drm/i915: disable rps irqs earlier during suspend/unload
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                            struct drm_framebuffer *fb,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_device *dev = fb->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204         u32 alignment;
2205         int ret;
2206
2207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209         switch (obj->tiling_mode) {
2210         case I915_TILING_NONE:
2211                 if (INTEL_INFO(dev)->gen >= 9)
2212                         alignment = 256 * 1024;
2213                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                         alignment = 128 * 1024;
2215                 else if (INTEL_INFO(dev)->gen >= 4)
2216                         alignment = 4 * 1024;
2217                 else
2218                         alignment = 64 * 1024;
2219                 break;
2220         case I915_TILING_X:
2221                 if (INTEL_INFO(dev)->gen >= 9)
2222                         alignment = 256 * 1024;
2223                 else {
2224                         /* pin() will align the object as required by fence */
2225                         alignment = 0;
2226                 }
2227                 break;
2228         case I915_TILING_Y:
2229                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                 return -EINVAL;
2231         default:
2232                 BUG();
2233         }
2234
2235         /* Note that the w/a also requires 64 PTE of padding following the
2236          * bo. We currently fill all unused PTE with the shadow page and so
2237          * we should always have valid PTE following the scanout preventing
2238          * the VT-d warning.
2239          */
2240         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                 alignment = 256 * 1024;
2242
2243         /*
2244          * Global gtt pte registers are special registers which actually forward
2245          * writes to a chunk of system memory. Which means that there is no risk
2246          * that the register values disappear as soon as we call
2247          * intel_runtime_pm_put(), so it is correct to wrap only the
2248          * pin/unpin/fence and not more.
2249          */
2250         intel_runtime_pm_get(dev_priv);
2251
2252         dev_priv->mm.interruptible = false;
2253         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254         if (ret)
2255                 goto err_interruptible;
2256
2257         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258          * fence, whereas 965+ only requires a fence if using
2259          * framebuffer compression.  For simplicity, we always install
2260          * a fence as the cost is not that onerous.
2261          */
2262         ret = i915_gem_object_get_fence(obj);
2263         if (ret)
2264                 goto err_unpin;
2265
2266         i915_gem_object_pin_fence(obj);
2267
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return 0;
2271
2272 err_unpin:
2273         i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275         dev_priv->mm.interruptible = true;
2276         intel_runtime_pm_put(dev_priv);
2277         return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284         i915_gem_object_unpin_fence(obj);
2285         i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289  * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                              unsigned int tiling_mode,
2292                                              unsigned int cpp,
2293                                              unsigned int pitch)
2294 {
2295         if (tiling_mode != I915_TILING_NONE) {
2296                 unsigned int tile_rows, tiles;
2297
2298                 tile_rows = *y / 8;
2299                 *y %= 8;
2300
2301                 tiles = *x / (512/cpp);
2302                 *x %= 512/cpp;
2303
2304                 return tile_rows * pitch * 8 + tiles * 4096;
2305         } else {
2306                 unsigned int offset;
2307
2308                 offset = *y * pitch + *x * cpp;
2309                 *y = 0;
2310                 *x = (offset & 4095) / cpp;
2311                 return offset & -4096;
2312         }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317         switch (format) {
2318         case DISPPLANE_8BPP:
2319                 return DRM_FORMAT_C8;
2320         case DISPPLANE_BGRX555:
2321                 return DRM_FORMAT_XRGB1555;
2322         case DISPPLANE_BGRX565:
2323                 return DRM_FORMAT_RGB565;
2324         default:
2325         case DISPPLANE_BGRX888:
2326                 return DRM_FORMAT_XRGB8888;
2327         case DISPPLANE_RGBX888:
2328                 return DRM_FORMAT_XBGR8888;
2329         case DISPPLANE_BGRX101010:
2330                 return DRM_FORMAT_XRGB2101010;
2331         case DISPPLANE_RGBX101010:
2332                 return DRM_FORMAT_XBGR2101010;
2333         }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                   struct intel_plane_config *plane_config)
2338 {
2339         struct drm_device *dev = crtc->base.dev;
2340         struct drm_i915_gem_object *obj = NULL;
2341         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342         u32 base = plane_config->base;
2343
2344         if (plane_config->size == 0)
2345                 return false;
2346
2347         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                              plane_config->size);
2349         if (!obj)
2350                 return false;
2351
2352         if (plane_config->tiled) {
2353                 obj->tiling_mode = I915_TILING_X;
2354                 obj->stride = crtc->base.primary->fb->pitches[0];
2355         }
2356
2357         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358         mode_cmd.width = crtc->base.primary->fb->width;
2359         mode_cmd.height = crtc->base.primary->fb->height;
2360         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362         mutex_lock(&dev->struct_mutex);
2363
2364         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                    &mode_cmd, obj)) {
2366                 DRM_DEBUG_KMS("intel fb init failed\n");
2367                 goto out_unref_obj;
2368         }
2369
2370         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371         mutex_unlock(&dev->struct_mutex);
2372
2373         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374         return true;
2375
2376 out_unref_obj:
2377         drm_gem_object_unreference(&obj->base);
2378         mutex_unlock(&dev->struct_mutex);
2379         return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                  struct intel_plane_config *plane_config)
2384 {
2385         struct drm_device *dev = intel_crtc->base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct drm_crtc *c;
2388         struct intel_crtc *i;
2389         struct drm_i915_gem_object *obj;
2390
2391         if (!intel_crtc->base.primary->fb)
2392                 return;
2393
2394         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                 return;
2396
2397         kfree(intel_crtc->base.primary->fb);
2398         intel_crtc->base.primary->fb = NULL;
2399
2400         /*
2401          * Failed to alloc the obj, check to see if we should share
2402          * an fb with another CRTC instead
2403          */
2404         for_each_crtc(dev, c) {
2405                 i = to_intel_crtc(c);
2406
2407                 if (c == &intel_crtc->base)
2408                         continue;
2409
2410                 if (!i->active)
2411                         continue;
2412
2413                 obj = intel_fb_obj(c->primary->fb);
2414                 if (obj == NULL)
2415                         continue;
2416
2417                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                         if (obj->tiling_mode != I915_TILING_NONE)
2419                                 dev_priv->preserve_bios_swizzle = true;
2420
2421                         drm_framebuffer_reference(c->primary->fb);
2422                         intel_crtc->base.primary->fb = c->primary->fb;
2423                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                         break;
2425                 }
2426         }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                       struct drm_framebuffer *fb,
2431                                       int x, int y)
2432 {
2433         struct drm_device *dev = crtc->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436         struct drm_i915_gem_object *obj;
2437         int plane = intel_crtc->plane;
2438         unsigned long linear_offset;
2439         u32 dspcntr;
2440         u32 reg = DSPCNTR(plane);
2441         int pixel_size;
2442
2443         if (!intel_crtc->primary_enabled) {
2444                 I915_WRITE(reg, 0);
2445                 if (INTEL_INFO(dev)->gen >= 4)
2446                         I915_WRITE(DSPSURF(plane), 0);
2447                 else
2448                         I915_WRITE(DSPADDR(plane), 0);
2449                 POSTING_READ(reg);
2450                 return;
2451         }
2452
2453         obj = intel_fb_obj(fb);
2454         if (WARN_ON(obj == NULL))
2455                 return;
2456
2457         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459         dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461         dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463         if (INTEL_INFO(dev)->gen < 4) {
2464                 if (intel_crtc->pipe == PIPE_B)
2465                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                 /* pipesrc and dspsize control the size that is scaled from,
2468                  * which should always be the user's requested size.
2469                  */
2470                 I915_WRITE(DSPSIZE(plane),
2471                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                            (intel_crtc->config.pipe_src_w - 1));
2473                 I915_WRITE(DSPPOS(plane), 0);
2474         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                 I915_WRITE(PRIMSIZE(plane),
2476                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                            (intel_crtc->config.pipe_src_w - 1));
2478                 I915_WRITE(PRIMPOS(plane), 0);
2479                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480         }
2481
2482         switch (fb->pixel_format) {
2483         case DRM_FORMAT_C8:
2484                 dspcntr |= DISPPLANE_8BPP;
2485                 break;
2486         case DRM_FORMAT_XRGB1555:
2487         case DRM_FORMAT_ARGB1555:
2488                 dspcntr |= DISPPLANE_BGRX555;
2489                 break;
2490         case DRM_FORMAT_RGB565:
2491                 dspcntr |= DISPPLANE_BGRX565;
2492                 break;
2493         case DRM_FORMAT_XRGB8888:
2494         case DRM_FORMAT_ARGB8888:
2495                 dspcntr |= DISPPLANE_BGRX888;
2496                 break;
2497         case DRM_FORMAT_XBGR8888:
2498         case DRM_FORMAT_ABGR8888:
2499                 dspcntr |= DISPPLANE_RGBX888;
2500                 break;
2501         case DRM_FORMAT_XRGB2101010:
2502         case DRM_FORMAT_ARGB2101010:
2503                 dspcntr |= DISPPLANE_BGRX101010;
2504                 break;
2505         case DRM_FORMAT_XBGR2101010:
2506         case DRM_FORMAT_ABGR2101010:
2507                 dspcntr |= DISPPLANE_RGBX101010;
2508                 break;
2509         default:
2510                 BUG();
2511         }
2512
2513         if (INTEL_INFO(dev)->gen >= 4 &&
2514             obj->tiling_mode != I915_TILING_NONE)
2515                 dspcntr |= DISPPLANE_TILED;
2516
2517         if (IS_G4X(dev))
2518                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520         linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522         if (INTEL_INFO(dev)->gen >= 4) {
2523                 intel_crtc->dspaddr_offset =
2524                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                        pixel_size,
2526                                                        fb->pitches[0]);
2527                 linear_offset -= intel_crtc->dspaddr_offset;
2528         } else {
2529                 intel_crtc->dspaddr_offset = linear_offset;
2530         }
2531
2532         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                 x += (intel_crtc->config.pipe_src_w - 1);
2536                 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                 /* Finding the last pixel of the last line of the display
2539                 data and adding to linear_offset*/
2540                 linear_offset +=
2541                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543         }
2544
2545         I915_WRITE(reg, dspcntr);
2546
2547         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                       fb->pitches[0]);
2550         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551         if (INTEL_INFO(dev)->gen >= 4) {
2552                 I915_WRITE(DSPSURF(plane),
2553                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556         } else
2557                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558         POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                           struct drm_framebuffer *fb,
2563                                           int x, int y)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         struct drm_i915_gem_object *obj;
2569         int plane = intel_crtc->plane;
2570         unsigned long linear_offset;
2571         u32 dspcntr;
2572         u32 reg = DSPCNTR(plane);
2573         int pixel_size;
2574
2575         if (!intel_crtc->primary_enabled) {
2576                 I915_WRITE(reg, 0);
2577                 I915_WRITE(DSPSURF(plane), 0);
2578                 POSTING_READ(reg);
2579                 return;
2580         }
2581
2582         obj = intel_fb_obj(fb);
2583         if (WARN_ON(obj == NULL))
2584                 return;
2585
2586         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588         dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590         dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595         switch (fb->pixel_format) {
2596         case DRM_FORMAT_C8:
2597                 dspcntr |= DISPPLANE_8BPP;
2598                 break;
2599         case DRM_FORMAT_RGB565:
2600                 dspcntr |= DISPPLANE_BGRX565;
2601                 break;
2602         case DRM_FORMAT_XRGB8888:
2603         case DRM_FORMAT_ARGB8888:
2604                 dspcntr |= DISPPLANE_BGRX888;
2605                 break;
2606         case DRM_FORMAT_XBGR8888:
2607         case DRM_FORMAT_ABGR8888:
2608                 dspcntr |= DISPPLANE_RGBX888;
2609                 break;
2610         case DRM_FORMAT_XRGB2101010:
2611         case DRM_FORMAT_ARGB2101010:
2612                 dspcntr |= DISPPLANE_BGRX101010;
2613                 break;
2614         case DRM_FORMAT_XBGR2101010:
2615         case DRM_FORMAT_ABGR2101010:
2616                 dspcntr |= DISPPLANE_RGBX101010;
2617                 break;
2618         default:
2619                 BUG();
2620         }
2621
2622         if (obj->tiling_mode != I915_TILING_NONE)
2623                 dspcntr |= DISPPLANE_TILED;
2624
2625         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628         linear_offset = y * fb->pitches[0] + x * pixel_size;
2629         intel_crtc->dspaddr_offset =
2630                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                                pixel_size,
2632                                                fb->pitches[0]);
2633         linear_offset -= intel_crtc->dspaddr_offset;
2634         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                         x += (intel_crtc->config.pipe_src_w - 1);
2639                         y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                         /* Finding the last pixel of the last line of the display
2642                         data and adding to linear_offset*/
2643                         linear_offset +=
2644                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                 }
2647         }
2648
2649         I915_WRITE(reg, dspcntr);
2650
2651         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                       fb->pitches[0]);
2654         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655         I915_WRITE(DSPSURF(plane),
2656                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659         } else {
2660                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662         }
2663         POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                          struct drm_framebuffer *fb,
2668                                          int x, int y)
2669 {
2670         struct drm_device *dev = crtc->dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673         struct intel_framebuffer *intel_fb;
2674         struct drm_i915_gem_object *obj;
2675         int pipe = intel_crtc->pipe;
2676         u32 plane_ctl, stride;
2677
2678         if (!intel_crtc->primary_enabled) {
2679                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                 POSTING_READ(PLANE_CTL(pipe, 0));
2682                 return;
2683         }
2684
2685         plane_ctl = PLANE_CTL_ENABLE |
2686                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                     PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689         switch (fb->pixel_format) {
2690         case DRM_FORMAT_RGB565:
2691                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                 break;
2693         case DRM_FORMAT_XRGB8888:
2694                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                 break;
2696         case DRM_FORMAT_XBGR8888:
2697                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                 break;
2700         case DRM_FORMAT_XRGB2101010:
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                 break;
2703         case DRM_FORMAT_XBGR2101010:
2704                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                 break;
2707         default:
2708                 BUG();
2709         }
2710
2711         intel_fb = to_intel_framebuffer(fb);
2712         obj = intel_fb->obj;
2713
2714         /*
2715          * The stride is either expressed as a multiple of 64 bytes chunks for
2716          * linear buffers or in number of tiles for tiled buffers.
2717          */
2718         switch (obj->tiling_mode) {
2719         case I915_TILING_NONE:
2720                 stride = fb->pitches[0] >> 6;
2721                 break;
2722         case I915_TILING_X:
2723                 plane_ctl |= PLANE_CTL_TILED_X;
2724                 stride = fb->pitches[0] >> 9;
2725                 break;
2726         default:
2727                 BUG();
2728         }
2729
2730         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                       i915_gem_obj_ggtt_offset(obj),
2738                       x, y, fb->width, fb->height,
2739                       fb->pitches[0]);
2740
2741         I915_WRITE(PLANE_POS(pipe, 0), 0);
2742         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743         I915_WRITE(PLANE_SIZE(pipe, 0),
2744                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                    (intel_crtc->config.pipe_src_w - 1));
2746         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749         POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                            int x, int y, enum mode_set_atomic state)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->display.disable_fbc)
2761                 dev_priv->display.disable_fbc(dev);
2762
2763         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765         return 0;
2766 }
2767
2768 void intel_display_handle_reset(struct drm_device *dev)
2769 {
2770         struct drm_i915_private *dev_priv = dev->dev_private;
2771         struct drm_crtc *crtc;
2772
2773         /*
2774          * Flips in the rings have been nuked by the reset,
2775          * so complete all pending flips so that user space
2776          * will get its events and not get stuck.
2777          *
2778          * Also update the base address of all primary
2779          * planes to the the last fb to make sure we're
2780          * showing the correct fb after a reset.
2781          *
2782          * Need to make two loops over the crtcs so that we
2783          * don't try to grab a crtc mutex before the
2784          * pending_flip_queue really got woken up.
2785          */
2786
2787         for_each_crtc(dev, crtc) {
2788                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789                 enum plane plane = intel_crtc->plane;
2790
2791                 intel_prepare_page_flip(dev, plane);
2792                 intel_finish_page_flip_plane(dev, plane);
2793         }
2794
2795         for_each_crtc(dev, crtc) {
2796                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797
2798                 drm_modeset_lock(&crtc->mutex, NULL);
2799                 /*
2800                  * FIXME: Once we have proper support for primary planes (and
2801                  * disabling them without disabling the entire crtc) allow again
2802                  * a NULL crtc->primary->fb.
2803                  */
2804                 if (intel_crtc->active && crtc->primary->fb)
2805                         dev_priv->display.update_primary_plane(crtc,
2806                                                                crtc->primary->fb,
2807                                                                crtc->x,
2808                                                                crtc->y);
2809                 drm_modeset_unlock(&crtc->mutex);
2810         }
2811 }
2812
2813 static int
2814 intel_finish_fb(struct drm_framebuffer *old_fb)
2815 {
2816         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2817         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2818         bool was_interruptible = dev_priv->mm.interruptible;
2819         int ret;
2820
2821         /* Big Hammer, we also need to ensure that any pending
2822          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2823          * current scanout is retired before unpinning the old
2824          * framebuffer.
2825          *
2826          * This should only fail upon a hung GPU, in which case we
2827          * can safely continue.
2828          */
2829         dev_priv->mm.interruptible = false;
2830         ret = i915_gem_object_finish_gpu(obj);
2831         dev_priv->mm.interruptible = was_interruptible;
2832
2833         return ret;
2834 }
2835
2836 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2837 {
2838         struct drm_device *dev = crtc->dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2841         bool pending;
2842
2843         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2844             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2845                 return false;
2846
2847         spin_lock_irq(&dev->event_lock);
2848         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2849         spin_unlock_irq(&dev->event_lock);
2850
2851         return pending;
2852 }
2853
2854 static void intel_update_pipe_size(struct intel_crtc *crtc)
2855 {
2856         struct drm_device *dev = crtc->base.dev;
2857         struct drm_i915_private *dev_priv = dev->dev_private;
2858         const struct drm_display_mode *adjusted_mode;
2859
2860         if (!i915.fastboot)
2861                 return;
2862
2863         /*
2864          * Update pipe size and adjust fitter if needed: the reason for this is
2865          * that in compute_mode_changes we check the native mode (not the pfit
2866          * mode) to see if we can flip rather than do a full mode set. In the
2867          * fastboot case, we'll flip, but if we don't update the pipesrc and
2868          * pfit state, we'll end up with a big fb scanned out into the wrong
2869          * sized surface.
2870          *
2871          * To fix this properly, we need to hoist the checks up into
2872          * compute_mode_changes (or above), check the actual pfit state and
2873          * whether the platform allows pfit disable with pipe active, and only
2874          * then update the pipesrc and pfit state, even on the flip path.
2875          */
2876
2877         adjusted_mode = &crtc->config.adjusted_mode;
2878
2879         I915_WRITE(PIPESRC(crtc->pipe),
2880                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2881                    (adjusted_mode->crtc_vdisplay - 1));
2882         if (!crtc->config.pch_pfit.enabled &&
2883             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2884              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2885                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2886                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2887                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2888         }
2889         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2890         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2891 }
2892
2893 static int
2894 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2895                     struct drm_framebuffer *fb)
2896 {
2897         struct drm_device *dev = crtc->dev;
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900         enum pipe pipe = intel_crtc->pipe;
2901         struct drm_framebuffer *old_fb = crtc->primary->fb;
2902         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2903         int ret;
2904
2905         if (intel_crtc_has_pending_flip(crtc)) {
2906                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2907                 return -EBUSY;
2908         }
2909
2910         /* no fb bound */
2911         if (!fb) {
2912                 DRM_ERROR("No FB bound\n");
2913                 return 0;
2914         }
2915
2916         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2917                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2918                           plane_name(intel_crtc->plane),
2919                           INTEL_INFO(dev)->num_pipes);
2920                 return -EINVAL;
2921         }
2922
2923         mutex_lock(&dev->struct_mutex);
2924         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2925         if (ret == 0)
2926                 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2927                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2928         mutex_unlock(&dev->struct_mutex);
2929         if (ret != 0) {
2930                 DRM_ERROR("pin & fence failed\n");
2931                 return ret;
2932         }
2933
2934         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2935
2936         if (intel_crtc->active)
2937                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2938
2939         crtc->primary->fb = fb;
2940         crtc->x = x;
2941         crtc->y = y;
2942
2943         if (old_fb) {
2944                 if (intel_crtc->active && old_fb != fb)
2945                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2946                 mutex_lock(&dev->struct_mutex);
2947                 intel_unpin_fb_obj(old_obj);
2948                 mutex_unlock(&dev->struct_mutex);
2949         }
2950
2951         mutex_lock(&dev->struct_mutex);
2952         intel_update_fbc(dev);
2953         mutex_unlock(&dev->struct_mutex);
2954
2955         return 0;
2956 }
2957
2958 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2959 {
2960         struct drm_device *dev = crtc->dev;
2961         struct drm_i915_private *dev_priv = dev->dev_private;
2962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963         int pipe = intel_crtc->pipe;
2964         u32 reg, temp;
2965
2966         /* enable normal train */
2967         reg = FDI_TX_CTL(pipe);
2968         temp = I915_READ(reg);
2969         if (IS_IVYBRIDGE(dev)) {
2970                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2971                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2972         } else {
2973                 temp &= ~FDI_LINK_TRAIN_NONE;
2974                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2975         }
2976         I915_WRITE(reg, temp);
2977
2978         reg = FDI_RX_CTL(pipe);
2979         temp = I915_READ(reg);
2980         if (HAS_PCH_CPT(dev)) {
2981                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2982                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2983         } else {
2984                 temp &= ~FDI_LINK_TRAIN_NONE;
2985                 temp |= FDI_LINK_TRAIN_NONE;
2986         }
2987         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2988
2989         /* wait one idle pattern time */
2990         POSTING_READ(reg);
2991         udelay(1000);
2992
2993         /* IVB wants error correction enabled */
2994         if (IS_IVYBRIDGE(dev))
2995                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2996                            FDI_FE_ERRC_ENABLE);
2997 }
2998
2999 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3000 {
3001         return crtc->base.enabled && crtc->active &&
3002                 crtc->config.has_pch_encoder;
3003 }
3004
3005 static void ivb_modeset_global_resources(struct drm_device *dev)
3006 {
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         struct intel_crtc *pipe_B_crtc =
3009                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3010         struct intel_crtc *pipe_C_crtc =
3011                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3012         uint32_t temp;
3013
3014         /*
3015          * When everything is off disable fdi C so that we could enable fdi B
3016          * with all lanes. Note that we don't care about enabled pipes without
3017          * an enabled pch encoder.
3018          */
3019         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3020             !pipe_has_enabled_pch(pipe_C_crtc)) {
3021                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3022                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3023
3024                 temp = I915_READ(SOUTH_CHICKEN1);
3025                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3026                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3027                 I915_WRITE(SOUTH_CHICKEN1, temp);
3028         }
3029 }
3030
3031 /* The FDI link training functions for ILK/Ibexpeak. */
3032 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3033 {
3034         struct drm_device *dev = crtc->dev;
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037         int pipe = intel_crtc->pipe;
3038         u32 reg, temp, tries;
3039
3040         /* FDI needs bits from pipe first */
3041         assert_pipe_enabled(dev_priv, pipe);
3042
3043         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3044            for train result */
3045         reg = FDI_RX_IMR(pipe);
3046         temp = I915_READ(reg);
3047         temp &= ~FDI_RX_SYMBOL_LOCK;
3048         temp &= ~FDI_RX_BIT_LOCK;
3049         I915_WRITE(reg, temp);
3050         I915_READ(reg);
3051         udelay(150);
3052
3053         /* enable CPU FDI TX and PCH FDI RX */
3054         reg = FDI_TX_CTL(pipe);
3055         temp = I915_READ(reg);
3056         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3057         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3058         temp &= ~FDI_LINK_TRAIN_NONE;
3059         temp |= FDI_LINK_TRAIN_PATTERN_1;
3060         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3061
3062         reg = FDI_RX_CTL(pipe);
3063         temp = I915_READ(reg);
3064         temp &= ~FDI_LINK_TRAIN_NONE;
3065         temp |= FDI_LINK_TRAIN_PATTERN_1;
3066         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3067
3068         POSTING_READ(reg);
3069         udelay(150);
3070
3071         /* Ironlake workaround, enable clock pointer after FDI enable*/
3072         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3073         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3074                    FDI_RX_PHASE_SYNC_POINTER_EN);
3075
3076         reg = FDI_RX_IIR(pipe);
3077         for (tries = 0; tries < 5; tries++) {
3078                 temp = I915_READ(reg);
3079                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3080
3081                 if ((temp & FDI_RX_BIT_LOCK)) {
3082                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3083                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3084                         break;
3085                 }
3086         }
3087         if (tries == 5)
3088                 DRM_ERROR("FDI train 1 fail!\n");
3089
3090         /* Train 2 */
3091         reg = FDI_TX_CTL(pipe);
3092         temp = I915_READ(reg);
3093         temp &= ~FDI_LINK_TRAIN_NONE;
3094         temp |= FDI_LINK_TRAIN_PATTERN_2;
3095         I915_WRITE(reg, temp);
3096
3097         reg = FDI_RX_CTL(pipe);
3098         temp = I915_READ(reg);
3099         temp &= ~FDI_LINK_TRAIN_NONE;
3100         temp |= FDI_LINK_TRAIN_PATTERN_2;
3101         I915_WRITE(reg, temp);
3102
3103         POSTING_READ(reg);
3104         udelay(150);
3105
3106         reg = FDI_RX_IIR(pipe);
3107         for (tries = 0; tries < 5; tries++) {
3108                 temp = I915_READ(reg);
3109                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3110
3111                 if (temp & FDI_RX_SYMBOL_LOCK) {
3112                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3113                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3114                         break;
3115                 }
3116         }
3117         if (tries == 5)
3118                 DRM_ERROR("FDI train 2 fail!\n");
3119
3120         DRM_DEBUG_KMS("FDI train done\n");
3121
3122 }
3123
3124 static const int snb_b_fdi_train_param[] = {
3125         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3126         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3127         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3128         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3129 };
3130
3131 /* The FDI link training functions for SNB/Cougarpoint. */
3132 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3133 {
3134         struct drm_device *dev = crtc->dev;
3135         struct drm_i915_private *dev_priv = dev->dev_private;
3136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3137         int pipe = intel_crtc->pipe;
3138         u32 reg, temp, i, retry;
3139
3140         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3141            for train result */
3142         reg = FDI_RX_IMR(pipe);
3143         temp = I915_READ(reg);
3144         temp &= ~FDI_RX_SYMBOL_LOCK;
3145         temp &= ~FDI_RX_BIT_LOCK;
3146         I915_WRITE(reg, temp);
3147
3148         POSTING_READ(reg);
3149         udelay(150);
3150
3151         /* enable CPU FDI TX and PCH FDI RX */
3152         reg = FDI_TX_CTL(pipe);
3153         temp = I915_READ(reg);
3154         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3155         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3156         temp &= ~FDI_LINK_TRAIN_NONE;
3157         temp |= FDI_LINK_TRAIN_PATTERN_1;
3158         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3159         /* SNB-B */
3160         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3161         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3162
3163         I915_WRITE(FDI_RX_MISC(pipe),
3164                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3165
3166         reg = FDI_RX_CTL(pipe);
3167         temp = I915_READ(reg);
3168         if (HAS_PCH_CPT(dev)) {
3169                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3170                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3171         } else {
3172                 temp &= ~FDI_LINK_TRAIN_NONE;
3173                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3174         }
3175         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3176
3177         POSTING_READ(reg);
3178         udelay(150);
3179
3180         for (i = 0; i < 4; i++) {
3181                 reg = FDI_TX_CTL(pipe);
3182                 temp = I915_READ(reg);
3183                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3184                 temp |= snb_b_fdi_train_param[i];
3185                 I915_WRITE(reg, temp);
3186
3187                 POSTING_READ(reg);
3188                 udelay(500);
3189
3190                 for (retry = 0; retry < 5; retry++) {
3191                         reg = FDI_RX_IIR(pipe);
3192                         temp = I915_READ(reg);
3193                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3194                         if (temp & FDI_RX_BIT_LOCK) {
3195                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3196                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3197                                 break;
3198                         }
3199                         udelay(50);
3200                 }
3201                 if (retry < 5)
3202                         break;
3203         }
3204         if (i == 4)
3205                 DRM_ERROR("FDI train 1 fail!\n");
3206
3207         /* Train 2 */
3208         reg = FDI_TX_CTL(pipe);
3209         temp = I915_READ(reg);
3210         temp &= ~FDI_LINK_TRAIN_NONE;
3211         temp |= FDI_LINK_TRAIN_PATTERN_2;
3212         if (IS_GEN6(dev)) {
3213                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3214                 /* SNB-B */
3215                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3216         }
3217         I915_WRITE(reg, temp);
3218
3219         reg = FDI_RX_CTL(pipe);
3220         temp = I915_READ(reg);
3221         if (HAS_PCH_CPT(dev)) {
3222                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3223                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3224         } else {
3225                 temp &= ~FDI_LINK_TRAIN_NONE;
3226                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3227         }
3228         I915_WRITE(reg, temp);
3229
3230         POSTING_READ(reg);
3231         udelay(150);
3232
3233         for (i = 0; i < 4; i++) {
3234                 reg = FDI_TX_CTL(pipe);
3235                 temp = I915_READ(reg);
3236                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3237                 temp |= snb_b_fdi_train_param[i];
3238                 I915_WRITE(reg, temp);
3239
3240                 POSTING_READ(reg);
3241                 udelay(500);
3242
3243                 for (retry = 0; retry < 5; retry++) {
3244                         reg = FDI_RX_IIR(pipe);
3245                         temp = I915_READ(reg);
3246                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3247                         if (temp & FDI_RX_SYMBOL_LOCK) {
3248                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3249                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3250                                 break;
3251                         }
3252                         udelay(50);
3253                 }
3254                 if (retry < 5)
3255                         break;
3256         }
3257         if (i == 4)
3258                 DRM_ERROR("FDI train 2 fail!\n");
3259
3260         DRM_DEBUG_KMS("FDI train done.\n");
3261 }
3262
3263 /* Manual link training for Ivy Bridge A0 parts */
3264 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3265 {
3266         struct drm_device *dev = crtc->dev;
3267         struct drm_i915_private *dev_priv = dev->dev_private;
3268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3269         int pipe = intel_crtc->pipe;
3270         u32 reg, temp, i, j;
3271
3272         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3273            for train result */
3274         reg = FDI_RX_IMR(pipe);
3275         temp = I915_READ(reg);
3276         temp &= ~FDI_RX_SYMBOL_LOCK;
3277         temp &= ~FDI_RX_BIT_LOCK;
3278         I915_WRITE(reg, temp);
3279
3280         POSTING_READ(reg);
3281         udelay(150);
3282
3283         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3284                       I915_READ(FDI_RX_IIR(pipe)));
3285
3286         /* Try each vswing and preemphasis setting twice before moving on */
3287         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3288                 /* disable first in case we need to retry */
3289                 reg = FDI_TX_CTL(pipe);
3290                 temp = I915_READ(reg);
3291                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3292                 temp &= ~FDI_TX_ENABLE;
3293                 I915_WRITE(reg, temp);
3294
3295                 reg = FDI_RX_CTL(pipe);
3296                 temp = I915_READ(reg);
3297                 temp &= ~FDI_LINK_TRAIN_AUTO;
3298                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3299                 temp &= ~FDI_RX_ENABLE;
3300                 I915_WRITE(reg, temp);
3301
3302                 /* enable CPU FDI TX and PCH FDI RX */
3303                 reg = FDI_TX_CTL(pipe);
3304                 temp = I915_READ(reg);
3305                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3307                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3308                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3309                 temp |= snb_b_fdi_train_param[j/2];
3310                 temp |= FDI_COMPOSITE_SYNC;
3311                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3312
3313                 I915_WRITE(FDI_RX_MISC(pipe),
3314                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3315
3316                 reg = FDI_RX_CTL(pipe);
3317                 temp = I915_READ(reg);
3318                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3319                 temp |= FDI_COMPOSITE_SYNC;
3320                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3321
3322                 POSTING_READ(reg);
3323                 udelay(1); /* should be 0.5us */
3324
3325                 for (i = 0; i < 4; i++) {
3326                         reg = FDI_RX_IIR(pipe);
3327                         temp = I915_READ(reg);
3328                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330                         if (temp & FDI_RX_BIT_LOCK ||
3331                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3332                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3334                                               i);
3335                                 break;
3336                         }
3337                         udelay(1); /* should be 0.5us */
3338                 }
3339                 if (i == 4) {
3340                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3341                         continue;
3342                 }
3343
3344                 /* Train 2 */
3345                 reg = FDI_TX_CTL(pipe);
3346                 temp = I915_READ(reg);
3347                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3348                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3349                 I915_WRITE(reg, temp);
3350
3351                 reg = FDI_RX_CTL(pipe);
3352                 temp = I915_READ(reg);
3353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3354                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3355                 I915_WRITE(reg, temp);
3356
3357                 POSTING_READ(reg);
3358                 udelay(2); /* should be 1.5us */
3359
3360                 for (i = 0; i < 4; i++) {
3361                         reg = FDI_RX_IIR(pipe);
3362                         temp = I915_READ(reg);
3363                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3364
3365                         if (temp & FDI_RX_SYMBOL_LOCK ||
3366                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3367                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3368                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3369                                               i);
3370                                 goto train_done;
3371                         }
3372                         udelay(2); /* should be 1.5us */
3373                 }
3374                 if (i == 4)
3375                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3376         }
3377
3378 train_done:
3379         DRM_DEBUG_KMS("FDI train done.\n");
3380 }
3381
3382 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3383 {
3384         struct drm_device *dev = intel_crtc->base.dev;
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386         int pipe = intel_crtc->pipe;
3387         u32 reg, temp;
3388
3389
3390         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3391         reg = FDI_RX_CTL(pipe);
3392         temp = I915_READ(reg);
3393         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3394         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3395         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3396         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3397
3398         POSTING_READ(reg);
3399         udelay(200);
3400
3401         /* Switch from Rawclk to PCDclk */
3402         temp = I915_READ(reg);
3403         I915_WRITE(reg, temp | FDI_PCDCLK);
3404
3405         POSTING_READ(reg);
3406         udelay(200);
3407
3408         /* Enable CPU FDI TX PLL, always on for Ironlake */
3409         reg = FDI_TX_CTL(pipe);
3410         temp = I915_READ(reg);
3411         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3412                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3413
3414                 POSTING_READ(reg);
3415                 udelay(100);
3416         }
3417 }
3418
3419 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3420 {
3421         struct drm_device *dev = intel_crtc->base.dev;
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         int pipe = intel_crtc->pipe;
3424         u32 reg, temp;
3425
3426         /* Switch from PCDclk to Rawclk */
3427         reg = FDI_RX_CTL(pipe);
3428         temp = I915_READ(reg);
3429         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3430
3431         /* Disable CPU FDI TX PLL */
3432         reg = FDI_TX_CTL(pipe);
3433         temp = I915_READ(reg);
3434         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3435
3436         POSTING_READ(reg);
3437         udelay(100);
3438
3439         reg = FDI_RX_CTL(pipe);
3440         temp = I915_READ(reg);
3441         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3442
3443         /* Wait for the clocks to turn off. */
3444         POSTING_READ(reg);
3445         udelay(100);
3446 }
3447
3448 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3449 {
3450         struct drm_device *dev = crtc->dev;
3451         struct drm_i915_private *dev_priv = dev->dev_private;
3452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453         int pipe = intel_crtc->pipe;
3454         u32 reg, temp;
3455
3456         /* disable CPU FDI tx and PCH FDI rx */
3457         reg = FDI_TX_CTL(pipe);
3458         temp = I915_READ(reg);
3459         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3460         POSTING_READ(reg);
3461
3462         reg = FDI_RX_CTL(pipe);
3463         temp = I915_READ(reg);
3464         temp &= ~(0x7 << 16);
3465         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3466         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3467
3468         POSTING_READ(reg);
3469         udelay(100);
3470
3471         /* Ironlake workaround, disable clock pointer after downing FDI */
3472         if (HAS_PCH_IBX(dev))
3473                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3474
3475         /* still set train pattern 1 */
3476         reg = FDI_TX_CTL(pipe);
3477         temp = I915_READ(reg);
3478         temp &= ~FDI_LINK_TRAIN_NONE;
3479         temp |= FDI_LINK_TRAIN_PATTERN_1;
3480         I915_WRITE(reg, temp);
3481
3482         reg = FDI_RX_CTL(pipe);
3483         temp = I915_READ(reg);
3484         if (HAS_PCH_CPT(dev)) {
3485                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3486                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3487         } else {
3488                 temp &= ~FDI_LINK_TRAIN_NONE;
3489                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3490         }
3491         /* BPC in FDI rx is consistent with that in PIPECONF */
3492         temp &= ~(0x07 << 16);
3493         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3494         I915_WRITE(reg, temp);
3495
3496         POSTING_READ(reg);
3497         udelay(100);
3498 }
3499
3500 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3501 {
3502         struct intel_crtc *crtc;
3503
3504         /* Note that we don't need to be called with mode_config.lock here
3505          * as our list of CRTC objects is static for the lifetime of the
3506          * device and so cannot disappear as we iterate. Similarly, we can
3507          * happily treat the predicates as racy, atomic checks as userspace
3508          * cannot claim and pin a new fb without at least acquring the
3509          * struct_mutex and so serialising with us.
3510          */
3511         for_each_intel_crtc(dev, crtc) {
3512                 if (atomic_read(&crtc->unpin_work_count) == 0)
3513                         continue;
3514
3515                 if (crtc->unpin_work)
3516                         intel_wait_for_vblank(dev, crtc->pipe);
3517
3518                 return true;
3519         }
3520
3521         return false;
3522 }
3523
3524 static void page_flip_completed(struct intel_crtc *intel_crtc)
3525 {
3526         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3527         struct intel_unpin_work *work = intel_crtc->unpin_work;
3528
3529         /* ensure that the unpin work is consistent wrt ->pending. */
3530         smp_rmb();
3531         intel_crtc->unpin_work = NULL;
3532
3533         if (work->event)
3534                 drm_send_vblank_event(intel_crtc->base.dev,
3535                                       intel_crtc->pipe,
3536                                       work->event);
3537
3538         drm_crtc_vblank_put(&intel_crtc->base);
3539
3540         wake_up_all(&dev_priv->pending_flip_queue);
3541         queue_work(dev_priv->wq, &work->work);
3542
3543         trace_i915_flip_complete(intel_crtc->plane,
3544                                  work->pending_flip_obj);
3545 }
3546
3547 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3548 {
3549         struct drm_device *dev = crtc->dev;
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551
3552         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3553         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3554                                        !intel_crtc_has_pending_flip(crtc),
3555                                        60*HZ) == 0)) {
3556                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557
3558                 spin_lock_irq(&dev->event_lock);
3559                 if (intel_crtc->unpin_work) {
3560                         WARN_ONCE(1, "Removing stuck page flip\n");
3561                         page_flip_completed(intel_crtc);
3562                 }
3563                 spin_unlock_irq(&dev->event_lock);
3564         }
3565
3566         if (crtc->primary->fb) {
3567                 mutex_lock(&dev->struct_mutex);
3568                 intel_finish_fb(crtc->primary->fb);
3569                 mutex_unlock(&dev->struct_mutex);
3570         }
3571 }
3572
3573 /* Program iCLKIP clock to the desired frequency */
3574 static void lpt_program_iclkip(struct drm_crtc *crtc)
3575 {
3576         struct drm_device *dev = crtc->dev;
3577         struct drm_i915_private *dev_priv = dev->dev_private;
3578         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3579         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3580         u32 temp;
3581
3582         mutex_lock(&dev_priv->dpio_lock);
3583
3584         /* It is necessary to ungate the pixclk gate prior to programming
3585          * the divisors, and gate it back when it is done.
3586          */
3587         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3588
3589         /* Disable SSCCTL */
3590         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3591                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3592                                 SBI_SSCCTL_DISABLE,
3593                         SBI_ICLK);
3594
3595         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3596         if (clock == 20000) {
3597                 auxdiv = 1;
3598                 divsel = 0x41;
3599                 phaseinc = 0x20;
3600         } else {
3601                 /* The iCLK virtual clock root frequency is in MHz,
3602                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3603                  * divisors, it is necessary to divide one by another, so we
3604                  * convert the virtual clock precision to KHz here for higher
3605                  * precision.
3606                  */
3607                 u32 iclk_virtual_root_freq = 172800 * 1000;
3608                 u32 iclk_pi_range = 64;
3609                 u32 desired_divisor, msb_divisor_value, pi_value;
3610
3611                 desired_divisor = (iclk_virtual_root_freq / clock);
3612                 msb_divisor_value = desired_divisor / iclk_pi_range;
3613                 pi_value = desired_divisor % iclk_pi_range;
3614
3615                 auxdiv = 0;
3616                 divsel = msb_divisor_value - 2;
3617                 phaseinc = pi_value;
3618         }
3619
3620         /* This should not happen with any sane values */
3621         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3622                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3623         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3624                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3625
3626         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3627                         clock,
3628                         auxdiv,
3629                         divsel,
3630                         phasedir,
3631                         phaseinc);
3632
3633         /* Program SSCDIVINTPHASE6 */
3634         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3635         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3636         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3637         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3638         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3639         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3640         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3641         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3642
3643         /* Program SSCAUXDIV */
3644         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3645         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3646         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3647         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3648
3649         /* Enable modulator and associated divider */
3650         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3651         temp &= ~SBI_SSCCTL_DISABLE;
3652         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3653
3654         /* Wait for initialization time */
3655         udelay(24);
3656
3657         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3658
3659         mutex_unlock(&dev_priv->dpio_lock);
3660 }
3661
3662 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3663                                                 enum pipe pch_transcoder)
3664 {
3665         struct drm_device *dev = crtc->base.dev;
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3668
3669         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3670                    I915_READ(HTOTAL(cpu_transcoder)));
3671         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3672                    I915_READ(HBLANK(cpu_transcoder)));
3673         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3674                    I915_READ(HSYNC(cpu_transcoder)));
3675
3676         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3677                    I915_READ(VTOTAL(cpu_transcoder)));
3678         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3679                    I915_READ(VBLANK(cpu_transcoder)));
3680         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3681                    I915_READ(VSYNC(cpu_transcoder)));
3682         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3683                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3684 }
3685
3686 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3687 {
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689         uint32_t temp;
3690
3691         temp = I915_READ(SOUTH_CHICKEN1);
3692         if (temp & FDI_BC_BIFURCATION_SELECT)
3693                 return;
3694
3695         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3696         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3697
3698         temp |= FDI_BC_BIFURCATION_SELECT;
3699         DRM_DEBUG_KMS("enabling fdi C rx\n");
3700         I915_WRITE(SOUTH_CHICKEN1, temp);
3701         POSTING_READ(SOUTH_CHICKEN1);
3702 }
3703
3704 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3705 {
3706         struct drm_device *dev = intel_crtc->base.dev;
3707         struct drm_i915_private *dev_priv = dev->dev_private;
3708
3709         switch (intel_crtc->pipe) {
3710         case PIPE_A:
3711                 break;
3712         case PIPE_B:
3713                 if (intel_crtc->config.fdi_lanes > 2)
3714                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3715                 else
3716                         cpt_enable_fdi_bc_bifurcation(dev);
3717
3718                 break;
3719         case PIPE_C:
3720                 cpt_enable_fdi_bc_bifurcation(dev);
3721
3722                 break;
3723         default:
3724                 BUG();
3725         }
3726 }
3727
3728 /*
3729  * Enable PCH resources required for PCH ports:
3730  *   - PCH PLLs
3731  *   - FDI training & RX/TX
3732  *   - update transcoder timings
3733  *   - DP transcoding bits
3734  *   - transcoder
3735  */
3736 static void ironlake_pch_enable(struct drm_crtc *crtc)
3737 {
3738         struct drm_device *dev = crtc->dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741         int pipe = intel_crtc->pipe;
3742         u32 reg, temp;
3743
3744         assert_pch_transcoder_disabled(dev_priv, pipe);
3745
3746         if (IS_IVYBRIDGE(dev))
3747                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3748
3749         /* Write the TU size bits before fdi link training, so that error
3750          * detection works. */
3751         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3752                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3753
3754         /* For PCH output, training FDI link */
3755         dev_priv->display.fdi_link_train(crtc);
3756
3757         /* We need to program the right clock selection before writing the pixel
3758          * mutliplier into the DPLL. */
3759         if (HAS_PCH_CPT(dev)) {
3760                 u32 sel;
3761
3762                 temp = I915_READ(PCH_DPLL_SEL);
3763                 temp |= TRANS_DPLL_ENABLE(pipe);
3764                 sel = TRANS_DPLLB_SEL(pipe);
3765                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3766                         temp |= sel;
3767                 else
3768                         temp &= ~sel;
3769                 I915_WRITE(PCH_DPLL_SEL, temp);
3770         }
3771
3772         /* XXX: pch pll's can be enabled any time before we enable the PCH
3773          * transcoder, and we actually should do this to not upset any PCH
3774          * transcoder that already use the clock when we share it.
3775          *
3776          * Note that enable_shared_dpll tries to do the right thing, but
3777          * get_shared_dpll unconditionally resets the pll - we need that to have
3778          * the right LVDS enable sequence. */
3779         intel_enable_shared_dpll(intel_crtc);
3780
3781         /* set transcoder timing, panel must allow it */
3782         assert_panel_unlocked(dev_priv, pipe);
3783         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3784
3785         intel_fdi_normal_train(crtc);
3786
3787         /* For PCH DP, enable TRANS_DP_CTL */
3788         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3789                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3790                 reg = TRANS_DP_CTL(pipe);
3791                 temp = I915_READ(reg);
3792                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3793                           TRANS_DP_SYNC_MASK |
3794                           TRANS_DP_BPC_MASK);
3795                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3796                          TRANS_DP_ENH_FRAMING);
3797                 temp |= bpc << 9; /* same format but at 11:9 */
3798
3799                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3800                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3801                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3802                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3803
3804                 switch (intel_trans_dp_port_sel(crtc)) {
3805                 case PCH_DP_B:
3806                         temp |= TRANS_DP_PORT_SEL_B;
3807                         break;
3808                 case PCH_DP_C:
3809                         temp |= TRANS_DP_PORT_SEL_C;
3810                         break;
3811                 case PCH_DP_D:
3812                         temp |= TRANS_DP_PORT_SEL_D;
3813                         break;
3814                 default:
3815                         BUG();
3816                 }
3817
3818                 I915_WRITE(reg, temp);
3819         }
3820
3821         ironlake_enable_pch_transcoder(dev_priv, pipe);
3822 }
3823
3824 static void lpt_pch_enable(struct drm_crtc *crtc)
3825 {
3826         struct drm_device *dev = crtc->dev;
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3829         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3830
3831         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3832
3833         lpt_program_iclkip(crtc);
3834
3835         /* Set transcoder timing. */
3836         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3837
3838         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3839 }
3840
3841 void intel_put_shared_dpll(struct intel_crtc *crtc)
3842 {
3843         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3844
3845         if (pll == NULL)
3846                 return;
3847
3848         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3849                 WARN(1, "bad %s crtc mask\n", pll->name);
3850                 return;
3851         }
3852
3853         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3854         if (pll->config.crtc_mask == 0) {
3855                 WARN_ON(pll->on);
3856                 WARN_ON(pll->active);
3857         }
3858
3859         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3860 }
3861
3862 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3863 {
3864         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3865         struct intel_shared_dpll *pll;
3866         enum intel_dpll_id i;
3867
3868         if (HAS_PCH_IBX(dev_priv->dev)) {
3869                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3870                 i = (enum intel_dpll_id) crtc->pipe;
3871                 pll = &dev_priv->shared_dplls[i];
3872
3873                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3874                               crtc->base.base.id, pll->name);
3875
3876                 WARN_ON(pll->new_config->crtc_mask);
3877
3878                 goto found;
3879         }
3880
3881         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3882                 pll = &dev_priv->shared_dplls[i];
3883
3884                 /* Only want to check enabled timings first */
3885                 if (pll->new_config->crtc_mask == 0)
3886                         continue;
3887
3888                 if (memcmp(&crtc->new_config->dpll_hw_state,
3889                            &pll->new_config->hw_state,
3890                            sizeof(pll->new_config->hw_state)) == 0) {
3891                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3892                                       crtc->base.base.id, pll->name,
3893                                       pll->new_config->crtc_mask,
3894                                       pll->active);
3895                         goto found;
3896                 }
3897         }
3898
3899         /* Ok no matching timings, maybe there's a free one? */
3900         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3901                 pll = &dev_priv->shared_dplls[i];
3902                 if (pll->new_config->crtc_mask == 0) {
3903                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3904                                       crtc->base.base.id, pll->name);
3905                         goto found;
3906                 }
3907         }
3908
3909         return NULL;
3910
3911 found:
3912         if (pll->new_config->crtc_mask == 0)
3913                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3914
3915         crtc->new_config->shared_dpll = i;
3916         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3917                          pipe_name(crtc->pipe));
3918
3919         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3920
3921         return pll;
3922 }
3923
3924 /**
3925  * intel_shared_dpll_start_config - start a new PLL staged config
3926  * @dev_priv: DRM device
3927  * @clear_pipes: mask of pipes that will have their PLLs freed
3928  *
3929  * Starts a new PLL staged config, copying the current config but
3930  * releasing the references of pipes specified in clear_pipes.
3931  */
3932 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3933                                           unsigned clear_pipes)
3934 {
3935         struct intel_shared_dpll *pll;
3936         enum intel_dpll_id i;
3937
3938         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3939                 pll = &dev_priv->shared_dplls[i];
3940
3941                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3942                                           GFP_KERNEL);
3943                 if (!pll->new_config)
3944                         goto cleanup;
3945
3946                 pll->new_config->crtc_mask &= ~clear_pipes;
3947         }
3948
3949         return 0;
3950
3951 cleanup:
3952         while (--i >= 0) {
3953                 pll = &dev_priv->shared_dplls[i];
3954                 kfree(pll->new_config);
3955                 pll->new_config = NULL;
3956         }
3957
3958         return -ENOMEM;
3959 }
3960
3961 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962 {
3963         struct intel_shared_dpll *pll;
3964         enum intel_dpll_id i;
3965
3966         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967                 pll = &dev_priv->shared_dplls[i];
3968
3969                 WARN_ON(pll->new_config == &pll->config);
3970
3971                 pll->config = *pll->new_config;
3972                 kfree(pll->new_config);
3973                 pll->new_config = NULL;
3974         }
3975 }
3976
3977 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978 {
3979         struct intel_shared_dpll *pll;
3980         enum intel_dpll_id i;
3981
3982         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983                 pll = &dev_priv->shared_dplls[i];
3984
3985                 WARN_ON(pll->new_config == &pll->config);
3986
3987                 kfree(pll->new_config);
3988                 pll->new_config = NULL;
3989         }
3990 }
3991
3992 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int dslreg = PIPEDSL(pipe);
3996         u32 temp;
3997
3998         temp = I915_READ(dslreg);
3999         udelay(500);
4000         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4001                 if (wait_for(I915_READ(dslreg) != temp, 5))
4002                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4003         }
4004 }
4005
4006 static void skylake_pfit_enable(struct intel_crtc *crtc)
4007 {
4008         struct drm_device *dev = crtc->base.dev;
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int pipe = crtc->pipe;
4011
4012         if (crtc->config.pch_pfit.enabled) {
4013                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4014                 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4015                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4016         }
4017 }
4018
4019 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4020 {
4021         struct drm_device *dev = crtc->base.dev;
4022         struct drm_i915_private *dev_priv = dev->dev_private;
4023         int pipe = crtc->pipe;
4024
4025         if (crtc->config.pch_pfit.enabled) {
4026                 /* Force use of hard-coded filter coefficients
4027                  * as some pre-programmed values are broken,
4028                  * e.g. x201.
4029                  */
4030                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4031                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4032                                                  PF_PIPE_SEL_IVB(pipe));
4033                 else
4034                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4035                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4036                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4037         }
4038 }
4039
4040 static void intel_enable_planes(struct drm_crtc *crtc)
4041 {
4042         struct drm_device *dev = crtc->dev;
4043         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4044         struct drm_plane *plane;
4045         struct intel_plane *intel_plane;
4046
4047         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4048                 intel_plane = to_intel_plane(plane);
4049                 if (intel_plane->pipe == pipe)
4050                         intel_plane_restore(&intel_plane->base);
4051         }
4052 }
4053
4054 static void intel_disable_planes(struct drm_crtc *crtc)
4055 {
4056         struct drm_device *dev = crtc->dev;
4057         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4058         struct drm_plane *plane;
4059         struct intel_plane *intel_plane;
4060
4061         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4062                 intel_plane = to_intel_plane(plane);
4063                 if (intel_plane->pipe == pipe)
4064                         intel_plane_disable(&intel_plane->base);
4065         }
4066 }
4067
4068 void hsw_enable_ips(struct intel_crtc *crtc)
4069 {
4070         struct drm_device *dev = crtc->base.dev;
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072
4073         if (!crtc->config.ips_enabled)
4074                 return;
4075
4076         /* We can only enable IPS after we enable a plane and wait for a vblank */
4077         intel_wait_for_vblank(dev, crtc->pipe);
4078
4079         assert_plane_enabled(dev_priv, crtc->plane);
4080         if (IS_BROADWELL(dev)) {
4081                 mutex_lock(&dev_priv->rps.hw_lock);
4082                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4083                 mutex_unlock(&dev_priv->rps.hw_lock);
4084                 /* Quoting Art Runyan: "its not safe to expect any particular
4085                  * value in IPS_CTL bit 31 after enabling IPS through the
4086                  * mailbox." Moreover, the mailbox may return a bogus state,
4087                  * so we need to just enable it and continue on.
4088                  */
4089         } else {
4090                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4091                 /* The bit only becomes 1 in the next vblank, so this wait here
4092                  * is essentially intel_wait_for_vblank. If we don't have this
4093                  * and don't wait for vblanks until the end of crtc_enable, then
4094                  * the HW state readout code will complain that the expected
4095                  * IPS_CTL value is not the one we read. */
4096                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4097                         DRM_ERROR("Timed out waiting for IPS enable\n");
4098         }
4099 }
4100
4101 void hsw_disable_ips(struct intel_crtc *crtc)
4102 {
4103         struct drm_device *dev = crtc->base.dev;
4104         struct drm_i915_private *dev_priv = dev->dev_private;
4105
4106         if (!crtc->config.ips_enabled)
4107                 return;
4108
4109         assert_plane_enabled(dev_priv, crtc->plane);
4110         if (IS_BROADWELL(dev)) {
4111                 mutex_lock(&dev_priv->rps.hw_lock);
4112                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4113                 mutex_unlock(&dev_priv->rps.hw_lock);
4114                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4115                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4116                         DRM_ERROR("Timed out waiting for IPS disable\n");
4117         } else {
4118                 I915_WRITE(IPS_CTL, 0);
4119                 POSTING_READ(IPS_CTL);
4120         }
4121
4122         /* We need to wait for a vblank before we can disable the plane. */
4123         intel_wait_for_vblank(dev, crtc->pipe);
4124 }
4125
4126 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4127 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132         enum pipe pipe = intel_crtc->pipe;
4133         int palreg = PALETTE(pipe);
4134         int i;
4135         bool reenable_ips = false;
4136
4137         /* The clocks have to be on to load the palette. */
4138         if (!crtc->enabled || !intel_crtc->active)
4139                 return;
4140
4141         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4142                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4143                         assert_dsi_pll_enabled(dev_priv);
4144                 else
4145                         assert_pll_enabled(dev_priv, pipe);
4146         }
4147
4148         /* use legacy palette for Ironlake */
4149         if (!HAS_GMCH_DISPLAY(dev))
4150                 palreg = LGC_PALETTE(pipe);
4151
4152         /* Workaround : Do not read or write the pipe palette/gamma data while
4153          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4154          */
4155         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4156             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4157              GAMMA_MODE_MODE_SPLIT)) {
4158                 hsw_disable_ips(intel_crtc);
4159                 reenable_ips = true;
4160         }
4161
4162         for (i = 0; i < 256; i++) {
4163                 I915_WRITE(palreg + 4 * i,
4164                            (intel_crtc->lut_r[i] << 16) |
4165                            (intel_crtc->lut_g[i] << 8) |
4166                            intel_crtc->lut_b[i]);
4167         }
4168
4169         if (reenable_ips)
4170                 hsw_enable_ips(intel_crtc);
4171 }
4172
4173 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4174 {
4175         if (!enable && intel_crtc->overlay) {
4176                 struct drm_device *dev = intel_crtc->base.dev;
4177                 struct drm_i915_private *dev_priv = dev->dev_private;
4178
4179                 mutex_lock(&dev->struct_mutex);
4180                 dev_priv->mm.interruptible = false;
4181                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4182                 dev_priv->mm.interruptible = true;
4183                 mutex_unlock(&dev->struct_mutex);
4184         }
4185
4186         /* Let userspace switch the overlay on again. In most cases userspace
4187          * has to recompute where to put it anyway.
4188          */
4189 }
4190
4191 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4192 {
4193         struct drm_device *dev = crtc->dev;
4194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4195         int pipe = intel_crtc->pipe;
4196
4197         intel_enable_primary_hw_plane(crtc->primary, crtc);
4198         intel_enable_planes(crtc);
4199         intel_crtc_update_cursor(crtc, true);
4200         intel_crtc_dpms_overlay(intel_crtc, true);
4201
4202         hsw_enable_ips(intel_crtc);
4203
4204         mutex_lock(&dev->struct_mutex);
4205         intel_update_fbc(dev);
4206         mutex_unlock(&dev->struct_mutex);
4207
4208         /*
4209          * FIXME: Once we grow proper nuclear flip support out of this we need
4210          * to compute the mask of flip planes precisely. For the time being
4211          * consider this a flip from a NULL plane.
4212          */
4213         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4214 }
4215
4216 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4217 {
4218         struct drm_device *dev = crtc->dev;
4219         struct drm_i915_private *dev_priv = dev->dev_private;
4220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4221         int pipe = intel_crtc->pipe;
4222         int plane = intel_crtc->plane;
4223
4224         intel_crtc_wait_for_pending_flips(crtc);
4225
4226         if (dev_priv->fbc.plane == plane)
4227                 intel_disable_fbc(dev);
4228
4229         hsw_disable_ips(intel_crtc);
4230
4231         intel_crtc_dpms_overlay(intel_crtc, false);
4232         intel_crtc_update_cursor(crtc, false);
4233         intel_disable_planes(crtc);
4234         intel_disable_primary_hw_plane(crtc->primary, crtc);
4235
4236         /*
4237          * FIXME: Once we grow proper nuclear flip support out of this we need
4238          * to compute the mask of flip planes precisely. For the time being
4239          * consider this a flip to a NULL plane.
4240          */
4241         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4242 }
4243
4244 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4245 {
4246         struct drm_device *dev = crtc->dev;
4247         struct drm_i915_private *dev_priv = dev->dev_private;
4248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249         struct intel_encoder *encoder;
4250         int pipe = intel_crtc->pipe;
4251
4252         WARN_ON(!crtc->enabled);
4253
4254         if (intel_crtc->active)
4255                 return;
4256
4257         if (intel_crtc->config.has_pch_encoder)
4258                 intel_prepare_shared_dpll(intel_crtc);
4259
4260         if (intel_crtc->config.has_dp_encoder)
4261                 intel_dp_set_m_n(intel_crtc);
4262
4263         intel_set_pipe_timings(intel_crtc);
4264
4265         if (intel_crtc->config.has_pch_encoder) {
4266                 intel_cpu_transcoder_set_m_n(intel_crtc,
4267                                      &intel_crtc->config.fdi_m_n, NULL);
4268         }
4269
4270         ironlake_set_pipeconf(crtc);
4271
4272         intel_crtc->active = true;
4273
4274         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4275         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4276
4277         for_each_encoder_on_crtc(dev, crtc, encoder)
4278                 if (encoder->pre_enable)
4279                         encoder->pre_enable(encoder);
4280
4281         if (intel_crtc->config.has_pch_encoder) {
4282                 /* Note: FDI PLL enabling _must_ be done before we enable the
4283                  * cpu pipes, hence this is separate from all the other fdi/pch
4284                  * enabling. */
4285                 ironlake_fdi_pll_enable(intel_crtc);
4286         } else {
4287                 assert_fdi_tx_disabled(dev_priv, pipe);
4288                 assert_fdi_rx_disabled(dev_priv, pipe);
4289         }
4290
4291         ironlake_pfit_enable(intel_crtc);
4292
4293         /*
4294          * On ILK+ LUT must be loaded before the pipe is running but with
4295          * clocks enabled
4296          */
4297         intel_crtc_load_lut(crtc);
4298
4299         intel_update_watermarks(crtc);
4300         intel_enable_pipe(intel_crtc);
4301
4302         if (intel_crtc->config.has_pch_encoder)
4303                 ironlake_pch_enable(crtc);
4304
4305         for_each_encoder_on_crtc(dev, crtc, encoder)
4306                 encoder->enable(encoder);
4307
4308         if (HAS_PCH_CPT(dev))
4309                 cpt_verify_modeset(dev, intel_crtc->pipe);
4310
4311         assert_vblank_disabled(crtc);
4312         drm_crtc_vblank_on(crtc);
4313
4314         intel_crtc_enable_planes(crtc);
4315 }
4316
4317 /* IPS only exists on ULT machines and is tied to pipe A. */
4318 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4319 {
4320         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4321 }
4322
4323 /*
4324  * This implements the workaround described in the "notes" section of the mode
4325  * set sequence documentation. When going from no pipes or single pipe to
4326  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4327  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4328  */
4329 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4330 {
4331         struct drm_device *dev = crtc->base.dev;
4332         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4333
4334         /* We want to get the other_active_crtc only if there's only 1 other
4335          * active crtc. */
4336         for_each_intel_crtc(dev, crtc_it) {
4337                 if (!crtc_it->active || crtc_it == crtc)
4338                         continue;
4339
4340                 if (other_active_crtc)
4341                         return;
4342
4343                 other_active_crtc = crtc_it;
4344         }
4345         if (!other_active_crtc)
4346                 return;
4347
4348         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4349         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4350 }
4351
4352 static void haswell_crtc_enable(struct drm_crtc *crtc)
4353 {
4354         struct drm_device *dev = crtc->dev;
4355         struct drm_i915_private *dev_priv = dev->dev_private;
4356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4357         struct intel_encoder *encoder;
4358         int pipe = intel_crtc->pipe;
4359
4360         WARN_ON(!crtc->enabled);
4361
4362         if (intel_crtc->active)
4363                 return;
4364
4365         if (intel_crtc_to_shared_dpll(intel_crtc))
4366                 intel_enable_shared_dpll(intel_crtc);
4367
4368         if (intel_crtc->config.has_dp_encoder)
4369                 intel_dp_set_m_n(intel_crtc);
4370
4371         intel_set_pipe_timings(intel_crtc);
4372
4373         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4374                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4375                            intel_crtc->config.pixel_multiplier - 1);
4376         }
4377
4378         if (intel_crtc->config.has_pch_encoder) {
4379                 intel_cpu_transcoder_set_m_n(intel_crtc,
4380                                      &intel_crtc->config.fdi_m_n, NULL);
4381         }
4382
4383         haswell_set_pipeconf(crtc);
4384
4385         intel_set_pipe_csc(crtc);
4386
4387         intel_crtc->active = true;
4388
4389         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4390         for_each_encoder_on_crtc(dev, crtc, encoder)
4391                 if (encoder->pre_enable)
4392                         encoder->pre_enable(encoder);
4393
4394         if (intel_crtc->config.has_pch_encoder) {
4395                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4396                                                       true);
4397                 dev_priv->display.fdi_link_train(crtc);
4398         }
4399
4400         intel_ddi_enable_pipe_clock(intel_crtc);
4401
4402         if (IS_SKYLAKE(dev))
4403                 skylake_pfit_enable(intel_crtc);
4404         else
4405                 ironlake_pfit_enable(intel_crtc);
4406
4407         /*
4408          * On ILK+ LUT must be loaded before the pipe is running but with
4409          * clocks enabled
4410          */
4411         intel_crtc_load_lut(crtc);
4412
4413         intel_ddi_set_pipe_settings(crtc);
4414         intel_ddi_enable_transcoder_func(crtc);
4415
4416         intel_update_watermarks(crtc);
4417         intel_enable_pipe(intel_crtc);
4418
4419         if (intel_crtc->config.has_pch_encoder)
4420                 lpt_pch_enable(crtc);
4421
4422         if (intel_crtc->config.dp_encoder_is_mst)
4423                 intel_ddi_set_vc_payload_alloc(crtc, true);
4424
4425         for_each_encoder_on_crtc(dev, crtc, encoder) {
4426                 encoder->enable(encoder);
4427                 intel_opregion_notify_encoder(encoder, true);
4428         }
4429
4430         assert_vblank_disabled(crtc);
4431         drm_crtc_vblank_on(crtc);
4432
4433         /* If we change the relative order between pipe/planes enabling, we need
4434          * to change the workaround. */
4435         haswell_mode_set_planes_workaround(intel_crtc);
4436         intel_crtc_enable_planes(crtc);
4437 }
4438
4439 static void skylake_pfit_disable(struct intel_crtc *crtc)
4440 {
4441         struct drm_device *dev = crtc->base.dev;
4442         struct drm_i915_private *dev_priv = dev->dev_private;
4443         int pipe = crtc->pipe;
4444
4445         /* To avoid upsetting the power well on haswell only disable the pfit if
4446          * it's in use. The hw state code will make sure we get this right. */
4447         if (crtc->config.pch_pfit.enabled) {
4448                 I915_WRITE(PS_CTL(pipe), 0);
4449                 I915_WRITE(PS_WIN_POS(pipe), 0);
4450                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4451         }
4452 }
4453
4454 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4455 {
4456         struct drm_device *dev = crtc->base.dev;
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458         int pipe = crtc->pipe;
4459
4460         /* To avoid upsetting the power well on haswell only disable the pfit if
4461          * it's in use. The hw state code will make sure we get this right. */
4462         if (crtc->config.pch_pfit.enabled) {
4463                 I915_WRITE(PF_CTL(pipe), 0);
4464                 I915_WRITE(PF_WIN_POS(pipe), 0);
4465                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4466         }
4467 }
4468
4469 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4470 {
4471         struct drm_device *dev = crtc->dev;
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4474         struct intel_encoder *encoder;
4475         int pipe = intel_crtc->pipe;
4476         u32 reg, temp;
4477
4478         if (!intel_crtc->active)
4479                 return;
4480
4481         intel_crtc_disable_planes(crtc);
4482
4483         drm_crtc_vblank_off(crtc);
4484         assert_vblank_disabled(crtc);
4485
4486         for_each_encoder_on_crtc(dev, crtc, encoder)
4487                 encoder->disable(encoder);
4488
4489         if (intel_crtc->config.has_pch_encoder)
4490                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4491
4492         intel_disable_pipe(intel_crtc);
4493
4494         ironlake_pfit_disable(intel_crtc);
4495
4496         for_each_encoder_on_crtc(dev, crtc, encoder)
4497                 if (encoder->post_disable)
4498                         encoder->post_disable(encoder);
4499
4500         if (intel_crtc->config.has_pch_encoder) {
4501                 ironlake_fdi_disable(crtc);
4502
4503                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4504                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4505
4506                 if (HAS_PCH_CPT(dev)) {
4507                         /* disable TRANS_DP_CTL */
4508                         reg = TRANS_DP_CTL(pipe);
4509                         temp = I915_READ(reg);
4510                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4511                                   TRANS_DP_PORT_SEL_MASK);
4512                         temp |= TRANS_DP_PORT_SEL_NONE;
4513                         I915_WRITE(reg, temp);
4514
4515                         /* disable DPLL_SEL */
4516                         temp = I915_READ(PCH_DPLL_SEL);
4517                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4518                         I915_WRITE(PCH_DPLL_SEL, temp);
4519                 }
4520
4521                 /* disable PCH DPLL */
4522                 intel_disable_shared_dpll(intel_crtc);
4523
4524                 ironlake_fdi_pll_disable(intel_crtc);
4525         }
4526
4527         intel_crtc->active = false;
4528         intel_update_watermarks(crtc);
4529
4530         mutex_lock(&dev->struct_mutex);
4531         intel_update_fbc(dev);
4532         mutex_unlock(&dev->struct_mutex);
4533 }
4534
4535 static void haswell_crtc_disable(struct drm_crtc *crtc)
4536 {
4537         struct drm_device *dev = crtc->dev;
4538         struct drm_i915_private *dev_priv = dev->dev_private;
4539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4540         struct intel_encoder *encoder;
4541         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4542
4543         if (!intel_crtc->active)
4544                 return;
4545
4546         intel_crtc_disable_planes(crtc);
4547
4548         drm_crtc_vblank_off(crtc);
4549         assert_vblank_disabled(crtc);
4550
4551         for_each_encoder_on_crtc(dev, crtc, encoder) {
4552                 intel_opregion_notify_encoder(encoder, false);
4553                 encoder->disable(encoder);
4554         }
4555
4556         if (intel_crtc->config.has_pch_encoder)
4557                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4558                                                       false);
4559         intel_disable_pipe(intel_crtc);
4560
4561         if (intel_crtc->config.dp_encoder_is_mst)
4562                 intel_ddi_set_vc_payload_alloc(crtc, false);
4563
4564         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4565
4566         if (IS_SKYLAKE(dev))
4567                 skylake_pfit_disable(intel_crtc);
4568         else
4569                 ironlake_pfit_disable(intel_crtc);
4570
4571         intel_ddi_disable_pipe_clock(intel_crtc);
4572
4573         if (intel_crtc->config.has_pch_encoder) {
4574                 lpt_disable_pch_transcoder(dev_priv);
4575                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4576                                                       true);
4577                 intel_ddi_fdi_disable(crtc);
4578         }
4579
4580         for_each_encoder_on_crtc(dev, crtc, encoder)
4581                 if (encoder->post_disable)
4582                         encoder->post_disable(encoder);
4583
4584         intel_crtc->active = false;
4585         intel_update_watermarks(crtc);
4586
4587         mutex_lock(&dev->struct_mutex);
4588         intel_update_fbc(dev);
4589         mutex_unlock(&dev->struct_mutex);
4590
4591         if (intel_crtc_to_shared_dpll(intel_crtc))
4592                 intel_disable_shared_dpll(intel_crtc);
4593 }
4594
4595 static void ironlake_crtc_off(struct drm_crtc *crtc)
4596 {
4597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598         intel_put_shared_dpll(intel_crtc);
4599 }
4600
4601
4602 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4603 {
4604         struct drm_device *dev = crtc->base.dev;
4605         struct drm_i915_private *dev_priv = dev->dev_private;
4606         struct intel_crtc_config *pipe_config = &crtc->config;
4607
4608         if (!crtc->config.gmch_pfit.control)
4609                 return;
4610
4611         /*
4612          * The panel fitter should only be adjusted whilst the pipe is disabled,
4613          * according to register description and PRM.
4614          */
4615         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4616         assert_pipe_disabled(dev_priv, crtc->pipe);
4617
4618         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4619         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4620
4621         /* Border color in case we don't scale up to the full screen. Black by
4622          * default, change to something else for debugging. */
4623         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4624 }
4625
4626 static enum intel_display_power_domain port_to_power_domain(enum port port)
4627 {
4628         switch (port) {
4629         case PORT_A:
4630                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4631         case PORT_B:
4632                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4633         case PORT_C:
4634                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4635         case PORT_D:
4636                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4637         default:
4638                 WARN_ON_ONCE(1);
4639                 return POWER_DOMAIN_PORT_OTHER;
4640         }
4641 }
4642
4643 #define for_each_power_domain(domain, mask)                             \
4644         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4645                 if ((1 << (domain)) & (mask))
4646
4647 enum intel_display_power_domain
4648 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4649 {
4650         struct drm_device *dev = intel_encoder->base.dev;
4651         struct intel_digital_port *intel_dig_port;
4652
4653         switch (intel_encoder->type) {
4654         case INTEL_OUTPUT_UNKNOWN:
4655                 /* Only DDI platforms should ever use this output type */
4656                 WARN_ON_ONCE(!HAS_DDI(dev));
4657         case INTEL_OUTPUT_DISPLAYPORT:
4658         case INTEL_OUTPUT_HDMI:
4659         case INTEL_OUTPUT_EDP:
4660                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4661                 return port_to_power_domain(intel_dig_port->port);
4662         case INTEL_OUTPUT_DP_MST:
4663                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4664                 return port_to_power_domain(intel_dig_port->port);
4665         case INTEL_OUTPUT_ANALOG:
4666                 return POWER_DOMAIN_PORT_CRT;
4667         case INTEL_OUTPUT_DSI:
4668                 return POWER_DOMAIN_PORT_DSI;
4669         default:
4670                 return POWER_DOMAIN_PORT_OTHER;
4671         }
4672 }
4673
4674 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4675 {
4676         struct drm_device *dev = crtc->dev;
4677         struct intel_encoder *intel_encoder;
4678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679         enum pipe pipe = intel_crtc->pipe;
4680         unsigned long mask;
4681         enum transcoder transcoder;
4682
4683         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4684
4685         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4686         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4687         if (intel_crtc->config.pch_pfit.enabled ||
4688             intel_crtc->config.pch_pfit.force_thru)
4689                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4690
4691         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4692                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4693
4694         return mask;
4695 }
4696
4697 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4698 {
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4701         struct intel_crtc *crtc;
4702
4703         /*
4704          * First get all needed power domains, then put all unneeded, to avoid
4705          * any unnecessary toggling of the power wells.
4706          */
4707         for_each_intel_crtc(dev, crtc) {
4708                 enum intel_display_power_domain domain;
4709
4710                 if (!crtc->base.enabled)
4711                         continue;
4712
4713                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4714
4715                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4716                         intel_display_power_get(dev_priv, domain);
4717         }
4718
4719         if (dev_priv->display.modeset_global_resources)
4720                 dev_priv->display.modeset_global_resources(dev);
4721
4722         for_each_intel_crtc(dev, crtc) {
4723                 enum intel_display_power_domain domain;
4724
4725                 for_each_power_domain(domain, crtc->enabled_power_domains)
4726                         intel_display_power_put(dev_priv, domain);
4727
4728                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4729         }
4730
4731         intel_display_set_init_power(dev_priv, false);
4732 }
4733
4734 /* returns HPLL frequency in kHz */
4735 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4736 {
4737         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4738
4739         /* Obtain SKU information */
4740         mutex_lock(&dev_priv->dpio_lock);
4741         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4742                 CCK_FUSE_HPLL_FREQ_MASK;
4743         mutex_unlock(&dev_priv->dpio_lock);
4744
4745         return vco_freq[hpll_freq] * 1000;
4746 }
4747
4748 static void vlv_update_cdclk(struct drm_device *dev)
4749 {
4750         struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4753         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4754                          dev_priv->vlv_cdclk_freq);
4755
4756         /*
4757          * Program the gmbus_freq based on the cdclk frequency.
4758          * BSpec erroneously claims we should aim for 4MHz, but
4759          * in fact 1MHz is the correct frequency.
4760          */
4761         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4762 }
4763
4764 /* Adjust CDclk dividers to allow high res or save power if possible */
4765 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4766 {
4767         struct drm_i915_private *dev_priv = dev->dev_private;
4768         u32 val, cmd;
4769
4770         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4771
4772         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4773                 cmd = 2;
4774         else if (cdclk == 266667)
4775                 cmd = 1;
4776         else
4777                 cmd = 0;
4778
4779         mutex_lock(&dev_priv->rps.hw_lock);
4780         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4781         val &= ~DSPFREQGUAR_MASK;
4782         val |= (cmd << DSPFREQGUAR_SHIFT);
4783         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4784         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4785                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4786                      50)) {
4787                 DRM_ERROR("timed out waiting for CDclk change\n");
4788         }
4789         mutex_unlock(&dev_priv->rps.hw_lock);
4790
4791         if (cdclk == 400000) {
4792                 u32 divider;
4793
4794                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4795
4796                 mutex_lock(&dev_priv->dpio_lock);
4797                 /* adjust cdclk divider */
4798                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4799                 val &= ~DISPLAY_FREQUENCY_VALUES;
4800                 val |= divider;
4801                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4802
4803                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4804                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4805                              50))
4806                         DRM_ERROR("timed out waiting for CDclk change\n");
4807                 mutex_unlock(&dev_priv->dpio_lock);
4808         }
4809
4810         mutex_lock(&dev_priv->dpio_lock);
4811         /* adjust self-refresh exit latency value */
4812         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4813         val &= ~0x7f;
4814
4815         /*
4816          * For high bandwidth configs, we set a higher latency in the bunit
4817          * so that the core display fetch happens in time to avoid underruns.
4818          */
4819         if (cdclk == 400000)
4820                 val |= 4500 / 250; /* 4.5 usec */
4821         else
4822                 val |= 3000 / 250; /* 3.0 usec */
4823         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4824         mutex_unlock(&dev_priv->dpio_lock);
4825
4826         vlv_update_cdclk(dev);
4827 }
4828
4829 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4830 {
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         u32 val, cmd;
4833
4834         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4835
4836         switch (cdclk) {
4837         case 400000:
4838                 cmd = 3;
4839                 break;
4840         case 333333:
4841         case 320000:
4842                 cmd = 2;
4843                 break;
4844         case 266667:
4845                 cmd = 1;
4846                 break;
4847         case 200000:
4848                 cmd = 0;
4849                 break;
4850         default:
4851                 WARN_ON(1);
4852                 return;
4853         }
4854
4855         mutex_lock(&dev_priv->rps.hw_lock);
4856         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4857         val &= ~DSPFREQGUAR_MASK_CHV;
4858         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4859         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4860         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4861                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4862                      50)) {
4863                 DRM_ERROR("timed out waiting for CDclk change\n");
4864         }
4865         mutex_unlock(&dev_priv->rps.hw_lock);
4866
4867         vlv_update_cdclk(dev);
4868 }
4869
4870 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4871                                  int max_pixclk)
4872 {
4873         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4874
4875         /* FIXME: Punit isn't quite ready yet */
4876         if (IS_CHERRYVIEW(dev_priv->dev))
4877                 return 400000;
4878
4879         /*
4880          * Really only a few cases to deal with, as only 4 CDclks are supported:
4881          *   200MHz
4882          *   267MHz
4883          *   320/333MHz (depends on HPLL freq)
4884          *   400MHz
4885          * So we check to see whether we're above 90% of the lower bin and
4886          * adjust if needed.
4887          *
4888          * We seem to get an unstable or solid color picture at 200MHz.
4889          * Not sure what's wrong. For now use 200MHz only when all pipes
4890          * are off.
4891          */
4892         if (max_pixclk > freq_320*9/10)
4893                 return 400000;
4894         else if (max_pixclk > 266667*9/10)
4895                 return freq_320;
4896         else if (max_pixclk > 0)
4897                 return 266667;
4898         else
4899                 return 200000;
4900 }
4901
4902 /* compute the max pixel clock for new configuration */
4903 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4904 {
4905         struct drm_device *dev = dev_priv->dev;
4906         struct intel_crtc *intel_crtc;
4907         int max_pixclk = 0;
4908
4909         for_each_intel_crtc(dev, intel_crtc) {
4910                 if (intel_crtc->new_enabled)
4911                         max_pixclk = max(max_pixclk,
4912                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4913         }
4914
4915         return max_pixclk;
4916 }
4917
4918 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4919                                             unsigned *prepare_pipes)
4920 {
4921         struct drm_i915_private *dev_priv = dev->dev_private;
4922         struct intel_crtc *intel_crtc;
4923         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4924
4925         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4926             dev_priv->vlv_cdclk_freq)
4927                 return;
4928
4929         /* disable/enable all currently active pipes while we change cdclk */
4930         for_each_intel_crtc(dev, intel_crtc)
4931                 if (intel_crtc->base.enabled)
4932                         *prepare_pipes |= (1 << intel_crtc->pipe);
4933 }
4934
4935 static void valleyview_modeset_global_resources(struct drm_device *dev)
4936 {
4937         struct drm_i915_private *dev_priv = dev->dev_private;
4938         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4939         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4940
4941         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4942                 if (IS_CHERRYVIEW(dev))
4943                         cherryview_set_cdclk(dev, req_cdclk);
4944                 else
4945                         valleyview_set_cdclk(dev, req_cdclk);
4946         }
4947 }
4948
4949 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4950 {
4951         struct drm_device *dev = crtc->dev;
4952         struct drm_i915_private *dev_priv = to_i915(dev);
4953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4954         struct intel_encoder *encoder;
4955         int pipe = intel_crtc->pipe;
4956         bool is_dsi;
4957
4958         WARN_ON(!crtc->enabled);
4959
4960         if (intel_crtc->active)
4961                 return;
4962
4963         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4964
4965         if (!is_dsi) {
4966                 if (IS_CHERRYVIEW(dev))
4967                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4968                 else
4969                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4970         }
4971
4972         if (intel_crtc->config.has_dp_encoder)
4973                 intel_dp_set_m_n(intel_crtc);
4974
4975         intel_set_pipe_timings(intel_crtc);
4976
4977         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4978                 struct drm_i915_private *dev_priv = dev->dev_private;
4979
4980                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4981                 I915_WRITE(CHV_CANVAS(pipe), 0);
4982         }
4983
4984         i9xx_set_pipeconf(intel_crtc);
4985
4986         intel_crtc->active = true;
4987
4988         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4989
4990         for_each_encoder_on_crtc(dev, crtc, encoder)
4991                 if (encoder->pre_pll_enable)
4992                         encoder->pre_pll_enable(encoder);
4993
4994         if (!is_dsi) {
4995                 if (IS_CHERRYVIEW(dev))
4996                         chv_enable_pll(intel_crtc, &intel_crtc->config);
4997                 else
4998                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
4999         }
5000
5001         for_each_encoder_on_crtc(dev, crtc, encoder)
5002                 if (encoder->pre_enable)
5003                         encoder->pre_enable(encoder);
5004
5005         i9xx_pfit_enable(intel_crtc);
5006
5007         intel_crtc_load_lut(crtc);
5008
5009         intel_update_watermarks(crtc);
5010         intel_enable_pipe(intel_crtc);
5011
5012         for_each_encoder_on_crtc(dev, crtc, encoder)
5013                 encoder->enable(encoder);
5014
5015         assert_vblank_disabled(crtc);
5016         drm_crtc_vblank_on(crtc);
5017
5018         intel_crtc_enable_planes(crtc);
5019
5020         /* Underruns don't raise interrupts, so check manually. */
5021         i9xx_check_fifo_underruns(dev_priv);
5022 }
5023
5024 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5025 {
5026         struct drm_device *dev = crtc->base.dev;
5027         struct drm_i915_private *dev_priv = dev->dev_private;
5028
5029         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5030         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5031 }
5032
5033 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5034 {
5035         struct drm_device *dev = crtc->dev;
5036         struct drm_i915_private *dev_priv = to_i915(dev);
5037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5038         struct intel_encoder *encoder;
5039         int pipe = intel_crtc->pipe;
5040
5041         WARN_ON(!crtc->enabled);
5042
5043         if (intel_crtc->active)
5044                 return;
5045
5046         i9xx_set_pll_dividers(intel_crtc);
5047
5048         if (intel_crtc->config.has_dp_encoder)
5049                 intel_dp_set_m_n(intel_crtc);
5050
5051         intel_set_pipe_timings(intel_crtc);
5052
5053         i9xx_set_pipeconf(intel_crtc);
5054
5055         intel_crtc->active = true;
5056
5057         if (!IS_GEN2(dev))
5058                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5059
5060         for_each_encoder_on_crtc(dev, crtc, encoder)
5061                 if (encoder->pre_enable)
5062                         encoder->pre_enable(encoder);
5063
5064         i9xx_enable_pll(intel_crtc);
5065
5066         i9xx_pfit_enable(intel_crtc);
5067
5068         intel_crtc_load_lut(crtc);
5069
5070         intel_update_watermarks(crtc);
5071         intel_enable_pipe(intel_crtc);
5072
5073         for_each_encoder_on_crtc(dev, crtc, encoder)
5074                 encoder->enable(encoder);
5075
5076         assert_vblank_disabled(crtc);
5077         drm_crtc_vblank_on(crtc);
5078
5079         intel_crtc_enable_planes(crtc);
5080
5081         /*
5082          * Gen2 reports pipe underruns whenever all planes are disabled.
5083          * So don't enable underrun reporting before at least some planes
5084          * are enabled.
5085          * FIXME: Need to fix the logic to work when we turn off all planes
5086          * but leave the pipe running.
5087          */
5088         if (IS_GEN2(dev))
5089                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5090
5091         /* Underruns don't raise interrupts, so check manually. */
5092         i9xx_check_fifo_underruns(dev_priv);
5093 }
5094
5095 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5096 {
5097         struct drm_device *dev = crtc->base.dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099
5100         if (!crtc->config.gmch_pfit.control)
5101                 return;
5102
5103         assert_pipe_disabled(dev_priv, crtc->pipe);
5104
5105         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5106                          I915_READ(PFIT_CONTROL));
5107         I915_WRITE(PFIT_CONTROL, 0);
5108 }
5109
5110 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5111 {
5112         struct drm_device *dev = crtc->dev;
5113         struct drm_i915_private *dev_priv = dev->dev_private;
5114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5115         struct intel_encoder *encoder;
5116         int pipe = intel_crtc->pipe;
5117
5118         if (!intel_crtc->active)
5119                 return;
5120
5121         /*
5122          * Gen2 reports pipe underruns whenever all planes are disabled.
5123          * So diasble underrun reporting before all the planes get disabled.
5124          * FIXME: Need to fix the logic to work when we turn off all planes
5125          * but leave the pipe running.
5126          */
5127         if (IS_GEN2(dev))
5128                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5129
5130         /*
5131          * Vblank time updates from the shadow to live plane control register
5132          * are blocked if the memory self-refresh mode is active at that
5133          * moment. So to make sure the plane gets truly disabled, disable
5134          * first the self-refresh mode. The self-refresh enable bit in turn
5135          * will be checked/applied by the HW only at the next frame start
5136          * event which is after the vblank start event, so we need to have a
5137          * wait-for-vblank between disabling the plane and the pipe.
5138          */
5139         intel_set_memory_cxsr(dev_priv, false);
5140         intel_crtc_disable_planes(crtc);
5141
5142         /*
5143          * On gen2 planes are double buffered but the pipe isn't, so we must
5144          * wait for planes to fully turn off before disabling the pipe.
5145          * We also need to wait on all gmch platforms because of the
5146          * self-refresh mode constraint explained above.
5147          */
5148         intel_wait_for_vblank(dev, pipe);
5149
5150         drm_crtc_vblank_off(crtc);
5151         assert_vblank_disabled(crtc);
5152
5153         for_each_encoder_on_crtc(dev, crtc, encoder)
5154                 encoder->disable(encoder);
5155
5156         intel_disable_pipe(intel_crtc);
5157
5158         i9xx_pfit_disable(intel_crtc);
5159
5160         for_each_encoder_on_crtc(dev, crtc, encoder)
5161                 if (encoder->post_disable)
5162                         encoder->post_disable(encoder);
5163
5164         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5165                 if (IS_CHERRYVIEW(dev))
5166                         chv_disable_pll(dev_priv, pipe);
5167                 else if (IS_VALLEYVIEW(dev))
5168                         vlv_disable_pll(dev_priv, pipe);
5169                 else
5170                         i9xx_disable_pll(intel_crtc);
5171         }
5172
5173         if (!IS_GEN2(dev))
5174                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5175
5176         intel_crtc->active = false;
5177         intel_update_watermarks(crtc);
5178
5179         mutex_lock(&dev->struct_mutex);
5180         intel_update_fbc(dev);
5181         mutex_unlock(&dev->struct_mutex);
5182 }
5183
5184 static void i9xx_crtc_off(struct drm_crtc *crtc)
5185 {
5186 }
5187
5188 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5189                                     bool enabled)
5190 {
5191         struct drm_device *dev = crtc->dev;
5192         struct drm_i915_master_private *master_priv;
5193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194         int pipe = intel_crtc->pipe;
5195
5196         if (!dev->primary->master)
5197                 return;
5198
5199         master_priv = dev->primary->master->driver_priv;
5200         if (!master_priv->sarea_priv)
5201                 return;
5202
5203         switch (pipe) {
5204         case 0:
5205                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5206                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5207                 break;
5208         case 1:
5209                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5210                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5211                 break;
5212         default:
5213                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5214                 break;
5215         }
5216 }
5217
5218 /* Master function to enable/disable CRTC and corresponding power wells */
5219 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5220 {
5221         struct drm_device *dev = crtc->dev;
5222         struct drm_i915_private *dev_priv = dev->dev_private;
5223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5224         enum intel_display_power_domain domain;
5225         unsigned long domains;
5226
5227         if (enable) {
5228                 if (!intel_crtc->active) {
5229                         domains = get_crtc_power_domains(crtc);
5230                         for_each_power_domain(domain, domains)
5231                                 intel_display_power_get(dev_priv, domain);
5232                         intel_crtc->enabled_power_domains = domains;
5233
5234                         dev_priv->display.crtc_enable(crtc);
5235                 }
5236         } else {
5237                 if (intel_crtc->active) {
5238                         dev_priv->display.crtc_disable(crtc);
5239
5240                         domains = intel_crtc->enabled_power_domains;
5241                         for_each_power_domain(domain, domains)
5242                                 intel_display_power_put(dev_priv, domain);
5243                         intel_crtc->enabled_power_domains = 0;
5244                 }
5245         }
5246 }
5247
5248 /**
5249  * Sets the power management mode of the pipe and plane.
5250  */
5251 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5252 {
5253         struct drm_device *dev = crtc->dev;
5254         struct intel_encoder *intel_encoder;
5255         bool enable = false;
5256
5257         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5258                 enable |= intel_encoder->connectors_active;
5259
5260         intel_crtc_control(crtc, enable);
5261
5262         intel_crtc_update_sarea(crtc, enable);
5263 }
5264
5265 static void intel_crtc_disable(struct drm_crtc *crtc)
5266 {
5267         struct drm_device *dev = crtc->dev;
5268         struct drm_connector *connector;
5269         struct drm_i915_private *dev_priv = dev->dev_private;
5270         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5271         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5272
5273         /* crtc should still be enabled when we disable it. */
5274         WARN_ON(!crtc->enabled);
5275
5276         dev_priv->display.crtc_disable(crtc);
5277         intel_crtc_update_sarea(crtc, false);
5278         dev_priv->display.off(crtc);
5279
5280         if (crtc->primary->fb) {
5281                 mutex_lock(&dev->struct_mutex);
5282                 intel_unpin_fb_obj(old_obj);
5283                 i915_gem_track_fb(old_obj, NULL,
5284                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5285                 mutex_unlock(&dev->struct_mutex);
5286                 crtc->primary->fb = NULL;
5287         }
5288
5289         /* Update computed state. */
5290         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5291                 if (!connector->encoder || !connector->encoder->crtc)
5292                         continue;
5293
5294                 if (connector->encoder->crtc != crtc)
5295                         continue;
5296
5297                 connector->dpms = DRM_MODE_DPMS_OFF;
5298                 to_intel_encoder(connector->encoder)->connectors_active = false;
5299         }
5300 }
5301
5302 void intel_encoder_destroy(struct drm_encoder *encoder)
5303 {
5304         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5305
5306         drm_encoder_cleanup(encoder);
5307         kfree(intel_encoder);
5308 }
5309
5310 /* Simple dpms helper for encoders with just one connector, no cloning and only
5311  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5312  * state of the entire output pipe. */
5313 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5314 {
5315         if (mode == DRM_MODE_DPMS_ON) {
5316                 encoder->connectors_active = true;
5317
5318                 intel_crtc_update_dpms(encoder->base.crtc);
5319         } else {
5320                 encoder->connectors_active = false;
5321
5322                 intel_crtc_update_dpms(encoder->base.crtc);
5323         }
5324 }
5325
5326 /* Cross check the actual hw state with our own modeset state tracking (and it's
5327  * internal consistency). */
5328 static void intel_connector_check_state(struct intel_connector *connector)
5329 {
5330         if (connector->get_hw_state(connector)) {
5331                 struct intel_encoder *encoder = connector->encoder;
5332                 struct drm_crtc *crtc;
5333                 bool encoder_enabled;
5334                 enum pipe pipe;
5335
5336                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5337                               connector->base.base.id,
5338                               connector->base.name);
5339
5340                 /* there is no real hw state for MST connectors */
5341                 if (connector->mst_port)
5342                         return;
5343
5344                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5345                      "wrong connector dpms state\n");
5346                 WARN(connector->base.encoder != &encoder->base,
5347                      "active connector not linked to encoder\n");
5348
5349                 if (encoder) {
5350                         WARN(!encoder->connectors_active,
5351                              "encoder->connectors_active not set\n");
5352
5353                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5354                         WARN(!encoder_enabled, "encoder not enabled\n");
5355                         if (WARN_ON(!encoder->base.crtc))
5356                                 return;
5357
5358                         crtc = encoder->base.crtc;
5359
5360                         WARN(!crtc->enabled, "crtc not enabled\n");
5361                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5362                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5363                              "encoder active on the wrong pipe\n");
5364                 }
5365         }
5366 }
5367
5368 /* Even simpler default implementation, if there's really no special case to
5369  * consider. */
5370 void intel_connector_dpms(struct drm_connector *connector, int mode)
5371 {
5372         /* All the simple cases only support two dpms states. */
5373         if (mode != DRM_MODE_DPMS_ON)
5374                 mode = DRM_MODE_DPMS_OFF;
5375
5376         if (mode == connector->dpms)
5377                 return;
5378
5379         connector->dpms = mode;
5380
5381         /* Only need to change hw state when actually enabled */
5382         if (connector->encoder)
5383                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5384
5385         intel_modeset_check_state(connector->dev);
5386 }
5387
5388 /* Simple connector->get_hw_state implementation for encoders that support only
5389  * one connector and no cloning and hence the encoder state determines the state
5390  * of the connector. */
5391 bool intel_connector_get_hw_state(struct intel_connector *connector)
5392 {
5393         enum pipe pipe = 0;
5394         struct intel_encoder *encoder = connector->encoder;
5395
5396         return encoder->get_hw_state(encoder, &pipe);
5397 }
5398
5399 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5400                                      struct intel_crtc_config *pipe_config)
5401 {
5402         struct drm_i915_private *dev_priv = dev->dev_private;
5403         struct intel_crtc *pipe_B_crtc =
5404                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5405
5406         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5407                       pipe_name(pipe), pipe_config->fdi_lanes);
5408         if (pipe_config->fdi_lanes > 4) {
5409                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5410                               pipe_name(pipe), pipe_config->fdi_lanes);
5411                 return false;
5412         }
5413
5414         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5415                 if (pipe_config->fdi_lanes > 2) {
5416                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5417                                       pipe_config->fdi_lanes);
5418                         return false;
5419                 } else {
5420                         return true;
5421                 }
5422         }
5423
5424         if (INTEL_INFO(dev)->num_pipes == 2)
5425                 return true;
5426
5427         /* Ivybridge 3 pipe is really complicated */
5428         switch (pipe) {
5429         case PIPE_A:
5430                 return true;
5431         case PIPE_B:
5432                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5433                     pipe_config->fdi_lanes > 2) {
5434                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5435                                       pipe_name(pipe), pipe_config->fdi_lanes);
5436                         return false;
5437                 }
5438                 return true;
5439         case PIPE_C:
5440                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5441                     pipe_B_crtc->config.fdi_lanes <= 2) {
5442                         if (pipe_config->fdi_lanes > 2) {
5443                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5444                                               pipe_name(pipe), pipe_config->fdi_lanes);
5445                                 return false;
5446                         }
5447                 } else {
5448                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5449                         return false;
5450                 }
5451                 return true;
5452         default:
5453                 BUG();
5454         }
5455 }
5456
5457 #define RETRY 1
5458 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5459                                        struct intel_crtc_config *pipe_config)
5460 {
5461         struct drm_device *dev = intel_crtc->base.dev;
5462         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5463         int lane, link_bw, fdi_dotclock;
5464         bool setup_ok, needs_recompute = false;
5465
5466 retry:
5467         /* FDI is a binary signal running at ~2.7GHz, encoding
5468          * each output octet as 10 bits. The actual frequency
5469          * is stored as a divider into a 100MHz clock, and the
5470          * mode pixel clock is stored in units of 1KHz.
5471          * Hence the bw of each lane in terms of the mode signal
5472          * is:
5473          */
5474         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5475
5476         fdi_dotclock = adjusted_mode->crtc_clock;
5477
5478         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5479                                            pipe_config->pipe_bpp);
5480
5481         pipe_config->fdi_lanes = lane;
5482
5483         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5484                                link_bw, &pipe_config->fdi_m_n);
5485
5486         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5487                                             intel_crtc->pipe, pipe_config);
5488         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5489                 pipe_config->pipe_bpp -= 2*3;
5490                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5491                               pipe_config->pipe_bpp);
5492                 needs_recompute = true;
5493                 pipe_config->bw_constrained = true;
5494
5495                 goto retry;
5496         }
5497
5498         if (needs_recompute)
5499                 return RETRY;
5500
5501         return setup_ok ? 0 : -EINVAL;
5502 }
5503
5504 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5505                                    struct intel_crtc_config *pipe_config)
5506 {
5507         pipe_config->ips_enabled = i915.enable_ips &&
5508                                    hsw_crtc_supports_ips(crtc) &&
5509                                    pipe_config->pipe_bpp <= 24;
5510 }
5511
5512 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5513                                      struct intel_crtc_config *pipe_config)
5514 {
5515         struct drm_device *dev = crtc->base.dev;
5516         struct drm_i915_private *dev_priv = dev->dev_private;
5517         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5518
5519         /* FIXME should check pixel clock limits on all platforms */
5520         if (INTEL_INFO(dev)->gen < 4) {
5521                 int clock_limit =
5522                         dev_priv->display.get_display_clock_speed(dev);
5523
5524                 /*
5525                  * Enable pixel doubling when the dot clock
5526                  * is > 90% of the (display) core speed.
5527                  *
5528                  * GDG double wide on either pipe,
5529                  * otherwise pipe A only.
5530                  */
5531                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5532                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5533                         clock_limit *= 2;
5534                         pipe_config->double_wide = true;
5535                 }
5536
5537                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5538                         return -EINVAL;
5539         }
5540
5541         /*
5542          * Pipe horizontal size must be even in:
5543          * - DVO ganged mode
5544          * - LVDS dual channel mode
5545          * - Double wide pipe
5546          */
5547         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5548              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5549                 pipe_config->pipe_src_w &= ~1;
5550
5551         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5552          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5553          */
5554         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5555                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5556                 return -EINVAL;
5557
5558         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5559                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5560         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5561                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5562                  * for lvds. */
5563                 pipe_config->pipe_bpp = 8*3;
5564         }
5565
5566         if (HAS_IPS(dev))
5567                 hsw_compute_ips_config(crtc, pipe_config);
5568
5569         if (pipe_config->has_pch_encoder)
5570                 return ironlake_fdi_compute_config(crtc, pipe_config);
5571
5572         return 0;
5573 }
5574
5575 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5576 {
5577         struct drm_i915_private *dev_priv = dev->dev_private;
5578         u32 val;
5579         int divider;
5580
5581         /* FIXME: Punit isn't quite ready yet */
5582         if (IS_CHERRYVIEW(dev))
5583                 return 400000;
5584
5585         if (dev_priv->hpll_freq == 0)
5586                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5587
5588         mutex_lock(&dev_priv->dpio_lock);
5589         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5590         mutex_unlock(&dev_priv->dpio_lock);
5591
5592         divider = val & DISPLAY_FREQUENCY_VALUES;
5593
5594         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5595              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5596              "cdclk change in progress\n");
5597
5598         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5599 }
5600
5601 static int i945_get_display_clock_speed(struct drm_device *dev)
5602 {
5603         return 400000;
5604 }
5605
5606 static int i915_get_display_clock_speed(struct drm_device *dev)
5607 {
5608         return 333000;
5609 }
5610
5611 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5612 {
5613         return 200000;
5614 }
5615
5616 static int pnv_get_display_clock_speed(struct drm_device *dev)
5617 {
5618         u16 gcfgc = 0;
5619
5620         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5621
5622         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5624                 return 267000;
5625         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5626                 return 333000;
5627         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5628                 return 444000;
5629         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5630                 return 200000;
5631         default:
5632                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5633         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5634                 return 133000;
5635         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5636                 return 167000;
5637         }
5638 }
5639
5640 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5641 {
5642         u16 gcfgc = 0;
5643
5644         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5645
5646         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5647                 return 133000;
5648         else {
5649                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5650                 case GC_DISPLAY_CLOCK_333_MHZ:
5651                         return 333000;
5652                 default:
5653                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5654                         return 190000;
5655                 }
5656         }
5657 }
5658
5659 static int i865_get_display_clock_speed(struct drm_device *dev)
5660 {
5661         return 266000;
5662 }
5663
5664 static int i855_get_display_clock_speed(struct drm_device *dev)
5665 {
5666         u16 hpllcc = 0;
5667         /* Assume that the hardware is in the high speed state.  This
5668          * should be the default.
5669          */
5670         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5671         case GC_CLOCK_133_200:
5672         case GC_CLOCK_100_200:
5673                 return 200000;
5674         case GC_CLOCK_166_250:
5675                 return 250000;
5676         case GC_CLOCK_100_133:
5677                 return 133000;
5678         }
5679
5680         /* Shouldn't happen */
5681         return 0;
5682 }
5683
5684 static int i830_get_display_clock_speed(struct drm_device *dev)
5685 {
5686         return 133000;
5687 }
5688
5689 static void
5690 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5691 {
5692         while (*num > DATA_LINK_M_N_MASK ||
5693                *den > DATA_LINK_M_N_MASK) {
5694                 *num >>= 1;
5695                 *den >>= 1;
5696         }
5697 }
5698
5699 static void compute_m_n(unsigned int m, unsigned int n,
5700                         uint32_t *ret_m, uint32_t *ret_n)
5701 {
5702         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5703         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5704         intel_reduce_m_n_ratio(ret_m, ret_n);
5705 }
5706
5707 void
5708 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5709                        int pixel_clock, int link_clock,
5710                        struct intel_link_m_n *m_n)
5711 {
5712         m_n->tu = 64;
5713
5714         compute_m_n(bits_per_pixel * pixel_clock,
5715                     link_clock * nlanes * 8,
5716                     &m_n->gmch_m, &m_n->gmch_n);
5717
5718         compute_m_n(pixel_clock, link_clock,
5719                     &m_n->link_m, &m_n->link_n);
5720 }
5721
5722 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5723 {
5724         if (i915.panel_use_ssc >= 0)
5725                 return i915.panel_use_ssc != 0;
5726         return dev_priv->vbt.lvds_use_ssc
5727                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5728 }
5729
5730 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5731 {
5732         struct drm_device *dev = crtc->base.dev;
5733         struct drm_i915_private *dev_priv = dev->dev_private;
5734         int refclk;
5735
5736         if (IS_VALLEYVIEW(dev)) {
5737                 refclk = 100000;
5738         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5739             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5740                 refclk = dev_priv->vbt.lvds_ssc_freq;
5741                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5742         } else if (!IS_GEN2(dev)) {
5743                 refclk = 96000;
5744         } else {
5745                 refclk = 48000;
5746         }
5747
5748         return refclk;
5749 }
5750
5751 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5752 {
5753         return (1 << dpll->n) << 16 | dpll->m2;
5754 }
5755
5756 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5757 {
5758         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5759 }
5760
5761 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5762                                      intel_clock_t *reduced_clock)
5763 {
5764         struct drm_device *dev = crtc->base.dev;
5765         u32 fp, fp2 = 0;
5766
5767         if (IS_PINEVIEW(dev)) {
5768                 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5769                 if (reduced_clock)
5770                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5771         } else {
5772                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5773                 if (reduced_clock)
5774                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5775         }
5776
5777         crtc->new_config->dpll_hw_state.fp0 = fp;
5778
5779         crtc->lowfreq_avail = false;
5780         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5781             reduced_clock && i915.powersave) {
5782                 crtc->new_config->dpll_hw_state.fp1 = fp2;
5783                 crtc->lowfreq_avail = true;
5784         } else {
5785                 crtc->new_config->dpll_hw_state.fp1 = fp;
5786         }
5787 }
5788
5789 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5790                 pipe)
5791 {
5792         u32 reg_val;
5793
5794         /*
5795          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5796          * and set it to a reasonable value instead.
5797          */
5798         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5799         reg_val &= 0xffffff00;
5800         reg_val |= 0x00000030;
5801         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5802
5803         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5804         reg_val &= 0x8cffffff;
5805         reg_val = 0x8c000000;
5806         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5807
5808         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5809         reg_val &= 0xffffff00;
5810         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5811
5812         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5813         reg_val &= 0x00ffffff;
5814         reg_val |= 0xb0000000;
5815         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5816 }
5817
5818 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5819                                          struct intel_link_m_n *m_n)
5820 {
5821         struct drm_device *dev = crtc->base.dev;
5822         struct drm_i915_private *dev_priv = dev->dev_private;
5823         int pipe = crtc->pipe;
5824
5825         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5826         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5827         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5828         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5829 }
5830
5831 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5832                                          struct intel_link_m_n *m_n,
5833                                          struct intel_link_m_n *m2_n2)
5834 {
5835         struct drm_device *dev = crtc->base.dev;
5836         struct drm_i915_private *dev_priv = dev->dev_private;
5837         int pipe = crtc->pipe;
5838         enum transcoder transcoder = crtc->config.cpu_transcoder;
5839
5840         if (INTEL_INFO(dev)->gen >= 5) {
5841                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5842                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5843                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5844                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5845                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5846                  * for gen < 8) and if DRRS is supported (to make sure the
5847                  * registers are not unnecessarily accessed).
5848                  */
5849                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5850                         crtc->config.has_drrs) {
5851                         I915_WRITE(PIPE_DATA_M2(transcoder),
5852                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5853                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5854                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5855                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5856                 }
5857         } else {
5858                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5859                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5860                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5861                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5862         }
5863 }
5864
5865 void intel_dp_set_m_n(struct intel_crtc *crtc)
5866 {
5867         if (crtc->config.has_pch_encoder)
5868                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5869         else
5870                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5871                                                    &crtc->config.dp_m2_n2);
5872 }
5873
5874 static void vlv_update_pll(struct intel_crtc *crtc,
5875                            struct intel_crtc_config *pipe_config)
5876 {
5877         u32 dpll, dpll_md;
5878
5879         /*
5880          * Enable DPIO clock input. We should never disable the reference
5881          * clock for pipe B, since VGA hotplug / manual detection depends
5882          * on it.
5883          */
5884         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5885                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5886         /* We should never disable this, set it here for state tracking */
5887         if (crtc->pipe == PIPE_B)
5888                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5889         dpll |= DPLL_VCO_ENABLE;
5890         pipe_config->dpll_hw_state.dpll = dpll;
5891
5892         dpll_md = (pipe_config->pixel_multiplier - 1)
5893                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5894         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5895 }
5896
5897 static void vlv_prepare_pll(struct intel_crtc *crtc,
5898                             const struct intel_crtc_config *pipe_config)
5899 {
5900         struct drm_device *dev = crtc->base.dev;
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902         int pipe = crtc->pipe;
5903         u32 mdiv;
5904         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5905         u32 coreclk, reg_val;
5906
5907         mutex_lock(&dev_priv->dpio_lock);
5908
5909         bestn = pipe_config->dpll.n;
5910         bestm1 = pipe_config->dpll.m1;
5911         bestm2 = pipe_config->dpll.m2;
5912         bestp1 = pipe_config->dpll.p1;
5913         bestp2 = pipe_config->dpll.p2;
5914
5915         /* See eDP HDMI DPIO driver vbios notes doc */
5916
5917         /* PLL B needs special handling */
5918         if (pipe == PIPE_B)
5919                 vlv_pllb_recal_opamp(dev_priv, pipe);
5920
5921         /* Set up Tx target for periodic Rcomp update */
5922         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5923
5924         /* Disable target IRef on PLL */
5925         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5926         reg_val &= 0x00ffffff;
5927         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5928
5929         /* Disable fast lock */
5930         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5931
5932         /* Set idtafcrecal before PLL is enabled */
5933         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5934         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5935         mdiv |= ((bestn << DPIO_N_SHIFT));
5936         mdiv |= (1 << DPIO_K_SHIFT);
5937
5938         /*
5939          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5940          * but we don't support that).
5941          * Note: don't use the DAC post divider as it seems unstable.
5942          */
5943         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5944         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5945
5946         mdiv |= DPIO_ENABLE_CALIBRATION;
5947         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5948
5949         /* Set HBR and RBR LPF coefficients */
5950         if (pipe_config->port_clock == 162000 ||
5951             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5952             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5953                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5954                                  0x009f0003);
5955         else
5956                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5957                                  0x00d0000f);
5958
5959         if (crtc->config.has_dp_encoder) {
5960                 /* Use SSC source */
5961                 if (pipe == PIPE_A)
5962                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5963                                          0x0df40000);
5964                 else
5965                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5966                                          0x0df70000);
5967         } else { /* HDMI or VGA */
5968                 /* Use bend source */
5969                 if (pipe == PIPE_A)
5970                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5971                                          0x0df70000);
5972                 else
5973                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5974                                          0x0df40000);
5975         }
5976
5977         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5978         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5979         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5980             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5981                 coreclk |= 0x01000000;
5982         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5983
5984         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5985         mutex_unlock(&dev_priv->dpio_lock);
5986 }
5987
5988 static void chv_update_pll(struct intel_crtc *crtc,
5989                            struct intel_crtc_config *pipe_config)
5990 {
5991         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5992                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5993                 DPLL_VCO_ENABLE;
5994         if (crtc->pipe != PIPE_A)
5995                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5996
5997         pipe_config->dpll_hw_state.dpll_md =
5998                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5999 }
6000
6001 static void chv_prepare_pll(struct intel_crtc *crtc,
6002                             const struct intel_crtc_config *pipe_config)
6003 {
6004         struct drm_device *dev = crtc->base.dev;
6005         struct drm_i915_private *dev_priv = dev->dev_private;
6006         int pipe = crtc->pipe;
6007         int dpll_reg = DPLL(crtc->pipe);
6008         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6009         u32 loopfilter, intcoeff;
6010         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6011         int refclk;
6012
6013         bestn = pipe_config->dpll.n;
6014         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6015         bestm1 = pipe_config->dpll.m1;
6016         bestm2 = pipe_config->dpll.m2 >> 22;
6017         bestp1 = pipe_config->dpll.p1;
6018         bestp2 = pipe_config->dpll.p2;
6019
6020         /*
6021          * Enable Refclk and SSC
6022          */
6023         I915_WRITE(dpll_reg,
6024                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6025
6026         mutex_lock(&dev_priv->dpio_lock);
6027
6028         /* p1 and p2 divider */
6029         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6030                         5 << DPIO_CHV_S1_DIV_SHIFT |
6031                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6032                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6033                         1 << DPIO_CHV_K_DIV_SHIFT);
6034
6035         /* Feedback post-divider - m2 */
6036         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6037
6038         /* Feedback refclk divider - n and m1 */
6039         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6040                         DPIO_CHV_M1_DIV_BY_2 |
6041                         1 << DPIO_CHV_N_DIV_SHIFT);
6042
6043         /* M2 fraction division */
6044         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6045
6046         /* M2 fraction division enable */
6047         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6048                        DPIO_CHV_FRAC_DIV_EN |
6049                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6050
6051         /* Loop filter */
6052         refclk = i9xx_get_refclk(crtc, 0);
6053         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6054                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6055         if (refclk == 100000)
6056                 intcoeff = 11;
6057         else if (refclk == 38400)
6058                 intcoeff = 10;
6059         else
6060                 intcoeff = 9;
6061         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6062         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6063
6064         /* AFC Recal */
6065         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6066                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6067                         DPIO_AFC_RECAL);
6068
6069         mutex_unlock(&dev_priv->dpio_lock);
6070 }
6071
6072 /**
6073  * vlv_force_pll_on - forcibly enable just the PLL
6074  * @dev_priv: i915 private structure
6075  * @pipe: pipe PLL to enable
6076  * @dpll: PLL configuration
6077  *
6078  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6079  * in cases where we need the PLL enabled even when @pipe is not going to
6080  * be enabled.
6081  */
6082 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6083                       const struct dpll *dpll)
6084 {
6085         struct intel_crtc *crtc =
6086                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6087         struct intel_crtc_config pipe_config = {
6088                 .pixel_multiplier = 1,
6089                 .dpll = *dpll,
6090         };
6091
6092         if (IS_CHERRYVIEW(dev)) {
6093                 chv_update_pll(crtc, &pipe_config);
6094                 chv_prepare_pll(crtc, &pipe_config);
6095                 chv_enable_pll(crtc, &pipe_config);
6096         } else {
6097                 vlv_update_pll(crtc, &pipe_config);
6098                 vlv_prepare_pll(crtc, &pipe_config);
6099                 vlv_enable_pll(crtc, &pipe_config);
6100         }
6101 }
6102
6103 /**
6104  * vlv_force_pll_off - forcibly disable just the PLL
6105  * @dev_priv: i915 private structure
6106  * @pipe: pipe PLL to disable
6107  *
6108  * Disable the PLL for @pipe. To be used in cases where we need
6109  * the PLL enabled even when @pipe is not going to be enabled.
6110  */
6111 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6112 {
6113         if (IS_CHERRYVIEW(dev))
6114                 chv_disable_pll(to_i915(dev), pipe);
6115         else
6116                 vlv_disable_pll(to_i915(dev), pipe);
6117 }
6118
6119 static void i9xx_update_pll(struct intel_crtc *crtc,
6120                             intel_clock_t *reduced_clock,
6121                             int num_connectors)
6122 {
6123         struct drm_device *dev = crtc->base.dev;
6124         struct drm_i915_private *dev_priv = dev->dev_private;
6125         u32 dpll;
6126         bool is_sdvo;
6127         struct dpll *clock = &crtc->new_config->dpll;
6128
6129         i9xx_update_pll_dividers(crtc, reduced_clock);
6130
6131         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6132                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6133
6134         dpll = DPLL_VGA_MODE_DIS;
6135
6136         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6137                 dpll |= DPLLB_MODE_LVDS;
6138         else
6139                 dpll |= DPLLB_MODE_DAC_SERIAL;
6140
6141         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6142                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6143                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6144         }
6145
6146         if (is_sdvo)
6147                 dpll |= DPLL_SDVO_HIGH_SPEED;
6148
6149         if (crtc->new_config->has_dp_encoder)
6150                 dpll |= DPLL_SDVO_HIGH_SPEED;
6151
6152         /* compute bitmask from p1 value */
6153         if (IS_PINEVIEW(dev))
6154                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6155         else {
6156                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6157                 if (IS_G4X(dev) && reduced_clock)
6158                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6159         }
6160         switch (clock->p2) {
6161         case 5:
6162                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6163                 break;
6164         case 7:
6165                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6166                 break;
6167         case 10:
6168                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6169                 break;
6170         case 14:
6171                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6172                 break;
6173         }
6174         if (INTEL_INFO(dev)->gen >= 4)
6175                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6176
6177         if (crtc->new_config->sdvo_tv_clock)
6178                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6179         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6180                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6181                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6182         else
6183                 dpll |= PLL_REF_INPUT_DREFCLK;
6184
6185         dpll |= DPLL_VCO_ENABLE;
6186         crtc->new_config->dpll_hw_state.dpll = dpll;
6187
6188         if (INTEL_INFO(dev)->gen >= 4) {
6189                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6190                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6191                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6192         }
6193 }
6194
6195 static void i8xx_update_pll(struct intel_crtc *crtc,
6196                             intel_clock_t *reduced_clock,
6197                             int num_connectors)
6198 {
6199         struct drm_device *dev = crtc->base.dev;
6200         struct drm_i915_private *dev_priv = dev->dev_private;
6201         u32 dpll;
6202         struct dpll *clock = &crtc->new_config->dpll;
6203
6204         i9xx_update_pll_dividers(crtc, reduced_clock);
6205
6206         dpll = DPLL_VGA_MODE_DIS;
6207
6208         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6209                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6210         } else {
6211                 if (clock->p1 == 2)
6212                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6213                 else
6214                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6215                 if (clock->p2 == 4)
6216                         dpll |= PLL_P2_DIVIDE_BY_4;
6217         }
6218
6219         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6220                 dpll |= DPLL_DVO_2X_MODE;
6221
6222         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6223                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6224                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6225         else
6226                 dpll |= PLL_REF_INPUT_DREFCLK;
6227
6228         dpll |= DPLL_VCO_ENABLE;
6229         crtc->new_config->dpll_hw_state.dpll = dpll;
6230 }
6231
6232 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6233 {
6234         struct drm_device *dev = intel_crtc->base.dev;
6235         struct drm_i915_private *dev_priv = dev->dev_private;
6236         enum pipe pipe = intel_crtc->pipe;
6237         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6238         struct drm_display_mode *adjusted_mode =
6239                 &intel_crtc->config.adjusted_mode;
6240         uint32_t crtc_vtotal, crtc_vblank_end;
6241         int vsyncshift = 0;
6242
6243         /* We need to be careful not to changed the adjusted mode, for otherwise
6244          * the hw state checker will get angry at the mismatch. */
6245         crtc_vtotal = adjusted_mode->crtc_vtotal;
6246         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6247
6248         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6249                 /* the chip adds 2 halflines automatically */
6250                 crtc_vtotal -= 1;
6251                 crtc_vblank_end -= 1;
6252
6253                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6254                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6255                 else
6256                         vsyncshift = adjusted_mode->crtc_hsync_start -
6257                                 adjusted_mode->crtc_htotal / 2;
6258                 if (vsyncshift < 0)
6259                         vsyncshift += adjusted_mode->crtc_htotal;
6260         }
6261
6262         if (INTEL_INFO(dev)->gen > 3)
6263                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6264
6265         I915_WRITE(HTOTAL(cpu_transcoder),
6266                    (adjusted_mode->crtc_hdisplay - 1) |
6267                    ((adjusted_mode->crtc_htotal - 1) << 16));
6268         I915_WRITE(HBLANK(cpu_transcoder),
6269                    (adjusted_mode->crtc_hblank_start - 1) |
6270                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6271         I915_WRITE(HSYNC(cpu_transcoder),
6272                    (adjusted_mode->crtc_hsync_start - 1) |
6273                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6274
6275         I915_WRITE(VTOTAL(cpu_transcoder),
6276                    (adjusted_mode->crtc_vdisplay - 1) |
6277                    ((crtc_vtotal - 1) << 16));
6278         I915_WRITE(VBLANK(cpu_transcoder),
6279                    (adjusted_mode->crtc_vblank_start - 1) |
6280                    ((crtc_vblank_end - 1) << 16));
6281         I915_WRITE(VSYNC(cpu_transcoder),
6282                    (adjusted_mode->crtc_vsync_start - 1) |
6283                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6284
6285         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6286          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6287          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6288          * bits. */
6289         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6290             (pipe == PIPE_B || pipe == PIPE_C))
6291                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6292
6293         /* pipesrc controls the size that is scaled from, which should
6294          * always be the user's requested size.
6295          */
6296         I915_WRITE(PIPESRC(pipe),
6297                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6298                    (intel_crtc->config.pipe_src_h - 1));
6299 }
6300
6301 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6302                                    struct intel_crtc_config *pipe_config)
6303 {
6304         struct drm_device *dev = crtc->base.dev;
6305         struct drm_i915_private *dev_priv = dev->dev_private;
6306         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6307         uint32_t tmp;
6308
6309         tmp = I915_READ(HTOTAL(cpu_transcoder));
6310         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6311         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6312         tmp = I915_READ(HBLANK(cpu_transcoder));
6313         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6314         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6315         tmp = I915_READ(HSYNC(cpu_transcoder));
6316         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6317         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6318
6319         tmp = I915_READ(VTOTAL(cpu_transcoder));
6320         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6321         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6322         tmp = I915_READ(VBLANK(cpu_transcoder));
6323         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6324         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6325         tmp = I915_READ(VSYNC(cpu_transcoder));
6326         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6327         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6328
6329         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6330                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6331                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6332                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6333         }
6334
6335         tmp = I915_READ(PIPESRC(crtc->pipe));
6336         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6337         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6338
6339         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6340         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6341 }
6342
6343 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6344                                  struct intel_crtc_config *pipe_config)
6345 {
6346         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6347         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6348         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6349         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6350
6351         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6352         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6353         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6354         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6355
6356         mode->flags = pipe_config->adjusted_mode.flags;
6357
6358         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6359         mode->flags |= pipe_config->adjusted_mode.flags;
6360 }
6361
6362 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6363 {
6364         struct drm_device *dev = intel_crtc->base.dev;
6365         struct drm_i915_private *dev_priv = dev->dev_private;
6366         uint32_t pipeconf;
6367
6368         pipeconf = 0;
6369
6370         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6371             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6372                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6373
6374         if (intel_crtc->config.double_wide)
6375                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6376
6377         /* only g4x and later have fancy bpc/dither controls */
6378         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6379                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6380                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6381                         pipeconf |= PIPECONF_DITHER_EN |
6382                                     PIPECONF_DITHER_TYPE_SP;
6383
6384                 switch (intel_crtc->config.pipe_bpp) {
6385                 case 18:
6386                         pipeconf |= PIPECONF_6BPC;
6387                         break;
6388                 case 24:
6389                         pipeconf |= PIPECONF_8BPC;
6390                         break;
6391                 case 30:
6392                         pipeconf |= PIPECONF_10BPC;
6393                         break;
6394                 default:
6395                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6396                         BUG();
6397                 }
6398         }
6399
6400         if (HAS_PIPE_CXSR(dev)) {
6401                 if (intel_crtc->lowfreq_avail) {
6402                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6403                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6404                 } else {
6405                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6406                 }
6407         }
6408
6409         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6410                 if (INTEL_INFO(dev)->gen < 4 ||
6411                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6412                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6413                 else
6414                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6415         } else
6416                 pipeconf |= PIPECONF_PROGRESSIVE;
6417
6418         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6419                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6420
6421         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6422         POSTING_READ(PIPECONF(intel_crtc->pipe));
6423 }
6424
6425 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6426 {
6427         struct drm_device *dev = crtc->base.dev;
6428         struct drm_i915_private *dev_priv = dev->dev_private;
6429         int refclk, num_connectors = 0;
6430         intel_clock_t clock, reduced_clock;
6431         bool ok, has_reduced_clock = false;
6432         bool is_lvds = false, is_dsi = false;
6433         struct intel_encoder *encoder;
6434         const intel_limit_t *limit;
6435
6436         for_each_intel_encoder(dev, encoder) {
6437                 if (encoder->new_crtc != crtc)
6438                         continue;
6439
6440                 switch (encoder->type) {
6441                 case INTEL_OUTPUT_LVDS:
6442                         is_lvds = true;
6443                         break;
6444                 case INTEL_OUTPUT_DSI:
6445                         is_dsi = true;
6446                         break;
6447                 default:
6448                         break;
6449                 }
6450
6451                 num_connectors++;
6452         }
6453
6454         if (is_dsi)
6455                 return 0;
6456
6457         if (!crtc->new_config->clock_set) {
6458                 refclk = i9xx_get_refclk(crtc, num_connectors);
6459
6460                 /*
6461                  * Returns a set of divisors for the desired target clock with
6462                  * the given refclk, or FALSE.  The returned values represent
6463                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6464                  * 2) / p1 / p2.
6465                  */
6466                 limit = intel_limit(crtc, refclk);
6467                 ok = dev_priv->display.find_dpll(limit, crtc,
6468                                                  crtc->new_config->port_clock,
6469                                                  refclk, NULL, &clock);
6470                 if (!ok) {
6471                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6472                         return -EINVAL;
6473                 }
6474
6475                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6476                         /*
6477                          * Ensure we match the reduced clock's P to the target
6478                          * clock.  If the clocks don't match, we can't switch
6479                          * the display clock by using the FP0/FP1. In such case
6480                          * we will disable the LVDS downclock feature.
6481                          */
6482                         has_reduced_clock =
6483                                 dev_priv->display.find_dpll(limit, crtc,
6484                                                             dev_priv->lvds_downclock,
6485                                                             refclk, &clock,
6486                                                             &reduced_clock);
6487                 }
6488                 /* Compat-code for transition, will disappear. */
6489                 crtc->new_config->dpll.n = clock.n;
6490                 crtc->new_config->dpll.m1 = clock.m1;
6491                 crtc->new_config->dpll.m2 = clock.m2;
6492                 crtc->new_config->dpll.p1 = clock.p1;
6493                 crtc->new_config->dpll.p2 = clock.p2;
6494         }
6495
6496         if (IS_GEN2(dev)) {
6497                 i8xx_update_pll(crtc,
6498                                 has_reduced_clock ? &reduced_clock : NULL,
6499                                 num_connectors);
6500         } else if (IS_CHERRYVIEW(dev)) {
6501                 chv_update_pll(crtc, crtc->new_config);
6502         } else if (IS_VALLEYVIEW(dev)) {
6503                 vlv_update_pll(crtc, crtc->new_config);
6504         } else {
6505                 i9xx_update_pll(crtc,
6506                                 has_reduced_clock ? &reduced_clock : NULL,
6507                                 num_connectors);
6508         }
6509
6510         return 0;
6511 }
6512
6513 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6514                                  struct intel_crtc_config *pipe_config)
6515 {
6516         struct drm_device *dev = crtc->base.dev;
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         uint32_t tmp;
6519
6520         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6521                 return;
6522
6523         tmp = I915_READ(PFIT_CONTROL);
6524         if (!(tmp & PFIT_ENABLE))
6525                 return;
6526
6527         /* Check whether the pfit is attached to our pipe. */
6528         if (INTEL_INFO(dev)->gen < 4) {
6529                 if (crtc->pipe != PIPE_B)
6530                         return;
6531         } else {
6532                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6533                         return;
6534         }
6535
6536         pipe_config->gmch_pfit.control = tmp;
6537         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6538         if (INTEL_INFO(dev)->gen < 5)
6539                 pipe_config->gmch_pfit.lvds_border_bits =
6540                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6541 }
6542
6543 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6544                                struct intel_crtc_config *pipe_config)
6545 {
6546         struct drm_device *dev = crtc->base.dev;
6547         struct drm_i915_private *dev_priv = dev->dev_private;
6548         int pipe = pipe_config->cpu_transcoder;
6549         intel_clock_t clock;
6550         u32 mdiv;
6551         int refclk = 100000;
6552
6553         /* In case of MIPI DPLL will not even be used */
6554         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6555                 return;
6556
6557         mutex_lock(&dev_priv->dpio_lock);
6558         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6559         mutex_unlock(&dev_priv->dpio_lock);
6560
6561         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6562         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6563         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6564         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6565         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6566
6567         vlv_clock(refclk, &clock);
6568
6569         /* clock.dot is the fast clock */
6570         pipe_config->port_clock = clock.dot / 5;
6571 }
6572
6573 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6574                                   struct intel_plane_config *plane_config)
6575 {
6576         struct drm_device *dev = crtc->base.dev;
6577         struct drm_i915_private *dev_priv = dev->dev_private;
6578         u32 val, base, offset;
6579         int pipe = crtc->pipe, plane = crtc->plane;
6580         int fourcc, pixel_format;
6581         int aligned_height;
6582
6583         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6584         if (!crtc->base.primary->fb) {
6585                 DRM_DEBUG_KMS("failed to alloc fb\n");
6586                 return;
6587         }
6588
6589         val = I915_READ(DSPCNTR(plane));
6590
6591         if (INTEL_INFO(dev)->gen >= 4)
6592                 if (val & DISPPLANE_TILED)
6593                         plane_config->tiled = true;
6594
6595         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6596         fourcc = intel_format_to_fourcc(pixel_format);
6597         crtc->base.primary->fb->pixel_format = fourcc;
6598         crtc->base.primary->fb->bits_per_pixel =
6599                 drm_format_plane_cpp(fourcc, 0) * 8;
6600
6601         if (INTEL_INFO(dev)->gen >= 4) {
6602                 if (plane_config->tiled)
6603                         offset = I915_READ(DSPTILEOFF(plane));
6604                 else
6605                         offset = I915_READ(DSPLINOFF(plane));
6606                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6607         } else {
6608                 base = I915_READ(DSPADDR(plane));
6609         }
6610         plane_config->base = base;
6611
6612         val = I915_READ(PIPESRC(pipe));
6613         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6614         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6615
6616         val = I915_READ(DSPSTRIDE(pipe));
6617         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6618
6619         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6620                                             plane_config->tiled);
6621
6622         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6623                                         aligned_height);
6624
6625         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6626                       pipe, plane, crtc->base.primary->fb->width,
6627                       crtc->base.primary->fb->height,
6628                       crtc->base.primary->fb->bits_per_pixel, base,
6629                       crtc->base.primary->fb->pitches[0],
6630                       plane_config->size);
6631
6632 }
6633
6634 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6635                                struct intel_crtc_config *pipe_config)
6636 {
6637         struct drm_device *dev = crtc->base.dev;
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639         int pipe = pipe_config->cpu_transcoder;
6640         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6641         intel_clock_t clock;
6642         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6643         int refclk = 100000;
6644
6645         mutex_lock(&dev_priv->dpio_lock);
6646         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6647         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6648         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6649         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6650         mutex_unlock(&dev_priv->dpio_lock);
6651
6652         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6653         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6654         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6655         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6656         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6657
6658         chv_clock(refclk, &clock);
6659
6660         /* clock.dot is the fast clock */
6661         pipe_config->port_clock = clock.dot / 5;
6662 }
6663
6664 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6665                                  struct intel_crtc_config *pipe_config)
6666 {
6667         struct drm_device *dev = crtc->base.dev;
6668         struct drm_i915_private *dev_priv = dev->dev_private;
6669         uint32_t tmp;
6670
6671         if (!intel_display_power_is_enabled(dev_priv,
6672                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6673                 return false;
6674
6675         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6676         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6677
6678         tmp = I915_READ(PIPECONF(crtc->pipe));
6679         if (!(tmp & PIPECONF_ENABLE))
6680                 return false;
6681
6682         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6683                 switch (tmp & PIPECONF_BPC_MASK) {
6684                 case PIPECONF_6BPC:
6685                         pipe_config->pipe_bpp = 18;
6686                         break;
6687                 case PIPECONF_8BPC:
6688                         pipe_config->pipe_bpp = 24;
6689                         break;
6690                 case PIPECONF_10BPC:
6691                         pipe_config->pipe_bpp = 30;
6692                         break;
6693                 default:
6694                         break;
6695                 }
6696         }
6697
6698         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6699                 pipe_config->limited_color_range = true;
6700
6701         if (INTEL_INFO(dev)->gen < 4)
6702                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6703
6704         intel_get_pipe_timings(crtc, pipe_config);
6705
6706         i9xx_get_pfit_config(crtc, pipe_config);
6707
6708         if (INTEL_INFO(dev)->gen >= 4) {
6709                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6710                 pipe_config->pixel_multiplier =
6711                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6712                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6713                 pipe_config->dpll_hw_state.dpll_md = tmp;
6714         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6715                 tmp = I915_READ(DPLL(crtc->pipe));
6716                 pipe_config->pixel_multiplier =
6717                         ((tmp & SDVO_MULTIPLIER_MASK)
6718                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6719         } else {
6720                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6721                  * port and will be fixed up in the encoder->get_config
6722                  * function. */
6723                 pipe_config->pixel_multiplier = 1;
6724         }
6725         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6726         if (!IS_VALLEYVIEW(dev)) {
6727                 /*
6728                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6729                  * on 830. Filter it out here so that we don't
6730                  * report errors due to that.
6731                  */
6732                 if (IS_I830(dev))
6733                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6734
6735                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6736                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6737         } else {
6738                 /* Mask out read-only status bits. */
6739                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6740                                                      DPLL_PORTC_READY_MASK |
6741                                                      DPLL_PORTB_READY_MASK);
6742         }
6743
6744         if (IS_CHERRYVIEW(dev))
6745                 chv_crtc_clock_get(crtc, pipe_config);
6746         else if (IS_VALLEYVIEW(dev))
6747                 vlv_crtc_clock_get(crtc, pipe_config);
6748         else
6749                 i9xx_crtc_clock_get(crtc, pipe_config);
6750
6751         return true;
6752 }
6753
6754 static void ironlake_init_pch_refclk(struct drm_device *dev)
6755 {
6756         struct drm_i915_private *dev_priv = dev->dev_private;
6757         struct intel_encoder *encoder;
6758         u32 val, final;
6759         bool has_lvds = false;
6760         bool has_cpu_edp = false;
6761         bool has_panel = false;
6762         bool has_ck505 = false;
6763         bool can_ssc = false;
6764
6765         /* We need to take the global config into account */
6766         for_each_intel_encoder(dev, encoder) {
6767                 switch (encoder->type) {
6768                 case INTEL_OUTPUT_LVDS:
6769                         has_panel = true;
6770                         has_lvds = true;
6771                         break;
6772                 case INTEL_OUTPUT_EDP:
6773                         has_panel = true;
6774                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6775                                 has_cpu_edp = true;
6776                         break;
6777                 default:
6778                         break;
6779                 }
6780         }
6781
6782         if (HAS_PCH_IBX(dev)) {
6783                 has_ck505 = dev_priv->vbt.display_clock_mode;
6784                 can_ssc = has_ck505;
6785         } else {
6786                 has_ck505 = false;
6787                 can_ssc = true;
6788         }
6789
6790         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6791                       has_panel, has_lvds, has_ck505);
6792
6793         /* Ironlake: try to setup display ref clock before DPLL
6794          * enabling. This is only under driver's control after
6795          * PCH B stepping, previous chipset stepping should be
6796          * ignoring this setting.
6797          */
6798         val = I915_READ(PCH_DREF_CONTROL);
6799
6800         /* As we must carefully and slowly disable/enable each source in turn,
6801          * compute the final state we want first and check if we need to
6802          * make any changes at all.
6803          */
6804         final = val;
6805         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6806         if (has_ck505)
6807                 final |= DREF_NONSPREAD_CK505_ENABLE;
6808         else
6809                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6810
6811         final &= ~DREF_SSC_SOURCE_MASK;
6812         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6813         final &= ~DREF_SSC1_ENABLE;
6814
6815         if (has_panel) {
6816                 final |= DREF_SSC_SOURCE_ENABLE;
6817
6818                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6819                         final |= DREF_SSC1_ENABLE;
6820
6821                 if (has_cpu_edp) {
6822                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6823                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6824                         else
6825                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6826                 } else
6827                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6828         } else {
6829                 final |= DREF_SSC_SOURCE_DISABLE;
6830                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6831         }
6832
6833         if (final == val)
6834                 return;
6835
6836         /* Always enable nonspread source */
6837         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6838
6839         if (has_ck505)
6840                 val |= DREF_NONSPREAD_CK505_ENABLE;
6841         else
6842                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6843
6844         if (has_panel) {
6845                 val &= ~DREF_SSC_SOURCE_MASK;
6846                 val |= DREF_SSC_SOURCE_ENABLE;
6847
6848                 /* SSC must be turned on before enabling the CPU output  */
6849                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6850                         DRM_DEBUG_KMS("Using SSC on panel\n");
6851                         val |= DREF_SSC1_ENABLE;
6852                 } else
6853                         val &= ~DREF_SSC1_ENABLE;
6854
6855                 /* Get SSC going before enabling the outputs */
6856                 I915_WRITE(PCH_DREF_CONTROL, val);
6857                 POSTING_READ(PCH_DREF_CONTROL);
6858                 udelay(200);
6859
6860                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6861
6862                 /* Enable CPU source on CPU attached eDP */
6863                 if (has_cpu_edp) {
6864                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6865                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6866                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6867                         } else
6868                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6869                 } else
6870                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6871
6872                 I915_WRITE(PCH_DREF_CONTROL, val);
6873                 POSTING_READ(PCH_DREF_CONTROL);
6874                 udelay(200);
6875         } else {
6876                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6877
6878                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6879
6880                 /* Turn off CPU output */
6881                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6882
6883                 I915_WRITE(PCH_DREF_CONTROL, val);
6884                 POSTING_READ(PCH_DREF_CONTROL);
6885                 udelay(200);
6886
6887                 /* Turn off the SSC source */
6888                 val &= ~DREF_SSC_SOURCE_MASK;
6889                 val |= DREF_SSC_SOURCE_DISABLE;
6890
6891                 /* Turn off SSC1 */
6892                 val &= ~DREF_SSC1_ENABLE;
6893
6894                 I915_WRITE(PCH_DREF_CONTROL, val);
6895                 POSTING_READ(PCH_DREF_CONTROL);
6896                 udelay(200);
6897         }
6898
6899         BUG_ON(val != final);
6900 }
6901
6902 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6903 {
6904         uint32_t tmp;
6905
6906         tmp = I915_READ(SOUTH_CHICKEN2);
6907         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6908         I915_WRITE(SOUTH_CHICKEN2, tmp);
6909
6910         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6911                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6912                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6913
6914         tmp = I915_READ(SOUTH_CHICKEN2);
6915         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6916         I915_WRITE(SOUTH_CHICKEN2, tmp);
6917
6918         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6919                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6920                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6921 }
6922
6923 /* WaMPhyProgramming:hsw */
6924 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6925 {
6926         uint32_t tmp;
6927
6928         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6929         tmp &= ~(0xFF << 24);
6930         tmp |= (0x12 << 24);
6931         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6932
6933         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6934         tmp |= (1 << 11);
6935         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6936
6937         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6938         tmp |= (1 << 11);
6939         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6940
6941         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6942         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6943         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6944
6945         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6946         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6947         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6950         tmp &= ~(7 << 13);
6951         tmp |= (5 << 13);
6952         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6953
6954         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6955         tmp &= ~(7 << 13);
6956         tmp |= (5 << 13);
6957         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6958
6959         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6960         tmp &= ~0xFF;
6961         tmp |= 0x1C;
6962         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6963
6964         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6965         tmp &= ~0xFF;
6966         tmp |= 0x1C;
6967         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6968
6969         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6970         tmp &= ~(0xFF << 16);
6971         tmp |= (0x1C << 16);
6972         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6973
6974         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6975         tmp &= ~(0xFF << 16);
6976         tmp |= (0x1C << 16);
6977         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6978
6979         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6980         tmp |= (1 << 27);
6981         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6982
6983         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6984         tmp |= (1 << 27);
6985         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6986
6987         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6988         tmp &= ~(0xF << 28);
6989         tmp |= (4 << 28);
6990         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6991
6992         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6993         tmp &= ~(0xF << 28);
6994         tmp |= (4 << 28);
6995         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6996 }
6997
6998 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6999  * Programming" based on the parameters passed:
7000  * - Sequence to enable CLKOUT_DP
7001  * - Sequence to enable CLKOUT_DP without spread
7002  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7003  */
7004 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7005                                  bool with_fdi)
7006 {
7007         struct drm_i915_private *dev_priv = dev->dev_private;
7008         uint32_t reg, tmp;
7009
7010         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7011                 with_spread = true;
7012         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7013                  with_fdi, "LP PCH doesn't have FDI\n"))
7014                 with_fdi = false;
7015
7016         mutex_lock(&dev_priv->dpio_lock);
7017
7018         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7019         tmp &= ~SBI_SSCCTL_DISABLE;
7020         tmp |= SBI_SSCCTL_PATHALT;
7021         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7022
7023         udelay(24);
7024
7025         if (with_spread) {
7026                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7027                 tmp &= ~SBI_SSCCTL_PATHALT;
7028                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7029
7030                 if (with_fdi) {
7031                         lpt_reset_fdi_mphy(dev_priv);
7032                         lpt_program_fdi_mphy(dev_priv);
7033                 }
7034         }
7035
7036         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7037                SBI_GEN0 : SBI_DBUFF0;
7038         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7039         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7040         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7041
7042         mutex_unlock(&dev_priv->dpio_lock);
7043 }
7044
7045 /* Sequence to disable CLKOUT_DP */
7046 static void lpt_disable_clkout_dp(struct drm_device *dev)
7047 {
7048         struct drm_i915_private *dev_priv = dev->dev_private;
7049         uint32_t reg, tmp;
7050
7051         mutex_lock(&dev_priv->dpio_lock);
7052
7053         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7054                SBI_GEN0 : SBI_DBUFF0;
7055         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7056         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7057         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7058
7059         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7060         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7061                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7062                         tmp |= SBI_SSCCTL_PATHALT;
7063                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7064                         udelay(32);
7065                 }
7066                 tmp |= SBI_SSCCTL_DISABLE;
7067                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7068         }
7069
7070         mutex_unlock(&dev_priv->dpio_lock);
7071 }
7072
7073 static void lpt_init_pch_refclk(struct drm_device *dev)
7074 {
7075         struct intel_encoder *encoder;
7076         bool has_vga = false;
7077
7078         for_each_intel_encoder(dev, encoder) {
7079                 switch (encoder->type) {
7080                 case INTEL_OUTPUT_ANALOG:
7081                         has_vga = true;
7082                         break;
7083                 default:
7084                         break;
7085                 }
7086         }
7087
7088         if (has_vga)
7089                 lpt_enable_clkout_dp(dev, true, true);
7090         else
7091                 lpt_disable_clkout_dp(dev);
7092 }
7093
7094 /*
7095  * Initialize reference clocks when the driver loads
7096  */
7097 void intel_init_pch_refclk(struct drm_device *dev)
7098 {
7099         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7100                 ironlake_init_pch_refclk(dev);
7101         else if (HAS_PCH_LPT(dev))
7102                 lpt_init_pch_refclk(dev);
7103 }
7104
7105 static int ironlake_get_refclk(struct drm_crtc *crtc)
7106 {
7107         struct drm_device *dev = crtc->dev;
7108         struct drm_i915_private *dev_priv = dev->dev_private;
7109         struct intel_encoder *encoder;
7110         int num_connectors = 0;
7111         bool is_lvds = false;
7112
7113         for_each_intel_encoder(dev, encoder) {
7114                 if (encoder->new_crtc != to_intel_crtc(crtc))
7115                         continue;
7116
7117                 switch (encoder->type) {
7118                 case INTEL_OUTPUT_LVDS:
7119                         is_lvds = true;
7120                         break;
7121                 default:
7122                         break;
7123                 }
7124                 num_connectors++;
7125         }
7126
7127         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7128                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7129                               dev_priv->vbt.lvds_ssc_freq);
7130                 return dev_priv->vbt.lvds_ssc_freq;
7131         }
7132
7133         return 120000;
7134 }
7135
7136 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7137 {
7138         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7140         int pipe = intel_crtc->pipe;
7141         uint32_t val;
7142
7143         val = 0;
7144
7145         switch (intel_crtc->config.pipe_bpp) {
7146         case 18:
7147                 val |= PIPECONF_6BPC;
7148                 break;
7149         case 24:
7150                 val |= PIPECONF_8BPC;
7151                 break;
7152         case 30:
7153                 val |= PIPECONF_10BPC;
7154                 break;
7155         case 36:
7156                 val |= PIPECONF_12BPC;
7157                 break;
7158         default:
7159                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7160                 BUG();
7161         }
7162
7163         if (intel_crtc->config.dither)
7164                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7165
7166         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7167                 val |= PIPECONF_INTERLACED_ILK;
7168         else
7169                 val |= PIPECONF_PROGRESSIVE;
7170
7171         if (intel_crtc->config.limited_color_range)
7172                 val |= PIPECONF_COLOR_RANGE_SELECT;
7173
7174         I915_WRITE(PIPECONF(pipe), val);
7175         POSTING_READ(PIPECONF(pipe));
7176 }
7177
7178 /*
7179  * Set up the pipe CSC unit.
7180  *
7181  * Currently only full range RGB to limited range RGB conversion
7182  * is supported, but eventually this should handle various
7183  * RGB<->YCbCr scenarios as well.
7184  */
7185 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7186 {
7187         struct drm_device *dev = crtc->dev;
7188         struct drm_i915_private *dev_priv = dev->dev_private;
7189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7190         int pipe = intel_crtc->pipe;
7191         uint16_t coeff = 0x7800; /* 1.0 */
7192
7193         /*
7194          * TODO: Check what kind of values actually come out of the pipe
7195          * with these coeff/postoff values and adjust to get the best
7196          * accuracy. Perhaps we even need to take the bpc value into
7197          * consideration.
7198          */
7199
7200         if (intel_crtc->config.limited_color_range)
7201                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7202
7203         /*
7204          * GY/GU and RY/RU should be the other way around according
7205          * to BSpec, but reality doesn't agree. Just set them up in
7206          * a way that results in the correct picture.
7207          */
7208         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7209         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7210
7211         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7212         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7213
7214         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7215         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7216
7217         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7218         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7219         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7220
7221         if (INTEL_INFO(dev)->gen > 6) {
7222                 uint16_t postoff = 0;
7223
7224                 if (intel_crtc->config.limited_color_range)
7225                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7226
7227                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7228                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7229                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7230
7231                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7232         } else {
7233                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7234
7235                 if (intel_crtc->config.limited_color_range)
7236                         mode |= CSC_BLACK_SCREEN_OFFSET;
7237
7238                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7239         }
7240 }
7241
7242 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7243 {
7244         struct drm_device *dev = crtc->dev;
7245         struct drm_i915_private *dev_priv = dev->dev_private;
7246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7247         enum pipe pipe = intel_crtc->pipe;
7248         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7249         uint32_t val;
7250
7251         val = 0;
7252
7253         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7254                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7255
7256         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7257                 val |= PIPECONF_INTERLACED_ILK;
7258         else
7259                 val |= PIPECONF_PROGRESSIVE;
7260
7261         I915_WRITE(PIPECONF(cpu_transcoder), val);
7262         POSTING_READ(PIPECONF(cpu_transcoder));
7263
7264         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7265         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7266
7267         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7268                 val = 0;
7269
7270                 switch (intel_crtc->config.pipe_bpp) {
7271                 case 18:
7272                         val |= PIPEMISC_DITHER_6_BPC;
7273                         break;
7274                 case 24:
7275                         val |= PIPEMISC_DITHER_8_BPC;
7276                         break;
7277                 case 30:
7278                         val |= PIPEMISC_DITHER_10_BPC;
7279                         break;
7280                 case 36:
7281                         val |= PIPEMISC_DITHER_12_BPC;
7282                         break;
7283                 default:
7284                         /* Case prevented by pipe_config_set_bpp. */
7285                         BUG();
7286                 }
7287
7288                 if (intel_crtc->config.dither)
7289                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7290
7291                 I915_WRITE(PIPEMISC(pipe), val);
7292         }
7293 }
7294
7295 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7296                                     intel_clock_t *clock,
7297                                     bool *has_reduced_clock,
7298                                     intel_clock_t *reduced_clock)
7299 {
7300         struct drm_device *dev = crtc->dev;
7301         struct drm_i915_private *dev_priv = dev->dev_private;
7302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7303         int refclk;
7304         const intel_limit_t *limit;
7305         bool ret, is_lvds = false;
7306
7307         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7308
7309         refclk = ironlake_get_refclk(crtc);
7310
7311         /*
7312          * Returns a set of divisors for the desired target clock with the given
7313          * refclk, or FALSE.  The returned values represent the clock equation:
7314          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7315          */
7316         limit = intel_limit(intel_crtc, refclk);
7317         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7318                                           intel_crtc->new_config->port_clock,
7319                                           refclk, NULL, clock);
7320         if (!ret)
7321                 return false;
7322
7323         if (is_lvds && dev_priv->lvds_downclock_avail) {
7324                 /*
7325                  * Ensure we match the reduced clock's P to the target clock.
7326                  * If the clocks don't match, we can't switch the display clock
7327                  * by using the FP0/FP1. In such case we will disable the LVDS
7328                  * downclock feature.
7329                 */
7330                 *has_reduced_clock =
7331                         dev_priv->display.find_dpll(limit, intel_crtc,
7332                                                     dev_priv->lvds_downclock,
7333                                                     refclk, clock,
7334                                                     reduced_clock);
7335         }
7336
7337         return true;
7338 }
7339
7340 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7341 {
7342         /*
7343          * Account for spread spectrum to avoid
7344          * oversubscribing the link. Max center spread
7345          * is 2.5%; use 5% for safety's sake.
7346          */
7347         u32 bps = target_clock * bpp * 21 / 20;
7348         return DIV_ROUND_UP(bps, link_bw * 8);
7349 }
7350
7351 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7352 {
7353         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7354 }
7355
7356 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7357                                       u32 *fp,
7358                                       intel_clock_t *reduced_clock, u32 *fp2)
7359 {
7360         struct drm_crtc *crtc = &intel_crtc->base;
7361         struct drm_device *dev = crtc->dev;
7362         struct drm_i915_private *dev_priv = dev->dev_private;
7363         struct intel_encoder *intel_encoder;
7364         uint32_t dpll;
7365         int factor, num_connectors = 0;
7366         bool is_lvds = false, is_sdvo = false;
7367
7368         for_each_intel_encoder(dev, intel_encoder) {
7369                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7370                         continue;
7371
7372                 switch (intel_encoder->type) {
7373                 case INTEL_OUTPUT_LVDS:
7374                         is_lvds = true;
7375                         break;
7376                 case INTEL_OUTPUT_SDVO:
7377                 case INTEL_OUTPUT_HDMI:
7378                         is_sdvo = true;
7379                         break;
7380                 default:
7381                         break;
7382                 }
7383
7384                 num_connectors++;
7385         }
7386
7387         /* Enable autotuning of the PLL clock (if permissible) */
7388         factor = 21;
7389         if (is_lvds) {
7390                 if ((intel_panel_use_ssc(dev_priv) &&
7391                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7392                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7393                         factor = 25;
7394         } else if (intel_crtc->new_config->sdvo_tv_clock)
7395                 factor = 20;
7396
7397         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7398                 *fp |= FP_CB_TUNE;
7399
7400         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7401                 *fp2 |= FP_CB_TUNE;
7402
7403         dpll = 0;
7404
7405         if (is_lvds)
7406                 dpll |= DPLLB_MODE_LVDS;
7407         else
7408                 dpll |= DPLLB_MODE_DAC_SERIAL;
7409
7410         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7411                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7412
7413         if (is_sdvo)
7414                 dpll |= DPLL_SDVO_HIGH_SPEED;
7415         if (intel_crtc->new_config->has_dp_encoder)
7416                 dpll |= DPLL_SDVO_HIGH_SPEED;
7417
7418         /* compute bitmask from p1 value */
7419         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7420         /* also FPA1 */
7421         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7422
7423         switch (intel_crtc->new_config->dpll.p2) {
7424         case 5:
7425                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7426                 break;
7427         case 7:
7428                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7429                 break;
7430         case 10:
7431                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7432                 break;
7433         case 14:
7434                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7435                 break;
7436         }
7437
7438         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7439                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7440         else
7441                 dpll |= PLL_REF_INPUT_DREFCLK;
7442
7443         return dpll | DPLL_VCO_ENABLE;
7444 }
7445
7446 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7447 {
7448         struct drm_device *dev = crtc->base.dev;
7449         intel_clock_t clock, reduced_clock;
7450         u32 dpll = 0, fp = 0, fp2 = 0;
7451         bool ok, has_reduced_clock = false;
7452         bool is_lvds = false;
7453         struct intel_shared_dpll *pll;
7454
7455         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7456
7457         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7458              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7459
7460         ok = ironlake_compute_clocks(&crtc->base, &clock,
7461                                      &has_reduced_clock, &reduced_clock);
7462         if (!ok && !crtc->new_config->clock_set) {
7463                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7464                 return -EINVAL;
7465         }
7466         /* Compat-code for transition, will disappear. */
7467         if (!crtc->new_config->clock_set) {
7468                 crtc->new_config->dpll.n = clock.n;
7469                 crtc->new_config->dpll.m1 = clock.m1;
7470                 crtc->new_config->dpll.m2 = clock.m2;
7471                 crtc->new_config->dpll.p1 = clock.p1;
7472                 crtc->new_config->dpll.p2 = clock.p2;
7473         }
7474
7475         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7476         if (crtc->new_config->has_pch_encoder) {
7477                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7478                 if (has_reduced_clock)
7479                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7480
7481                 dpll = ironlake_compute_dpll(crtc,
7482                                              &fp, &reduced_clock,
7483                                              has_reduced_clock ? &fp2 : NULL);
7484
7485                 crtc->new_config->dpll_hw_state.dpll = dpll;
7486                 crtc->new_config->dpll_hw_state.fp0 = fp;
7487                 if (has_reduced_clock)
7488                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7489                 else
7490                         crtc->new_config->dpll_hw_state.fp1 = fp;
7491
7492                 pll = intel_get_shared_dpll(crtc);
7493                 if (pll == NULL) {
7494                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7495                                          pipe_name(crtc->pipe));
7496                         return -EINVAL;
7497                 }
7498         }
7499
7500         if (is_lvds && has_reduced_clock && i915.powersave)
7501                 crtc->lowfreq_avail = true;
7502         else
7503                 crtc->lowfreq_avail = false;
7504
7505         return 0;
7506 }
7507
7508 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7509                                          struct intel_link_m_n *m_n)
7510 {
7511         struct drm_device *dev = crtc->base.dev;
7512         struct drm_i915_private *dev_priv = dev->dev_private;
7513         enum pipe pipe = crtc->pipe;
7514
7515         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7516         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7517         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7518                 & ~TU_SIZE_MASK;
7519         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7520         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7521                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7522 }
7523
7524 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7525                                          enum transcoder transcoder,
7526                                          struct intel_link_m_n *m_n,
7527                                          struct intel_link_m_n *m2_n2)
7528 {
7529         struct drm_device *dev = crtc->base.dev;
7530         struct drm_i915_private *dev_priv = dev->dev_private;
7531         enum pipe pipe = crtc->pipe;
7532
7533         if (INTEL_INFO(dev)->gen >= 5) {
7534                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7535                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7536                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7537                         & ~TU_SIZE_MASK;
7538                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7539                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7540                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7541                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7542                  * gen < 8) and if DRRS is supported (to make sure the
7543                  * registers are not unnecessarily read).
7544                  */
7545                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7546                         crtc->config.has_drrs) {
7547                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7548                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7549                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7550                                         & ~TU_SIZE_MASK;
7551                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7552                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7553                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7554                 }
7555         } else {
7556                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7557                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7558                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7559                         & ~TU_SIZE_MASK;
7560                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7561                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7562                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563         }
7564 }
7565
7566 void intel_dp_get_m_n(struct intel_crtc *crtc,
7567                       struct intel_crtc_config *pipe_config)
7568 {
7569         if (crtc->config.has_pch_encoder)
7570                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7571         else
7572                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7573                                              &pipe_config->dp_m_n,
7574                                              &pipe_config->dp_m2_n2);
7575 }
7576
7577 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7578                                         struct intel_crtc_config *pipe_config)
7579 {
7580         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7581                                      &pipe_config->fdi_m_n, NULL);
7582 }
7583
7584 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7585                                     struct intel_crtc_config *pipe_config)
7586 {
7587         struct drm_device *dev = crtc->base.dev;
7588         struct drm_i915_private *dev_priv = dev->dev_private;
7589         uint32_t tmp;
7590
7591         tmp = I915_READ(PS_CTL(crtc->pipe));
7592
7593         if (tmp & PS_ENABLE) {
7594                 pipe_config->pch_pfit.enabled = true;
7595                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7596                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7597         }
7598 }
7599
7600 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7601                                      struct intel_crtc_config *pipe_config)
7602 {
7603         struct drm_device *dev = crtc->base.dev;
7604         struct drm_i915_private *dev_priv = dev->dev_private;
7605         uint32_t tmp;
7606
7607         tmp = I915_READ(PF_CTL(crtc->pipe));
7608
7609         if (tmp & PF_ENABLE) {
7610                 pipe_config->pch_pfit.enabled = true;
7611                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7612                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7613
7614                 /* We currently do not free assignements of panel fitters on
7615                  * ivb/hsw (since we don't use the higher upscaling modes which
7616                  * differentiates them) so just WARN about this case for now. */
7617                 if (IS_GEN7(dev)) {
7618                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7619                                 PF_PIPE_SEL_IVB(crtc->pipe));
7620                 }
7621         }
7622 }
7623
7624 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7625                                       struct intel_plane_config *plane_config)
7626 {
7627         struct drm_device *dev = crtc->base.dev;
7628         struct drm_i915_private *dev_priv = dev->dev_private;
7629         u32 val, base, offset;
7630         int pipe = crtc->pipe, plane = crtc->plane;
7631         int fourcc, pixel_format;
7632         int aligned_height;
7633
7634         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7635         if (!crtc->base.primary->fb) {
7636                 DRM_DEBUG_KMS("failed to alloc fb\n");
7637                 return;
7638         }
7639
7640         val = I915_READ(DSPCNTR(plane));
7641
7642         if (INTEL_INFO(dev)->gen >= 4)
7643                 if (val & DISPPLANE_TILED)
7644                         plane_config->tiled = true;
7645
7646         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7647         fourcc = intel_format_to_fourcc(pixel_format);
7648         crtc->base.primary->fb->pixel_format = fourcc;
7649         crtc->base.primary->fb->bits_per_pixel =
7650                 drm_format_plane_cpp(fourcc, 0) * 8;
7651
7652         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7653         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7654                 offset = I915_READ(DSPOFFSET(plane));
7655         } else {
7656                 if (plane_config->tiled)
7657                         offset = I915_READ(DSPTILEOFF(plane));
7658                 else
7659                         offset = I915_READ(DSPLINOFF(plane));
7660         }
7661         plane_config->base = base;
7662
7663         val = I915_READ(PIPESRC(pipe));
7664         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7665         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7666
7667         val = I915_READ(DSPSTRIDE(pipe));
7668         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7669
7670         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7671                                             plane_config->tiled);
7672
7673         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7674                                         aligned_height);
7675
7676         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7677                       pipe, plane, crtc->base.primary->fb->width,
7678                       crtc->base.primary->fb->height,
7679                       crtc->base.primary->fb->bits_per_pixel, base,
7680                       crtc->base.primary->fb->pitches[0],
7681                       plane_config->size);
7682 }
7683
7684 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7685                                      struct intel_crtc_config *pipe_config)
7686 {
7687         struct drm_device *dev = crtc->base.dev;
7688         struct drm_i915_private *dev_priv = dev->dev_private;
7689         uint32_t tmp;
7690
7691         if (!intel_display_power_is_enabled(dev_priv,
7692                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7693                 return false;
7694
7695         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7696         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7697
7698         tmp = I915_READ(PIPECONF(crtc->pipe));
7699         if (!(tmp & PIPECONF_ENABLE))
7700                 return false;
7701
7702         switch (tmp & PIPECONF_BPC_MASK) {
7703         case PIPECONF_6BPC:
7704                 pipe_config->pipe_bpp = 18;
7705                 break;
7706         case PIPECONF_8BPC:
7707                 pipe_config->pipe_bpp = 24;
7708                 break;
7709         case PIPECONF_10BPC:
7710                 pipe_config->pipe_bpp = 30;
7711                 break;
7712         case PIPECONF_12BPC:
7713                 pipe_config->pipe_bpp = 36;
7714                 break;
7715         default:
7716                 break;
7717         }
7718
7719         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7720                 pipe_config->limited_color_range = true;
7721
7722         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7723                 struct intel_shared_dpll *pll;
7724
7725                 pipe_config->has_pch_encoder = true;
7726
7727                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7728                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7729                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7730
7731                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7732
7733                 if (HAS_PCH_IBX(dev_priv->dev)) {
7734                         pipe_config->shared_dpll =
7735                                 (enum intel_dpll_id) crtc->pipe;
7736                 } else {
7737                         tmp = I915_READ(PCH_DPLL_SEL);
7738                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7739                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7740                         else
7741                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7742                 }
7743
7744                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7745
7746                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7747                                            &pipe_config->dpll_hw_state));
7748
7749                 tmp = pipe_config->dpll_hw_state.dpll;
7750                 pipe_config->pixel_multiplier =
7751                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7752                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7753
7754                 ironlake_pch_clock_get(crtc, pipe_config);
7755         } else {
7756                 pipe_config->pixel_multiplier = 1;
7757         }
7758
7759         intel_get_pipe_timings(crtc, pipe_config);
7760
7761         ironlake_get_pfit_config(crtc, pipe_config);
7762
7763         return true;
7764 }
7765
7766 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7767 {
7768         struct drm_device *dev = dev_priv->dev;
7769         struct intel_crtc *crtc;
7770
7771         for_each_intel_crtc(dev, crtc)
7772                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7773                      pipe_name(crtc->pipe));
7774
7775         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7776         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7777         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7778         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7779         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7780         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7781              "CPU PWM1 enabled\n");
7782         if (IS_HASWELL(dev))
7783                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7784                      "CPU PWM2 enabled\n");
7785         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7786              "PCH PWM1 enabled\n");
7787         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7788              "Utility pin enabled\n");
7789         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7790
7791         /*
7792          * In theory we can still leave IRQs enabled, as long as only the HPD
7793          * interrupts remain enabled. We used to check for that, but since it's
7794          * gen-specific and since we only disable LCPLL after we fully disable
7795          * the interrupts, the check below should be enough.
7796          */
7797         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7798 }
7799
7800 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7801 {
7802         struct drm_device *dev = dev_priv->dev;
7803
7804         if (IS_HASWELL(dev))
7805                 return I915_READ(D_COMP_HSW);
7806         else
7807                 return I915_READ(D_COMP_BDW);
7808 }
7809
7810 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7811 {
7812         struct drm_device *dev = dev_priv->dev;
7813
7814         if (IS_HASWELL(dev)) {
7815                 mutex_lock(&dev_priv->rps.hw_lock);
7816                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7817                                             val))
7818                         DRM_ERROR("Failed to write to D_COMP\n");
7819                 mutex_unlock(&dev_priv->rps.hw_lock);
7820         } else {
7821                 I915_WRITE(D_COMP_BDW, val);
7822                 POSTING_READ(D_COMP_BDW);
7823         }
7824 }
7825
7826 /*
7827  * This function implements pieces of two sequences from BSpec:
7828  * - Sequence for display software to disable LCPLL
7829  * - Sequence for display software to allow package C8+
7830  * The steps implemented here are just the steps that actually touch the LCPLL
7831  * register. Callers should take care of disabling all the display engine
7832  * functions, doing the mode unset, fixing interrupts, etc.
7833  */
7834 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7835                               bool switch_to_fclk, bool allow_power_down)
7836 {
7837         uint32_t val;
7838
7839         assert_can_disable_lcpll(dev_priv);
7840
7841         val = I915_READ(LCPLL_CTL);
7842
7843         if (switch_to_fclk) {
7844                 val |= LCPLL_CD_SOURCE_FCLK;
7845                 I915_WRITE(LCPLL_CTL, val);
7846
7847                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7848                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7849                         DRM_ERROR("Switching to FCLK failed\n");
7850
7851                 val = I915_READ(LCPLL_CTL);
7852         }
7853
7854         val |= LCPLL_PLL_DISABLE;
7855         I915_WRITE(LCPLL_CTL, val);
7856         POSTING_READ(LCPLL_CTL);
7857
7858         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7859                 DRM_ERROR("LCPLL still locked\n");
7860
7861         val = hsw_read_dcomp(dev_priv);
7862         val |= D_COMP_COMP_DISABLE;
7863         hsw_write_dcomp(dev_priv, val);
7864         ndelay(100);
7865
7866         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7867                      1))
7868                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7869
7870         if (allow_power_down) {
7871                 val = I915_READ(LCPLL_CTL);
7872                 val |= LCPLL_POWER_DOWN_ALLOW;
7873                 I915_WRITE(LCPLL_CTL, val);
7874                 POSTING_READ(LCPLL_CTL);
7875         }
7876 }
7877
7878 /*
7879  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7880  * source.
7881  */
7882 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7883 {
7884         uint32_t val;
7885
7886         val = I915_READ(LCPLL_CTL);
7887
7888         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7889                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7890                 return;
7891
7892         /*
7893          * Make sure we're not on PC8 state before disabling PC8, otherwise
7894          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7895          *
7896          * The other problem is that hsw_restore_lcpll() is called as part of
7897          * the runtime PM resume sequence, so we can't just call
7898          * gen6_gt_force_wake_get() because that function calls
7899          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7900          * while we are on the resume sequence. So to solve this problem we have
7901          * to call special forcewake code that doesn't touch runtime PM and
7902          * doesn't enable the forcewake delayed work.
7903          */
7904         spin_lock_irq(&dev_priv->uncore.lock);
7905         if (dev_priv->uncore.forcewake_count++ == 0)
7906                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7907         spin_unlock_irq(&dev_priv->uncore.lock);
7908
7909         if (val & LCPLL_POWER_DOWN_ALLOW) {
7910                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7911                 I915_WRITE(LCPLL_CTL, val);
7912                 POSTING_READ(LCPLL_CTL);
7913         }
7914
7915         val = hsw_read_dcomp(dev_priv);
7916         val |= D_COMP_COMP_FORCE;
7917         val &= ~D_COMP_COMP_DISABLE;
7918         hsw_write_dcomp(dev_priv, val);
7919
7920         val = I915_READ(LCPLL_CTL);
7921         val &= ~LCPLL_PLL_DISABLE;
7922         I915_WRITE(LCPLL_CTL, val);
7923
7924         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7925                 DRM_ERROR("LCPLL not locked yet\n");
7926
7927         if (val & LCPLL_CD_SOURCE_FCLK) {
7928                 val = I915_READ(LCPLL_CTL);
7929                 val &= ~LCPLL_CD_SOURCE_FCLK;
7930                 I915_WRITE(LCPLL_CTL, val);
7931
7932                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7933                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7934                         DRM_ERROR("Switching back to LCPLL failed\n");
7935         }
7936
7937         /* See the big comment above. */
7938         spin_lock_irq(&dev_priv->uncore.lock);
7939         if (--dev_priv->uncore.forcewake_count == 0)
7940                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7941         spin_unlock_irq(&dev_priv->uncore.lock);
7942 }
7943
7944 /*
7945  * Package states C8 and deeper are really deep PC states that can only be
7946  * reached when all the devices on the system allow it, so even if the graphics
7947  * device allows PC8+, it doesn't mean the system will actually get to these
7948  * states. Our driver only allows PC8+ when going into runtime PM.
7949  *
7950  * The requirements for PC8+ are that all the outputs are disabled, the power
7951  * well is disabled and most interrupts are disabled, and these are also
7952  * requirements for runtime PM. When these conditions are met, we manually do
7953  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7954  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7955  * hang the machine.
7956  *
7957  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7958  * the state of some registers, so when we come back from PC8+ we need to
7959  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7960  * need to take care of the registers kept by RC6. Notice that this happens even
7961  * if we don't put the device in PCI D3 state (which is what currently happens
7962  * because of the runtime PM support).
7963  *
7964  * For more, read "Display Sequences for Package C8" on the hardware
7965  * documentation.
7966  */
7967 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7968 {
7969         struct drm_device *dev = dev_priv->dev;
7970         uint32_t val;
7971
7972         DRM_DEBUG_KMS("Enabling package C8+\n");
7973
7974         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7975                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7976                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7977                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7978         }
7979
7980         lpt_disable_clkout_dp(dev);
7981         hsw_disable_lcpll(dev_priv, true, true);
7982 }
7983
7984 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7985 {
7986         struct drm_device *dev = dev_priv->dev;
7987         uint32_t val;
7988
7989         DRM_DEBUG_KMS("Disabling package C8+\n");
7990
7991         hsw_restore_lcpll(dev_priv);
7992         lpt_init_pch_refclk(dev);
7993
7994         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7995                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7996                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7997                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7998         }
7999
8000         intel_prepare_ddi(dev);
8001 }
8002
8003 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
8004 {
8005         if (!intel_ddi_pll_select(crtc))
8006                 return -EINVAL;
8007
8008         crtc->lowfreq_avail = false;
8009
8010         return 0;
8011 }
8012
8013 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8014                                 enum port port,
8015                                 struct intel_crtc_config *pipe_config)
8016 {
8017         u32 temp;
8018
8019         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8020         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8021
8022         switch (pipe_config->ddi_pll_sel) {
8023         case SKL_DPLL1:
8024                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8025                 break;
8026         case SKL_DPLL2:
8027                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8028                 break;
8029         case SKL_DPLL3:
8030                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8031                 break;
8032         }
8033 }
8034
8035 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8036                                 enum port port,
8037                                 struct intel_crtc_config *pipe_config)
8038 {
8039         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8040
8041         switch (pipe_config->ddi_pll_sel) {
8042         case PORT_CLK_SEL_WRPLL1:
8043                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8044                 break;
8045         case PORT_CLK_SEL_WRPLL2:
8046                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8047                 break;
8048         }
8049 }
8050
8051 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8052                                        struct intel_crtc_config *pipe_config)
8053 {
8054         struct drm_device *dev = crtc->base.dev;
8055         struct drm_i915_private *dev_priv = dev->dev_private;
8056         struct intel_shared_dpll *pll;
8057         enum port port;
8058         uint32_t tmp;
8059
8060         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8061
8062         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8063
8064         if (IS_SKYLAKE(dev))
8065                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8066         else
8067                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8068
8069         if (pipe_config->shared_dpll >= 0) {
8070                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8071
8072                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8073                                            &pipe_config->dpll_hw_state));
8074         }
8075
8076         /*
8077          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8078          * DDI E. So just check whether this pipe is wired to DDI E and whether
8079          * the PCH transcoder is on.
8080          */
8081         if (INTEL_INFO(dev)->gen < 9 &&
8082             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8083                 pipe_config->has_pch_encoder = true;
8084
8085                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8086                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8087                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8088
8089                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8090         }
8091 }
8092
8093 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8094                                     struct intel_crtc_config *pipe_config)
8095 {
8096         struct drm_device *dev = crtc->base.dev;
8097         struct drm_i915_private *dev_priv = dev->dev_private;
8098         enum intel_display_power_domain pfit_domain;
8099         uint32_t tmp;
8100
8101         if (!intel_display_power_is_enabled(dev_priv,
8102                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8103                 return false;
8104
8105         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8107
8108         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8109         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8110                 enum pipe trans_edp_pipe;
8111                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8112                 default:
8113                         WARN(1, "unknown pipe linked to edp transcoder\n");
8114                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8115                 case TRANS_DDI_EDP_INPUT_A_ON:
8116                         trans_edp_pipe = PIPE_A;
8117                         break;
8118                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8119                         trans_edp_pipe = PIPE_B;
8120                         break;
8121                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8122                         trans_edp_pipe = PIPE_C;
8123                         break;
8124                 }
8125
8126                 if (trans_edp_pipe == crtc->pipe)
8127                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8128         }
8129
8130         if (!intel_display_power_is_enabled(dev_priv,
8131                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8132                 return false;
8133
8134         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8135         if (!(tmp & PIPECONF_ENABLE))
8136                 return false;
8137
8138         haswell_get_ddi_port_state(crtc, pipe_config);
8139
8140         intel_get_pipe_timings(crtc, pipe_config);
8141
8142         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8143         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8144                 if (IS_SKYLAKE(dev))
8145                         skylake_get_pfit_config(crtc, pipe_config);
8146                 else
8147                         ironlake_get_pfit_config(crtc, pipe_config);
8148         }
8149
8150         if (IS_HASWELL(dev))
8151                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8152                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8153
8154         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8155                 pipe_config->pixel_multiplier =
8156                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8157         } else {
8158                 pipe_config->pixel_multiplier = 1;
8159         }
8160
8161         return true;
8162 }
8163
8164 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8165 {
8166         struct drm_device *dev = crtc->dev;
8167         struct drm_i915_private *dev_priv = dev->dev_private;
8168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8169         uint32_t cntl = 0, size = 0;
8170
8171         if (base) {
8172                 unsigned int width = intel_crtc->cursor_width;
8173                 unsigned int height = intel_crtc->cursor_height;
8174                 unsigned int stride = roundup_pow_of_two(width) * 4;
8175
8176                 switch (stride) {
8177                 default:
8178                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8179                                   width, stride);
8180                         stride = 256;
8181                         /* fallthrough */
8182                 case 256:
8183                 case 512:
8184                 case 1024:
8185                 case 2048:
8186                         break;
8187                 }
8188
8189                 cntl |= CURSOR_ENABLE |
8190                         CURSOR_GAMMA_ENABLE |
8191                         CURSOR_FORMAT_ARGB |
8192                         CURSOR_STRIDE(stride);
8193
8194                 size = (height << 12) | width;
8195         }
8196
8197         if (intel_crtc->cursor_cntl != 0 &&
8198             (intel_crtc->cursor_base != base ||
8199              intel_crtc->cursor_size != size ||
8200              intel_crtc->cursor_cntl != cntl)) {
8201                 /* On these chipsets we can only modify the base/size/stride
8202                  * whilst the cursor is disabled.
8203                  */
8204                 I915_WRITE(_CURACNTR, 0);
8205                 POSTING_READ(_CURACNTR);
8206                 intel_crtc->cursor_cntl = 0;
8207         }
8208
8209         if (intel_crtc->cursor_base != base) {
8210                 I915_WRITE(_CURABASE, base);
8211                 intel_crtc->cursor_base = base;
8212         }
8213
8214         if (intel_crtc->cursor_size != size) {
8215                 I915_WRITE(CURSIZE, size);
8216                 intel_crtc->cursor_size = size;
8217         }
8218
8219         if (intel_crtc->cursor_cntl != cntl) {
8220                 I915_WRITE(_CURACNTR, cntl);
8221                 POSTING_READ(_CURACNTR);
8222                 intel_crtc->cursor_cntl = cntl;
8223         }
8224 }
8225
8226 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8227 {
8228         struct drm_device *dev = crtc->dev;
8229         struct drm_i915_private *dev_priv = dev->dev_private;
8230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8231         int pipe = intel_crtc->pipe;
8232         uint32_t cntl;
8233
8234         cntl = 0;
8235         if (base) {
8236                 cntl = MCURSOR_GAMMA_ENABLE;
8237                 switch (intel_crtc->cursor_width) {
8238                         case 64:
8239                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8240                                 break;
8241                         case 128:
8242                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8243                                 break;
8244                         case 256:
8245                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8246                                 break;
8247                         default:
8248                                 WARN_ON(1);
8249                                 return;
8250                 }
8251                 cntl |= pipe << 28; /* Connect to correct pipe */
8252
8253                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8254                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8255         }
8256
8257         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8258                 cntl |= CURSOR_ROTATE_180;
8259
8260         if (intel_crtc->cursor_cntl != cntl) {
8261                 I915_WRITE(CURCNTR(pipe), cntl);
8262                 POSTING_READ(CURCNTR(pipe));
8263                 intel_crtc->cursor_cntl = cntl;
8264         }
8265
8266         /* and commit changes on next vblank */
8267         I915_WRITE(CURBASE(pipe), base);
8268         POSTING_READ(CURBASE(pipe));
8269
8270         intel_crtc->cursor_base = base;
8271 }
8272
8273 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8274 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8275                                      bool on)
8276 {
8277         struct drm_device *dev = crtc->dev;
8278         struct drm_i915_private *dev_priv = dev->dev_private;
8279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8280         int pipe = intel_crtc->pipe;
8281         int x = crtc->cursor_x;
8282         int y = crtc->cursor_y;
8283         u32 base = 0, pos = 0;
8284
8285         if (on)
8286                 base = intel_crtc->cursor_addr;
8287
8288         if (x >= intel_crtc->config.pipe_src_w)
8289                 base = 0;
8290
8291         if (y >= intel_crtc->config.pipe_src_h)
8292                 base = 0;
8293
8294         if (x < 0) {
8295                 if (x + intel_crtc->cursor_width <= 0)
8296                         base = 0;
8297
8298                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8299                 x = -x;
8300         }
8301         pos |= x << CURSOR_X_SHIFT;
8302
8303         if (y < 0) {
8304                 if (y + intel_crtc->cursor_height <= 0)
8305                         base = 0;
8306
8307                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8308                 y = -y;
8309         }
8310         pos |= y << CURSOR_Y_SHIFT;
8311
8312         if (base == 0 && intel_crtc->cursor_base == 0)
8313                 return;
8314
8315         I915_WRITE(CURPOS(pipe), pos);
8316
8317         /* ILK+ do this automagically */
8318         if (HAS_GMCH_DISPLAY(dev) &&
8319                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8320                 base += (intel_crtc->cursor_height *
8321                         intel_crtc->cursor_width - 1) * 4;
8322         }
8323
8324         if (IS_845G(dev) || IS_I865G(dev))
8325                 i845_update_cursor(crtc, base);
8326         else
8327                 i9xx_update_cursor(crtc, base);
8328 }
8329
8330 static bool cursor_size_ok(struct drm_device *dev,
8331                            uint32_t width, uint32_t height)
8332 {
8333         if (width == 0 || height == 0)
8334                 return false;
8335
8336         /*
8337          * 845g/865g are special in that they are only limited by
8338          * the width of their cursors, the height is arbitrary up to
8339          * the precision of the register. Everything else requires
8340          * square cursors, limited to a few power-of-two sizes.
8341          */
8342         if (IS_845G(dev) || IS_I865G(dev)) {
8343                 if ((width & 63) != 0)
8344                         return false;
8345
8346                 if (width > (IS_845G(dev) ? 64 : 512))
8347                         return false;
8348
8349                 if (height > 1023)
8350                         return false;
8351         } else {
8352                 switch (width | height) {
8353                 case 256:
8354                 case 128:
8355                         if (IS_GEN2(dev))
8356                                 return false;
8357                 case 64:
8358                         break;
8359                 default:
8360                         return false;
8361                 }
8362         }
8363
8364         return true;
8365 }
8366
8367 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8368                                      struct drm_i915_gem_object *obj,
8369                                      uint32_t width, uint32_t height)
8370 {
8371         struct drm_device *dev = crtc->dev;
8372         struct drm_i915_private *dev_priv = dev->dev_private;
8373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8374         enum pipe pipe = intel_crtc->pipe;
8375         unsigned old_width;
8376         uint32_t addr;
8377         int ret;
8378
8379         /* if we want to turn off the cursor ignore width and height */
8380         if (!obj) {
8381                 DRM_DEBUG_KMS("cursor off\n");
8382                 addr = 0;
8383                 mutex_lock(&dev->struct_mutex);
8384                 goto finish;
8385         }
8386
8387         /* we only need to pin inside GTT if cursor is non-phy */
8388         mutex_lock(&dev->struct_mutex);
8389         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8390                 unsigned alignment;
8391
8392                 /*
8393                  * Global gtt pte registers are special registers which actually
8394                  * forward writes to a chunk of system memory. Which means that
8395                  * there is no risk that the register values disappear as soon
8396                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8397                  * only the pin/unpin/fence and not more.
8398                  */
8399                 intel_runtime_pm_get(dev_priv);
8400
8401                 /* Note that the w/a also requires 2 PTE of padding following
8402                  * the bo. We currently fill all unused PTE with the shadow
8403                  * page and so we should always have valid PTE following the
8404                  * cursor preventing the VT-d warning.
8405                  */
8406                 alignment = 0;
8407                 if (need_vtd_wa(dev))
8408                         alignment = 64*1024;
8409
8410                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8411                 if (ret) {
8412                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8413                         intel_runtime_pm_put(dev_priv);
8414                         goto fail_locked;
8415                 }
8416
8417                 ret = i915_gem_object_put_fence(obj);
8418                 if (ret) {
8419                         DRM_DEBUG_KMS("failed to release fence for cursor");
8420                         intel_runtime_pm_put(dev_priv);
8421                         goto fail_unpin;
8422                 }
8423
8424                 addr = i915_gem_obj_ggtt_offset(obj);
8425
8426                 intel_runtime_pm_put(dev_priv);
8427         } else {
8428                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8429                 ret = i915_gem_object_attach_phys(obj, align);
8430                 if (ret) {
8431                         DRM_DEBUG_KMS("failed to attach phys object\n");
8432                         goto fail_locked;
8433                 }
8434                 addr = obj->phys_handle->busaddr;
8435         }
8436
8437  finish:
8438         if (intel_crtc->cursor_bo) {
8439                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8440                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8441         }
8442
8443         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8444                           INTEL_FRONTBUFFER_CURSOR(pipe));
8445         mutex_unlock(&dev->struct_mutex);
8446
8447         old_width = intel_crtc->cursor_width;
8448
8449         intel_crtc->cursor_addr = addr;
8450         intel_crtc->cursor_bo = obj;
8451         intel_crtc->cursor_width = width;
8452         intel_crtc->cursor_height = height;
8453
8454         if (intel_crtc->active) {
8455                 if (old_width != width)
8456                         intel_update_watermarks(crtc);
8457                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8458
8459                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8460         }
8461
8462         return 0;
8463 fail_unpin:
8464         i915_gem_object_unpin_from_display_plane(obj);
8465 fail_locked:
8466         mutex_unlock(&dev->struct_mutex);
8467         return ret;
8468 }
8469
8470 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8471                                  u16 *blue, uint32_t start, uint32_t size)
8472 {
8473         int end = (start + size > 256) ? 256 : start + size, i;
8474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8475
8476         for (i = start; i < end; i++) {
8477                 intel_crtc->lut_r[i] = red[i] >> 8;
8478                 intel_crtc->lut_g[i] = green[i] >> 8;
8479                 intel_crtc->lut_b[i] = blue[i] >> 8;
8480         }
8481
8482         intel_crtc_load_lut(crtc);
8483 }
8484
8485 /* VESA 640x480x72Hz mode to set on the pipe */
8486 static struct drm_display_mode load_detect_mode = {
8487         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8488                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8489 };
8490
8491 struct drm_framebuffer *
8492 __intel_framebuffer_create(struct drm_device *dev,
8493                            struct drm_mode_fb_cmd2 *mode_cmd,
8494                            struct drm_i915_gem_object *obj)
8495 {
8496         struct intel_framebuffer *intel_fb;
8497         int ret;
8498
8499         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8500         if (!intel_fb) {
8501                 drm_gem_object_unreference(&obj->base);
8502                 return ERR_PTR(-ENOMEM);
8503         }
8504
8505         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8506         if (ret)
8507                 goto err;
8508
8509         return &intel_fb->base;
8510 err:
8511         drm_gem_object_unreference(&obj->base);
8512         kfree(intel_fb);
8513
8514         return ERR_PTR(ret);
8515 }
8516
8517 static struct drm_framebuffer *
8518 intel_framebuffer_create(struct drm_device *dev,
8519                          struct drm_mode_fb_cmd2 *mode_cmd,
8520                          struct drm_i915_gem_object *obj)
8521 {
8522         struct drm_framebuffer *fb;
8523         int ret;
8524
8525         ret = i915_mutex_lock_interruptible(dev);
8526         if (ret)
8527                 return ERR_PTR(ret);
8528         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8529         mutex_unlock(&dev->struct_mutex);
8530
8531         return fb;
8532 }
8533
8534 static u32
8535 intel_framebuffer_pitch_for_width(int width, int bpp)
8536 {
8537         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8538         return ALIGN(pitch, 64);
8539 }
8540
8541 static u32
8542 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8543 {
8544         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8545         return PAGE_ALIGN(pitch * mode->vdisplay);
8546 }
8547
8548 static struct drm_framebuffer *
8549 intel_framebuffer_create_for_mode(struct drm_device *dev,
8550                                   struct drm_display_mode *mode,
8551                                   int depth, int bpp)
8552 {
8553         struct drm_i915_gem_object *obj;
8554         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8555
8556         obj = i915_gem_alloc_object(dev,
8557                                     intel_framebuffer_size_for_mode(mode, bpp));
8558         if (obj == NULL)
8559                 return ERR_PTR(-ENOMEM);
8560
8561         mode_cmd.width = mode->hdisplay;
8562         mode_cmd.height = mode->vdisplay;
8563         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8564                                                                 bpp);
8565         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8566
8567         return intel_framebuffer_create(dev, &mode_cmd, obj);
8568 }
8569
8570 static struct drm_framebuffer *
8571 mode_fits_in_fbdev(struct drm_device *dev,
8572                    struct drm_display_mode *mode)
8573 {
8574 #ifdef CONFIG_DRM_I915_FBDEV
8575         struct drm_i915_private *dev_priv = dev->dev_private;
8576         struct drm_i915_gem_object *obj;
8577         struct drm_framebuffer *fb;
8578
8579         if (!dev_priv->fbdev)
8580                 return NULL;
8581
8582         if (!dev_priv->fbdev->fb)
8583                 return NULL;
8584
8585         obj = dev_priv->fbdev->fb->obj;
8586         BUG_ON(!obj);
8587
8588         fb = &dev_priv->fbdev->fb->base;
8589         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8590                                                                fb->bits_per_pixel))
8591                 return NULL;
8592
8593         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8594                 return NULL;
8595
8596         return fb;
8597 #else
8598         return NULL;
8599 #endif
8600 }
8601
8602 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8603                                 struct drm_display_mode *mode,
8604                                 struct intel_load_detect_pipe *old,
8605                                 struct drm_modeset_acquire_ctx *ctx)
8606 {
8607         struct intel_crtc *intel_crtc;
8608         struct intel_encoder *intel_encoder =
8609                 intel_attached_encoder(connector);
8610         struct drm_crtc *possible_crtc;
8611         struct drm_encoder *encoder = &intel_encoder->base;
8612         struct drm_crtc *crtc = NULL;
8613         struct drm_device *dev = encoder->dev;
8614         struct drm_framebuffer *fb;
8615         struct drm_mode_config *config = &dev->mode_config;
8616         int ret, i = -1;
8617
8618         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8619                       connector->base.id, connector->name,
8620                       encoder->base.id, encoder->name);
8621
8622 retry:
8623         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8624         if (ret)
8625                 goto fail_unlock;
8626
8627         /*
8628          * Algorithm gets a little messy:
8629          *
8630          *   - if the connector already has an assigned crtc, use it (but make
8631          *     sure it's on first)
8632          *
8633          *   - try to find the first unused crtc that can drive this connector,
8634          *     and use that if we find one
8635          */
8636
8637         /* See if we already have a CRTC for this connector */
8638         if (encoder->crtc) {
8639                 crtc = encoder->crtc;
8640
8641                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8642                 if (ret)
8643                         goto fail_unlock;
8644
8645                 old->dpms_mode = connector->dpms;
8646                 old->load_detect_temp = false;
8647
8648                 /* Make sure the crtc and connector are running */
8649                 if (connector->dpms != DRM_MODE_DPMS_ON)
8650                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8651
8652                 return true;
8653         }
8654
8655         /* Find an unused one (if possible) */
8656         for_each_crtc(dev, possible_crtc) {
8657                 i++;
8658                 if (!(encoder->possible_crtcs & (1 << i)))
8659                         continue;
8660                 if (possible_crtc->enabled)
8661                         continue;
8662                 /* This can occur when applying the pipe A quirk on resume. */
8663                 if (to_intel_crtc(possible_crtc)->new_enabled)
8664                         continue;
8665
8666                 crtc = possible_crtc;
8667                 break;
8668         }
8669
8670         /*
8671          * If we didn't find an unused CRTC, don't use any.
8672          */
8673         if (!crtc) {
8674                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8675                 goto fail_unlock;
8676         }
8677
8678         ret = drm_modeset_lock(&crtc->mutex, ctx);
8679         if (ret)
8680                 goto fail_unlock;
8681         intel_encoder->new_crtc = to_intel_crtc(crtc);
8682         to_intel_connector(connector)->new_encoder = intel_encoder;
8683
8684         intel_crtc = to_intel_crtc(crtc);
8685         intel_crtc->new_enabled = true;
8686         intel_crtc->new_config = &intel_crtc->config;
8687         old->dpms_mode = connector->dpms;
8688         old->load_detect_temp = true;
8689         old->release_fb = NULL;
8690
8691         if (!mode)
8692                 mode = &load_detect_mode;
8693
8694         /* We need a framebuffer large enough to accommodate all accesses
8695          * that the plane may generate whilst we perform load detection.
8696          * We can not rely on the fbcon either being present (we get called
8697          * during its initialisation to detect all boot displays, or it may
8698          * not even exist) or that it is large enough to satisfy the
8699          * requested mode.
8700          */
8701         fb = mode_fits_in_fbdev(dev, mode);
8702         if (fb == NULL) {
8703                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8704                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8705                 old->release_fb = fb;
8706         } else
8707                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8708         if (IS_ERR(fb)) {
8709                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8710                 goto fail;
8711         }
8712
8713         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8714                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8715                 if (old->release_fb)
8716                         old->release_fb->funcs->destroy(old->release_fb);
8717                 goto fail;
8718         }
8719
8720         /* let the connector get through one full cycle before testing */
8721         intel_wait_for_vblank(dev, intel_crtc->pipe);
8722         return true;
8723
8724  fail:
8725         intel_crtc->new_enabled = crtc->enabled;
8726         if (intel_crtc->new_enabled)
8727                 intel_crtc->new_config = &intel_crtc->config;
8728         else
8729                 intel_crtc->new_config = NULL;
8730 fail_unlock:
8731         if (ret == -EDEADLK) {
8732                 drm_modeset_backoff(ctx);
8733                 goto retry;
8734         }
8735
8736         return false;
8737 }
8738
8739 void intel_release_load_detect_pipe(struct drm_connector *connector,
8740                                     struct intel_load_detect_pipe *old)
8741 {
8742         struct intel_encoder *intel_encoder =
8743                 intel_attached_encoder(connector);
8744         struct drm_encoder *encoder = &intel_encoder->base;
8745         struct drm_crtc *crtc = encoder->crtc;
8746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8747
8748         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8749                       connector->base.id, connector->name,
8750                       encoder->base.id, encoder->name);
8751
8752         if (old->load_detect_temp) {
8753                 to_intel_connector(connector)->new_encoder = NULL;
8754                 intel_encoder->new_crtc = NULL;
8755                 intel_crtc->new_enabled = false;
8756                 intel_crtc->new_config = NULL;
8757                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8758
8759                 if (old->release_fb) {
8760                         drm_framebuffer_unregister_private(old->release_fb);
8761                         drm_framebuffer_unreference(old->release_fb);
8762                 }
8763
8764                 return;
8765         }
8766
8767         /* Switch crtc and encoder back off if necessary */
8768         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8769                 connector->funcs->dpms(connector, old->dpms_mode);
8770 }
8771
8772 static int i9xx_pll_refclk(struct drm_device *dev,
8773                            const struct intel_crtc_config *pipe_config)
8774 {
8775         struct drm_i915_private *dev_priv = dev->dev_private;
8776         u32 dpll = pipe_config->dpll_hw_state.dpll;
8777
8778         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8779                 return dev_priv->vbt.lvds_ssc_freq;
8780         else if (HAS_PCH_SPLIT(dev))
8781                 return 120000;
8782         else if (!IS_GEN2(dev))
8783                 return 96000;
8784         else
8785                 return 48000;
8786 }
8787
8788 /* Returns the clock of the currently programmed mode of the given pipe. */
8789 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8790                                 struct intel_crtc_config *pipe_config)
8791 {
8792         struct drm_device *dev = crtc->base.dev;
8793         struct drm_i915_private *dev_priv = dev->dev_private;
8794         int pipe = pipe_config->cpu_transcoder;
8795         u32 dpll = pipe_config->dpll_hw_state.dpll;
8796         u32 fp;
8797         intel_clock_t clock;
8798         int refclk = i9xx_pll_refclk(dev, pipe_config);
8799
8800         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8801                 fp = pipe_config->dpll_hw_state.fp0;
8802         else
8803                 fp = pipe_config->dpll_hw_state.fp1;
8804
8805         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8806         if (IS_PINEVIEW(dev)) {
8807                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8808                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8809         } else {
8810                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8811                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8812         }
8813
8814         if (!IS_GEN2(dev)) {
8815                 if (IS_PINEVIEW(dev))
8816                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8817                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8818                 else
8819                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8820                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8821
8822                 switch (dpll & DPLL_MODE_MASK) {
8823                 case DPLLB_MODE_DAC_SERIAL:
8824                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8825                                 5 : 10;
8826                         break;
8827                 case DPLLB_MODE_LVDS:
8828                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8829                                 7 : 14;
8830                         break;
8831                 default:
8832                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8833                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8834                         return;
8835                 }
8836
8837                 if (IS_PINEVIEW(dev))
8838                         pineview_clock(refclk, &clock);
8839                 else
8840                         i9xx_clock(refclk, &clock);
8841         } else {
8842                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8843                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8844
8845                 if (is_lvds) {
8846                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8847                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8848
8849                         if (lvds & LVDS_CLKB_POWER_UP)
8850                                 clock.p2 = 7;
8851                         else
8852                                 clock.p2 = 14;
8853                 } else {
8854                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8855                                 clock.p1 = 2;
8856                         else {
8857                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8858                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8859                         }
8860                         if (dpll & PLL_P2_DIVIDE_BY_4)
8861                                 clock.p2 = 4;
8862                         else
8863                                 clock.p2 = 2;
8864                 }
8865
8866                 i9xx_clock(refclk, &clock);
8867         }
8868
8869         /*
8870          * This value includes pixel_multiplier. We will use
8871          * port_clock to compute adjusted_mode.crtc_clock in the
8872          * encoder's get_config() function.
8873          */
8874         pipe_config->port_clock = clock.dot;
8875 }
8876
8877 int intel_dotclock_calculate(int link_freq,
8878                              const struct intel_link_m_n *m_n)
8879 {
8880         /*
8881          * The calculation for the data clock is:
8882          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8883          * But we want to avoid losing precison if possible, so:
8884          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8885          *
8886          * and the link clock is simpler:
8887          * link_clock = (m * link_clock) / n
8888          */
8889
8890         if (!m_n->link_n)
8891                 return 0;
8892
8893         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8894 }
8895
8896 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8897                                    struct intel_crtc_config *pipe_config)
8898 {
8899         struct drm_device *dev = crtc->base.dev;
8900
8901         /* read out port_clock from the DPLL */
8902         i9xx_crtc_clock_get(crtc, pipe_config);
8903
8904         /*
8905          * This value does not include pixel_multiplier.
8906          * We will check that port_clock and adjusted_mode.crtc_clock
8907          * agree once we know their relationship in the encoder's
8908          * get_config() function.
8909          */
8910         pipe_config->adjusted_mode.crtc_clock =
8911                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8912                                          &pipe_config->fdi_m_n);
8913 }
8914
8915 /** Returns the currently programmed mode of the given pipe. */
8916 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8917                                              struct drm_crtc *crtc)
8918 {
8919         struct drm_i915_private *dev_priv = dev->dev_private;
8920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8921         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8922         struct drm_display_mode *mode;
8923         struct intel_crtc_config pipe_config;
8924         int htot = I915_READ(HTOTAL(cpu_transcoder));
8925         int hsync = I915_READ(HSYNC(cpu_transcoder));
8926         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8927         int vsync = I915_READ(VSYNC(cpu_transcoder));
8928         enum pipe pipe = intel_crtc->pipe;
8929
8930         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8931         if (!mode)
8932                 return NULL;
8933
8934         /*
8935          * Construct a pipe_config sufficient for getting the clock info
8936          * back out of crtc_clock_get.
8937          *
8938          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8939          * to use a real value here instead.
8940          */
8941         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8942         pipe_config.pixel_multiplier = 1;
8943         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8944         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8945         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8946         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8947
8948         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8949         mode->hdisplay = (htot & 0xffff) + 1;
8950         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8951         mode->hsync_start = (hsync & 0xffff) + 1;
8952         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8953         mode->vdisplay = (vtot & 0xffff) + 1;
8954         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8955         mode->vsync_start = (vsync & 0xffff) + 1;
8956         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8957
8958         drm_mode_set_name(mode);
8959
8960         return mode;
8961 }
8962
8963 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8964 {
8965         struct drm_device *dev = crtc->dev;
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8968
8969         if (!HAS_GMCH_DISPLAY(dev))
8970                 return;
8971
8972         if (!dev_priv->lvds_downclock_avail)
8973                 return;
8974
8975         /*
8976          * Since this is called by a timer, we should never get here in
8977          * the manual case.
8978          */
8979         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8980                 int pipe = intel_crtc->pipe;
8981                 int dpll_reg = DPLL(pipe);
8982                 int dpll;
8983
8984                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8985
8986                 assert_panel_unlocked(dev_priv, pipe);
8987
8988                 dpll = I915_READ(dpll_reg);
8989                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8990                 I915_WRITE(dpll_reg, dpll);
8991                 intel_wait_for_vblank(dev, pipe);
8992                 dpll = I915_READ(dpll_reg);
8993                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8994                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8995         }
8996
8997 }
8998
8999 void intel_mark_busy(struct drm_device *dev)
9000 {
9001         struct drm_i915_private *dev_priv = dev->dev_private;
9002
9003         if (dev_priv->mm.busy)
9004                 return;
9005
9006         intel_runtime_pm_get(dev_priv);
9007         i915_update_gfx_val(dev_priv);
9008         dev_priv->mm.busy = true;
9009 }
9010
9011 void intel_mark_idle(struct drm_device *dev)
9012 {
9013         struct drm_i915_private *dev_priv = dev->dev_private;
9014         struct drm_crtc *crtc;
9015
9016         if (!dev_priv->mm.busy)
9017                 return;
9018
9019         dev_priv->mm.busy = false;
9020
9021         if (!i915.powersave)
9022                 goto out;
9023
9024         for_each_crtc(dev, crtc) {
9025                 if (!crtc->primary->fb)
9026                         continue;
9027
9028                 intel_decrease_pllclock(crtc);
9029         }
9030
9031         if (INTEL_INFO(dev)->gen >= 6)
9032                 gen6_rps_idle(dev->dev_private);
9033
9034 out:
9035         intel_runtime_pm_put(dev_priv);
9036 }
9037
9038 static void intel_crtc_destroy(struct drm_crtc *crtc)
9039 {
9040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9041         struct drm_device *dev = crtc->dev;
9042         struct intel_unpin_work *work;
9043
9044         spin_lock_irq(&dev->event_lock);
9045         work = intel_crtc->unpin_work;
9046         intel_crtc->unpin_work = NULL;
9047         spin_unlock_irq(&dev->event_lock);
9048
9049         if (work) {
9050                 cancel_work_sync(&work->work);
9051                 kfree(work);
9052         }
9053
9054         drm_crtc_cleanup(crtc);
9055
9056         kfree(intel_crtc);
9057 }
9058
9059 static void intel_unpin_work_fn(struct work_struct *__work)
9060 {
9061         struct intel_unpin_work *work =
9062                 container_of(__work, struct intel_unpin_work, work);
9063         struct drm_device *dev = work->crtc->dev;
9064         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9065
9066         mutex_lock(&dev->struct_mutex);
9067         intel_unpin_fb_obj(work->old_fb_obj);
9068         drm_gem_object_unreference(&work->pending_flip_obj->base);
9069         drm_gem_object_unreference(&work->old_fb_obj->base);
9070
9071         intel_update_fbc(dev);
9072         mutex_unlock(&dev->struct_mutex);
9073
9074         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9075
9076         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9077         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9078
9079         kfree(work);
9080 }
9081
9082 static void do_intel_finish_page_flip(struct drm_device *dev,
9083                                       struct drm_crtc *crtc)
9084 {
9085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9086         struct intel_unpin_work *work;
9087         unsigned long flags;
9088
9089         /* Ignore early vblank irqs */
9090         if (intel_crtc == NULL)
9091                 return;
9092
9093         /*
9094          * This is called both by irq handlers and the reset code (to complete
9095          * lost pageflips) so needs the full irqsave spinlocks.
9096          */
9097         spin_lock_irqsave(&dev->event_lock, flags);
9098         work = intel_crtc->unpin_work;
9099
9100         /* Ensure we don't miss a work->pending update ... */
9101         smp_rmb();
9102
9103         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9104                 spin_unlock_irqrestore(&dev->event_lock, flags);
9105                 return;
9106         }
9107
9108         page_flip_completed(intel_crtc);
9109
9110         spin_unlock_irqrestore(&dev->event_lock, flags);
9111 }
9112
9113 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9114 {
9115         struct drm_i915_private *dev_priv = dev->dev_private;
9116         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9117
9118         do_intel_finish_page_flip(dev, crtc);
9119 }
9120
9121 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9122 {
9123         struct drm_i915_private *dev_priv = dev->dev_private;
9124         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9125
9126         do_intel_finish_page_flip(dev, crtc);
9127 }
9128
9129 /* Is 'a' after or equal to 'b'? */
9130 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9131 {
9132         return !((a - b) & 0x80000000);
9133 }
9134
9135 static bool page_flip_finished(struct intel_crtc *crtc)
9136 {
9137         struct drm_device *dev = crtc->base.dev;
9138         struct drm_i915_private *dev_priv = dev->dev_private;
9139
9140         /*
9141          * The relevant registers doen't exist on pre-ctg.
9142          * As the flip done interrupt doesn't trigger for mmio
9143          * flips on gmch platforms, a flip count check isn't
9144          * really needed there. But since ctg has the registers,
9145          * include it in the check anyway.
9146          */
9147         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9148                 return true;
9149
9150         /*
9151          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9152          * used the same base address. In that case the mmio flip might
9153          * have completed, but the CS hasn't even executed the flip yet.
9154          *
9155          * A flip count check isn't enough as the CS might have updated
9156          * the base address just after start of vblank, but before we
9157          * managed to process the interrupt. This means we'd complete the
9158          * CS flip too soon.
9159          *
9160          * Combining both checks should get us a good enough result. It may
9161          * still happen that the CS flip has been executed, but has not
9162          * yet actually completed. But in case the base address is the same
9163          * anyway, we don't really care.
9164          */
9165         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9166                 crtc->unpin_work->gtt_offset &&
9167                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9168                                     crtc->unpin_work->flip_count);
9169 }
9170
9171 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9172 {
9173         struct drm_i915_private *dev_priv = dev->dev_private;
9174         struct intel_crtc *intel_crtc =
9175                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9176         unsigned long flags;
9177
9178
9179         /*
9180          * This is called both by irq handlers and the reset code (to complete
9181          * lost pageflips) so needs the full irqsave spinlocks.
9182          *
9183          * NB: An MMIO update of the plane base pointer will also
9184          * generate a page-flip completion irq, i.e. every modeset
9185          * is also accompanied by a spurious intel_prepare_page_flip().
9186          */
9187         spin_lock_irqsave(&dev->event_lock, flags);
9188         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9189                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9190         spin_unlock_irqrestore(&dev->event_lock, flags);
9191 }
9192
9193 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9194 {
9195         /* Ensure that the work item is consistent when activating it ... */
9196         smp_wmb();
9197         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9198         /* and that it is marked active as soon as the irq could fire. */
9199         smp_wmb();
9200 }
9201
9202 static int intel_gen2_queue_flip(struct drm_device *dev,
9203                                  struct drm_crtc *crtc,
9204                                  struct drm_framebuffer *fb,
9205                                  struct drm_i915_gem_object *obj,
9206                                  struct intel_engine_cs *ring,
9207                                  uint32_t flags)
9208 {
9209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9210         u32 flip_mask;
9211         int ret;
9212
9213         ret = intel_ring_begin(ring, 6);
9214         if (ret)
9215                 return ret;
9216
9217         /* Can't queue multiple flips, so wait for the previous
9218          * one to finish before executing the next.
9219          */
9220         if (intel_crtc->plane)
9221                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9222         else
9223                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9224         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9225         intel_ring_emit(ring, MI_NOOP);
9226         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9227                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9228         intel_ring_emit(ring, fb->pitches[0]);
9229         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9230         intel_ring_emit(ring, 0); /* aux display base address, unused */
9231
9232         intel_mark_page_flip_active(intel_crtc);
9233         __intel_ring_advance(ring);
9234         return 0;
9235 }
9236
9237 static int intel_gen3_queue_flip(struct drm_device *dev,
9238                                  struct drm_crtc *crtc,
9239                                  struct drm_framebuffer *fb,
9240                                  struct drm_i915_gem_object *obj,
9241                                  struct intel_engine_cs *ring,
9242                                  uint32_t flags)
9243 {
9244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9245         u32 flip_mask;
9246         int ret;
9247
9248         ret = intel_ring_begin(ring, 6);
9249         if (ret)
9250                 return ret;
9251
9252         if (intel_crtc->plane)
9253                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9254         else
9255                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9256         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9257         intel_ring_emit(ring, MI_NOOP);
9258         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9259                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9260         intel_ring_emit(ring, fb->pitches[0]);
9261         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9262         intel_ring_emit(ring, MI_NOOP);
9263
9264         intel_mark_page_flip_active(intel_crtc);
9265         __intel_ring_advance(ring);
9266         return 0;
9267 }
9268
9269 static int intel_gen4_queue_flip(struct drm_device *dev,
9270                                  struct drm_crtc *crtc,
9271                                  struct drm_framebuffer *fb,
9272                                  struct drm_i915_gem_object *obj,
9273                                  struct intel_engine_cs *ring,
9274                                  uint32_t flags)
9275 {
9276         struct drm_i915_private *dev_priv = dev->dev_private;
9277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9278         uint32_t pf, pipesrc;
9279         int ret;
9280
9281         ret = intel_ring_begin(ring, 4);
9282         if (ret)
9283                 return ret;
9284
9285         /* i965+ uses the linear or tiled offsets from the
9286          * Display Registers (which do not change across a page-flip)
9287          * so we need only reprogram the base address.
9288          */
9289         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9290                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9291         intel_ring_emit(ring, fb->pitches[0]);
9292         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9293                         obj->tiling_mode);
9294
9295         /* XXX Enabling the panel-fitter across page-flip is so far
9296          * untested on non-native modes, so ignore it for now.
9297          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9298          */
9299         pf = 0;
9300         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9301         intel_ring_emit(ring, pf | pipesrc);
9302
9303         intel_mark_page_flip_active(intel_crtc);
9304         __intel_ring_advance(ring);
9305         return 0;
9306 }
9307
9308 static int intel_gen6_queue_flip(struct drm_device *dev,
9309                                  struct drm_crtc *crtc,
9310                                  struct drm_framebuffer *fb,
9311                                  struct drm_i915_gem_object *obj,
9312                                  struct intel_engine_cs *ring,
9313                                  uint32_t flags)
9314 {
9315         struct drm_i915_private *dev_priv = dev->dev_private;
9316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9317         uint32_t pf, pipesrc;
9318         int ret;
9319
9320         ret = intel_ring_begin(ring, 4);
9321         if (ret)
9322                 return ret;
9323
9324         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9325                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9326         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9327         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9328
9329         /* Contrary to the suggestions in the documentation,
9330          * "Enable Panel Fitter" does not seem to be required when page
9331          * flipping with a non-native mode, and worse causes a normal
9332          * modeset to fail.
9333          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9334          */
9335         pf = 0;
9336         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9337         intel_ring_emit(ring, pf | pipesrc);
9338
9339         intel_mark_page_flip_active(intel_crtc);
9340         __intel_ring_advance(ring);
9341         return 0;
9342 }
9343
9344 static int intel_gen7_queue_flip(struct drm_device *dev,
9345                                  struct drm_crtc *crtc,
9346                                  struct drm_framebuffer *fb,
9347                                  struct drm_i915_gem_object *obj,
9348                                  struct intel_engine_cs *ring,
9349                                  uint32_t flags)
9350 {
9351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9352         uint32_t plane_bit = 0;
9353         int len, ret;
9354
9355         switch (intel_crtc->plane) {
9356         case PLANE_A:
9357                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9358                 break;
9359         case PLANE_B:
9360                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9361                 break;
9362         case PLANE_C:
9363                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9364                 break;
9365         default:
9366                 WARN_ONCE(1, "unknown plane in flip command\n");
9367                 return -ENODEV;
9368         }
9369
9370         len = 4;
9371         if (ring->id == RCS) {
9372                 len += 6;
9373                 /*
9374                  * On Gen 8, SRM is now taking an extra dword to accommodate
9375                  * 48bits addresses, and we need a NOOP for the batch size to
9376                  * stay even.
9377                  */
9378                 if (IS_GEN8(dev))
9379                         len += 2;
9380         }
9381
9382         /*
9383          * BSpec MI_DISPLAY_FLIP for IVB:
9384          * "The full packet must be contained within the same cache line."
9385          *
9386          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9387          * cacheline, if we ever start emitting more commands before
9388          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9389          * then do the cacheline alignment, and finally emit the
9390          * MI_DISPLAY_FLIP.
9391          */
9392         ret = intel_ring_cacheline_align(ring);
9393         if (ret)
9394                 return ret;
9395
9396         ret = intel_ring_begin(ring, len);
9397         if (ret)
9398                 return ret;
9399
9400         /* Unmask the flip-done completion message. Note that the bspec says that
9401          * we should do this for both the BCS and RCS, and that we must not unmask
9402          * more than one flip event at any time (or ensure that one flip message
9403          * can be sent by waiting for flip-done prior to queueing new flips).
9404          * Experimentation says that BCS works despite DERRMR masking all
9405          * flip-done completion events and that unmasking all planes at once
9406          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9407          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9408          */
9409         if (ring->id == RCS) {
9410                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9411                 intel_ring_emit(ring, DERRMR);
9412                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9413                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9414                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9415                 if (IS_GEN8(dev))
9416                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9417                                               MI_SRM_LRM_GLOBAL_GTT);
9418                 else
9419                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9420                                               MI_SRM_LRM_GLOBAL_GTT);
9421                 intel_ring_emit(ring, DERRMR);
9422                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9423                 if (IS_GEN8(dev)) {
9424                         intel_ring_emit(ring, 0);
9425                         intel_ring_emit(ring, MI_NOOP);
9426                 }
9427         }
9428
9429         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9430         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9431         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9432         intel_ring_emit(ring, (MI_NOOP));
9433
9434         intel_mark_page_flip_active(intel_crtc);
9435         __intel_ring_advance(ring);
9436         return 0;
9437 }
9438
9439 static bool use_mmio_flip(struct intel_engine_cs *ring,
9440                           struct drm_i915_gem_object *obj)
9441 {
9442         /*
9443          * This is not being used for older platforms, because
9444          * non-availability of flip done interrupt forces us to use
9445          * CS flips. Older platforms derive flip done using some clever
9446          * tricks involving the flip_pending status bits and vblank irqs.
9447          * So using MMIO flips there would disrupt this mechanism.
9448          */
9449
9450         if (ring == NULL)
9451                 return true;
9452
9453         if (INTEL_INFO(ring->dev)->gen < 5)
9454                 return false;
9455
9456         if (i915.use_mmio_flip < 0)
9457                 return false;
9458         else if (i915.use_mmio_flip > 0)
9459                 return true;
9460         else if (i915.enable_execlists)
9461                 return true;
9462         else
9463                 return ring != obj->ring;
9464 }
9465
9466 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9467 {
9468         struct drm_device *dev = intel_crtc->base.dev;
9469         struct drm_i915_private *dev_priv = dev->dev_private;
9470         struct intel_framebuffer *intel_fb =
9471                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9472         struct drm_i915_gem_object *obj = intel_fb->obj;
9473         bool atomic_update;
9474         u32 start_vbl_count;
9475         u32 dspcntr;
9476         u32 reg;
9477
9478         intel_mark_page_flip_active(intel_crtc);
9479
9480         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9481
9482         reg = DSPCNTR(intel_crtc->plane);
9483         dspcntr = I915_READ(reg);
9484
9485         if (obj->tiling_mode != I915_TILING_NONE)
9486                 dspcntr |= DISPPLANE_TILED;
9487         else
9488                 dspcntr &= ~DISPPLANE_TILED;
9489
9490         I915_WRITE(reg, dspcntr);
9491
9492         I915_WRITE(DSPSURF(intel_crtc->plane),
9493                    intel_crtc->unpin_work->gtt_offset);
9494         POSTING_READ(DSPSURF(intel_crtc->plane));
9495
9496         if (atomic_update)
9497                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9498 }
9499
9500 static void intel_mmio_flip_work_func(struct work_struct *work)
9501 {
9502         struct intel_crtc *intel_crtc =
9503                 container_of(work, struct intel_crtc, mmio_flip.work);
9504         struct intel_engine_cs *ring;
9505         uint32_t seqno;
9506
9507         seqno = intel_crtc->mmio_flip.seqno;
9508         ring = intel_crtc->mmio_flip.ring;
9509
9510         if (seqno)
9511                 WARN_ON(__i915_wait_seqno(ring, seqno,
9512                                           intel_crtc->reset_counter,
9513                                           false, NULL, NULL) != 0);
9514
9515         intel_do_mmio_flip(intel_crtc);
9516 }
9517
9518 static int intel_queue_mmio_flip(struct drm_device *dev,
9519                                  struct drm_crtc *crtc,
9520                                  struct drm_framebuffer *fb,
9521                                  struct drm_i915_gem_object *obj,
9522                                  struct intel_engine_cs *ring,
9523                                  uint32_t flags)
9524 {
9525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9526
9527         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9528         intel_crtc->mmio_flip.ring = obj->ring;
9529
9530         schedule_work(&intel_crtc->mmio_flip.work);
9531
9532         return 0;
9533 }
9534
9535 static int intel_gen9_queue_flip(struct drm_device *dev,
9536                                  struct drm_crtc *crtc,
9537                                  struct drm_framebuffer *fb,
9538                                  struct drm_i915_gem_object *obj,
9539                                  struct intel_engine_cs *ring,
9540                                  uint32_t flags)
9541 {
9542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9543         uint32_t plane = 0, stride;
9544         int ret;
9545
9546         switch(intel_crtc->pipe) {
9547         case PIPE_A:
9548                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9549                 break;
9550         case PIPE_B:
9551                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9552                 break;
9553         case PIPE_C:
9554                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9555                 break;
9556         default:
9557                 WARN_ONCE(1, "unknown plane in flip command\n");
9558                 return -ENODEV;
9559         }
9560
9561         switch (obj->tiling_mode) {
9562         case I915_TILING_NONE:
9563                 stride = fb->pitches[0] >> 6;
9564                 break;
9565         case I915_TILING_X:
9566                 stride = fb->pitches[0] >> 9;
9567                 break;
9568         default:
9569                 WARN_ONCE(1, "unknown tiling in flip command\n");
9570                 return -ENODEV;
9571         }
9572
9573         ret = intel_ring_begin(ring, 10);
9574         if (ret)
9575                 return ret;
9576
9577         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9578         intel_ring_emit(ring, DERRMR);
9579         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9580                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9581                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9582         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9583                               MI_SRM_LRM_GLOBAL_GTT);
9584         intel_ring_emit(ring, DERRMR);
9585         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9586         intel_ring_emit(ring, 0);
9587
9588         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9589         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9590         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9591
9592         intel_mark_page_flip_active(intel_crtc);
9593         __intel_ring_advance(ring);
9594
9595         return 0;
9596 }
9597
9598 static int intel_default_queue_flip(struct drm_device *dev,
9599                                     struct drm_crtc *crtc,
9600                                     struct drm_framebuffer *fb,
9601                                     struct drm_i915_gem_object *obj,
9602                                     struct intel_engine_cs *ring,
9603                                     uint32_t flags)
9604 {
9605         return -ENODEV;
9606 }
9607
9608 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9609                                          struct drm_crtc *crtc)
9610 {
9611         struct drm_i915_private *dev_priv = dev->dev_private;
9612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9613         struct intel_unpin_work *work = intel_crtc->unpin_work;
9614         u32 addr;
9615
9616         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9617                 return true;
9618
9619         if (!work->enable_stall_check)
9620                 return false;
9621
9622         if (work->flip_ready_vblank == 0) {
9623                 if (work->flip_queued_ring &&
9624                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9625                                        work->flip_queued_seqno))
9626                         return false;
9627
9628                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9629         }
9630
9631         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9632                 return false;
9633
9634         /* Potential stall - if we see that the flip has happened,
9635          * assume a missed interrupt. */
9636         if (INTEL_INFO(dev)->gen >= 4)
9637                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9638         else
9639                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9640
9641         /* There is a potential issue here with a false positive after a flip
9642          * to the same address. We could address this by checking for a
9643          * non-incrementing frame counter.
9644          */
9645         return addr == work->gtt_offset;
9646 }
9647
9648 void intel_check_page_flip(struct drm_device *dev, int pipe)
9649 {
9650         struct drm_i915_private *dev_priv = dev->dev_private;
9651         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9653
9654         WARN_ON(!in_irq());
9655
9656         if (crtc == NULL)
9657                 return;
9658
9659         spin_lock(&dev->event_lock);
9660         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9661                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9662                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9663                 page_flip_completed(intel_crtc);
9664         }
9665         spin_unlock(&dev->event_lock);
9666 }
9667
9668 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9669                                 struct drm_framebuffer *fb,
9670                                 struct drm_pending_vblank_event *event,
9671                                 uint32_t page_flip_flags)
9672 {
9673         struct drm_device *dev = crtc->dev;
9674         struct drm_i915_private *dev_priv = dev->dev_private;
9675         struct drm_framebuffer *old_fb = crtc->primary->fb;
9676         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9678         enum pipe pipe = intel_crtc->pipe;
9679         struct intel_unpin_work *work;
9680         struct intel_engine_cs *ring;
9681         int ret;
9682
9683         /*
9684          * drm_mode_page_flip_ioctl() should already catch this, but double
9685          * check to be safe.  In the future we may enable pageflipping from
9686          * a disabled primary plane.
9687          */
9688         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9689                 return -EBUSY;
9690
9691         /* Can't change pixel format via MI display flips. */
9692         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9693                 return -EINVAL;
9694
9695         /*
9696          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9697          * Note that pitch changes could also affect these register.
9698          */
9699         if (INTEL_INFO(dev)->gen > 3 &&
9700             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9701              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9702                 return -EINVAL;
9703
9704         if (i915_terminally_wedged(&dev_priv->gpu_error))
9705                 goto out_hang;
9706
9707         work = kzalloc(sizeof(*work), GFP_KERNEL);
9708         if (work == NULL)
9709                 return -ENOMEM;
9710
9711         work->event = event;
9712         work->crtc = crtc;
9713         work->old_fb_obj = intel_fb_obj(old_fb);
9714         INIT_WORK(&work->work, intel_unpin_work_fn);
9715
9716         ret = drm_crtc_vblank_get(crtc);
9717         if (ret)
9718                 goto free_work;
9719
9720         /* We borrow the event spin lock for protecting unpin_work */
9721         spin_lock_irq(&dev->event_lock);
9722         if (intel_crtc->unpin_work) {
9723                 /* Before declaring the flip queue wedged, check if
9724                  * the hardware completed the operation behind our backs.
9725                  */
9726                 if (__intel_pageflip_stall_check(dev, crtc)) {
9727                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9728                         page_flip_completed(intel_crtc);
9729                 } else {
9730                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9731                         spin_unlock_irq(&dev->event_lock);
9732
9733                         drm_crtc_vblank_put(crtc);
9734                         kfree(work);
9735                         return -EBUSY;
9736                 }
9737         }
9738         intel_crtc->unpin_work = work;
9739         spin_unlock_irq(&dev->event_lock);
9740
9741         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9742                 flush_workqueue(dev_priv->wq);
9743
9744         ret = i915_mutex_lock_interruptible(dev);
9745         if (ret)
9746                 goto cleanup;
9747
9748         /* Reference the objects for the scheduled work. */
9749         drm_gem_object_reference(&work->old_fb_obj->base);
9750         drm_gem_object_reference(&obj->base);
9751
9752         crtc->primary->fb = fb;
9753
9754         work->pending_flip_obj = obj;
9755
9756         atomic_inc(&intel_crtc->unpin_work_count);
9757         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9758
9759         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9760                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9761
9762         if (IS_VALLEYVIEW(dev)) {
9763                 ring = &dev_priv->ring[BCS];
9764                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9765                         /* vlv: DISPLAY_FLIP fails to change tiling */
9766                         ring = NULL;
9767         } else if (IS_IVYBRIDGE(dev)) {
9768                 ring = &dev_priv->ring[BCS];
9769         } else if (INTEL_INFO(dev)->gen >= 7) {
9770                 ring = obj->ring;
9771                 if (ring == NULL || ring->id != RCS)
9772                         ring = &dev_priv->ring[BCS];
9773         } else {
9774                 ring = &dev_priv->ring[RCS];
9775         }
9776
9777         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9778         if (ret)
9779                 goto cleanup_pending;
9780
9781         work->gtt_offset =
9782                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9783
9784         if (use_mmio_flip(ring, obj)) {
9785                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9786                                             page_flip_flags);
9787                 if (ret)
9788                         goto cleanup_unpin;
9789
9790                 work->flip_queued_seqno = obj->last_write_seqno;
9791                 work->flip_queued_ring = obj->ring;
9792         } else {
9793                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9794                                                    page_flip_flags);
9795                 if (ret)
9796                         goto cleanup_unpin;
9797
9798                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9799                 work->flip_queued_ring = ring;
9800         }
9801
9802         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9803         work->enable_stall_check = true;
9804
9805         i915_gem_track_fb(work->old_fb_obj, obj,
9806                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9807
9808         intel_disable_fbc(dev);
9809         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9810         mutex_unlock(&dev->struct_mutex);
9811
9812         trace_i915_flip_request(intel_crtc->plane, obj);
9813
9814         return 0;
9815
9816 cleanup_unpin:
9817         intel_unpin_fb_obj(obj);
9818 cleanup_pending:
9819         atomic_dec(&intel_crtc->unpin_work_count);
9820         crtc->primary->fb = old_fb;
9821         drm_gem_object_unreference(&work->old_fb_obj->base);
9822         drm_gem_object_unreference(&obj->base);
9823         mutex_unlock(&dev->struct_mutex);
9824
9825 cleanup:
9826         spin_lock_irq(&dev->event_lock);
9827         intel_crtc->unpin_work = NULL;
9828         spin_unlock_irq(&dev->event_lock);
9829
9830         drm_crtc_vblank_put(crtc);
9831 free_work:
9832         kfree(work);
9833
9834         if (ret == -EIO) {
9835 out_hang:
9836                 intel_crtc_wait_for_pending_flips(crtc);
9837                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9838                 if (ret == 0 && event) {
9839                         spin_lock_irq(&dev->event_lock);
9840                         drm_send_vblank_event(dev, pipe, event);
9841                         spin_unlock_irq(&dev->event_lock);
9842                 }
9843         }
9844         return ret;
9845 }
9846
9847 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9848         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9849         .load_lut = intel_crtc_load_lut,
9850 };
9851
9852 /**
9853  * intel_modeset_update_staged_output_state
9854  *
9855  * Updates the staged output configuration state, e.g. after we've read out the
9856  * current hw state.
9857  */
9858 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9859 {
9860         struct intel_crtc *crtc;
9861         struct intel_encoder *encoder;
9862         struct intel_connector *connector;
9863
9864         list_for_each_entry(connector, &dev->mode_config.connector_list,
9865                             base.head) {
9866                 connector->new_encoder =
9867                         to_intel_encoder(connector->base.encoder);
9868         }
9869
9870         for_each_intel_encoder(dev, encoder) {
9871                 encoder->new_crtc =
9872                         to_intel_crtc(encoder->base.crtc);
9873         }
9874
9875         for_each_intel_crtc(dev, crtc) {
9876                 crtc->new_enabled = crtc->base.enabled;
9877
9878                 if (crtc->new_enabled)
9879                         crtc->new_config = &crtc->config;
9880                 else
9881                         crtc->new_config = NULL;
9882         }
9883 }
9884
9885 /**
9886  * intel_modeset_commit_output_state
9887  *
9888  * This function copies the stage display pipe configuration to the real one.
9889  */
9890 static void intel_modeset_commit_output_state(struct drm_device *dev)
9891 {
9892         struct intel_crtc *crtc;
9893         struct intel_encoder *encoder;
9894         struct intel_connector *connector;
9895
9896         list_for_each_entry(connector, &dev->mode_config.connector_list,
9897                             base.head) {
9898                 connector->base.encoder = &connector->new_encoder->base;
9899         }
9900
9901         for_each_intel_encoder(dev, encoder) {
9902                 encoder->base.crtc = &encoder->new_crtc->base;
9903         }
9904
9905         for_each_intel_crtc(dev, crtc) {
9906                 crtc->base.enabled = crtc->new_enabled;
9907         }
9908 }
9909
9910 static void
9911 connected_sink_compute_bpp(struct intel_connector *connector,
9912                            struct intel_crtc_config *pipe_config)
9913 {
9914         int bpp = pipe_config->pipe_bpp;
9915
9916         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9917                 connector->base.base.id,
9918                 connector->base.name);
9919
9920         /* Don't use an invalid EDID bpc value */
9921         if (connector->base.display_info.bpc &&
9922             connector->base.display_info.bpc * 3 < bpp) {
9923                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9924                               bpp, connector->base.display_info.bpc*3);
9925                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9926         }
9927
9928         /* Clamp bpp to 8 on screens without EDID 1.4 */
9929         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9930                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9931                               bpp);
9932                 pipe_config->pipe_bpp = 24;
9933         }
9934 }
9935
9936 static int
9937 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9938                           struct drm_framebuffer *fb,
9939                           struct intel_crtc_config *pipe_config)
9940 {
9941         struct drm_device *dev = crtc->base.dev;
9942         struct intel_connector *connector;
9943         int bpp;
9944
9945         switch (fb->pixel_format) {
9946         case DRM_FORMAT_C8:
9947                 bpp = 8*3; /* since we go through a colormap */
9948                 break;
9949         case DRM_FORMAT_XRGB1555:
9950         case DRM_FORMAT_ARGB1555:
9951                 /* checked in intel_framebuffer_init already */
9952                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9953                         return -EINVAL;
9954         case DRM_FORMAT_RGB565:
9955                 bpp = 6*3; /* min is 18bpp */
9956                 break;
9957         case DRM_FORMAT_XBGR8888:
9958         case DRM_FORMAT_ABGR8888:
9959                 /* checked in intel_framebuffer_init already */
9960                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9961                         return -EINVAL;
9962         case DRM_FORMAT_XRGB8888:
9963         case DRM_FORMAT_ARGB8888:
9964                 bpp = 8*3;
9965                 break;
9966         case DRM_FORMAT_XRGB2101010:
9967         case DRM_FORMAT_ARGB2101010:
9968         case DRM_FORMAT_XBGR2101010:
9969         case DRM_FORMAT_ABGR2101010:
9970                 /* checked in intel_framebuffer_init already */
9971                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9972                         return -EINVAL;
9973                 bpp = 10*3;
9974                 break;
9975         /* TODO: gen4+ supports 16 bpc floating point, too. */
9976         default:
9977                 DRM_DEBUG_KMS("unsupported depth\n");
9978                 return -EINVAL;
9979         }
9980
9981         pipe_config->pipe_bpp = bpp;
9982
9983         /* Clamp display bpp to EDID value */
9984         list_for_each_entry(connector, &dev->mode_config.connector_list,
9985                             base.head) {
9986                 if (!connector->new_encoder ||
9987                     connector->new_encoder->new_crtc != crtc)
9988                         continue;
9989
9990                 connected_sink_compute_bpp(connector, pipe_config);
9991         }
9992
9993         return bpp;
9994 }
9995
9996 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9997 {
9998         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9999                         "type: 0x%x flags: 0x%x\n",
10000                 mode->crtc_clock,
10001                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10002                 mode->crtc_hsync_end, mode->crtc_htotal,
10003                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10004                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10005 }
10006
10007 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10008                                    struct intel_crtc_config *pipe_config,
10009                                    const char *context)
10010 {
10011         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10012                       context, pipe_name(crtc->pipe));
10013
10014         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10015         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10016                       pipe_config->pipe_bpp, pipe_config->dither);
10017         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10018                       pipe_config->has_pch_encoder,
10019                       pipe_config->fdi_lanes,
10020                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10021                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10022                       pipe_config->fdi_m_n.tu);
10023         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10024                       pipe_config->has_dp_encoder,
10025                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10026                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10027                       pipe_config->dp_m_n.tu);
10028
10029         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10030                       pipe_config->has_dp_encoder,
10031                       pipe_config->dp_m2_n2.gmch_m,
10032                       pipe_config->dp_m2_n2.gmch_n,
10033                       pipe_config->dp_m2_n2.link_m,
10034                       pipe_config->dp_m2_n2.link_n,
10035                       pipe_config->dp_m2_n2.tu);
10036
10037         DRM_DEBUG_KMS("requested mode:\n");
10038         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10039         DRM_DEBUG_KMS("adjusted mode:\n");
10040         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10041         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10042         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10043         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10044                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10045         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10046                       pipe_config->gmch_pfit.control,
10047                       pipe_config->gmch_pfit.pgm_ratios,
10048                       pipe_config->gmch_pfit.lvds_border_bits);
10049         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10050                       pipe_config->pch_pfit.pos,
10051                       pipe_config->pch_pfit.size,
10052                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10053         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10054         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10055 }
10056
10057 static bool encoders_cloneable(const struct intel_encoder *a,
10058                                const struct intel_encoder *b)
10059 {
10060         /* masks could be asymmetric, so check both ways */
10061         return a == b || (a->cloneable & (1 << b->type) &&
10062                           b->cloneable & (1 << a->type));
10063 }
10064
10065 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10066                                          struct intel_encoder *encoder)
10067 {
10068         struct drm_device *dev = crtc->base.dev;
10069         struct intel_encoder *source_encoder;
10070
10071         for_each_intel_encoder(dev, source_encoder) {
10072                 if (source_encoder->new_crtc != crtc)
10073                         continue;
10074
10075                 if (!encoders_cloneable(encoder, source_encoder))
10076                         return false;
10077         }
10078
10079         return true;
10080 }
10081
10082 static bool check_encoder_cloning(struct intel_crtc *crtc)
10083 {
10084         struct drm_device *dev = crtc->base.dev;
10085         struct intel_encoder *encoder;
10086
10087         for_each_intel_encoder(dev, encoder) {
10088                 if (encoder->new_crtc != crtc)
10089                         continue;
10090
10091                 if (!check_single_encoder_cloning(crtc, encoder))
10092                         return false;
10093         }
10094
10095         return true;
10096 }
10097
10098 static struct intel_crtc_config *
10099 intel_modeset_pipe_config(struct drm_crtc *crtc,
10100                           struct drm_framebuffer *fb,
10101                           struct drm_display_mode *mode)
10102 {
10103         struct drm_device *dev = crtc->dev;
10104         struct intel_encoder *encoder;
10105         struct intel_crtc_config *pipe_config;
10106         int plane_bpp, ret = -EINVAL;
10107         bool retry = true;
10108
10109         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10110                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10111                 return ERR_PTR(-EINVAL);
10112         }
10113
10114         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10115         if (!pipe_config)
10116                 return ERR_PTR(-ENOMEM);
10117
10118         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10119         drm_mode_copy(&pipe_config->requested_mode, mode);
10120
10121         pipe_config->cpu_transcoder =
10122                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10123         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10124
10125         /*
10126          * Sanitize sync polarity flags based on requested ones. If neither
10127          * positive or negative polarity is requested, treat this as meaning
10128          * negative polarity.
10129          */
10130         if (!(pipe_config->adjusted_mode.flags &
10131               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10132                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10133
10134         if (!(pipe_config->adjusted_mode.flags &
10135               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10136                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10137
10138         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10139          * plane pixel format and any sink constraints into account. Returns the
10140          * source plane bpp so that dithering can be selected on mismatches
10141          * after encoders and crtc also have had their say. */
10142         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10143                                               fb, pipe_config);
10144         if (plane_bpp < 0)
10145                 goto fail;
10146
10147         /*
10148          * Determine the real pipe dimensions. Note that stereo modes can
10149          * increase the actual pipe size due to the frame doubling and
10150          * insertion of additional space for blanks between the frame. This
10151          * is stored in the crtc timings. We use the requested mode to do this
10152          * computation to clearly distinguish it from the adjusted mode, which
10153          * can be changed by the connectors in the below retry loop.
10154          */
10155         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10156         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10157         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10158
10159 encoder_retry:
10160         /* Ensure the port clock defaults are reset when retrying. */
10161         pipe_config->port_clock = 0;
10162         pipe_config->pixel_multiplier = 1;
10163
10164         /* Fill in default crtc timings, allow encoders to overwrite them. */
10165         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10166
10167         /* Pass our mode to the connectors and the CRTC to give them a chance to
10168          * adjust it according to limitations or connector properties, and also
10169          * a chance to reject the mode entirely.
10170          */
10171         for_each_intel_encoder(dev, encoder) {
10172
10173                 if (&encoder->new_crtc->base != crtc)
10174                         continue;
10175
10176                 if (!(encoder->compute_config(encoder, pipe_config))) {
10177                         DRM_DEBUG_KMS("Encoder config failure\n");
10178                         goto fail;
10179                 }
10180         }
10181
10182         /* Set default port clock if not overwritten by the encoder. Needs to be
10183          * done afterwards in case the encoder adjusts the mode. */
10184         if (!pipe_config->port_clock)
10185                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10186                         * pipe_config->pixel_multiplier;
10187
10188         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10189         if (ret < 0) {
10190                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10191                 goto fail;
10192         }
10193
10194         if (ret == RETRY) {
10195                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10196                         ret = -EINVAL;
10197                         goto fail;
10198                 }
10199
10200                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10201                 retry = false;
10202                 goto encoder_retry;
10203         }
10204
10205         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10206         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10207                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10208
10209         return pipe_config;
10210 fail:
10211         kfree(pipe_config);
10212         return ERR_PTR(ret);
10213 }
10214
10215 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10216  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10217 static void
10218 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10219                              unsigned *prepare_pipes, unsigned *disable_pipes)
10220 {
10221         struct intel_crtc *intel_crtc;
10222         struct drm_device *dev = crtc->dev;
10223         struct intel_encoder *encoder;
10224         struct intel_connector *connector;
10225         struct drm_crtc *tmp_crtc;
10226
10227         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10228
10229         /* Check which crtcs have changed outputs connected to them, these need
10230          * to be part of the prepare_pipes mask. We don't (yet) support global
10231          * modeset across multiple crtcs, so modeset_pipes will only have one
10232          * bit set at most. */
10233         list_for_each_entry(connector, &dev->mode_config.connector_list,
10234                             base.head) {
10235                 if (connector->base.encoder == &connector->new_encoder->base)
10236                         continue;
10237
10238                 if (connector->base.encoder) {
10239                         tmp_crtc = connector->base.encoder->crtc;
10240
10241                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10242                 }
10243
10244                 if (connector->new_encoder)
10245                         *prepare_pipes |=
10246                                 1 << connector->new_encoder->new_crtc->pipe;
10247         }
10248
10249         for_each_intel_encoder(dev, encoder) {
10250                 if (encoder->base.crtc == &encoder->new_crtc->base)
10251                         continue;
10252
10253                 if (encoder->base.crtc) {
10254                         tmp_crtc = encoder->base.crtc;
10255
10256                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10257                 }
10258
10259                 if (encoder->new_crtc)
10260                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10261         }
10262
10263         /* Check for pipes that will be enabled/disabled ... */
10264         for_each_intel_crtc(dev, intel_crtc) {
10265                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10266                         continue;
10267
10268                 if (!intel_crtc->new_enabled)
10269                         *disable_pipes |= 1 << intel_crtc->pipe;
10270                 else
10271                         *prepare_pipes |= 1 << intel_crtc->pipe;
10272         }
10273
10274
10275         /* set_mode is also used to update properties on life display pipes. */
10276         intel_crtc = to_intel_crtc(crtc);
10277         if (intel_crtc->new_enabled)
10278                 *prepare_pipes |= 1 << intel_crtc->pipe;
10279
10280         /*
10281          * For simplicity do a full modeset on any pipe where the output routing
10282          * changed. We could be more clever, but that would require us to be
10283          * more careful with calling the relevant encoder->mode_set functions.
10284          */
10285         if (*prepare_pipes)
10286                 *modeset_pipes = *prepare_pipes;
10287
10288         /* ... and mask these out. */
10289         *modeset_pipes &= ~(*disable_pipes);
10290         *prepare_pipes &= ~(*disable_pipes);
10291
10292         /*
10293          * HACK: We don't (yet) fully support global modesets. intel_set_config
10294          * obies this rule, but the modeset restore mode of
10295          * intel_modeset_setup_hw_state does not.
10296          */
10297         *modeset_pipes &= 1 << intel_crtc->pipe;
10298         *prepare_pipes &= 1 << intel_crtc->pipe;
10299
10300         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10301                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10302 }
10303
10304 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10305 {
10306         struct drm_encoder *encoder;
10307         struct drm_device *dev = crtc->dev;
10308
10309         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10310                 if (encoder->crtc == crtc)
10311                         return true;
10312
10313         return false;
10314 }
10315
10316 static void
10317 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10318 {
10319         struct drm_i915_private *dev_priv = dev->dev_private;
10320         struct intel_encoder *intel_encoder;
10321         struct intel_crtc *intel_crtc;
10322         struct drm_connector *connector;
10323
10324         intel_shared_dpll_commit(dev_priv);
10325
10326         for_each_intel_encoder(dev, intel_encoder) {
10327                 if (!intel_encoder->base.crtc)
10328                         continue;
10329
10330                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10331
10332                 if (prepare_pipes & (1 << intel_crtc->pipe))
10333                         intel_encoder->connectors_active = false;
10334         }
10335
10336         intel_modeset_commit_output_state(dev);
10337
10338         /* Double check state. */
10339         for_each_intel_crtc(dev, intel_crtc) {
10340                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10341                 WARN_ON(intel_crtc->new_config &&
10342                         intel_crtc->new_config != &intel_crtc->config);
10343                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10344         }
10345
10346         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10347                 if (!connector->encoder || !connector->encoder->crtc)
10348                         continue;
10349
10350                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10351
10352                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10353                         struct drm_property *dpms_property =
10354                                 dev->mode_config.dpms_property;
10355
10356                         connector->dpms = DRM_MODE_DPMS_ON;
10357                         drm_object_property_set_value(&connector->base,
10358                                                          dpms_property,
10359                                                          DRM_MODE_DPMS_ON);
10360
10361                         intel_encoder = to_intel_encoder(connector->encoder);
10362                         intel_encoder->connectors_active = true;
10363                 }
10364         }
10365
10366 }
10367
10368 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10369 {
10370         int diff;
10371
10372         if (clock1 == clock2)
10373                 return true;
10374
10375         if (!clock1 || !clock2)
10376                 return false;
10377
10378         diff = abs(clock1 - clock2);
10379
10380         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10381                 return true;
10382
10383         return false;
10384 }
10385
10386 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10387         list_for_each_entry((intel_crtc), \
10388                             &(dev)->mode_config.crtc_list, \
10389                             base.head) \
10390                 if (mask & (1 <<(intel_crtc)->pipe))
10391
10392 static bool
10393 intel_pipe_config_compare(struct drm_device *dev,
10394                           struct intel_crtc_config *current_config,
10395                           struct intel_crtc_config *pipe_config)
10396 {
10397 #define PIPE_CONF_CHECK_X(name) \
10398         if (current_config->name != pipe_config->name) { \
10399                 DRM_ERROR("mismatch in " #name " " \
10400                           "(expected 0x%08x, found 0x%08x)\n", \
10401                           current_config->name, \
10402                           pipe_config->name); \
10403                 return false; \
10404         }
10405
10406 #define PIPE_CONF_CHECK_I(name) \
10407         if (current_config->name != pipe_config->name) { \
10408                 DRM_ERROR("mismatch in " #name " " \
10409                           "(expected %i, found %i)\n", \
10410                           current_config->name, \
10411                           pipe_config->name); \
10412                 return false; \
10413         }
10414
10415 /* This is required for BDW+ where there is only one set of registers for
10416  * switching between high and low RR.
10417  * This macro can be used whenever a comparison has to be made between one
10418  * hw state and multiple sw state variables.
10419  */
10420 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10421         if ((current_config->name != pipe_config->name) && \
10422                 (current_config->alt_name != pipe_config->name)) { \
10423                         DRM_ERROR("mismatch in " #name " " \
10424                                   "(expected %i or %i, found %i)\n", \
10425                                   current_config->name, \
10426                                   current_config->alt_name, \
10427                                   pipe_config->name); \
10428                         return false; \
10429         }
10430
10431 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10432         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10433                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10434                           "(expected %i, found %i)\n", \
10435                           current_config->name & (mask), \
10436                           pipe_config->name & (mask)); \
10437                 return false; \
10438         }
10439
10440 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10441         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10442                 DRM_ERROR("mismatch in " #name " " \
10443                           "(expected %i, found %i)\n", \
10444                           current_config->name, \
10445                           pipe_config->name); \
10446                 return false; \
10447         }
10448
10449 #define PIPE_CONF_QUIRK(quirk)  \
10450         ((current_config->quirks | pipe_config->quirks) & (quirk))
10451
10452         PIPE_CONF_CHECK_I(cpu_transcoder);
10453
10454         PIPE_CONF_CHECK_I(has_pch_encoder);
10455         PIPE_CONF_CHECK_I(fdi_lanes);
10456         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10457         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10458         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10459         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10460         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10461
10462         PIPE_CONF_CHECK_I(has_dp_encoder);
10463
10464         if (INTEL_INFO(dev)->gen < 8) {
10465                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10466                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10467                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10468                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10469                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10470
10471                 if (current_config->has_drrs) {
10472                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10473                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10474                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10475                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10476                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10477                 }
10478         } else {
10479                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10480                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10481                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10482                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10483                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10484         }
10485
10486         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10487         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10488         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10489         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10490         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10491         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10492
10493         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10494         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10495         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10496         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10497         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10498         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10499
10500         PIPE_CONF_CHECK_I(pixel_multiplier);
10501         PIPE_CONF_CHECK_I(has_hdmi_sink);
10502         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10503             IS_VALLEYVIEW(dev))
10504                 PIPE_CONF_CHECK_I(limited_color_range);
10505         PIPE_CONF_CHECK_I(has_infoframe);
10506
10507         PIPE_CONF_CHECK_I(has_audio);
10508
10509         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10510                               DRM_MODE_FLAG_INTERLACE);
10511
10512         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10513                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10514                                       DRM_MODE_FLAG_PHSYNC);
10515                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10516                                       DRM_MODE_FLAG_NHSYNC);
10517                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10518                                       DRM_MODE_FLAG_PVSYNC);
10519                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10520                                       DRM_MODE_FLAG_NVSYNC);
10521         }
10522
10523         PIPE_CONF_CHECK_I(pipe_src_w);
10524         PIPE_CONF_CHECK_I(pipe_src_h);
10525
10526         /*
10527          * FIXME: BIOS likes to set up a cloned config with lvds+external
10528          * screen. Since we don't yet re-compute the pipe config when moving
10529          * just the lvds port away to another pipe the sw tracking won't match.
10530          *
10531          * Proper atomic modesets with recomputed global state will fix this.
10532          * Until then just don't check gmch state for inherited modes.
10533          */
10534         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10535                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10536                 /* pfit ratios are autocomputed by the hw on gen4+ */
10537                 if (INTEL_INFO(dev)->gen < 4)
10538                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10539                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10540         }
10541
10542         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10543         if (current_config->pch_pfit.enabled) {
10544                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10545                 PIPE_CONF_CHECK_I(pch_pfit.size);
10546         }
10547
10548         /* BDW+ don't expose a synchronous way to read the state */
10549         if (IS_HASWELL(dev))
10550                 PIPE_CONF_CHECK_I(ips_enabled);
10551
10552         PIPE_CONF_CHECK_I(double_wide);
10553
10554         PIPE_CONF_CHECK_X(ddi_pll_sel);
10555
10556         PIPE_CONF_CHECK_I(shared_dpll);
10557         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10558         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10559         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10560         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10561         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10562         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10563         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10564         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10565
10566         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10567                 PIPE_CONF_CHECK_I(pipe_bpp);
10568
10569         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10570         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10571
10572 #undef PIPE_CONF_CHECK_X
10573 #undef PIPE_CONF_CHECK_I
10574 #undef PIPE_CONF_CHECK_I_ALT
10575 #undef PIPE_CONF_CHECK_FLAGS
10576 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10577 #undef PIPE_CONF_QUIRK
10578
10579         return true;
10580 }
10581
10582 static void check_wm_state(struct drm_device *dev)
10583 {
10584         struct drm_i915_private *dev_priv = dev->dev_private;
10585         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10586         struct intel_crtc *intel_crtc;
10587         int plane;
10588
10589         if (INTEL_INFO(dev)->gen < 9)
10590                 return;
10591
10592         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10593         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10594
10595         for_each_intel_crtc(dev, intel_crtc) {
10596                 struct skl_ddb_entry *hw_entry, *sw_entry;
10597                 const enum pipe pipe = intel_crtc->pipe;
10598
10599                 if (!intel_crtc->active)
10600                         continue;
10601
10602                 /* planes */
10603                 for_each_plane(pipe, plane) {
10604                         hw_entry = &hw_ddb.plane[pipe][plane];
10605                         sw_entry = &sw_ddb->plane[pipe][plane];
10606
10607                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10608                                 continue;
10609
10610                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10611                                   "(expected (%u,%u), found (%u,%u))\n",
10612                                   pipe_name(pipe), plane + 1,
10613                                   sw_entry->start, sw_entry->end,
10614                                   hw_entry->start, hw_entry->end);
10615                 }
10616
10617                 /* cursor */
10618                 hw_entry = &hw_ddb.cursor[pipe];
10619                 sw_entry = &sw_ddb->cursor[pipe];
10620
10621                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10622                         continue;
10623
10624                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10625                           "(expected (%u,%u), found (%u,%u))\n",
10626                           pipe_name(pipe),
10627                           sw_entry->start, sw_entry->end,
10628                           hw_entry->start, hw_entry->end);
10629         }
10630 }
10631
10632 static void
10633 check_connector_state(struct drm_device *dev)
10634 {
10635         struct intel_connector *connector;
10636
10637         list_for_each_entry(connector, &dev->mode_config.connector_list,
10638                             base.head) {
10639                 /* This also checks the encoder/connector hw state with the
10640                  * ->get_hw_state callbacks. */
10641                 intel_connector_check_state(connector);
10642
10643                 WARN(&connector->new_encoder->base != connector->base.encoder,
10644                      "connector's staged encoder doesn't match current encoder\n");
10645         }
10646 }
10647
10648 static void
10649 check_encoder_state(struct drm_device *dev)
10650 {
10651         struct intel_encoder *encoder;
10652         struct intel_connector *connector;
10653
10654         for_each_intel_encoder(dev, encoder) {
10655                 bool enabled = false;
10656                 bool active = false;
10657                 enum pipe pipe, tracked_pipe;
10658
10659                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10660                               encoder->base.base.id,
10661                               encoder->base.name);
10662
10663                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10664                      "encoder's stage crtc doesn't match current crtc\n");
10665                 WARN(encoder->connectors_active && !encoder->base.crtc,
10666                      "encoder's active_connectors set, but no crtc\n");
10667
10668                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10669                                     base.head) {
10670                         if (connector->base.encoder != &encoder->base)
10671                                 continue;
10672                         enabled = true;
10673                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10674                                 active = true;
10675                 }
10676                 /*
10677                  * for MST connectors if we unplug the connector is gone
10678                  * away but the encoder is still connected to a crtc
10679                  * until a modeset happens in response to the hotplug.
10680                  */
10681                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10682                         continue;
10683
10684                 WARN(!!encoder->base.crtc != enabled,
10685                      "encoder's enabled state mismatch "
10686                      "(expected %i, found %i)\n",
10687                      !!encoder->base.crtc, enabled);
10688                 WARN(active && !encoder->base.crtc,
10689                      "active encoder with no crtc\n");
10690
10691                 WARN(encoder->connectors_active != active,
10692                      "encoder's computed active state doesn't match tracked active state "
10693                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10694
10695                 active = encoder->get_hw_state(encoder, &pipe);
10696                 WARN(active != encoder->connectors_active,
10697                      "encoder's hw state doesn't match sw tracking "
10698                      "(expected %i, found %i)\n",
10699                      encoder->connectors_active, active);
10700
10701                 if (!encoder->base.crtc)
10702                         continue;
10703
10704                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10705                 WARN(active && pipe != tracked_pipe,
10706                      "active encoder's pipe doesn't match"
10707                      "(expected %i, found %i)\n",
10708                      tracked_pipe, pipe);
10709
10710         }
10711 }
10712
10713 static void
10714 check_crtc_state(struct drm_device *dev)
10715 {
10716         struct drm_i915_private *dev_priv = dev->dev_private;
10717         struct intel_crtc *crtc;
10718         struct intel_encoder *encoder;
10719         struct intel_crtc_config pipe_config;
10720
10721         for_each_intel_crtc(dev, crtc) {
10722                 bool enabled = false;
10723                 bool active = false;
10724
10725                 memset(&pipe_config, 0, sizeof(pipe_config));
10726
10727                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10728                               crtc->base.base.id);
10729
10730                 WARN(crtc->active && !crtc->base.enabled,
10731                      "active crtc, but not enabled in sw tracking\n");
10732
10733                 for_each_intel_encoder(dev, encoder) {
10734                         if (encoder->base.crtc != &crtc->base)
10735                                 continue;
10736                         enabled = true;
10737                         if (encoder->connectors_active)
10738                                 active = true;
10739                 }
10740
10741                 WARN(active != crtc->active,
10742                      "crtc's computed active state doesn't match tracked active state "
10743                      "(expected %i, found %i)\n", active, crtc->active);
10744                 WARN(enabled != crtc->base.enabled,
10745                      "crtc's computed enabled state doesn't match tracked enabled state "
10746                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10747
10748                 active = dev_priv->display.get_pipe_config(crtc,
10749                                                            &pipe_config);
10750
10751                 /* hw state is inconsistent with the pipe quirk */
10752                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10753                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10754                         active = crtc->active;
10755
10756                 for_each_intel_encoder(dev, encoder) {
10757                         enum pipe pipe;
10758                         if (encoder->base.crtc != &crtc->base)
10759                                 continue;
10760                         if (encoder->get_hw_state(encoder, &pipe))
10761                                 encoder->get_config(encoder, &pipe_config);
10762                 }
10763
10764                 WARN(crtc->active != active,
10765                      "crtc active state doesn't match with hw state "
10766                      "(expected %i, found %i)\n", crtc->active, active);
10767
10768                 if (active &&
10769                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10770                         WARN(1, "pipe state doesn't match!\n");
10771                         intel_dump_pipe_config(crtc, &pipe_config,
10772                                                "[hw state]");
10773                         intel_dump_pipe_config(crtc, &crtc->config,
10774                                                "[sw state]");
10775                 }
10776         }
10777 }
10778
10779 static void
10780 check_shared_dpll_state(struct drm_device *dev)
10781 {
10782         struct drm_i915_private *dev_priv = dev->dev_private;
10783         struct intel_crtc *crtc;
10784         struct intel_dpll_hw_state dpll_hw_state;
10785         int i;
10786
10787         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10788                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10789                 int enabled_crtcs = 0, active_crtcs = 0;
10790                 bool active;
10791
10792                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10793
10794                 DRM_DEBUG_KMS("%s\n", pll->name);
10795
10796                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10797
10798                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10799                      "more active pll users than references: %i vs %i\n",
10800                      pll->active, hweight32(pll->config.crtc_mask));
10801                 WARN(pll->active && !pll->on,
10802                      "pll in active use but not on in sw tracking\n");
10803                 WARN(pll->on && !pll->active,
10804                      "pll in on but not on in use in sw tracking\n");
10805                 WARN(pll->on != active,
10806                      "pll on state mismatch (expected %i, found %i)\n",
10807                      pll->on, active);
10808
10809                 for_each_intel_crtc(dev, crtc) {
10810                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10811                                 enabled_crtcs++;
10812                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10813                                 active_crtcs++;
10814                 }
10815                 WARN(pll->active != active_crtcs,
10816                      "pll active crtcs mismatch (expected %i, found %i)\n",
10817                      pll->active, active_crtcs);
10818                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10819                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10820                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10821
10822                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10823                                        sizeof(dpll_hw_state)),
10824                      "pll hw state mismatch\n");
10825         }
10826 }
10827
10828 void
10829 intel_modeset_check_state(struct drm_device *dev)
10830 {
10831         check_wm_state(dev);
10832         check_connector_state(dev);
10833         check_encoder_state(dev);
10834         check_crtc_state(dev);
10835         check_shared_dpll_state(dev);
10836 }
10837
10838 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10839                                      int dotclock)
10840 {
10841         /*
10842          * FDI already provided one idea for the dotclock.
10843          * Yell if the encoder disagrees.
10844          */
10845         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10846              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10847              pipe_config->adjusted_mode.crtc_clock, dotclock);
10848 }
10849
10850 static void update_scanline_offset(struct intel_crtc *crtc)
10851 {
10852         struct drm_device *dev = crtc->base.dev;
10853
10854         /*
10855          * The scanline counter increments at the leading edge of hsync.
10856          *
10857          * On most platforms it starts counting from vtotal-1 on the
10858          * first active line. That means the scanline counter value is
10859          * always one less than what we would expect. Ie. just after
10860          * start of vblank, which also occurs at start of hsync (on the
10861          * last active line), the scanline counter will read vblank_start-1.
10862          *
10863          * On gen2 the scanline counter starts counting from 1 instead
10864          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10865          * to keep the value positive), instead of adding one.
10866          *
10867          * On HSW+ the behaviour of the scanline counter depends on the output
10868          * type. For DP ports it behaves like most other platforms, but on HDMI
10869          * there's an extra 1 line difference. So we need to add two instead of
10870          * one to the value.
10871          */
10872         if (IS_GEN2(dev)) {
10873                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10874                 int vtotal;
10875
10876                 vtotal = mode->crtc_vtotal;
10877                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10878                         vtotal /= 2;
10879
10880                 crtc->scanline_offset = vtotal - 1;
10881         } else if (HAS_DDI(dev) &&
10882                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10883                 crtc->scanline_offset = 2;
10884         } else
10885                 crtc->scanline_offset = 1;
10886 }
10887
10888 static struct intel_crtc_config *
10889 intel_modeset_compute_config(struct drm_crtc *crtc,
10890                              struct drm_display_mode *mode,
10891                              struct drm_framebuffer *fb,
10892                              unsigned *modeset_pipes,
10893                              unsigned *prepare_pipes,
10894                              unsigned *disable_pipes)
10895 {
10896         struct intel_crtc_config *pipe_config = NULL;
10897
10898         intel_modeset_affected_pipes(crtc, modeset_pipes,
10899                                      prepare_pipes, disable_pipes);
10900
10901         if ((*modeset_pipes) == 0)
10902                 goto out;
10903
10904         /*
10905          * Note this needs changes when we start tracking multiple modes
10906          * and crtcs.  At that point we'll need to compute the whole config
10907          * (i.e. one pipe_config for each crtc) rather than just the one
10908          * for this crtc.
10909          */
10910         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10911         if (IS_ERR(pipe_config)) {
10912                 goto out;
10913         }
10914         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10915                                "[modeset]");
10916         to_intel_crtc(crtc)->new_config = pipe_config;
10917
10918 out:
10919         return pipe_config;
10920 }
10921
10922 static int __intel_set_mode(struct drm_crtc *crtc,
10923                             struct drm_display_mode *mode,
10924                             int x, int y, struct drm_framebuffer *fb,
10925                             struct intel_crtc_config *pipe_config,
10926                             unsigned modeset_pipes,
10927                             unsigned prepare_pipes,
10928                             unsigned disable_pipes)
10929 {
10930         struct drm_device *dev = crtc->dev;
10931         struct drm_i915_private *dev_priv = dev->dev_private;
10932         struct drm_display_mode *saved_mode;
10933         struct intel_crtc *intel_crtc;
10934         int ret = 0;
10935
10936         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10937         if (!saved_mode)
10938                 return -ENOMEM;
10939
10940         *saved_mode = crtc->mode;
10941
10942         /*
10943          * See if the config requires any additional preparation, e.g.
10944          * to adjust global state with pipes off.  We need to do this
10945          * here so we can get the modeset_pipe updated config for the new
10946          * mode set on this crtc.  For other crtcs we need to use the
10947          * adjusted_mode bits in the crtc directly.
10948          */
10949         if (IS_VALLEYVIEW(dev)) {
10950                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10951
10952                 /* may have added more to prepare_pipes than we should */
10953                 prepare_pipes &= ~disable_pipes;
10954         }
10955
10956         if (dev_priv->display.crtc_compute_clock) {
10957                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10958
10959                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10960                 if (ret)
10961                         goto done;
10962
10963                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10964                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10965                         if (ret) {
10966                                 intel_shared_dpll_abort_config(dev_priv);
10967                                 goto done;
10968                         }
10969                 }
10970         }
10971
10972         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10973                 intel_crtc_disable(&intel_crtc->base);
10974
10975         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10976                 if (intel_crtc->base.enabled)
10977                         dev_priv->display.crtc_disable(&intel_crtc->base);
10978         }
10979
10980         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10981          * to set it here already despite that we pass it down the callchain.
10982          *
10983          * Note we'll need to fix this up when we start tracking multiple
10984          * pipes; here we assume a single modeset_pipe and only track the
10985          * single crtc and mode.
10986          */
10987         if (modeset_pipes) {
10988                 crtc->mode = *mode;
10989                 /* mode_set/enable/disable functions rely on a correct pipe
10990                  * config. */
10991                 to_intel_crtc(crtc)->config = *pipe_config;
10992                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10993
10994                 /*
10995                  * Calculate and store various constants which
10996                  * are later needed by vblank and swap-completion
10997                  * timestamping. They are derived from true hwmode.
10998                  */
10999                 drm_calc_timestamping_constants(crtc,
11000                                                 &pipe_config->adjusted_mode);
11001         }
11002
11003         /* Only after disabling all output pipelines that will be changed can we
11004          * update the the output configuration. */
11005         intel_modeset_update_state(dev, prepare_pipes);
11006
11007         modeset_update_crtc_power_domains(dev);
11008
11009         /* Set up the DPLL and any encoders state that needs to adjust or depend
11010          * on the DPLL.
11011          */
11012         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11013                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11014                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11015                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11016
11017                 mutex_lock(&dev->struct_mutex);
11018                 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
11019                 if (ret != 0) {
11020                         DRM_ERROR("pin & fence failed\n");
11021                         mutex_unlock(&dev->struct_mutex);
11022                         goto done;
11023                 }
11024                 if (old_fb)
11025                         intel_unpin_fb_obj(old_obj);
11026                 i915_gem_track_fb(old_obj, obj,
11027                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11028                 mutex_unlock(&dev->struct_mutex);
11029
11030                 crtc->primary->fb = fb;
11031                 crtc->x = x;
11032                 crtc->y = y;
11033         }
11034
11035         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11036         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11037                 update_scanline_offset(intel_crtc);
11038
11039                 dev_priv->display.crtc_enable(&intel_crtc->base);
11040         }
11041
11042         /* FIXME: add subpixel order */
11043 done:
11044         if (ret && crtc->enabled)
11045                 crtc->mode = *saved_mode;
11046
11047         kfree(pipe_config);
11048         kfree(saved_mode);
11049         return ret;
11050 }
11051
11052 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11053                                 struct drm_display_mode *mode,
11054                                 int x, int y, struct drm_framebuffer *fb,
11055                                 struct intel_crtc_config *pipe_config,
11056                                 unsigned modeset_pipes,
11057                                 unsigned prepare_pipes,
11058                                 unsigned disable_pipes)
11059 {
11060         int ret;
11061
11062         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11063                                prepare_pipes, disable_pipes);
11064
11065         if (ret == 0)
11066                 intel_modeset_check_state(crtc->dev);
11067
11068         return ret;
11069 }
11070
11071 static int intel_set_mode(struct drm_crtc *crtc,
11072                           struct drm_display_mode *mode,
11073                           int x, int y, struct drm_framebuffer *fb)
11074 {
11075         struct intel_crtc_config *pipe_config;
11076         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11077
11078         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11079                                                    &modeset_pipes,
11080                                                    &prepare_pipes,
11081                                                    &disable_pipes);
11082
11083         if (IS_ERR(pipe_config))
11084                 return PTR_ERR(pipe_config);
11085
11086         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11087                                     modeset_pipes, prepare_pipes,
11088                                     disable_pipes);
11089 }
11090
11091 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11092 {
11093         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11094 }
11095
11096 #undef for_each_intel_crtc_masked
11097
11098 static void intel_set_config_free(struct intel_set_config *config)
11099 {
11100         if (!config)
11101                 return;
11102
11103         kfree(config->save_connector_encoders);
11104         kfree(config->save_encoder_crtcs);
11105         kfree(config->save_crtc_enabled);
11106         kfree(config);
11107 }
11108
11109 static int intel_set_config_save_state(struct drm_device *dev,
11110                                        struct intel_set_config *config)
11111 {
11112         struct drm_crtc *crtc;
11113         struct drm_encoder *encoder;
11114         struct drm_connector *connector;
11115         int count;
11116
11117         config->save_crtc_enabled =
11118                 kcalloc(dev->mode_config.num_crtc,
11119                         sizeof(bool), GFP_KERNEL);
11120         if (!config->save_crtc_enabled)
11121                 return -ENOMEM;
11122
11123         config->save_encoder_crtcs =
11124                 kcalloc(dev->mode_config.num_encoder,
11125                         sizeof(struct drm_crtc *), GFP_KERNEL);
11126         if (!config->save_encoder_crtcs)
11127                 return -ENOMEM;
11128
11129         config->save_connector_encoders =
11130                 kcalloc(dev->mode_config.num_connector,
11131                         sizeof(struct drm_encoder *), GFP_KERNEL);
11132         if (!config->save_connector_encoders)
11133                 return -ENOMEM;
11134
11135         /* Copy data. Note that driver private data is not affected.
11136          * Should anything bad happen only the expected state is
11137          * restored, not the drivers personal bookkeeping.
11138          */
11139         count = 0;
11140         for_each_crtc(dev, crtc) {
11141                 config->save_crtc_enabled[count++] = crtc->enabled;
11142         }
11143
11144         count = 0;
11145         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11146                 config->save_encoder_crtcs[count++] = encoder->crtc;
11147         }
11148
11149         count = 0;
11150         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11151                 config->save_connector_encoders[count++] = connector->encoder;
11152         }
11153
11154         return 0;
11155 }
11156
11157 static void intel_set_config_restore_state(struct drm_device *dev,
11158                                            struct intel_set_config *config)
11159 {
11160         struct intel_crtc *crtc;
11161         struct intel_encoder *encoder;
11162         struct intel_connector *connector;
11163         int count;
11164
11165         count = 0;
11166         for_each_intel_crtc(dev, crtc) {
11167                 crtc->new_enabled = config->save_crtc_enabled[count++];
11168
11169                 if (crtc->new_enabled)
11170                         crtc->new_config = &crtc->config;
11171                 else
11172                         crtc->new_config = NULL;
11173         }
11174
11175         count = 0;
11176         for_each_intel_encoder(dev, encoder) {
11177                 encoder->new_crtc =
11178                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11179         }
11180
11181         count = 0;
11182         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11183                 connector->new_encoder =
11184                         to_intel_encoder(config->save_connector_encoders[count++]);
11185         }
11186 }
11187
11188 static bool
11189 is_crtc_connector_off(struct drm_mode_set *set)
11190 {
11191         int i;
11192
11193         if (set->num_connectors == 0)
11194                 return false;
11195
11196         if (WARN_ON(set->connectors == NULL))
11197                 return false;
11198
11199         for (i = 0; i < set->num_connectors; i++)
11200                 if (set->connectors[i]->encoder &&
11201                     set->connectors[i]->encoder->crtc == set->crtc &&
11202                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11203                         return true;
11204
11205         return false;
11206 }
11207
11208 static void
11209 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11210                                       struct intel_set_config *config)
11211 {
11212
11213         /* We should be able to check here if the fb has the same properties
11214          * and then just flip_or_move it */
11215         if (is_crtc_connector_off(set)) {
11216                 config->mode_changed = true;
11217         } else if (set->crtc->primary->fb != set->fb) {
11218                 /*
11219                  * If we have no fb, we can only flip as long as the crtc is
11220                  * active, otherwise we need a full mode set.  The crtc may
11221                  * be active if we've only disabled the primary plane, or
11222                  * in fastboot situations.
11223                  */
11224                 if (set->crtc->primary->fb == NULL) {
11225                         struct intel_crtc *intel_crtc =
11226                                 to_intel_crtc(set->crtc);
11227
11228                         if (intel_crtc->active) {
11229                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11230                                 config->fb_changed = true;
11231                         } else {
11232                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11233                                 config->mode_changed = true;
11234                         }
11235                 } else if (set->fb == NULL) {
11236                         config->mode_changed = true;
11237                 } else if (set->fb->pixel_format !=
11238                            set->crtc->primary->fb->pixel_format) {
11239                         config->mode_changed = true;
11240                 } else {
11241                         config->fb_changed = true;
11242                 }
11243         }
11244
11245         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11246                 config->fb_changed = true;
11247
11248         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11249                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11250                 drm_mode_debug_printmodeline(&set->crtc->mode);
11251                 drm_mode_debug_printmodeline(set->mode);
11252                 config->mode_changed = true;
11253         }
11254
11255         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11256                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11257 }
11258
11259 static int
11260 intel_modeset_stage_output_state(struct drm_device *dev,
11261                                  struct drm_mode_set *set,
11262                                  struct intel_set_config *config)
11263 {
11264         struct intel_connector *connector;
11265         struct intel_encoder *encoder;
11266         struct intel_crtc *crtc;
11267         int ro;
11268
11269         /* The upper layers ensure that we either disable a crtc or have a list
11270          * of connectors. For paranoia, double-check this. */
11271         WARN_ON(!set->fb && (set->num_connectors != 0));
11272         WARN_ON(set->fb && (set->num_connectors == 0));
11273
11274         list_for_each_entry(connector, &dev->mode_config.connector_list,
11275                             base.head) {
11276                 /* Otherwise traverse passed in connector list and get encoders
11277                  * for them. */
11278                 for (ro = 0; ro < set->num_connectors; ro++) {
11279                         if (set->connectors[ro] == &connector->base) {
11280                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11281                                 break;
11282                         }
11283                 }
11284
11285                 /* If we disable the crtc, disable all its connectors. Also, if
11286                  * the connector is on the changing crtc but not on the new
11287                  * connector list, disable it. */
11288                 if ((!set->fb || ro == set->num_connectors) &&
11289                     connector->base.encoder &&
11290                     connector->base.encoder->crtc == set->crtc) {
11291                         connector->new_encoder = NULL;
11292
11293                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11294                                 connector->base.base.id,
11295                                 connector->base.name);
11296                 }
11297
11298
11299                 if (&connector->new_encoder->base != connector->base.encoder) {
11300                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11301                         config->mode_changed = true;
11302                 }
11303         }
11304         /* connector->new_encoder is now updated for all connectors. */
11305
11306         /* Update crtc of enabled connectors. */
11307         list_for_each_entry(connector, &dev->mode_config.connector_list,
11308                             base.head) {
11309                 struct drm_crtc *new_crtc;
11310
11311                 if (!connector->new_encoder)
11312                         continue;
11313
11314                 new_crtc = connector->new_encoder->base.crtc;
11315
11316                 for (ro = 0; ro < set->num_connectors; ro++) {
11317                         if (set->connectors[ro] == &connector->base)
11318                                 new_crtc = set->crtc;
11319                 }
11320
11321                 /* Make sure the new CRTC will work with the encoder */
11322                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11323                                          new_crtc)) {
11324                         return -EINVAL;
11325                 }
11326                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11327
11328                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11329                         connector->base.base.id,
11330                         connector->base.name,
11331                         new_crtc->base.id);
11332         }
11333
11334         /* Check for any encoders that needs to be disabled. */
11335         for_each_intel_encoder(dev, encoder) {
11336                 int num_connectors = 0;
11337                 list_for_each_entry(connector,
11338                                     &dev->mode_config.connector_list,
11339                                     base.head) {
11340                         if (connector->new_encoder == encoder) {
11341                                 WARN_ON(!connector->new_encoder->new_crtc);
11342                                 num_connectors++;
11343                         }
11344                 }
11345
11346                 if (num_connectors == 0)
11347                         encoder->new_crtc = NULL;
11348                 else if (num_connectors > 1)
11349                         return -EINVAL;
11350
11351                 /* Only now check for crtc changes so we don't miss encoders
11352                  * that will be disabled. */
11353                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11354                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11355                         config->mode_changed = true;
11356                 }
11357         }
11358         /* Now we've also updated encoder->new_crtc for all encoders. */
11359         list_for_each_entry(connector, &dev->mode_config.connector_list,
11360                             base.head) {
11361                 if (connector->new_encoder)
11362                         if (connector->new_encoder != connector->encoder)
11363                                 connector->encoder = connector->new_encoder;
11364         }
11365         for_each_intel_crtc(dev, crtc) {
11366                 crtc->new_enabled = false;
11367
11368                 for_each_intel_encoder(dev, encoder) {
11369                         if (encoder->new_crtc == crtc) {
11370                                 crtc->new_enabled = true;
11371                                 break;
11372                         }
11373                 }
11374
11375                 if (crtc->new_enabled != crtc->base.enabled) {
11376                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11377                                       crtc->new_enabled ? "en" : "dis");
11378                         config->mode_changed = true;
11379                 }
11380
11381                 if (crtc->new_enabled)
11382                         crtc->new_config = &crtc->config;
11383                 else
11384                         crtc->new_config = NULL;
11385         }
11386
11387         return 0;
11388 }
11389
11390 static void disable_crtc_nofb(struct intel_crtc *crtc)
11391 {
11392         struct drm_device *dev = crtc->base.dev;
11393         struct intel_encoder *encoder;
11394         struct intel_connector *connector;
11395
11396         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11397                       pipe_name(crtc->pipe));
11398
11399         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11400                 if (connector->new_encoder &&
11401                     connector->new_encoder->new_crtc == crtc)
11402                         connector->new_encoder = NULL;
11403         }
11404
11405         for_each_intel_encoder(dev, encoder) {
11406                 if (encoder->new_crtc == crtc)
11407                         encoder->new_crtc = NULL;
11408         }
11409
11410         crtc->new_enabled = false;
11411         crtc->new_config = NULL;
11412 }
11413
11414 static int intel_crtc_set_config(struct drm_mode_set *set)
11415 {
11416         struct drm_device *dev;
11417         struct drm_mode_set save_set;
11418         struct intel_set_config *config;
11419         struct intel_crtc_config *pipe_config;
11420         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11421         int ret;
11422
11423         BUG_ON(!set);
11424         BUG_ON(!set->crtc);
11425         BUG_ON(!set->crtc->helper_private);
11426
11427         /* Enforce sane interface api - has been abused by the fb helper. */
11428         BUG_ON(!set->mode && set->fb);
11429         BUG_ON(set->fb && set->num_connectors == 0);
11430
11431         if (set->fb) {
11432                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11433                                 set->crtc->base.id, set->fb->base.id,
11434                                 (int)set->num_connectors, set->x, set->y);
11435         } else {
11436                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11437         }
11438
11439         dev = set->crtc->dev;
11440
11441         ret = -ENOMEM;
11442         config = kzalloc(sizeof(*config), GFP_KERNEL);
11443         if (!config)
11444                 goto out_config;
11445
11446         ret = intel_set_config_save_state(dev, config);
11447         if (ret)
11448                 goto out_config;
11449
11450         save_set.crtc = set->crtc;
11451         save_set.mode = &set->crtc->mode;
11452         save_set.x = set->crtc->x;
11453         save_set.y = set->crtc->y;
11454         save_set.fb = set->crtc->primary->fb;
11455
11456         /* Compute whether we need a full modeset, only an fb base update or no
11457          * change at all. In the future we might also check whether only the
11458          * mode changed, e.g. for LVDS where we only change the panel fitter in
11459          * such cases. */
11460         intel_set_config_compute_mode_changes(set, config);
11461
11462         ret = intel_modeset_stage_output_state(dev, set, config);
11463         if (ret)
11464                 goto fail;
11465
11466         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11467                                                    set->fb,
11468                                                    &modeset_pipes,
11469                                                    &prepare_pipes,
11470                                                    &disable_pipes);
11471         if (IS_ERR(pipe_config)) {
11472                 ret = PTR_ERR(pipe_config);
11473                 goto fail;
11474         } else if (pipe_config) {
11475                 if (to_intel_crtc(set->crtc)->new_config->has_audio !=
11476                     to_intel_crtc(set->crtc)->config.has_audio)
11477                         config->mode_changed = true;
11478
11479                 /* Force mode sets for any infoframe stuff */
11480                 if (to_intel_crtc(set->crtc)->new_config->has_infoframe ||
11481                     to_intel_crtc(set->crtc)->config.has_infoframe)
11482                         config->mode_changed = true;
11483         }
11484
11485         /* set_mode will free it in the mode_changed case */
11486         if (!config->mode_changed)
11487                 kfree(pipe_config);
11488
11489         intel_update_pipe_size(to_intel_crtc(set->crtc));
11490
11491         if (config->mode_changed) {
11492                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11493                                            set->x, set->y, set->fb, pipe_config,
11494                                            modeset_pipes, prepare_pipes,
11495                                            disable_pipes);
11496         } else if (config->fb_changed) {
11497                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11498
11499                 intel_crtc_wait_for_pending_flips(set->crtc);
11500
11501                 ret = intel_pipe_set_base(set->crtc,
11502                                           set->x, set->y, set->fb);
11503
11504                 /*
11505                  * We need to make sure the primary plane is re-enabled if it
11506                  * has previously been turned off.
11507                  */
11508                 if (!intel_crtc->primary_enabled && ret == 0) {
11509                         WARN_ON(!intel_crtc->active);
11510                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11511                 }
11512
11513                 /*
11514                  * In the fastboot case this may be our only check of the
11515                  * state after boot.  It would be better to only do it on
11516                  * the first update, but we don't have a nice way of doing that
11517                  * (and really, set_config isn't used much for high freq page
11518                  * flipping, so increasing its cost here shouldn't be a big
11519                  * deal).
11520                  */
11521                 if (i915.fastboot && ret == 0)
11522                         intel_modeset_check_state(set->crtc->dev);
11523         }
11524
11525         if (ret) {
11526                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11527                               set->crtc->base.id, ret);
11528 fail:
11529                 intel_set_config_restore_state(dev, config);
11530
11531                 /*
11532                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11533                  * force the pipe off to avoid oopsing in the modeset code
11534                  * due to fb==NULL. This should only happen during boot since
11535                  * we don't yet reconstruct the FB from the hardware state.
11536                  */
11537                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11538                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11539
11540                 /* Try to restore the config */
11541                 if (config->mode_changed &&
11542                     intel_set_mode(save_set.crtc, save_set.mode,
11543                                    save_set.x, save_set.y, save_set.fb))
11544                         DRM_ERROR("failed to restore config after modeset failure\n");
11545         }
11546
11547 out_config:
11548         intel_set_config_free(config);
11549         return ret;
11550 }
11551
11552 static const struct drm_crtc_funcs intel_crtc_funcs = {
11553         .gamma_set = intel_crtc_gamma_set,
11554         .set_config = intel_crtc_set_config,
11555         .destroy = intel_crtc_destroy,
11556         .page_flip = intel_crtc_page_flip,
11557 };
11558
11559 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11560                                       struct intel_shared_dpll *pll,
11561                                       struct intel_dpll_hw_state *hw_state)
11562 {
11563         uint32_t val;
11564
11565         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11566                 return false;
11567
11568         val = I915_READ(PCH_DPLL(pll->id));
11569         hw_state->dpll = val;
11570         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11571         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11572
11573         return val & DPLL_VCO_ENABLE;
11574 }
11575
11576 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11577                                   struct intel_shared_dpll *pll)
11578 {
11579         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11580         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11581 }
11582
11583 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11584                                 struct intel_shared_dpll *pll)
11585 {
11586         /* PCH refclock must be enabled first */
11587         ibx_assert_pch_refclk_enabled(dev_priv);
11588
11589         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11590
11591         /* Wait for the clocks to stabilize. */
11592         POSTING_READ(PCH_DPLL(pll->id));
11593         udelay(150);
11594
11595         /* The pixel multiplier can only be updated once the
11596          * DPLL is enabled and the clocks are stable.
11597          *
11598          * So write it again.
11599          */
11600         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11601         POSTING_READ(PCH_DPLL(pll->id));
11602         udelay(200);
11603 }
11604
11605 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11606                                  struct intel_shared_dpll *pll)
11607 {
11608         struct drm_device *dev = dev_priv->dev;
11609         struct intel_crtc *crtc;
11610
11611         /* Make sure no transcoder isn't still depending on us. */
11612         for_each_intel_crtc(dev, crtc) {
11613                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11614                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11615         }
11616
11617         I915_WRITE(PCH_DPLL(pll->id), 0);
11618         POSTING_READ(PCH_DPLL(pll->id));
11619         udelay(200);
11620 }
11621
11622 static char *ibx_pch_dpll_names[] = {
11623         "PCH DPLL A",
11624         "PCH DPLL B",
11625 };
11626
11627 static void ibx_pch_dpll_init(struct drm_device *dev)
11628 {
11629         struct drm_i915_private *dev_priv = dev->dev_private;
11630         int i;
11631
11632         dev_priv->num_shared_dpll = 2;
11633
11634         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11635                 dev_priv->shared_dplls[i].id = i;
11636                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11637                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11638                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11639                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11640                 dev_priv->shared_dplls[i].get_hw_state =
11641                         ibx_pch_dpll_get_hw_state;
11642         }
11643 }
11644
11645 static void intel_shared_dpll_init(struct drm_device *dev)
11646 {
11647         struct drm_i915_private *dev_priv = dev->dev_private;
11648
11649         if (HAS_DDI(dev))
11650                 intel_ddi_pll_init(dev);
11651         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11652                 ibx_pch_dpll_init(dev);
11653         else
11654                 dev_priv->num_shared_dpll = 0;
11655
11656         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11657 }
11658
11659 static int
11660 intel_primary_plane_disable(struct drm_plane *plane)
11661 {
11662         struct drm_device *dev = plane->dev;
11663         struct intel_crtc *intel_crtc;
11664
11665         if (!plane->fb)
11666                 return 0;
11667
11668         BUG_ON(!plane->crtc);
11669
11670         intel_crtc = to_intel_crtc(plane->crtc);
11671
11672         /*
11673          * Even though we checked plane->fb above, it's still possible that
11674          * the primary plane has been implicitly disabled because the crtc
11675          * coordinates given weren't visible, or because we detected
11676          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11677          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11678          * In either case, we need to unpin the FB and let the fb pointer get
11679          * updated, but otherwise we don't need to touch the hardware.
11680          */
11681         if (!intel_crtc->primary_enabled)
11682                 goto disable_unpin;
11683
11684         intel_crtc_wait_for_pending_flips(plane->crtc);
11685         intel_disable_primary_hw_plane(plane, plane->crtc);
11686
11687 disable_unpin:
11688         mutex_lock(&dev->struct_mutex);
11689         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11690                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11691         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11692         mutex_unlock(&dev->struct_mutex);
11693         plane->fb = NULL;
11694
11695         return 0;
11696 }
11697
11698 static int
11699 intel_check_primary_plane(struct drm_plane *plane,
11700                           struct intel_plane_state *state)
11701 {
11702         struct drm_crtc *crtc = state->crtc;
11703         struct drm_framebuffer *fb = state->fb;
11704         struct drm_rect *dest = &state->dst;
11705         struct drm_rect *src = &state->src;
11706         const struct drm_rect *clip = &state->clip;
11707
11708         return drm_plane_helper_check_update(plane, crtc, fb,
11709                                              src, dest, clip,
11710                                              DRM_PLANE_HELPER_NO_SCALING,
11711                                              DRM_PLANE_HELPER_NO_SCALING,
11712                                              false, true, &state->visible);
11713 }
11714
11715 static int
11716 intel_prepare_primary_plane(struct drm_plane *plane,
11717                             struct intel_plane_state *state)
11718 {
11719         struct drm_crtc *crtc = state->crtc;
11720         struct drm_framebuffer *fb = state->fb;
11721         struct drm_device *dev = crtc->dev;
11722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11723         enum pipe pipe = intel_crtc->pipe;
11724         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11725         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11726         int ret;
11727
11728         intel_crtc_wait_for_pending_flips(crtc);
11729
11730         if (intel_crtc_has_pending_flip(crtc)) {
11731                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11732                 return -EBUSY;
11733         }
11734
11735         if (old_obj != obj) {
11736                 mutex_lock(&dev->struct_mutex);
11737                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11738                 if (ret == 0)
11739                         i915_gem_track_fb(old_obj, obj,
11740                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11741                 mutex_unlock(&dev->struct_mutex);
11742                 if (ret != 0) {
11743                         DRM_DEBUG_KMS("pin & fence failed\n");
11744                         return ret;
11745                 }
11746         }
11747
11748         return 0;
11749 }
11750
11751 static void
11752 intel_commit_primary_plane(struct drm_plane *plane,
11753                            struct intel_plane_state *state)
11754 {
11755         struct drm_crtc *crtc = state->crtc;
11756         struct drm_framebuffer *fb = state->fb;
11757         struct drm_device *dev = crtc->dev;
11758         struct drm_i915_private *dev_priv = dev->dev_private;
11759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11760         enum pipe pipe = intel_crtc->pipe;
11761         struct drm_framebuffer *old_fb = plane->fb;
11762         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11763         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11764         struct intel_plane *intel_plane = to_intel_plane(plane);
11765         struct drm_rect *src = &state->src;
11766
11767         crtc->primary->fb = fb;
11768         crtc->x = src->x1 >> 16;
11769         crtc->y = src->y1 >> 16;
11770
11771         intel_plane->crtc_x = state->orig_dst.x1;
11772         intel_plane->crtc_y = state->orig_dst.y1;
11773         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11774         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11775         intel_plane->src_x = state->orig_src.x1;
11776         intel_plane->src_y = state->orig_src.y1;
11777         intel_plane->src_w = drm_rect_width(&state->orig_src);
11778         intel_plane->src_h = drm_rect_height(&state->orig_src);
11779         intel_plane->obj = obj;
11780
11781         if (intel_crtc->active) {
11782                 /*
11783                  * FBC does not work on some platforms for rotated
11784                  * planes, so disable it when rotation is not 0 and
11785                  * update it when rotation is set back to 0.
11786                  *
11787                  * FIXME: This is redundant with the fbc update done in
11788                  * the primary plane enable function except that that
11789                  * one is done too late. We eventually need to unify
11790                  * this.
11791                  */
11792                 if (intel_crtc->primary_enabled &&
11793                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11794                     dev_priv->fbc.plane == intel_crtc->plane &&
11795                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11796                         intel_disable_fbc(dev);
11797                 }
11798
11799                 if (state->visible) {
11800                         bool was_enabled = intel_crtc->primary_enabled;
11801
11802                         /* FIXME: kill this fastboot hack */
11803                         intel_update_pipe_size(intel_crtc);
11804
11805                         intel_crtc->primary_enabled = true;
11806
11807                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11808                                         crtc->x, crtc->y);
11809
11810                         /*
11811                          * BDW signals flip done immediately if the plane
11812                          * is disabled, even if the plane enable is already
11813                          * armed to occur at the next vblank :(
11814                          */
11815                         if (IS_BROADWELL(dev) && !was_enabled)
11816                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11817                 } else {
11818                         /*
11819                          * If clipping results in a non-visible primary plane,
11820                          * we'll disable the primary plane.  Note that this is
11821                          * a bit different than what happens if userspace
11822                          * explicitly disables the plane by passing fb=0
11823                          * because plane->fb still gets set and pinned.
11824                          */
11825                         intel_disable_primary_hw_plane(plane, crtc);
11826                 }
11827
11828                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11829
11830                 mutex_lock(&dev->struct_mutex);
11831                 intel_update_fbc(dev);
11832                 mutex_unlock(&dev->struct_mutex);
11833         }
11834
11835         if (old_fb && old_fb != fb) {
11836                 if (intel_crtc->active)
11837                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11838
11839                 mutex_lock(&dev->struct_mutex);
11840                 intel_unpin_fb_obj(old_obj);
11841                 mutex_unlock(&dev->struct_mutex);
11842         }
11843 }
11844
11845 static int
11846 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11847                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11848                              unsigned int crtc_w, unsigned int crtc_h,
11849                              uint32_t src_x, uint32_t src_y,
11850                              uint32_t src_w, uint32_t src_h)
11851 {
11852         struct intel_plane_state state;
11853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11854         int ret;
11855
11856         state.crtc = crtc;
11857         state.fb = fb;
11858
11859         /* sample coordinates in 16.16 fixed point */
11860         state.src.x1 = src_x;
11861         state.src.x2 = src_x + src_w;
11862         state.src.y1 = src_y;
11863         state.src.y2 = src_y + src_h;
11864
11865         /* integer pixels */
11866         state.dst.x1 = crtc_x;
11867         state.dst.x2 = crtc_x + crtc_w;
11868         state.dst.y1 = crtc_y;
11869         state.dst.y2 = crtc_y + crtc_h;
11870
11871         state.clip.x1 = 0;
11872         state.clip.y1 = 0;
11873         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11874         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11875
11876         state.orig_src = state.src;
11877         state.orig_dst = state.dst;
11878
11879         ret = intel_check_primary_plane(plane, &state);
11880         if (ret)
11881                 return ret;
11882
11883         ret = intel_prepare_primary_plane(plane, &state);
11884         if (ret)
11885                 return ret;
11886
11887         intel_commit_primary_plane(plane, &state);
11888
11889         return 0;
11890 }
11891
11892 /* Common destruction function for both primary and cursor planes */
11893 static void intel_plane_destroy(struct drm_plane *plane)
11894 {
11895         struct intel_plane *intel_plane = to_intel_plane(plane);
11896         drm_plane_cleanup(plane);
11897         kfree(intel_plane);
11898 }
11899
11900 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11901         .update_plane = intel_primary_plane_setplane,
11902         .disable_plane = intel_primary_plane_disable,
11903         .destroy = intel_plane_destroy,
11904         .set_property = intel_plane_set_property
11905 };
11906
11907 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11908                                                     int pipe)
11909 {
11910         struct intel_plane *primary;
11911         const uint32_t *intel_primary_formats;
11912         int num_formats;
11913
11914         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11915         if (primary == NULL)
11916                 return NULL;
11917
11918         primary->can_scale = false;
11919         primary->max_downscale = 1;
11920         primary->pipe = pipe;
11921         primary->plane = pipe;
11922         primary->rotation = BIT(DRM_ROTATE_0);
11923         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11924                 primary->plane = !pipe;
11925
11926         if (INTEL_INFO(dev)->gen <= 3) {
11927                 intel_primary_formats = intel_primary_formats_gen2;
11928                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11929         } else {
11930                 intel_primary_formats = intel_primary_formats_gen4;
11931                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11932         }
11933
11934         drm_universal_plane_init(dev, &primary->base, 0,
11935                                  &intel_primary_plane_funcs,
11936                                  intel_primary_formats, num_formats,
11937                                  DRM_PLANE_TYPE_PRIMARY);
11938
11939         if (INTEL_INFO(dev)->gen >= 4) {
11940                 if (!dev->mode_config.rotation_property)
11941                         dev->mode_config.rotation_property =
11942                                 drm_mode_create_rotation_property(dev,
11943                                                         BIT(DRM_ROTATE_0) |
11944                                                         BIT(DRM_ROTATE_180));
11945                 if (dev->mode_config.rotation_property)
11946                         drm_object_attach_property(&primary->base.base,
11947                                 dev->mode_config.rotation_property,
11948                                 primary->rotation);
11949         }
11950
11951         return &primary->base;
11952 }
11953
11954 static int
11955 intel_cursor_plane_disable(struct drm_plane *plane)
11956 {
11957         if (!plane->fb)
11958                 return 0;
11959
11960         BUG_ON(!plane->crtc);
11961
11962         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11963 }
11964
11965 static int
11966 intel_check_cursor_plane(struct drm_plane *plane,
11967                          struct intel_plane_state *state)
11968 {
11969         struct drm_crtc *crtc = state->crtc;
11970         struct drm_device *dev = crtc->dev;
11971         struct drm_framebuffer *fb = state->fb;
11972         struct drm_rect *dest = &state->dst;
11973         struct drm_rect *src = &state->src;
11974         const struct drm_rect *clip = &state->clip;
11975         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11976         int crtc_w, crtc_h;
11977         unsigned stride;
11978         int ret;
11979
11980         ret = drm_plane_helper_check_update(plane, crtc, fb,
11981                                             src, dest, clip,
11982                                             DRM_PLANE_HELPER_NO_SCALING,
11983                                             DRM_PLANE_HELPER_NO_SCALING,
11984                                             true, true, &state->visible);
11985         if (ret)
11986                 return ret;
11987
11988
11989         /* if we want to turn off the cursor ignore width and height */
11990         if (!obj)
11991                 return 0;
11992
11993         /* Check for which cursor types we support */
11994         crtc_w = drm_rect_width(&state->orig_dst);
11995         crtc_h = drm_rect_height(&state->orig_dst);
11996         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11997                 DRM_DEBUG("Cursor dimension not supported\n");
11998                 return -EINVAL;
11999         }
12000
12001         stride = roundup_pow_of_two(crtc_w) * 4;
12002         if (obj->base.size < stride * crtc_h) {
12003                 DRM_DEBUG_KMS("buffer is too small\n");
12004                 return -ENOMEM;
12005         }
12006
12007         if (fb == crtc->cursor->fb)
12008                 return 0;
12009
12010         /* we only need to pin inside GTT if cursor is non-phy */
12011         mutex_lock(&dev->struct_mutex);
12012         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12013                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12014                 ret = -EINVAL;
12015         }
12016         mutex_unlock(&dev->struct_mutex);
12017
12018         return ret;
12019 }
12020
12021 static int
12022 intel_commit_cursor_plane(struct drm_plane *plane,
12023                           struct intel_plane_state *state)
12024 {
12025         struct drm_crtc *crtc = state->crtc;
12026         struct drm_framebuffer *fb = state->fb;
12027         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12028         struct intel_plane *intel_plane = to_intel_plane(plane);
12029         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12030         struct drm_i915_gem_object *obj = intel_fb->obj;
12031         int crtc_w, crtc_h;
12032
12033         crtc->cursor_x = state->orig_dst.x1;
12034         crtc->cursor_y = state->orig_dst.y1;
12035
12036         intel_plane->crtc_x = state->orig_dst.x1;
12037         intel_plane->crtc_y = state->orig_dst.y1;
12038         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12039         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12040         intel_plane->src_x = state->orig_src.x1;
12041         intel_plane->src_y = state->orig_src.y1;
12042         intel_plane->src_w = drm_rect_width(&state->orig_src);
12043         intel_plane->src_h = drm_rect_height(&state->orig_src);
12044         intel_plane->obj = obj;
12045
12046         if (fb != crtc->cursor->fb) {
12047                 crtc_w = drm_rect_width(&state->orig_dst);
12048                 crtc_h = drm_rect_height(&state->orig_dst);
12049                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12050         } else {
12051                 intel_crtc_update_cursor(crtc, state->visible);
12052
12053                 intel_frontbuffer_flip(crtc->dev,
12054                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12055
12056                 return 0;
12057         }
12058 }
12059
12060 static int
12061 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12062                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12063                           unsigned int crtc_w, unsigned int crtc_h,
12064                           uint32_t src_x, uint32_t src_y,
12065                           uint32_t src_w, uint32_t src_h)
12066 {
12067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12068         struct intel_plane_state state;
12069         int ret;
12070
12071         state.crtc = crtc;
12072         state.fb = fb;
12073
12074         /* sample coordinates in 16.16 fixed point */
12075         state.src.x1 = src_x;
12076         state.src.x2 = src_x + src_w;
12077         state.src.y1 = src_y;
12078         state.src.y2 = src_y + src_h;
12079
12080         /* integer pixels */
12081         state.dst.x1 = crtc_x;
12082         state.dst.x2 = crtc_x + crtc_w;
12083         state.dst.y1 = crtc_y;
12084         state.dst.y2 = crtc_y + crtc_h;
12085
12086         state.clip.x1 = 0;
12087         state.clip.y1 = 0;
12088         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12089         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12090
12091         state.orig_src = state.src;
12092         state.orig_dst = state.dst;
12093
12094         ret = intel_check_cursor_plane(plane, &state);
12095         if (ret)
12096                 return ret;
12097
12098         return intel_commit_cursor_plane(plane, &state);
12099 }
12100
12101 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12102         .update_plane = intel_cursor_plane_update,
12103         .disable_plane = intel_cursor_plane_disable,
12104         .destroy = intel_plane_destroy,
12105         .set_property = intel_plane_set_property,
12106 };
12107
12108 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12109                                                    int pipe)
12110 {
12111         struct intel_plane *cursor;
12112
12113         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12114         if (cursor == NULL)
12115                 return NULL;
12116
12117         cursor->can_scale = false;
12118         cursor->max_downscale = 1;
12119         cursor->pipe = pipe;
12120         cursor->plane = pipe;
12121         cursor->rotation = BIT(DRM_ROTATE_0);
12122
12123         drm_universal_plane_init(dev, &cursor->base, 0,
12124                                  &intel_cursor_plane_funcs,
12125                                  intel_cursor_formats,
12126                                  ARRAY_SIZE(intel_cursor_formats),
12127                                  DRM_PLANE_TYPE_CURSOR);
12128
12129         if (INTEL_INFO(dev)->gen >= 4) {
12130                 if (!dev->mode_config.rotation_property)
12131                         dev->mode_config.rotation_property =
12132                                 drm_mode_create_rotation_property(dev,
12133                                                         BIT(DRM_ROTATE_0) |
12134                                                         BIT(DRM_ROTATE_180));
12135                 if (dev->mode_config.rotation_property)
12136                         drm_object_attach_property(&cursor->base.base,
12137                                 dev->mode_config.rotation_property,
12138                                 cursor->rotation);
12139         }
12140
12141         return &cursor->base;
12142 }
12143
12144 static void intel_crtc_init(struct drm_device *dev, int pipe)
12145 {
12146         struct drm_i915_private *dev_priv = dev->dev_private;
12147         struct intel_crtc *intel_crtc;
12148         struct drm_plane *primary = NULL;
12149         struct drm_plane *cursor = NULL;
12150         int i, ret;
12151
12152         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12153         if (intel_crtc == NULL)
12154                 return;
12155
12156         primary = intel_primary_plane_create(dev, pipe);
12157         if (!primary)
12158                 goto fail;
12159
12160         cursor = intel_cursor_plane_create(dev, pipe);
12161         if (!cursor)
12162                 goto fail;
12163
12164         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12165                                         cursor, &intel_crtc_funcs);
12166         if (ret)
12167                 goto fail;
12168
12169         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12170         for (i = 0; i < 256; i++) {
12171                 intel_crtc->lut_r[i] = i;
12172                 intel_crtc->lut_g[i] = i;
12173                 intel_crtc->lut_b[i] = i;
12174         }
12175
12176         /*
12177          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12178          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12179          */
12180         intel_crtc->pipe = pipe;
12181         intel_crtc->plane = pipe;
12182         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12183                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12184                 intel_crtc->plane = !pipe;
12185         }
12186
12187         intel_crtc->cursor_base = ~0;
12188         intel_crtc->cursor_cntl = ~0;
12189         intel_crtc->cursor_size = ~0;
12190
12191         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12192                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12193         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12194         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12195
12196         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12197
12198         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12199
12200         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12201         return;
12202
12203 fail:
12204         if (primary)
12205                 drm_plane_cleanup(primary);
12206         if (cursor)
12207                 drm_plane_cleanup(cursor);
12208         kfree(intel_crtc);
12209 }
12210
12211 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12212 {
12213         struct drm_encoder *encoder = connector->base.encoder;
12214         struct drm_device *dev = connector->base.dev;
12215
12216         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12217
12218         if (!encoder || WARN_ON(!encoder->crtc))
12219                 return INVALID_PIPE;
12220
12221         return to_intel_crtc(encoder->crtc)->pipe;
12222 }
12223
12224 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12225                                 struct drm_file *file)
12226 {
12227         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12228         struct drm_crtc *drmmode_crtc;
12229         struct intel_crtc *crtc;
12230
12231         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12232                 return -ENODEV;
12233
12234         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12235
12236         if (!drmmode_crtc) {
12237                 DRM_ERROR("no such CRTC id\n");
12238                 return -ENOENT;
12239         }
12240
12241         crtc = to_intel_crtc(drmmode_crtc);
12242         pipe_from_crtc_id->pipe = crtc->pipe;
12243
12244         return 0;
12245 }
12246
12247 static int intel_encoder_clones(struct intel_encoder *encoder)
12248 {
12249         struct drm_device *dev = encoder->base.dev;
12250         struct intel_encoder *source_encoder;
12251         int index_mask = 0;
12252         int entry = 0;
12253
12254         for_each_intel_encoder(dev, source_encoder) {
12255                 if (encoders_cloneable(encoder, source_encoder))
12256                         index_mask |= (1 << entry);
12257
12258                 entry++;
12259         }
12260
12261         return index_mask;
12262 }
12263
12264 static bool has_edp_a(struct drm_device *dev)
12265 {
12266         struct drm_i915_private *dev_priv = dev->dev_private;
12267
12268         if (!IS_MOBILE(dev))
12269                 return false;
12270
12271         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12272                 return false;
12273
12274         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12275                 return false;
12276
12277         return true;
12278 }
12279
12280 const char *intel_output_name(int output)
12281 {
12282         static const char *names[] = {
12283                 [INTEL_OUTPUT_UNUSED] = "Unused",
12284                 [INTEL_OUTPUT_ANALOG] = "Analog",
12285                 [INTEL_OUTPUT_DVO] = "DVO",
12286                 [INTEL_OUTPUT_SDVO] = "SDVO",
12287                 [INTEL_OUTPUT_LVDS] = "LVDS",
12288                 [INTEL_OUTPUT_TVOUT] = "TV",
12289                 [INTEL_OUTPUT_HDMI] = "HDMI",
12290                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12291                 [INTEL_OUTPUT_EDP] = "eDP",
12292                 [INTEL_OUTPUT_DSI] = "DSI",
12293                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12294         };
12295
12296         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12297                 return "Invalid";
12298
12299         return names[output];
12300 }
12301
12302 static bool intel_crt_present(struct drm_device *dev)
12303 {
12304         struct drm_i915_private *dev_priv = dev->dev_private;
12305
12306         if (INTEL_INFO(dev)->gen >= 9)
12307                 return false;
12308
12309         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12310                 return false;
12311
12312         if (IS_CHERRYVIEW(dev))
12313                 return false;
12314
12315         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12316                 return false;
12317
12318         return true;
12319 }
12320
12321 static void intel_setup_outputs(struct drm_device *dev)
12322 {
12323         struct drm_i915_private *dev_priv = dev->dev_private;
12324         struct intel_encoder *encoder;
12325         bool dpd_is_edp = false;
12326
12327         intel_lvds_init(dev);
12328
12329         if (intel_crt_present(dev))
12330                 intel_crt_init(dev);
12331
12332         if (HAS_DDI(dev)) {
12333                 int found;
12334
12335                 /* Haswell uses DDI functions to detect digital outputs */
12336                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12337                 /* DDI A only supports eDP */
12338                 if (found)
12339                         intel_ddi_init(dev, PORT_A);
12340
12341                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12342                  * register */
12343                 found = I915_READ(SFUSE_STRAP);
12344
12345                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12346                         intel_ddi_init(dev, PORT_B);
12347                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12348                         intel_ddi_init(dev, PORT_C);
12349                 if (found & SFUSE_STRAP_DDID_DETECTED)
12350                         intel_ddi_init(dev, PORT_D);
12351         } else if (HAS_PCH_SPLIT(dev)) {
12352                 int found;
12353                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12354
12355                 if (has_edp_a(dev))
12356                         intel_dp_init(dev, DP_A, PORT_A);
12357
12358                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12359                         /* PCH SDVOB multiplex with HDMIB */
12360                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12361                         if (!found)
12362                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12363                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12364                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12365                 }
12366
12367                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12368                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12369
12370                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12371                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12372
12373                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12374                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12375
12376                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12377                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12378         } else if (IS_VALLEYVIEW(dev)) {
12379                 /*
12380                  * The DP_DETECTED bit is the latched state of the DDC
12381                  * SDA pin at boot. However since eDP doesn't require DDC
12382                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12383                  * eDP ports may have been muxed to an alternate function.
12384                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12385                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12386                  * detect eDP ports.
12387                  */
12388                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12389                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12390                                         PORT_B);
12391                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12392                     intel_dp_is_edp(dev, PORT_B))
12393                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12394
12395                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12396                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12397                                         PORT_C);
12398                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12399                     intel_dp_is_edp(dev, PORT_C))
12400                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12401
12402                 if (IS_CHERRYVIEW(dev)) {
12403                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12404                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12405                                                 PORT_D);
12406                         /* eDP not supported on port D, so don't check VBT */
12407                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12408                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12409                 }
12410
12411                 intel_dsi_init(dev);
12412         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12413                 bool found = false;
12414
12415                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12416                         DRM_DEBUG_KMS("probing SDVOB\n");
12417                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12418                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12419                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12420                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12421                         }
12422
12423                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12424                                 intel_dp_init(dev, DP_B, PORT_B);
12425                 }
12426
12427                 /* Before G4X SDVOC doesn't have its own detect register */
12428
12429                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12430                         DRM_DEBUG_KMS("probing SDVOC\n");
12431                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12432                 }
12433
12434                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12435
12436                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12437                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12438                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12439                         }
12440                         if (SUPPORTS_INTEGRATED_DP(dev))
12441                                 intel_dp_init(dev, DP_C, PORT_C);
12442                 }
12443
12444                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12445                     (I915_READ(DP_D) & DP_DETECTED))
12446                         intel_dp_init(dev, DP_D, PORT_D);
12447         } else if (IS_GEN2(dev))
12448                 intel_dvo_init(dev);
12449
12450         if (SUPPORTS_TV(dev))
12451                 intel_tv_init(dev);
12452
12453         intel_psr_init(dev);
12454
12455         for_each_intel_encoder(dev, encoder) {
12456                 encoder->base.possible_crtcs = encoder->crtc_mask;
12457                 encoder->base.possible_clones =
12458                         intel_encoder_clones(encoder);
12459         }
12460
12461         intel_init_pch_refclk(dev);
12462
12463         drm_helper_move_panel_connectors_to_head(dev);
12464 }
12465
12466 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12467 {
12468         struct drm_device *dev = fb->dev;
12469         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12470
12471         drm_framebuffer_cleanup(fb);
12472         mutex_lock(&dev->struct_mutex);
12473         WARN_ON(!intel_fb->obj->framebuffer_references--);
12474         drm_gem_object_unreference(&intel_fb->obj->base);
12475         mutex_unlock(&dev->struct_mutex);
12476         kfree(intel_fb);
12477 }
12478
12479 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12480                                                 struct drm_file *file,
12481                                                 unsigned int *handle)
12482 {
12483         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12484         struct drm_i915_gem_object *obj = intel_fb->obj;
12485
12486         return drm_gem_handle_create(file, &obj->base, handle);
12487 }
12488
12489 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12490         .destroy = intel_user_framebuffer_destroy,
12491         .create_handle = intel_user_framebuffer_create_handle,
12492 };
12493
12494 static int intel_framebuffer_init(struct drm_device *dev,
12495                                   struct intel_framebuffer *intel_fb,
12496                                   struct drm_mode_fb_cmd2 *mode_cmd,
12497                                   struct drm_i915_gem_object *obj)
12498 {
12499         int aligned_height;
12500         int pitch_limit;
12501         int ret;
12502
12503         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12504
12505         if (obj->tiling_mode == I915_TILING_Y) {
12506                 DRM_DEBUG("hardware does not support tiling Y\n");
12507                 return -EINVAL;
12508         }
12509
12510         if (mode_cmd->pitches[0] & 63) {
12511                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12512                           mode_cmd->pitches[0]);
12513                 return -EINVAL;
12514         }
12515
12516         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12517                 pitch_limit = 32*1024;
12518         } else if (INTEL_INFO(dev)->gen >= 4) {
12519                 if (obj->tiling_mode)
12520                         pitch_limit = 16*1024;
12521                 else
12522                         pitch_limit = 32*1024;
12523         } else if (INTEL_INFO(dev)->gen >= 3) {
12524                 if (obj->tiling_mode)
12525                         pitch_limit = 8*1024;
12526                 else
12527                         pitch_limit = 16*1024;
12528         } else
12529                 /* XXX DSPC is limited to 4k tiled */
12530                 pitch_limit = 8*1024;
12531
12532         if (mode_cmd->pitches[0] > pitch_limit) {
12533                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12534                           obj->tiling_mode ? "tiled" : "linear",
12535                           mode_cmd->pitches[0], pitch_limit);
12536                 return -EINVAL;
12537         }
12538
12539         if (obj->tiling_mode != I915_TILING_NONE &&
12540             mode_cmd->pitches[0] != obj->stride) {
12541                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12542                           mode_cmd->pitches[0], obj->stride);
12543                 return -EINVAL;
12544         }
12545
12546         /* Reject formats not supported by any plane early. */
12547         switch (mode_cmd->pixel_format) {
12548         case DRM_FORMAT_C8:
12549         case DRM_FORMAT_RGB565:
12550         case DRM_FORMAT_XRGB8888:
12551         case DRM_FORMAT_ARGB8888:
12552                 break;
12553         case DRM_FORMAT_XRGB1555:
12554         case DRM_FORMAT_ARGB1555:
12555                 if (INTEL_INFO(dev)->gen > 3) {
12556                         DRM_DEBUG("unsupported pixel format: %s\n",
12557                                   drm_get_format_name(mode_cmd->pixel_format));
12558                         return -EINVAL;
12559                 }
12560                 break;
12561         case DRM_FORMAT_XBGR8888:
12562         case DRM_FORMAT_ABGR8888:
12563         case DRM_FORMAT_XRGB2101010:
12564         case DRM_FORMAT_ARGB2101010:
12565         case DRM_FORMAT_XBGR2101010:
12566         case DRM_FORMAT_ABGR2101010:
12567                 if (INTEL_INFO(dev)->gen < 4) {
12568                         DRM_DEBUG("unsupported pixel format: %s\n",
12569                                   drm_get_format_name(mode_cmd->pixel_format));
12570                         return -EINVAL;
12571                 }
12572                 break;
12573         case DRM_FORMAT_YUYV:
12574         case DRM_FORMAT_UYVY:
12575         case DRM_FORMAT_YVYU:
12576         case DRM_FORMAT_VYUY:
12577                 if (INTEL_INFO(dev)->gen < 5) {
12578                         DRM_DEBUG("unsupported pixel format: %s\n",
12579                                   drm_get_format_name(mode_cmd->pixel_format));
12580                         return -EINVAL;
12581                 }
12582                 break;
12583         default:
12584                 DRM_DEBUG("unsupported pixel format: %s\n",
12585                           drm_get_format_name(mode_cmd->pixel_format));
12586                 return -EINVAL;
12587         }
12588
12589         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12590         if (mode_cmd->offsets[0] != 0)
12591                 return -EINVAL;
12592
12593         aligned_height = intel_align_height(dev, mode_cmd->height,
12594                                             obj->tiling_mode);
12595         /* FIXME drm helper for size checks (especially planar formats)? */
12596         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12597                 return -EINVAL;
12598
12599         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12600         intel_fb->obj = obj;
12601         intel_fb->obj->framebuffer_references++;
12602
12603         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12604         if (ret) {
12605                 DRM_ERROR("framebuffer init failed %d\n", ret);
12606                 return ret;
12607         }
12608
12609         return 0;
12610 }
12611
12612 static struct drm_framebuffer *
12613 intel_user_framebuffer_create(struct drm_device *dev,
12614                               struct drm_file *filp,
12615                               struct drm_mode_fb_cmd2 *mode_cmd)
12616 {
12617         struct drm_i915_gem_object *obj;
12618
12619         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12620                                                 mode_cmd->handles[0]));
12621         if (&obj->base == NULL)
12622                 return ERR_PTR(-ENOENT);
12623
12624         return intel_framebuffer_create(dev, mode_cmd, obj);
12625 }
12626
12627 #ifndef CONFIG_DRM_I915_FBDEV
12628 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12629 {
12630 }
12631 #endif
12632
12633 static const struct drm_mode_config_funcs intel_mode_funcs = {
12634         .fb_create = intel_user_framebuffer_create,
12635         .output_poll_changed = intel_fbdev_output_poll_changed,
12636 };
12637
12638 /* Set up chip specific display functions */
12639 static void intel_init_display(struct drm_device *dev)
12640 {
12641         struct drm_i915_private *dev_priv = dev->dev_private;
12642
12643         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12644                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12645         else if (IS_CHERRYVIEW(dev))
12646                 dev_priv->display.find_dpll = chv_find_best_dpll;
12647         else if (IS_VALLEYVIEW(dev))
12648                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12649         else if (IS_PINEVIEW(dev))
12650                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12651         else
12652                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12653
12654         if (HAS_DDI(dev)) {
12655                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12656                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12657                 dev_priv->display.crtc_compute_clock =
12658                         haswell_crtc_compute_clock;
12659                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12660                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12661                 dev_priv->display.off = ironlake_crtc_off;
12662                 if (INTEL_INFO(dev)->gen >= 9)
12663                         dev_priv->display.update_primary_plane =
12664                                 skylake_update_primary_plane;
12665                 else
12666                         dev_priv->display.update_primary_plane =
12667                                 ironlake_update_primary_plane;
12668         } else if (HAS_PCH_SPLIT(dev)) {
12669                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12670                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12671                 dev_priv->display.crtc_compute_clock =
12672                         ironlake_crtc_compute_clock;
12673                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12674                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12675                 dev_priv->display.off = ironlake_crtc_off;
12676                 dev_priv->display.update_primary_plane =
12677                         ironlake_update_primary_plane;
12678         } else if (IS_VALLEYVIEW(dev)) {
12679                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12680                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12681                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12682                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12683                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12684                 dev_priv->display.off = i9xx_crtc_off;
12685                 dev_priv->display.update_primary_plane =
12686                         i9xx_update_primary_plane;
12687         } else {
12688                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12689                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12690                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12691                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12692                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12693                 dev_priv->display.off = i9xx_crtc_off;
12694                 dev_priv->display.update_primary_plane =
12695                         i9xx_update_primary_plane;
12696         }
12697
12698         /* Returns the core display clock speed */
12699         if (IS_VALLEYVIEW(dev))
12700                 dev_priv->display.get_display_clock_speed =
12701                         valleyview_get_display_clock_speed;
12702         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12703                 dev_priv->display.get_display_clock_speed =
12704                         i945_get_display_clock_speed;
12705         else if (IS_I915G(dev))
12706                 dev_priv->display.get_display_clock_speed =
12707                         i915_get_display_clock_speed;
12708         else if (IS_I945GM(dev) || IS_845G(dev))
12709                 dev_priv->display.get_display_clock_speed =
12710                         i9xx_misc_get_display_clock_speed;
12711         else if (IS_PINEVIEW(dev))
12712                 dev_priv->display.get_display_clock_speed =
12713                         pnv_get_display_clock_speed;
12714         else if (IS_I915GM(dev))
12715                 dev_priv->display.get_display_clock_speed =
12716                         i915gm_get_display_clock_speed;
12717         else if (IS_I865G(dev))
12718                 dev_priv->display.get_display_clock_speed =
12719                         i865_get_display_clock_speed;
12720         else if (IS_I85X(dev))
12721                 dev_priv->display.get_display_clock_speed =
12722                         i855_get_display_clock_speed;
12723         else /* 852, 830 */
12724                 dev_priv->display.get_display_clock_speed =
12725                         i830_get_display_clock_speed;
12726
12727         if (IS_GEN5(dev)) {
12728                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12729         } else if (IS_GEN6(dev)) {
12730                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12731         } else if (IS_IVYBRIDGE(dev)) {
12732                 /* FIXME: detect B0+ stepping and use auto training */
12733                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12734                 dev_priv->display.modeset_global_resources =
12735                         ivb_modeset_global_resources;
12736         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12737                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12738         } else if (IS_VALLEYVIEW(dev)) {
12739                 dev_priv->display.modeset_global_resources =
12740                         valleyview_modeset_global_resources;
12741         }
12742
12743         /* Default just returns -ENODEV to indicate unsupported */
12744         dev_priv->display.queue_flip = intel_default_queue_flip;
12745
12746         switch (INTEL_INFO(dev)->gen) {
12747         case 2:
12748                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12749                 break;
12750
12751         case 3:
12752                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12753                 break;
12754
12755         case 4:
12756         case 5:
12757                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12758                 break;
12759
12760         case 6:
12761                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12762                 break;
12763         case 7:
12764         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12765                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12766                 break;
12767         case 9:
12768                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12769                 break;
12770         }
12771
12772         intel_panel_init_backlight_funcs(dev);
12773
12774         mutex_init(&dev_priv->pps_mutex);
12775 }
12776
12777 /*
12778  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12779  * resume, or other times.  This quirk makes sure that's the case for
12780  * affected systems.
12781  */
12782 static void quirk_pipea_force(struct drm_device *dev)
12783 {
12784         struct drm_i915_private *dev_priv = dev->dev_private;
12785
12786         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12787         DRM_INFO("applying pipe a force quirk\n");
12788 }
12789
12790 static void quirk_pipeb_force(struct drm_device *dev)
12791 {
12792         struct drm_i915_private *dev_priv = dev->dev_private;
12793
12794         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12795         DRM_INFO("applying pipe b force quirk\n");
12796 }
12797
12798 /*
12799  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12800  */
12801 static void quirk_ssc_force_disable(struct drm_device *dev)
12802 {
12803         struct drm_i915_private *dev_priv = dev->dev_private;
12804         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12805         DRM_INFO("applying lvds SSC disable quirk\n");
12806 }
12807
12808 /*
12809  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12810  * brightness value
12811  */
12812 static void quirk_invert_brightness(struct drm_device *dev)
12813 {
12814         struct drm_i915_private *dev_priv = dev->dev_private;
12815         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12816         DRM_INFO("applying inverted panel brightness quirk\n");
12817 }
12818
12819 /* Some VBT's incorrectly indicate no backlight is present */
12820 static void quirk_backlight_present(struct drm_device *dev)
12821 {
12822         struct drm_i915_private *dev_priv = dev->dev_private;
12823         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12824         DRM_INFO("applying backlight present quirk\n");
12825 }
12826
12827 struct intel_quirk {
12828         int device;
12829         int subsystem_vendor;
12830         int subsystem_device;
12831         void (*hook)(struct drm_device *dev);
12832 };
12833
12834 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12835 struct intel_dmi_quirk {
12836         void (*hook)(struct drm_device *dev);
12837         const struct dmi_system_id (*dmi_id_list)[];
12838 };
12839
12840 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12841 {
12842         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12843         return 1;
12844 }
12845
12846 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12847         {
12848                 .dmi_id_list = &(const struct dmi_system_id[]) {
12849                         {
12850                                 .callback = intel_dmi_reverse_brightness,
12851                                 .ident = "NCR Corporation",
12852                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12853                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12854                                 },
12855                         },
12856                         { }  /* terminating entry */
12857                 },
12858                 .hook = quirk_invert_brightness,
12859         },
12860 };
12861
12862 static struct intel_quirk intel_quirks[] = {
12863         /* HP Mini needs pipe A force quirk (LP: #322104) */
12864         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12865
12866         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12867         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12868
12869         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12870         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12871
12872         /* 830 needs to leave pipe A & dpll A up */
12873         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12874
12875         /* 830 needs to leave pipe B & dpll B up */
12876         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12877
12878         /* Lenovo U160 cannot use SSC on LVDS */
12879         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12880
12881         /* Sony Vaio Y cannot use SSC on LVDS */
12882         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12883
12884         /* Acer Aspire 5734Z must invert backlight brightness */
12885         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12886
12887         /* Acer/eMachines G725 */
12888         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12889
12890         /* Acer/eMachines e725 */
12891         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12892
12893         /* Acer/Packard Bell NCL20 */
12894         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12895
12896         /* Acer Aspire 4736Z */
12897         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12898
12899         /* Acer Aspire 5336 */
12900         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12901
12902         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12903         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12904
12905         /* Acer C720 Chromebook (Core i3 4005U) */
12906         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12907
12908         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12909         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12910
12911         /* HP Chromebook 14 (Celeron 2955U) */
12912         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12913 };
12914
12915 static void intel_init_quirks(struct drm_device *dev)
12916 {
12917         struct pci_dev *d = dev->pdev;
12918         int i;
12919
12920         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12921                 struct intel_quirk *q = &intel_quirks[i];
12922
12923                 if (d->device == q->device &&
12924                     (d->subsystem_vendor == q->subsystem_vendor ||
12925                      q->subsystem_vendor == PCI_ANY_ID) &&
12926                     (d->subsystem_device == q->subsystem_device ||
12927                      q->subsystem_device == PCI_ANY_ID))
12928                         q->hook(dev);
12929         }
12930         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12931                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12932                         intel_dmi_quirks[i].hook(dev);
12933         }
12934 }
12935
12936 /* Disable the VGA plane that we never use */
12937 static void i915_disable_vga(struct drm_device *dev)
12938 {
12939         struct drm_i915_private *dev_priv = dev->dev_private;
12940         u8 sr1;
12941         u32 vga_reg = i915_vgacntrl_reg(dev);
12942
12943         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12944         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12945         outb(SR01, VGA_SR_INDEX);
12946         sr1 = inb(VGA_SR_DATA);
12947         outb(sr1 | 1<<5, VGA_SR_DATA);
12948         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12949         udelay(300);
12950
12951         /*
12952          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12953          * from S3 without preserving (some of?) the other bits.
12954          */
12955         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12956         POSTING_READ(vga_reg);
12957 }
12958
12959 void intel_modeset_init_hw(struct drm_device *dev)
12960 {
12961         intel_prepare_ddi(dev);
12962
12963         if (IS_VALLEYVIEW(dev))
12964                 vlv_update_cdclk(dev);
12965
12966         intel_init_clock_gating(dev);
12967
12968         intel_enable_gt_powersave(dev);
12969 }
12970
12971 void intel_modeset_init(struct drm_device *dev)
12972 {
12973         struct drm_i915_private *dev_priv = dev->dev_private;
12974         int sprite, ret;
12975         enum pipe pipe;
12976         struct intel_crtc *crtc;
12977
12978         drm_mode_config_init(dev);
12979
12980         dev->mode_config.min_width = 0;
12981         dev->mode_config.min_height = 0;
12982
12983         dev->mode_config.preferred_depth = 24;
12984         dev->mode_config.prefer_shadow = 1;
12985
12986         dev->mode_config.funcs = &intel_mode_funcs;
12987
12988         intel_init_quirks(dev);
12989
12990         intel_init_pm(dev);
12991
12992         if (INTEL_INFO(dev)->num_pipes == 0)
12993                 return;
12994
12995         intel_init_display(dev);
12996         intel_init_audio(dev);
12997
12998         if (IS_GEN2(dev)) {
12999                 dev->mode_config.max_width = 2048;
13000                 dev->mode_config.max_height = 2048;
13001         } else if (IS_GEN3(dev)) {
13002                 dev->mode_config.max_width = 4096;
13003                 dev->mode_config.max_height = 4096;
13004         } else {
13005                 dev->mode_config.max_width = 8192;
13006                 dev->mode_config.max_height = 8192;
13007         }
13008
13009         if (IS_845G(dev) || IS_I865G(dev)) {
13010                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13011                 dev->mode_config.cursor_height = 1023;
13012         } else if (IS_GEN2(dev)) {
13013                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13014                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13015         } else {
13016                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13017                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13018         }
13019
13020         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13021
13022         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13023                       INTEL_INFO(dev)->num_pipes,
13024                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13025
13026         for_each_pipe(dev_priv, pipe) {
13027                 intel_crtc_init(dev, pipe);
13028                 for_each_sprite(pipe, sprite) {
13029                         ret = intel_plane_init(dev, pipe, sprite);
13030                         if (ret)
13031                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13032                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13033                 }
13034         }
13035
13036         intel_init_dpio(dev);
13037
13038         intel_shared_dpll_init(dev);
13039
13040         /* save the BIOS value before clobbering it */
13041         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13042         /* Just disable it once at startup */
13043         i915_disable_vga(dev);
13044         intel_setup_outputs(dev);
13045
13046         /* Just in case the BIOS is doing something questionable. */
13047         intel_disable_fbc(dev);
13048
13049         drm_modeset_lock_all(dev);
13050         intel_modeset_setup_hw_state(dev, false);
13051         drm_modeset_unlock_all(dev);
13052
13053         for_each_intel_crtc(dev, crtc) {
13054                 if (!crtc->active)
13055                         continue;
13056
13057                 /*
13058                  * Note that reserving the BIOS fb up front prevents us
13059                  * from stuffing other stolen allocations like the ring
13060                  * on top.  This prevents some ugliness at boot time, and
13061                  * can even allow for smooth boot transitions if the BIOS
13062                  * fb is large enough for the active pipe configuration.
13063                  */
13064                 if (dev_priv->display.get_plane_config) {
13065                         dev_priv->display.get_plane_config(crtc,
13066                                                            &crtc->plane_config);
13067                         /*
13068                          * If the fb is shared between multiple heads, we'll
13069                          * just get the first one.
13070                          */
13071                         intel_find_plane_obj(crtc, &crtc->plane_config);
13072                 }
13073         }
13074 }
13075
13076 static void intel_enable_pipe_a(struct drm_device *dev)
13077 {
13078         struct intel_connector *connector;
13079         struct drm_connector *crt = NULL;
13080         struct intel_load_detect_pipe load_detect_temp;
13081         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13082
13083         /* We can't just switch on the pipe A, we need to set things up with a
13084          * proper mode and output configuration. As a gross hack, enable pipe A
13085          * by enabling the load detect pipe once. */
13086         list_for_each_entry(connector,
13087                             &dev->mode_config.connector_list,
13088                             base.head) {
13089                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13090                         crt = &connector->base;
13091                         break;
13092                 }
13093         }
13094
13095         if (!crt)
13096                 return;
13097
13098         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13099                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13100 }
13101
13102 static bool
13103 intel_check_plane_mapping(struct intel_crtc *crtc)
13104 {
13105         struct drm_device *dev = crtc->base.dev;
13106         struct drm_i915_private *dev_priv = dev->dev_private;
13107         u32 reg, val;
13108
13109         if (INTEL_INFO(dev)->num_pipes == 1)
13110                 return true;
13111
13112         reg = DSPCNTR(!crtc->plane);
13113         val = I915_READ(reg);
13114
13115         if ((val & DISPLAY_PLANE_ENABLE) &&
13116             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13117                 return false;
13118
13119         return true;
13120 }
13121
13122 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13123 {
13124         struct drm_device *dev = crtc->base.dev;
13125         struct drm_i915_private *dev_priv = dev->dev_private;
13126         u32 reg;
13127
13128         /* Clear any frame start delays used for debugging left by the BIOS */
13129         reg = PIPECONF(crtc->config.cpu_transcoder);
13130         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13131
13132         /* restore vblank interrupts to correct state */
13133         if (crtc->active) {
13134                 update_scanline_offset(crtc);
13135                 drm_vblank_on(dev, crtc->pipe);
13136         } else
13137                 drm_vblank_off(dev, crtc->pipe);
13138
13139         /* We need to sanitize the plane -> pipe mapping first because this will
13140          * disable the crtc (and hence change the state) if it is wrong. Note
13141          * that gen4+ has a fixed plane -> pipe mapping.  */
13142         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13143                 struct intel_connector *connector;
13144                 bool plane;
13145
13146                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13147                               crtc->base.base.id);
13148
13149                 /* Pipe has the wrong plane attached and the plane is active.
13150                  * Temporarily change the plane mapping and disable everything
13151                  * ...  */
13152                 plane = crtc->plane;
13153                 crtc->plane = !plane;
13154                 crtc->primary_enabled = true;
13155                 dev_priv->display.crtc_disable(&crtc->base);
13156                 crtc->plane = plane;
13157
13158                 /* ... and break all links. */
13159                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13160                                     base.head) {
13161                         if (connector->encoder->base.crtc != &crtc->base)
13162                                 continue;
13163
13164                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13165                         connector->base.encoder = NULL;
13166                 }
13167                 /* multiple connectors may have the same encoder:
13168                  *  handle them and break crtc link separately */
13169                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13170                                     base.head)
13171                         if (connector->encoder->base.crtc == &crtc->base) {
13172                                 connector->encoder->base.crtc = NULL;
13173                                 connector->encoder->connectors_active = false;
13174                         }
13175
13176                 WARN_ON(crtc->active);
13177                 crtc->base.enabled = false;
13178         }
13179
13180         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13181             crtc->pipe == PIPE_A && !crtc->active) {
13182                 /* BIOS forgot to enable pipe A, this mostly happens after
13183                  * resume. Force-enable the pipe to fix this, the update_dpms
13184                  * call below we restore the pipe to the right state, but leave
13185                  * the required bits on. */
13186                 intel_enable_pipe_a(dev);
13187         }
13188
13189         /* Adjust the state of the output pipe according to whether we
13190          * have active connectors/encoders. */
13191         intel_crtc_update_dpms(&crtc->base);
13192
13193         if (crtc->active != crtc->base.enabled) {
13194                 struct intel_encoder *encoder;
13195
13196                 /* This can happen either due to bugs in the get_hw_state
13197                  * functions or because the pipe is force-enabled due to the
13198                  * pipe A quirk. */
13199                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13200                               crtc->base.base.id,
13201                               crtc->base.enabled ? "enabled" : "disabled",
13202                               crtc->active ? "enabled" : "disabled");
13203
13204                 crtc->base.enabled = crtc->active;
13205
13206                 /* Because we only establish the connector -> encoder ->
13207                  * crtc links if something is active, this means the
13208                  * crtc is now deactivated. Break the links. connector
13209                  * -> encoder links are only establish when things are
13210                  *  actually up, hence no need to break them. */
13211                 WARN_ON(crtc->active);
13212
13213                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13214                         WARN_ON(encoder->connectors_active);
13215                         encoder->base.crtc = NULL;
13216                 }
13217         }
13218
13219         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13220                 /*
13221                  * We start out with underrun reporting disabled to avoid races.
13222                  * For correct bookkeeping mark this on active crtcs.
13223                  *
13224                  * Also on gmch platforms we dont have any hardware bits to
13225                  * disable the underrun reporting. Which means we need to start
13226                  * out with underrun reporting disabled also on inactive pipes,
13227                  * since otherwise we'll complain about the garbage we read when
13228                  * e.g. coming up after runtime pm.
13229                  *
13230                  * No protection against concurrent access is required - at
13231                  * worst a fifo underrun happens which also sets this to false.
13232                  */
13233                 crtc->cpu_fifo_underrun_disabled = true;
13234                 crtc->pch_fifo_underrun_disabled = true;
13235         }
13236 }
13237
13238 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13239 {
13240         struct intel_connector *connector;
13241         struct drm_device *dev = encoder->base.dev;
13242
13243         /* We need to check both for a crtc link (meaning that the
13244          * encoder is active and trying to read from a pipe) and the
13245          * pipe itself being active. */
13246         bool has_active_crtc = encoder->base.crtc &&
13247                 to_intel_crtc(encoder->base.crtc)->active;
13248
13249         if (encoder->connectors_active && !has_active_crtc) {
13250                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13251                               encoder->base.base.id,
13252                               encoder->base.name);
13253
13254                 /* Connector is active, but has no active pipe. This is
13255                  * fallout from our resume register restoring. Disable
13256                  * the encoder manually again. */
13257                 if (encoder->base.crtc) {
13258                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13259                                       encoder->base.base.id,
13260                                       encoder->base.name);
13261                         encoder->disable(encoder);
13262                         if (encoder->post_disable)
13263                                 encoder->post_disable(encoder);
13264                 }
13265                 encoder->base.crtc = NULL;
13266                 encoder->connectors_active = false;
13267
13268                 /* Inconsistent output/port/pipe state happens presumably due to
13269                  * a bug in one of the get_hw_state functions. Or someplace else
13270                  * in our code, like the register restore mess on resume. Clamp
13271                  * things to off as a safer default. */
13272                 list_for_each_entry(connector,
13273                                     &dev->mode_config.connector_list,
13274                                     base.head) {
13275                         if (connector->encoder != encoder)
13276                                 continue;
13277                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13278                         connector->base.encoder = NULL;
13279                 }
13280         }
13281         /* Enabled encoders without active connectors will be fixed in
13282          * the crtc fixup. */
13283 }
13284
13285 void i915_redisable_vga_power_on(struct drm_device *dev)
13286 {
13287         struct drm_i915_private *dev_priv = dev->dev_private;
13288         u32 vga_reg = i915_vgacntrl_reg(dev);
13289
13290         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13291                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13292                 i915_disable_vga(dev);
13293         }
13294 }
13295
13296 void i915_redisable_vga(struct drm_device *dev)
13297 {
13298         struct drm_i915_private *dev_priv = dev->dev_private;
13299
13300         /* This function can be called both from intel_modeset_setup_hw_state or
13301          * at a very early point in our resume sequence, where the power well
13302          * structures are not yet restored. Since this function is at a very
13303          * paranoid "someone might have enabled VGA while we were not looking"
13304          * level, just check if the power well is enabled instead of trying to
13305          * follow the "don't touch the power well if we don't need it" policy
13306          * the rest of the driver uses. */
13307         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13308                 return;
13309
13310         i915_redisable_vga_power_on(dev);
13311 }
13312
13313 static bool primary_get_hw_state(struct intel_crtc *crtc)
13314 {
13315         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13316
13317         if (!crtc->active)
13318                 return false;
13319
13320         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13321 }
13322
13323 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13324 {
13325         struct drm_i915_private *dev_priv = dev->dev_private;
13326         enum pipe pipe;
13327         struct intel_crtc *crtc;
13328         struct intel_encoder *encoder;
13329         struct intel_connector *connector;
13330         int i;
13331
13332         for_each_intel_crtc(dev, crtc) {
13333                 memset(&crtc->config, 0, sizeof(crtc->config));
13334
13335                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13336
13337                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13338                                                                  &crtc->config);
13339
13340                 crtc->base.enabled = crtc->active;
13341                 crtc->primary_enabled = primary_get_hw_state(crtc);
13342
13343                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13344                               crtc->base.base.id,
13345                               crtc->active ? "enabled" : "disabled");
13346         }
13347
13348         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13349                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13350
13351                 pll->on = pll->get_hw_state(dev_priv, pll,
13352                                             &pll->config.hw_state);
13353                 pll->active = 0;
13354                 pll->config.crtc_mask = 0;
13355                 for_each_intel_crtc(dev, crtc) {
13356                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13357                                 pll->active++;
13358                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13359                         }
13360                 }
13361
13362                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13363                               pll->name, pll->config.crtc_mask, pll->on);
13364
13365                 if (pll->config.crtc_mask)
13366                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13367         }
13368
13369         for_each_intel_encoder(dev, encoder) {
13370                 pipe = 0;
13371
13372                 if (encoder->get_hw_state(encoder, &pipe)) {
13373                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13374                         encoder->base.crtc = &crtc->base;
13375                         encoder->get_config(encoder, &crtc->config);
13376                 } else {
13377                         encoder->base.crtc = NULL;
13378                 }
13379
13380                 encoder->connectors_active = false;
13381                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13382                               encoder->base.base.id,
13383                               encoder->base.name,
13384                               encoder->base.crtc ? "enabled" : "disabled",
13385                               pipe_name(pipe));
13386         }
13387
13388         list_for_each_entry(connector, &dev->mode_config.connector_list,
13389                             base.head) {
13390                 if (connector->get_hw_state(connector)) {
13391                         connector->base.dpms = DRM_MODE_DPMS_ON;
13392                         connector->encoder->connectors_active = true;
13393                         connector->base.encoder = &connector->encoder->base;
13394                 } else {
13395                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13396                         connector->base.encoder = NULL;
13397                 }
13398                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13399                               connector->base.base.id,
13400                               connector->base.name,
13401                               connector->base.encoder ? "enabled" : "disabled");
13402         }
13403 }
13404
13405 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13406  * and i915 state tracking structures. */
13407 void intel_modeset_setup_hw_state(struct drm_device *dev,
13408                                   bool force_restore)
13409 {
13410         struct drm_i915_private *dev_priv = dev->dev_private;
13411         enum pipe pipe;
13412         struct intel_crtc *crtc;
13413         struct intel_encoder *encoder;
13414         int i;
13415
13416         intel_modeset_readout_hw_state(dev);
13417
13418         /*
13419          * Now that we have the config, copy it to each CRTC struct
13420          * Note that this could go away if we move to using crtc_config
13421          * checking everywhere.
13422          */
13423         for_each_intel_crtc(dev, crtc) {
13424                 if (crtc->active && i915.fastboot) {
13425                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13426                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13427                                       crtc->base.base.id);
13428                         drm_mode_debug_printmodeline(&crtc->base.mode);
13429                 }
13430         }
13431
13432         /* HW state is read out, now we need to sanitize this mess. */
13433         for_each_intel_encoder(dev, encoder) {
13434                 intel_sanitize_encoder(encoder);
13435         }
13436
13437         for_each_pipe(dev_priv, pipe) {
13438                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13439                 intel_sanitize_crtc(crtc);
13440                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13441         }
13442
13443         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13444                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13445
13446                 if (!pll->on || pll->active)
13447                         continue;
13448
13449                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13450
13451                 pll->disable(dev_priv, pll);
13452                 pll->on = false;
13453         }
13454
13455         if (IS_GEN9(dev))
13456                 skl_wm_get_hw_state(dev);
13457         else if (HAS_PCH_SPLIT(dev))
13458                 ilk_wm_get_hw_state(dev);
13459
13460         if (force_restore) {
13461                 i915_redisable_vga(dev);
13462
13463                 /*
13464                  * We need to use raw interfaces for restoring state to avoid
13465                  * checking (bogus) intermediate states.
13466                  */
13467                 for_each_pipe(dev_priv, pipe) {
13468                         struct drm_crtc *crtc =
13469                                 dev_priv->pipe_to_crtc_mapping[pipe];
13470
13471                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13472                                        crtc->primary->fb);
13473                 }
13474         } else {
13475                 intel_modeset_update_staged_output_state(dev);
13476         }
13477
13478         intel_modeset_check_state(dev);
13479 }
13480
13481 void intel_modeset_gem_init(struct drm_device *dev)
13482 {
13483         struct drm_i915_private *dev_priv = dev->dev_private;
13484         struct drm_crtc *c;
13485         struct drm_i915_gem_object *obj;
13486
13487         mutex_lock(&dev->struct_mutex);
13488         intel_init_gt_powersave(dev);
13489         mutex_unlock(&dev->struct_mutex);
13490
13491         /*
13492          * There may be no VBT; and if the BIOS enabled SSC we can
13493          * just keep using it to avoid unnecessary flicker.  Whereas if the
13494          * BIOS isn't using it, don't assume it will work even if the VBT
13495          * indicates as much.
13496          */
13497         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13498                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13499                                                 DREF_SSC1_ENABLE);
13500
13501         intel_modeset_init_hw(dev);
13502
13503         intel_setup_overlay(dev);
13504
13505         /*
13506          * Make sure any fbs we allocated at startup are properly
13507          * pinned & fenced.  When we do the allocation it's too early
13508          * for this.
13509          */
13510         mutex_lock(&dev->struct_mutex);
13511         for_each_crtc(dev, c) {
13512                 obj = intel_fb_obj(c->primary->fb);
13513                 if (obj == NULL)
13514                         continue;
13515
13516                 if (intel_pin_and_fence_fb_obj(c->primary,
13517                                                c->primary->fb,
13518                                                NULL)) {
13519                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13520                                   to_intel_crtc(c)->pipe);
13521                         drm_framebuffer_unreference(c->primary->fb);
13522                         c->primary->fb = NULL;
13523                 }
13524         }
13525         mutex_unlock(&dev->struct_mutex);
13526
13527         intel_backlight_register(dev);
13528 }
13529
13530 void intel_connector_unregister(struct intel_connector *intel_connector)
13531 {
13532         struct drm_connector *connector = &intel_connector->base;
13533
13534         intel_panel_destroy_backlight(connector);
13535         drm_connector_unregister(connector);
13536 }
13537
13538 void intel_modeset_cleanup(struct drm_device *dev)
13539 {
13540         struct drm_i915_private *dev_priv = dev->dev_private;
13541         struct drm_connector *connector;
13542
13543         intel_disable_gt_powersave(dev);
13544
13545         intel_backlight_unregister(dev);
13546
13547         /*
13548          * Interrupts and polling as the first thing to avoid creating havoc.
13549          * Too much stuff here (turning of connectors, ...) would
13550          * experience fancy races otherwise.
13551          */
13552         intel_irq_uninstall(dev_priv);
13553
13554         /*
13555          * Due to the hpd irq storm handling the hotplug work can re-arm the
13556          * poll handlers. Hence disable polling after hpd handling is shut down.
13557          */
13558         drm_kms_helper_poll_fini(dev);
13559
13560         mutex_lock(&dev->struct_mutex);
13561
13562         intel_unregister_dsm_handler();
13563
13564         intel_disable_fbc(dev);
13565
13566         ironlake_teardown_rc6(dev);
13567
13568         mutex_unlock(&dev->struct_mutex);
13569
13570         /* flush any delayed tasks or pending work */
13571         flush_scheduled_work();
13572
13573         /* destroy the backlight and sysfs files before encoders/connectors */
13574         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13575                 struct intel_connector *intel_connector;
13576
13577                 intel_connector = to_intel_connector(connector);
13578                 intel_connector->unregister(intel_connector);
13579         }
13580
13581         drm_mode_config_cleanup(dev);
13582
13583         intel_cleanup_overlay(dev);
13584
13585         mutex_lock(&dev->struct_mutex);
13586         intel_cleanup_gt_powersave(dev);
13587         mutex_unlock(&dev->struct_mutex);
13588 }
13589
13590 /*
13591  * Return which encoder is currently attached for connector.
13592  */
13593 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13594 {
13595         return &intel_attached_encoder(connector)->base;
13596 }
13597
13598 void intel_connector_attach_encoder(struct intel_connector *connector,
13599                                     struct intel_encoder *encoder)
13600 {
13601         connector->encoder = encoder;
13602         drm_mode_connector_attach_encoder(&connector->base,
13603                                           &encoder->base);
13604 }
13605
13606 /*
13607  * set vga decode state - true == enable VGA decode
13608  */
13609 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13610 {
13611         struct drm_i915_private *dev_priv = dev->dev_private;
13612         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13613         u16 gmch_ctrl;
13614
13615         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13616                 DRM_ERROR("failed to read control word\n");
13617                 return -EIO;
13618         }
13619
13620         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13621                 return 0;
13622
13623         if (state)
13624                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13625         else
13626                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13627
13628         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13629                 DRM_ERROR("failed to write control word\n");
13630                 return -EIO;
13631         }
13632
13633         return 0;
13634 }
13635
13636 struct intel_display_error_state {
13637
13638         u32 power_well_driver;
13639
13640         int num_transcoders;
13641
13642         struct intel_cursor_error_state {
13643                 u32 control;
13644                 u32 position;
13645                 u32 base;
13646                 u32 size;
13647         } cursor[I915_MAX_PIPES];
13648
13649         struct intel_pipe_error_state {
13650                 bool power_domain_on;
13651                 u32 source;
13652                 u32 stat;
13653         } pipe[I915_MAX_PIPES];
13654
13655         struct intel_plane_error_state {
13656                 u32 control;
13657                 u32 stride;
13658                 u32 size;
13659                 u32 pos;
13660                 u32 addr;
13661                 u32 surface;
13662                 u32 tile_offset;
13663         } plane[I915_MAX_PIPES];
13664
13665         struct intel_transcoder_error_state {
13666                 bool power_domain_on;
13667                 enum transcoder cpu_transcoder;
13668
13669                 u32 conf;
13670
13671                 u32 htotal;
13672                 u32 hblank;
13673                 u32 hsync;
13674                 u32 vtotal;
13675                 u32 vblank;
13676                 u32 vsync;
13677         } transcoder[4];
13678 };
13679
13680 struct intel_display_error_state *
13681 intel_display_capture_error_state(struct drm_device *dev)
13682 {
13683         struct drm_i915_private *dev_priv = dev->dev_private;
13684         struct intel_display_error_state *error;
13685         int transcoders[] = {
13686                 TRANSCODER_A,
13687                 TRANSCODER_B,
13688                 TRANSCODER_C,
13689                 TRANSCODER_EDP,
13690         };
13691         int i;
13692
13693         if (INTEL_INFO(dev)->num_pipes == 0)
13694                 return NULL;
13695
13696         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13697         if (error == NULL)
13698                 return NULL;
13699
13700         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13701                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13702
13703         for_each_pipe(dev_priv, i) {
13704                 error->pipe[i].power_domain_on =
13705                         __intel_display_power_is_enabled(dev_priv,
13706                                                          POWER_DOMAIN_PIPE(i));
13707                 if (!error->pipe[i].power_domain_on)
13708                         continue;
13709
13710                 error->cursor[i].control = I915_READ(CURCNTR(i));
13711                 error->cursor[i].position = I915_READ(CURPOS(i));
13712                 error->cursor[i].base = I915_READ(CURBASE(i));
13713
13714                 error->plane[i].control = I915_READ(DSPCNTR(i));
13715                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13716                 if (INTEL_INFO(dev)->gen <= 3) {
13717                         error->plane[i].size = I915_READ(DSPSIZE(i));
13718                         error->plane[i].pos = I915_READ(DSPPOS(i));
13719                 }
13720                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13721                         error->plane[i].addr = I915_READ(DSPADDR(i));
13722                 if (INTEL_INFO(dev)->gen >= 4) {
13723                         error->plane[i].surface = I915_READ(DSPSURF(i));
13724                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13725                 }
13726
13727                 error->pipe[i].source = I915_READ(PIPESRC(i));
13728
13729                 if (HAS_GMCH_DISPLAY(dev))
13730                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13731         }
13732
13733         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13734         if (HAS_DDI(dev_priv->dev))
13735                 error->num_transcoders++; /* Account for eDP. */
13736
13737         for (i = 0; i < error->num_transcoders; i++) {
13738                 enum transcoder cpu_transcoder = transcoders[i];
13739
13740                 error->transcoder[i].power_domain_on =
13741                         __intel_display_power_is_enabled(dev_priv,
13742                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13743                 if (!error->transcoder[i].power_domain_on)
13744                         continue;
13745
13746                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13747
13748                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13749                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13750                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13751                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13752                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13753                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13754                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13755         }
13756
13757         return error;
13758 }
13759
13760 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13761
13762 void
13763 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13764                                 struct drm_device *dev,
13765                                 struct intel_display_error_state *error)
13766 {
13767         struct drm_i915_private *dev_priv = dev->dev_private;
13768         int i;
13769
13770         if (!error)
13771                 return;
13772
13773         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13774         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13775                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13776                            error->power_well_driver);
13777         for_each_pipe(dev_priv, i) {
13778                 err_printf(m, "Pipe [%d]:\n", i);
13779                 err_printf(m, "  Power: %s\n",
13780                            error->pipe[i].power_domain_on ? "on" : "off");
13781                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13782                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13783
13784                 err_printf(m, "Plane [%d]:\n", i);
13785                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13786                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13787                 if (INTEL_INFO(dev)->gen <= 3) {
13788                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13789                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13790                 }
13791                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13792                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13793                 if (INTEL_INFO(dev)->gen >= 4) {
13794                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13795                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13796                 }
13797
13798                 err_printf(m, "Cursor [%d]:\n", i);
13799                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13800                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13801                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13802         }
13803
13804         for (i = 0; i < error->num_transcoders; i++) {
13805                 err_printf(m, "CPU transcoder: %c\n",
13806                            transcoder_name(error->transcoder[i].cpu_transcoder));
13807                 err_printf(m, "  Power: %s\n",
13808                            error->transcoder[i].power_domain_on ? "on" : "off");
13809                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13810                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13811                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13812                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13813                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13814                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13815                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13816         }
13817 }
13818
13819 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13820 {
13821         struct intel_crtc *crtc;
13822
13823         for_each_intel_crtc(dev, crtc) {
13824                 struct intel_unpin_work *work;
13825
13826                 spin_lock_irq(&dev->event_lock);
13827
13828                 work = crtc->unpin_work;
13829
13830                 if (work && work->event &&
13831                     work->event->base.file_priv == file) {
13832                         kfree(work->event);
13833                         work->event = NULL;
13834                 }
13835
13836                 spin_unlock_irq(&dev->event_lock);
13837         }
13838 }