reduced_clock);
5816                 }
5817                 /* Compat-code for transition, will disappear. */
5818                 intel_crtc->config.dpll.n = clock.n;
5819                 intel_crtc->config.dpll.m1 = clock.m1;
5820                 intel_crtc->config.dpll.m2 = clock.m2;
5821                 intel_crtc->config.dpll.p1 = clock.p1;
5822                 intel_crtc->config.dpll.p2 = clock.p2;
5823         }
5824
5825         if (IS_GEN2(dev)) {
5826                 i8xx_update_pll(intel_crtc,
5827                                 has_reduced_clock ? &reduced_clock : NULL,
5828                                 num_connectors);
5829         } else if (IS_CHERRYVIEW(dev)) {
5830                 chv_update_pll(intel_crtc);
5831         } else if (IS_VALLEYVIEW(dev)) {
5832                 vlv_update_pll(intel_crtc);
5833         } else {
5834                 i9xx_update_pll(intel_crtc,
5835                                 has_reduced_clock ? &reduced_clock : NULL,
5836                                 num_connectors);
5837         }
5838
5839 skip_dpll:
5840         /* Set up the display plane register */
5841         dspcntr = DISPPLANE_GAMMA_ENABLE;
5842
5843         if (!IS_VALLEYVIEW(dev)) {
5844                 if (pipe == 0)
5845                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5846                 else
5847                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5848         }
5849
5850         if (intel_crtc->config.has_dp_encoder)
5851                 intel_dp_set_m_n(intel_crtc);
5852
5853         intel_set_pipe_timings(intel_crtc);
5854
5855         /* pipesrc and dspsize control the size that is scaled from,
5856          * which should always be the user's requested size.
5857          */
5858         I915_WRITE(DSPSIZE(plane),
5859                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5860                    (intel_crtc->config.pipe_src_w - 1));
5861         I915_WRITE(DSPPOS(plane), 0);
5862
5863         i9xx_set_pipeconf(intel_crtc);
5864
5865         I915_WRITE(DSPCNTR(plane), dspcntr);
5866         POSTING_READ(DSPCNTR(plane));
5867
5868         ret = intel_pipe_set_base(crtc, x, y, fb);
5869
5870         return ret;
5871 }
5872
5873 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5874                                  struct intel_crtc_config *pipe_config)
5875 {
5876         struct drm_device *dev = crtc->base.dev;
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         uint32_t tmp;
5879
5880         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5881                 return;
5882
5883         tmp = I915_READ(PFIT_CONTROL);
5884         if (!(tmp & PFIT_ENABLE))
5885                 return;
5886
5887         /* Check whether the pfit is attached to our pipe. */
5888         if (INTEL_INFO(dev)->gen < 4) {
5889                 if (crtc->pipe != PIPE_B)
5890                         return;
5891         } else {
5892                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5893                         return;
5894         }
5895
5896         pipe_config->gmch_pfit.control = tmp;
5897         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5898         if (INTEL_INFO(dev)->gen < 5)
5899                 pipe_config->gmch_pfit.lvds_border_bits =
5900                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5901 }
5902
5903 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5904                                struct intel_crtc_config *pipe_config)
5905 {
5906         struct drm_device *dev = crtc->base.dev;
5907         struct drm_i915_private *dev_priv = dev->dev_private;
5908         int pipe = pipe_config->cpu_transcoder;
5909         intel_clock_t clock;
5910         u32 mdiv;
5911         int refclk = 100000;
5912
5913         mutex_lock(&dev_priv->dpio_lock);
5914         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5915         mutex_unlock(&dev_priv->dpio_lock);
5916
5917         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5918         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5919         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5920         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5921         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5922
5923         vlv_clock(refclk, &clock);
5924
5925         /* clock.dot is the fast clock */
5926         pipe_config->port_clock = clock.dot / 5;
5927 }
5928
5929 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5930                                   struct intel_plane_config *plane_config)
5931 {
5932         struct drm_device *dev = crtc->base.dev;
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934         u32 val, base, offset;
5935         int pipe = crtc->pipe, plane = crtc->plane;
5936         int fourcc, pixel_format;
5937         int aligned_height;
5938
5939         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5940         if (!crtc->base.primary->fb) {
5941                 DRM_DEBUG_KMS("failed to alloc fb\n");
5942                 return;
5943         }
5944
5945         val = I915_READ(DSPCNTR(plane));
5946
5947         if (INTEL_INFO(dev)->gen >= 4)
5948                 if (val & DISPPLANE_TILED)
5949                         plane_config->tiled = true;
5950
5951         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5952         fourcc = intel_format_to_fourcc(pixel_format);
5953         crtc->base.primary->fb->pixel_format = fourcc;
5954         crtc->base.primary->fb->bits_per_pixel =
5955                 drm_format_plane_cpp(fourcc, 0) * 8;
5956
5957         if (INTEL_INFO(dev)->gen >= 4) {
5958                 if (plane_config->tiled)
5959                         offset = I915_READ(DSPTILEOFF(plane));
5960                 else
5961                         offset = I915_READ(DSPLINOFF(plane));
5962                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5963         } else {
5964                 base = I915_READ(DSPADDR(plane));
5965         }
5966         plane_config->base = base;
5967
5968         val = I915_READ(PIPESRC(pipe));
5969         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5970         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5971
5972         val = I915_READ(DSPSTRIDE(pipe));
5973         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5974
5975         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5976                                             plane_config->tiled);
5977
5978         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5979                                    aligned_height, PAGE_SIZE);
5980
5981         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5982                       pipe, plane, crtc->base.primary->fb->width,
5983                       crtc->base.primary->fb->height,
5984                       crtc->base.primary->fb->bits_per_pixel, base,
5985                       crtc->base.primary->fb->pitches[0],
5986                       plane_config->size);
5987
5988 }
5989
5990 static void chv_crtc_clock_get(struct intel_crtc *crtc,
5991                                struct intel_crtc_config *pipe_config)
5992 {
5993         struct drm_device *dev = crtc->base.dev;
5994         struct drm_i915_private *dev_priv = dev->dev_private;
5995         int pipe = pipe_config->cpu_transcoder;
5996         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5997         intel_clock_t clock;
5998         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
5999         int refclk = 100000;
6000
6001         mutex_lock(&dev_priv->dpio_lock);
6002         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6003         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6004         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6005         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6006         mutex_unlock(&dev_priv->dpio_lock);
6007
6008         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6009         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6010         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6011         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6012         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6013
6014         chv_clock(refclk, &clock);
6015
6016         /* clock.dot is the fast clock */
6017         pipe_config->port_clock = clock.dot / 5;
6018 }
6019
6020 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6021                                  struct intel_crtc_config *pipe_config)
6022 {
6023         struct drm_device *dev = crtc->base.dev;
6024         struct drm_i915_private *dev_priv = dev->dev_private;
6025         uint32_t tmp;
6026
6027         if (!intel_display_power_enabled(dev_priv,
6028                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6029                 return false;
6030
6031         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6032         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6033
6034         tmp = I915_READ(PIPECONF(crtc->pipe));
6035         if (!(tmp & PIPECONF_ENABLE))
6036                 return false;
6037
6038         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6039                 switch (tmp & PIPECONF_BPC_MASK) {
6040                 case PIPECONF_6BPC:
6041                         pipe_config->pipe_bpp = 18;
6042                         break;
6043                 case PIPECONF_8BPC:
6044                         pipe_config->pipe_bpp = 24;
6045                         break;
6046                 case PIPECONF_10BPC:
6047                         pipe_config->pipe_bpp = 30;
6048                         break;
6049                 default:
6050                         break;
6051                 }
6052         }
6053
6054         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6055                 pipe_config->limited_color_range = true;
6056
6057         if (INTEL_INFO(dev)->gen < 4)
6058                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6059
6060         intel_get_pipe_timings(crtc, pipe_config);
6061
6062         i9xx_get_pfit_config(crtc, pipe_config);
6063
6064         if (INTEL_INFO(dev)->gen >= 4) {
6065                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6066                 pipe_config->pixel_multiplier =
6067                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6068                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6069                 pipe_config->dpll_hw_state.dpll_md = tmp;
6070         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6071                 tmp = I915_READ(DPLL(crtc->pipe));
6072                 pipe_config->pixel_multiplier =
6073                         ((tmp & SDVO_MULTIPLIER_MASK)
6074                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6075         } else {
6076                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6077                  * port and will be fixed up in the encoder->get_config
6078                  * function. */
6079                 pipe_config->pixel_multiplier = 1;
6080         }
6081         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6082         if (!IS_VALLEYVIEW(dev)) {
6083                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6084                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6085         } else {
6086                 /* Mask out read-only status bits. */
6087                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6088                                                      DPLL_PORTC_READY_MASK |
6089                                                      DPLL_PORTB_READY_MASK);
6090         }
6091
6092         if (IS_CHERRYVIEW(dev))
6093                 chv_crtc_clock_get(crtc, pipe_config);
6094         else if (IS_VALLEYVIEW(dev))
6095                 vlv_crtc_clock_get(crtc, pipe_config);
6096         else
6097                 i9xx_crtc_clock_get(crtc, pipe_config);
6098
6099         return true;
6100 }
6101
6102 static void ironlake_init_pch_refclk(struct drm_device *dev)
6103 {
6104         struct drm_i915_private *dev_priv = dev->dev_private;
6105         struct drm_mode_config *mode_config = &dev->mode_config;
6106         struct intel_encoder *encoder;
6107         u32 val, final;
6108         bool has_lvds = false;
6109         bool has_cpu_edp = false;
6110         bool has_panel = false;
6111         bool has_ck505 = false;
6112         bool can_ssc = false;
6113
6114         /* We need to take the global config into account */
6115         list_for_each_entry(encoder, &mode_config->encoder_list,
6116                             base.head) {
6117                 switch (encoder->type) {
6118                 case INTEL_OUTPUT_LVDS:
6119                         has_panel = true;
6120                         has_lvds = true;
6121                         break;
6122                 case INTEL_OUTPUT_EDP:
6123                         has_panel = true;
6124                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6125                                 has_cpu_edp = true;
6126                         break;
6127                 }
6128         }
6129
6130         if (HAS_PCH_IBX(dev)) {
6131                 has_ck505 = dev_priv->vbt.display_clock_mode;
6132                 can_ssc = has_ck505;
6133         } else {
6134                 has_ck505 = false;
6135                 can_ssc = true;
6136         }
6137
6138         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6139                       has_panel, has_lvds, has_ck505);
6140
6141         /* Ironlake: try to setup display ref clock before DPLL
6142          * enabling. This is only under driver's control after
6143          * PCH B stepping, previous chipset stepping should be
6144          * ignoring this setting.
6145          */
6146         val = I915_READ(PCH_DREF_CONTROL);
6147
6148         /* As we must carefully and slowly disable/enable each source in turn,
6149          * compute the final state we want first and check if we need to
6150          * make any changes at all.
6151          */
6152         final = val;
6153         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6154         if (has_ck505)
6155                 final |= DREF_NONSPREAD_CK505_ENABLE;
6156         else
6157                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6158
6159         final &= ~DREF_SSC_SOURCE_MASK;
6160         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6161         final &= ~DREF_SSC1_ENABLE;
6162
6163         if (has_panel) {
6164                 final |= DREF_SSC_SOURCE_ENABLE;
6165
6166                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6167                         final |= DREF_SSC1_ENABLE;
6168
6169                 if (has_cpu_edp) {
6170                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6171                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6172                         else
6173                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6174                 } else
6175                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6176         } else {
6177                 final |= DREF_SSC_SOURCE_DISABLE;
6178                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6179         }
6180
6181         if (final == val)
6182                 return;
6183
6184         /* Always enable nonspread source */
6185         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6186
6187         if (has_ck505)
6188                 val |= DREF_NONSPREAD_CK505_ENABLE;
6189         else
6190                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6191
6192         if (has_panel) {
6193                 val &= ~DREF_SSC_SOURCE_MASK;
6194                 val |= DREF_SSC_SOURCE_ENABLE;
6195
6196                 /* SSC must be turned on before enabling the CPU output  */
6197                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6198                         DRM_DEBUG_KMS("Using SSC on panel\n");
6199                         val |= DREF_SSC1_ENABLE;
6200                 } else
6201                         val &= ~DREF_SSC1_ENABLE;
6202
6203                 /* Get SSC going before enabling the outputs */
6204                 I915_WRITE(PCH_DREF_CONTROL, val);
6205                 POSTING_READ(PCH_DREF_CONTROL);
6206                 udelay(200);
6207
6208                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6209
6210                 /* Enable CPU source on CPU attached eDP */
6211                 if (has_cpu_edp) {
6212                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6213                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6214                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6215                         }
6216                         else
6217                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6218                 } else
6219                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6220
6221                 I915_WRITE(PCH_DREF_CONTROL, val);
6222                 POSTING_READ(PCH_DREF_CONTROL);
6223                 udelay(200);
6224         } else {
6225                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6226
6227                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6228
6229                 /* Turn off CPU output */
6230                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6231
6232                 I915_WRITE(PCH_DREF_CONTROL, val);
6233                 POSTING_READ(PCH_DREF_CONTROL);
6234                 udelay(200);
6235
6236                 /* Turn off the SSC source */
6237                 val &= ~DREF_SSC_SOURCE_MASK;
6238                 val |= DREF_SSC_SOURCE_DISABLE;
6239
6240                 /* Turn off SSC1 */
6241                 val &= ~DREF_SSC1_ENABLE;
6242
6243                 I915_WRITE(PCH_DREF_CONTROL, val);
6244                 POSTING_READ(PCH_DREF_CONTROL);
6245                 udelay(200);
6246         }
6247
6248         BUG_ON(val != final);
6249 }
6250
6251 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6252 {
6253         uint32_t tmp;
6254
6255         tmp = I915_READ(SOUTH_CHICKEN2);
6256         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6257         I915_WRITE(SOUTH_CHICKEN2, tmp);
6258
6259         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6260                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6261                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6262
6263         tmp = I915_READ(SOUTH_CHICKEN2);
6264         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6265         I915_WRITE(SOUTH_CHICKEN2, tmp);
6266
6267         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6268                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6269                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6270 }
6271
6272 /* WaMPhyProgramming:hsw */
6273 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6274 {
6275         uint32_t tmp;
6276
6277         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6278         tmp &= ~(0xFF << 24);
6279         tmp |= (0x12 << 24);
6280         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6281
6282         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6283         tmp |= (1 << 11);
6284         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6285
6286         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6287         tmp |= (1 << 11);
6288         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6289
6290         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6291         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6292         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6293
6294         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6295         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6296         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6297
6298         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6299         tmp &= ~(7 << 13);
6300         tmp |= (5 << 13);
6301         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6302
6303         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6304         tmp &= ~(7 << 13);
6305         tmp |= (5 << 13);
6306         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6307
6308         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6309         tmp &= ~0xFF;
6310         tmp |= 0x1C;
6311         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6312
6313         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6314         tmp &= ~0xFF;
6315         tmp |= 0x1C;
6316         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6317
6318         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6319         tmp &= ~(0xFF << 16);
6320         tmp |= (0x1C << 16);
6321         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6322
6323         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6324         tmp &= ~(0xFF << 16);
6325         tmp |= (0x1C << 16);
6326         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6327
6328         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6329         tmp |= (1 << 27);
6330         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6331
6332         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6333         tmp |= (1 << 27);
6334         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6335
6336         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6337         tmp &= ~(0xF << 28);
6338         tmp |= (4 << 28);
6339         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6340
6341         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6342         tmp &= ~(0xF << 28);
6343         tmp |= (4 << 28);
6344         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6345 }
6346
6347 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6348  * Programming" based on the parameters passed:
6349  * - Sequence to enable CLKOUT_DP
6350  * - Sequence to enable CLKOUT_DP without spread
6351  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6352  */
6353 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6354                                  bool with_fdi)
6355 {
6356         struct drm_i915_private *dev_priv = dev->dev_private;
6357         uint32_t reg, tmp;
6358
6359         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6360                 with_spread = true;
6361         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6362                  with_fdi, "LP PCH doesn't have FDI\n"))
6363                 with_fdi = false;
6364
6365         mutex_lock(&dev_priv->dpio_lock);
6366
6367         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6368         tmp &= ~SBI_SSCCTL_DISABLE;
6369         tmp |= SBI_SSCCTL_PATHALT;
6370         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6371
6372         udelay(24);
6373
6374         if (with_spread) {
6375                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6376                 tmp &= ~SBI_SSCCTL_PATHALT;
6377                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6378
6379                 if (with_fdi) {
6380                         lpt_reset_fdi_mphy(dev_priv);
6381                         lpt_program_fdi_mphy(dev_priv);
6382                 }
6383         }
6384
6385         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6386                SBI_GEN0 : SBI_DBUFF0;
6387         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6388         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6389         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6390
6391         mutex_unlock(&dev_priv->dpio_lock);
6392 }
6393
6394 /* Sequence to disable CLKOUT_DP */
6395 static void lpt_disable_clkout_dp(struct drm_device *dev)
6396 {
6397         struct drm_i915_private *dev_priv = dev->dev_private;
6398         uint32_t reg, tmp;
6399
6400         mutex_lock(&dev_priv->dpio_lock);
6401
6402         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6403                SBI_GEN0 : SBI_DBUFF0;
6404         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6405         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6406         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6407
6408         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6409         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6410                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6411                         tmp |= SBI_SSCCTL_PATHALT;
6412                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6413                         udelay(32);
6414                 }
6415                 tmp |= SBI_SSCCTL_DISABLE;
6416                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6417         }
6418
6419         mutex_unlock(&dev_priv->dpio_lock);
6420 }
6421
6422 static void lpt_init_pch_refclk(struct drm_device *dev)
6423 {
6424         struct drm_mode_config *mode_config = &dev->mode_config;
6425         struct intel_encoder *encoder;
6426         bool has_vga = false;
6427
6428         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6429                 switch (encoder->type) {
6430                 case INTEL_OUTPUT_ANALOG:
6431                         has_vga = true;
6432                         break;
6433                 }
6434         }
6435
6436         if (has_vga)
6437                 lpt_enable_clkout_dp(dev, true, true);
6438         else
6439                 lpt_disable_clkout_dp(dev);
6440 }
6441
6442 /*
6443  * Initialize reference clocks when the driver loads
6444  */
6445 void intel_init_pch_refclk(struct drm_device *dev)
6446 {
6447         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6448                 ironlake_init_pch_refclk(dev);
6449         else if (HAS_PCH_LPT(dev))
6450                 lpt_init_pch_refclk(dev);
6451 }
6452
6453 static int ironlake_get_refclk(struct drm_crtc *crtc)
6454 {
6455         struct drm_device *dev = crtc->dev;
6456         struct drm_i915_private *dev_priv = dev->dev_private;
6457         struct intel_encoder *encoder;
6458         int num_connectors = 0;
6459         bool is_lvds = false;
6460
6461         for_each_encoder_on_crtc(dev, crtc, encoder) {
6462                 switch (encoder->type) {
6463                 case INTEL_OUTPUT_LVDS:
6464                         is_lvds = true;
6465                         break;
6466                 }
6467                 num_connectors++;
6468         }
6469
6470         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6471                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6472                               dev_priv->vbt.lvds_ssc_freq);
6473                 return dev_priv->vbt.lvds_ssc_freq;
6474         }
6475
6476         return 120000;
6477 }
6478
6479 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6480 {
6481         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6483         int pipe = intel_crtc->pipe;
6484         uint32_t val;
6485
6486         val = 0;
6487
6488         switch (intel_crtc->config.pipe_bpp) {
6489         case 18:
6490                 val |= PIPECONF_6BPC;
6491                 break;
6492         case 24:
6493                 val |= PIPECONF_8BPC;
6494                 break;
6495         case 30:
6496                 val |= PIPECONF_10BPC;
6497                 break;
6498         case 36:
6499                 val |= PIPECONF_12BPC;
6500                 break;
6501         default:
6502                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6503                 BUG();
6504         }
6505
6506         if (intel_crtc->config.dither)
6507                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6508
6509         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6510                 val |= PIPECONF_INTERLACED_ILK;
6511         else
6512                 val |= PIPECONF_PROGRESSIVE;
6513
6514         if (intel_crtc->config.limited_color_range)
6515                 val |= PIPECONF_COLOR_RANGE_SELECT;
6516
6517         I915_WRITE(PIPECONF(pipe), val);
6518         POSTING_READ(PIPECONF(pipe));
6519 }
6520
6521 /*
6522  * Set up the pipe CSC unit.
6523  *
6524  * Currently only full range RGB to limited range RGB conversion
6525  * is supported, but eventually this should handle various
6526  * RGB<->YCbCr scenarios as well.
6527  */
6528 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6529 {
6530         struct drm_device *dev = crtc->dev;
6531         struct drm_i915_private *dev_priv = dev->dev_private;
6532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6533         int pipe = intel_crtc->pipe;
6534         uint16_t coeff = 0x7800; /* 1.0 */
6535
6536         /*
6537          * TODO: Check what kind of values actually come out of the pipe
6538          * with these coeff/postoff values and adjust to get the best
6539          * accuracy. Perhaps we even need to take the bpc value into
6540          * consideration.
6541          */
6542
6543         if (intel_crtc->config.limited_color_range)
6544                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6545
6546         /*
6547          * GY/GU and RY/RU should be the other way around according
6548          * to BSpec, but reality doesn't agree. Just set them up in
6549          * a way that results in the correct picture.
6550          */
6551         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6552         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6553
6554         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6555         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6556
6557         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6558         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6559
6560         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6561         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6562         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6563
6564         if (INTEL_INFO(dev)->gen > 6) {
6565                 uint16_t postoff = 0;
6566
6567                 if (intel_crtc->config.limited_color_range)
6568                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6569
6570                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6571                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6572                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6573
6574                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6575         } else {
6576                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6577
6578                 if (intel_crtc->config.limited_color_range)
6579                         mode |= CSC_BLACK_SCREEN_OFFSET;
6580
6581                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6582         }
6583 }
6584
6585 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6586 {
6587         struct drm_device *dev = crtc->dev;
6588         struct drm_i915_private *dev_priv = dev->dev_private;
6589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6590         enum pipe pipe = intel_crtc->pipe;
6591         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6592         uint32_t val;
6593
6594         val = 0;
6595
6596         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6597                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6598
6599         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6600                 val |= PIPECONF_INTERLACED_ILK;
6601         else
6602                 val |= PIPECONF_PROGRESSIVE;
6603
6604         I915_WRITE(PIPECONF(cpu_transcoder), val);
6605         POSTING_READ(PIPECONF(cpu_transcoder));
6606
6607         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6608         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6609
6610         if (IS_BROADWELL(dev)) {
6611                 val = 0;
6612
6613                 switch (intel_crtc->config.pipe_bpp) {
6614                 case 18:
6615                         val |= PIPEMISC_DITHER_6_BPC;
6616                         break;
6617                 case 24:
6618                         val |= PIPEMISC_DITHER_8_BPC;
6619                         break;
6620                 case 30:
6621                         val |= PIPEMISC_DITHER_10_BPC;
6622                         break;
6623                 case 36:
6624                         val |= PIPEMISC_DITHER_12_BPC;
6625                         break;
6626                 default:
6627                         /* Case prevented by pipe_config_set_bpp. */
6628                         BUG();
6629                 }
6630
6631                 if (intel_crtc->config.dither)
6632                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6633
6634                 I915_WRITE(PIPEMISC(pipe), val);
6635         }
6636 }
6637
6638 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6639                                     intel_clock_t *clock,
6640                                     bool *has_reduced_clock,
6641                                     intel_clock_t *reduced_clock)
6642 {
6643         struct drm_device *dev = crtc->dev;
6644         struct drm_i915_private *dev_priv = dev->dev_private;
6645         struct intel_encoder *intel_encoder;
6646         int refclk;
6647         const intel_limit_t *limit;
6648         bool ret, is_lvds = false;
6649
6650         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6651                 switch (intel_encoder->type) {
6652                 case INTEL_OUTPUT_LVDS:
6653                         is_lvds = true;
6654                         break;
6655                 }
6656         }
6657
6658         refclk = ironlake_get_refclk(crtc);
6659
6660         /*
6661          * Returns a set of divisors for the desired target clock with the given
6662          * refclk, or FALSE.  The returned values represent the clock equation:
6663          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6664          */
6665         limit = intel_limit(crtc, refclk);
6666         ret = dev_priv->display.find_dpll(limit, crtc,
6667                                           to_intel_crtc(crtc)->config.port_clock,
6668                                           refclk, NULL, clock);
6669         if (!ret)
6670                 return false;
6671
6672         if (is_lvds && dev_priv->lvds_downclock_avail) {
6673                 /*
6674                  * Ensure we match the reduced clock's P to the target clock.
6675                  * If the clocks don't match, we can't switch the display clock
6676                  * by using the FP0/FP1. In such case we will disable the LVDS
6677                  * downclock feature.
6678                 */
6679                 *has_reduced_clock =
6680                         dev_priv->display.find_dpll(limit, crtc,
6681                                                     dev_priv->lvds_downclock,
6682                                                     refclk, clock,
6683                                                     reduced_clock);
6684         }
6685
6686         return true;
6687 }
6688
6689 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6690 {
6691         /*
6692          * Account for spread spectrum to avoid
6693          * oversubscribing the link. Max center spread
6694          * is 2.5%; use 5% for safety's sake.
6695          */
6696         u32 bps = target_clock * bpp * 21 / 20;
6697         return DIV_ROUND_UP(bps, link_bw * 8);
6698 }
6699
6700 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6701 {
6702         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6703 }
6704
6705 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6706                                       u32 *fp,
6707                                       intel_clock_t *reduced_clock, u32 *fp2)
6708 {
6709         struct drm_crtc *crtc = &intel_crtc->base;
6710         struct drm_device *dev = crtc->dev;
6711         struct drm_i915_private *dev_priv = dev->dev_private;
6712         struct intel_encoder *intel_encoder;
6713         uint32_t dpll;
6714         int factor, num_connectors = 0;
6715         bool is_lvds = false, is_sdvo = false;
6716
6717         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6718                 switch (intel_encoder->type) {
6719                 case INTEL_OUTPUT_LVDS:
6720                         is_lvds = true;
6721                         break;
6722                 case INTEL_OUTPUT_SDVO:
6723                 case INTEL_OUTPUT_HDMI:
6724                         is_sdvo = true;
6725                         break;
6726                 }
6727
6728                 num_connectors++;
6729         }
6730
6731         /* Enable autotuning of the PLL clock (if permissible) */
6732         factor = 21;
6733         if (is_lvds) {
6734                 if ((intel_panel_use_ssc(dev_priv) &&
6735                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6736                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6737                         factor = 25;
6738         } else if (intel_crtc->config.sdvo_tv_clock)
6739                 factor = 20;
6740
6741         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6742                 *fp |= FP_CB_TUNE;
6743
6744         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6745                 *fp2 |= FP_CB_TUNE;
6746
6747         dpll = 0;
6748
6749         if (is_lvds)
6750                 dpll |= DPLLB_MODE_LVDS;
6751         else
6752                 dpll |= DPLLB_MODE_DAC_SERIAL;
6753
6754         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6755                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6756
6757         if (is_sdvo)
6758                 dpll |= DPLL_SDVO_HIGH_SPEED;
6759         if (intel_crtc->config.has_dp_encoder)
6760                 dpll |= DPLL_SDVO_HIGH_SPEED;
6761
6762         /* compute bitmask from p1 value */
6763         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6764         /* also FPA1 */
6765         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6766
6767         switch (intel_crtc->config.dpll.p2) {
6768         case 5:
6769                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6770                 break;
6771         case 7:
6772                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6773                 break;
6774         case 10:
6775                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6776                 break;
6777         case 14:
6778                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6779                 break;
6780         }
6781
6782         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6783                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6784         else
6785                 dpll |= PLL_REF_INPUT_DREFCLK;
6786
6787         return dpll | DPLL_VCO_ENABLE;
6788 }
6789
6790 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6791                                   int x, int y,
6792                                   struct drm_framebuffer *fb)
6793 {
6794         struct drm_device *dev = crtc->dev;
6795         struct drm_i915_private *dev_priv = dev->dev_private;
6796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6797         int pipe = intel_crtc->pipe;
6798         int plane = intel_crtc->plane;
6799         int num_connectors = 0;
6800         intel_clock_t clock, reduced_clock;
6801         u32 dpll = 0, fp = 0, fp2 = 0;
6802         bool ok, has_reduced_clock = false;
6803         bool is_lvds = false;
6804         struct intel_encoder *encoder;
6805         struct intel_shared_dpll *pll;
6806         int ret;
6807
6808         for_each_encoder_on_crtc(dev, crtc, encoder) {
6809                 switch (encoder->type) {
6810                 case INTEL_OUTPUT_LVDS:
6811                         is_lvds = true;
6812                         break;
6813                 }
6814
6815                 num_connectors++;
6816         }
6817
6818         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6819              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6820
6821         ok = ironlake_compute_clocks(crtc, &clock,
6822                                      &has_reduced_clock, &reduced_clock);
6823         if (!ok && !intel_crtc->config.clock_set) {
6824                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6825                 return -EINVAL;
6826         }
6827         /* Compat-code for transition, will disappear. */
6828         if (!intel_crtc->config.clock_set) {
6829                 intel_crtc->config.dpll.n = clock.n;
6830                 intel_crtc->config.dpll.m1 = clock.m1;
6831                 intel_crtc->config.dpll.m2 = clock.m2;
6832                 intel_crtc->config.dpll.p1 = clock.p1;
6833                 intel_crtc->config.dpll.p2 = clock.p2;
6834         }
6835
6836         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6837         if (intel_crtc->config.has_pch_encoder) {
6838                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6839                 if (has_reduced_clock)
6840                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6841
6842                 dpll = ironlake_compute_dpll(intel_crtc,
6843                                              &fp, &reduced_clock,
6844                                              has_reduced_clock ? &fp2 : NULL);
6845
6846                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6847                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6848                 if (has_reduced_clock)
6849                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6850                 else
6851                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6852
6853                 pll = intel_get_shared_dpll(intel_crtc);
6854                 if (pll == NULL) {
6855                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6856                                          pipe_name(pipe));
6857                         return -EINVAL;
6858                 }
6859         } else
6860                 intel_put_shared_dpll(intel_crtc);
6861
6862         if (intel_crtc->config.has_dp_encoder)
6863                 intel_dp_set_m_n(intel_crtc);
6864
6865         if (is_lvds && has_reduced_clock && i915.powersave)
6866                 intel_crtc->lowfreq_avail = true;
6867         else
6868                 intel_crtc->lowfreq_avail = false;
6869
6870         intel_set_pipe_timings(intel_crtc);
6871
6872         if (intel_crtc->config.has_pch_encoder) {
6873                 intel_cpu_transcoder_set_m_n(intel_crtc,
6874                                              &intel_crtc->config.fdi_m_n);
6875         }
6876
6877         ironlake_set_pipeconf(crtc);
6878
6879         /* Set up the display plane register */
6880         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6881         POSTING_READ(DSPCNTR(plane));
6882
6883         ret = intel_pipe_set_base(crtc, x, y, fb);
6884
6885         return ret;
6886 }
6887
6888 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6889                                          struct intel_link_m_n *m_n)
6890 {
6891         struct drm_device *dev = crtc->base.dev;
6892         struct drm_i915_private *dev_priv = dev->dev_private;
6893         enum pipe pipe = crtc->pipe;
6894
6895         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6896         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6897         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6898                 & ~TU_SIZE_MASK;
6899         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6900         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6901                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6902 }
6903
6904 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6905                                          enum transcoder transcoder,
6906                                          struct intel_link_m_n *m_n)
6907 {
6908         struct drm_device *dev = crtc->base.dev;
6909         struct drm_i915_private *dev_priv = dev->dev_private;
6910         enum pipe pipe = crtc->pipe;
6911
6912         if (INTEL_INFO(dev)->gen >= 5) {
6913                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6914                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6915                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6916                         & ~TU_SIZE_MASK;
6917                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6918                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6919                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6920         } else {
6921                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6922                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6923                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6924                         & ~TU_SIZE_MASK;
6925                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6926                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6927                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6928         }
6929 }
6930
6931 void intel_dp_get_m_n(struct intel_crtc *crtc,
6932                       struct intel_crtc_config *pipe_config)
6933 {
6934         if (crtc->config.has_pch_encoder)
6935                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6936         else
6937                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6938                                              &pipe_config->dp_m_n);
6939 }
6940
6941 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6942                                         struct intel_crtc_config *pipe_config)
6943 {
6944         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6945                                      &pipe_config->fdi_m_n);
6946 }
6947
6948 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6949                                      struct intel_crtc_config *pipe_config)
6950 {
6951         struct drm_device *dev = crtc->base.dev;
6952         struct drm_i915_private *dev_priv = dev->dev_private;
6953         uint32_t tmp;
6954
6955         tmp = I915_READ(PF_CTL(crtc->pipe));
6956
6957         if (tmp & PF_ENABLE) {
6958                 pipe_config->pch_pfit.enabled = true;
6959                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6960                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6961
6962                 /* We currently do not free assignements of panel fitters on
6963                  * ivb/hsw (since we don't use the higher upscaling modes which
6964                  * differentiates them) so just WARN about this case for now. */
6965                 if (IS_GEN7(dev)) {
6966                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6967                                 PF_PIPE_SEL_IVB(crtc->pipe));
6968                 }
6969         }
6970 }
6971
6972 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6973                                       struct intel_plane_config *plane_config)
6974 {
6975         struct drm_device *dev = crtc->base.dev;
6976         struct drm_i915_private *dev_priv = dev->dev_private;
6977         u32 val, base, offset;
6978         int pipe = crtc->pipe, plane = crtc->plane;
6979         int fourcc, pixel_format;
6980         int aligned_height;
6981
6982         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6983         if (!crtc->base.primary->fb) {
6984                 DRM_DEBUG_KMS("failed to alloc fb\n");
6985                 return;
6986         }
6987
6988         val = I915_READ(DSPCNTR(plane));
6989
6990         if (INTEL_INFO(dev)->gen >= 4)
6991                 if (val & DISPPLANE_TILED)
6992                         plane_config->tiled = true;
6993
6994         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6995         fourcc = intel_format_to_fourcc(pixel_format);
6996         crtc->base.primary->fb->pixel_format = fourcc;
6997         crtc->base.primary->fb->bits_per_pixel =
6998                 drm_format_plane_cpp(fourcc, 0) * 8;
6999
7000         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7001         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7002                 offset = I915_READ(DSPOFFSET(plane));
7003         } else {
7004                 if (plane_config->tiled)
7005                         offset = I915_READ(DSPTILEOFF(plane));
7006                 else
7007                         offset = I915_READ(DSPLINOFF(plane));
7008         }
7009         plane_config->base = base;
7010
7011         val = I915_READ(PIPESRC(pipe));
7012         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7013         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7014
7015         val = I915_READ(DSPSTRIDE(pipe));
7016         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7017
7018         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7019                                             plane_config->tiled);
7020
7021         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7022                                    aligned_height, PAGE_SIZE);
7023
7024         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7025                       pipe, plane, crtc->base.primary->fb->width,
7026                       crtc->base.primary->fb->height,
7027                       crtc->base.primary->fb->bits_per_pixel, base,
7028                       crtc->base.primary->fb->pitches[0],
7029                       plane_config->size);
7030 }
7031
7032 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7033                                      struct intel_crtc_config *pipe_config)
7034 {
7035         struct drm_device *dev = crtc->base.dev;
7036         struct drm_i915_private *dev_priv = dev->dev_private;
7037         uint32_t tmp;
7038
7039         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7040         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7041
7042         tmp = I915_READ(PIPECONF(crtc->pipe));
7043         if (!(tmp & PIPECONF_ENABLE))
7044                 return false;
7045
7046         switch (tmp & PIPECONF_BPC_MASK) {
7047         case PIPECONF_6BPC:
7048                 pipe_config->pipe_bpp = 18;
7049                 break;
7050         case PIPECONF_8BPC:
7051                 pipe_config->pipe_bpp = 24;
7052                 break;
7053         case PIPECONF_10BPC:
7054                 pipe_config->pipe_bpp = 30;
7055                 break;
7056         case PIPECONF_12BPC:
7057                 pipe_config->pipe_bpp = 36;
7058                 break;
7059         default:
7060                 break;
7061         }
7062
7063         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7064                 pipe_config->limited_color_range = true;
7065
7066         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7067                 struct intel_shared_dpll *pll;
7068
7069                 pipe_config->has_pch_encoder = true;
7070
7071                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7072                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7073                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7074
7075                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7076
7077                 if (HAS_PCH_IBX(dev_priv->dev)) {
7078                         pipe_config->shared_dpll =
7079                                 (enum intel_dpll_id) crtc->pipe;
7080                 } else {
7081                         tmp = I915_READ(PCH_DPLL_SEL);
7082                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7083                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7084                         else
7085                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7086                 }
7087
7088                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7089
7090                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7091                                            &pipe_config->dpll_hw_state));
7092
7093                 tmp = pipe_config->dpll_hw_state.dpll;
7094                 pipe_config->pixel_multiplier =
7095                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7096                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7097
7098                 ironlake_pch_clock_get(crtc, pipe_config);
7099         } else {
7100                 pipe_config->pixel_multiplier = 1;
7101         }
7102
7103         intel_get_pipe_timings(crtc, pipe_config);
7104
7105         ironlake_get_pfit_config(crtc, pipe_config);
7106
7107         return true;
7108 }
7109
7110 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7111 {
7112         struct drm_device *dev = dev_priv->dev;
7113         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7114         struct intel_crtc *crtc;
7115
7116         for_each_intel_crtc(dev, crtc)
7117                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7118                      pipe_name(crtc->pipe));
7119
7120         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7121         WARN(plls->spll_refcount, "SPLL enabled\n");
7122         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7123         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7124         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7125         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7126              "CPU PWM1 enabled\n");
7127         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7128              "CPU PWM2 enabled\n");
7129         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7130              "PCH PWM1 enabled\n");
7131         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7132              "Utility pin enabled\n");
7133         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7134
7135         /*
7136          * In theory we can still leave IRQs enabled, as long as only the HPD
7137          * interrupts remain enabled. We used to check for that, but since it's
7138          * gen-specific and since we only disable LCPLL after we fully disable
7139          * the interrupts, the check below should be enough.
7140          */
7141         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7142 }
7143
7144 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7145 {
7146         struct drm_device *dev = dev_priv->dev;
7147
7148         if (IS_HASWELL(dev)) {
7149                 mutex_lock(&dev_priv->rps.hw_lock);
7150                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7151                                             val))
7152                         DRM_ERROR("Failed to disable D_COMP\n");
7153                 mutex_unlock(&dev_priv->rps.hw_lock);
7154         } else {
7155                 I915_WRITE(D_COMP, val);
7156         }
7157         POSTING_READ(D_COMP);
7158 }
7159
7160 /*
7161  * This function implements pieces of two sequences from BSpec:
7162  * - Sequence for display software to disable LCPLL
7163  * - Sequence for display software to allow package C8+
7164  * The steps implemented here are just the steps that actually touch the LCPLL
7165  * register. Callers should take care of disabling all the display engine
7166  * functions, doing the mode unset, fixing interrupts, etc.
7167  */
7168 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7169                               bool switch_to_fclk, bool allow_power_down)
7170 {
7171         uint32_t val;
7172
7173         assert_can_disable_lcpll(dev_priv);
7174
7175         val = I915_READ(LCPLL_CTL);
7176
7177         if (switch_to_fclk) {
7178                 val |= LCPLL_CD_SOURCE_FCLK;
7179                 I915_WRITE(LCPLL_CTL, val);
7180
7181                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7182                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7183                         DRM_ERROR("Switching to FCLK failed\n");
7184
7185                 val = I915_READ(LCPLL_CTL);
7186         }
7187
7188         val |= LCPLL_PLL_DISABLE;
7189         I915_WRITE(LCPLL_CTL, val);
7190         POSTING_READ(LCPLL_CTL);
7191
7192         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7193                 DRM_ERROR("LCPLL still locked\n");
7194
7195         val = I915_READ(D_COMP);
7196         val |= D_COMP_COMP_DISABLE;
7197         hsw_write_dcomp(dev_priv, val);
7198         ndelay(100);
7199
7200         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7201                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7202
7203         if (allow_power_down) {
7204                 val = I915_READ(LCPLL_CTL);
7205                 val |= LCPLL_POWER_DOWN_ALLOW;
7206                 I915_WRITE(LCPLL_CTL, val);
7207                 POSTING_READ(LCPLL_CTL);
7208         }
7209 }
7210
7211 /*
7212  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7213  * source.
7214  */
7215 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7216 {
7217         uint32_t val;
7218         unsigned long irqflags;
7219
7220         val = I915_READ(LCPLL_CTL);
7221
7222         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7223                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7224                 return;
7225
7226         /*
7227          * Make sure we're not on PC8 state before disabling PC8, otherwise
7228          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7229          *
7230          * The other problem is that hsw_restore_lcpll() is called as part of
7231          * the runtime PM resume sequence, so we can't just call
7232          * gen6_gt_force_wake_get() because that function calls
7233          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7234          * while we are on the resume sequence. So to solve this problem we have
7235          * to call special forcewake code that doesn't touch runtime PM and
7236          * doesn't enable the forcewake delayed work.
7237          */
7238         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7239         if (dev_priv->uncore.forcewake_count++ == 0)
7240                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7241         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7242
7243         if (val & LCPLL_POWER_DOWN_ALLOW) {
7244                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7245                 I915_WRITE(LCPLL_CTL, val);
7246                 POSTING_READ(LCPLL_CTL);
7247         }
7248
7249         val = I915_READ(D_COMP);
7250         val |= D_COMP_COMP_FORCE;
7251         val &= ~D_COMP_COMP_DISABLE;
7252         hsw_write_dcomp(dev_priv, val);
7253
7254         val = I915_READ(LCPLL_CTL);
7255         val &= ~LCPLL_PLL_DISABLE;
7256         I915_WRITE(LCPLL_CTL, val);
7257
7258         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7259                 DRM_ERROR("LCPLL not locked yet\n");
7260
7261         if (val & LCPLL_CD_SOURCE_FCLK) {
7262                 val = I915_READ(LCPLL_CTL);
7263                 val &= ~LCPLL_CD_SOURCE_FCLK;
7264                 I915_WRITE(LCPLL_CTL, val);
7265
7266                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7267                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7268                         DRM_ERROR("Switching back to LCPLL failed\n");
7269         }
7270
7271         /* See the big comment above. */
7272         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7273         if (--dev_priv->uncore.forcewake_count == 0)
7274                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7275         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7276 }
7277
7278 /*
7279  * Package states C8 and deeper are really deep PC states that can only be
7280  * reached when all the devices on the system allow it, so even if the graphics
7281  * device allows PC8+, it doesn't mean the system will actually get to these
7282  * states. Our driver only allows PC8+ when going into runtime PM.
7283  *
7284  * The requirements for PC8+ are that all the outputs are disabled, the power
7285  * well is disabled and most interrupts are disabled, and these are also
7286  * requirements for runtime PM. When these conditions are met, we manually do
7287  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7288  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7289  * hang the machine.
7290  *
7291  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7292  * the state of some registers, so when we come back from PC8+ we need to
7293  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7294  * need to take care of the registers kept by RC6. Notice that this happens even
7295  * if we don't put the device in PCI D3 state (which is what currently happens
7296  * because of the runtime PM support).
7297  *
7298  * For more, read "Display Sequences for Package C8" on the hardware
7299  * documentation.
7300  */
7301 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7302 {
7303         struct drm_device *dev = dev_priv->dev;
7304         uint32_t val;
7305
7306         DRM_DEBUG_KMS("Enabling package C8+\n");
7307
7308         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7309                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7310                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7311                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7312         }
7313
7314         lpt_disable_clkout_dp(dev);
7315         hsw_disable_lcpll(dev_priv, true, true);
7316 }
7317
7318 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7319 {
7320         struct drm_device *dev = dev_priv->dev;
7321         uint32_t val;
7322
7323         DRM_DEBUG_KMS("Disabling package C8+\n");
7324
7325         hsw_restore_lcpll(dev_priv);
7326         lpt_init_pch_refclk(dev);
7327
7328         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7329                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7330                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7331                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7332         }
7333
7334         intel_prepare_ddi(dev);
7335 }
7336
7337 static void snb_modeset_global_resources(struct drm_device *dev)
7338 {
7339         modeset_update_crtc_power_domains(dev);
7340 }
7341
7342 static void haswell_modeset_global_resources(struct drm_device *dev)
7343 {
7344         modeset_update_crtc_power_domains(dev);
7345 }
7346
7347 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7348                                  int x, int y,
7349                                  struct drm_framebuffer *fb)
7350 {
7351         struct drm_device *dev = crtc->dev;
7352         struct drm_i915_private *dev_priv = dev->dev_private;
7353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7354         int plane = intel_crtc->plane;
7355         int ret;
7356
7357         if (!intel_ddi_pll_select(intel_crtc))
7358                 return -EINVAL;
7359         intel_ddi_pll_enable(intel_crtc);
7360
7361         if (intel_crtc->config.has_dp_encoder)
7362                 intel_dp_set_m_n(intel_crtc);
7363
7364         intel_crtc->lowfreq_avail = false;
7365
7366         intel_set_pipe_timings(intel_crtc);
7367
7368         if (intel_crtc->config.has_pch_encoder) {
7369                 intel_cpu_transcoder_set_m_n(intel_crtc,
7370                                              &intel_crtc->config.fdi_m_n);
7371         }
7372
7373         haswell_set_pipeconf(crtc);
7374
7375         intel_set_pipe_csc(crtc);
7376
7377         /* Set up the display plane register */
7378         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7379         POSTING_READ(DSPCNTR(plane));
7380
7381         ret = intel_pipe_set_base(crtc, x, y, fb);
7382
7383         return ret;
7384 }
7385
7386 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7387                                     struct intel_crtc_config *pipe_config)
7388 {
7389         struct drm_device *dev = crtc->base.dev;
7390         struct drm_i915_private *dev_priv = dev->dev_private;
7391         enum intel_display_power_domain pfit_domain;
7392         uint32_t tmp;
7393
7394         if (!intel_display_power_enabled(dev_priv,
7395                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7396                 return false;
7397
7398         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7399         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7400
7401         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7402         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7403                 enum pipe trans_edp_pipe;
7404                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7405                 default:
7406                         WARN(1, "unknown pipe linked to edp transcoder\n");
7407                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7408                 case TRANS_DDI_EDP_INPUT_A_ON:
7409                         trans_edp_pipe = PIPE_A;
7410                         break;
7411                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7412                         trans_edp_pipe = PIPE_B;
7413                         break;
7414                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7415                         trans_edp_pipe = PIPE_C;
7416                         break;
7417                 }
7418
7419                 if (trans_edp_pipe == crtc->pipe)
7420                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7421         }
7422
7423         if (!intel_display_power_enabled(dev_priv,
7424                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7425                 return false;
7426
7427         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7428         if (!(tmp & PIPECONF_ENABLE))
7429                 return false;
7430
7431         /*
7432          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7433          * DDI E. So just check whether this pipe is wired to DDI E and whether
7434          * the PCH transcoder is on.
7435          */
7436         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7437         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7438             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7439                 pipe_config->has_pch_encoder = true;
7440
7441                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7442                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7443                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7444
7445                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7446         }
7447
7448         intel_get_pipe_timings(crtc, pipe_config);
7449
7450         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7451         if (intel_display_power_enabled(dev_priv, pfit_domain))
7452                 ironlake_get_pfit_config(crtc, pipe_config);
7453
7454         if (IS_HASWELL(dev))
7455                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7456                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7457
7458         pipe_config->pixel_multiplier = 1;
7459
7460         return true;
7461 }
7462
7463 static struct {
7464         int clock;
7465         u32 config;
7466 } hdmi_audio_clock[] = {
7467         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7468         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7469         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7470         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7471         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7472         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7473         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7474         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7475         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7476         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7477 };
7478
7479 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7480 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7481 {
7482         int i;
7483
7484         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7485                 if (mode->clock == hdmi_audio_clock[i].clock)
7486                         break;
7487         }
7488
7489         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7490                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7491                 i = 1;
7492         }
7493
7494         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7495                       hdmi_audio_clock[i].clock,
7496                       hdmi_audio_clock[i].config);
7497
7498         return hdmi_audio_clock[i].config;
7499 }
7500
7501 static bool intel_eld_uptodate(struct drm_connector *connector,
7502                                int reg_eldv, uint32_t bits_eldv,
7503                                int reg_elda, uint32_t bits_elda,
7504                                int reg_edid)
7505 {
7506         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7507         uint8_t *eld = connector->eld;
7508         uint32_t i;
7509
7510         i = I915_READ(reg_eldv);
7511         i &= bits_eldv;
7512
7513         if (!eld[0])
7514                 return !i;
7515
7516         if (!i)
7517                 return false;
7518
7519         i = I915_READ(reg_elda);
7520         i &= ~bits_elda;
7521         I915_WRITE(reg_elda, i);
7522
7523         for (i = 0; i < eld[2]; i++)
7524                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7525                         return false;
7526
7527         return true;
7528 }
7529
7530 static void g4x_write_eld(struct drm_connector *connector,
7531                           struct drm_crtc *crtc,
7532                           struct drm_display_mode *mode)
7533 {
7534         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7535         uint8_t *eld = connector->eld;
7536         uint32_t eldv;
7537         uint32_t len;
7538         uint32_t i;
7539
7540         i = I915_READ(G4X_AUD_VID_DID);
7541
7542         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7543                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7544         else
7545                 eldv = G4X_ELDV_DEVCTG;
7546
7547         if (intel_eld_uptodate(connector,
7548                                G4X_AUD_CNTL_ST, eldv,
7549                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7550                                G4X_HDMIW_HDMIEDID))
7551                 return;
7552
7553         i = I915_READ(G4X_AUD_CNTL_ST);
7554         i &= ~(eldv | G4X_ELD_ADDR);
7555         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7556         I915_WRITE(G4X_AUD_CNTL_ST, i);
7557
7558         if (!eld[0])
7559                 return;
7560
7561         len = min_t(uint8_t, eld[2], len);
7562         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7563         for (i = 0; i < len; i++)
7564                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7565
7566         i = I915_READ(G4X_AUD_CNTL_ST);
7567         i |= eldv;
7568         I915_WRITE(G4X_AUD_CNTL_ST, i);
7569 }
7570
7571 static void haswell_write_eld(struct drm_connector *connector,
7572                               struct drm_crtc *crtc,
7573                               struct drm_display_mode *mode)
7574 {
7575         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7576         uint8_t *eld = connector->eld;
7577         uint32_t eldv;
7578         uint32_t i;
7579         int len;
7580         int pipe = to_intel_crtc(crtc)->pipe;
7581         int tmp;
7582
7583         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7584         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7585         int aud_config = HSW_AUD_CFG(pipe);
7586         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7587
7588         /* Audio output enable */
7589         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7590         tmp = I915_READ(aud_cntrl_st2);
7591         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7592         I915_WRITE(aud_cntrl_st2, tmp);
7593         POSTING_READ(aud_cntrl_st2);
7594
7595         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7596
7597         /* Set ELD valid state */
7598         tmp = I915_READ(aud_cntrl_st2);
7599         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7600         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7601         I915_WRITE(aud_cntrl_st2, tmp);
7602         tmp = I915_READ(aud_cntrl_st2);
7603         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7604
7605         /* Enable HDMI mode */
7606         tmp = I915_READ(aud_config);
7607         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7608         /* clear N_programing_enable and N_value_index */
7609         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7610         I915_WRITE(aud_config, tmp);
7611
7612         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7613
7614         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7615
7616         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7617                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7618                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7619                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7620         } else {
7621                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7622         }
7623
7624         if (intel_eld_uptodate(connector,
7625                                aud_cntrl_st2, eldv,
7626                                aud_cntl_st, IBX_ELD_ADDRESS,
7627                                hdmiw_hdmiedid))
7628                 return;
7629
7630         i = I915_READ(aud_cntrl_st2);
7631         i &= ~eldv;
7632         I915_WRITE(aud_cntrl_st2, i);
7633
7634         if (!eld[0])
7635                 return;
7636
7637         i = I915_READ(aud_cntl_st);
7638         i &= ~IBX_ELD_ADDRESS;
7639         I915_WRITE(aud_cntl_st, i);
7640         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7641         DRM_DEBUG_DRIVER("port num:%d\n", i);
7642
7643         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7644         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7645         for (i = 0; i < len; i++)
7646                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7647
7648         i = I915_READ(aud_cntrl_st2);
7649         i |= eldv;
7650         I915_WRITE(aud_cntrl_st2, i);
7651
7652 }
7653
7654 static void ironlake_write_eld(struct drm_connector *connector,
7655                                struct drm_crtc *crtc,
7656                                struct drm_display_mode *mode)
7657 {
7658         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7659         uint8_t *eld = connector->eld;
7660         uint32_t eldv;
7661         uint32_t i;
7662         int len;
7663         int hdmiw_hdmiedid;
7664         int aud_config;
7665         int aud_cntl_st;
7666         int aud_cntrl_st2;
7667         int pipe = to_intel_crtc(crtc)->pipe;
7668
7669         if (HAS_PCH_IBX(connector->dev)) {
7670                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7671                 aud_config = IBX_AUD_CFG(pipe);
7672                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7673                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7674         } else if (IS_VALLEYVIEW(connector->dev)) {
7675                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7676                 aud_config = VLV_AUD_CFG(pipe);
7677                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7678                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7679         } else {
7680                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7681                 aud_config = CPT_AUD_CFG(pipe);
7682                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7683                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7684         }
7685
7686         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7687
7688         if (IS_VALLEYVIEW(connector->dev))  {
7689                 struct intel_encoder *intel_encoder;
7690                 struct intel_digital_port *intel_dig_port;
7691
7692                 intel_encoder = intel_attached_encoder(connector);
7693                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7694                 i = intel_dig_port->port;
7695         } else {
7696                 i = I915_READ(aud_cntl_st);
7697                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7698                 /* DIP_Port_Select, 0x1 = PortB */
7699         }
7700
7701         if (!i) {
7702                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7703                 /* operate blindly on all ports */
7704                 eldv = IBX_ELD_VALIDB;
7705                 eldv |= IBX_ELD_VALIDB << 4;
7706                 eldv |= IBX_ELD_VALIDB << 8;
7707         } else {
7708                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7709                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7710         }
7711
7712         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7713                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7714                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7715                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7716         } else {
7717                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7718         }
7719
7720         if (intel_eld_uptodate(connector,
7721                                aud_cntrl_st2, eldv,
7722                                aud_cntl_st, IBX_ELD_ADDRESS,
7723                                hdmiw_hdmiedid))
7724                 return;
7725
7726         i = I915_READ(aud_cntrl_st2);
7727         i &= ~eldv;
7728         I915_WRITE(aud_cntrl_st2, i);
7729
7730         if (!eld[0])
7731                 return;
7732
7733         i = I915_READ(aud_cntl_st);
7734         i &= ~IBX_ELD_ADDRESS;
7735         I915_WRITE(aud_cntl_st, i);
7736
7737         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7738         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7739         for (i = 0; i < len; i++)
7740                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7741
7742         i = I915_READ(aud_cntrl_st2);
7743         i |= eldv;
7744         I915_WRITE(aud_cntrl_st2, i);
7745 }
7746
7747 void intel_write_eld(struct drm_encoder *encoder,
7748                      struct drm_display_mode *mode)
7749 {
7750         struct drm_crtc *crtc = encoder->crtc;
7751         struct drm_connector *connector;
7752         struct drm_device *dev = encoder->dev;
7753         struct drm_i915_private *dev_priv = dev->dev_private;
7754
7755         connector = drm_select_eld(encoder, mode);
7756         if (!connector)
7757                 return;
7758
7759         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7760                          connector->base.id,
7761                          drm_get_connector_name(connector),
7762                          connector->encoder->base.id,
7763                          drm_get_encoder_name(connector->encoder));
7764
7765         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7766
7767         if (dev_priv->display.write_eld)
7768                 dev_priv->display.write_eld(connector, crtc, mode);
7769 }
7770
7771 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7772 {
7773         struct drm_device *dev = crtc->dev;
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7776         bool visible = base != 0;
7777         u32 cntl;
7778
7779         if (intel_crtc->cursor_visible == visible)
7780                 return;
7781
7782         cntl = I915_READ(_CURACNTR);
7783         if (visible) {
7784                 /* On these chipsets we can only modify the base whilst
7785                  * the cursor is disabled.
7786                  */
7787                 I915_WRITE(_CURABASE, base);
7788
7789                 cntl &= ~(CURSOR_FORMAT_MASK);
7790                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7791                 cntl |= CURSOR_ENABLE |
7792                         CURSOR_GAMMA_ENABLE |
7793                         CURSOR_FORMAT_ARGB;
7794         } else
7795                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7796         I915_WRITE(_CURACNTR, cntl);
7797
7798         intel_crtc->cursor_visible = visible;
7799 }
7800
7801 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7802 {
7803         struct drm_device *dev = crtc->dev;
7804         struct drm_i915_private *dev_priv = dev->dev_private;
7805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7806         int pipe = intel_crtc->pipe;
7807         bool visible = base != 0;
7808
7809         if (intel_crtc->cursor_visible != visible) {
7810                 int16_t width = intel_crtc->cursor_width;
7811                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7812                 if (base) {
7813                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7814                         cntl |= MCURSOR_GAMMA_ENABLE;
7815
7816                         switch (width) {
7817                         case 64:
7818                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7819                                 break;
7820                         case 128:
7821                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7822                                 break;
7823                         case 256:
7824                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7825                                 break;
7826                         default:
7827                                 WARN_ON(1);
7828                                 return;
7829                         }
7830                         cntl |= pipe << 28; /* Connect to correct pipe */
7831                 } else {
7832                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7833                         cntl |= CURSOR_MODE_DISABLE;
7834                 }
7835                 I915_WRITE(CURCNTR(pipe), cntl);
7836
7837                 intel_crtc->cursor_visible = visible;
7838         }
7839         /* and commit changes on next vblank */
7840         POSTING_READ(CURCNTR(pipe));
7841         I915_WRITE(CURBASE(pipe), base);
7842         POSTING_READ(CURBASE(pipe));
7843 }
7844
7845 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7846 {
7847         struct drm_device *dev = crtc->dev;
7848         struct drm_i915_private *dev_priv = dev->dev_private;
7849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7850         int pipe = intel_crtc->pipe;
7851         bool visible = base != 0;
7852
7853         if (intel_crtc->cursor_visible != visible) {
7854                 int16_t width = intel_crtc->cursor_width;
7855                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7856                 if (base) {
7857                         cntl &= ~CURSOR_MODE;
7858                         cntl |= MCURSOR_GAMMA_ENABLE;
7859                         switch (width) {
7860                         case 64:
7861                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7862                                 break;
7863                         case 128:
7864                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7865                                 break;
7866                         case 256:
7867                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7868                                 break;
7869                         default:
7870                                 WARN_ON(1);
7871                                 return;
7872                         }
7873                 } else {
7874                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7875                         cntl |= CURSOR_MODE_DISABLE;
7876                 }
7877                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7878                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7879                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7880                 }
7881                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7882
7883                 intel_crtc->cursor_visible = visible;
7884         }
7885         /* and commit changes on next vblank */
7886         POSTING_READ(CURCNTR_IVB(pipe));
7887         I915_WRITE(CURBASE_IVB(pipe), base);
7888         POSTING_READ(CURBASE_IVB(pipe));
7889 }
7890
7891 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7892 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7893                                      bool on)
7894 {
7895         struct drm_device *dev = crtc->dev;
7896         struct drm_i915_private *dev_priv = dev->dev_private;
7897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7898         int pipe = intel_crtc->pipe;
7899         int x = intel_crtc->cursor_x;
7900         int y = intel_crtc->cursor_y;
7901         u32 base = 0, pos = 0;
7902         bool visible;
7903
7904         if (on)
7905                 base = intel_crtc->cursor_addr;
7906
7907         if (x >= intel_crtc->config.pipe_src_w)
7908                 base = 0;
7909
7910         if (y >= intel_crtc->config.pipe_src_h)
7911                 base = 0;
7912
7913         if (x < 0) {
7914                 if (x + intel_crtc->cursor_width <= 0)
7915                         base = 0;
7916
7917                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7918                 x = -x;
7919         }
7920         pos |= x << CURSOR_X_SHIFT;
7921
7922         if (y < 0) {
7923                 if (y + intel_crtc->cursor_height <= 0)
7924                         base = 0;
7925
7926                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7927                 y = -y;
7928         }
7929         pos |= y << CURSOR_Y_SHIFT;
7930
7931         visible = base != 0;
7932         if (!visible && !intel_crtc->cursor_visible)
7933                 return;
7934
7935         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7936                 I915_WRITE(CURPOS_IVB(pipe), pos);
7937                 ivb_update_cursor(crtc, base);
7938         } else {
7939                 I915_WRITE(CURPOS(pipe), pos);
7940                 if (IS_845G(dev) || IS_I865G(dev))
7941                         i845_update_cursor(crtc, base);
7942                 else
7943                         i9xx_update_cursor(crtc, base);
7944         }
7945 }
7946
7947 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7948                                  struct drm_file *file,
7949                                  uint32_t handle,
7950                                  uint32_t width, uint32_t height)
7951 {
7952         struct drm_device *dev = crtc->dev;
7953         struct drm_i915_private *dev_priv = dev->dev_private;
7954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7955         struct drm_i915_gem_object *obj;
7956         unsigned old_width;
7957         uint32_t addr;
7958         int ret;
7959
7960         /* if we want to turn off the cursor ignore width and height */
7961         if (!handle) {
7962                 DRM_DEBUG_KMS("cursor off\n");
7963                 addr = 0;
7964                 obj = NULL;
7965                 mutex_lock(&dev->struct_mutex);
7966                 goto finish;
7967         }
7968
7969         /* Check for which cursor types we support */
7970         if (!((width == 64 && height == 64) ||
7971                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7972                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7973                 DRM_DEBUG("Cursor dimension not supported\n");
7974                 return -EINVAL;
7975         }
7976
7977         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7978         if (&obj->base == NULL)
7979                 return -ENOENT;
7980
7981         if (obj->base.size < width * height * 4) {
7982                 DRM_DEBUG_KMS("buffer is to small\n");
7983                 ret = -ENOMEM;
7984                 goto fail;
7985         }
7986
7987         /* we only need to pin inside GTT if cursor is non-phy */
7988         mutex_lock(&dev->struct_mutex);
7989         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7990                 unsigned alignment;
7991
7992                 if (obj->tiling_mode) {
7993                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7994                         ret = -EINVAL;
7995                         goto fail_locked;
7996                 }
7997
7998                 /* Note that the w/a also requires 2 PTE of padding following
7999                  * the bo. We currently fill all unused PTE with the shadow
8000                  * page and so we should always have valid PTE following the
8001                  * cursor preventing the VT-d warning.
8002                  */
8003                 alignment = 0;
8004                 if (need_vtd_wa(dev))
8005                         alignment = 64*1024;
8006
8007                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8008                 if (ret) {
8009                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8010                         goto fail_locked;
8011                 }
8012
8013                 ret = i915_gem_object_put_fence(obj);
8014                 if (ret) {
8015                         DRM_DEBUG_KMS("failed to release fence for cursor");
8016                         goto fail_unpin;
8017                 }
8018
8019                 addr = i915_gem_obj_ggtt_offset(obj);
8020         } else {
8021                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8022                 ret = i915_gem_attach_phys_object(dev, obj,
8023                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
8024                                                   align);
8025                 if (ret) {
8026                         DRM_DEBUG_KMS("failed to attach phys object\n");
8027                         goto fail_locked;
8028                 }
8029                 addr = obj->phys_obj->handle->busaddr;
8030         }
8031
8032         if (IS_GEN2(dev))
8033                 I915_WRITE(CURSIZE, (height << 12) | width);
8034
8035  finish:
8036         if (intel_crtc->cursor_bo) {
8037                 if (INTEL_INFO(dev)->cursor_needs_physical) {
8038                         if (intel_crtc->cursor_bo != obj)
8039                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
8040                 } else
8041                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8042                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8043         }
8044
8045         mutex_unlock(&dev->struct_mutex);
8046
8047         old_width = intel_crtc->cursor_width;
8048
8049         intel_crtc->cursor_addr = addr;
8050         intel_crtc->cursor_bo = obj;
8051         intel_crtc->cursor_width = width;
8052         intel_crtc->cursor_height = height;
8053
8054         if (intel_crtc->active) {
8055                 if (old_width != width)
8056                         intel_update_watermarks(crtc);
8057                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8058         }
8059
8060         return 0;
8061 fail_unpin:
8062         i915_gem_object_unpin_from_display_plane(obj);
8063 fail_locked:
8064         mutex_unlock(&dev->struct_mutex);
8065 fail:
8066         drm_gem_object_unreference_unlocked(&obj->base);
8067         return ret;
8068 }
8069
8070 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8071 {
8072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8073
8074         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8075         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8076
8077         if (intel_crtc->active)
8078                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8079
8080         return 0;
8081 }
8082
8083 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8084                                  u16 *blue, uint32_t start, uint32_t size)
8085 {
8086         int end = (start + size > 256) ? 256 : start + size, i;
8087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8088
8089         for (i = start; i < end; i++) {
8090                 intel_crtc->lut_r[i] = red[i] >> 8;
8091                 intel_crtc->lut_g[i] = green[i] >> 8;
8092                 intel_crtc->lut_b[i] = blue[i] >> 8;
8093         }
8094
8095         intel_crtc_load_lut(crtc);
8096 }
8097
8098 /* VESA 640x480x72Hz mode to set on the pipe */
8099 static struct drm_display_mode load_detect_mode = {
8100         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8101                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8102 };
8103
8104 struct drm_framebuffer *
8105 __intel_framebuffer_create(struct drm_device *dev,
8106                            struct drm_mode_fb_cmd2 *mode_cmd,
8107                            struct drm_i915_gem_object *obj)
8108 {
8109         struct intel_framebuffer *intel_fb;
8110         int ret;
8111
8112         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8113         if (!intel_fb) {
8114                 drm_gem_object_unreference_unlocked(&obj->base);
8115                 return ERR_PTR(-ENOMEM);
8116         }
8117
8118         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8119         if (ret)
8120                 goto err;
8121
8122         return &intel_fb->base;
8123 err:
8124         drm_gem_object_unreference_unlocked(&obj->base);
8125         kfree(intel_fb);
8126
8127         return ERR_PTR(ret);
8128 }
8129
8130 static struct drm_framebuffer *
8131 intel_framebuffer_create(struct drm_device *dev,
8132                          struct drm_mode_fb_cmd2 *mode_cmd,
8133                          struct drm_i915_gem_object *obj)
8134 {
8135         struct drm_framebuffer *fb;
8136         int ret;
8137
8138         ret = i915_mutex_lock_interruptible(dev);
8139         if (ret)
8140                 return ERR_PTR(ret);
8141         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8142         mutex_unlock(&dev->struct_mutex);
8143
8144         return fb;
8145 }
8146
8147 static u32
8148 intel_framebuffer_pitch_for_width(int width, int bpp)
8149 {
8150         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8151         return ALIGN(pitch, 64);
8152 }
8153
8154 static u32
8155 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8156 {
8157         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8158         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8159 }
8160
8161 static struct drm_framebuffer *
8162 intel_framebuffer_create_for_mode(struct drm_device *dev,
8163                                   struct drm_display_mode *mode,
8164                                   int depth, int bpp)
8165 {
8166         struct drm_i915_gem_object *obj;
8167         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8168
8169         obj = i915_gem_alloc_object(dev,
8170                                     intel_framebuffer_size_for_mode(mode, bpp));
8171         if (obj == NULL)
8172                 return ERR_PTR(-ENOMEM);
8173
8174         mode_cmd.width = mode->hdisplay;
8175         mode_cmd.height = mode->vdisplay;
8176         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8177                                                                 bpp);
8178         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8179
8180         return intel_framebuffer_create(dev, &mode_cmd, obj);
8181 }
8182
8183 static struct drm_framebuffer *
8184 mode_fits_in_fbdev(struct drm_device *dev,
8185                    struct drm_display_mode *mode)
8186 {
8187 #ifdef CONFIG_DRM_I915_FBDEV
8188         struct drm_i915_private *dev_priv = dev->dev_private;
8189         struct drm_i915_gem_object *obj;
8190         struct drm_framebuffer *fb;
8191
8192         if (!dev_priv->fbdev)
8193                 return NULL;
8194
8195         if (!dev_priv->fbdev->fb)
8196                 return NULL;
8197
8198         obj = dev_priv->fbdev->fb->obj;
8199         BUG_ON(!obj);
8200
8201         fb = &dev_priv->fbdev->fb->base;
8202         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8203                                                                fb->bits_per_pixel))
8204                 return NULL;
8205
8206         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8207                 return NULL;
8208
8209         return fb;
8210 #else
8211         return NULL;
8212 #endif
8213 }
8214
8215 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8216                                 struct drm_display_mode *mode,
8217                                 struct intel_load_detect_pipe *old)
8218 {
8219         struct intel_crtc *intel_crtc;
8220         struct intel_encoder *intel_encoder =
8221                 intel_attached_encoder(connector);
8222         struct drm_crtc *possible_crtc;
8223         struct drm_encoder *encoder = &intel_encoder->base;
8224         struct drm_crtc *crtc = NULL;
8225         struct drm_device *dev = encoder->dev;
8226         struct drm_framebuffer *fb;
8227         int i = -1;
8228
8229         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8230                       connector->base.id, drm_get_connector_name(connector),
8231                       encoder->base.id, drm_get_encoder_name(encoder));
8232
8233         /*
8234          * Algorithm gets a little messy:
8235          *
8236          *   - if the connector already has an assigned crtc, use it (but make
8237          *     sure it's on first)
8238          *
8239          *   - try to find the first unused crtc that can drive this connector,
8240          *     and use that if we find one
8241          */
8242
8243         /* See if we already have a CRTC for this connector */
8244         if (encoder->crtc) {
8245                 crtc = encoder->crtc;
8246
8247                 mutex_lock(&crtc->mutex);
8248
8249                 old->dpms_mode = connector->dpms;
8250                 old->load_detect_temp = false;
8251
8252                 /* Make sure the crtc and connector are running */
8253                 if (connector->dpms != DRM_MODE_DPMS_ON)
8254                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8255
8256                 return true;
8257         }
8258
8259         /* Find an unused one (if possible) */
8260         for_each_crtc(dev, possible_crtc) {
8261                 i++;
8262                 if (!(encoder->possible_crtcs & (1 << i)))
8263                         continue;
8264                 if (!possible_crtc->enabled) {
8265                         crtc = possible_crtc;
8266                         break;
8267                 }
8268         }
8269
8270         /*
8271          * If we didn't find an unused CRTC, don't use any.
8272          */
8273         if (!crtc) {
8274                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8275                 return false;
8276         }
8277
8278         mutex_lock(&crtc->mutex);
8279         intel_encoder->new_crtc = to_intel_crtc(crtc);
8280         to_intel_connector(connector)->new_encoder = intel_encoder;
8281
8282         intel_crtc = to_intel_crtc(crtc);
8283         intel_crtc->new_enabled = true;
8284         intel_crtc->new_config = &intel_crtc->config;
8285         old->dpms_mode = connector->dpms;
8286         old->load_detect_temp = true;
8287         old->release_fb = NULL;
8288
8289         if (!mode)
8290                 mode = &load_detect_mode;
8291
8292         /* We need a framebuffer large enough to accommodate all accesses
8293          * that the plane may generate whilst we perform load detection.
8294          * We can not rely on the fbcon either being present (we get called
8295          * during its initialisation to detect all boot displays, or it may
8296          * not even exist) or that it is large enough to satisfy the
8297          * requested mode.
8298          */
8299         fb = mode_fits_in_fbdev(dev, mode);
8300         if (fb == NULL) {
8301                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8302                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8303                 old->release_fb = fb;
8304         } else
8305                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8306         if (IS_ERR(fb)) {
8307                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8308                 goto fail;
8309         }
8310
8311         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8312                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8313                 if (old->release_fb)
8314                         old->release_fb->funcs->destroy(old->release_fb);
8315                 goto fail;
8316         }
8317
8318         /* let the connector get through one full cycle before testing */
8319         intel_wait_for_vblank(dev, intel_crtc->pipe);
8320         return true;
8321
8322  fail:
8323         intel_crtc->new_enabled = crtc->enabled;
8324         if (intel_crtc->new_enabled)
8325                 intel_crtc->new_config = &intel_crtc->config;
8326         else
8327                 intel_crtc->new_config = NULL;
8328         mutex_unlock(&crtc->mutex);
8329         return false;
8330 }
8331
8332 void intel_release_load_detect_pipe(struct drm_connector *connector,
8333                                     struct intel_load_detect_pipe *old)
8334 {
8335         struct intel_encoder *intel_encoder =
8336                 intel_attached_encoder(connector);
8337         struct drm_encoder *encoder = &intel_encoder->base;
8338         struct drm_crtc *crtc = encoder->crtc;
8339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8340
8341         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8342                       connector->base.id, drm_get_connector_name(connector),
8343                       encoder->base.id, drm_get_encoder_name(encoder));
8344
8345         if (old->load_detect_temp) {
8346                 to_intel_connector(connector)->new_encoder = NULL;
8347                 intel_encoder->new_crtc = NULL;
8348                 intel_crtc->new_enabled = false;
8349                 intel_crtc->new_config = NULL;
8350                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8351
8352                 if (old->release_fb) {
8353                         drm_framebuffer_unregister_private(old->release_fb);
8354                         drm_framebuffer_unreference(old->release_fb);
8355                 }
8356
8357                 mutex_unlock(&crtc->mutex);
8358                 return;
8359         }
8360
8361         /* Switch crtc and encoder back off if necessary */
8362         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8363                 connector->funcs->dpms(connector, old->dpms_mode);
8364
8365         mutex_unlock(&crtc->mutex);
8366 }
8367
8368 static int i9xx_pll_refclk(struct drm_device *dev,
8369                            const struct intel_crtc_config *pipe_config)
8370 {
8371         struct drm_i915_private *dev_priv = dev->dev_private;
8372         u32 dpll = pipe_config->dpll_hw_state.dpll;
8373
8374         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8375                 return dev_priv->vbt.lvds_ssc_freq;
8376         else if (HAS_PCH_SPLIT(dev))
8377                 return 120000;
8378         else if (!IS_GEN2(dev))
8379                 return 96000;
8380         else
8381                 return 48000;
8382 }
8383
8384 /* Returns the clock of the currently programmed mode of the given pipe. */
8385 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8386                                 struct intel_crtc_config *pipe_config)
8387 {
8388         struct drm_device *dev = crtc->base.dev;
8389         struct drm_i915_private *dev_priv = dev->dev_private;
8390         int pipe = pipe_config->cpu_transcoder;
8391         u32 dpll = pipe_config->dpll_hw_state.dpll;
8392         u32 fp;
8393         intel_clock_t clock;
8394         int refclk = i9xx_pll_refclk(dev, pipe_config);
8395
8396         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8397                 fp = pipe_config->dpll_hw_state.fp0;
8398         else
8399                 fp = pipe_config->dpll_hw_state.fp1;
8400
8401         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8402         if (IS_PINEVIEW(dev)) {
8403                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8404                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8405         } else {
8406                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8407                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8408         }
8409
8410         if (!IS_GEN2(dev)) {
8411                 if (IS_PINEVIEW(dev))
8412                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8413                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8414                 else
8415                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8416                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8417
8418                 switch (dpll & DPLL_MODE_MASK) {
8419                 case DPLLB_MODE_DAC_SERIAL:
8420                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8421                                 5 : 10;
8422                         break;
8423                 case DPLLB_MODE_LVDS:
8424                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8425                                 7 : 14;
8426                         break;
8427                 default:
8428                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8429                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8430                         return;
8431                 }
8432
8433                 if (IS_PINEVIEW(dev))
8434                         pineview_clock(refclk, &clock);
8435                 else
8436                         i9xx_clock(refclk, &clock);
8437         } else {
8438                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8439                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8440
8441                 if (is_lvds) {
8442                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8443                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8444
8445                         if (lvds & LVDS_CLKB_POWER_UP)
8446                                 clock.p2 = 7;
8447                         else
8448                                 clock.p2 = 14;
8449                 } else {
8450                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8451                                 clock.p1 = 2;
8452                         else {
8453                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8454                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8455                         }
8456                         if (dpll & PLL_P2_DIVIDE_BY_4)
8457                                 clock.p2 = 4;
8458                         else
8459                                 clock.p2 = 2;
8460                 }
8461
8462                 i9xx_clock(refclk, &clock);
8463         }
8464
8465         /*
8466          * This value includes pixel_multiplier. We will use
8467          * port_clock to compute adjusted_mode.crtc_clock in the
8468          * encoder's get_config() function.
8469          */
8470         pipe_config->port_clock = clock.dot;
8471 }
8472
8473 int intel_dotclock_calculate(int link_freq,
8474                              const struct intel_link_m_n *m_n)
8475 {
8476         /*
8477          * The calculation for the data clock is:
8478          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8479          * But we want to avoid losing precison if possible, so:
8480          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8481          *
8482          * and the link clock is simpler:
8483          * link_clock = (m * link_clock) / n
8484          */
8485
8486         if (!m_n->link_n)
8487                 return 0;
8488
8489         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8490 }
8491
8492 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8493                                    struct intel_crtc_config *pipe_config)
8494 {
8495         struct drm_device *dev = crtc->base.dev;
8496
8497         /* read out port_clock from the DPLL */
8498         i9xx_crtc_clock_get(crtc, pipe_config);
8499
8500         /*
8501          * This value does not include pixel_multiplier.
8502          * We will check that port_clock and adjusted_mode.crtc_clock
8503          * agree once we know their relationship in the encoder's
8504          * get_config() function.
8505          */
8506         pipe_config->adjusted_mode.crtc_clock =
8507                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8508                                          &pipe_config->fdi_m_n);
8509 }
8510
8511 /** Returns the currently programmed mode of the given pipe. */
8512 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8513                                              struct drm_crtc *crtc)
8514 {
8515         struct drm_i915_private *dev_priv = dev->dev_private;
8516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8517         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8518         struct drm_display_mode *mode;
8519         struct intel_crtc_config pipe_config;
8520         int htot = I915_READ(HTOTAL(cpu_transcoder));
8521         int hsync = I915_READ(HSYNC(cpu_transcoder));
8522         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8523         int vsync = I915_READ(VSYNC(cpu_transcoder));
8524         enum pipe pipe = intel_crtc->pipe;
8525
8526         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8527         if (!mode)
8528                 return NULL;
8529
8530         /*
8531          * Construct a pipe_config sufficient for getting the clock info
8532          * back out of crtc_clock_get.
8533          *
8534          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8535          * to use a real value here instead.
8536          */
8537         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8538         pipe_config.pixel_multiplier = 1;
8539         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8540         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8541         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8542         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8543
8544         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8545         mode->hdisplay = (htot & 0xffff) + 1;
8546         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8547         mode->hsync_start = (hsync & 0xffff) + 1;
8548         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8549         mode->vdisplay = (vtot & 0xffff) + 1;
8550         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8551         mode->vsync_start = (vsync & 0xffff) + 1;
8552         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8553
8554         drm_mode_set_name(mode);
8555
8556         return mode;
8557 }
8558
8559 static void intel_increase_pllclock(struct drm_crtc *crtc)
8560 {
8561         struct drm_device *dev = crtc->dev;
8562         struct drm_i915_private *dev_priv = dev->dev_private;
8563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8564         int pipe = intel_crtc->pipe;
8565         int dpll_reg = DPLL(pipe);
8566         int dpll;
8567
8568         if (HAS_PCH_SPLIT(dev))
8569                 return;
8570
8571         if (!dev_priv->lvds_downclock_avail)
8572                 return;
8573
8574         dpll = I915_READ(dpll_reg);
8575         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8576                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8577
8578                 assert_panel_unlocked(dev_priv, pipe);
8579
8580                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8581                 I915_WRITE(dpll_reg, dpll);
8582                 intel_wait_for_vblank(dev, pipe);
8583
8584                 dpll = I915_READ(dpll_reg);
8585                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8586                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8587         }
8588 }
8589
8590 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8591 {
8592         struct drm_device *dev = crtc->dev;
8593         struct drm_i915_private *dev_priv = dev->dev_private;
8594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8595
8596         if (HAS_PCH_SPLIT(dev))
8597                 return;
8598
8599         if (!dev_priv->lvds_downclock_avail)
8600                 return;
8601
8602         /*
8603          * Since this is called by a timer, we should never get here in
8604          * the manual case.
8605          */
8606         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8607                 int pipe = intel_crtc->pipe;
8608                 int dpll_reg = DPLL(pipe);
8609                 int dpll;
8610
8611                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8612
8613                 assert_panel_unlocked(dev_priv, pipe);
8614
8615                 dpll = I915_READ(dpll_reg);
8616                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8617                 I915_WRITE(dpll_reg, dpll);
8618                 intel_wait_for_vblank(dev, pipe);
8619                 dpll = I915_READ(dpll_reg);
8620                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8621                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8622         }
8623
8624 }
8625
8626 void intel_mark_busy(struct drm_device *dev)
8627 {
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629
8630         if (dev_priv->mm.busy)
8631                 return;
8632
8633         intel_runtime_pm_get(dev_priv);
8634         i915_update_gfx_val(dev_priv);
8635         dev_priv->mm.busy = true;
8636 }
8637
8638 void intel_mark_idle(struct drm_device *dev)
8639 {
8640         struct drm_i915_private *dev_priv = dev->dev_private;
8641         struct drm_crtc *crtc;
8642
8643         if (!dev_priv->mm.busy)
8644                 return;
8645
8646         dev_priv->mm.busy = false;
8647
8648         if (!i915.powersave)
8649                 goto out;
8650
8651         for_each_crtc(dev, crtc) {
8652                 if (!crtc->primary->fb)
8653                         continue;
8654
8655                 intel_decrease_pllclock(crtc);
8656         }
8657
8658         if (INTEL_INFO(dev)->gen >= 6)
8659                 gen6_rps_idle(dev->dev_private);
8660
8661 out:
8662         intel_runtime_pm_put(dev_priv);
8663 }
8664
8665 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8666                         struct intel_ring_buffer *ring)
8667 {
8668         struct drm_device *dev = obj->base.dev;
8669         struct drm_crtc *crtc;
8670
8671         if (!i915.powersave)
8672                 return;
8673
8674         for_each_crtc(dev, crtc) {
8675                 if (!crtc->primary->fb)
8676                         continue;
8677
8678                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8679                         continue;
8680
8681                 intel_increase_pllclock(crtc);
8682                 if (ring && intel_fbc_enabled(dev))
8683                         ring->fbc_dirty = true;
8684         }
8685 }
8686
8687 static void intel_crtc_destroy(struct drm_crtc *crtc)
8688 {
8689         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8690         struct drm_device *dev = crtc->dev;
8691         struct intel_unpin_work *work;
8692         unsigned long flags;
8693
8694         spin_lock_irqsave(&dev->event_lock, flags);
8695         work = intel_crtc->unpin_work;
8696         intel_crtc->unpin_work = NULL;
8697         spin_unlock_irqrestore(&dev->event_lock, flags);
8698
8699         if (work) {
8700                 cancel_work_sync(&work->work);
8701                 kfree(work);
8702         }
8703
8704         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8705
8706         drm_crtc_cleanup(crtc);
8707
8708         kfree(intel_crtc);
8709 }
8710
8711 static void intel_unpin_work_fn(struct work_struct *__work)
8712 {
8713         struct intel_unpin_work *work =
8714                 container_of(__work, struct intel_unpin_work, work);
8715         struct drm_device *dev = work->crtc->dev;
8716
8717         mutex_lock(&dev->struct_mutex);
8718         intel_unpin_fb_obj(work->old_fb_obj);
8719         drm_gem_object_unreference(&work->pending_flip_obj->base);
8720         drm_gem_object_unreference(&work->old_fb_obj->base);
8721
8722         intel_update_fbc(dev);
8723         mutex_unlock(&dev->struct_mutex);
8724
8725         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8726         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8727
8728         kfree(work);
8729 }
8730
8731 static void do_intel_finish_page_flip(struct drm_device *dev,
8732                                       struct drm_crtc *crtc)
8733 {
8734         struct drm_i915_private *dev_priv = dev->dev_private;
8735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8736         struct intel_unpin_work *work;
8737         unsigned long flags;
8738
8739         /* Ignore early vblank irqs */
8740         if (intel_crtc == NULL)
8741                 return;
8742
8743         spin_lock_irqsave(&dev->event_lock, flags);
8744         work = intel_crtc->unpin_work;
8745
8746         /* Ensure we don't miss a work->pending update ... */
8747         smp_rmb();
8748
8749         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8750                 spin_unlock_irqrestore(&dev->event_lock, flags);
8751                 return;
8752         }
8753
8754         /* and that the unpin work is consistent wrt ->pending. */
8755         smp_rmb();
8756
8757         intel_crtc->unpin_work = NULL;
8758
8759         if (work->event)
8760                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8761
8762         drm_vblank_put(dev, intel_crtc->pipe);
8763
8764         spin_unlock_irqrestore(&dev->event_lock, flags);
8765
8766         wake_up_all(&dev_priv->pending_flip_queue);
8767
8768         queue_work(dev_priv->wq, &work->work);
8769
8770         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8771 }
8772
8773 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8774 {
8775         struct drm_i915_private *dev_priv = dev->dev_private;
8776         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8777
8778         do_intel_finish_page_flip(dev, crtc);
8779 }
8780
8781 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8782 {
8783         struct drm_i915_private *dev_priv = dev->dev_private;
8784         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8785
8786         do_intel_finish_page_flip(dev, crtc);
8787 }
8788
8789 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8790 {
8791         struct drm_i915_private *dev_priv = dev->dev_private;
8792         struct intel_crtc *intel_crtc =
8793                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8794         unsigned long flags;
8795
8796         /* NB: An MMIO update of the plane base pointer will also
8797          * generate a page-flip completion irq, i.e. every modeset
8798          * is also accompanied by a spurious intel_prepare_page_flip().
8799          */
8800         spin_lock_irqsave(&dev->event_lock, flags);
8801         if (intel_crtc->unpin_work)
8802                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8803         spin_unlock_irqrestore(&dev->event_lock, flags);
8804 }
8805
8806 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8807 {
8808         /* Ensure that the work item is consistent when activating it ... */
8809         smp_wmb();
8810         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8811         /* and that it is marked active as soon as the irq could fire. */
8812         smp_wmb();
8813 }
8814
8815 static int intel_gen2_queue_flip(struct drm_device *dev,
8816                                  struct drm_crtc *crtc,
8817                                  struct drm_framebuffer *fb,
8818                                  struct drm_i915_gem_object *obj,
8819                                  uint32_t flags)
8820 {
8821         struct drm_i915_private *dev_priv = dev->dev_private;
8822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8823         u32 flip_mask;
8824         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8825         int ret;
8826
8827         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8828         if (ret)
8829                 goto err;
8830
8831         ret = intel_ring_begin(ring, 6);
8832         if (ret)
8833                 goto err_unpin;
8834
8835         /* Can't queue multiple flips, so wait for the previous
8836          * one to finish before executing the next.
8837          */
8838         if (intel_crtc->plane)
8839                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8840         else
8841                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8842         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8843         intel_ring_emit(ring, MI_NOOP);
8844         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8845                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8846         intel_ring_emit(ring, fb->pitches[0]);
8847         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8848         intel_ring_emit(ring, 0); /* aux display base address, unused */
8849
8850         intel_mark_page_flip_active(intel_crtc);
8851         __intel_ring_advance(ring);
8852         return 0;
8853
8854 err_unpin:
8855         intel_unpin_fb_obj(obj);
8856 err:
8857         return ret;
8858 }
8859
8860 static int intel_gen3_queue_flip(struct drm_device *dev,
8861                                  struct drm_crtc *crtc,
8862                                  struct drm_framebuffer *fb,
8863                                  struct drm_i915_gem_object *obj,
8864                                  uint32_t flags)
8865 {
8866         struct drm_i915_private *dev_priv = dev->dev_private;
8867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8868         u32 flip_mask;
8869         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8870         int ret;
8871
8872         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8873         if (ret)
8874                 goto err;
8875
8876         ret = intel_ring_begin(ring, 6);
8877         if (ret)
8878                 goto err_unpin;
8879
8880         if (intel_crtc->plane)
8881                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8882         else
8883                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8884         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8885         intel_ring_emit(ring, MI_NOOP);
8886         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8887                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8888         intel_ring_emit(ring, fb->pitches[0]);
8889         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8890         intel_ring_emit(ring, MI_NOOP);
8891
8892         intel_mark_page_flip_active(intel_crtc);
8893         __intel_ring_advance(ring);
8894         return 0;
8895
8896 err_unpin:
8897         intel_unpin_fb_obj(obj);
8898 err:
8899         return ret;
8900 }
8901
8902 static int intel_gen4_queue_flip(struct drm_device *dev,
8903                                  struct drm_crtc *crtc,
8904                                  struct drm_framebuffer *fb,
8905                                  struct drm_i915_gem_object *obj,
8906                                  uint32_t flags)
8907 {
8908         struct drm_i915_private *dev_priv = dev->dev_private;
8909         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8910         uint32_t pf, pipesrc;
8911         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8912         int ret;
8913
8914         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8915         if (ret)
8916                 goto err;
8917
8918         ret = intel_ring_begin(ring, 4);
8919         if (ret)
8920                 goto err_unpin;
8921
8922         /* i965+ uses the linear or tiled offsets from the
8923          * Display Registers (which do not change across a page-flip)
8924          * so we need only reprogram the base address.
8925          */
8926         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8927                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8928         intel_ring_emit(ring, fb->pitches[0]);
8929         intel_ring_emit(ring,
8930                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8931                         obj->tiling_mode);
8932
8933         /* XXX Enabling the panel-fitter across page-flip is so far
8934          * untested on non-native modes, so ignore it for now.
8935          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8936          */
8937         pf = 0;
8938         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8939         intel_ring_emit(ring, pf | pipesrc);
8940
8941         intel_mark_page_flip_active(intel_crtc);
8942         __intel_ring_advance(ring);
8943         return 0;
8944
8945 err_unpin:
8946         intel_unpin_fb_obj(obj);
8947 err:
8948         return ret;
8949 }
8950
8951 static int intel_gen6_queue_flip(struct drm_device *dev,
8952                                  struct drm_crtc *crtc,
8953                                  struct drm_framebuffer *fb,
8954                                  struct drm_i915_gem_object *obj,
8955                                  uint32_t flags)
8956 {
8957         struct drm_i915_private *dev_priv = dev->dev_private;
8958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8959         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8960         uint32_t pf, pipesrc;
8961         int ret;
8962
8963         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8964         if (ret)
8965                 goto err;
8966
8967         ret = intel_ring_begin(ring, 4);
8968         if (ret)
8969                 goto err_unpin;
8970
8971         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8972                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8973         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8974         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8975
8976         /* Contrary to the suggestions in the documentation,
8977          * "Enable Panel Fitter" does not seem to be required when page
8978          * flipping with a non-native mode, and worse causes a normal
8979          * modeset to fail.
8980          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8981          */
8982         pf = 0;
8983         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8984         intel_ring_emit(ring, pf | pipesrc);
8985
8986         intel_mark_page_flip_active(intel_crtc);
8987         __intel_ring_advance(ring);
8988         return 0;
8989
8990 err_unpin:
8991         intel_unpin_fb_obj(obj);
8992 err:
8993         return ret;
8994 }
8995
8996 static int intel_gen7_queue_flip(struct drm_device *dev,
8997                                  struct drm_crtc *crtc,
8998                                  struct drm_framebuffer *fb,
8999                                  struct drm_i915_gem_object *obj,
9000                                  uint32_t flags)
9001 {
9002         struct drm_i915_private *dev_priv = dev->dev_private;
9003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9004         struct intel_ring_buffer *ring;
9005         uint32_t plane_bit = 0;
9006         int len, ret;
9007
9008         ring = obj->ring;
9009         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
9010                 ring = &dev_priv->ring[BCS];
9011
9012         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9013         if (ret)
9014                 goto err;
9015
9016         switch(intel_crtc->plane) {
9017         case PLANE_A:
9018                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9019                 break;
9020         case PLANE_B:
9021                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9022                 break;
9023         case PLANE_C:
9024                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9025                 break;
9026         default:
9027                 WARN_ONCE(1, "unknown plane in flip command\n");
9028                 ret = -ENODEV;
9029                 goto err_unpin;
9030         }
9031
9032         len = 4;
9033         if (ring->id == RCS) {
9034                 len += 6;
9035                 /*
9036                  * On Gen 8, SRM is now taking an extra dword to accommodate
9037                  * 48bits addresses, and we need a NOOP for the batch size to
9038                  * stay even.
9039                  */
9040                 if (IS_GEN8(dev))
9041                         len += 2;
9042         }
9043
9044         /*
9045          * BSpec MI_DISPLAY_FLIP for IVB:
9046          * "The full packet must be contained within the same cache line."
9047          *
9048          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9049          * cacheline, if we ever start emitting more commands before
9050          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9051          * then do the cacheline alignment, and finally emit the
9052          * MI_DISPLAY_FLIP.
9053          */
9054         ret = intel_ring_cacheline_align(ring);
9055         if (ret)
9056                 goto err_unpin;
9057
9058         ret = intel_ring_begin(ring, len);
9059         if (ret)
9060                 goto err_unpin;
9061
9062         /* Unmask the flip-done completion message. Note that the bspec says that
9063          * we should do this for both the BCS and RCS, and that we must not unmask
9064          * more than one flip event at any time (or ensure that one flip message
9065          * can be sent by waiting for flip-done prior to queueing new flips).
9066          * Experimentation says that BCS works despite DERRMR masking all
9067          * flip-done completion events and that unmasking all planes at once
9068          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9069          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9070          */
9071         if (ring->id == RCS) {
9072                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9073                 intel_ring_emit(ring, DERRMR);
9074                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9075                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9076                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9077                 if (IS_GEN8(dev))
9078                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9079                                               MI_SRM_LRM_GLOBAL_GTT);
9080                 else
9081                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9082                                               MI_SRM_LRM_GLOBAL_GTT);
9083                 intel_ring_emit(ring, DERRMR);
9084                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9085                 if (IS_GEN8(dev)) {
9086                         intel_ring_emit(ring, 0);
9087                         intel_ring_emit(ring, MI_NOOP);
9088                 }
9089         }
9090
9091         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9092         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9093         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
9094         intel_ring_emit(ring, (MI_NOOP));
9095
9096         intel_mark_page_flip_active(intel_crtc);
9097         __intel_ring_advance(ring);
9098         return 0;
9099
9100 err_unpin:
9101         intel_unpin_fb_obj(obj);
9102 err:
9103         return ret;
9104 }
9105
9106 static int intel_default_queue_flip(struct drm_device *dev,
9107                                     struct drm_crtc *crtc,
9108                                     struct drm_framebuffer *fb,
9109                                     struct drm_i915_gem_object *obj,
9110                                     uint32_t flags)
9111 {
9112         return -ENODEV;
9113 }
9114
9115 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9116                                 struct drm_framebuffer *fb,
9117                                 struct drm_pending_vblank_event *event,
9118                                 uint32_t page_flip_flags)
9119 {
9120         struct drm_device *dev = crtc->dev;
9121         struct drm_i915_private *dev_priv = dev->dev_private;
9122         struct drm_framebuffer *old_fb = crtc->primary->fb;
9123         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9125         struct intel_unpin_work *work;
9126         unsigned long flags;
9127         int ret;
9128
9129         /* Can't change pixel format via MI display flips. */
9130         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9131                 return -EINVAL;
9132
9133         /*
9134          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9135          * Note that pitch changes could also affect these register.
9136          */
9137         if (INTEL_INFO(dev)->gen > 3 &&
9138             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9139              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9140                 return -EINVAL;
9141
9142         if (i915_terminally_wedged(&dev_priv->gpu_error))
9143                 goto out_hang;
9144
9145         work = kzalloc(sizeof(*work), GFP_KERNEL);
9146         if (work == NULL)
9147                 return -ENOMEM;
9148
9149         work->event = event;
9150         work->crtc = crtc;
9151         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9152         INIT_WORK(&work->work, intel_unpin_work_fn);
9153
9154         ret = drm_vblank_get(dev, intel_crtc->pipe);
9155         if (ret)
9156                 goto free_work;
9157
9158         /* We borrow the event spin lock for protecting unpin_work */
9159         spin_lock_irqsave(&dev->event_lock, flags);
9160         if (intel_crtc->unpin_work) {
9161                 spin_unlock_irqrestore(&dev->event_lock, flags);
9162                 kfree(work);
9163                 drm_vblank_put(dev, intel_crtc->pipe);
9164
9165                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9166                 return -EBUSY;
9167         }
9168         intel_crtc->unpin_work = work;
9169         spin_unlock_irqrestore(&dev->event_lock, flags);
9170
9171         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9172                 flush_workqueue(dev_priv->wq);
9173
9174         ret = i915_mutex_lock_interruptible(dev);
9175         if (ret)
9176                 goto cleanup;
9177
9178         /* Reference the objects for the scheduled work. */
9179         drm_gem_object_reference(&work->old_fb_obj->base);
9180         drm_gem_object_reference(&obj->base);
9181
9182         crtc->primary->fb = fb;
9183
9184         work->pending_flip_obj = obj;
9185
9186         work->enable_stall_check = true;
9187
9188         atomic_inc(&intel_crtc->unpin_work_count);
9189         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9190
9191         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
9192         if (ret)
9193                 goto cleanup_pending;
9194
9195         intel_disable_fbc(dev);
9196         intel_mark_fb_busy(obj, NULL);
9197         mutex_unlock(&dev->struct_mutex);
9198
9199         trace_i915_flip_request(intel_crtc->plane, obj);
9200
9201         return 0;
9202
9203 cleanup_pending:
9204         atomic_dec(&intel_crtc->unpin_work_count);
9205         crtc->primary->fb = old_fb;
9206         drm_gem_object_unreference(&work->old_fb_obj->base);
9207         drm_gem_object_unreference(&obj->base);
9208         mutex_unlock(&dev->struct_mutex);
9209
9210 cleanup:
9211         spin_lock_irqsave(&dev->event_lock, flags);
9212         intel_crtc->unpin_work = NULL;
9213         spin_unlock_irqrestore(&dev->event_lock, flags);
9214
9215         drm_vblank_put(dev, intel_crtc->pipe);
9216 free_work:
9217         kfree(work);
9218
9219         if (ret == -EIO) {
9220 out_hang:
9221                 intel_crtc_wait_for_pending_flips(crtc);
9222                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9223                 if (ret == 0 && event)
9224                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9225         }
9226         return ret;
9227 }
9228
9229 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9230         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9231         .load_lut = intel_crtc_load_lut,
9232 };
9233
9234 /**
9235  * intel_modeset_update_staged_output_state
9236  *
9237  * Updates the staged output configuration state, e.g. after we've read out the
9238  * current hw state.
9239  */
9240 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9241 {
9242         struct intel_crtc *crtc;
9243         struct intel_encoder *encoder;
9244         struct intel_connector *connector;
9245
9246         list_for_each_entry(connector, &dev->mode_config.connector_list,
9247                             base.head) {
9248                 connector->new_encoder =
9249                         to_intel_encoder(connector->base.encoder);
9250         }
9251
9252         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9253                             base.head) {
9254                 encoder->new_crtc =
9255                         to_intel_crtc(encoder->base.crtc);
9256         }
9257
9258         for_each_intel_crtc(dev, crtc) {
9259                 crtc->new_enabled = crtc->base.enabled;
9260
9261                 if (crtc->new_enabled)
9262                         crtc->new_config = &crtc->config;
9263                 else
9264                         crtc->new_config = NULL;
9265         }
9266 }
9267
9268 /**
9269  * intel_modeset_commit_output_state
9270  *
9271  * This function copies the stage display pipe configuration to the real one.
9272  */
9273 static void intel_modeset_commit_output_state(struct drm_device *dev)
9274 {
9275         struct intel_crtc *crtc;
9276         struct intel_encoder *encoder;
9277         struct intel_connector *connector;
9278
9279         list_for_each_entry(connector, &dev->mode_config.connector_list,
9280                             base.head) {
9281                 connector->base.encoder = &connector->new_encoder->base;
9282         }
9283
9284         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9285                             base.head) {
9286                 encoder->base.crtc = &encoder->new_crtc->base;
9287         }
9288
9289         for_each_intel_crtc(dev, crtc) {
9290                 crtc->base.enabled = crtc->new_enabled;
9291         }
9292 }
9293
9294 static void
9295 connected_sink_compute_bpp(struct intel_connector * connector,
9296                            struct intel_crtc_config *pipe_config)
9297 {
9298         int bpp = pipe_config->pipe_bpp;
9299
9300         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9301                 connector->base.base.id,
9302                 drm_get_connector_name(&connector->base));
9303
9304         /* Don't use an invalid EDID bpc value */
9305         if (connector->base.display_info.bpc &&
9306             connector->base.display_info.bpc * 3 < bpp) {
9307                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9308                               bpp, connector->base.display_info.bpc*3);
9309                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9310         }
9311
9312         /* Clamp bpp to 8 on screens without EDID 1.4 */
9313         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9314                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9315                               bpp);
9316                 pipe_config->pipe_bpp = 24;
9317         }
9318 }
9319
9320 static int
9321 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9322                           struct drm_framebuffer *fb,
9323                           struct intel_crtc_config *pipe_config)
9324 {
9325         struct drm_device *dev = crtc->base.dev;
9326         struct intel_connector *connector;
9327         int bpp;
9328
9329         switch (fb->pixel_format) {
9330         case DRM_FORMAT_C8:
9331                 bpp = 8*3; /* since we go through a colormap */
9332                 break;
9333         case DRM_FORMAT_XRGB1555:
9334         case DRM_FORMAT_ARGB1555:
9335                 /* checked in intel_framebuffer_init already */
9336                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9337                         return -EINVAL;
9338         case DRM_FORMAT_RGB565:
9339                 bpp = 6*3; /* min is 18bpp */
9340                 break;
9341         case DRM_FORMAT_XBGR8888:
9342         case DRM_FORMAT_ABGR8888:
9343                 /* checked in intel_framebuffer_init already */
9344                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9345                         return -EINVAL;
9346         case DRM_FORMAT_XRGB8888:
9347         case DRM_FORMAT_ARGB8888:
9348                 bpp = 8*3;
9349                 break;
9350         case DRM_FORMAT_XRGB2101010:
9351         case DRM_FORMAT_ARGB2101010:
9352         case DRM_FORMAT_XBGR2101010:
9353         case DRM_FORMAT_ABGR2101010:
9354                 /* checked in intel_framebuffer_init already */
9355                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9356                         return -EINVAL;
9357                 bpp = 10*3;
9358                 break;
9359         /* TODO: gen4+ supports 16 bpc floating point, too. */
9360         default:
9361                 DRM_DEBUG_KMS("unsupported depth\n");
9362                 return -EINVAL;
9363         }
9364
9365         pipe_config->pipe_bpp = bpp;
9366
9367         /* Clamp display bpp to EDID value */
9368         list_for_each_entry(connector, &dev->mode_config.connector_list,
9369                             base.head) {
9370                 if (!connector->new_encoder ||
9371                     connector->new_encoder->new_crtc != crtc)
9372                         continue;
9373
9374                 connected_sink_compute_bpp(connector, pipe_config);
9375         }
9376
9377         return bpp;
9378 }
9379
9380 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9381 {
9382         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9383                         "type: 0x%x flags: 0x%x\n",
9384                 mode->crtc_clock,
9385                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9386                 mode->crtc_hsync_end, mode->crtc_htotal,
9387                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9388                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9389 }
9390
9391 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9392                                    struct intel_crtc_config *pipe_config,
9393                                    const char *context)
9394 {
9395         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9396                       context, pipe_name(crtc->pipe));
9397
9398         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9399         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9400                       pipe_config->pipe_bpp, pipe_config->dither);
9401         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9402                       pipe_config->has_pch_encoder,
9403                       pipe_config->fdi_lanes,
9404                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9405                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9406                       pipe_config->fdi_m_n.tu);
9407         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9408                       pipe_config->has_dp_encoder,
9409                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9410                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9411                       pipe_config->dp_m_n.tu);
9412         DRM_DEBUG_KMS("requested mode:\n");
9413         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9414         DRM_DEBUG_KMS("adjusted mode:\n");
9415         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9416         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9417         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9418         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9419                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9420         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9421                       pipe_config->gmch_pfit.control,
9422                       pipe_config->gmch_pfit.pgm_ratios,
9423                       pipe_config->gmch_pfit.lvds_border_bits);
9424         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9425                       pipe_config->pch_pfit.pos,
9426                       pipe_config->pch_pfit.size,
9427                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9428         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9429         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9430 }
9431
9432 static bool encoders_cloneable(const struct intel_encoder *a,
9433                                const struct intel_encoder *b)
9434 {
9435         /* masks could be asymmetric, so check both ways */
9436         return a == b || (a->cloneable & (1 << b->type) &&
9437                           b->cloneable & (1 << a->type));
9438 }
9439
9440 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9441                                          struct intel_encoder *encoder)
9442 {
9443         struct drm_device *dev = crtc->base.dev;
9444         struct intel_encoder *source_encoder;
9445
9446         list_for_each_entry(source_encoder,
9447                             &dev->mode_config.encoder_list, base.head) {
9448                 if (source_encoder->new_crtc != crtc)
9449                         continue;
9450
9451                 if (!encoders_cloneable(encoder, source_encoder))
9452                         return false;
9453         }
9454
9455         return true;
9456 }
9457
9458 static bool check_encoder_cloning(struct intel_crtc *crtc)
9459 {
9460         struct drm_device *dev = crtc->base.dev;
9461         struct intel_encoder *encoder;
9462
9463         list_for_each_entry(encoder,
9464                             &dev->mode_config.encoder_list, base.head) {
9465                 if (encoder->new_crtc != crtc)
9466                         continue;
9467
9468                 if (!check_single_encoder_cloning(crtc, encoder))
9469                         return false;
9470         }
9471
9472         return true;
9473 }
9474
9475 static struct intel_crtc_config *
9476 intel_modeset_pipe_config(struct drm_crtc *crtc,
9477                           struct drm_framebuffer *fb,
9478                           struct drm_display_mode *mode)
9479 {
9480         struct drm_device *dev = crtc->dev;
9481         struct intel_encoder *encoder;
9482         struct intel_crtc_config *pipe_config;
9483         int plane_bpp, ret = -EINVAL;
9484         bool retry = true;
9485
9486         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9487                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9488                 return ERR_PTR(-EINVAL);
9489         }
9490
9491         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9492         if (!pipe_config)
9493                 return ERR_PTR(-ENOMEM);
9494
9495         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9496         drm_mode_copy(&pipe_config->requested_mode, mode);
9497
9498         pipe_config->cpu_transcoder =
9499                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9500         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9501
9502         /*
9503          * Sanitize sync polarity flags based on requested ones. If neither
9504          * positive or negative polarity is requested, treat this as meaning
9505          * negative polarity.
9506          */
9507         if (!(pipe_config->adjusted_mode.flags &
9508               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9509                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9510
9511         if (!(pipe_config->adjusted_mode.flags &
9512               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9513                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9514
9515         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9516          * plane pixel format and any sink constraints into account. Returns the
9517          * source plane bpp so that dithering can be selected on mismatches
9518          * after encoders and crtc also have had their say. */
9519         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9520                                               fb, pipe_config);
9521         if (plane_bpp < 0)
9522                 goto fail;
9523
9524         /*
9525          * Determine the real pipe dimensions. Note that stereo modes can
9526          * increase the actual pipe size due to the frame doubling and
9527          * insertion of additional space for blanks between the frame. This
9528          * is stored in the crtc timings. We use the requested mode to do this
9529          * computation to clearly distinguish it from the adjusted mode, which
9530          * can be changed by the connectors in the below retry loop.
9531          */
9532         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9533         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9534         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9535
9536 encoder_retry:
9537         /* Ensure the port clock defaults are reset when retrying. */
9538         pipe_config->port_clock = 0;
9539         pipe_config->pixel_multiplier = 1;
9540
9541         /* Fill in default crtc timings, allow encoders to overwrite them. */
9542         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9543
9544         /* Pass our mode to the connectors and the CRTC to give them a chance to
9545          * adjust it according to limitations or connector properties, and also
9546          * a chance to reject the mode entirely.
9547          */
9548         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9549                             base.head) {
9550
9551                 if (&encoder->new_crtc->base != crtc)
9552                         continue;
9553
9554                 if (!(encoder->compute_config(encoder, pipe_config))) {
9555                         DRM_DEBUG_KMS("Encoder config failure\n");
9556                         goto fail;
9557                 }
9558         }
9559
9560         /* Set default port clock if not overwritten by the encoder. Needs to be
9561          * done afterwards in case the encoder adjusts the mode. */
9562         if (!pipe_config->port_clock)
9563                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9564                         * pipe_config->pixel_multiplier;
9565
9566         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9567         if (ret < 0) {
9568                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9569                 goto fail;
9570         }
9571
9572         if (ret == RETRY) {
9573                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9574                         ret = -EINVAL;
9575                         goto fail;
9576                 }
9577
9578                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9579                 retry = false;
9580                 goto encoder_retry;
9581         }
9582
9583         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9584         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9585                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9586
9587         return pipe_config;
9588 fail:
9589         kfree(pipe_config);
9590         return ERR_PTR(ret);
9591 }
9592
9593 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9594  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9595 static void
9596 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9597                              unsigned *prepare_pipes, unsigned *disable_pipes)
9598 {
9599         struct intel_crtc *intel_crtc;
9600         struct drm_device *dev = crtc->dev;
9601         struct intel_encoder *encoder;
9602         struct intel_connector *connector;
9603         struct drm_crtc *tmp_crtc;
9604
9605         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9606
9607         /* Check which crtcs have changed outputs connected to them, these need
9608          * to be part of the prepare_pipes mask. We don't (yet) support global
9609          * modeset across multiple crtcs, so modeset_pipes will only have one
9610          * bit set at most. */
9611         list_for_each_entry(connector, &dev->mode_config.connector_list,
9612                             base.head) {
9613                 if (connector->base.encoder == &connector->new_encoder->base)
9614                         continue;
9615
9616                 if (connector->base.encoder) {
9617                         tmp_crtc = connector->base.encoder->crtc;
9618
9619                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9620                 }
9621
9622                 if (connector->new_encoder)
9623                         *prepare_pipes |=
9624                                 1 << connector->new_encoder->new_crtc->pipe;
9625         }
9626
9627         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9628                             base.head) {
9629                 if (encoder->base.crtc == &encoder->new_crtc->base)
9630                         continue;
9631
9632                 if (encoder->base.crtc) {
9633                         tmp_crtc = encoder->base.crtc;
9634
9635                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9636                 }
9637
9638                 if (encoder->new_crtc)
9639                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9640         }
9641
9642         /* Check for pipes that will be enabled/disabled ... */
9643         for_each_intel_crtc(dev, intel_crtc) {
9644                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9645                         continue;
9646
9647                 if (!intel_crtc->new_enabled)
9648                         *disable_pipes |= 1 << intel_crtc->pipe;
9649                 else
9650                         *prepare_pipes |= 1 << intel_crtc->pipe;
9651         }
9652
9653
9654         /* set_mode is also used to update properties on life display pipes. */
9655         intel_crtc = to_intel_crtc(crtc);
9656         if (intel_crtc->new_enabled)
9657                 *prepare_pipes |= 1 << intel_crtc->pipe;
9658
9659         /*
9660          * For simplicity do a full modeset on any pipe where the output routing
9661          * changed. We could be more clever, but that would require us to be
9662          * more careful with calling the relevant encoder->mode_set functions.
9663          */
9664         if (*prepare_pipes)
9665                 *modeset_pipes = *prepare_pipes;
9666
9667         /* ... and mask these out. */
9668         *modeset_pipes &= ~(*disable_pipes);
9669         *prepare_pipes &= ~(*disable_pipes);
9670
9671         /*
9672          * HACK: We don't (yet) fully support global modesets. intel_set_config
9673          * obies this rule, but the modeset restore mode of
9674          * intel_modeset_setup_hw_state does not.
9675          */
9676         *modeset_pipes &= 1 << intel_crtc->pipe;
9677         *prepare_pipes &= 1 << intel_crtc->pipe;
9678
9679         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9680                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9681 }
9682
9683 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9684 {
9685         struct drm_encoder *encoder;
9686         struct drm_device *dev = crtc->dev;
9687
9688         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9689                 if (encoder->crtc == crtc)
9690                         return true;
9691
9692         return false;
9693 }
9694
9695 static void
9696 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9697 {
9698         struct intel_encoder *intel_encoder;
9699         struct intel_crtc *intel_crtc;
9700         struct drm_connector *connector;
9701
9702         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9703                             base.head) {
9704                 if (!intel_encoder->base.crtc)
9705                         continue;
9706
9707                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9708
9709                 if (prepare_pipes & (1 << intel_crtc->pipe))
9710                         intel_encoder->connectors_active = false;
9711         }
9712
9713         intel_modeset_commit_output_state(dev);
9714
9715         /* Double check state. */
9716         for_each_intel_crtc(dev, intel_crtc) {
9717                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9718                 WARN_ON(intel_crtc->new_config &&
9719                         intel_crtc->new_config != &intel_crtc->config);
9720                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9721         }
9722
9723         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9724                 if (!connector->encoder || !connector->encoder->crtc)
9725                         continue;
9726
9727                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9728
9729                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9730                         struct drm_property *dpms_property =
9731                                 dev->mode_config.dpms_property;
9732
9733                         connector->dpms = DRM_MODE_DPMS_ON;
9734                         drm_object_property_set_value(&connector->base,
9735                                                          dpms_property,
9736                                                          DRM_MODE_DPMS_ON);
9737
9738                         intel_encoder = to_intel_encoder(connector->encoder);
9739                         intel_encoder->connectors_active = true;
9740                 }
9741         }
9742
9743 }
9744
9745 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9746 {
9747         int diff;
9748
9749         if (clock1 == clock2)
9750                 return true;
9751
9752         if (!clock1 || !clock2)
9753                 return false;
9754
9755         diff = abs(clock1 - clock2);
9756
9757         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9758                 return true;
9759
9760         return false;
9761 }
9762
9763 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9764         list_for_each_entry((intel_crtc), \
9765                             &(dev)->mode_config.crtc_list, \
9766                             base.head) \
9767                 if (mask & (1 <<(intel_crtc)->pipe))
9768
9769 static bool
9770 intel_pipe_config_compare(struct drm_device *dev,
9771                           struct intel_crtc_config *current_config,
9772                           struct intel_crtc_config *pipe_config)
9773 {
9774 #define PIPE_CONF_CHECK_X(name) \
9775         if (current_config->name != pipe_config->name) { \
9776                 DRM_ERROR("mismatch in " #name " " \
9777                           "(expected 0x%08x, found 0x%08x)\n", \
9778                           current_config->name, \
9779                           pipe_config->name); \
9780                 return false; \
9781         }
9782
9783 #define PIPE_CONF_CHECK_I(name) \
9784         if (current_config->name != pipe_config->name) { \
9785                 DRM_ERROR("mismatch in " #name " " \
9786                           "(expected %i, found %i)\n", \
9787                           current_config->name, \
9788                           pipe_config->name); \
9789                 return false; \
9790         }
9791
9792 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9793         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9794                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9795                           "(expected %i, found %i)\n", \
9796                           current_config->name & (mask), \
9797                           pipe_config->name & (mask)); \
9798                 return false; \
9799         }
9800
9801 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9802         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9803                 DRM_ERROR("mismatch in " #name " " \
9804                           "(expected %i, found %i)\n", \
9805                           current_config->name, \
9806                           pipe_config->name); \
9807                 return false; \
9808         }
9809
9810 #define PIPE_CONF_QUIRK(quirk)  \
9811         ((current_config->quirks | pipe_config->quirks) & (quirk))
9812
9813         PIPE_CONF_CHECK_I(cpu_transcoder);
9814
9815         PIPE_CONF_CHECK_I(has_pch_encoder);
9816         PIPE_CONF_CHECK_I(fdi_lanes);
9817         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9818         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9819         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9820         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9821         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9822
9823         PIPE_CONF_CHECK_I(has_dp_encoder);
9824         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9825         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9826         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9827         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9828         PIPE_CONF_CHECK_I(dp_m_n.tu);
9829
9830         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9831         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9832         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9833         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9834         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9835         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9836
9837         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9838         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9839         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9840         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9841         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9842         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9843
9844         PIPE_CONF_CHECK_I(pixel_multiplier);
9845         PIPE_CONF_CHECK_I(has_hdmi_sink);
9846         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9847             IS_VALLEYVIEW(dev))
9848                 PIPE_CONF_CHECK_I(limited_color_range);
9849
9850         PIPE_CONF_CHECK_I(has_audio);
9851
9852         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9853                               DRM_MODE_FLAG_INTERLACE);
9854
9855         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9856                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9857                                       DRM_MODE_FLAG_PHSYNC);
9858                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9859                                       DRM_MODE_FLAG_NHSYNC);
9860                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9861                                       DRM_MODE_FLAG_PVSYNC);
9862                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9863                                       DRM_MODE_FLAG_NVSYNC);
9864         }
9865
9866         PIPE_CONF_CHECK_I(pipe_src_w);
9867         PIPE_CONF_CHECK_I(pipe_src_h);
9868
9869         /*
9870          * FIXME: BIOS likes to set up a cloned config with lvds+external
9871          * screen. Since we don't yet re-compute the pipe config when moving
9872          * just the lvds port away to another pipe the sw tracking won't match.
9873          *
9874          * Proper atomic modesets with recomputed global state will fix this.
9875          * Until then just don't check gmch state for inherited modes.
9876          */
9877         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9878                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9879                 /* pfit ratios are autocomputed by the hw on gen4+ */
9880                 if (INTEL_INFO(dev)->gen < 4)
9881                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9882                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9883         }
9884
9885         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9886         if (current_config->pch_pfit.enabled) {
9887                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9888                 PIPE_CONF_CHECK_I(pch_pfit.size);
9889         }
9890
9891         /* BDW+ don't expose a synchronous way to read the state */
9892         if (IS_HASWELL(dev))
9893                 PIPE_CONF_CHECK_I(ips_enabled);
9894
9895         PIPE_CONF_CHECK_I(double_wide);
9896
9897         PIPE_CONF_CHECK_I(shared_dpll);
9898         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9899         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9900         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9901         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9902
9903         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9904                 PIPE_CONF_CHECK_I(pipe_bpp);
9905
9906         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9907         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9908
9909 #undef PIPE_CONF_CHECK_X
9910 #undef PIPE_CONF_CHECK_I
9911 #undef PIPE_CONF_CHECK_FLAGS
9912 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9913 #undef PIPE_CONF_QUIRK
9914
9915         return true;
9916 }
9917
9918 static void
9919 check_connector_state(struct drm_device *dev)
9920 {
9921         struct intel_connector *connector;
9922
9923         list_for_each_entry(connector, &dev->mode_config.connector_list,
9924                             base.head) {
9925                 /* This also checks the encoder/connector hw state with the
9926                  * ->get_hw_state callbacks. */
9927                 intel_connector_check_state(connector);
9928
9929                 WARN(&connector->new_encoder->base != connector->base.encoder,
9930                      "connector's staged encoder doesn't match current encoder\n");
9931         }
9932 }
9933
9934 static void
9935 check_encoder_state(struct drm_device *dev)
9936 {
9937         struct intel_encoder *encoder;
9938         struct intel_connector *connector;
9939
9940         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9941                             base.head) {
9942                 bool enabled = false;
9943                 bool active = false;
9944                 enum pipe pipe, tracked_pipe;
9945
9946                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9947                               encoder->base.base.id,
9948                               drm_get_encoder_name(&encoder->base));
9949
9950                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9951                      "encoder's stage crtc doesn't match current crtc\n");
9952                 WARN(encoder->connectors_active && !encoder->base.crtc,
9953                      "encoder's active_connectors set, but no crtc\n");
9954
9955                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9956                                     base.head) {
9957                         if (connector->base.encoder != &encoder->base)
9958                                 continue;
9959                         enabled = true;
9960                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9961                                 active = true;
9962                 }
9963                 WARN(!!encoder->base.crtc != enabled,
9964                      "encoder's enabled state mismatch "
9965                      "(expected %i, found %i)\n",
9966                      !!encoder->base.crtc, enabled);
9967                 WARN(active && !encoder->base.crtc,
9968                      "active encoder with no crtc\n");
9969
9970                 WARN(encoder->connectors_active != active,
9971                      "encoder's computed active state doesn't match tracked active state "
9972                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9973
9974                 active = encoder->get_hw_state(encoder, &pipe);
9975                 WARN(active != encoder->connectors_active,
9976                      "encoder's hw state doesn't match sw tracking "
9977                      "(expected %i, found %i)\n",
9978                      encoder->connectors_active, active);
9979
9980                 if (!encoder->base.crtc)
9981                         continue;
9982
9983                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9984                 WARN(active && pipe != tracked_pipe,
9985                      "active encoder's pipe doesn't match"
9986                      "(expected %i, found %i)\n",
9987                      tracked_pipe, pipe);
9988
9989         }
9990 }
9991
9992 static void
9993 check_crtc_state(struct drm_device *dev)
9994 {
9995         struct drm_i915_private *dev_priv = dev->dev_private;
9996         struct intel_crtc *crtc;
9997         struct intel_encoder *encoder;
9998         struct intel_crtc_config pipe_config;
9999
10000         for_each_intel_crtc(dev, crtc) {
10001                 bool enabled = false;
10002                 bool active = false;
10003
10004                 memset(&pipe_config, 0, sizeof(pipe_config));
10005
10006                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10007                               crtc->base.base.id);
10008
10009                 WARN(crtc->active && !crtc->base.enabled,
10010                      "active crtc, but not enabled in sw tracking\n");
10011
10012                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10013                                     base.head) {
10014                         if (encoder->base.crtc != &crtc->base)
10015                                 continue;
10016                         enabled = true;
10017                         if (encoder->connectors_active)
10018                                 active = true;
10019                 }
10020
10021                 WARN(active != crtc->active,
10022                      "crtc's computed active state doesn't match tracked active state "
10023                      "(expected %i, found %i)\n", active, crtc->active);
10024                 WARN(enabled != crtc->base.enabled,
10025                      "crtc's computed enabled state doesn't match tracked enabled state "
10026                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10027
10028                 active = dev_priv->display.get_pipe_config(crtc,
10029                                                            &pipe_config);
10030
10031                 /* hw state is inconsistent with the pipe A quirk */
10032                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10033                         active = crtc->active;
10034
10035                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10036                                     base.head) {
10037                         enum pipe pipe;
10038                         if (encoder->base.crtc != &crtc->base)
10039                                 continue;
10040                         if (encoder->get_hw_state(encoder, &pipe))
10041                                 encoder->get_config(encoder, &pipe_config);
10042                 }
10043
10044                 WARN(crtc->active != active,
10045                      "crtc active state doesn't match with hw state "
10046                      "(expected %i, found %i)\n", crtc->active, active);
10047
10048                 if (active &&
10049                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10050                         WARN(1, "pipe state doesn't match!\n");
10051                         intel_dump_pipe_config(crtc, &pipe_config,
10052                                                "[hw state]");
10053                         intel_dump_pipe_config(crtc, &crtc->config,
10054                                                "[sw state]");
10055                 }
10056         }
10057 }
10058
10059 static void
10060 check_shared_dpll_state(struct drm_device *dev)
10061 {
10062         struct drm_i915_private *dev_priv = dev->dev_private;
10063         struct intel_crtc *crtc;
10064         struct intel_dpll_hw_state dpll_hw_state;
10065         int i;
10066
10067         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10068                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10069                 int enabled_crtcs = 0, active_crtcs = 0;
10070                 bool active;
10071
10072                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10073
10074                 DRM_DEBUG_KMS("%s\n", pll->name);
10075
10076                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10077
10078                 WARN(pll->active > pll->refcount,
10079                      "more active pll users than references: %i vs %i\n",
10080                      pll->active, pll->refcount);
10081                 WARN(pll->active && !pll->on,
10082                      "pll in active use but not on in sw tracking\n");
10083                 WARN(pll->on && !pll->active,
10084                      "pll in on but not on in use in sw tracking\n");
10085                 WARN(pll->on != active,
10086                      "pll on state mismatch (expected %i, found %i)\n",
10087                      pll->on, active);
10088
10089                 for_each_intel_crtc(dev, crtc) {
10090                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10091                                 enabled_crtcs++;
10092                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10093                                 active_crtcs++;
10094                 }
10095                 WARN(pll->active != active_crtcs,
10096                      "pll active crtcs mismatch (expected %i, found %i)\n",
10097                      pll->active, active_crtcs);
10098                 WARN(pll->refcount != enabled_crtcs,
10099                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10100                      pll->refcount, enabled_crtcs);
10101
10102                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10103                                        sizeof(dpll_hw_state)),
10104                      "pll hw state mismatch\n");
10105         }
10106 }
10107
10108 void
10109 intel_modeset_check_state(struct drm_device *dev)
10110 {
10111         check_connector_state(dev);
10112         check_encoder_state(dev);
10113         check_crtc_state(dev);
10114         check_shared_dpll_state(dev);
10115 }
10116
10117 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10118                                      int dotclock)
10119 {
10120         /*
10121          * FDI already provided one idea for the dotclock.
10122          * Yell if the encoder disagrees.
10123          */
10124         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10125              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10126              pipe_config->adjusted_mode.crtc_clock, dotclock);
10127 }
10128
10129 static int __intel_set_mode(struct drm_crtc *crtc,
10130                             struct drm_display_mode *mode,
10131                             int x, int y, struct drm_framebuffer *fb)
10132 {
10133         struct drm_device *dev = crtc->dev;
10134         struct drm_i915_private *dev_priv = dev->dev_private;
10135         struct drm_display_mode *saved_mode;
10136         struct intel_crtc_config *pipe_config = NULL;
10137         struct intel_crtc *intel_crtc;
10138         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10139         int ret = 0;
10140
10141         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10142         if (!saved_mode)
10143                 return -ENOMEM;
10144
10145         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10146                                      &prepare_pipes, &disable_pipes);
10147
10148         *saved_mode = crtc->mode;
10149
10150         /* Hack: Because we don't (yet) support global modeset on multiple
10151          * crtcs, we don't keep track of the new mode for more than one crtc.
10152          * Hence simply check whether any bit is set in modeset_pipes in all the
10153          * pieces of code that are not yet converted to deal with mutliple crtcs
10154          * changing their mode at the same time. */
10155         if (modeset_pipes) {
10156                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10157                 if (IS_ERR(pipe_config)) {
10158                         ret = PTR_ERR(pipe_config);
10159                         pipe_config = NULL;
10160
10161                         goto out;
10162                 }
10163                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10164                                        "[modeset]");
10165                 to_intel_crtc(crtc)->new_config = pipe_config;
10166         }
10167
10168         /*
10169          * See if the config requires any additional preparation, e.g.
10170          * to adjust global state with pipes off.  We need to do this
10171          * here so we can get the modeset_pipe updated config for the new
10172          * mode set on this crtc.  For other crtcs we need to use the
10173          * adjusted_mode bits in the crtc directly.
10174          */
10175         if (IS_VALLEYVIEW(dev)) {
10176                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10177
10178                 /* may have added more to prepare_pipes than we should */
10179                 prepare_pipes &= ~disable_pipes;
10180         }
10181
10182         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10183                 intel_crtc_disable(&intel_crtc->base);
10184
10185         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10186                 if (intel_crtc->base.enabled)
10187                         dev_priv->display.crtc_disable(&intel_crtc->base);
10188         }
10189
10190         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10191          * to set it here already despite that we pass it down the callchain.
10192          */
10193         if (modeset_pipes) {
10194                 crtc->mode = *mode;
10195                 /* mode_set/enable/disable functions rely on a correct pipe
10196                  * config. */
10197                 to_intel_crtc(crtc)->config = *pipe_config;
10198                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10199
10200                 /*
10201                  * Calculate and store various constants which
10202                  * are later needed by vblank and swap-completion
10203                  * timestamping. They are derived from true hwmode.
10204                  */
10205                 drm_calc_timestamping_constants(crtc,
10206                                                 &pipe_config->adjusted_mode);
10207         }
10208
10209         /* Only after disabling all output pipelines that will be changed can we
10210          * update the the output configuration. */
10211         intel_modeset_update_state(dev, prepare_pipes);
10212
10213         if (dev_priv->display.modeset_global_resources)
10214                 dev_priv->display.modeset_global_resources(dev);
10215
10216         /* Set up the DPLL and any encoders state that needs to adjust or depend
10217          * on the DPLL.
10218          */
10219         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10220                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10221                                                       x, y, fb);
10222                 if (ret)
10223                         goto done;
10224         }
10225
10226         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10227         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10228                 dev_priv->display.crtc_enable(&intel_crtc->base);
10229
10230         /* FIXME: add subpixel order */
10231 done:
10232         if (ret && crtc->enabled)
10233                 crtc->mode = *saved_mode;
10234
10235 out:
10236         kfree(pipe_config);
10237         kfree(saved_mode);
10238         return ret;
10239 }
10240
10241 static int intel_set_mode(struct drm_crtc *crtc,
10242                           struct drm_display_mode *mode,
10243                           int x, int y, struct drm_framebuffer *fb)
10244 {
10245         int ret;
10246
10247         ret = __intel_set_mode(crtc, mode, x, y, fb);
10248
10249         if (ret == 0)
10250                 intel_modeset_check_state(crtc->dev);
10251
10252         return ret;
10253 }
10254
10255 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10256 {
10257         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10258 }
10259
10260 #undef for_each_intel_crtc_masked
10261
10262 static void intel_set_config_free(struct intel_set_config *config)
10263 {
10264         if (!config)
10265                 return;
10266
10267         kfree(config->save_connector_encoders);
10268         kfree(config->save_encoder_crtcs);
10269         kfree(config->save_crtc_enabled);
10270         kfree(config);
10271 }
10272
10273 static int intel_set_config_save_state(struct drm_device *dev,
10274                                        struct intel_set_config *config)
10275 {
10276         struct drm_crtc *crtc;
10277         struct drm_encoder *encoder;
10278         struct drm_connector *connector;
10279         int count;
10280
10281         config->save_crtc_enabled =
10282                 kcalloc(dev->mode_config.num_crtc,
10283                         sizeof(bool), GFP_KERNEL);
10284         if (!config->save_crtc_enabled)
10285                 return -ENOMEM;
10286
10287         config->save_encoder_crtcs =
10288                 kcalloc(dev->mode_config.num_encoder,
10289                         sizeof(struct drm_crtc *), GFP_KERNEL);
10290         if (!config->save_encoder_crtcs)
10291                 return -ENOMEM;
10292
10293         config->save_connector_encoders =
10294                 kcalloc(dev->mode_config.num_connector,
10295                         sizeof(struct drm_encoder *), GFP_KERNEL);
10296         if (!config->save_connector_encoders)
10297                 return -ENOMEM;
10298
10299         /* Copy data. Note that driver private data is not affected.
10300          * Should anything bad happen only the expected state is
10301          * restored, not the drivers personal bookkeeping.
10302          */
10303         count = 0;
10304         for_each_crtc(dev, crtc) {
10305                 config->save_crtc_enabled[count++] = crtc->enabled;
10306         }
10307
10308         count = 0;
10309         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10310                 config->save_encoder_crtcs[count++] = encoder->crtc;
10311         }
10312
10313         count = 0;
10314         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10315                 config->save_connector_encoders[count++] = connector->encoder;
10316         }
10317
10318         return 0;
10319 }
10320
10321 static void intel_set_config_restore_state(struct drm_device *dev,
10322                                            struct intel_set_config *config)
10323 {
10324         struct intel_crtc *crtc;
10325         struct intel_encoder *encoder;
10326         struct intel_connector *connector;
10327         int count;
10328
10329         count = 0;
10330         for_each_intel_crtc(dev, crtc) {
10331                 crtc->new_enabled = config->save_crtc_enabled[count++];
10332
10333                 if (crtc->new_enabled)
10334                         crtc->new_config = &crtc->config;
10335                 else
10336                         crtc->new_config = NULL;
10337         }
10338
10339         count = 0;
10340         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10341                 encoder->new_crtc =
10342                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10343         }
10344
10345         count = 0;
10346         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10347                 connector->new_encoder =
10348                         to_intel_encoder(config->save_connector_encoders[count++]);
10349         }
10350 }
10351
10352 static bool
10353 is_crtc_connector_off(struct drm_mode_set *set)
10354 {
10355         int i;
10356
10357         if (set->num_connectors == 0)
10358                 return false;
10359
10360         if (WARN_ON(set->connectors == NULL))
10361                 return false;
10362
10363         for (i = 0; i < set->num_connectors; i++)
10364                 if (set->connectors[i]->encoder &&
10365                     set->connectors[i]->encoder->crtc == set->crtc &&
10366                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10367                         return true;
10368
10369         return false;
10370 }
10371
10372 static void
10373 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10374                                       struct intel_set_config *config)
10375 {
10376
10377         /* We should be able to check here if the fb has the same properties
10378          * and then just flip_or_move it */
10379         if (is_crtc_connector_off(set)) {
10380                 config->mode_changed = true;
10381         } else if (set->crtc->primary->fb != set->fb) {
10382                 /* If we have no fb then treat it as a full mode set */
10383                 if (set->crtc->primary->fb == NULL) {
10384                         struct intel_crtc *intel_crtc =
10385                                 to_intel_crtc(set->crtc);
10386
10387                         if (intel_crtc->active && i915.fastboot) {
10388                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10389                                 config->fb_changed = true;
10390                         } else {
10391                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10392                                 config->mode_changed = true;
10393                         }
10394                 } else if (set->fb == NULL) {
10395                         config->mode_changed = true;
10396                 } else if (set->fb->pixel_format !=
10397                            set->crtc->primary->fb->pixel_format) {
10398                         config->mode_changed = true;
10399                 } else {
10400                         config->fb_changed = true;
10401                 }
10402         }
10403
10404         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10405                 config->fb_changed = true;
10406
10407         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10408                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10409                 drm_mode_debug_printmodeline(&set->crtc->mode);
10410                 drm_mode_debug_printmodeline(set->mode);
10411                 config->mode_changed = true;
10412         }
10413
10414         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10415                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10416 }
10417
10418 static int
10419 intel_modeset_stage_output_state(struct drm_device *dev,
10420                                  struct drm_mode_set *set,
10421                                  struct intel_set_config *config)
10422 {
10423         struct intel_connector *connector;
10424         struct intel_encoder *encoder;
10425         struct intel_crtc *crtc;
10426         int ro;
10427
10428         /* The upper layers ensure that we either disable a crtc or have a list
10429          * of connectors. For paranoia, double-check this. */
10430         WARN_ON(!set->fb && (set->num_connectors != 0));
10431         WARN_ON(set->fb && (set->num_connectors == 0));
10432
10433         list_for_each_entry(connector, &dev->mode_config.connector_list,
10434                             base.head) {
10435                 /* Otherwise traverse passed in connector list and get encoders
10436                  * for them. */
10437                 for (ro = 0; ro < set->num_connectors; ro++) {
10438                         if (set->connectors[ro] == &connector->base) {
10439                                 connector->new_encoder = connector->encoder;
10440                                 break;
10441                         }
10442                 }
10443
10444                 /* If we disable the crtc, disable all its connectors. Also, if
10445                  * the connector is on the changing crtc but not on the new
10446                  * connector list, disable it. */
10447                 if ((!set->fb || ro == set->num_connectors) &&
10448                     connector->base.encoder &&
10449                     connector->base.encoder->crtc == set->crtc) {
10450                         connector->new_encoder = NULL;
10451
10452                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10453                                 connector->base.base.id,
10454                                 drm_get_connector_name(&connector->base));
10455                 }
10456
10457
10458                 if (&connector->new_encoder->base != connector->base.encoder) {
10459                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10460                         config->mode_changed = true;
10461                 }
10462         }
10463         /* connector->new_encoder is now updated for all connectors. */
10464
10465         /* Update crtc of enabled connectors. */
10466         list_for_each_entry(connector, &dev->mode_config.connector_list,
10467                             base.head) {
10468                 struct drm_crtc *new_crtc;
10469
10470                 if (!connector->new_encoder)
10471                         continue;
10472
10473                 new_crtc = connector->new_encoder->base.crtc;
10474
10475                 for (ro = 0; ro < set->num_connectors; ro++) {
10476                         if (set->connectors[ro] == &connector->base)
10477                                 new_crtc = set->crtc;
10478                 }
10479
10480                 /* Make sure the new CRTC will work with the encoder */
10481                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10482                                          new_crtc)) {
10483                         return -EINVAL;
10484                 }
10485                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10486
10487                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10488                         connector->base.base.id,
10489                         drm_get_connector_name(&connector->base),
10490                         new_crtc->base.id);
10491         }
10492
10493         /* Check for any encoders that needs to be disabled. */
10494         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10495                             base.head) {
10496                 int num_connectors = 0;
10497                 list_for_each_entry(connector,
10498                                     &dev->mode_config.connector_list,
10499                                     base.head) {
10500                         if (connector->new_encoder == encoder) {
10501                                 WARN_ON(!connector->new_encoder->new_crtc);
10502                                 num_connectors++;
10503                         }
10504                 }
10505
10506                 if (num_connectors == 0)
10507                         encoder->new_crtc = NULL;
10508                 else if (num_connectors > 1)
10509                         return -EINVAL;
10510
10511                 /* Only now check for crtc changes so we don't miss encoders
10512                  * that will be disabled. */
10513                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10514                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10515                         config->mode_changed = true;
10516                 }
10517         }
10518         /* Now we've also updated encoder->new_crtc for all encoders. */
10519
10520         for_each_intel_crtc(dev, crtc) {
10521                 crtc->new_enabled = false;
10522
10523                 list_for_each_entry(encoder,
10524                                     &dev->mode_config.encoder_list,
10525                                     base.head) {
10526                         if (encoder->new_crtc == crtc) {
10527                                 crtc->new_enabled = true;
10528                                 break;
10529                         }
10530                 }
10531
10532                 if (crtc->new_enabled != crtc->base.enabled) {
10533                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10534                                       crtc->new_enabled ? "en" : "dis");
10535                         config->mode_changed = true;
10536                 }
10537
10538                 if (crtc->new_enabled)
10539                         crtc->new_config = &crtc->config;
10540                 else
10541                         crtc->new_config = NULL;
10542         }
10543
10544         return 0;
10545 }
10546
10547 static void disable_crtc_nofb(struct intel_crtc *crtc)
10548 {
10549         struct drm_device *dev = crtc->base.dev;
10550         struct intel_encoder *encoder;
10551         struct intel_connector *connector;
10552
10553         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10554                       pipe_name(crtc->pipe));
10555
10556         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10557                 if (connector->new_encoder &&
10558                     connector->new_encoder->new_crtc == crtc)
10559                         connector->new_encoder = NULL;
10560         }
10561
10562         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10563                 if (encoder->new_crtc == crtc)
10564                         encoder->new_crtc = NULL;
10565         }
10566
10567         crtc->new_enabled = false;
10568         crtc->new_config = NULL;
10569 }
10570
10571 static int intel_crtc_set_config(struct drm_mode_set *set)
10572 {
10573         struct drm_device *dev;
10574         struct drm_mode_set save_set;
10575         struct intel_set_config *config;
10576         int ret;
10577
10578         BUG_ON(!set);
10579         BUG_ON(!set->crtc);
10580         BUG_ON(!set->crtc->helper_private);
10581
10582         /* Enforce sane interface api - has been abused by the fb helper. */
10583         BUG_ON(!set->mode && set->fb);
10584         BUG_ON(set->fb && set->num_connectors == 0);
10585
10586         if (set->fb) {
10587                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10588                                 set->crtc->base.id, set->fb->base.id,
10589                                 (int)set->num_connectors, set->x, set->y);
10590         } else {
10591                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10592         }
10593
10594         dev = set->crtc->dev;
10595
10596         ret = -ENOMEM;
10597         config = kzalloc(sizeof(*config), GFP_KERNEL);
10598         if (!config)
10599                 goto out_config;
10600
10601         ret = intel_set_config_save_state(dev, config);
10602         if (ret)
10603                 goto out_config;
10604
10605         save_set.crtc = set->crtc;
10606         save_set.mode = &set->crtc->mode;
10607         save_set.x = set->crtc->x;
10608         save_set.y = set->crtc->y;
10609         save_set.fb = set->crtc->primary->fb;
10610
10611         /* Compute whether we need a full modeset, only an fb base update or no
10612          * change at all. In the future we might also check whether only the
10613          * mode changed, e.g. for LVDS where we only change the panel fitter in
10614          * such cases. */
10615         intel_set_config_compute_mode_changes(set, config);
10616
10617         ret = intel_modeset_stage_output_state(dev, set, config);
10618         if (ret)
10619                 goto fail;
10620
10621         if (config->mode_changed) {
10622                 ret = intel_set_mode(set->crtc, set->mode,
10623                                      set->x, set->y, set->fb);
10624         } else if (config->fb_changed) {
10625                 intel_crtc_wait_for_pending_flips(set->crtc);
10626
10627                 ret = intel_pipe_set_base(set->crtc,
10628                                           set->x, set->y, set->fb);
10629                 /*
10630                  * In the fastboot case this may be our only check of the
10631                  * state after boot.  It would be better to only do it on
10632                  * the first update, but we don't have a nice way of doing that
10633                  * (and really, set_config isn't used much for high freq page
10634                  * flipping, so increasing its cost here shouldn't be a big
10635                  * deal).
10636                  */
10637                 if (i915.fastboot && ret == 0)
10638                         intel_modeset_check_state(set->crtc->dev);
10639         }
10640
10641         if (ret) {
10642                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10643                               set->crtc->base.id, ret);
10644 fail:
10645                 intel_set_config_restore_state(dev, config);
10646
10647                 /*
10648                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10649                  * force the pipe off to avoid oopsing in the modeset code
10650                  * due to fb==NULL. This should only happen during boot since
10651                  * we don't yet reconstruct the FB from the hardware state.
10652                  */
10653                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10654                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10655
10656                 /* Try to restore the config */
10657                 if (config->mode_changed &&
10658                     intel_set_mode(save_set.crtc, save_set.mode,
10659                                    save_set.x, save_set.y, save_set.fb))
10660                         DRM_ERROR("failed to restore config after modeset failure\n");
10661         }
10662
10663 out_config:
10664         intel_set_config_free(config);
10665         return ret;
10666 }
10667
10668 static const struct drm_crtc_funcs intel_crtc_funcs = {
10669         .cursor_set = intel_crtc_cursor_set,
10670         .cursor_move = intel_crtc_cursor_move,
10671         .gamma_set = intel_crtc_gamma_set,
10672         .set_config = intel_crtc_set_config,
10673         .destroy = intel_crtc_destroy,
10674         .page_flip = intel_crtc_page_flip,
10675 };
10676
10677 static void intel_cpu_pll_init(struct drm_device *dev)
10678 {
10679         if (HAS_DDI(dev))
10680                 intel_ddi_pll_init(dev);
10681 }
10682
10683 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10684                                       struct intel_shared_dpll *pll,
10685                                       struct intel_dpll_hw_state *hw_state)
10686 {
10687         uint32_t val;
10688
10689         val = I915_READ(PCH_DPLL(pll->id));
10690         hw_state->dpll = val;
10691         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10692         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10693
10694         return val & DPLL_VCO_ENABLE;
10695 }
10696
10697 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10698                                   struct intel_shared_dpll *pll)
10699 {
10700         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10701         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10702 }
10703
10704 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10705                                 struct intel_shared_dpll *pll)
10706 {
10707         /* PCH refclock must be enabled first */
10708         ibx_assert_pch_refclk_enabled(dev_priv);
10709
10710         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10711
10712         /* Wait for the clocks to stabilize. */
10713         POSTING_READ(PCH_DPLL(pll->id));
10714         udelay(150);
10715
10716         /* The pixel multiplier can only be updated once the
10717          * DPLL is enabled and the clocks are stable.
10718          *
10719          * So write it again.
10720          */
10721         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10722         POSTING_READ(PCH_DPLL(pll->id));
10723         udelay(200);
10724 }
10725
10726 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10727                                  struct intel_shared_dpll *pll)
10728 {
10729         struct drm_device *dev = dev_priv->dev;
10730         struct intel_crtc *crtc;
10731
10732         /* Make sure no transcoder isn't still depending on us. */
10733         for_each_intel_crtc(dev, crtc) {
10734                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10735                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10736         }
10737
10738         I915_WRITE(PCH_DPLL(pll->id), 0);
10739         POSTING_READ(PCH_DPLL(pll->id));
10740         udelay(200);
10741 }
10742
10743 static char *ibx_pch_dpll_names[] = {
10744         "PCH DPLL A",
10745         "PCH DPLL B",
10746 };
10747
10748 static void ibx_pch_dpll_init(struct drm_device *dev)
10749 {
10750         struct drm_i915_private *dev_priv = dev->dev_private;
10751         int i;
10752
10753         dev_priv->num_shared_dpll = 2;
10754
10755         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10756                 dev_priv->shared_dplls[i].id = i;
10757                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10758                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10759                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10760                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10761                 dev_priv->shared_dplls[i].get_hw_state =
10762                         ibx_pch_dpll_get_hw_state;
10763         }
10764 }
10765
10766 static void intel_shared_dpll_init(struct drm_device *dev)
10767 {
10768         struct drm_i915_private *dev_priv = dev->dev_private;
10769
10770         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10771                 ibx_pch_dpll_init(dev);
10772         else
10773                 dev_priv->num_shared_dpll = 0;
10774
10775         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10776 }
10777
10778 static void intel_crtc_init(struct drm_device *dev, int pipe)
10779 {
10780         struct drm_i915_private *dev_priv = dev->dev_private;
10781         struct intel_crtc *intel_crtc;
10782         int i;
10783
10784         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10785         if (intel_crtc == NULL)
10786                 return;
10787
10788         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10789
10790         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10791         for (i = 0; i < 256; i++) {
10792                 intel_crtc->lut_r[i] = i;
10793                 intel_crtc->lut_g[i] = i;
10794                 intel_crtc->lut_b[i] = i;
10795         }
10796
10797         /*
10798          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10799          * is hooked to plane B. Hence we want plane A feeding pipe B.
10800          */
10801         intel_crtc->pipe = pipe;
10802         intel_crtc->plane = pipe;
10803         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10804                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10805                 intel_crtc->plane = !pipe;
10806         }
10807
10808         init_waitqueue_head(&intel_crtc->vbl_wait);
10809
10810         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10811                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10812         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10813         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10814
10815         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10816 }
10817
10818 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10819 {
10820         struct drm_encoder *encoder = connector->base.encoder;
10821
10822         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10823
10824         if (!encoder)
10825                 return INVALID_PIPE;
10826
10827         return to_intel_crtc(encoder->crtc)->pipe;
10828 }
10829
10830 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10831                                 struct drm_file *file)
10832 {
10833         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10834         struct drm_mode_object *drmmode_obj;
10835         struct intel_crtc *crtc;
10836
10837         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10838                 return -ENODEV;
10839
10840         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10841                         DRM_MODE_OBJECT_CRTC);
10842
10843         if (!drmmode_obj) {
10844                 DRM_ERROR("no such CRTC id\n");
10845                 return -ENOENT;
10846         }
10847
10848         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10849         pipe_from_crtc_id->pipe = crtc->pipe;
10850
10851         return 0;
10852 }
10853
10854 static int intel_encoder_clones(struct intel_encoder *encoder)
10855 {
10856         struct drm_device *dev = encoder->base.dev;
10857         struct intel_encoder *source_encoder;
10858         int index_mask = 0;
10859         int entry = 0;
10860
10861         list_for_each_entry(source_encoder,
10862                             &dev->mode_config.encoder_list, base.head) {
10863                 if (encoders_cloneable(encoder, source_encoder))
10864                         index_mask |= (1 << entry);
10865
10866                 entry++;
10867         }
10868
10869         return index_mask;
10870 }
10871
10872 static bool has_edp_a(struct drm_device *dev)
10873 {
10874         struct drm_i915_private *dev_priv = dev->dev_private;
10875
10876         if (!IS_MOBILE(dev))
10877                 return false;
10878
10879         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10880                 return false;
10881
10882         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10883                 return false;
10884
10885         return true;
10886 }
10887
10888 const char *intel_output_name(int output)
10889 {
10890         static const char *names[] = {
10891                 [INTEL_OUTPUT_UNUSED] = "Unused",
10892                 [INTEL_OUTPUT_ANALOG] = "Analog",
10893                 [INTEL_OUTPUT_DVO] = "DVO",
10894                 [INTEL_OUTPUT_SDVO] = "SDVO",
10895                 [INTEL_OUTPUT_LVDS] = "LVDS",
10896                 [INTEL_OUTPUT_TVOUT] = "TV",
10897                 [INTEL_OUTPUT_HDMI] = "HDMI",
10898                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10899                 [INTEL_OUTPUT_EDP] = "eDP",
10900                 [INTEL_OUTPUT_DSI] = "DSI",
10901                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10902         };
10903
10904         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10905                 return "Invalid";
10906
10907         return names[output];
10908 }
10909
10910 static void intel_setup_outputs(struct drm_device *dev)
10911 {
10912         struct drm_i915_private *dev_priv = dev->dev_private;
10913         struct intel_encoder *encoder;
10914         bool dpd_is_edp = false;
10915
10916         intel_lvds_init(dev);
10917
10918         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev))
10919                 intel_crt_init(dev);
10920
10921         if (HAS_DDI(dev)) {
10922                 int found;
10923
10924                 /* Haswell uses DDI functions to detect digital outputs */
10925                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10926                 /* DDI A only supports eDP */
10927                 if (found)
10928                         intel_ddi_init(dev, PORT_A);
10929
10930                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10931                  * register */
10932                 found = I915_READ(SFUSE_STRAP);
10933
10934                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10935                         intel_ddi_init(dev, PORT_B);
10936                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10937                         intel_ddi_init(dev, PORT_C);
10938                 if (found & SFUSE_STRAP_DDID_DETECTED)
10939                         intel_ddi_init(dev, PORT_D);
10940         } else if (HAS_PCH_SPLIT(dev)) {
10941                 int found;
10942                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10943
10944                 if (has_edp_a(dev))
10945                         intel_dp_init(dev, DP_A, PORT_A);
10946
10947                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10948                         /* PCH SDVOB multiplex with HDMIB */
10949                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10950                         if (!found)
10951                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10952                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10953                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10954                 }
10955
10956                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10957                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10958
10959                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10960                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10961
10962                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10963                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10964
10965                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10966                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10967         } else if (IS_VALLEYVIEW(dev)) {
10968                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10969                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10970                                         PORT_B);
10971                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10972                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10973                 }
10974
10975                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10976                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10977                                         PORT_C);
10978                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10979                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10980                 }
10981
10982                 intel_dsi_init(dev);
10983         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10984                 bool found = false;
10985
10986                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10987                         DRM_DEBUG_KMS("probing SDVOB\n");
10988                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10989                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10990                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10991                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10992                         }
10993
10994                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10995                                 intel_dp_init(dev, DP_B, PORT_B);
10996                 }
10997
10998                 /* Before G4X SDVOC doesn't have its own detect register */
10999
11000                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11001                         DRM_DEBUG_KMS("probing SDVOC\n");
11002                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11003                 }
11004
11005                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11006
11007                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11008                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11009                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11010                         }
11011                         if (SUPPORTS_INTEGRATED_DP(dev))
11012                                 intel_dp_init(dev, DP_C, PORT_C);
11013                 }
11014
11015                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11016                     (I915_READ(DP_D) & DP_DETECTED))
11017                         intel_dp_init(dev, DP_D, PORT_D);
11018         } else if (IS_GEN2(dev))
11019                 intel_dvo_init(dev);
11020
11021         if (SUPPORTS_TV(dev))
11022                 intel_tv_init(dev);
11023
11024         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11025                 encoder->base.possible_crtcs = encoder->crtc_mask;
11026                 encoder->base.possible_clones =
11027                         intel_encoder_clones(encoder);
11028         }
11029
11030         intel_init_pch_refclk(dev);
11031
11032         drm_helper_move_panel_connectors_to_head(dev);
11033 }
11034
11035 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11036 {
11037         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11038
11039         drm_framebuffer_cleanup(fb);
11040         WARN_ON(!intel_fb->obj->framebuffer_references--);
11041         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11042         kfree(intel_fb);
11043 }
11044
11045 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11046                                                 struct drm_file *file,
11047                                                 unsigned int *handle)
11048 {
11049         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11050         struct drm_i915_gem_object *obj = intel_fb->obj;
11051
11052         return drm_gem_handle_create(file, &obj->base, handle);
11053 }
11054
11055 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11056         .destroy = intel_user_framebuffer_destroy,
11057         .create_handle = intel_user_framebuffer_create_handle,
11058 };
11059
11060 static int intel_framebuffer_init(struct drm_device *dev,
11061                                   struct intel_framebuffer *intel_fb,
11062                                   struct drm_mode_fb_cmd2 *mode_cmd,
11063                                   struct drm_i915_gem_object *obj)
11064 {
11065         int aligned_height;
11066         int pitch_limit;
11067         int ret;
11068
11069         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11070
11071         if (obj->tiling_mode == I915_TILING_Y) {
11072                 DRM_DEBUG("hardware does not support tiling Y\n");
11073                 return -EINVAL;
11074         }
11075
11076         if (mode_cmd->pitches[0] & 63) {
11077                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11078                           mode_cmd->pitches[0]);
11079                 return -EINVAL;
11080         }
11081
11082         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11083                 pitch_limit = 32*1024;
11084         } else if (INTEL_INFO(dev)->gen >= 4) {
11085                 if (obj->tiling_mode)
11086                         pitch_limit = 16*1024;
11087                 else
11088                         pitch_limit = 32*1024;
11089         } else if (INTEL_INFO(dev)->gen >= 3) {
11090                 if (obj->tiling_mode)
11091                         pitch_limit = 8*1024;
11092                 else
11093                         pitch_limit = 16*1024;
11094         } else
11095                 /* XXX DSPC is limited to 4k tiled */
11096                 pitch_limit = 8*1024;
11097
11098         if (mode_cmd->pitches[0] > pitch_limit) {
11099                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11100                           obj->tiling_mode ? "tiled" : "linear",
11101                           mode_cmd->pitches[0], pitch_limit);
11102                 return -EINVAL;
11103         }
11104
11105         if (obj->tiling_mode != I915_TILING_NONE &&
11106             mode_cmd->pitches[0] != obj->stride) {
11107                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11108                           mode_cmd->pitches[0], obj->stride);
11109                 return -EINVAL;
11110         }
11111
11112         /* Reject formats not supported by any plane early. */
11113         switch (mode_cmd->pixel_format) {
11114         case DRM_FORMAT_C8:
11115         case DRM_FORMAT_RGB565:
11116         case DRM_FORMAT_XRGB8888:
11117         case DRM_FORMAT_ARGB8888:
11118                 break;
11119         case DRM_FORMAT_XRGB1555:
11120         case DRM_FORMAT_ARGB1555:
11121                 if (INTEL_INFO(dev)->gen > 3) {
11122                         DRM_DEBUG("unsupported pixel format: %s\n",
11123                                   drm_get_format_name(mode_cmd->pixel_format));
11124                         return -EINVAL;
11125                 }
11126                 break;
11127         case DRM_FORMAT_XBGR8888:
11128         case DRM_FORMAT_ABGR8888:
11129         case DRM_FORMAT_XRGB2101010:
11130         case DRM_FORMAT_ARGB2101010:
11131         case DRM_FORMAT_XBGR2101010:
11132         case DRM_FORMAT_ABGR2101010:
11133                 if (INTEL_INFO(dev)->gen < 4) {
11134                         DRM_DEBUG("unsupported pixel format: %s\n",
11135                                   drm_get_format_name(mode_cmd->pixel_format));
11136                         return -EINVAL;
11137                 }
11138                 break;
11139         case DRM_FORMAT_YUYV:
11140         case DRM_FORMAT_UYVY:
11141         case DRM_FORMAT_YVYU:
11142         case DRM_FORMAT_VYUY:
11143                 if (INTEL_INFO(dev)->gen < 5) {
11144                         DRM_DEBUG("unsupported pixel format: %s\n",
11145                                   drm_get_format_name(mode_cmd->pixel_format));
11146                         return -EINVAL;
11147                 }
11148                 break;
11149         default:
11150                 DRM_DEBUG("unsupported pixel format: %s\n",
11151                           drm_get_format_name(mode_cmd->pixel_format));
11152                 return -EINVAL;
11153         }
11154
11155         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11156         if (mode_cmd->offsets[0] != 0)
11157                 return -EINVAL;
11158
11159         aligned_height = intel_align_height(dev, mode_cmd->height,
11160                                             obj->tiling_mode);
11161         /* FIXME drm helper for size checks (especially planar formats)? */
11162         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11163                 return -EINVAL;
11164
11165         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11166         intel_fb->obj = obj;
11167         intel_fb->obj->framebuffer_references++;
11168
11169         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11170         if (ret) {
11171                 DRM_ERROR("framebuffer init failed %d\n", ret);
11172                 return ret;
11173         }
11174
11175         return 0;
11176 }
11177
11178 static struct drm_framebuffer *
11179 intel_user_framebuffer_create(struct drm_device *dev,
11180                               struct drm_file *filp,
11181                               struct drm_mode_fb_cmd2 *mode_cmd)
11182 {
11183         struct drm_i915_gem_object *obj;
11184
11185         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11186                                                 mode_cmd->handles[0]));
11187         if (&obj->base == NULL)
11188                 return ERR_PTR(-ENOENT);
11189
11190         return intel_framebuffer_create(dev, mode_cmd, obj);
11191 }
11192
11193 #ifndef CONFIG_DRM_I915_FBDEV
11194 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11195 {
11196 }
11197 #endif
11198
11199 static const struct drm_mode_config_funcs intel_mode_funcs = {
11200         .fb_create = intel_user_framebuffer_create,
11201         .output_poll_changed = intel_fbdev_output_poll_changed,
11202 };
11203
11204 /* Set up chip specific display functions */
11205 static void intel_init_display(struct drm_device *dev)
11206 {
11207         struct drm_i915_private *dev_priv = dev->dev_private;
11208
11209         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11210                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11211         else if (IS_CHERRYVIEW(dev))
11212                 dev_priv->display.find_dpll = chv_find_best_dpll;
11213         else if (IS_VALLEYVIEW(dev))
11214                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11215         else if (IS_PINEVIEW(dev))
11216                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11217         else
11218                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11219
11220         if (HAS_DDI(dev)) {
11221                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11222                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11223                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11224                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11225                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11226                 dev_priv->display.off = haswell_crtc_off;
11227                 dev_priv->display.update_primary_plane =
11228                         ironlake_update_primary_plane;
11229         } else if (HAS_PCH_SPLIT(dev)) {
11230                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11231                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11232                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11233                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11234                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11235                 dev_priv->display.off = ironlake_crtc_off;
11236                 dev_priv->display.update_primary_plane =
11237                         ironlake_update_primary_plane;
11238         } else if (IS_VALLEYVIEW(dev)) {
11239                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11240                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11241                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11242                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11243                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11244                 dev_priv->display.off = i9xx_crtc_off;
11245                 dev_priv->display.update_primary_plane =
11246                         i9xx_update_primary_plane;
11247         } else {
11248                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11249                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11250                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11251                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11252                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11253                 dev_priv->display.off = i9xx_crtc_off;
11254                 dev_priv->display.update_primary_plane =
11255                         i9xx_update_primary_plane;
11256         }
11257
11258         /* Returns the core display clock speed */
11259         if (IS_VALLEYVIEW(dev))
11260                 dev_priv->display.get_display_clock_speed =
11261                         valleyview_get_display_clock_speed;
11262         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11263                 dev_priv->display.get_display_clock_speed =
11264                         i945_get_display_clock_speed;
11265         else if (IS_I915G(dev))
11266                 dev_priv->display.get_display_clock_speed =
11267                         i915_get_display_clock_speed;
11268         else if (IS_I945GM(dev) || IS_845G(dev))
11269                 dev_priv->display.get_display_clock_speed =
11270                         i9xx_misc_get_display_clock_speed;
11271         else if (IS_PINEVIEW(dev))
11272                 dev_priv->display.get_display_clock_speed =
11273                         pnv_get_display_clock_speed;
11274         else if (IS_I915GM(dev))
11275                 dev_priv->display.get_display_clock_speed =
11276                         i915gm_get_display_clock_speed;
11277         else if (IS_I865G(dev))
11278                 dev_priv->display.get_display_clock_speed =
11279                         i865_get_display_clock_speed;
11280         else if (IS_I85X(dev))
11281                 dev_priv->display.get_display_clock_speed =
11282                         i855_get_display_clock_speed;
11283         else /* 852, 830 */
11284                 dev_priv->display.get_display_clock_speed =
11285                         i830_get_display_clock_speed;
11286
11287         if (HAS_PCH_SPLIT(dev)) {
11288                 if (IS_GEN5(dev)) {
11289                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11290                         dev_priv->display.write_eld = ironlake_write_eld;
11291                 } else if (IS_GEN6(dev)) {
11292                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11293                         dev_priv->display.write_eld = ironlake_write_eld;
11294                         dev_priv->display.modeset_global_resources =
11295                                 snb_modeset_global_resources;
11296                 } else if (IS_IVYBRIDGE(dev)) {
11297                         /* FIXME: detect B0+ stepping and use auto training */
11298                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11299                         dev_priv->display.write_eld = ironlake_write_eld;
11300                         dev_priv->display.modeset_global_resources =
11301                                 ivb_modeset_global_resources;
11302                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11303                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11304                         dev_priv->display.write_eld = haswell_write_eld;
11305                         dev_priv->display.modeset_global_resources =
11306                                 haswell_modeset_global_resources;
11307                 }
11308         } else if (IS_G4X(dev)) {
11309                 dev_priv->display.write_eld = g4x_write_eld;
11310         } else if (IS_VALLEYVIEW(dev)) {
11311                 dev_priv->display.modeset_global_resources =
11312                         valleyview_modeset_global_resources;
11313                 dev_priv->display.write_eld = ironlake_write_eld;
11314         }
11315
11316         /* Default just returns -ENODEV to indicate unsupported */
11317         dev_priv->display.queue_flip = intel_default_queue_flip;
11318
11319         switch (INTEL_INFO(dev)->gen) {
11320         case 2:
11321                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11322                 break;
11323
11324         case 3:
11325                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11326                 break;
11327
11328         case 4:
11329         case 5:
11330                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11331                 break;
11332
11333         case 6:
11334                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11335                 break;
11336         case 7:
11337         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11338                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11339                 break;
11340         }
11341
11342         intel_panel_init_backlight_funcs(dev);
11343 }
11344
11345 /*
11346  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11347  * resume, or other times.  This quirk makes sure that's the case for
11348  * affected systems.
11349  */
11350 static void quirk_pipea_force(struct drm_device *dev)
11351 {
11352         struct drm_i915_private *dev_priv = dev->dev_private;
11353
11354         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11355         DRM_INFO("applying pipe a force quirk\n");
11356 }
11357
11358 /*
11359  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11360  */
11361 static void quirk_ssc_force_disable(struct drm_device *dev)
11362 {
11363         struct drm_i915_private *dev_priv = dev->dev_private;
11364         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11365         DRM_INFO("applying lvds SSC disable quirk\n");
11366 }
11367
11368 /*
11369  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11370  * brightness value
11371  */
11372 static void quirk_invert_brightness(struct drm_device *dev)
11373 {
11374         struct drm_i915_private *dev_priv = dev->dev_private;
11375         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11376         DRM_INFO("applying inverted panel brightness quirk\n");
11377 }
11378
11379 struct intel_quirk {
11380         int device;
11381         int subsystem_vendor;
11382         int subsystem_device;
11383         void (*hook)(struct drm_device *dev);
11384 };
11385
11386 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11387 struct intel_dmi_quirk {
11388         void (*hook)(struct drm_device *dev);
11389         const struct dmi_system_id (*dmi_id_list)[];
11390 };
11391
11392 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11393 {
11394         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11395         return 1;
11396 }
11397
11398 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11399         {
11400                 .dmi_id_list = &(const struct dmi_system_id[]) {
11401                         {
11402                                 .callback = intel_dmi_reverse_brightness,
11403                                 .ident = "NCR Corporation",
11404                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11405                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11406                                 },
11407                         },
11408                         { }  /* terminating entry */
11409                 },
11410                 .hook = quirk_invert_brightness,
11411         },
11412 };
11413
11414 static struct intel_quirk intel_quirks[] = {
11415         /* HP Mini needs pipe A force quirk (LP: #322104) */
11416         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11417
11418         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11419         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11420
11421         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11422         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11423
11424         /* 830 needs to leave pipe A & dpll A up */
11425         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11426
11427         /* Lenovo U160 cannot use SSC on LVDS */
11428         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11429
11430         /* Sony Vaio Y cannot use SSC on LVDS */
11431         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11432
11433         /* Acer Aspire 5734Z must invert backlight brightness */
11434         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11435
11436         /* Acer/eMachines G725 */
11437         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11438
11439         /* Acer/eMachines e725 */
11440         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11441
11442         /* Acer/Packard Bell NCL20 */
11443         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11444
11445         /* Acer Aspire 4736Z */
11446         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11447
11448         /* Acer Aspire 5336 */
11449         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11450 };
11451
11452 static void intel_init_quirks(struct drm_device *dev)
11453 {
11454         struct pci_dev *d = dev->pdev;
11455         int i;
11456
11457         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11458                 struct intel_quirk *q = &intel_quirks[i];
11459
11460                 if (d->device == q->device &&
11461                     (d->subsystem_vendor == q->subsystem_vendor ||
11462                      q->subsystem_vendor == PCI_ANY_ID) &&
11463                     (d->subsystem_device == q->subsystem_device ||
11464                      q->subsystem_device == PCI_ANY_ID))
11465                         q->hook(dev);
11466         }
11467         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11468                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11469                         intel_dmi_quirks[i].hook(dev);
11470         }
11471 }
11472
11473 /* Disable the VGA plane that we never use */
11474 static void i915_disable_vga(struct drm_device *dev)
11475 {
11476         struct drm_i915_private *dev_priv = dev->dev_private;
11477         u8 sr1;
11478         u32 vga_reg = i915_vgacntrl_reg(dev);
11479
11480         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11481         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11482         outb(SR01, VGA_SR_INDEX);
11483         sr1 = inb(VGA_SR_DATA);
11484         outb(sr1 | 1<<5, VGA_SR_DATA);
11485         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11486         udelay(300);
11487
11488         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11489         POSTING_READ(vga_reg);
11490 }
11491
11492 void intel_modeset_init_hw(struct drm_device *dev)
11493 {
11494         intel_prepare_ddi(dev);
11495
11496         intel_init_clock_gating(dev);
11497
11498         intel_reset_dpio(dev);
11499
11500         intel_enable_gt_powersave(dev);
11501 }
11502
11503 void intel_modeset_suspend_hw(struct drm_device *dev)
11504 {
11505         intel_suspend_hw(dev);
11506 }
11507
11508 void intel_modeset_init(struct drm_device *dev)
11509 {
11510         struct drm_i915_private *dev_priv = dev->dev_private;
11511         int sprite, ret;
11512         enum pipe pipe;
11513         struct intel_crtc *crtc;
11514
11515         drm_mode_config_init(dev);
11516
11517         dev->mode_config.min_width = 0;
11518         dev->mode_config.min_height = 0;
11519
11520         dev->mode_config.preferred_depth = 24;
11521         dev->mode_config.prefer_shadow = 1;
11522
11523         dev->mode_config.funcs = &intel_mode_funcs;
11524
11525         intel_init_quirks(dev);
11526
11527         intel_init_pm(dev);
11528
11529         if (INTEL_INFO(dev)->num_pipes == 0)
11530                 return;
11531
11532         intel_init_display(dev);
11533
11534         if (IS_GEN2(dev)) {
11535                 dev->mode_config.max_width = 2048;
11536                 dev->mode_config.max_height = 2048;
11537         } else if (IS_GEN3(dev)) {
11538                 dev->mode_config.max_width = 4096;
11539                 dev->mode_config.max_height = 4096;
11540         } else {
11541                 dev->mode_config.max_width = 8192;
11542                 dev->mode_config.max_height = 8192;
11543         }
11544
11545         if (IS_GEN2(dev)) {
11546                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11547                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11548         } else {
11549                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11550                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11551         }
11552
11553         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11554
11555         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11556                       INTEL_INFO(dev)->num_pipes,
11557                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11558
11559         for_each_pipe(pipe) {
11560                 intel_crtc_init(dev, pipe);
11561                 for_each_sprite(pipe, sprite) {
11562                         ret = intel_plane_init(dev, pipe, sprite);
11563                         if (ret)
11564                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11565                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11566                 }
11567         }
11568
11569         intel_init_dpio(dev);
11570         intel_reset_dpio(dev);
11571
11572         intel_cpu_pll_init(dev);
11573         intel_shared_dpll_init(dev);
11574
11575         /* Just disable it once at startup */
11576         i915_disable_vga(dev);
11577         intel_setup_outputs(dev);
11578
11579         /* Just in case the BIOS is doing something questionable. */
11580         intel_disable_fbc(dev);
11581
11582         mutex_lock(&dev->mode_config.mutex);
11583         intel_modeset_setup_hw_state(dev, false);
11584         mutex_unlock(&dev->mode_config.mutex);
11585
11586         for_each_intel_crtc(dev, crtc) {
11587                 if (!crtc->active)
11588                         continue;
11589
11590                 /*
11591                  * Note that reserving the BIOS fb up front prevents us
11592                  * from stuffing other stolen allocations like the ring
11593                  * on top.  This prevents some ugliness at boot time, and
11594                  * can even allow for smooth boot transitions if the BIOS
11595                  * fb is large enough for the active pipe configuration.
11596                  */
11597                 if (dev_priv->display.get_plane_config) {
11598                         dev_priv->display.get_plane_config(crtc,
11599                                                            &crtc->plane_config);
11600                         /*
11601                          * If the fb is shared between multiple heads, we'll
11602                          * just get the first one.
11603                          */
11604                         intel_find_plane_obj(crtc, &crtc->plane_config);
11605                 }
11606         }
11607 }
11608
11609 static void
11610 intel_connector_break_all_links(struct intel_connector *connector)
11611 {
11612         connector->base.dpms = DRM_MODE_DPMS_OFF;
11613         connector->base.encoder = NULL;
11614         connector->encoder->connectors_active = false;
11615         connector->encoder->base.crtc = NULL;
11616 }
11617
11618 static void intel_enable_pipe_a(struct drm_device *dev)
11619 {
11620         struct intel_connector *connector;
11621         struct drm_connector *crt = NULL;
11622         struct intel_load_detect_pipe load_detect_temp;
11623
11624         /* We can't just switch on the pipe A, we need to set things up with a
11625          * proper mode and output configuration. As a gross hack, enable pipe A
11626          * by enabling the load detect pipe once. */
11627         list_for_each_entry(connector,
11628                             &dev->mode_config.connector_list,
11629                             base.head) {
11630                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11631                         crt = &connector->base;
11632                         break;
11633                 }
11634         }
11635
11636         if (!crt)
11637                 return;
11638
11639         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11640                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11641
11642
11643 }
11644
11645 static bool
11646 intel_check_plane_mapping(struct intel_crtc *crtc)
11647 {
11648         struct drm_device *dev = crtc->base.dev;
11649         struct drm_i915_private *dev_priv = dev->dev_private;
11650         u32 reg, val;
11651
11652         if (INTEL_INFO(dev)->num_pipes == 1)
11653                 return true;
11654
11655         reg = DSPCNTR(!crtc->plane);
11656         val = I915_READ(reg);
11657
11658         if ((val & DISPLAY_PLANE_ENABLE) &&
11659             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11660                 return false;
11661
11662         return true;
11663 }
11664
11665 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11666 {
11667         struct drm_device *dev = crtc->base.dev;
11668         struct drm_i915_private *dev_priv = dev->dev_private;
11669         u32 reg;
11670
11671         /* Clear any frame start delays used for debugging left by the BIOS */
11672         reg = PIPECONF(crtc->config.cpu_transcoder);
11673         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11674
11675         /* We need to sanitize the plane -> pipe mapping first because this will
11676          * disable the crtc (and hence change the state) if it is wrong. Note
11677          * that gen4+ has a fixed plane -> pipe mapping.  */
11678         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11679                 struct intel_connector *connector;
11680                 bool plane;
11681
11682                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11683                               crtc->base.base.id);
11684
11685                 /* Pipe has the wrong plane attached and the plane is active.
11686                  * Temporarily change the plane mapping and disable everything
11687                  * ...  */
11688                 plane = crtc->plane;
11689                 crtc->plane = !plane;
11690                 dev_priv->display.crtc_disable(&crtc->base);
11691                 crtc->plane = plane;
11692
11693                 /* ... and break all links. */
11694                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11695                                     base.head) {
11696                         if (connector->encoder->base.crtc != &crtc->base)
11697                                 continue;
11698
11699                         intel_connector_break_all_links(connector);
11700                 }
11701
11702                 WARN_ON(crtc->active);
11703                 crtc->base.enabled = false;
11704         }
11705
11706         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11707             crtc->pipe == PIPE_A && !crtc->active) {
11708                 /* BIOS forgot to enable pipe A, this mostly happens after
11709                  * resume. Force-enable the pipe to fix this, the update_dpms
11710                  * call below we restore the pipe to the right state, but leave
11711                  * the required bits on. */
11712                 intel_enable_pipe_a(dev);
11713         }
11714
11715         /* Adjust the state of the output pipe according to whether we
11716          * have active connectors/encoders. */
11717         intel_crtc_update_dpms(&crtc->base);
11718
11719         if (crtc->active != crtc->base.enabled) {
11720                 struct intel_encoder *encoder;
11721
11722                 /* This can happen either due to bugs in the get_hw_state
11723                  * functions or because the pipe is force-enabled due to the
11724                  * pipe A quirk. */
11725                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11726                               crtc->base.base.id,
11727                               crtc->base.enabled ? "enabled" : "disabled",
11728                               crtc->active ? "enabled" : "disabled");
11729
11730                 crtc->base.enabled = crtc->active;
11731
11732                 /* Because we only establish the connector -> encoder ->
11733                  * crtc links if something is active, this means the
11734                  * crtc is now deactivated. Break the links. connector
11735                  * -> encoder links are only establish when things are
11736                  *  actually up, hence no need to break them. */
11737                 WARN_ON(crtc->active);
11738
11739                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11740                         WARN_ON(encoder->connectors_active);
11741                         encoder->base.crtc = NULL;
11742                 }
11743         }
11744         if (crtc->active) {
11745                 /*
11746                  * We start out with underrun reporting disabled to avoid races.
11747                  * For correct bookkeeping mark this on active crtcs.
11748                  *
11749                  * No protection against concurrent access is required - at
11750                  * worst a fifo underrun happens which also sets this to false.
11751                  */
11752                 crtc->cpu_fifo_underrun_disabled = true;
11753                 crtc->pch_fifo_underrun_disabled = true;
11754         }
11755 }
11756
11757 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11758 {
11759         struct intel_connector *connector;
11760         struct drm_device *dev = encoder->base.dev;
11761
11762         /* We need to check both for a crtc link (meaning that the
11763          * encoder is active and trying to read from a pipe) and the
11764          * pipe itself being active. */
11765         bool has_active_crtc = encoder->base.crtc &&
11766                 to_intel_crtc(encoder->base.crtc)->active;
11767
11768         if (encoder->connectors_active && !has_active_crtc) {
11769                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11770                               encoder->base.base.id,
11771                               drm_get_encoder_name(&encoder->base));
11772
11773                 /* Connector is active, but has no active pipe. This is
11774                  * fallout from our resume register restoring. Disable
11775                  * the encoder manually again. */
11776                 if (encoder->base.crtc) {
11777                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11778                                       encoder->base.base.id,
11779                                       drm_get_encoder_name(&encoder->base));
11780                         encoder->disable(encoder);
11781                 }
11782
11783                 /* Inconsistent output/port/pipe state happens presumably due to
11784                  * a bug in one of the get_hw_state functions. Or someplace else
11785                  * in our code, like the register restore mess on resume. Clamp
11786                  * things to off as a safer default. */
11787                 list_for_each_entry(connector,
11788                                     &dev->mode_config.connector_list,
11789                                     base.head) {
11790                         if (connector->encoder != encoder)
11791                                 continue;
11792
11793                         intel_connector_break_all_links(connector);
11794                 }
11795         }
11796         /* Enabled encoders without active connectors will be fixed in
11797          * the crtc fixup. */
11798 }
11799
11800 void i915_redisable_vga_power_on(struct drm_device *dev)
11801 {
11802         struct drm_i915_private *dev_priv = dev->dev_private;
11803         u32 vga_reg = i915_vgacntrl_reg(dev);
11804
11805         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11806                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11807                 i915_disable_vga(dev);
11808         }
11809 }
11810
11811 void i915_redisable_vga(struct drm_device *dev)
11812 {
11813         struct drm_i915_private *dev_priv = dev->dev_private;
11814
11815         /* This function can be called both from intel_modeset_setup_hw_state or
11816          * at a very early point in our resume sequence, where the power well
11817          * structures are not yet restored. Since this function is at a very
11818          * paranoid "someone might have enabled VGA while we were not looking"
11819          * level, just check if the power well is enabled instead of trying to
11820          * follow the "don't touch the power well if we don't need it" policy
11821          * the rest of the driver uses. */
11822         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11823                 return;
11824
11825         i915_redisable_vga_power_on(dev);
11826 }
11827
11828 static bool primary_get_hw_state(struct intel_crtc *crtc)
11829 {
11830         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11831
11832         if (!crtc->active)
11833                 return false;
11834
11835         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11836 }
11837
11838 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11839 {
11840         struct drm_i915_private *dev_priv = dev->dev_private;
11841         enum pipe pipe;
11842         struct intel_crtc *crtc;
11843         struct intel_encoder *encoder;
11844         struct intel_connector *connector;
11845         int i;
11846
11847         for_each_intel_crtc(dev, crtc) {
11848                 memset(&crtc->config, 0, sizeof(crtc->config));
11849
11850                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11851
11852                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11853                                                                  &crtc->config);
11854
11855                 crtc->base.enabled = crtc->active;
11856                 crtc->primary_enabled = primary_get_hw_state(crtc);
11857
11858                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11859                               crtc->base.base.id,
11860                               crtc->active ? "enabled" : "disabled");
11861         }
11862
11863         /* FIXME: Smash this into the new shared dpll infrastructure. */
11864         if (HAS_DDI(dev))
11865                 intel_ddi_setup_hw_pll_state(dev);
11866
11867         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11868                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11869
11870                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11871                 pll->active = 0;
11872                 for_each_intel_crtc(dev, crtc) {
11873                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11874                                 pll->active++;
11875                 }
11876                 pll->refcount = pll->active;
11877
11878                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11879                               pll->name, pll->refcount, pll->on);
11880         }
11881
11882         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11883                             base.head) {
11884                 pipe = 0;
11885
11886                 if (encoder->get_hw_state(encoder, &pipe)) {
11887                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11888                         encoder->base.crtc = &crtc->base;
11889                         encoder->get_config(encoder, &crtc->config);
11890                 } else {
11891                         encoder->base.crtc = NULL;
11892                 }
11893
11894                 encoder->connectors_active = false;
11895                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11896                               encoder->base.base.id,
11897                               drm_get_encoder_name(&encoder->base),
11898                               encoder->base.crtc ? "enabled" : "disabled",
11899                               pipe_name(pipe));
11900         }
11901
11902         list_for_each_entry(connector, &dev->mode_config.connector_list,
11903                             base.head) {
11904                 if (connector->get_hw_state(connector)) {
11905                         connector->base.dpms = DRM_MODE_DPMS_ON;
11906                         connector->encoder->connectors_active = true;
11907                         connector->base.encoder = &connector->encoder->base;
11908                 } else {
11909                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11910                         connector->base.encoder = NULL;
11911                 }
11912                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11913                               connector->base.base.id,
11914                               drm_get_connector_name(&connector->base),
11915                               connector->base.encoder ? "enabled" : "disabled");
11916         }
11917 }
11918
11919 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11920  * and i915 state tracking structures. */
11921 void intel_modeset_setup_hw_state(struct drm_device *dev,
11922                                   bool force_restore)
11923 {
11924         struct drm_i915_private *dev_priv = dev->dev_private;
11925         enum pipe pipe;
11926         struct intel_crtc *crtc;
11927         struct intel_encoder *encoder;
11928         int i;
11929
11930         intel_modeset_readout_hw_state(dev);
11931
11932         /*
11933          * Now that we have the config, copy it to each CRTC struct
11934          * Note that this could go away if we move to using crtc_config
11935          * checking everywhere.
11936          */
11937         for_each_intel_crtc(dev, crtc) {
11938                 if (crtc->active && i915.fastboot) {
11939                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11940                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11941                                       crtc->base.base.id);
11942                         drm_mode_debug_printmodeline(&crtc->base.mode);
11943                 }
11944         }
11945
11946         /* HW state is read out, now we need to sanitize this mess. */
11947         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11948                             base.head) {
11949                 intel_sanitize_encoder(encoder);
11950         }
11951
11952         for_each_pipe(pipe) {
11953                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11954                 intel_sanitize_crtc(crtc);
11955                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11956         }
11957
11958         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11959                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11960
11961                 if (!pll->on || pll->active)
11962                         continue;
11963
11964                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11965
11966                 pll->disable(dev_priv, pll);
11967                 pll->on = false;
11968         }
11969
11970         if (HAS_PCH_SPLIT(dev))
11971                 ilk_wm_get_hw_state(dev);
11972
11973         if (force_restore) {
11974                 i915_redisable_vga(dev);
11975
11976                 /*
11977                  * We need to use raw interfaces for restoring state to avoid
11978                  * checking (bogus) intermediate states.
11979                  */
11980                 for_each_pipe(pipe) {
11981                         struct drm_crtc *crtc =
11982                                 dev_priv->pipe_to_crtc_mapping[pipe];
11983
11984                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11985                                          crtc->primary->fb);
11986                 }
11987         } else {
11988                 intel_modeset_update_staged_output_state(dev);
11989         }
11990
11991         intel_modeset_check_state(dev);
11992 }
11993
11994 void intel_modeset_gem_init(struct drm_device *dev)
11995 {
11996         struct drm_crtc *c;
11997         struct intel_framebuffer *fb;
11998
11999         mutex_lock(&dev->struct_mutex);
12000         intel_init_gt_powersave(dev);
12001         mutex_unlock(&dev->struct_mutex);
12002
12003         intel_modeset_init_hw(dev);
12004
12005         intel_setup_overlay(dev);
12006
12007         /*
12008          * Make sure any fbs we allocated at startup are properly
12009          * pinned & fenced.  When we do the allocation it's too early
12010          * for this.
12011          */
12012         mutex_lock(&dev->struct_mutex);
12013         for_each_crtc(dev, c) {
12014                 if (!c->primary->fb)
12015                         continue;
12016
12017                 fb = to_intel_framebuffer(c->primary->fb);
12018                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12019                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12020                                   to_intel_crtc(c)->pipe);
12021                         drm_framebuffer_unreference(c->primary->fb);
12022                         c->primary->fb = NULL;
12023                 }
12024         }
12025         mutex_unlock(&dev->struct_mutex);
12026 }
12027
12028 void intel_connector_unregister(struct intel_connector *intel_connector)
12029 {
12030         struct drm_connector *connector = &intel_connector->base;
12031
12032         intel_panel_destroy_backlight(connector);
12033         drm_sysfs_connector_remove(connector);
12034 }
12035
12036 void intel_modeset_cleanup(struct drm_device *dev)
12037 {
12038         struct drm_i915_private *dev_priv = dev->dev_private;
12039         struct drm_crtc *crtc;
12040         struct drm_connector *connector;
12041
12042         /*
12043          * Interrupts and polling as the first thing to avoid creating havoc.
12044          * Too much stuff here (turning of rps, connectors, ...) would
12045          * experience fancy races otherwise.
12046          */
12047         drm_irq_uninstall(dev);
12048         cancel_work_sync(&dev_priv->hotplug_work);
12049         /*
12050          * Due to the hpd irq storm handling the hotplug work can re-arm the
12051          * poll handlers. Hence disable polling after hpd handling is shut down.
12052          */
12053         drm_kms_helper_poll_fini(dev);
12054
12055         mutex_lock(&dev->struct_mutex);
12056
12057         intel_unregister_dsm_handler();
12058
12059         for_each_crtc(dev, crtc) {
12060                 /* Skip inactive CRTCs */
12061                 if (!crtc->primary->fb)
12062                         continue;
12063
12064                 intel_increase_pllclock(crtc);
12065         }
12066
12067         intel_disable_fbc(dev);
12068
12069         intel_disable_gt_powersave(dev);
12070
12071         ironlake_teardown_rc6(dev);
12072
12073         mutex_unlock(&dev->struct_mutex);
12074
12075         /* flush any delayed tasks or pending work */
12076         flush_scheduled_work();
12077
12078         /* destroy the backlight and sysfs files before encoders/connectors */
12079         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12080                 struct intel_connector *intel_connector;
12081
12082                 intel_connector = to_intel_connector(connector);
12083                 intel_connector->unregister(intel_connector);
12084         }
12085
12086         drm_mode_config_cleanup(dev);
12087
12088         intel_cleanup_overlay(dev);
12089
12090         mutex_lock(&dev->struct_mutex);
12091         intel_cleanup_gt_powersave(dev);
12092         mutex_unlock(&dev->struct_mutex);
12093 }
12094
12095 /*
12096  * Return which encoder is currently attached for connector.
12097  */
12098 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12099 {
12100         return &intel_attached_encoder(connector)->base;
12101 }
12102
12103 void intel_connector_attach_encoder(struct intel_connector *connector,
12104                                     struct intel_encoder *encoder)
12105 {
12106         connector->encoder = encoder;
12107         drm_mode_connector_attach_encoder(&connector->base,
12108                                           &encoder->base);
12109 }
12110
12111 /*
12112  * set vga decode state - true == enable VGA decode
12113  */
12114 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12115 {
12116         struct drm_i915_private *dev_priv = dev->dev_private;
12117         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12118         u16 gmch_ctrl;
12119
12120         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12121                 DRM_ERROR("failed to read control word\n");
12122                 return -EIO;
12123         }
12124
12125         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12126                 return 0;
12127
12128         if (state)
12129                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12130         else
12131                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12132
12133         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12134                 DRM_ERROR("failed to write control word\n");
12135                 return -EIO;
12136         }
12137
12138         return 0;
12139 }
12140
12141 struct intel_display_error_state {
12142
12143         u32 power_well_driver;
12144
12145         int num_transcoders;
12146
12147         struct intel_cursor_error_state {
12148                 u32 control;
12149                 u32 position;
12150                 u32 base;
12151                 u32 size;
12152         } cursor[I915_MAX_PIPES];
12153
12154         struct intel_pipe_error_state {
12155                 bool power_domain_on;
12156                 u32 source;
12157                 u32 stat;
12158         } pipe[I915_MAX_PIPES];
12159
12160         struct intel_plane_error_state {
12161                 u32 control;
12162                 u32 stride;
12163                 u32 size;
12164                 u32 pos;
12165                 u32 addr;
12166                 u32 surface;
12167                 u32 tile_offset;
12168         } plane[I915_MAX_PIPES];
12169
12170         struct intel_transcoder_error_state {
12171                 bool power_domain_on;
12172                 enum transcoder cpu_transcoder;
12173
12174                 u32 conf;
12175
12176                 u32 htotal;
12177                 u32 hblank;
12178                 u32 hsync;
12179                 u32 vtotal;
12180                 u32 vblank;
12181                 u32 vsync;
12182         } transcoder[4];
12183 };
12184
12185 struct intel_display_error_state *
12186 intel_display_capture_error_state(struct drm_device *dev)
12187 {
12188         struct drm_i915_private *dev_priv = dev->dev_private;
12189         struct intel_display_error_state *error;
12190         int transcoders[] = {
12191                 TRANSCODER_A,
12192                 TRANSCODER_B,
12193                 TRANSCODER_C,
12194                 TRANSCODER_EDP,
12195         };
12196         int i;
12197
12198         if (INTEL_INFO(dev)->num_pipes == 0)
12199                 return NULL;
12200
12201         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12202         if (error == NULL)
12203                 return NULL;
12204
12205         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12206                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12207
12208         for_each_pipe(i) {
12209                 error->pipe[i].power_domain_on =
12210                         intel_display_power_enabled_sw(dev_priv,
12211                                                        POWER_DOMAIN_PIPE(i));
12212                 if (!error->pipe[i].power_domain_on)
12213                         continue;
12214
12215                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
12216                         error->cursor[i].control = I915_READ(CURCNTR(i));
12217                         error->cursor[i].position = I915_READ(CURPOS(i));
12218                         error->cursor[i].base = I915_READ(CURBASE(i));
12219                 } else {
12220                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
12221                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12222                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12223                 }
12224
12225                 error->plane[i].control = I915_READ(DSPCNTR(i));
12226                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12227                 if (INTEL_INFO(dev)->gen <= 3) {
12228                         error->plane[i].size = I915_READ(DSPSIZE(i));
12229                         error->plane[i].pos = I915_READ(DSPPOS(i));
12230                 }
12231                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12232                         error->plane[i].addr = I915_READ(DSPADDR(i));
12233                 if (INTEL_INFO(dev)->gen >= 4) {
12234                         error->plane[i].surface = I915_READ(DSPSURF(i));
12235                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12236                 }
12237
12238                 error->pipe[i].source = I915_READ(PIPESRC(i));
12239
12240                 if (!HAS_PCH_SPLIT(dev))
12241                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12242         }
12243
12244         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12245         if (HAS_DDI(dev_priv->dev))
12246                 error->num_transcoders++; /* Account for eDP. */
12247
12248         for (i = 0; i < error->num_transcoders; i++) {
12249                 enum transcoder cpu_transcoder = transcoders[i];
12250
12251                 error->transcoder[i].power_domain_on =
12252                         intel_display_power_enabled_sw(dev_priv,
12253                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12254                 if (!error->transcoder[i].power_domain_on)
12255                         continue;
12256
12257                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12258
12259                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12260                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12261                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12262                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12263                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12264                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12265                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12266         }
12267
12268         return error;
12269 }
12270
12271 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12272
12273 void
12274 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12275                                 struct drm_device *dev,
12276                                 struct intel_display_error_state *error)
12277 {
12278         int i;
12279
12280         if (!error)
12281                 return;
12282
12283         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12284         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12285                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12286                            error->power_well_driver);
12287         for_each_pipe(i) {
12288                 err_printf(m, "Pipe [%d]:\n", i);
12289                 err_printf(m, "  Power: %s\n",
12290                            error->pipe[i].power_domain_on ? "on" : "off");
12291                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12292                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12293
12294                 err_printf(m, "Plane [%d]:\n", i);
12295                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12296                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12297                 if (INTEL_INFO(dev)->gen <= 3) {
12298                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12299                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12300                 }
12301                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12302                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12303                 if (INTEL_INFO(dev)->gen >= 4) {
12304                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12305                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12306                 }
12307
12308                 err_printf(m, "Cursor [%d]:\n", i);
12309                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12310                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12311                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12312         }
12313
12314         for (i = 0; i < error->num_transcoders; i++) {
12315                 err_printf(m, "CPU transcoder: %c\n",
12316                            transcoder_name(error->transcoder[i].cpu_transcoder));
12317                 err_printf(m, "  Power: %s\n",
12318                            error->transcoder[i].power_domain_on ? "on" : "off");
12319                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12320                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12321                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12322                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12323                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12324                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12325                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12326         }
12327 }