drm/i915: kill pc8.disable_count
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55                                   struct intel_framebuffer *ifb,
56                                   struct drm_mode_fb_cmd2 *mode_cmd,
57                                   struct drm_i915_gem_object *obj);
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71         intel_p2_t          p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77         struct drm_i915_private *dev_priv = dev->dev_private;
78
79         WARN_ON(!HAS_PCH_SPLIT(dev));
80
81         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87         if (IS_GEN5(dev)) {
88                 struct drm_i915_private *dev_priv = dev->dev_private;
89                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90         } else
91                 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95         .dot = { .min = 25000, .max = 350000 },
96         .vco = { .min = 908000, .max = 1512000 },
97         .n = { .min = 2, .max = 16 },
98         .m = { .min = 96, .max = 140 },
99         .m1 = { .min = 18, .max = 26 },
100         .m2 = { .min = 6, .max = 16 },
101         .p = { .min = 4, .max = 128 },
102         .p1 = { .min = 2, .max = 33 },
103         .p2 = { .dot_limit = 165000,
104                 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 908000, .max = 1512000 },
110         .n = { .min = 2, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 908000, .max = 1512000 },
123         .n = { .min = 2, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134         .dot = { .min = 20000, .max = 400000 },
135         .vco = { .min = 1400000, .max = 2800000 },
136         .n = { .min = 1, .max = 6 },
137         .m = { .min = 70, .max = 120 },
138         .m1 = { .min = 8, .max = 18 },
139         .m2 = { .min = 3, .max = 7 },
140         .p = { .min = 5, .max = 80 },
141         .p1 = { .min = 1, .max = 8 },
142         .p2 = { .dot_limit = 200000,
143                 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 7, .max = 98 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 112000,
156                 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161         .dot = { .min = 25000, .max = 270000 },
162         .vco = { .min = 1750000, .max = 3500000},
163         .n = { .min = 1, .max = 4 },
164         .m = { .min = 104, .max = 138 },
165         .m1 = { .min = 17, .max = 23 },
166         .m2 = { .min = 5, .max = 11 },
167         .p = { .min = 10, .max = 30 },
168         .p1 = { .min = 1, .max = 3},
169         .p2 = { .dot_limit = 270000,
170                 .p2_slow = 10,
171                 .p2_fast = 10
172         },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176         .dot = { .min = 22000, .max = 400000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 16, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 5, .max = 80 },
183         .p1 = { .min = 1, .max = 8},
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189         .dot = { .min = 20000, .max = 115000 },
190         .vco = { .min = 1750000, .max = 3500000 },
191         .n = { .min = 1, .max = 3 },
192         .m = { .min = 104, .max = 138 },
193         .m1 = { .min = 17, .max = 23 },
194         .m2 = { .min = 5, .max = 11 },
195         .p = { .min = 28, .max = 112 },
196         .p1 = { .min = 2, .max = 8 },
197         .p2 = { .dot_limit = 0,
198                 .p2_slow = 14, .p2_fast = 14
199         },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203         .dot = { .min = 80000, .max = 224000 },
204         .vco = { .min = 1750000, .max = 3500000 },
205         .n = { .min = 1, .max = 3 },
206         .m = { .min = 104, .max = 138 },
207         .m1 = { .min = 17, .max = 23 },
208         .m2 = { .min = 5, .max = 11 },
209         .p = { .min = 14, .max = 42 },
210         .p1 = { .min = 2, .max = 6 },
211         .p2 = { .dot_limit = 0,
212                 .p2_slow = 7, .p2_fast = 7
213         },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217         .dot = { .min = 20000, .max = 400000},
218         .vco = { .min = 1700000, .max = 3500000 },
219         /* Pineview's Ncounter is a ring counter */
220         .n = { .min = 3, .max = 6 },
221         .m = { .min = 2, .max = 256 },
222         /* Pineview only has one combined m divider, which we treat as m2. */
223         .m1 = { .min = 0, .max = 0 },
224         .m2 = { .min = 0, .max = 254 },
225         .p = { .min = 5, .max = 80 },
226         .p1 = { .min = 1, .max = 8 },
227         .p2 = { .dot_limit = 200000,
228                 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232         .dot = { .min = 20000, .max = 400000 },
233         .vco = { .min = 1700000, .max = 3500000 },
234         .n = { .min = 3, .max = 6 },
235         .m = { .min = 2, .max = 256 },
236         .m1 = { .min = 0, .max = 0 },
237         .m2 = { .min = 0, .max = 254 },
238         .p = { .min = 7, .max = 112 },
239         .p1 = { .min = 1, .max = 8 },
240         .p2 = { .dot_limit = 112000,
241                 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245  *
246  * We calculate clock using (register_value + 2) for N/M1/M2, so here
247  * the range value for them is (actual_value - 2).
248  */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 1760000, .max = 3510000 },
252         .n = { .min = 1, .max = 5 },
253         .m = { .min = 79, .max = 127 },
254         .m1 = { .min = 12, .max = 22 },
255         .m2 = { .min = 5, .max = 9 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 225000,
259                 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 1760000, .max = 3510000 },
265         .n = { .min = 1, .max = 3 },
266         .m = { .min = 79, .max = 118 },
267         .m1 = { .min = 12, .max = 22 },
268         .m2 = { .min = 5, .max = 9 },
269         .p = { .min = 28, .max = 112 },
270         .p1 = { .min = 2, .max = 8 },
271         .p2 = { .dot_limit = 225000,
272                 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 3 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 14, .max = 56 },
283         .p1 = { .min = 2, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 2 },
293         .m = { .min = 79, .max = 126 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 126 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 42 },
310         .p1 = { .min = 2, .max = 6 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316          /*
317           * These are the data rate limits (measured in fast clocks)
318           * since those are the strictest limits we have. The fast
319           * clock and actual rate limits are more relaxed, so checking
320           * them would make no difference.
321           */
322         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m1 = { .min = 2, .max = 3 },
326         .m2 = { .min = 11, .max = 156 },
327         .p1 = { .min = 2, .max = 3 },
328         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333         clock->m = clock->m1 * clock->m2;
334         clock->p = clock->p1 * clock->p2;
335         if (WARN_ON(clock->n == 0 || clock->p == 0))
336                 return;
337         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342  * Returns whether any output on the specified pipe is of the specified type
343  */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346         struct drm_device *dev = crtc->dev;
347         struct intel_encoder *encoder;
348
349         for_each_encoder_on_crtc(dev, crtc, encoder)
350                 if (encoder->type == type)
351                         return true;
352
353         return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357                                                 int refclk)
358 {
359         struct drm_device *dev = crtc->dev;
360         const intel_limit_t *limit;
361
362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363                 if (intel_is_dual_link_lvds(dev)) {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_dual_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_dual_lvds;
368                 } else {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_single_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_single_lvds;
373                 }
374         } else
375                 limit = &intel_limits_ironlake_dac;
376
377         return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382         struct drm_device *dev = crtc->dev;
383         const intel_limit_t *limit;
384
385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386                 if (intel_is_dual_link_lvds(dev))
387                         limit = &intel_limits_g4x_dual_channel_lvds;
388                 else
389                         limit = &intel_limits_g4x_single_channel_lvds;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392                 limit = &intel_limits_g4x_hdmi;
393         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394                 limit = &intel_limits_g4x_sdvo;
395         } else /* The option is for other outputs */
396                 limit = &intel_limits_i9xx_sdvo;
397
398         return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403         struct drm_device *dev = crtc->dev;
404         const intel_limit_t *limit;
405
406         if (HAS_PCH_SPLIT(dev))
407                 limit = intel_ironlake_limit(crtc, refclk);
408         else if (IS_G4X(dev)) {
409                 limit = intel_g4x_limit(crtc);
410         } else if (IS_PINEVIEW(dev)) {
411                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412                         limit = &intel_limits_pineview_lvds;
413                 else
414                         limit = &intel_limits_pineview_sdvo;
415         } else if (IS_VALLEYVIEW(dev)) {
416                 limit = &intel_limits_vlv;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         if (WARN_ON(clock->n == 0 || clock->p == 0))
439                 return;
440         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = i9xx_dpll_compute_m(clock);
452         clock->p = clock->p1 * clock->p2;
453         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454                 return;
455         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461  * Returns whether the given set of divisors are valid for a given refclk with
462  * the given connectors.
463  */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466                                const intel_limit_t *limit,
467                                const intel_clock_t *clock)
468 {
469         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
470                 INTELPllInvalid("n out of range\n");
471         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
472                 INTELPllInvalid("p1 out of range\n");
473         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
474                 INTELPllInvalid("m2 out of range\n");
475         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
476                 INTELPllInvalid("m1 out of range\n");
477
478         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479                 if (clock->m1 <= clock->m2)
480                         INTELPllInvalid("m1 <= m2\n");
481
482         if (!IS_VALLEYVIEW(dev)) {
483                 if (clock->p < limit->p.min || limit->p.max < clock->p)
484                         INTELPllInvalid("p out of range\n");
485                 if (clock->m < limit->m.min || limit->m.max < clock->m)
486                         INTELPllInvalid("m out of range\n");
487         }
488
489         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490                 INTELPllInvalid("vco out of range\n");
491         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492          * connector, etc., rather than just a single range.
493          */
494         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495                 INTELPllInvalid("dot out of range\n");
496
497         return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502                     int target, int refclk, intel_clock_t *match_clock,
503                     intel_clock_t *best_clock)
504 {
505         struct drm_device *dev = crtc->dev;
506         intel_clock_t clock;
507         int err = target;
508
509         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510                 /*
511                  * For LVDS just rely on its current settings for dual-channel.
512                  * We haven't figured out how to reliably set up different
513                  * single/dual channel state, if we even can.
514                  */
515                 if (intel_is_dual_link_lvds(dev))
516                         clock.p2 = limit->p2.p2_fast;
517                 else
518                         clock.p2 = limit->p2.p2_slow;
519         } else {
520                 if (target < limit->p2.dot_limit)
521                         clock.p2 = limit->p2.p2_slow;
522                 else
523                         clock.p2 = limit->p2.p2_fast;
524         }
525
526         memset(best_clock, 0, sizeof(*best_clock));
527
528         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529              clock.m1++) {
530                 for (clock.m2 = limit->m2.min;
531                      clock.m2 <= limit->m2.max; clock.m2++) {
532                         if (clock.m2 >= clock.m1)
533                                 break;
534                         for (clock.n = limit->n.min;
535                              clock.n <= limit->n.max; clock.n++) {
536                                 for (clock.p1 = limit->p1.min;
537                                         clock.p1 <= limit->p1.max; clock.p1++) {
538                                         int this_err;
539
540                                         i9xx_clock(refclk, &clock);
541                                         if (!intel_PLL_is_valid(dev, limit,
542                                                                 &clock))
543                                                 continue;
544                                         if (match_clock &&
545                                             clock.p != match_clock->p)
546                                                 continue;
547
548                                         this_err = abs(clock.dot - target);
549                                         if (this_err < err) {
550                                                 *best_clock = clock;
551                                                 err = this_err;
552                                         }
553                                 }
554                         }
555                 }
556         }
557
558         return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563                    int target, int refclk, intel_clock_t *match_clock,
564                    intel_clock_t *best_clock)
565 {
566         struct drm_device *dev = crtc->dev;
567         intel_clock_t clock;
568         int err = target;
569
570         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571                 /*
572                  * For LVDS just rely on its current settings for dual-channel.
573                  * We haven't figured out how to reliably set up different
574                  * single/dual channel state, if we even can.
575                  */
576                 if (intel_is_dual_link_lvds(dev))
577                         clock.p2 = limit->p2.p2_fast;
578                 else
579                         clock.p2 = limit->p2.p2_slow;
580         } else {
581                 if (target < limit->p2.dot_limit)
582                         clock.p2 = limit->p2.p2_slow;
583                 else
584                         clock.p2 = limit->p2.p2_fast;
585         }
586
587         memset(best_clock, 0, sizeof(*best_clock));
588
589         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590              clock.m1++) {
591                 for (clock.m2 = limit->m2.min;
592                      clock.m2 <= limit->m2.max; clock.m2++) {
593                         for (clock.n = limit->n.min;
594                              clock.n <= limit->n.max; clock.n++) {
595                                 for (clock.p1 = limit->p1.min;
596                                         clock.p1 <= limit->p1.max; clock.p1++) {
597                                         int this_err;
598
599                                         pineview_clock(refclk, &clock);
600                                         if (!intel_PLL_is_valid(dev, limit,
601                                                                 &clock))
602                                                 continue;
603                                         if (match_clock &&
604                                             clock.p != match_clock->p)
605                                                 continue;
606
607                                         this_err = abs(clock.dot - target);
608                                         if (this_err < err) {
609                                                 *best_clock = clock;
610                                                 err = this_err;
611                                         }
612                                 }
613                         }
614                 }
615         }
616
617         return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622                    int target, int refclk, intel_clock_t *match_clock,
623                    intel_clock_t *best_clock)
624 {
625         struct drm_device *dev = crtc->dev;
626         intel_clock_t clock;
627         int max_n;
628         bool found;
629         /* approximately equals target * 0.00585 */
630         int err_most = (target >> 8) + (target >> 9);
631         found = false;
632
633         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634                 if (intel_is_dual_link_lvds(dev))
635                         clock.p2 = limit->p2.p2_fast;
636                 else
637                         clock.p2 = limit->p2.p2_slow;
638         } else {
639                 if (target < limit->p2.dot_limit)
640                         clock.p2 = limit->p2.p2_slow;
641                 else
642                         clock.p2 = limit->p2.p2_fast;
643         }
644
645         memset(best_clock, 0, sizeof(*best_clock));
646         max_n = limit->n.max;
647         /* based on hardware requirement, prefer smaller n to precision */
648         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649                 /* based on hardware requirement, prefere larger m1,m2 */
650                 for (clock.m1 = limit->m1.max;
651                      clock.m1 >= limit->m1.min; clock.m1--) {
652                         for (clock.m2 = limit->m2.max;
653                              clock.m2 >= limit->m2.min; clock.m2--) {
654                                 for (clock.p1 = limit->p1.max;
655                                      clock.p1 >= limit->p1.min; clock.p1--) {
656                                         int this_err;
657
658                                         i9xx_clock(refclk, &clock);
659                                         if (!intel_PLL_is_valid(dev, limit,
660                                                                 &clock))
661                                                 continue;
662
663                                         this_err = abs(clock.dot - target);
664                                         if (this_err < err_most) {
665                                                 *best_clock = clock;
666                                                 err_most = this_err;
667                                                 max_n = clock.n;
668                                                 found = true;
669                                         }
670                                 }
671                         }
672                 }
673         }
674         return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679                    int target, int refclk, intel_clock_t *match_clock,
680                    intel_clock_t *best_clock)
681 {
682         struct drm_device *dev = crtc->dev;
683         intel_clock_t clock;
684         unsigned int bestppm = 1000000;
685         /* min update 19.2 MHz */
686         int max_n = min(limit->n.max, refclk / 19200);
687         bool found = false;
688
689         target *= 5; /* fast clock */
690
691         memset(best_clock, 0, sizeof(*best_clock));
692
693         /* based on hardware requirement, prefer smaller n to precision */
694         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698                                 clock.p = clock.p1 * clock.p2;
699                                 /* based on hardware requirement, prefer bigger m1,m2 values */
700                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701                                         unsigned int ppm, diff;
702
703                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704                                                                      refclk * clock.m1);
705
706                                         vlv_clock(refclk, &clock);
707
708                                         if (!intel_PLL_is_valid(dev, limit,
709                                                                 &clock))
710                                                 continue;
711
712                                         diff = abs(clock.dot - target);
713                                         ppm = div_u64(1000000ULL * diff, target);
714
715                                         if (ppm < 100 && clock.p > best_clock->p) {
716                                                 bestppm = 0;
717                                                 *best_clock = clock;
718                                                 found = true;
719                                         }
720
721                                         if (bestppm >= 10 && ppm < bestppm - 10) {
722                                                 bestppm = ppm;
723                                                 *best_clock = clock;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730
731         return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         /* Be paranoid as we can arrive here with only partial
739          * state retrieved from the hardware during setup.
740          *
741          * We can ditch the adjusted_mode.crtc_clock check as soon
742          * as Haswell has gained clock readout/fastboot support.
743          *
744          * We can ditch the crtc->fb check as soon as we can
745          * properly reconstruct framebuffers.
746          */
747         return intel_crtc->active && crtc->fb &&
748                 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752                                              enum pipe pipe)
753 {
754         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757         return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765         frame = I915_READ(frame_reg);
766
767         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768                 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772  * intel_wait_for_vblank - wait for vblank on a given pipe
773  * @dev: drm device
774  * @pipe: pipe to wait for
775  *
776  * Wait for vblank to occur on a given pipe.  Needed for various bits of
777  * mode setting code.
778  */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         int pipestat_reg = PIPESTAT(pipe);
783
784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 g4x_wait_for_vblank(dev, pipe);
786                 return;
787         }
788
789         /* Clear existing vblank status. Note this will clear any other
790          * sticky status fields as well.
791          *
792          * This races with i915_driver_irq_handler() with the result
793          * that either function could miss a vblank event.  Here it is not
794          * fatal, as we will either wait upon the next vblank interrupt or
795          * timeout.  Generally speaking intel_wait_for_vblank() is only
796          * called during modeset at which time the GPU should be idle and
797          * should *not* be performing page flips and thus not waiting on
798          * vblanks...
799          * Currently, the result of us stealing a vblank from the irq
800          * handler is that a single frame will be skipped during swapbuffers.
801          */
802         I915_WRITE(pipestat_reg,
803                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805         /* Wait for vblank interrupt bit to set */
806         if (wait_for(I915_READ(pipestat_reg) &
807                      PIPE_VBLANK_INTERRUPT_STATUS,
808                      50))
809                 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 reg = PIPEDSL(pipe);
816         u32 line1, line2;
817         u32 line_mask;
818
819         if (IS_GEN2(dev))
820                 line_mask = DSL_LINEMASK_GEN2;
821         else
822                 line_mask = DSL_LINEMASK_GEN3;
823
824         line1 = I915_READ(reg) & line_mask;
825         mdelay(5);
826         line2 = I915_READ(reg) & line_mask;
827
828         return line1 == line2;
829 }
830
831 /*
832  * intel_wait_for_pipe_off - wait for pipe to turn off
833  * @dev: drm device
834  * @pipe: pipe to wait for
835  *
836  * After disabling a pipe, we can't wait for vblank in the usual way,
837  * spinning on the vblank interrupt status bit, since we won't actually
838  * see an interrupt when the pipe is disabled.
839  *
840  * On Gen4 and above:
841  *   wait for the pipe register state bit to turn off
842  *
843  * Otherwise:
844  *   wait for the display line value to settle (it usually
845  *   ends up stopping at the start of the next frame).
846  *
847  */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852                                                                       pipe);
853
854         if (INTEL_INFO(dev)->gen >= 4) {
855                 int reg = PIPECONF(cpu_transcoder);
856
857                 /* Wait for the Pipe State to go off */
858                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859                              100))
860                         WARN(1, "pipe_off wait timed out\n");
861         } else {
862                 /* Wait for the display line to settle */
863                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864                         WARN(1, "pipe_off wait timed out\n");
865         }
866 }
867
868 /*
869  * ibx_digital_port_connected - is the specified port connected?
870  * @dev_priv: i915 private structure
871  * @port: the port to test
872  *
873  * Returns true if @port is connected, false otherwise.
874  */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876                                 struct intel_digital_port *port)
877 {
878         u32 bit;
879
880         if (HAS_PCH_IBX(dev_priv->dev)) {
881                 switch(port->port) {
882                 case PORT_B:
883                         bit = SDE_PORTB_HOTPLUG;
884                         break;
885                 case PORT_C:
886                         bit = SDE_PORTC_HOTPLUG;
887                         break;
888                 case PORT_D:
889                         bit = SDE_PORTD_HOTPLUG;
890                         break;
891                 default:
892                         return true;
893                 }
894         } else {
895                 switch(port->port) {
896                 case PORT_B:
897                         bit = SDE_PORTB_HOTPLUG_CPT;
898                         break;
899                 case PORT_C:
900                         bit = SDE_PORTC_HOTPLUG_CPT;
901                         break;
902                 case PORT_D:
903                         bit = SDE_PORTD_HOTPLUG_CPT;
904                         break;
905                 default:
906                         return true;
907                 }
908         }
909
910         return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915         return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920                 enum pipe pipe, bool state)
921 {
922         int reg;
923         u32 val;
924         bool cur_state;
925
926         reg = DPLL(pipe);
927         val = I915_READ(reg);
928         cur_state = !!(val & DPLL_VCO_ENABLE);
929         WARN(cur_state != state,
930              "PLL state assertion failure (expected %s, current %s)\n",
931              state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937         u32 val;
938         bool cur_state;
939
940         mutex_lock(&dev_priv->dpio_lock);
941         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942         mutex_unlock(&dev_priv->dpio_lock);
943
944         cur_state = val & DSI_PLL_VCO_EN;
945         WARN(cur_state != state,
946              "DSI PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957         if (crtc->config.shared_dpll < 0)
958                 return NULL;
959
960         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965                         struct intel_shared_dpll *pll,
966                         bool state)
967 {
968         bool cur_state;
969         struct intel_dpll_hw_state hw_state;
970
971         if (HAS_PCH_LPT(dev_priv->dev)) {
972                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973                 return;
974         }
975
976         if (WARN (!pll,
977                   "asserting DPLL %s with no DPLL\n", state_string(state)))
978                 return;
979
980         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981         WARN(cur_state != state,
982              "%s assertion failure (expected %s, current %s)\n",
983              pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987                           enum pipe pipe, bool state)
988 {
989         int reg;
990         u32 val;
991         bool cur_state;
992         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993                                                                       pipe);
994
995         if (HAS_DDI(dev_priv->dev)) {
996                 /* DDI does not have a specific FDI_TX register */
997                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000         } else {
1001                 reg = FDI_TX_CTL(pipe);
1002                 val = I915_READ(reg);
1003                 cur_state = !!(val & FDI_TX_ENABLE);
1004         }
1005         WARN(cur_state != state,
1006              "FDI TX state assertion failure (expected %s, current %s)\n",
1007              state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013                           enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = FDI_RX_CTL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & FDI_RX_ENABLE);
1022         WARN(cur_state != state,
1023              "FDI RX state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030                                       enum pipe pipe)
1031 {
1032         int reg;
1033         u32 val;
1034
1035         /* ILK FDI PLL is always enabled */
1036         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037                 return;
1038
1039         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040         if (HAS_DDI(dev_priv->dev))
1041                 return;
1042
1043         reg = FDI_TX_CTL(pipe);
1044         val = I915_READ(reg);
1045         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = FDI_RX_CTL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058         WARN(cur_state != state,
1059              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064                                   enum pipe pipe)
1065 {
1066         int pp_reg, lvds_reg;
1067         u32 val;
1068         enum pipe panel_pipe = PIPE_A;
1069         bool locked = true;
1070
1071         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072                 pp_reg = PCH_PP_CONTROL;
1073                 lvds_reg = PCH_LVDS;
1074         } else {
1075                 pp_reg = PP_CONTROL;
1076                 lvds_reg = LVDS;
1077         }
1078
1079         val = I915_READ(pp_reg);
1080         if (!(val & PANEL_POWER_ON) ||
1081             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082                 locked = false;
1083
1084         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085                 panel_pipe = PIPE_B;
1086
1087         WARN(panel_pipe == pipe && locked,
1088              "panel assertion failure, pipe %c regs locked\n",
1089              pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         struct drm_device *dev = dev_priv->dev;
1096         bool cur_state;
1097
1098         if (IS_845G(dev) || IS_I865G(dev))
1099                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102         else
1103                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105         WARN(cur_state != state,
1106              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107              pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113                  enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119                                                                       pipe);
1120
1121         /* if we need the pipe A quirk it must be always on */
1122         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123                 state = true;
1124
1125         if (!intel_display_power_enabled(dev_priv,
1126                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127                 cur_state = false;
1128         } else {
1129                 reg = PIPECONF(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & PIPECONF_ENABLE);
1132         }
1133
1134         WARN(cur_state != state,
1135              "pipe %c assertion failure (expected %s, current %s)\n",
1136              pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140                          enum plane plane, bool state)
1141 {
1142         int reg;
1143         u32 val;
1144         bool cur_state;
1145
1146         reg = DSPCNTR(plane);
1147         val = I915_READ(reg);
1148         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149         WARN(cur_state != state,
1150              "plane %c assertion failure (expected %s, current %s)\n",
1151              plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158                                    enum pipe pipe)
1159 {
1160         struct drm_device *dev = dev_priv->dev;
1161         int reg, i;
1162         u32 val;
1163         int cur_pipe;
1164
1165         /* Primary planes are fixed to pipes on gen4+ */
1166         if (INTEL_INFO(dev)->gen >= 4) {
1167                 reg = DSPCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN(val & DISPLAY_PLANE_ENABLE,
1170                      "plane %c assertion failure, should be disabled but not\n",
1171                      plane_name(pipe));
1172                 return;
1173         }
1174
1175         /* Need to check both planes against the pipe */
1176         for_each_pipe(i) {
1177                 reg = DSPCNTR(i);
1178                 val = I915_READ(reg);
1179                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180                         DISPPLANE_SEL_PIPE_SHIFT;
1181                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183                      plane_name(i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188                                     enum pipe pipe)
1189 {
1190         struct drm_device *dev = dev_priv->dev;
1191         int reg, sprite;
1192         u32 val;
1193
1194         if (IS_VALLEYVIEW(dev)) {
1195                 for_each_sprite(pipe, sprite) {
1196                         reg = SPCNTR(pipe, sprite);
1197                         val = I915_READ(reg);
1198                         WARN(val & SP_ENABLE,
1199                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200                              sprite_name(pipe, sprite), pipe_name(pipe));
1201                 }
1202         } else if (INTEL_INFO(dev)->gen >= 7) {
1203                 reg = SPRCTL(pipe);
1204                 val = I915_READ(reg);
1205                 WARN(val & SPRITE_ENABLE,
1206                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207                      plane_name(pipe), pipe_name(pipe));
1208         } else if (INTEL_INFO(dev)->gen >= 5) {
1209                 reg = DVSCNTR(pipe);
1210                 val = I915_READ(reg);
1211                 WARN(val & DVS_ENABLE,
1212                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213                      plane_name(pipe), pipe_name(pipe));
1214         }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219         u32 val;
1220         bool enabled;
1221
1222         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377         if (!IS_VALLEYVIEW(dev))
1378                 return;
1379
1380         /*
1381          * Enable the CRI clock source so we can get at the display and the
1382          * reference clock for VGA hotplug / manual detection.
1383          */
1384         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385                    DPLL_REFA_CLK_ENABLE_VLV |
1386                    DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388         /*
1389          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1391          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392          *   b. The other bits such as sfr settings / modesel may all be set
1393          *      to 0.
1394          *
1395          * This should only be done on init and resume from S3 with both
1396          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397          */
1398         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418         POSTING_READ(reg);
1419         udelay(150);
1420
1421         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425         POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427         /* We do this three times for luck */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434         I915_WRITE(reg, dpll);
1435         POSTING_READ(reg);
1436         udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->base.dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         int reg = DPLL(crtc->pipe);
1444         u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446         assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev) && !IS_I830(dev))
1453                 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455         I915_WRITE(reg, dpll);
1456
1457         /* Wait for the clocks to stabilize. */
1458         POSTING_READ(reg);
1459         udelay(150);
1460
1461         if (INTEL_INFO(dev)->gen >= 4) {
1462                 I915_WRITE(DPLL_MD(crtc->pipe),
1463                            crtc->config.dpll_hw_state.dpll_md);
1464         } else {
1465                 /* The pixel multiplier can only be updated once the
1466                  * DPLL is enabled and the clocks are stable.
1467                  *
1468                  * So write it again.
1469                  */
1470                 I915_WRITE(reg, dpll);
1471         }
1472
1473         /* We do this three times for luck */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, dpll);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486  * i9xx_disable_pll - disable a PLL
1487  * @dev_priv: i915 private structure
1488  * @pipe: pipe PLL to disable
1489  *
1490  * Disable the PLL for @pipe, making sure the pipe is off first.
1491  *
1492  * Note!  This is for pre-ILK only.
1493  */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         /* Don't disable pipe A or pipe A PLLs if needed */
1497         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498                 return;
1499
1500         /* Make sure the pipe isn't still relying on us */
1501         assert_pipe_disabled(dev_priv, pipe);
1502
1503         I915_WRITE(DPLL(pipe), 0);
1504         POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509         u32 val = 0;
1510
1511         /* Make sure the pipe isn't still relying on us */
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /*
1515          * Leave integrated clock source and reference clock enabled for pipe B.
1516          * The latter is needed for VGA hotplug / manual detection.
1517          */
1518         if (pipe == PIPE_B)
1519                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520         I915_WRITE(DPLL(pipe), val);
1521         POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525                 struct intel_digital_port *dport)
1526 {
1527         u32 port_mask;
1528
1529         switch (dport->port) {
1530         case PORT_B:
1531                 port_mask = DPLL_PORTB_READY_MASK;
1532                 break;
1533         case PORT_C:
1534                 port_mask = DPLL_PORTC_READY_MASK;
1535                 break;
1536         default:
1537                 BUG();
1538         }
1539
1540         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542                      port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546  * ironlake_enable_shared_dpll - enable PCH PLL
1547  * @dev_priv: i915 private structure
1548  * @pipe: pipe PLL to enable
1549  *
1550  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551  * drives the transcoder clock.
1552  */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555         struct drm_device *dev = crtc->base.dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559         /* PCH PLLs only available on ILK, SNB and IVB */
1560         BUG_ON(INTEL_INFO(dev)->gen < 5);
1561         if (WARN_ON(pll == NULL))
1562                 return;
1563
1564         if (WARN_ON(pll->refcount == 0))
1565                 return;
1566
1567         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568                       pll->name, pll->active, pll->on,
1569                       crtc->base.base.id);
1570
1571         if (pll->active++) {
1572                 WARN_ON(!pll->on);
1573                 assert_shared_dpll_enabled(dev_priv, pll);
1574                 return;
1575         }
1576         WARN_ON(pll->on);
1577
1578         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579         pll->enable(dev_priv, pll);
1580         pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585         struct drm_device *dev = crtc->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589         /* PCH only available on ILK+ */
1590         BUG_ON(INTEL_INFO(dev)->gen < 5);
1591         if (WARN_ON(pll == NULL))
1592                return;
1593
1594         if (WARN_ON(pll->refcount == 0))
1595                 return;
1596
1597         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598                       pll->name, pll->active, pll->on,
1599                       crtc->base.base.id);
1600
1601         if (WARN_ON(pll->active == 0)) {
1602                 assert_shared_dpll_disabled(dev_priv, pll);
1603                 return;
1604         }
1605
1606         assert_shared_dpll_enabled(dev_priv, pll);
1607         WARN_ON(!pll->on);
1608         if (--pll->active)
1609                 return;
1610
1611         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612         pll->disable(dev_priv, pll);
1613         pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617                                            enum pipe pipe)
1618 {
1619         struct drm_device *dev = dev_priv->dev;
1620         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622         uint32_t reg, val, pipeconf_val;
1623
1624         /* PCH only available on ILK+ */
1625         BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627         /* Make sure PCH DPLL is enabled */
1628         assert_shared_dpll_enabled(dev_priv,
1629                                    intel_crtc_to_shared_dpll(intel_crtc));
1630
1631         /* FDI must be feeding us bits for PCH ports */
1632         assert_fdi_tx_enabled(dev_priv, pipe);
1633         assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635         if (HAS_PCH_CPT(dev)) {
1636                 /* Workaround: Set the timing override bit before enabling the
1637                  * pch transcoder. */
1638                 reg = TRANS_CHICKEN2(pipe);
1639                 val = I915_READ(reg);
1640                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641                 I915_WRITE(reg, val);
1642         }
1643
1644         reg = PCH_TRANSCONF(pipe);
1645         val = I915_READ(reg);
1646         pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648         if (HAS_PCH_IBX(dev_priv->dev)) {
1649                 /*
1650                  * make the BPC in transcoder be consistent with
1651                  * that in pipeconf reg.
1652                  */
1653                 val &= ~PIPECONF_BPC_MASK;
1654                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655         }
1656
1657         val &= ~TRANS_INTERLACE_MASK;
1658         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659                 if (HAS_PCH_IBX(dev_priv->dev) &&
1660                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661                         val |= TRANS_LEGACY_INTERLACED_ILK;
1662                 else
1663                         val |= TRANS_INTERLACED;
1664         else
1665                 val |= TRANS_PROGRESSIVE;
1666
1667         I915_WRITE(reg, val | TRANS_ENABLE);
1668         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673                                       enum transcoder cpu_transcoder)
1674 {
1675         u32 val, pipeconf_val;
1676
1677         /* PCH only available on ILK+ */
1678         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680         /* FDI must be feeding us bits for PCH ports */
1681         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684         /* Workaround: set timing override bit. */
1685         val = I915_READ(_TRANSA_CHICKEN2);
1686         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687         I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689         val = TRANS_ENABLE;
1690         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693             PIPECONF_INTERLACED_ILK)
1694                 val |= TRANS_INTERLACED;
1695         else
1696                 val |= TRANS_PROGRESSIVE;
1697
1698         I915_WRITE(LPT_TRANSCONF, val);
1699         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                             enum pipe pipe)
1705 {
1706         struct drm_device *dev = dev_priv->dev;
1707         uint32_t reg, val;
1708
1709         /* FDI relies on the transcoder */
1710         assert_fdi_tx_disabled(dev_priv, pipe);
1711         assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713         /* Ports must be off as well */
1714         assert_pch_ports_disabled(dev_priv, pipe);
1715
1716         reg = PCH_TRANSCONF(pipe);
1717         val = I915_READ(reg);
1718         val &= ~TRANS_ENABLE;
1719         I915_WRITE(reg, val);
1720         /* wait for PCH transcoder off, transcoder state */
1721         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724         if (!HAS_PCH_IBX(dev)) {
1725                 /* Workaround: Clear the timing override chicken bit again. */
1726                 reg = TRANS_CHICKEN2(pipe);
1727                 val = I915_READ(reg);
1728                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729                 I915_WRITE(reg, val);
1730         }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735         u32 val;
1736
1737         val = I915_READ(LPT_TRANSCONF);
1738         val &= ~TRANS_ENABLE;
1739         I915_WRITE(LPT_TRANSCONF, val);
1740         /* wait for PCH transcoder off, transcoder state */
1741         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742                 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744         /* Workaround: clear timing override bit. */
1745         val = I915_READ(_TRANSA_CHICKEN2);
1746         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747         I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751  * intel_enable_pipe - enable a pipe, asserting requirements
1752  * @crtc: crtc responsible for the pipe
1753  *
1754  * Enable @crtc's pipe, making sure that various hardware specific requirements
1755  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756  */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759         struct drm_device *dev = crtc->base.dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         enum pipe pipe = crtc->pipe;
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (crtc->config.has_pch_encoder) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE) {
1800                 WARN_ON(!(pipe == PIPE_A &&
1801                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802                 return;
1803         }
1804
1805         I915_WRITE(reg, val | PIPECONF_ENABLE);
1806         POSTING_READ(reg);
1807
1808         /*
1809          * There's no guarantee the pipe will really start running now. It
1810          * depends on the Gen, the output type and the relative order between
1811          * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812          * necessary.
1813          * TODO: audit the previous gens.
1814          */
1815         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816                 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820  * intel_disable_pipe - disable a pipe, asserting requirements
1821  * @dev_priv: i915 private structure
1822  * @pipe: pipe to disable
1823  *
1824  * Disable @pipe, making sure that various hardware specific requirements
1825  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826  *
1827  * @pipe should be %PIPE_A or %PIPE_B.
1828  *
1829  * Will wait until the pipe has shut down before returning.
1830  */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832                                enum pipe pipe)
1833 {
1834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835                                                                       pipe);
1836         int reg;
1837         u32 val;
1838
1839         /*
1840          * Make sure planes won't keep trying to pump pixels to us,
1841          * or we might hang the display.
1842          */
1843         assert_planes_disabled(dev_priv, pipe);
1844         assert_cursor_disabled(dev_priv, pipe);
1845         assert_sprites_disabled(dev_priv, pipe);
1846
1847         /* Don't disable pipe A or pipe A PLLs if needed */
1848         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849                 return;
1850
1851         reg = PIPECONF(cpu_transcoder);
1852         val = I915_READ(reg);
1853         if ((val & PIPECONF_ENABLE) == 0)
1854                 return;
1855
1856         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861  * Plane regs are double buffered, going from enabled->disabled needs a
1862  * trigger in order to latch.  The display address reg provides this.
1863  */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865                                enum plane plane)
1866 {
1867         struct drm_device *dev = dev_priv->dev;
1868         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870         I915_WRITE(reg, I915_READ(reg));
1871         POSTING_READ(reg);
1872 }
1873
1874 /**
1875  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876  * @dev_priv: i915 private structure
1877  * @plane: plane to enable
1878  * @pipe: pipe being fed
1879  *
1880  * Enable @plane on @pipe, making sure that @pipe is running first.
1881  */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883                                           enum plane plane, enum pipe pipe)
1884 {
1885         struct intel_crtc *intel_crtc =
1886                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887         int reg;
1888         u32 val;
1889
1890         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891         assert_pipe_enabled(dev_priv, pipe);
1892
1893         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895         intel_crtc->primary_enabled = true;
1896
1897         reg = DSPCNTR(plane);
1898         val = I915_READ(reg);
1899         if (val & DISPLAY_PLANE_ENABLE)
1900                 return;
1901
1902         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903         intel_flush_primary_plane(dev_priv, plane);
1904         intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908  * intel_disable_primary_hw_plane - disable the primary hardware plane
1909  * @dev_priv: i915 private structure
1910  * @plane: plane to disable
1911  * @pipe: pipe consuming the data
1912  *
1913  * Disable @plane; should be an independent operation.
1914  */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916                                            enum plane plane, enum pipe pipe)
1917 {
1918         struct intel_crtc *intel_crtc =
1919                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920         int reg;
1921         u32 val;
1922
1923         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925         intel_crtc->primary_enabled = false;
1926
1927         reg = DSPCNTR(plane);
1928         val = I915_READ(reg);
1929         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930                 return;
1931
1932         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933         intel_flush_primary_plane(dev_priv, plane);
1934         intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941                 return true;
1942 #endif
1943         return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948         int tile_height;
1949
1950         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951         return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956                            struct drm_i915_gem_object *obj,
1957                            struct intel_ring_buffer *pipelined)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         u32 alignment;
1961         int ret;
1962
1963         switch (obj->tiling_mode) {
1964         case I915_TILING_NONE:
1965                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966                         alignment = 128 * 1024;
1967                 else if (INTEL_INFO(dev)->gen >= 4)
1968                         alignment = 4 * 1024;
1969                 else
1970                         alignment = 64 * 1024;
1971                 break;
1972         case I915_TILING_X:
1973                 /* pin() will align the object as required by fence */
1974                 alignment = 0;
1975                 break;
1976         case I915_TILING_Y:
1977                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         /* Note that the w/a also requires 64 PTE of padding following the
1984          * bo. We currently fill all unused PTE with the shadow page and so
1985          * we should always have valid PTE following the scanout preventing
1986          * the VT-d warning.
1987          */
1988         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989                 alignment = 256 * 1024;
1990
1991         dev_priv->mm.interruptible = false;
1992         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993         if (ret)
1994                 goto err_interruptible;
1995
1996         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997          * fence, whereas 965+ only requires a fence if using
1998          * framebuffer compression.  For simplicity, we always install
1999          * a fence as the cost is not that onerous.
2000          */
2001         ret = i915_gem_object_get_fence(obj);
2002         if (ret)
2003                 goto err_unpin;
2004
2005         i915_gem_object_pin_fence(obj);
2006
2007         dev_priv->mm.interruptible = true;
2008         return 0;
2009
2010 err_unpin:
2011         i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013         dev_priv->mm.interruptible = true;
2014         return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019         i915_gem_object_unpin_fence(obj);
2020         i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024  * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026                                              unsigned int tiling_mode,
2027                                              unsigned int cpp,
2028                                              unsigned int pitch)
2029 {
2030         if (tiling_mode != I915_TILING_NONE) {
2031                 unsigned int tile_rows, tiles;
2032
2033                 tile_rows = *y / 8;
2034                 *y %= 8;
2035
2036                 tiles = *x / (512/cpp);
2037                 *x %= 512/cpp;
2038
2039                 return tile_rows * pitch * 8 + tiles * 4096;
2040         } else {
2041                 unsigned int offset;
2042
2043                 offset = *y * pitch + *x * cpp;
2044                 *y = 0;
2045                 *x = (offset & 4095) / cpp;
2046                 return offset & -4096;
2047         }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052         switch (format) {
2053         case DISPPLANE_8BPP:
2054                 return DRM_FORMAT_C8;
2055         case DISPPLANE_BGRX555:
2056                 return DRM_FORMAT_XRGB1555;
2057         case DISPPLANE_BGRX565:
2058                 return DRM_FORMAT_RGB565;
2059         default:
2060         case DISPPLANE_BGRX888:
2061                 return DRM_FORMAT_XRGB8888;
2062         case DISPPLANE_RGBX888:
2063                 return DRM_FORMAT_XBGR8888;
2064         case DISPPLANE_BGRX101010:
2065                 return DRM_FORMAT_XRGB2101010;
2066         case DISPPLANE_RGBX101010:
2067                 return DRM_FORMAT_XBGR2101010;
2068         }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072                                   struct intel_plane_config *plane_config)
2073 {
2074         struct drm_device *dev = crtc->base.dev;
2075         struct drm_i915_gem_object *obj = NULL;
2076         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077         u32 base = plane_config->base;
2078
2079         if (plane_config->size == 0)
2080                 return false;
2081
2082         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083                                                              plane_config->size);
2084         if (!obj)
2085                 return false;
2086
2087         if (plane_config->tiled) {
2088                 obj->tiling_mode = I915_TILING_X;
2089                 obj->stride = crtc->base.fb->pitches[0];
2090         }
2091
2092         mode_cmd.pixel_format = crtc->base.fb->pixel_format;
2093         mode_cmd.width = crtc->base.fb->width;
2094         mode_cmd.height = crtc->base.fb->height;
2095         mode_cmd.pitches[0] = crtc->base.fb->pitches[0];
2096
2097         mutex_lock(&dev->struct_mutex);
2098
2099         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.fb),
2100                                    &mode_cmd, obj)) {
2101                 DRM_DEBUG_KMS("intel fb init failed\n");
2102                 goto out_unref_obj;
2103         }
2104
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108         return true;
2109
2110 out_unref_obj:
2111         drm_gem_object_unreference(&obj->base);
2112         mutex_unlock(&dev->struct_mutex);
2113         return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117                                  struct intel_plane_config *plane_config)
2118 {
2119         struct drm_device *dev = intel_crtc->base.dev;
2120         struct drm_crtc *c;
2121         struct intel_crtc *i;
2122         struct intel_framebuffer *fb;
2123
2124         if (!intel_crtc->base.fb)
2125                 return;
2126
2127         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128                 return;
2129
2130         kfree(intel_crtc->base.fb);
2131         intel_crtc->base.fb = NULL;
2132
2133         /*
2134          * Failed to alloc the obj, check to see if we should share
2135          * an fb with another CRTC instead
2136          */
2137         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138                 i = to_intel_crtc(c);
2139
2140                 if (c == &intel_crtc->base)
2141                         continue;
2142
2143                 if (!i->active || !c->fb)
2144                         continue;
2145
2146                 fb = to_intel_framebuffer(c->fb);
2147                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148                         drm_framebuffer_reference(c->fb);
2149                         intel_crtc->base.fb = c->fb;
2150                         break;
2151                 }
2152         }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156                                      struct drm_framebuffer *fb,
2157                                      int x, int y)
2158 {
2159         struct drm_device *dev = crtc->dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162         struct intel_framebuffer *intel_fb;
2163         struct drm_i915_gem_object *obj;
2164         int plane = intel_crtc->plane;
2165         unsigned long linear_offset;
2166         u32 dspcntr;
2167         u32 reg;
2168
2169         switch (plane) {
2170         case 0:
2171         case 1:
2172                 break;
2173         default:
2174                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175                 return -EINVAL;
2176         }
2177
2178         intel_fb = to_intel_framebuffer(fb);
2179         obj = intel_fb->obj;
2180
2181         reg = DSPCNTR(plane);
2182         dspcntr = I915_READ(reg);
2183         /* Mask out pixel format bits in case we change it */
2184         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185         switch (fb->pixel_format) {
2186         case DRM_FORMAT_C8:
2187                 dspcntr |= DISPPLANE_8BPP;
2188                 break;
2189         case DRM_FORMAT_XRGB1555:
2190         case DRM_FORMAT_ARGB1555:
2191                 dspcntr |= DISPPLANE_BGRX555;
2192                 break;
2193         case DRM_FORMAT_RGB565:
2194                 dspcntr |= DISPPLANE_BGRX565;
2195                 break;
2196         case DRM_FORMAT_XRGB8888:
2197         case DRM_FORMAT_ARGB8888:
2198                 dspcntr |= DISPPLANE_BGRX888;
2199                 break;
2200         case DRM_FORMAT_XBGR8888:
2201         case DRM_FORMAT_ABGR8888:
2202                 dspcntr |= DISPPLANE_RGBX888;
2203                 break;
2204         case DRM_FORMAT_XRGB2101010:
2205         case DRM_FORMAT_ARGB2101010:
2206                 dspcntr |= DISPPLANE_BGRX101010;
2207                 break;
2208         case DRM_FORMAT_XBGR2101010:
2209         case DRM_FORMAT_ABGR2101010:
2210                 dspcntr |= DISPPLANE_RGBX101010;
2211                 break;
2212         default:
2213                 BUG();
2214         }
2215
2216         if (INTEL_INFO(dev)->gen >= 4) {
2217                 if (obj->tiling_mode != I915_TILING_NONE)
2218                         dspcntr |= DISPPLANE_TILED;
2219                 else
2220                         dspcntr &= ~DISPPLANE_TILED;
2221         }
2222
2223         if (IS_G4X(dev))
2224                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226         I915_WRITE(reg, dspcntr);
2227
2228         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230         if (INTEL_INFO(dev)->gen >= 4) {
2231                 intel_crtc->dspaddr_offset =
2232                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233                                                        fb->bits_per_pixel / 8,
2234                                                        fb->pitches[0]);
2235                 linear_offset -= intel_crtc->dspaddr_offset;
2236         } else {
2237                 intel_crtc->dspaddr_offset = linear_offset;
2238         }
2239
2240         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242                       fb->pitches[0]);
2243         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244         if (INTEL_INFO(dev)->gen >= 4) {
2245                 I915_WRITE(DSPSURF(plane),
2246                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249         } else
2250                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251         POSTING_READ(reg);
2252
2253         return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257                                          struct drm_framebuffer *fb,
2258                                          int x, int y)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct intel_framebuffer *intel_fb;
2264         struct drm_i915_gem_object *obj;
2265         int plane = intel_crtc->plane;
2266         unsigned long linear_offset;
2267         u32 dspcntr;
2268         u32 reg;
2269
2270         switch (plane) {
2271         case 0:
2272         case 1:
2273         case 2:
2274                 break;
2275         default:
2276                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277                 return -EINVAL;
2278         }
2279
2280         intel_fb = to_intel_framebuffer(fb);
2281         obj = intel_fb->obj;
2282
2283         reg = DSPCNTR(plane);
2284         dspcntr = I915_READ(reg);
2285         /* Mask out pixel format bits in case we change it */
2286         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287         switch (fb->pixel_format) {
2288         case DRM_FORMAT_C8:
2289                 dspcntr |= DISPPLANE_8BPP;
2290                 break;
2291         case DRM_FORMAT_RGB565:
2292                 dspcntr |= DISPPLANE_BGRX565;
2293                 break;
2294         case DRM_FORMAT_XRGB8888:
2295         case DRM_FORMAT_ARGB8888:
2296                 dspcntr |= DISPPLANE_BGRX888;
2297                 break;
2298         case DRM_FORMAT_XBGR8888:
2299         case DRM_FORMAT_ABGR8888:
2300                 dspcntr |= DISPPLANE_RGBX888;
2301                 break;
2302         case DRM_FORMAT_XRGB2101010:
2303         case DRM_FORMAT_ARGB2101010:
2304                 dspcntr |= DISPPLANE_BGRX101010;
2305                 break;
2306         case DRM_FORMAT_XBGR2101010:
2307         case DRM_FORMAT_ABGR2101010:
2308                 dspcntr |= DISPPLANE_RGBX101010;
2309                 break;
2310         default:
2311                 BUG();
2312         }
2313
2314         if (obj->tiling_mode != I915_TILING_NONE)
2315                 dspcntr |= DISPPLANE_TILED;
2316         else
2317                 dspcntr &= ~DISPPLANE_TILED;
2318
2319         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321         else
2322                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324         I915_WRITE(reg, dspcntr);
2325
2326         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327         intel_crtc->dspaddr_offset =
2328                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329                                                fb->bits_per_pixel / 8,
2330                                                fb->pitches[0]);
2331         linear_offset -= intel_crtc->dspaddr_offset;
2332
2333         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335                       fb->pitches[0]);
2336         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337         I915_WRITE(DSPSURF(plane),
2338                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341         } else {
2342                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344         }
2345         POSTING_READ(reg);
2346
2347         return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353                            int x, int y, enum mode_set_atomic state)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (dev_priv->display.disable_fbc)
2359                 dev_priv->display.disable_fbc(dev);
2360         intel_increase_pllclock(crtc);
2361
2362         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_crtc *crtc;
2369
2370         /*
2371          * Flips in the rings have been nuked by the reset,
2372          * so complete all pending flips so that user space
2373          * will get its events and not get stuck.
2374          *
2375          * Also update the base address of all primary
2376          * planes to the the last fb to make sure we're
2377          * showing the correct fb after a reset.
2378          *
2379          * Need to make two loops over the crtcs so that we
2380          * don't try to grab a crtc mutex before the
2381          * pending_flip_queue really got woken up.
2382          */
2383
2384         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386                 enum plane plane = intel_crtc->plane;
2387
2388                 intel_prepare_page_flip(dev, plane);
2389                 intel_finish_page_flip_plane(dev, plane);
2390         }
2391
2392         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395                 mutex_lock(&crtc->mutex);
2396                 /*
2397                  * FIXME: Once we have proper support for primary planes (and
2398                  * disabling them without disabling the entire crtc) allow again
2399                  * a NULL crtc->fb.
2400                  */
2401                 if (intel_crtc->active && crtc->fb)
2402                         dev_priv->display.update_primary_plane(crtc,
2403                                                                crtc->fb,
2404                                                                crtc->x,
2405                                                                crtc->y);
2406                 mutex_unlock(&crtc->mutex);
2407         }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415         bool was_interruptible = dev_priv->mm.interruptible;
2416         int ret;
2417
2418         /* Big Hammer, we also need to ensure that any pending
2419          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420          * current scanout is retired before unpinning the old
2421          * framebuffer.
2422          *
2423          * This should only fail upon a hung GPU, in which case we
2424          * can safely continue.
2425          */
2426         dev_priv->mm.interruptible = false;
2427         ret = i915_gem_object_finish_gpu(obj);
2428         dev_priv->mm.interruptible = was_interruptible;
2429
2430         return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435         struct drm_device *dev = crtc->dev;
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438         unsigned long flags;
2439         bool pending;
2440
2441         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443                 return false;
2444
2445         spin_lock_irqsave(&dev->event_lock, flags);
2446         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447         spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449         return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454                     struct drm_framebuffer *fb)
2455 {
2456         struct drm_device *dev = crtc->dev;
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459         struct drm_framebuffer *old_fb;
2460         int ret;
2461
2462         if (intel_crtc_has_pending_flip(crtc)) {
2463                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464                 return -EBUSY;
2465         }
2466
2467         /* no fb bound */
2468         if (!fb) {
2469                 DRM_ERROR("No FB bound\n");
2470                 return 0;
2471         }
2472
2473         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475                           plane_name(intel_crtc->plane),
2476                           INTEL_INFO(dev)->num_pipes);
2477                 return -EINVAL;
2478         }
2479
2480         mutex_lock(&dev->struct_mutex);
2481         ret = intel_pin_and_fence_fb_obj(dev,
2482                                          to_intel_framebuffer(fb)->obj,
2483                                          NULL);
2484         mutex_unlock(&dev->struct_mutex);
2485         if (ret != 0) {
2486                 DRM_ERROR("pin & fence failed\n");
2487                 return ret;
2488         }
2489
2490         /*
2491          * Update pipe size and adjust fitter if needed: the reason for this is
2492          * that in compute_mode_changes we check the native mode (not the pfit
2493          * mode) to see if we can flip rather than do a full mode set. In the
2494          * fastboot case, we'll flip, but if we don't update the pipesrc and
2495          * pfit state, we'll end up with a big fb scanned out into the wrong
2496          * sized surface.
2497          *
2498          * To fix this properly, we need to hoist the checks up into
2499          * compute_mode_changes (or above), check the actual pfit state and
2500          * whether the platform allows pfit disable with pipe active, and only
2501          * then update the pipesrc and pfit state, even on the flip path.
2502          */
2503         if (i915.fastboot) {
2504                 const struct drm_display_mode *adjusted_mode =
2505                         &intel_crtc->config.adjusted_mode;
2506
2507                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509                            (adjusted_mode->crtc_vdisplay - 1));
2510                 if (!intel_crtc->config.pch_pfit.enabled &&
2511                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516                 }
2517                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519         }
2520
2521         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522         if (ret) {
2523                 mutex_lock(&dev->struct_mutex);
2524                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525                 mutex_unlock(&dev->struct_mutex);
2526                 DRM_ERROR("failed to update base address\n");
2527                 return ret;
2528         }
2529
2530         old_fb = crtc->fb;
2531         crtc->fb = fb;
2532         crtc->x = x;
2533         crtc->y = y;
2534
2535         if (old_fb) {
2536                 if (intel_crtc->active && old_fb != fb)
2537                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2538                 mutex_lock(&dev->struct_mutex);
2539                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540                 mutex_unlock(&dev->struct_mutex);
2541         }
2542
2543         mutex_lock(&dev->struct_mutex);
2544         intel_update_fbc(dev);
2545         intel_edp_psr_update(dev);
2546         mutex_unlock(&dev->struct_mutex);
2547
2548         return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553         struct drm_device *dev = crtc->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556         int pipe = intel_crtc->pipe;
2557         u32 reg, temp;
2558
2559         /* enable normal train */
2560         reg = FDI_TX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         if (IS_IVYBRIDGE(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565         } else {
2566                 temp &= ~FDI_LINK_TRAIN_NONE;
2567                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568         }
2569         I915_WRITE(reg, temp);
2570
2571         reg = FDI_RX_CTL(pipe);
2572         temp = I915_READ(reg);
2573         if (HAS_PCH_CPT(dev)) {
2574                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576         } else {
2577                 temp &= ~FDI_LINK_TRAIN_NONE;
2578                 temp |= FDI_LINK_TRAIN_NONE;
2579         }
2580         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582         /* wait one idle pattern time */
2583         POSTING_READ(reg);
2584         udelay(1000);
2585
2586         /* IVB wants error correction enabled */
2587         if (IS_IVYBRIDGE(dev))
2588                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589                            FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594         return crtc->base.enabled && crtc->active &&
2595                 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *pipe_B_crtc =
2602                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603         struct intel_crtc *pipe_C_crtc =
2604                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605         uint32_t temp;
2606
2607         /*
2608          * When everything is off disable fdi C so that we could enable fdi B
2609          * with all lanes. Note that we don't care about enabled pipes without
2610          * an enabled pch encoder.
2611          */
2612         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613             !pipe_has_enabled_pch(pipe_C_crtc)) {
2614                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617                 temp = I915_READ(SOUTH_CHICKEN1);
2618                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620                 I915_WRITE(SOUTH_CHICKEN1, temp);
2621         }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627         struct drm_device *dev = crtc->dev;
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630         int pipe = intel_crtc->pipe;
2631         int plane = intel_crtc->plane;
2632         u32 reg, temp, tries;
2633
2634         /* FDI needs bits from pipe & plane first */
2635         assert_pipe_enabled(dev_priv, pipe);
2636         assert_plane_enabled(dev_priv, plane);
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645         I915_READ(reg);
2646         udelay(150);
2647
2648         /* enable CPU FDI TX and PCH FDI RX */
2649         reg = FDI_TX_CTL(pipe);
2650         temp = I915_READ(reg);
2651         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653         temp &= ~FDI_LINK_TRAIN_NONE;
2654         temp |= FDI_LINK_TRAIN_PATTERN_1;
2655         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         temp &= ~FDI_LINK_TRAIN_NONE;
2660         temp |= FDI_LINK_TRAIN_PATTERN_1;
2661         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663         POSTING_READ(reg);
2664         udelay(150);
2665
2666         /* Ironlake workaround, enable clock pointer after FDI enable*/
2667         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669                    FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671         reg = FDI_RX_IIR(pipe);
2672         for (tries = 0; tries < 5; tries++) {
2673                 temp = I915_READ(reg);
2674                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676                 if ((temp & FDI_RX_BIT_LOCK)) {
2677                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2678                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679                         break;
2680                 }
2681         }
2682         if (tries == 5)
2683                 DRM_ERROR("FDI train 1 fail!\n");
2684
2685         /* Train 2 */
2686         reg = FDI_TX_CTL(pipe);
2687         temp = I915_READ(reg);
2688         temp &= ~FDI_LINK_TRAIN_NONE;
2689         temp |= FDI_LINK_TRAIN_PATTERN_2;
2690         I915_WRITE(reg, temp);
2691
2692         reg = FDI_RX_CTL(pipe);
2693         temp = I915_READ(reg);
2694         temp &= ~FDI_LINK_TRAIN_NONE;
2695         temp |= FDI_LINK_TRAIN_PATTERN_2;
2696         I915_WRITE(reg, temp);
2697
2698         POSTING_READ(reg);
2699         udelay(150);
2700
2701         reg = FDI_RX_IIR(pipe);
2702         for (tries = 0; tries < 5; tries++) {
2703                 temp = I915_READ(reg);
2704                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706                 if (temp & FDI_RX_SYMBOL_LOCK) {
2707                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2709                         break;
2710                 }
2711         }
2712         if (tries == 5)
2713                 DRM_ERROR("FDI train 2 fail!\n");
2714
2715         DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729         struct drm_device *dev = crtc->dev;
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732         int pipe = intel_crtc->pipe;
2733         u32 reg, temp, i, retry;
2734
2735         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736            for train result */
2737         reg = FDI_RX_IMR(pipe);
2738         temp = I915_READ(reg);
2739         temp &= ~FDI_RX_SYMBOL_LOCK;
2740         temp &= ~FDI_RX_BIT_LOCK;
2741         I915_WRITE(reg, temp);
2742
2743         POSTING_READ(reg);
2744         udelay(150);
2745
2746         /* enable CPU FDI TX and PCH FDI RX */
2747         reg = FDI_TX_CTL(pipe);
2748         temp = I915_READ(reg);
2749         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751         temp &= ~FDI_LINK_TRAIN_NONE;
2752         temp |= FDI_LINK_TRAIN_PATTERN_1;
2753         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754         /* SNB-B */
2755         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758         I915_WRITE(FDI_RX_MISC(pipe),
2759                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761         reg = FDI_RX_CTL(pipe);
2762         temp = I915_READ(reg);
2763         if (HAS_PCH_CPT(dev)) {
2764                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766         } else {
2767                 temp &= ~FDI_LINK_TRAIN_NONE;
2768                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769         }
2770         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(150);
2774
2775         for (i = 0; i < 4; i++) {
2776                 reg = FDI_TX_CTL(pipe);
2777                 temp = I915_READ(reg);
2778                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779                 temp |= snb_b_fdi_train_param[i];
2780                 I915_WRITE(reg, temp);
2781
2782                 POSTING_READ(reg);
2783                 udelay(500);
2784
2785                 for (retry = 0; retry < 5; retry++) {
2786                         reg = FDI_RX_IIR(pipe);
2787                         temp = I915_READ(reg);
2788                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789                         if (temp & FDI_RX_BIT_LOCK) {
2790                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792                                 break;
2793                         }
2794                         udelay(50);
2795                 }
2796                 if (retry < 5)
2797                         break;
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 1 fail!\n");
2801
2802         /* Train 2 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_2;
2807         if (IS_GEN6(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809                 /* SNB-B */
2810                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811         }
2812         I915_WRITE(reg, temp);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         if (HAS_PCH_CPT(dev)) {
2817                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819         } else {
2820                 temp &= ~FDI_LINK_TRAIN_NONE;
2821                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822         }
2823         I915_WRITE(reg, temp);
2824
2825         POSTING_READ(reg);
2826         udelay(150);
2827
2828         for (i = 0; i < 4; i++) {
2829                 reg = FDI_TX_CTL(pipe);
2830                 temp = I915_READ(reg);
2831                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832                 temp |= snb_b_fdi_train_param[i];
2833                 I915_WRITE(reg, temp);
2834
2835                 POSTING_READ(reg);
2836                 udelay(500);
2837
2838                 for (retry = 0; retry < 5; retry++) {
2839                         reg = FDI_RX_IIR(pipe);
2840                         temp = I915_READ(reg);
2841                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842                         if (temp & FDI_RX_SYMBOL_LOCK) {
2843                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845                                 break;
2846                         }
2847                         udelay(50);
2848                 }
2849                 if (retry < 5)
2850                         break;
2851         }
2852         if (i == 4)
2853                 DRM_ERROR("FDI train 2 fail!\n");
2854
2855         DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         u32 reg, temp, i, j;
2866
2867         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868            for train result */
2869         reg = FDI_RX_IMR(pipe);
2870         temp = I915_READ(reg);
2871         temp &= ~FDI_RX_SYMBOL_LOCK;
2872         temp &= ~FDI_RX_BIT_LOCK;
2873         I915_WRITE(reg, temp);
2874
2875         POSTING_READ(reg);
2876         udelay(150);
2877
2878         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879                       I915_READ(FDI_RX_IIR(pipe)));
2880
2881         /* Try each vswing and preemphasis setting twice before moving on */
2882         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883                 /* disable first in case we need to retry */
2884                 reg = FDI_TX_CTL(pipe);
2885                 temp = I915_READ(reg);
2886                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887                 temp &= ~FDI_TX_ENABLE;
2888                 I915_WRITE(reg, temp);
2889
2890                 reg = FDI_RX_CTL(pipe);
2891                 temp = I915_READ(reg);
2892                 temp &= ~FDI_LINK_TRAIN_AUTO;
2893                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894                 temp &= ~FDI_RX_ENABLE;
2895                 I915_WRITE(reg, temp);
2896
2897                 /* enable CPU FDI TX and PCH FDI RX */
2898                 reg = FDI_TX_CTL(pipe);
2899                 temp = I915_READ(reg);
2900                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904                 temp |= snb_b_fdi_train_param[j/2];
2905                 temp |= FDI_COMPOSITE_SYNC;
2906                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908                 I915_WRITE(FDI_RX_MISC(pipe),
2909                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911                 reg = FDI_RX_CTL(pipe);
2912                 temp = I915_READ(reg);
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914                 temp |= FDI_COMPOSITE_SYNC;
2915                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917                 POSTING_READ(reg);
2918                 udelay(1); /* should be 0.5us */
2919
2920                 for (i = 0; i < 4; i++) {
2921                         reg = FDI_RX_IIR(pipe);
2922                         temp = I915_READ(reg);
2923                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                         if (temp & FDI_RX_BIT_LOCK ||
2926                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929                                               i);
2930                                 break;
2931                         }
2932                         udelay(1); /* should be 0.5us */
2933                 }
2934                 if (i == 4) {
2935                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936                         continue;
2937                 }
2938
2939                 /* Train 2 */
2940                 reg = FDI_TX_CTL(pipe);
2941                 temp = I915_READ(reg);
2942                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944                 I915_WRITE(reg, temp);
2945
2946                 reg = FDI_RX_CTL(pipe);
2947                 temp = I915_READ(reg);
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950                 I915_WRITE(reg, temp);
2951
2952                 POSTING_READ(reg);
2953                 udelay(2); /* should be 1.5us */
2954
2955                 for (i = 0; i < 4; i++) {
2956                         reg = FDI_RX_IIR(pipe);
2957                         temp = I915_READ(reg);
2958                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960                         if (temp & FDI_RX_SYMBOL_LOCK ||
2961                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964                                               i);
2965                                 goto train_done;
2966                         }
2967                         udelay(2); /* should be 1.5us */
2968                 }
2969                 if (i == 4)
2970                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971         }
2972
2973 train_done:
2974         DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979         struct drm_device *dev = intel_crtc->base.dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         int pipe = intel_crtc->pipe;
2982         u32 reg, temp;
2983
2984
2985         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986         reg = FDI_RX_CTL(pipe);
2987         temp = I915_READ(reg);
2988         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993         POSTING_READ(reg);
2994         udelay(200);
2995
2996         /* Switch from Rawclk to PCDclk */
2997         temp = I915_READ(reg);
2998         I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000         POSTING_READ(reg);
3001         udelay(200);
3002
3003         /* Enable CPU FDI TX PLL, always on for Ironlake */
3004         reg = FDI_TX_CTL(pipe);
3005         temp = I915_READ(reg);
3006         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009                 POSTING_READ(reg);
3010                 udelay(100);
3011         }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016         struct drm_device *dev = intel_crtc->base.dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         int pipe = intel_crtc->pipe;
3019         u32 reg, temp;
3020
3021         /* Switch from PCDclk to Rawclk */
3022         reg = FDI_RX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026         /* Disable CPU FDI TX PLL */
3027         reg = FDI_TX_CTL(pipe);
3028         temp = I915_READ(reg);
3029         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031         POSTING_READ(reg);
3032         udelay(100);
3033
3034         reg = FDI_RX_CTL(pipe);
3035         temp = I915_READ(reg);
3036         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038         /* Wait for the clocks to turn off. */
3039         POSTING_READ(reg);
3040         udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045         struct drm_device *dev = crtc->dev;
3046         struct drm_i915_private *dev_priv = dev->dev_private;
3047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048         int pipe = intel_crtc->pipe;
3049         u32 reg, temp;
3050
3051         /* disable CPU FDI tx and PCH FDI rx */
3052         reg = FDI_TX_CTL(pipe);
3053         temp = I915_READ(reg);
3054         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055         POSTING_READ(reg);
3056
3057         reg = FDI_RX_CTL(pipe);
3058         temp = I915_READ(reg);
3059         temp &= ~(0x7 << 16);
3060         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063         POSTING_READ(reg);
3064         udelay(100);
3065
3066         /* Ironlake workaround, disable clock pointer after downing FDI */
3067         if (HAS_PCH_IBX(dev)) {
3068                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069         }
3070
3071         /* still set train pattern 1 */
3072         reg = FDI_TX_CTL(pipe);
3073         temp = I915_READ(reg);
3074         temp &= ~FDI_LINK_TRAIN_NONE;
3075         temp |= FDI_LINK_TRAIN_PATTERN_1;
3076         I915_WRITE(reg, temp);
3077
3078         reg = FDI_RX_CTL(pipe);
3079         temp = I915_READ(reg);
3080         if (HAS_PCH_CPT(dev)) {
3081                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083         } else {
3084                 temp &= ~FDI_LINK_TRAIN_NONE;
3085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086         }
3087         /* BPC in FDI rx is consistent with that in PIPECONF */
3088         temp &= ~(0x07 << 16);
3089         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090         I915_WRITE(reg, temp);
3091
3092         POSTING_READ(reg);
3093         udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098         struct intel_crtc *crtc;
3099
3100         /* Note that we don't need to be called with mode_config.lock here
3101          * as our list of CRTC objects is static for the lifetime of the
3102          * device and so cannot disappear as we iterate. Similarly, we can
3103          * happily treat the predicates as racy, atomic checks as userspace
3104          * cannot claim and pin a new fb without at least acquring the
3105          * struct_mutex and so serialising with us.
3106          */
3107         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108                 if (atomic_read(&crtc->unpin_work_count) == 0)
3109                         continue;
3110
3111                 if (crtc->unpin_work)
3112                         intel_wait_for_vblank(dev, crtc->pipe);
3113
3114                 return true;
3115         }
3116
3117         return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125         if (crtc->fb == NULL)
3126                 return;
3127
3128         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130         wait_event(dev_priv->pending_flip_queue,
3131                    !intel_crtc_has_pending_flip(crtc));
3132
3133         mutex_lock(&dev->struct_mutex);
3134         intel_finish_fb(crtc->fb);
3135         mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141         struct drm_device *dev = crtc->dev;
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145         u32 temp;
3146
3147         mutex_lock(&dev_priv->dpio_lock);
3148
3149         /* It is necessary to ungate the pixclk gate prior to programming
3150          * the divisors, and gate it back when it is done.
3151          */
3152         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154         /* Disable SSCCTL */
3155         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157                                 SBI_SSCCTL_DISABLE,
3158                         SBI_ICLK);
3159
3160         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161         if (clock == 20000) {
3162                 auxdiv = 1;
3163                 divsel = 0x41;
3164                 phaseinc = 0x20;
3165         } else {
3166                 /* The iCLK virtual clock root frequency is in MHz,
3167                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3168                  * divisors, it is necessary to divide one by another, so we
3169                  * convert the virtual clock precision to KHz here for higher
3170                  * precision.
3171                  */
3172                 u32 iclk_virtual_root_freq = 172800 * 1000;
3173                 u32 iclk_pi_range = 64;
3174                 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176                 desired_divisor = (iclk_virtual_root_freq / clock);
3177                 msb_divisor_value = desired_divisor / iclk_pi_range;
3178                 pi_value = desired_divisor % iclk_pi_range;
3179
3180                 auxdiv = 0;
3181                 divsel = msb_divisor_value - 2;
3182                 phaseinc = pi_value;
3183         }
3184
3185         /* This should not happen with any sane values */
3186         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192                         clock,
3193                         auxdiv,
3194                         divsel,
3195                         phasedir,
3196                         phaseinc);
3197
3198         /* Program SSCDIVINTPHASE6 */
3199         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208         /* Program SSCAUXDIV */
3209         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214         /* Enable modulator and associated divider */
3215         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216         temp &= ~SBI_SSCCTL_DISABLE;
3217         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219         /* Wait for initialization time */
3220         udelay(24);
3221
3222         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224         mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228                                                 enum pipe pch_transcoder)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235                    I915_READ(HTOTAL(cpu_transcoder)));
3236         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237                    I915_READ(HBLANK(cpu_transcoder)));
3238         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239                    I915_READ(HSYNC(cpu_transcoder)));
3240
3241         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242                    I915_READ(VTOTAL(cpu_transcoder)));
3243         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244                    I915_READ(VBLANK(cpu_transcoder)));
3245         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246                    I915_READ(VSYNC(cpu_transcoder)));
3247         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         uint32_t temp;
3255
3256         temp = I915_READ(SOUTH_CHICKEN1);
3257         if (temp & FDI_BC_BIFURCATION_SELECT)
3258                 return;
3259
3260         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263         temp |= FDI_BC_BIFURCATION_SELECT;
3264         DRM_DEBUG_KMS("enabling fdi C rx\n");
3265         I915_WRITE(SOUTH_CHICKEN1, temp);
3266         POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271         struct drm_device *dev = intel_crtc->base.dev;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274         switch (intel_crtc->pipe) {
3275         case PIPE_A:
3276                 break;
3277         case PIPE_B:
3278                 if (intel_crtc->config.fdi_lanes > 2)
3279                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280                 else
3281                         cpt_enable_fdi_bc_bifurcation(dev);
3282
3283                 break;
3284         case PIPE_C:
3285                 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287                 break;
3288         default:
3289                 BUG();
3290         }
3291 }
3292
3293 /*
3294  * Enable PCH resources required for PCH ports:
3295  *   - PCH PLLs
3296  *   - FDI training & RX/TX
3297  *   - update transcoder timings
3298  *   - DP transcoding bits
3299  *   - transcoder
3300  */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         int pipe = intel_crtc->pipe;
3307         u32 reg, temp;
3308
3309         assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311         if (IS_IVYBRIDGE(dev))
3312                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314         /* Write the TU size bits before fdi link training, so that error
3315          * detection works. */
3316         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319         /* For PCH output, training FDI link */
3320         dev_priv->display.fdi_link_train(crtc);
3321
3322         /* We need to program the right clock selection before writing the pixel
3323          * mutliplier into the DPLL. */
3324         if (HAS_PCH_CPT(dev)) {
3325                 u32 sel;
3326
3327                 temp = I915_READ(PCH_DPLL_SEL);
3328                 temp |= TRANS_DPLL_ENABLE(pipe);
3329                 sel = TRANS_DPLLB_SEL(pipe);
3330                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331                         temp |= sel;
3332                 else
3333                         temp &= ~sel;
3334                 I915_WRITE(PCH_DPLL_SEL, temp);
3335         }
3336
3337         /* XXX: pch pll's can be enabled any time before we enable the PCH
3338          * transcoder, and we actually should do this to not upset any PCH
3339          * transcoder that already use the clock when we share it.
3340          *
3341          * Note that enable_shared_dpll tries to do the right thing, but
3342          * get_shared_dpll unconditionally resets the pll - we need that to have
3343          * the right LVDS enable sequence. */
3344         ironlake_enable_shared_dpll(intel_crtc);
3345
3346         /* set transcoder timing, panel must allow it */
3347         assert_panel_unlocked(dev_priv, pipe);
3348         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350         intel_fdi_normal_train(crtc);
3351
3352         /* For PCH DP, enable TRANS_DP_CTL */
3353         if (HAS_PCH_CPT(dev) &&
3354             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357                 reg = TRANS_DP_CTL(pipe);
3358                 temp = I915_READ(reg);
3359                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360                           TRANS_DP_SYNC_MASK |
3361                           TRANS_DP_BPC_MASK);
3362                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363                          TRANS_DP_ENH_FRAMING);
3364                 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371                 switch (intel_trans_dp_port_sel(crtc)) {
3372                 case PCH_DP_B:
3373                         temp |= TRANS_DP_PORT_SEL_B;
3374                         break;
3375                 case PCH_DP_C:
3376                         temp |= TRANS_DP_PORT_SEL_C;
3377                         break;
3378                 case PCH_DP_D:
3379                         temp |= TRANS_DP_PORT_SEL_D;
3380                         break;
3381                 default:
3382                         BUG();
3383                 }
3384
3385                 I915_WRITE(reg, temp);
3386         }
3387
3388         ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400         lpt_program_iclkip(crtc);
3401
3402         /* Set transcoder timing. */
3403         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412         if (pll == NULL)
3413                 return;
3414
3415         if (pll->refcount == 0) {
3416                 WARN(1, "bad %s refcount\n", pll->name);
3417                 return;
3418         }
3419
3420         if (--pll->refcount == 0) {
3421                 WARN_ON(pll->on);
3422                 WARN_ON(pll->active);
3423         }
3424
3425         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432         enum intel_dpll_id i;
3433
3434         if (pll) {
3435                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436                               crtc->base.base.id, pll->name);
3437                 intel_put_shared_dpll(crtc);
3438         }
3439
3440         if (HAS_PCH_IBX(dev_priv->dev)) {
3441                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442                 i = (enum intel_dpll_id) crtc->pipe;
3443                 pll = &dev_priv->shared_dplls[i];
3444
3445                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446                               crtc->base.base.id, pll->name);
3447
3448                 goto found;
3449         }
3450
3451         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452                 pll = &dev_priv->shared_dplls[i];
3453
3454                 /* Only want to check enabled timings first */
3455                 if (pll->refcount == 0)
3456                         continue;
3457
3458                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459                            sizeof(pll->hw_state)) == 0) {
3460                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461                                       crtc->base.base.id,
3462                                       pll->name, pll->refcount, pll->active);
3463
3464                         goto found;
3465                 }
3466         }
3467
3468         /* Ok no matching timings, maybe there's a free one? */
3469         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470                 pll = &dev_priv->shared_dplls[i];
3471                 if (pll->refcount == 0) {
3472                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473                                       crtc->base.base.id, pll->name);
3474                         goto found;
3475                 }
3476         }
3477
3478         return NULL;
3479
3480 found:
3481         crtc->config.shared_dpll = i;
3482         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483                          pipe_name(crtc->pipe));
3484
3485         if (pll->active == 0) {
3486                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487                        sizeof(pll->hw_state));
3488
3489                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490                 WARN_ON(pll->on);
3491                 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493                 pll->mode_set(dev_priv, pll);
3494         }
3495         pll->refcount++;
3496
3497         return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int dslreg = PIPEDSL(pipe);
3504         u32 temp;
3505
3506         temp = I915_READ(dslreg);
3507         udelay(500);
3508         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509                 if (wait_for(I915_READ(dslreg) != temp, 5))
3510                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511         }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516         struct drm_device *dev = crtc->base.dev;
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         int pipe = crtc->pipe;
3519
3520         if (crtc->config.pch_pfit.enabled) {
3521                 /* Force use of hard-coded filter coefficients
3522                  * as some pre-programmed values are broken,
3523                  * e.g. x201.
3524                  */
3525                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527                                                  PF_PIPE_SEL_IVB(pipe));
3528                 else
3529                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532         }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537         struct drm_device *dev = crtc->dev;
3538         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539         struct intel_plane *intel_plane;
3540
3541         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3542                 if (intel_plane->pipe == pipe)
3543                         intel_plane_restore(&intel_plane->base);
3544 }
3545
3546 static void intel_disable_planes(struct drm_crtc *crtc)
3547 {
3548         struct drm_device *dev = crtc->dev;
3549         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3550         struct intel_plane *intel_plane;
3551
3552         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3553                 if (intel_plane->pipe == pipe)
3554                         intel_plane_disable(&intel_plane->base);
3555 }
3556
3557 void hsw_enable_ips(struct intel_crtc *crtc)
3558 {
3559         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3560
3561         if (!crtc->config.ips_enabled)
3562                 return;
3563
3564         /* We can only enable IPS after we enable a plane and wait for a vblank.
3565          * We guarantee that the plane is enabled by calling intel_enable_ips
3566          * only after intel_enable_plane. And intel_enable_plane already waits
3567          * for a vblank, so all we need to do here is to enable the IPS bit. */
3568         assert_plane_enabled(dev_priv, crtc->plane);
3569         if (IS_BROADWELL(crtc->base.dev)) {
3570                 mutex_lock(&dev_priv->rps.hw_lock);
3571                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3572                 mutex_unlock(&dev_priv->rps.hw_lock);
3573                 /* Quoting Art Runyan: "its not safe to expect any particular
3574                  * value in IPS_CTL bit 31 after enabling IPS through the
3575                  * mailbox." Moreover, the mailbox may return a bogus state,
3576                  * so we need to just enable it and continue on.
3577                  */
3578         } else {
3579                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3580                 /* The bit only becomes 1 in the next vblank, so this wait here
3581                  * is essentially intel_wait_for_vblank. If we don't have this
3582                  * and don't wait for vblanks until the end of crtc_enable, then
3583                  * the HW state readout code will complain that the expected
3584                  * IPS_CTL value is not the one we read. */
3585                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3586                         DRM_ERROR("Timed out waiting for IPS enable\n");
3587         }
3588 }
3589
3590 void hsw_disable_ips(struct intel_crtc *crtc)
3591 {
3592         struct drm_device *dev = crtc->base.dev;
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595         if (!crtc->config.ips_enabled)
3596                 return;
3597
3598         assert_plane_enabled(dev_priv, crtc->plane);
3599         if (IS_BROADWELL(crtc->base.dev)) {
3600                 mutex_lock(&dev_priv->rps.hw_lock);
3601                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3602                 mutex_unlock(&dev_priv->rps.hw_lock);
3603         } else {
3604                 I915_WRITE(IPS_CTL, 0);
3605                 POSTING_READ(IPS_CTL);
3606         }
3607
3608         /* We need to wait for a vblank before we can disable the plane. */
3609         intel_wait_for_vblank(dev, crtc->pipe);
3610 }
3611
3612 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3613 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3614 {
3615         struct drm_device *dev = crtc->dev;
3616         struct drm_i915_private *dev_priv = dev->dev_private;
3617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3618         enum pipe pipe = intel_crtc->pipe;
3619         int palreg = PALETTE(pipe);
3620         int i;
3621         bool reenable_ips = false;
3622
3623         /* The clocks have to be on to load the palette. */
3624         if (!crtc->enabled || !intel_crtc->active)
3625                 return;
3626
3627         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3628                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3629                         assert_dsi_pll_enabled(dev_priv);
3630                 else
3631                         assert_pll_enabled(dev_priv, pipe);
3632         }
3633
3634         /* use legacy palette for Ironlake */
3635         if (HAS_PCH_SPLIT(dev))
3636                 palreg = LGC_PALETTE(pipe);
3637
3638         /* Workaround : Do not read or write the pipe palette/gamma data while
3639          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3640          */
3641         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3642             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3643              GAMMA_MODE_MODE_SPLIT)) {
3644                 hsw_disable_ips(intel_crtc);
3645                 reenable_ips = true;
3646         }
3647
3648         for (i = 0; i < 256; i++) {
3649                 I915_WRITE(palreg + 4 * i,
3650                            (intel_crtc->lut_r[i] << 16) |
3651                            (intel_crtc->lut_g[i] << 8) |
3652                            intel_crtc->lut_b[i]);
3653         }
3654
3655         if (reenable_ips)
3656                 hsw_enable_ips(intel_crtc);
3657 }
3658
3659 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3660 {
3661         struct drm_device *dev = crtc->dev;
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664         struct intel_encoder *encoder;
3665         int pipe = intel_crtc->pipe;
3666         int plane = intel_crtc->plane;
3667
3668         WARN_ON(!crtc->enabled);
3669
3670         if (intel_crtc->active)
3671                 return;
3672
3673         intel_crtc->active = true;
3674
3675         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3676         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3677
3678         for_each_encoder_on_crtc(dev, crtc, encoder)
3679                 if (encoder->pre_enable)
3680                         encoder->pre_enable(encoder);
3681
3682         if (intel_crtc->config.has_pch_encoder) {
3683                 /* Note: FDI PLL enabling _must_ be done before we enable the
3684                  * cpu pipes, hence this is separate from all the other fdi/pch
3685                  * enabling. */
3686                 ironlake_fdi_pll_enable(intel_crtc);
3687         } else {
3688                 assert_fdi_tx_disabled(dev_priv, pipe);
3689                 assert_fdi_rx_disabled(dev_priv, pipe);
3690         }
3691
3692         ironlake_pfit_enable(intel_crtc);
3693
3694         /*
3695          * On ILK+ LUT must be loaded before the pipe is running but with
3696          * clocks enabled
3697          */
3698         intel_crtc_load_lut(crtc);
3699
3700         intel_update_watermarks(crtc);
3701         intel_enable_pipe(intel_crtc);
3702         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3703         intel_enable_planes(crtc);
3704         intel_crtc_update_cursor(crtc, true);
3705
3706         if (intel_crtc->config.has_pch_encoder)
3707                 ironlake_pch_enable(crtc);
3708
3709         mutex_lock(&dev->struct_mutex);
3710         intel_update_fbc(dev);
3711         mutex_unlock(&dev->struct_mutex);
3712
3713         for_each_encoder_on_crtc(dev, crtc, encoder)
3714                 encoder->enable(encoder);
3715
3716         if (HAS_PCH_CPT(dev))
3717                 cpt_verify_modeset(dev, intel_crtc->pipe);
3718
3719         /*
3720          * There seems to be a race in PCH platform hw (at least on some
3721          * outputs) where an enabled pipe still completes any pageflip right
3722          * away (as if the pipe is off) instead of waiting for vblank. As soon
3723          * as the first vblank happend, everything works as expected. Hence just
3724          * wait for one vblank before returning to avoid strange things
3725          * happening.
3726          */
3727         intel_wait_for_vblank(dev, intel_crtc->pipe);
3728 }
3729
3730 /* IPS only exists on ULT machines and is tied to pipe A. */
3731 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3732 {
3733         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3734 }
3735
3736 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3737 {
3738         struct drm_device *dev = crtc->dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741         int pipe = intel_crtc->pipe;
3742         int plane = intel_crtc->plane;
3743
3744         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3745         intel_enable_planes(crtc);
3746         intel_crtc_update_cursor(crtc, true);
3747
3748         hsw_enable_ips(intel_crtc);
3749
3750         mutex_lock(&dev->struct_mutex);
3751         intel_update_fbc(dev);
3752         mutex_unlock(&dev->struct_mutex);
3753 }
3754
3755 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3756 {
3757         struct drm_device *dev = crtc->dev;
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3760         int pipe = intel_crtc->pipe;
3761         int plane = intel_crtc->plane;
3762
3763         intel_crtc_wait_for_pending_flips(crtc);
3764         drm_vblank_off(dev, pipe);
3765
3766         /* FBC must be disabled before disabling the plane on HSW. */
3767         if (dev_priv->fbc.plane == plane)
3768                 intel_disable_fbc(dev);
3769
3770         hsw_disable_ips(intel_crtc);
3771
3772         intel_crtc_update_cursor(crtc, false);
3773         intel_disable_planes(crtc);
3774         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3775 }
3776
3777 /*
3778  * This implements the workaround described in the "notes" section of the mode
3779  * set sequence documentation. When going from no pipes or single pipe to
3780  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3781  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3782  */
3783 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3784 {
3785         struct drm_device *dev = crtc->base.dev;
3786         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3787
3788         /* We want to get the other_active_crtc only if there's only 1 other
3789          * active crtc. */
3790         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3791                 if (!crtc_it->active || crtc_it == crtc)
3792                         continue;
3793
3794                 if (other_active_crtc)
3795                         return;
3796
3797                 other_active_crtc = crtc_it;
3798         }
3799         if (!other_active_crtc)
3800                 return;
3801
3802         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3803         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3804 }
3805
3806 static void haswell_crtc_enable(struct drm_crtc *crtc)
3807 {
3808         struct drm_device *dev = crtc->dev;
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3811         struct intel_encoder *encoder;
3812         int pipe = intel_crtc->pipe;
3813
3814         WARN_ON(!crtc->enabled);
3815
3816         if (intel_crtc->active)
3817                 return;
3818
3819         intel_crtc->active = true;
3820
3821         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3822         if (intel_crtc->config.has_pch_encoder)
3823                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3824
3825         if (intel_crtc->config.has_pch_encoder)
3826                 dev_priv->display.fdi_link_train(crtc);
3827
3828         for_each_encoder_on_crtc(dev, crtc, encoder)
3829                 if (encoder->pre_enable)
3830                         encoder->pre_enable(encoder);
3831
3832         intel_ddi_enable_pipe_clock(intel_crtc);
3833
3834         ironlake_pfit_enable(intel_crtc);
3835
3836         /*
3837          * On ILK+ LUT must be loaded before the pipe is running but with
3838          * clocks enabled
3839          */
3840         intel_crtc_load_lut(crtc);
3841
3842         intel_ddi_set_pipe_settings(crtc);
3843         intel_ddi_enable_transcoder_func(crtc);
3844
3845         intel_update_watermarks(crtc);
3846         intel_enable_pipe(intel_crtc);
3847
3848         if (intel_crtc->config.has_pch_encoder)
3849                 lpt_pch_enable(crtc);
3850
3851         for_each_encoder_on_crtc(dev, crtc, encoder) {
3852                 encoder->enable(encoder);
3853                 intel_opregion_notify_encoder(encoder, true);
3854         }
3855
3856         /* If we change the relative order between pipe/planes enabling, we need
3857          * to change the workaround. */
3858         haswell_mode_set_planes_workaround(intel_crtc);
3859         haswell_crtc_enable_planes(crtc);
3860 }
3861
3862 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3863 {
3864         struct drm_device *dev = crtc->base.dev;
3865         struct drm_i915_private *dev_priv = dev->dev_private;
3866         int pipe = crtc->pipe;
3867
3868         /* To avoid upsetting the power well on haswell only disable the pfit if
3869          * it's in use. The hw state code will make sure we get this right. */
3870         if (crtc->config.pch_pfit.enabled) {
3871                 I915_WRITE(PF_CTL(pipe), 0);
3872                 I915_WRITE(PF_WIN_POS(pipe), 0);
3873                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3874         }
3875 }
3876
3877 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3878 {
3879         struct drm_device *dev = crtc->dev;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882         struct intel_encoder *encoder;
3883         int pipe = intel_crtc->pipe;
3884         int plane = intel_crtc->plane;
3885         u32 reg, temp;
3886
3887
3888         if (!intel_crtc->active)
3889                 return;
3890
3891         for_each_encoder_on_crtc(dev, crtc, encoder)
3892                 encoder->disable(encoder);
3893
3894         intel_crtc_wait_for_pending_flips(crtc);
3895         drm_vblank_off(dev, pipe);
3896
3897         if (dev_priv->fbc.plane == plane)
3898                 intel_disable_fbc(dev);
3899
3900         intel_crtc_update_cursor(crtc, false);
3901         intel_disable_planes(crtc);
3902         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3903
3904         if (intel_crtc->config.has_pch_encoder)
3905                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3906
3907         intel_disable_pipe(dev_priv, pipe);
3908
3909         ironlake_pfit_disable(intel_crtc);
3910
3911         for_each_encoder_on_crtc(dev, crtc, encoder)
3912                 if (encoder->post_disable)
3913                         encoder->post_disable(encoder);
3914
3915         if (intel_crtc->config.has_pch_encoder) {
3916                 ironlake_fdi_disable(crtc);
3917
3918                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3919                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3920
3921                 if (HAS_PCH_CPT(dev)) {
3922                         /* disable TRANS_DP_CTL */
3923                         reg = TRANS_DP_CTL(pipe);
3924                         temp = I915_READ(reg);
3925                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3926                                   TRANS_DP_PORT_SEL_MASK);
3927                         temp |= TRANS_DP_PORT_SEL_NONE;
3928                         I915_WRITE(reg, temp);
3929
3930                         /* disable DPLL_SEL */
3931                         temp = I915_READ(PCH_DPLL_SEL);
3932                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3933                         I915_WRITE(PCH_DPLL_SEL, temp);
3934                 }
3935
3936                 /* disable PCH DPLL */
3937                 intel_disable_shared_dpll(intel_crtc);
3938
3939                 ironlake_fdi_pll_disable(intel_crtc);
3940         }
3941
3942         intel_crtc->active = false;
3943         intel_update_watermarks(crtc);
3944
3945         mutex_lock(&dev->struct_mutex);
3946         intel_update_fbc(dev);
3947         mutex_unlock(&dev->struct_mutex);
3948 }
3949
3950 static void haswell_crtc_disable(struct drm_crtc *crtc)
3951 {
3952         struct drm_device *dev = crtc->dev;
3953         struct drm_i915_private *dev_priv = dev->dev_private;
3954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3955         struct intel_encoder *encoder;
3956         int pipe = intel_crtc->pipe;
3957         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3958
3959         if (!intel_crtc->active)
3960                 return;
3961
3962         haswell_crtc_disable_planes(crtc);
3963
3964         for_each_encoder_on_crtc(dev, crtc, encoder) {
3965                 intel_opregion_notify_encoder(encoder, false);
3966                 encoder->disable(encoder);
3967         }
3968
3969         if (intel_crtc->config.has_pch_encoder)
3970                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3971         intel_disable_pipe(dev_priv, pipe);
3972
3973         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3974
3975         ironlake_pfit_disable(intel_crtc);
3976
3977         intel_ddi_disable_pipe_clock(intel_crtc);
3978
3979         for_each_encoder_on_crtc(dev, crtc, encoder)
3980                 if (encoder->post_disable)
3981                         encoder->post_disable(encoder);
3982
3983         if (intel_crtc->config.has_pch_encoder) {
3984                 lpt_disable_pch_transcoder(dev_priv);
3985                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3986                 intel_ddi_fdi_disable(crtc);
3987         }
3988
3989         intel_crtc->active = false;
3990         intel_update_watermarks(crtc);
3991
3992         mutex_lock(&dev->struct_mutex);
3993         intel_update_fbc(dev);
3994         mutex_unlock(&dev->struct_mutex);
3995 }
3996
3997 static void ironlake_crtc_off(struct drm_crtc *crtc)
3998 {
3999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000         intel_put_shared_dpll(intel_crtc);
4001 }
4002
4003 static void haswell_crtc_off(struct drm_crtc *crtc)
4004 {
4005         intel_ddi_put_crtc_pll(crtc);
4006 }
4007
4008 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4009 {
4010         if (!enable && intel_crtc->overlay) {
4011                 struct drm_device *dev = intel_crtc->base.dev;
4012                 struct drm_i915_private *dev_priv = dev->dev_private;
4013
4014                 mutex_lock(&dev->struct_mutex);
4015                 dev_priv->mm.interruptible = false;
4016                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4017                 dev_priv->mm.interruptible = true;
4018                 mutex_unlock(&dev->struct_mutex);
4019         }
4020
4021         /* Let userspace switch the overlay on again. In most cases userspace
4022          * has to recompute where to put it anyway.
4023          */
4024 }
4025
4026 /**
4027  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4028  * cursor plane briefly if not already running after enabling the display
4029  * plane.
4030  * This workaround avoids occasional blank screens when self refresh is
4031  * enabled.
4032  */
4033 static void
4034 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4035 {
4036         u32 cntl = I915_READ(CURCNTR(pipe));
4037
4038         if ((cntl & CURSOR_MODE) == 0) {
4039                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4040
4041                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4042                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4043                 intel_wait_for_vblank(dev_priv->dev, pipe);
4044                 I915_WRITE(CURCNTR(pipe), cntl);
4045                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4046                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4047         }
4048 }
4049
4050 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4051 {
4052         struct drm_device *dev = crtc->base.dev;
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         struct intel_crtc_config *pipe_config = &crtc->config;
4055
4056         if (!crtc->config.gmch_pfit.control)
4057                 return;
4058
4059         /*
4060          * The panel fitter should only be adjusted whilst the pipe is disabled,
4061          * according to register description and PRM.
4062          */
4063         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4064         assert_pipe_disabled(dev_priv, crtc->pipe);
4065
4066         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4067         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4068
4069         /* Border color in case we don't scale up to the full screen. Black by
4070          * default, change to something else for debugging. */
4071         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4072 }
4073
4074 #define for_each_power_domain(domain, mask)                             \
4075         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4076                 if ((1 << (domain)) & (mask))
4077
4078 enum intel_display_power_domain
4079 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4080 {
4081         struct drm_device *dev = intel_encoder->base.dev;
4082         struct intel_digital_port *intel_dig_port;
4083
4084         switch (intel_encoder->type) {
4085         case INTEL_OUTPUT_UNKNOWN:
4086                 /* Only DDI platforms should ever use this output type */
4087                 WARN_ON_ONCE(!HAS_DDI(dev));
4088         case INTEL_OUTPUT_DISPLAYPORT:
4089         case INTEL_OUTPUT_HDMI:
4090         case INTEL_OUTPUT_EDP:
4091                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4092                 switch (intel_dig_port->port) {
4093                 case PORT_A:
4094                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4095                 case PORT_B:
4096                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4097                 case PORT_C:
4098                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4099                 case PORT_D:
4100                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4101                 default:
4102                         WARN_ON_ONCE(1);
4103                         return POWER_DOMAIN_PORT_OTHER;
4104                 }
4105         case INTEL_OUTPUT_ANALOG:
4106                 return POWER_DOMAIN_PORT_CRT;
4107         case INTEL_OUTPUT_DSI:
4108                 return POWER_DOMAIN_PORT_DSI;
4109         default:
4110                 return POWER_DOMAIN_PORT_OTHER;
4111         }
4112 }
4113
4114 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct intel_encoder *intel_encoder;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         enum pipe pipe = intel_crtc->pipe;
4120         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4121         unsigned long mask;
4122         enum transcoder transcoder;
4123
4124         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4125
4126         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4127         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4128         if (pfit_enabled)
4129                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4130
4131         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4132                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4133
4134         return mask;
4135 }
4136
4137 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4138                                   bool enable)
4139 {
4140         if (dev_priv->power_domains.init_power_on == enable)
4141                 return;
4142
4143         if (enable)
4144                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4145         else
4146                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4147
4148         dev_priv->power_domains.init_power_on = enable;
4149 }
4150
4151 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4152 {
4153         struct drm_i915_private *dev_priv = dev->dev_private;
4154         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4155         struct intel_crtc *crtc;
4156
4157         /*
4158          * First get all needed power domains, then put all unneeded, to avoid
4159          * any unnecessary toggling of the power wells.
4160          */
4161         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4162                 enum intel_display_power_domain domain;
4163
4164                 if (!crtc->base.enabled)
4165                         continue;
4166
4167                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4168
4169                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4170                         intel_display_power_get(dev_priv, domain);
4171         }
4172
4173         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4174                 enum intel_display_power_domain domain;
4175
4176                 for_each_power_domain(domain, crtc->enabled_power_domains)
4177                         intel_display_power_put(dev_priv, domain);
4178
4179                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4180         }
4181
4182         intel_display_set_init_power(dev_priv, false);
4183 }
4184
4185 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4186 {
4187         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4188
4189         /* Obtain SKU information */
4190         mutex_lock(&dev_priv->dpio_lock);
4191         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4192                 CCK_FUSE_HPLL_FREQ_MASK;
4193         mutex_unlock(&dev_priv->dpio_lock);
4194
4195         return vco_freq[hpll_freq];
4196 }
4197
4198 /* Adjust CDclk dividers to allow high res or save power if possible */
4199 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4200 {
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         u32 val, cmd;
4203
4204         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4205                 cmd = 2;
4206         else if (cdclk == 266)
4207                 cmd = 1;
4208         else
4209                 cmd = 0;
4210
4211         mutex_lock(&dev_priv->rps.hw_lock);
4212         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4213         val &= ~DSPFREQGUAR_MASK;
4214         val |= (cmd << DSPFREQGUAR_SHIFT);
4215         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4216         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4217                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4218                      50)) {
4219                 DRM_ERROR("timed out waiting for CDclk change\n");
4220         }
4221         mutex_unlock(&dev_priv->rps.hw_lock);
4222
4223         if (cdclk == 400) {
4224                 u32 divider, vco;
4225
4226                 vco = valleyview_get_vco(dev_priv);
4227                 divider = ((vco << 1) / cdclk) - 1;
4228
4229                 mutex_lock(&dev_priv->dpio_lock);
4230                 /* adjust cdclk divider */
4231                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4232                 val &= ~0xf;
4233                 val |= divider;
4234                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4235                 mutex_unlock(&dev_priv->dpio_lock);
4236         }
4237
4238         mutex_lock(&dev_priv->dpio_lock);
4239         /* adjust self-refresh exit latency value */
4240         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4241         val &= ~0x7f;
4242
4243         /*
4244          * For high bandwidth configs, we set a higher latency in the bunit
4245          * so that the core display fetch happens in time to avoid underruns.
4246          */
4247         if (cdclk == 400)
4248                 val |= 4500 / 250; /* 4.5 usec */
4249         else
4250                 val |= 3000 / 250; /* 3.0 usec */
4251         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4252         mutex_unlock(&dev_priv->dpio_lock);
4253
4254         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4255         intel_i2c_reset(dev);
4256 }
4257
4258 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4259 {
4260         int cur_cdclk, vco;
4261         int divider;
4262
4263         vco = valleyview_get_vco(dev_priv);
4264
4265         mutex_lock(&dev_priv->dpio_lock);
4266         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4267         mutex_unlock(&dev_priv->dpio_lock);
4268
4269         divider &= 0xf;
4270
4271         cur_cdclk = (vco << 1) / (divider + 1);
4272
4273         return cur_cdclk;
4274 }
4275
4276 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4277                                  int max_pixclk)
4278 {
4279         int cur_cdclk;
4280
4281         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4282
4283         /*
4284          * Really only a few cases to deal with, as only 4 CDclks are supported:
4285          *   200MHz
4286          *   267MHz
4287          *   320MHz
4288          *   400MHz
4289          * So we check to see whether we're above 90% of the lower bin and
4290          * adjust if needed.
4291          */
4292         if (max_pixclk > 288000) {
4293                 return 400;
4294         } else if (max_pixclk > 240000) {
4295                 return 320;
4296         } else
4297                 return 266;
4298         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4299 }
4300
4301 /* compute the max pixel clock for new configuration */
4302 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4303 {
4304         struct drm_device *dev = dev_priv->dev;
4305         struct intel_crtc *intel_crtc;
4306         int max_pixclk = 0;
4307
4308         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4309                             base.head) {
4310                 if (intel_crtc->new_enabled)
4311                         max_pixclk = max(max_pixclk,
4312                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4313         }
4314
4315         return max_pixclk;
4316 }
4317
4318 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4319                                             unsigned *prepare_pipes)
4320 {
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322         struct intel_crtc *intel_crtc;
4323         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4324         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4325
4326         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4327                 return;
4328
4329         /* disable/enable all currently active pipes while we change cdclk */
4330         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4331                             base.head)
4332                 if (intel_crtc->base.enabled)
4333                         *prepare_pipes |= (1 << intel_crtc->pipe);
4334 }
4335
4336 static void valleyview_modeset_global_resources(struct drm_device *dev)
4337 {
4338         struct drm_i915_private *dev_priv = dev->dev_private;
4339         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4340         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4341         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4342
4343         if (req_cdclk != cur_cdclk)
4344                 valleyview_set_cdclk(dev, req_cdclk);
4345         modeset_update_crtc_power_domains(dev);
4346 }
4347
4348 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4349 {
4350         struct drm_device *dev = crtc->dev;
4351         struct drm_i915_private *dev_priv = dev->dev_private;
4352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4353         struct intel_encoder *encoder;
4354         int pipe = intel_crtc->pipe;
4355         int plane = intel_crtc->plane;
4356         bool is_dsi;
4357
4358         WARN_ON(!crtc->enabled);
4359
4360         if (intel_crtc->active)
4361                 return;
4362
4363         intel_crtc->active = true;
4364
4365         for_each_encoder_on_crtc(dev, crtc, encoder)
4366                 if (encoder->pre_pll_enable)
4367                         encoder->pre_pll_enable(encoder);
4368
4369         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4370
4371         if (!is_dsi)
4372                 vlv_enable_pll(intel_crtc);
4373
4374         for_each_encoder_on_crtc(dev, crtc, encoder)
4375                 if (encoder->pre_enable)
4376                         encoder->pre_enable(encoder);
4377
4378         i9xx_pfit_enable(intel_crtc);
4379
4380         intel_crtc_load_lut(crtc);
4381
4382         intel_update_watermarks(crtc);
4383         intel_enable_pipe(intel_crtc);
4384         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4385         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4386         intel_enable_planes(crtc);
4387         intel_crtc_update_cursor(crtc, true);
4388
4389         intel_update_fbc(dev);
4390
4391         for_each_encoder_on_crtc(dev, crtc, encoder)
4392                 encoder->enable(encoder);
4393 }
4394
4395 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4396 {
4397         struct drm_device *dev = crtc->dev;
4398         struct drm_i915_private *dev_priv = dev->dev_private;
4399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4400         struct intel_encoder *encoder;
4401         int pipe = intel_crtc->pipe;
4402         int plane = intel_crtc->plane;
4403
4404         WARN_ON(!crtc->enabled);
4405
4406         if (intel_crtc->active)
4407                 return;
4408
4409         intel_crtc->active = true;
4410
4411         for_each_encoder_on_crtc(dev, crtc, encoder)
4412                 if (encoder->pre_enable)
4413                         encoder->pre_enable(encoder);
4414
4415         i9xx_enable_pll(intel_crtc);
4416
4417         i9xx_pfit_enable(intel_crtc);
4418
4419         intel_crtc_load_lut(crtc);
4420
4421         intel_update_watermarks(crtc);
4422         intel_enable_pipe(intel_crtc);
4423         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4424         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4425         intel_enable_planes(crtc);
4426         /* The fixup needs to happen before cursor is enabled */
4427         if (IS_G4X(dev))
4428                 g4x_fixup_plane(dev_priv, pipe);
4429         intel_crtc_update_cursor(crtc, true);
4430
4431         /* Give the overlay scaler a chance to enable if it's on this pipe */
4432         intel_crtc_dpms_overlay(intel_crtc, true);
4433
4434         intel_update_fbc(dev);
4435
4436         for_each_encoder_on_crtc(dev, crtc, encoder)
4437                 encoder->enable(encoder);
4438 }
4439
4440 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4441 {
4442         struct drm_device *dev = crtc->base.dev;
4443         struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445         if (!crtc->config.gmch_pfit.control)
4446                 return;
4447
4448         assert_pipe_disabled(dev_priv, crtc->pipe);
4449
4450         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4451                          I915_READ(PFIT_CONTROL));
4452         I915_WRITE(PFIT_CONTROL, 0);
4453 }
4454
4455 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4456 {
4457         struct drm_device *dev = crtc->dev;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4460         struct intel_encoder *encoder;
4461         int pipe = intel_crtc->pipe;
4462         int plane = intel_crtc->plane;
4463
4464         if (!intel_crtc->active)
4465                 return;
4466
4467         for_each_encoder_on_crtc(dev, crtc, encoder)
4468                 encoder->disable(encoder);
4469
4470         /* Give the overlay scaler a chance to disable if it's on this pipe */
4471         intel_crtc_wait_for_pending_flips(crtc);
4472         drm_vblank_off(dev, pipe);
4473
4474         if (dev_priv->fbc.plane == plane)
4475                 intel_disable_fbc(dev);
4476
4477         intel_crtc_dpms_overlay(intel_crtc, false);
4478         intel_crtc_update_cursor(crtc, false);
4479         intel_disable_planes(crtc);
4480         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4481
4482         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4483         intel_disable_pipe(dev_priv, pipe);
4484
4485         i9xx_pfit_disable(intel_crtc);
4486
4487         for_each_encoder_on_crtc(dev, crtc, encoder)
4488                 if (encoder->post_disable)
4489                         encoder->post_disable(encoder);
4490
4491         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4492                 vlv_disable_pll(dev_priv, pipe);
4493         else if (!IS_VALLEYVIEW(dev))
4494                 i9xx_disable_pll(dev_priv, pipe);
4495
4496         intel_crtc->active = false;
4497         intel_update_watermarks(crtc);
4498
4499         intel_update_fbc(dev);
4500 }
4501
4502 static void i9xx_crtc_off(struct drm_crtc *crtc)
4503 {
4504 }
4505
4506 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4507                                     bool enabled)
4508 {
4509         struct drm_device *dev = crtc->dev;
4510         struct drm_i915_master_private *master_priv;
4511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4512         int pipe = intel_crtc->pipe;
4513
4514         if (!dev->primary->master)
4515                 return;
4516
4517         master_priv = dev->primary->master->driver_priv;
4518         if (!master_priv->sarea_priv)
4519                 return;
4520
4521         switch (pipe) {
4522         case 0:
4523                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4524                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4525                 break;
4526         case 1:
4527                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4528                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4529                 break;
4530         default:
4531                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4532                 break;
4533         }
4534 }
4535
4536 /**
4537  * Sets the power management mode of the pipe and plane.
4538  */
4539 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         struct intel_encoder *intel_encoder;
4544         bool enable = false;
4545
4546         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4547                 enable |= intel_encoder->connectors_active;
4548
4549         if (enable)
4550                 dev_priv->display.crtc_enable(crtc);
4551         else
4552                 dev_priv->display.crtc_disable(crtc);
4553
4554         intel_crtc_update_sarea(crtc, enable);
4555 }
4556
4557 static void intel_crtc_disable(struct drm_crtc *crtc)
4558 {
4559         struct drm_device *dev = crtc->dev;
4560         struct drm_connector *connector;
4561         struct drm_i915_private *dev_priv = dev->dev_private;
4562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4563
4564         /* crtc should still be enabled when we disable it. */
4565         WARN_ON(!crtc->enabled);
4566
4567         dev_priv->display.crtc_disable(crtc);
4568         intel_crtc->eld_vld = false;
4569         intel_crtc_update_sarea(crtc, false);
4570         dev_priv->display.off(crtc);
4571
4572         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4573         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4574         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4575
4576         if (crtc->fb) {
4577                 mutex_lock(&dev->struct_mutex);
4578                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4579                 mutex_unlock(&dev->struct_mutex);
4580                 crtc->fb = NULL;
4581         }
4582
4583         /* Update computed state. */
4584         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4585                 if (!connector->encoder || !connector->encoder->crtc)
4586                         continue;
4587
4588                 if (connector->encoder->crtc != crtc)
4589                         continue;
4590
4591                 connector->dpms = DRM_MODE_DPMS_OFF;
4592                 to_intel_encoder(connector->encoder)->connectors_active = false;
4593         }
4594 }
4595
4596 void intel_encoder_destroy(struct drm_encoder *encoder)
4597 {
4598         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4599
4600         drm_encoder_cleanup(encoder);
4601         kfree(intel_encoder);
4602 }
4603
4604 /* Simple dpms helper for encoders with just one connector, no cloning and only
4605  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4606  * state of the entire output pipe. */
4607 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4608 {
4609         if (mode == DRM_MODE_DPMS_ON) {
4610                 encoder->connectors_active = true;
4611
4612                 intel_crtc_update_dpms(encoder->base.crtc);
4613         } else {
4614                 encoder->connectors_active = false;
4615
4616                 intel_crtc_update_dpms(encoder->base.crtc);
4617         }
4618 }
4619
4620 /* Cross check the actual hw state with our own modeset state tracking (and it's
4621  * internal consistency). */
4622 static void intel_connector_check_state(struct intel_connector *connector)
4623 {
4624         if (connector->get_hw_state(connector)) {
4625                 struct intel_encoder *encoder = connector->encoder;
4626                 struct drm_crtc *crtc;
4627                 bool encoder_enabled;
4628                 enum pipe pipe;
4629
4630                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4631                               connector->base.base.id,
4632                               drm_get_connector_name(&connector->base));
4633
4634                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4635                      "wrong connector dpms state\n");
4636                 WARN(connector->base.encoder != &encoder->base,
4637                      "active connector not linked to encoder\n");
4638                 WARN(!encoder->connectors_active,
4639                      "encoder->connectors_active not set\n");
4640
4641                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4642                 WARN(!encoder_enabled, "encoder not enabled\n");
4643                 if (WARN_ON(!encoder->base.crtc))
4644                         return;
4645
4646                 crtc = encoder->base.crtc;
4647
4648                 WARN(!crtc->enabled, "crtc not enabled\n");
4649                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4650                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4651                      "encoder active on the wrong pipe\n");
4652         }
4653 }
4654
4655 /* Even simpler default implementation, if there's really no special case to
4656  * consider. */
4657 void intel_connector_dpms(struct drm_connector *connector, int mode)
4658 {
4659         /* All the simple cases only support two dpms states. */
4660         if (mode != DRM_MODE_DPMS_ON)
4661                 mode = DRM_MODE_DPMS_OFF;
4662
4663         if (mode == connector->dpms)
4664                 return;
4665
4666         connector->dpms = mode;
4667
4668         /* Only need to change hw state when actually enabled */
4669         if (connector->encoder)
4670                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4671
4672         intel_modeset_check_state(connector->dev);
4673 }
4674
4675 /* Simple connector->get_hw_state implementation for encoders that support only
4676  * one connector and no cloning and hence the encoder state determines the state
4677  * of the connector. */
4678 bool intel_connector_get_hw_state(struct intel_connector *connector)
4679 {
4680         enum pipe pipe = 0;
4681         struct intel_encoder *encoder = connector->encoder;
4682
4683         return encoder->get_hw_state(encoder, &pipe);
4684 }
4685
4686 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4687                                      struct intel_crtc_config *pipe_config)
4688 {
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         struct intel_crtc *pipe_B_crtc =
4691                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4692
4693         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4694                       pipe_name(pipe), pipe_config->fdi_lanes);
4695         if (pipe_config->fdi_lanes > 4) {
4696                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4697                               pipe_name(pipe), pipe_config->fdi_lanes);
4698                 return false;
4699         }
4700
4701         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4702                 if (pipe_config->fdi_lanes > 2) {
4703                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4704                                       pipe_config->fdi_lanes);
4705                         return false;
4706                 } else {
4707                         return true;
4708                 }
4709         }
4710
4711         if (INTEL_INFO(dev)->num_pipes == 2)
4712                 return true;
4713
4714         /* Ivybridge 3 pipe is really complicated */
4715         switch (pipe) {
4716         case PIPE_A:
4717                 return true;
4718         case PIPE_B:
4719                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4720                     pipe_config->fdi_lanes > 2) {
4721                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4722                                       pipe_name(pipe), pipe_config->fdi_lanes);
4723                         return false;
4724                 }
4725                 return true;
4726         case PIPE_C:
4727                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4728                     pipe_B_crtc->config.fdi_lanes <= 2) {
4729                         if (pipe_config->fdi_lanes > 2) {
4730                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4731                                               pipe_name(pipe), pipe_config->fdi_lanes);
4732                                 return false;
4733                         }
4734                 } else {
4735                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4736                         return false;
4737                 }
4738                 return true;
4739         default:
4740                 BUG();
4741         }
4742 }
4743
4744 #define RETRY 1
4745 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4746                                        struct intel_crtc_config *pipe_config)
4747 {
4748         struct drm_device *dev = intel_crtc->base.dev;
4749         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4750         int lane, link_bw, fdi_dotclock;
4751         bool setup_ok, needs_recompute = false;
4752
4753 retry:
4754         /* FDI is a binary signal running at ~2.7GHz, encoding
4755          * each output octet as 10 bits. The actual frequency
4756          * is stored as a divider into a 100MHz clock, and the
4757          * mode pixel clock is stored in units of 1KHz.
4758          * Hence the bw of each lane in terms of the mode signal
4759          * is:
4760          */
4761         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4762
4763         fdi_dotclock = adjusted_mode->crtc_clock;
4764
4765         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4766                                            pipe_config->pipe_bpp);
4767
4768         pipe_config->fdi_lanes = lane;
4769
4770         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4771                                link_bw, &pipe_config->fdi_m_n);
4772
4773         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4774                                             intel_crtc->pipe, pipe_config);
4775         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4776                 pipe_config->pipe_bpp -= 2*3;
4777                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4778                               pipe_config->pipe_bpp);
4779                 needs_recompute = true;
4780                 pipe_config->bw_constrained = true;
4781
4782                 goto retry;
4783         }
4784
4785         if (needs_recompute)
4786                 return RETRY;
4787
4788         return setup_ok ? 0 : -EINVAL;
4789 }
4790
4791 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4792                                    struct intel_crtc_config *pipe_config)
4793 {
4794         pipe_config->ips_enabled = i915.enable_ips &&
4795                                    hsw_crtc_supports_ips(crtc) &&
4796                                    pipe_config->pipe_bpp <= 24;
4797 }
4798
4799 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4800                                      struct intel_crtc_config *pipe_config)
4801 {
4802         struct drm_device *dev = crtc->base.dev;
4803         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4804
4805         /* FIXME should check pixel clock limits on all platforms */
4806         if (INTEL_INFO(dev)->gen < 4) {
4807                 struct drm_i915_private *dev_priv = dev->dev_private;
4808                 int clock_limit =
4809                         dev_priv->display.get_display_clock_speed(dev);
4810
4811                 /*
4812                  * Enable pixel doubling when the dot clock
4813                  * is > 90% of the (display) core speed.
4814                  *
4815                  * GDG double wide on either pipe,
4816                  * otherwise pipe A only.
4817                  */
4818                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4819                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4820                         clock_limit *= 2;
4821                         pipe_config->double_wide = true;
4822                 }
4823
4824                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4825                         return -EINVAL;
4826         }
4827
4828         /*
4829          * Pipe horizontal size must be even in:
4830          * - DVO ganged mode
4831          * - LVDS dual channel mode
4832          * - Double wide pipe
4833          */
4834         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4835              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4836                 pipe_config->pipe_src_w &= ~1;
4837
4838         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4839          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4840          */
4841         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4842                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4843                 return -EINVAL;
4844
4845         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4846                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4847         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4848                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4849                  * for lvds. */
4850                 pipe_config->pipe_bpp = 8*3;
4851         }
4852
4853         if (HAS_IPS(dev))
4854                 hsw_compute_ips_config(crtc, pipe_config);
4855
4856         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4857          * clock survives for now. */
4858         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4859                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4860
4861         if (pipe_config->has_pch_encoder)
4862                 return ironlake_fdi_compute_config(crtc, pipe_config);
4863
4864         return 0;
4865 }
4866
4867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4868 {
4869         return 400000; /* FIXME */
4870 }
4871
4872 static int i945_get_display_clock_speed(struct drm_device *dev)
4873 {
4874         return 400000;
4875 }
4876
4877 static int i915_get_display_clock_speed(struct drm_device *dev)
4878 {
4879         return 333000;
4880 }
4881
4882 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4883 {
4884         return 200000;
4885 }
4886
4887 static int pnv_get_display_clock_speed(struct drm_device *dev)
4888 {
4889         u16 gcfgc = 0;
4890
4891         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4892
4893         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4894         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4895                 return 267000;
4896         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4897                 return 333000;
4898         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4899                 return 444000;
4900         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4901                 return 200000;
4902         default:
4903                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4904         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4905                 return 133000;
4906         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4907                 return 167000;
4908         }
4909 }
4910
4911 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4912 {
4913         u16 gcfgc = 0;
4914
4915         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4916
4917         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4918                 return 133000;
4919         else {
4920                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4921                 case GC_DISPLAY_CLOCK_333_MHZ:
4922                         return 333000;
4923                 default:
4924                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4925                         return 190000;
4926                 }
4927         }
4928 }
4929
4930 static int i865_get_display_clock_speed(struct drm_device *dev)
4931 {
4932         return 266000;
4933 }
4934
4935 static int i855_get_display_clock_speed(struct drm_device *dev)
4936 {
4937         u16 hpllcc = 0;
4938         /* Assume that the hardware is in the high speed state.  This
4939          * should be the default.
4940          */
4941         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4942         case GC_CLOCK_133_200:
4943         case GC_CLOCK_100_200:
4944                 return 200000;
4945         case GC_CLOCK_166_250:
4946                 return 250000;
4947         case GC_CLOCK_100_133:
4948                 return 133000;
4949         }
4950
4951         /* Shouldn't happen */
4952         return 0;
4953 }
4954
4955 static int i830_get_display_clock_speed(struct drm_device *dev)
4956 {
4957         return 133000;
4958 }
4959
4960 static void
4961 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4962 {
4963         while (*num > DATA_LINK_M_N_MASK ||
4964                *den > DATA_LINK_M_N_MASK) {
4965                 *num >>= 1;
4966                 *den >>= 1;
4967         }
4968 }
4969
4970 static void compute_m_n(unsigned int m, unsigned int n,
4971                         uint32_t *ret_m, uint32_t *ret_n)
4972 {
4973         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4974         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4975         intel_reduce_m_n_ratio(ret_m, ret_n);
4976 }
4977
4978 void
4979 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4980                        int pixel_clock, int link_clock,
4981                        struct intel_link_m_n *m_n)
4982 {
4983         m_n->tu = 64;
4984
4985         compute_m_n(bits_per_pixel * pixel_clock,
4986                     link_clock * nlanes * 8,
4987                     &m_n->gmch_m, &m_n->gmch_n);
4988
4989         compute_m_n(pixel_clock, link_clock,
4990                     &m_n->link_m, &m_n->link_n);
4991 }
4992
4993 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4994 {
4995         if (i915.panel_use_ssc >= 0)
4996                 return i915.panel_use_ssc != 0;
4997         return dev_priv->vbt.lvds_use_ssc
4998                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4999 }
5000
5001 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5002 {
5003         struct drm_device *dev = crtc->dev;
5004         struct drm_i915_private *dev_priv = dev->dev_private;
5005         int refclk;
5006
5007         if (IS_VALLEYVIEW(dev)) {
5008                 refclk = 100000;
5009         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5010             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5011                 refclk = dev_priv->vbt.lvds_ssc_freq;
5012                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5013         } else if (!IS_GEN2(dev)) {
5014                 refclk = 96000;
5015         } else {
5016                 refclk = 48000;
5017         }
5018
5019         return refclk;
5020 }
5021
5022 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5023 {
5024         return (1 << dpll->n) << 16 | dpll->m2;
5025 }
5026
5027 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5028 {
5029         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5030 }
5031
5032 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5033                                      intel_clock_t *reduced_clock)
5034 {
5035         struct drm_device *dev = crtc->base.dev;
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         int pipe = crtc->pipe;
5038         u32 fp, fp2 = 0;
5039
5040         if (IS_PINEVIEW(dev)) {
5041                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5042                 if (reduced_clock)
5043                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5044         } else {
5045                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5046                 if (reduced_clock)
5047                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5048         }
5049
5050         I915_WRITE(FP0(pipe), fp);
5051         crtc->config.dpll_hw_state.fp0 = fp;
5052
5053         crtc->lowfreq_avail = false;
5054         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5055             reduced_clock && i915.powersave) {
5056                 I915_WRITE(FP1(pipe), fp2);
5057                 crtc->config.dpll_hw_state.fp1 = fp2;
5058                 crtc->lowfreq_avail = true;
5059         } else {
5060                 I915_WRITE(FP1(pipe), fp);
5061                 crtc->config.dpll_hw_state.fp1 = fp;
5062         }
5063 }
5064
5065 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5066                 pipe)
5067 {
5068         u32 reg_val;
5069
5070         /*
5071          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5072          * and set it to a reasonable value instead.
5073          */
5074         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5075         reg_val &= 0xffffff00;
5076         reg_val |= 0x00000030;
5077         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5078
5079         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5080         reg_val &= 0x8cffffff;
5081         reg_val = 0x8c000000;
5082         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5083
5084         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5085         reg_val &= 0xffffff00;
5086         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5087
5088         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5089         reg_val &= 0x00ffffff;
5090         reg_val |= 0xb0000000;
5091         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5092 }
5093
5094 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5095                                          struct intel_link_m_n *m_n)
5096 {
5097         struct drm_device *dev = crtc->base.dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         int pipe = crtc->pipe;
5100
5101         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5102         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5103         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5104         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5105 }
5106
5107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5108                                          struct intel_link_m_n *m_n)
5109 {
5110         struct drm_device *dev = crtc->base.dev;
5111         struct drm_i915_private *dev_priv = dev->dev_private;
5112         int pipe = crtc->pipe;
5113         enum transcoder transcoder = crtc->config.cpu_transcoder;
5114
5115         if (INTEL_INFO(dev)->gen >= 5) {
5116                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5117                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5118                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5119                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5120         } else {
5121                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5122                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5123                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5124                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5125         }
5126 }
5127
5128 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5129 {
5130         if (crtc->config.has_pch_encoder)
5131                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5132         else
5133                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5134 }
5135
5136 static void vlv_update_pll(struct intel_crtc *crtc)
5137 {
5138         struct drm_device *dev = crtc->base.dev;
5139         struct drm_i915_private *dev_priv = dev->dev_private;
5140         int pipe = crtc->pipe;
5141         u32 dpll, mdiv;
5142         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5143         u32 coreclk, reg_val, dpll_md;
5144
5145         mutex_lock(&dev_priv->dpio_lock);
5146
5147         bestn = crtc->config.dpll.n;
5148         bestm1 = crtc->config.dpll.m1;
5149         bestm2 = crtc->config.dpll.m2;
5150         bestp1 = crtc->config.dpll.p1;
5151         bestp2 = crtc->config.dpll.p2;
5152
5153         /* See eDP HDMI DPIO driver vbios notes doc */
5154
5155         /* PLL B needs special handling */
5156         if (pipe)
5157                 vlv_pllb_recal_opamp(dev_priv, pipe);
5158
5159         /* Set up Tx target for periodic Rcomp update */
5160         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5161
5162         /* Disable target IRef on PLL */
5163         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5164         reg_val &= 0x00ffffff;
5165         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5166
5167         /* Disable fast lock */
5168         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5169
5170         /* Set idtafcrecal before PLL is enabled */
5171         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5172         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5173         mdiv |= ((bestn << DPIO_N_SHIFT));
5174         mdiv |= (1 << DPIO_K_SHIFT);
5175
5176         /*
5177          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5178          * but we don't support that).
5179          * Note: don't use the DAC post divider as it seems unstable.
5180          */
5181         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5182         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5183
5184         mdiv |= DPIO_ENABLE_CALIBRATION;
5185         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5186
5187         /* Set HBR and RBR LPF coefficients */
5188         if (crtc->config.port_clock == 162000 ||
5189             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5190             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5191                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5192                                  0x009f0003);
5193         else
5194                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5195                                  0x00d0000f);
5196
5197         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5198             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5199                 /* Use SSC source */
5200                 if (!pipe)
5201                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5202                                          0x0df40000);
5203                 else
5204                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5205                                          0x0df70000);
5206         } else { /* HDMI or VGA */
5207                 /* Use bend source */
5208                 if (!pipe)
5209                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5210                                          0x0df70000);
5211                 else
5212                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5213                                          0x0df40000);
5214         }
5215
5216         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5217         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5218         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5219             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5220                 coreclk |= 0x01000000;
5221         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5222
5223         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5224
5225         /*
5226          * Enable DPIO clock input. We should never disable the reference
5227          * clock for pipe B, since VGA hotplug / manual detection depends
5228          * on it.
5229          */
5230         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5231                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5232         /* We should never disable this, set it here for state tracking */
5233         if (pipe == PIPE_B)
5234                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5235         dpll |= DPLL_VCO_ENABLE;
5236         crtc->config.dpll_hw_state.dpll = dpll;
5237
5238         dpll_md = (crtc->config.pixel_multiplier - 1)
5239                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5240         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5241
5242         if (crtc->config.has_dp_encoder)
5243                 intel_dp_set_m_n(crtc);
5244
5245         mutex_unlock(&dev_priv->dpio_lock);
5246 }
5247
5248 static void i9xx_update_pll(struct intel_crtc *crtc,
5249                             intel_clock_t *reduced_clock,
5250                             int num_connectors)
5251 {
5252         struct drm_device *dev = crtc->base.dev;
5253         struct drm_i915_private *dev_priv = dev->dev_private;
5254         u32 dpll;
5255         bool is_sdvo;
5256         struct dpll *clock = &crtc->config.dpll;
5257
5258         i9xx_update_pll_dividers(crtc, reduced_clock);
5259
5260         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5261                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5262
5263         dpll = DPLL_VGA_MODE_DIS;
5264
5265         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5266                 dpll |= DPLLB_MODE_LVDS;
5267         else
5268                 dpll |= DPLLB_MODE_DAC_SERIAL;
5269
5270         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5271                 dpll |= (crtc->config.pixel_multiplier - 1)
5272                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5273         }
5274
5275         if (is_sdvo)
5276                 dpll |= DPLL_SDVO_HIGH_SPEED;
5277
5278         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5279                 dpll |= DPLL_SDVO_HIGH_SPEED;
5280
5281         /* compute bitmask from p1 value */
5282         if (IS_PINEVIEW(dev))
5283                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5284         else {
5285                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5286                 if (IS_G4X(dev) && reduced_clock)
5287                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5288         }
5289         switch (clock->p2) {
5290         case 5:
5291                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5292                 break;
5293         case 7:
5294                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5295                 break;
5296         case 10:
5297                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5298                 break;
5299         case 14:
5300                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5301                 break;
5302         }
5303         if (INTEL_INFO(dev)->gen >= 4)
5304                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5305
5306         if (crtc->config.sdvo_tv_clock)
5307                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5308         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5309                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5310                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5311         else
5312                 dpll |= PLL_REF_INPUT_DREFCLK;
5313
5314         dpll |= DPLL_VCO_ENABLE;
5315         crtc->config.dpll_hw_state.dpll = dpll;
5316
5317         if (INTEL_INFO(dev)->gen >= 4) {
5318                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5319                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5320                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5321         }
5322
5323         if (crtc->config.has_dp_encoder)
5324                 intel_dp_set_m_n(crtc);
5325 }
5326
5327 static void i8xx_update_pll(struct intel_crtc *crtc,
5328                             intel_clock_t *reduced_clock,
5329                             int num_connectors)
5330 {
5331         struct drm_device *dev = crtc->base.dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         u32 dpll;
5334         struct dpll *clock = &crtc->config.dpll;
5335
5336         i9xx_update_pll_dividers(crtc, reduced_clock);
5337
5338         dpll = DPLL_VGA_MODE_DIS;
5339
5340         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5341                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5342         } else {
5343                 if (clock->p1 == 2)
5344                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5345                 else
5346                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5347                 if (clock->p2 == 4)
5348                         dpll |= PLL_P2_DIVIDE_BY_4;
5349         }
5350
5351         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5352                 dpll |= DPLL_DVO_2X_MODE;
5353
5354         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5355                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5356                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5357         else
5358                 dpll |= PLL_REF_INPUT_DREFCLK;
5359
5360         dpll |= DPLL_VCO_ENABLE;
5361         crtc->config.dpll_hw_state.dpll = dpll;
5362 }
5363
5364 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5365 {
5366         struct drm_device *dev = intel_crtc->base.dev;
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368         enum pipe pipe = intel_crtc->pipe;
5369         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5370         struct drm_display_mode *adjusted_mode =
5371                 &intel_crtc->config.adjusted_mode;
5372         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5373
5374         /* We need to be careful not to changed the adjusted mode, for otherwise
5375          * the hw state checker will get angry at the mismatch. */
5376         crtc_vtotal = adjusted_mode->crtc_vtotal;
5377         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5378
5379         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5380                 /* the chip adds 2 halflines automatically */
5381                 crtc_vtotal -= 1;
5382                 crtc_vblank_end -= 1;
5383                 vsyncshift = adjusted_mode->crtc_hsync_start
5384                              - adjusted_mode->crtc_htotal / 2;
5385         } else {
5386                 vsyncshift = 0;
5387         }
5388
5389         if (INTEL_INFO(dev)->gen > 3)
5390                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5391
5392         I915_WRITE(HTOTAL(cpu_transcoder),
5393                    (adjusted_mode->crtc_hdisplay - 1) |
5394                    ((adjusted_mode->crtc_htotal - 1) << 16));
5395         I915_WRITE(HBLANK(cpu_transcoder),
5396                    (adjusted_mode->crtc_hblank_start - 1) |
5397                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5398         I915_WRITE(HSYNC(cpu_transcoder),
5399                    (adjusted_mode->crtc_hsync_start - 1) |
5400                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5401
5402         I915_WRITE(VTOTAL(cpu_transcoder),
5403                    (adjusted_mode->crtc_vdisplay - 1) |
5404                    ((crtc_vtotal - 1) << 16));
5405         I915_WRITE(VBLANK(cpu_transcoder),
5406                    (adjusted_mode->crtc_vblank_start - 1) |
5407                    ((crtc_vblank_end - 1) << 16));
5408         I915_WRITE(VSYNC(cpu_transcoder),
5409                    (adjusted_mode->crtc_vsync_start - 1) |
5410                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5411
5412         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5413          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5414          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5415          * bits. */
5416         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5417             (pipe == PIPE_B || pipe == PIPE_C))
5418                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5419
5420         /* pipesrc controls the size that is scaled from, which should
5421          * always be the user's requested size.
5422          */
5423         I915_WRITE(PIPESRC(pipe),
5424                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5425                    (intel_crtc->config.pipe_src_h - 1));
5426 }
5427
5428 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5429                                    struct intel_crtc_config *pipe_config)
5430 {
5431         struct drm_device *dev = crtc->base.dev;
5432         struct drm_i915_private *dev_priv = dev->dev_private;
5433         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5434         uint32_t tmp;
5435
5436         tmp = I915_READ(HTOTAL(cpu_transcoder));
5437         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5438         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5439         tmp = I915_READ(HBLANK(cpu_transcoder));
5440         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5441         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5442         tmp = I915_READ(HSYNC(cpu_transcoder));
5443         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5444         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5445
5446         tmp = I915_READ(VTOTAL(cpu_transcoder));
5447         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5448         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5449         tmp = I915_READ(VBLANK(cpu_transcoder));
5450         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5451         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5452         tmp = I915_READ(VSYNC(cpu_transcoder));
5453         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5454         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5455
5456         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5457                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5458                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5459                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5460         }
5461
5462         tmp = I915_READ(PIPESRC(crtc->pipe));
5463         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5464         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5465
5466         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5467         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5468 }
5469
5470 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5471                                  struct intel_crtc_config *pipe_config)
5472 {
5473         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5474         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5475         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5476         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5477
5478         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5479         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5480         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5481         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5482
5483         mode->flags = pipe_config->adjusted_mode.flags;
5484
5485         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5486         mode->flags |= pipe_config->adjusted_mode.flags;
5487 }
5488
5489 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5490 {
5491         struct drm_device *dev = intel_crtc->base.dev;
5492         struct drm_i915_private *dev_priv = dev->dev_private;
5493         uint32_t pipeconf;
5494
5495         pipeconf = 0;
5496
5497         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5498             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5499                 pipeconf |= PIPECONF_ENABLE;
5500
5501         if (intel_crtc->config.double_wide)
5502                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5503
5504         /* only g4x and later have fancy bpc/dither controls */
5505         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5506                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5507                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5508                         pipeconf |= PIPECONF_DITHER_EN |
5509                                     PIPECONF_DITHER_TYPE_SP;
5510
5511                 switch (intel_crtc->config.pipe_bpp) {
5512                 case 18:
5513                         pipeconf |= PIPECONF_6BPC;
5514                         break;
5515                 case 24:
5516                         pipeconf |= PIPECONF_8BPC;
5517                         break;
5518                 case 30:
5519                         pipeconf |= PIPECONF_10BPC;
5520                         break;
5521                 default:
5522                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5523                         BUG();
5524                 }
5525         }
5526
5527         if (HAS_PIPE_CXSR(dev)) {
5528                 if (intel_crtc->lowfreq_avail) {
5529                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5530                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5531                 } else {
5532                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5533                 }
5534         }
5535
5536         if (!IS_GEN2(dev) &&
5537             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5538                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5539         else
5540                 pipeconf |= PIPECONF_PROGRESSIVE;
5541
5542         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5543                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5544
5545         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5546         POSTING_READ(PIPECONF(intel_crtc->pipe));
5547 }
5548
5549 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5550                               int x, int y,
5551                               struct drm_framebuffer *fb)
5552 {
5553         struct drm_device *dev = crtc->dev;
5554         struct drm_i915_private *dev_priv = dev->dev_private;
5555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5556         int pipe = intel_crtc->pipe;
5557         int plane = intel_crtc->plane;
5558         int refclk, num_connectors = 0;
5559         intel_clock_t clock, reduced_clock;
5560         u32 dspcntr;
5561         bool ok, has_reduced_clock = false;
5562         bool is_lvds = false, is_dsi = false;
5563         struct intel_encoder *encoder;
5564         const intel_limit_t *limit;
5565         int ret;
5566
5567         for_each_encoder_on_crtc(dev, crtc, encoder) {
5568                 switch (encoder->type) {
5569                 case INTEL_OUTPUT_LVDS:
5570                         is_lvds = true;
5571                         break;
5572                 case INTEL_OUTPUT_DSI:
5573                         is_dsi = true;
5574                         break;
5575                 }
5576
5577                 num_connectors++;
5578         }
5579
5580         if (is_dsi)
5581                 goto skip_dpll;
5582
5583         if (!intel_crtc->config.clock_set) {
5584                 refclk = i9xx_get_refclk(crtc, num_connectors);
5585
5586                 /*
5587                  * Returns a set of divisors for the desired target clock with
5588                  * the given refclk, or FALSE.  The returned values represent
5589                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5590                  * 2) / p1 / p2.
5591                  */
5592                 limit = intel_limit(crtc, refclk);
5593                 ok = dev_priv->display.find_dpll(limit, crtc,
5594                                                  intel_crtc->config.port_clock,
5595                                                  refclk, NULL, &clock);
5596                 if (!ok) {
5597                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5598                         return -EINVAL;
5599                 }
5600
5601                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5602                         /*
5603                          * Ensure we match the reduced clock's P to the target
5604                          * clock.  If the clocks don't match, we can't switch
5605                          * the display clock by using the FP0/FP1. In such case
5606                          * we will disable the LVDS downclock feature.
5607                          */
5608                         has_reduced_clock =
5609                                 dev_priv->display.find_dpll(limit, crtc,
5610                                                             dev_priv->lvds_downclock,
5611                                                             refclk, &clock,
5612                                                             &reduced_clock);
5613                 }
5614                 /* Compat-code for transition, will disappear. */
5615                 intel_crtc->config.dpll.n = clock.n;
5616                 intel_crtc->config.dpll.m1 = clock.m1;
5617                 intel_crtc->config.dpll.m2 = clock.m2;
5618                 intel_crtc->config.dpll.p1 = clock.p1;
5619                 intel_crtc->config.dpll.p2 = clock.p2;
5620         }
5621
5622         if (IS_GEN2(dev)) {
5623                 i8xx_update_pll(intel_crtc,
5624                                 has_reduced_clock ? &reduced_clock : NULL,
5625                                 num_connectors);
5626         } else if (IS_VALLEYVIEW(dev)) {
5627                 vlv_update_pll(intel_crtc);
5628         } else {
5629                 i9xx_update_pll(intel_crtc,
5630                                 has_reduced_clock ? &reduced_clock : NULL,
5631                                 num_connectors);
5632         }
5633
5634 skip_dpll:
5635         /* Set up the display plane register */
5636         dspcntr = DISPPLANE_GAMMA_ENABLE;
5637
5638         if (!IS_VALLEYVIEW(dev)) {
5639                 if (pipe == 0)
5640                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5641                 else
5642                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5643         }
5644
5645         intel_set_pipe_timings(intel_crtc);
5646
5647         /* pipesrc and dspsize control the size that is scaled from,
5648          * which should always be the user's requested size.
5649          */
5650         I915_WRITE(DSPSIZE(plane),
5651                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5652                    (intel_crtc->config.pipe_src_w - 1));
5653         I915_WRITE(DSPPOS(plane), 0);
5654
5655         i9xx_set_pipeconf(intel_crtc);
5656
5657         I915_WRITE(DSPCNTR(plane), dspcntr);
5658         POSTING_READ(DSPCNTR(plane));
5659
5660         ret = intel_pipe_set_base(crtc, x, y, fb);
5661
5662         return ret;
5663 }
5664
5665 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5666                                  struct intel_crtc_config *pipe_config)
5667 {
5668         struct drm_device *dev = crtc->base.dev;
5669         struct drm_i915_private *dev_priv = dev->dev_private;
5670         uint32_t tmp;
5671
5672         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5673                 return;
5674
5675         tmp = I915_READ(PFIT_CONTROL);
5676         if (!(tmp & PFIT_ENABLE))
5677                 return;
5678
5679         /* Check whether the pfit is attached to our pipe. */
5680         if (INTEL_INFO(dev)->gen < 4) {
5681                 if (crtc->pipe != PIPE_B)
5682                         return;
5683         } else {
5684                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5685                         return;
5686         }
5687
5688         pipe_config->gmch_pfit.control = tmp;
5689         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5690         if (INTEL_INFO(dev)->gen < 5)
5691                 pipe_config->gmch_pfit.lvds_border_bits =
5692                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5693 }
5694
5695 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5696                                struct intel_crtc_config *pipe_config)
5697 {
5698         struct drm_device *dev = crtc->base.dev;
5699         struct drm_i915_private *dev_priv = dev->dev_private;
5700         int pipe = pipe_config->cpu_transcoder;
5701         intel_clock_t clock;
5702         u32 mdiv;
5703         int refclk = 100000;
5704
5705         mutex_lock(&dev_priv->dpio_lock);
5706         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5707         mutex_unlock(&dev_priv->dpio_lock);
5708
5709         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5710         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5711         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5712         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5713         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5714
5715         vlv_clock(refclk, &clock);
5716
5717         /* clock.dot is the fast clock */
5718         pipe_config->port_clock = clock.dot / 5;
5719 }
5720
5721 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5722                                   struct intel_plane_config *plane_config)
5723 {
5724         struct drm_device *dev = crtc->base.dev;
5725         struct drm_i915_private *dev_priv = dev->dev_private;
5726         u32 val, base, offset;
5727         int pipe = crtc->pipe, plane = crtc->plane;
5728         int fourcc, pixel_format;
5729         int aligned_height;
5730
5731         crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5732         if (!crtc->base.fb) {
5733                 DRM_DEBUG_KMS("failed to alloc fb\n");
5734                 return;
5735         }
5736
5737         val = I915_READ(DSPCNTR(plane));
5738
5739         if (INTEL_INFO(dev)->gen >= 4)
5740                 if (val & DISPPLANE_TILED)
5741                         plane_config->tiled = true;
5742
5743         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5744         fourcc = intel_format_to_fourcc(pixel_format);
5745         crtc->base.fb->pixel_format = fourcc;
5746         crtc->base.fb->bits_per_pixel =
5747                 drm_format_plane_cpp(fourcc, 0) * 8;
5748
5749         if (INTEL_INFO(dev)->gen >= 4) {
5750                 if (plane_config->tiled)
5751                         offset = I915_READ(DSPTILEOFF(plane));
5752                 else
5753                         offset = I915_READ(DSPLINOFF(plane));
5754                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5755         } else {
5756                 base = I915_READ(DSPADDR(plane));
5757         }
5758         plane_config->base = base;
5759
5760         val = I915_READ(PIPESRC(pipe));
5761         crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
5762         crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
5763
5764         val = I915_READ(DSPSTRIDE(pipe));
5765         crtc->base.fb->pitches[0] = val & 0xffffff80;
5766
5767         aligned_height = intel_align_height(dev, crtc->base.fb->height,
5768                                             plane_config->tiled);
5769
5770         plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
5771                                    aligned_height, PAGE_SIZE);
5772
5773         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5774                       pipe, plane, crtc->base.fb->width,
5775                       crtc->base.fb->height,
5776                       crtc->base.fb->bits_per_pixel, base,
5777                       crtc->base.fb->pitches[0],
5778                       plane_config->size);
5779
5780 }
5781
5782 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5783                                  struct intel_crtc_config *pipe_config)
5784 {
5785         struct drm_device *dev = crtc->base.dev;
5786         struct drm_i915_private *dev_priv = dev->dev_private;
5787         uint32_t tmp;
5788
5789         if (!intel_display_power_enabled(dev_priv,
5790                                          POWER_DOMAIN_PIPE(crtc->pipe)))
5791                 return false;
5792
5793         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5794         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5795
5796         tmp = I915_READ(PIPECONF(crtc->pipe));
5797         if (!(tmp & PIPECONF_ENABLE))
5798                 return false;
5799
5800         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5801                 switch (tmp & PIPECONF_BPC_MASK) {
5802                 case PIPECONF_6BPC:
5803                         pipe_config->pipe_bpp = 18;
5804                         break;
5805                 case PIPECONF_8BPC:
5806                         pipe_config->pipe_bpp = 24;
5807                         break;
5808                 case PIPECONF_10BPC:
5809                         pipe_config->pipe_bpp = 30;
5810                         break;
5811                 default:
5812                         break;
5813                 }
5814         }
5815
5816         if (INTEL_INFO(dev)->gen < 4)
5817                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5818
5819         intel_get_pipe_timings(crtc, pipe_config);
5820
5821         i9xx_get_pfit_config(crtc, pipe_config);
5822
5823         if (INTEL_INFO(dev)->gen >= 4) {
5824                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5825                 pipe_config->pixel_multiplier =
5826                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5827                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5828                 pipe_config->dpll_hw_state.dpll_md = tmp;
5829         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5830                 tmp = I915_READ(DPLL(crtc->pipe));
5831                 pipe_config->pixel_multiplier =
5832                         ((tmp & SDVO_MULTIPLIER_MASK)
5833                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5834         } else {
5835                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5836                  * port and will be fixed up in the encoder->get_config
5837                  * function. */
5838                 pipe_config->pixel_multiplier = 1;
5839         }
5840         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5841         if (!IS_VALLEYVIEW(dev)) {
5842                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5843                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5844         } else {
5845                 /* Mask out read-only status bits. */
5846                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5847                                                      DPLL_PORTC_READY_MASK |
5848                                                      DPLL_PORTB_READY_MASK);
5849         }
5850
5851         if (IS_VALLEYVIEW(dev))
5852                 vlv_crtc_clock_get(crtc, pipe_config);
5853         else
5854                 i9xx_crtc_clock_get(crtc, pipe_config);
5855
5856         return true;
5857 }
5858
5859 static void ironlake_init_pch_refclk(struct drm_device *dev)
5860 {
5861         struct drm_i915_private *dev_priv = dev->dev_private;
5862         struct drm_mode_config *mode_config = &dev->mode_config;
5863         struct intel_encoder *encoder;
5864         u32 val, final;
5865         bool has_lvds = false;
5866         bool has_cpu_edp = false;
5867         bool has_panel = false;
5868         bool has_ck505 = false;
5869         bool can_ssc = false;
5870
5871         /* We need to take the global config into account */
5872         list_for_each_entry(encoder, &mode_config->encoder_list,
5873                             base.head) {
5874                 switch (encoder->type) {
5875                 case INTEL_OUTPUT_LVDS:
5876                         has_panel = true;
5877                         has_lvds = true;
5878                         break;
5879                 case INTEL_OUTPUT_EDP:
5880                         has_panel = true;
5881                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5882                                 has_cpu_edp = true;
5883                         break;
5884                 }
5885         }
5886
5887         if (HAS_PCH_IBX(dev)) {
5888                 has_ck505 = dev_priv->vbt.display_clock_mode;
5889                 can_ssc = has_ck505;
5890         } else {
5891                 has_ck505 = false;
5892                 can_ssc = true;
5893         }
5894
5895         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5896                       has_panel, has_lvds, has_ck505);
5897
5898         /* Ironlake: try to setup display ref clock before DPLL
5899          * enabling. This is only under driver's control after
5900          * PCH B stepping, previous chipset stepping should be
5901          * ignoring this setting.
5902          */
5903         val = I915_READ(PCH_DREF_CONTROL);
5904
5905         /* As we must carefully and slowly disable/enable each source in turn,
5906          * compute the final state we want first and check if we need to
5907          * make any changes at all.
5908          */
5909         final = val;
5910         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5911         if (has_ck505)
5912                 final |= DREF_NONSPREAD_CK505_ENABLE;
5913         else
5914                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5915
5916         final &= ~DREF_SSC_SOURCE_MASK;
5917         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5918         final &= ~DREF_SSC1_ENABLE;
5919
5920         if (has_panel) {
5921                 final |= DREF_SSC_SOURCE_ENABLE;
5922
5923                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5924                         final |= DREF_SSC1_ENABLE;
5925
5926                 if (has_cpu_edp) {
5927                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5928                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5929                         else
5930                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5931                 } else
5932                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5933         } else {
5934                 final |= DREF_SSC_SOURCE_DISABLE;
5935                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5936         }
5937
5938         if (final == val)
5939                 return;
5940
5941         /* Always enable nonspread source */
5942         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5943
5944         if (has_ck505)
5945                 val |= DREF_NONSPREAD_CK505_ENABLE;
5946         else
5947                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5948
5949         if (has_panel) {
5950                 val &= ~DREF_SSC_SOURCE_MASK;
5951                 val |= DREF_SSC_SOURCE_ENABLE;
5952
5953                 /* SSC must be turned on before enabling the CPU output  */
5954                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5955                         DRM_DEBUG_KMS("Using SSC on panel\n");
5956                         val |= DREF_SSC1_ENABLE;
5957                 } else
5958                         val &= ~DREF_SSC1_ENABLE;
5959
5960                 /* Get SSC going before enabling the outputs */
5961                 I915_WRITE(PCH_DREF_CONTROL, val);
5962                 POSTING_READ(PCH_DREF_CONTROL);
5963                 udelay(200);
5964
5965                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5966
5967                 /* Enable CPU source on CPU attached eDP */
5968                 if (has_cpu_edp) {
5969                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5970                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5971                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5972                         }
5973                         else
5974                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5975                 } else
5976                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5977
5978                 I915_WRITE(PCH_DREF_CONTROL, val);
5979                 POSTING_READ(PCH_DREF_CONTROL);
5980                 udelay(200);
5981         } else {
5982                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5983
5984                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5985
5986                 /* Turn off CPU output */
5987                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5988
5989                 I915_WRITE(PCH_DREF_CONTROL, val);
5990                 POSTING_READ(PCH_DREF_CONTROL);
5991                 udelay(200);
5992
5993                 /* Turn off the SSC source */
5994                 val &= ~DREF_SSC_SOURCE_MASK;
5995                 val |= DREF_SSC_SOURCE_DISABLE;
5996
5997                 /* Turn off SSC1 */
5998                 val &= ~DREF_SSC1_ENABLE;
5999
6000                 I915_WRITE(PCH_DREF_CONTROL, val);
6001                 POSTING_READ(PCH_DREF_CONTROL);
6002                 udelay(200);
6003         }
6004
6005         BUG_ON(val != final);
6006 }
6007
6008 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6009 {
6010         uint32_t tmp;
6011
6012         tmp = I915_READ(SOUTH_CHICKEN2);
6013         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6014         I915_WRITE(SOUTH_CHICKEN2, tmp);
6015
6016         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6017                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6018                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6019
6020         tmp = I915_READ(SOUTH_CHICKEN2);
6021         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6022         I915_WRITE(SOUTH_CHICKEN2, tmp);
6023
6024         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6025                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6026                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6027 }
6028
6029 /* WaMPhyProgramming:hsw */
6030 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6031 {
6032         uint32_t tmp;
6033
6034         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6035         tmp &= ~(0xFF << 24);
6036         tmp |= (0x12 << 24);
6037         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6038
6039         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6040         tmp |= (1 << 11);
6041         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6042
6043         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6044         tmp |= (1 << 11);
6045         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6046
6047         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6048         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6049         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6050
6051         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6052         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6053         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6054
6055         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6056         tmp &= ~(7 << 13);
6057         tmp |= (5 << 13);
6058         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6059
6060         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6061         tmp &= ~(7 << 13);
6062         tmp |= (5 << 13);
6063         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6064
6065         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6066         tmp &= ~0xFF;
6067         tmp |= 0x1C;
6068         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6069
6070         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6071         tmp &= ~0xFF;
6072         tmp |= 0x1C;
6073         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6074
6075         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6076         tmp &= ~(0xFF << 16);
6077         tmp |= (0x1C << 16);
6078         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6079
6080         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6081         tmp &= ~(0xFF << 16);
6082         tmp |= (0x1C << 16);
6083         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6084
6085         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6086         tmp |= (1 << 27);
6087         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6088
6089         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6090         tmp |= (1 << 27);
6091         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6092
6093         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6094         tmp &= ~(0xF << 28);
6095         tmp |= (4 << 28);
6096         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6097
6098         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6099         tmp &= ~(0xF << 28);
6100         tmp |= (4 << 28);
6101         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6102 }
6103
6104 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6105  * Programming" based on the parameters passed:
6106  * - Sequence to enable CLKOUT_DP
6107  * - Sequence to enable CLKOUT_DP without spread
6108  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6109  */
6110 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6111                                  bool with_fdi)
6112 {
6113         struct drm_i915_private *dev_priv = dev->dev_private;
6114         uint32_t reg, tmp;
6115
6116         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6117                 with_spread = true;
6118         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6119                  with_fdi, "LP PCH doesn't have FDI\n"))
6120                 with_fdi = false;
6121
6122         mutex_lock(&dev_priv->dpio_lock);
6123
6124         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6125         tmp &= ~SBI_SSCCTL_DISABLE;
6126         tmp |= SBI_SSCCTL_PATHALT;
6127         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6128
6129         udelay(24);
6130
6131         if (with_spread) {
6132                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6133                 tmp &= ~SBI_SSCCTL_PATHALT;
6134                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6135
6136                 if (with_fdi) {
6137                         lpt_reset_fdi_mphy(dev_priv);
6138                         lpt_program_fdi_mphy(dev_priv);
6139                 }
6140         }
6141
6142         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6143                SBI_GEN0 : SBI_DBUFF0;
6144         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6145         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6146         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6147
6148         mutex_unlock(&dev_priv->dpio_lock);
6149 }
6150
6151 /* Sequence to disable CLKOUT_DP */
6152 static void lpt_disable_clkout_dp(struct drm_device *dev)
6153 {
6154         struct drm_i915_private *dev_priv = dev->dev_private;
6155         uint32_t reg, tmp;
6156
6157         mutex_lock(&dev_priv->dpio_lock);
6158
6159         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6160                SBI_GEN0 : SBI_DBUFF0;
6161         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6162         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6163         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6164
6165         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6166         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6167                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6168                         tmp |= SBI_SSCCTL_PATHALT;
6169                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6170                         udelay(32);
6171                 }
6172                 tmp |= SBI_SSCCTL_DISABLE;
6173                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6174         }
6175
6176         mutex_unlock(&dev_priv->dpio_lock);
6177 }
6178
6179 static void lpt_init_pch_refclk(struct drm_device *dev)
6180 {
6181         struct drm_mode_config *mode_config = &dev->mode_config;
6182         struct intel_encoder *encoder;
6183         bool has_vga = false;
6184
6185         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6186                 switch (encoder->type) {
6187                 case INTEL_OUTPUT_ANALOG:
6188                         has_vga = true;
6189                         break;
6190                 }
6191         }
6192
6193         if (has_vga)
6194                 lpt_enable_clkout_dp(dev, true, true);
6195         else
6196                 lpt_disable_clkout_dp(dev);
6197 }
6198
6199 /*
6200  * Initialize reference clocks when the driver loads
6201  */
6202 void intel_init_pch_refclk(struct drm_device *dev)
6203 {
6204         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6205                 ironlake_init_pch_refclk(dev);
6206         else if (HAS_PCH_LPT(dev))
6207                 lpt_init_pch_refclk(dev);
6208 }
6209
6210 static int ironlake_get_refclk(struct drm_crtc *crtc)
6211 {
6212         struct drm_device *dev = crtc->dev;
6213         struct drm_i915_private *dev_priv = dev->dev_private;
6214         struct intel_encoder *encoder;
6215         int num_connectors = 0;
6216         bool is_lvds = false;
6217
6218         for_each_encoder_on_crtc(dev, crtc, encoder) {
6219                 switch (encoder->type) {
6220                 case INTEL_OUTPUT_LVDS:
6221                         is_lvds = true;
6222                         break;
6223                 }
6224                 num_connectors++;
6225         }
6226
6227         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6228                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6229                               dev_priv->vbt.lvds_ssc_freq);
6230                 return dev_priv->vbt.lvds_ssc_freq;
6231         }
6232
6233         return 120000;
6234 }
6235
6236 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6237 {
6238         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240         int pipe = intel_crtc->pipe;
6241         uint32_t val;
6242
6243         val = 0;
6244
6245         switch (intel_crtc->config.pipe_bpp) {
6246         case 18:
6247                 val |= PIPECONF_6BPC;
6248                 break;
6249         case 24:
6250                 val |= PIPECONF_8BPC;
6251                 break;
6252         case 30:
6253                 val |= PIPECONF_10BPC;
6254                 break;
6255         case 36:
6256                 val |= PIPECONF_12BPC;
6257                 break;
6258         default:
6259                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6260                 BUG();
6261         }
6262
6263         if (intel_crtc->config.dither)
6264                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6265
6266         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6267                 val |= PIPECONF_INTERLACED_ILK;
6268         else
6269                 val |= PIPECONF_PROGRESSIVE;
6270
6271         if (intel_crtc->config.limited_color_range)
6272                 val |= PIPECONF_COLOR_RANGE_SELECT;
6273
6274         I915_WRITE(PIPECONF(pipe), val);
6275         POSTING_READ(PIPECONF(pipe));
6276 }
6277
6278 /*
6279  * Set up the pipe CSC unit.
6280  *
6281  * Currently only full range RGB to limited range RGB conversion
6282  * is supported, but eventually this should handle various
6283  * RGB<->YCbCr scenarios as well.
6284  */
6285 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6286 {
6287         struct drm_device *dev = crtc->dev;
6288         struct drm_i915_private *dev_priv = dev->dev_private;
6289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290         int pipe = intel_crtc->pipe;
6291         uint16_t coeff = 0x7800; /* 1.0 */
6292
6293         /*
6294          * TODO: Check what kind of values actually come out of the pipe
6295          * with these coeff/postoff values and adjust to get the best
6296          * accuracy. Perhaps we even need to take the bpc value into
6297          * consideration.
6298          */
6299
6300         if (intel_crtc->config.limited_color_range)
6301                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6302
6303         /*
6304          * GY/GU and RY/RU should be the other way around according
6305          * to BSpec, but reality doesn't agree. Just set them up in
6306          * a way that results in the correct picture.
6307          */
6308         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6309         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6310
6311         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6312         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6313
6314         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6315         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6316
6317         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6318         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6319         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6320
6321         if (INTEL_INFO(dev)->gen > 6) {
6322                 uint16_t postoff = 0;
6323
6324                 if (intel_crtc->config.limited_color_range)
6325                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6326
6327                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6328                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6329                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6330
6331                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6332         } else {
6333                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6334
6335                 if (intel_crtc->config.limited_color_range)
6336                         mode |= CSC_BLACK_SCREEN_OFFSET;
6337
6338                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6339         }
6340 }
6341
6342 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6343 {
6344         struct drm_device *dev = crtc->dev;
6345         struct drm_i915_private *dev_priv = dev->dev_private;
6346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347         enum pipe pipe = intel_crtc->pipe;
6348         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6349         uint32_t val;
6350
6351         val = 0;
6352
6353         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6354                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6355
6356         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6357                 val |= PIPECONF_INTERLACED_ILK;
6358         else
6359                 val |= PIPECONF_PROGRESSIVE;
6360
6361         I915_WRITE(PIPECONF(cpu_transcoder), val);
6362         POSTING_READ(PIPECONF(cpu_transcoder));
6363
6364         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6365         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6366
6367         if (IS_BROADWELL(dev)) {
6368                 val = 0;
6369
6370                 switch (intel_crtc->config.pipe_bpp) {
6371                 case 18:
6372                         val |= PIPEMISC_DITHER_6_BPC;
6373                         break;
6374                 case 24:
6375                         val |= PIPEMISC_DITHER_8_BPC;
6376                         break;
6377                 case 30:
6378                         val |= PIPEMISC_DITHER_10_BPC;
6379                         break;
6380                 case 36:
6381                         val |= PIPEMISC_DITHER_12_BPC;
6382                         break;
6383                 default:
6384                         /* Case prevented by pipe_config_set_bpp. */
6385                         BUG();
6386                 }
6387
6388                 if (intel_crtc->config.dither)
6389                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6390
6391                 I915_WRITE(PIPEMISC(pipe), val);
6392         }
6393 }
6394
6395 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6396                                     intel_clock_t *clock,
6397                                     bool *has_reduced_clock,
6398                                     intel_clock_t *reduced_clock)
6399 {
6400         struct drm_device *dev = crtc->dev;
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         struct intel_encoder *intel_encoder;
6403         int refclk;
6404         const intel_limit_t *limit;
6405         bool ret, is_lvds = false;
6406
6407         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6408                 switch (intel_encoder->type) {
6409                 case INTEL_OUTPUT_LVDS:
6410                         is_lvds = true;
6411                         break;
6412                 }
6413         }
6414
6415         refclk = ironlake_get_refclk(crtc);
6416
6417         /*
6418          * Returns a set of divisors for the desired target clock with the given
6419          * refclk, or FALSE.  The returned values represent the clock equation:
6420          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6421          */
6422         limit = intel_limit(crtc, refclk);
6423         ret = dev_priv->display.find_dpll(limit, crtc,
6424                                           to_intel_crtc(crtc)->config.port_clock,
6425                                           refclk, NULL, clock);
6426         if (!ret)
6427                 return false;
6428
6429         if (is_lvds && dev_priv->lvds_downclock_avail) {
6430                 /*
6431                  * Ensure we match the reduced clock's P to the target clock.
6432                  * If the clocks don't match, we can't switch the display clock
6433                  * by using the FP0/FP1. In such case we will disable the LVDS
6434                  * downclock feature.
6435                 */
6436                 *has_reduced_clock =
6437                         dev_priv->display.find_dpll(limit, crtc,
6438                                                     dev_priv->lvds_downclock,
6439                                                     refclk, clock,
6440                                                     reduced_clock);
6441         }
6442
6443         return true;
6444 }
6445
6446 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6447 {
6448         /*
6449          * Account for spread spectrum to avoid
6450          * oversubscribing the link. Max center spread
6451          * is 2.5%; use 5% for safety's sake.
6452          */
6453         u32 bps = target_clock * bpp * 21 / 20;
6454         return DIV_ROUND_UP(bps, link_bw * 8);
6455 }
6456
6457 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6458 {
6459         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6460 }
6461
6462 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6463                                       u32 *fp,
6464                                       intel_clock_t *reduced_clock, u32 *fp2)
6465 {
6466         struct drm_crtc *crtc = &intel_crtc->base;
6467         struct drm_device *dev = crtc->dev;
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469         struct intel_encoder *intel_encoder;
6470         uint32_t dpll;
6471         int factor, num_connectors = 0;
6472         bool is_lvds = false, is_sdvo = false;
6473
6474         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6475                 switch (intel_encoder->type) {
6476                 case INTEL_OUTPUT_LVDS:
6477                         is_lvds = true;
6478                         break;
6479                 case INTEL_OUTPUT_SDVO:
6480                 case INTEL_OUTPUT_HDMI:
6481                         is_sdvo = true;
6482                         break;
6483                 }
6484
6485                 num_connectors++;
6486         }
6487
6488         /* Enable autotuning of the PLL clock (if permissible) */
6489         factor = 21;
6490         if (is_lvds) {
6491                 if ((intel_panel_use_ssc(dev_priv) &&
6492                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6493                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6494                         factor = 25;
6495         } else if (intel_crtc->config.sdvo_tv_clock)
6496                 factor = 20;
6497
6498         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6499                 *fp |= FP_CB_TUNE;
6500
6501         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6502                 *fp2 |= FP_CB_TUNE;
6503
6504         dpll = 0;
6505
6506         if (is_lvds)
6507                 dpll |= DPLLB_MODE_LVDS;
6508         else
6509                 dpll |= DPLLB_MODE_DAC_SERIAL;
6510
6511         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6512                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6513
6514         if (is_sdvo)
6515                 dpll |= DPLL_SDVO_HIGH_SPEED;
6516         if (intel_crtc->config.has_dp_encoder)
6517                 dpll |= DPLL_SDVO_HIGH_SPEED;
6518
6519         /* compute bitmask from p1 value */
6520         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6521         /* also FPA1 */
6522         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6523
6524         switch (intel_crtc->config.dpll.p2) {
6525         case 5:
6526                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6527                 break;
6528         case 7:
6529                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6530                 break;
6531         case 10:
6532                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6533                 break;
6534         case 14:
6535                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6536                 break;
6537         }
6538
6539         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6540                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6541         else
6542                 dpll |= PLL_REF_INPUT_DREFCLK;
6543
6544         return dpll | DPLL_VCO_ENABLE;
6545 }
6546
6547 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6548                                   int x, int y,
6549                                   struct drm_framebuffer *fb)
6550 {
6551         struct drm_device *dev = crtc->dev;
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6554         int pipe = intel_crtc->pipe;
6555         int plane = intel_crtc->plane;
6556         int num_connectors = 0;
6557         intel_clock_t clock, reduced_clock;
6558         u32 dpll = 0, fp = 0, fp2 = 0;
6559         bool ok, has_reduced_clock = false;
6560         bool is_lvds = false;
6561         struct intel_encoder *encoder;
6562         struct intel_shared_dpll *pll;
6563         int ret;
6564
6565         for_each_encoder_on_crtc(dev, crtc, encoder) {
6566                 switch (encoder->type) {
6567                 case INTEL_OUTPUT_LVDS:
6568                         is_lvds = true;
6569                         break;
6570                 }
6571
6572                 num_connectors++;
6573         }
6574
6575         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6576              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6577
6578         ok = ironlake_compute_clocks(crtc, &clock,
6579                                      &has_reduced_clock, &reduced_clock);
6580         if (!ok && !intel_crtc->config.clock_set) {
6581                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6582                 return -EINVAL;
6583         }
6584         /* Compat-code for transition, will disappear. */
6585         if (!intel_crtc->config.clock_set) {
6586                 intel_crtc->config.dpll.n = clock.n;
6587                 intel_crtc->config.dpll.m1 = clock.m1;
6588                 intel_crtc->config.dpll.m2 = clock.m2;
6589                 intel_crtc->config.dpll.p1 = clock.p1;
6590                 intel_crtc->config.dpll.p2 = clock.p2;
6591         }
6592
6593         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6594         if (intel_crtc->config.has_pch_encoder) {
6595                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6596                 if (has_reduced_clock)
6597                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6598
6599                 dpll = ironlake_compute_dpll(intel_crtc,
6600                                              &fp, &reduced_clock,
6601                                              has_reduced_clock ? &fp2 : NULL);
6602
6603                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6604                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6605                 if (has_reduced_clock)
6606                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6607                 else
6608                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6609
6610                 pll = intel_get_shared_dpll(intel_crtc);
6611                 if (pll == NULL) {
6612                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6613                                          pipe_name(pipe));
6614                         return -EINVAL;
6615                 }
6616         } else
6617                 intel_put_shared_dpll(intel_crtc);
6618
6619         if (intel_crtc->config.has_dp_encoder)
6620                 intel_dp_set_m_n(intel_crtc);
6621
6622         if (is_lvds && has_reduced_clock && i915.powersave)
6623                 intel_crtc->lowfreq_avail = true;
6624         else
6625                 intel_crtc->lowfreq_avail = false;
6626
6627         intel_set_pipe_timings(intel_crtc);
6628
6629         if (intel_crtc->config.has_pch_encoder) {
6630                 intel_cpu_transcoder_set_m_n(intel_crtc,
6631                                              &intel_crtc->config.fdi_m_n);
6632         }
6633
6634         ironlake_set_pipeconf(crtc);
6635
6636         /* Set up the display plane register */
6637         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6638         POSTING_READ(DSPCNTR(plane));
6639
6640         ret = intel_pipe_set_base(crtc, x, y, fb);
6641
6642         return ret;
6643 }
6644
6645 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6646                                          struct intel_link_m_n *m_n)
6647 {
6648         struct drm_device *dev = crtc->base.dev;
6649         struct drm_i915_private *dev_priv = dev->dev_private;
6650         enum pipe pipe = crtc->pipe;
6651
6652         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6653         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6654         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6655                 & ~TU_SIZE_MASK;
6656         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6657         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6658                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6659 }
6660
6661 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6662                                          enum transcoder transcoder,
6663                                          struct intel_link_m_n *m_n)
6664 {
6665         struct drm_device *dev = crtc->base.dev;
6666         struct drm_i915_private *dev_priv = dev->dev_private;
6667         enum pipe pipe = crtc->pipe;
6668
6669         if (INTEL_INFO(dev)->gen >= 5) {
6670                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6671                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6672                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6673                         & ~TU_SIZE_MASK;
6674                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6675                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6676                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6677         } else {
6678                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6679                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6680                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6681                         & ~TU_SIZE_MASK;
6682                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6683                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6684                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6685         }
6686 }
6687
6688 void intel_dp_get_m_n(struct intel_crtc *crtc,
6689                       struct intel_crtc_config *pipe_config)
6690 {
6691         if (crtc->config.has_pch_encoder)
6692                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6693         else
6694                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6695                                              &pipe_config->dp_m_n);
6696 }
6697
6698 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6699                                         struct intel_crtc_config *pipe_config)
6700 {
6701         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6702                                      &pipe_config->fdi_m_n);
6703 }
6704
6705 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6706                                      struct intel_crtc_config *pipe_config)
6707 {
6708         struct drm_device *dev = crtc->base.dev;
6709         struct drm_i915_private *dev_priv = dev->dev_private;
6710         uint32_t tmp;
6711
6712         tmp = I915_READ(PF_CTL(crtc->pipe));
6713
6714         if (tmp & PF_ENABLE) {
6715                 pipe_config->pch_pfit.enabled = true;
6716                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6717                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6718
6719                 /* We currently do not free assignements of panel fitters on
6720                  * ivb/hsw (since we don't use the higher upscaling modes which
6721                  * differentiates them) so just WARN about this case for now. */
6722                 if (IS_GEN7(dev)) {
6723                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6724                                 PF_PIPE_SEL_IVB(crtc->pipe));
6725                 }
6726         }
6727 }
6728
6729 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6730                                       struct intel_plane_config *plane_config)
6731 {
6732         struct drm_device *dev = crtc->base.dev;
6733         struct drm_i915_private *dev_priv = dev->dev_private;
6734         u32 val, base, offset;
6735         int pipe = crtc->pipe, plane = crtc->plane;
6736         int fourcc, pixel_format;
6737         int aligned_height;
6738
6739         crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6740         if (!crtc->base.fb) {
6741                 DRM_DEBUG_KMS("failed to alloc fb\n");
6742                 return;
6743         }
6744
6745         val = I915_READ(DSPCNTR(plane));
6746
6747         if (INTEL_INFO(dev)->gen >= 4)
6748                 if (val & DISPPLANE_TILED)
6749                         plane_config->tiled = true;
6750
6751         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6752         fourcc = intel_format_to_fourcc(pixel_format);
6753         crtc->base.fb->pixel_format = fourcc;
6754         crtc->base.fb->bits_per_pixel =
6755                 drm_format_plane_cpp(fourcc, 0) * 8;
6756
6757         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6758         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6759                 offset = I915_READ(DSPOFFSET(plane));
6760         } else {
6761                 if (plane_config->tiled)
6762                         offset = I915_READ(DSPTILEOFF(plane));
6763                 else
6764                         offset = I915_READ(DSPLINOFF(plane));
6765         }
6766         plane_config->base = base;
6767
6768         val = I915_READ(PIPESRC(pipe));
6769         crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
6770         crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
6771
6772         val = I915_READ(DSPSTRIDE(pipe));
6773         crtc->base.fb->pitches[0] = val & 0xffffff80;
6774
6775         aligned_height = intel_align_height(dev, crtc->base.fb->height,
6776                                             plane_config->tiled);
6777
6778         plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
6779                                    aligned_height, PAGE_SIZE);
6780
6781         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6782                       pipe, plane, crtc->base.fb->width,
6783                       crtc->base.fb->height,
6784                       crtc->base.fb->bits_per_pixel, base,
6785                       crtc->base.fb->pitches[0],
6786                       plane_config->size);
6787 }
6788
6789 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6790                                      struct intel_crtc_config *pipe_config)
6791 {
6792         struct drm_device *dev = crtc->base.dev;
6793         struct drm_i915_private *dev_priv = dev->dev_private;
6794         uint32_t tmp;
6795
6796         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6797         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6798
6799         tmp = I915_READ(PIPECONF(crtc->pipe));
6800         if (!(tmp & PIPECONF_ENABLE))
6801                 return false;
6802
6803         switch (tmp & PIPECONF_BPC_MASK) {
6804         case PIPECONF_6BPC:
6805                 pipe_config->pipe_bpp = 18;
6806                 break;
6807         case PIPECONF_8BPC:
6808                 pipe_config->pipe_bpp = 24;
6809                 break;
6810         case PIPECONF_10BPC:
6811                 pipe_config->pipe_bpp = 30;
6812                 break;
6813         case PIPECONF_12BPC:
6814                 pipe_config->pipe_bpp = 36;
6815                 break;
6816         default:
6817                 break;
6818         }
6819
6820         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6821                 struct intel_shared_dpll *pll;
6822
6823                 pipe_config->has_pch_encoder = true;
6824
6825                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6826                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6827                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6828
6829                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6830
6831                 if (HAS_PCH_IBX(dev_priv->dev)) {
6832                         pipe_config->shared_dpll =
6833                                 (enum intel_dpll_id) crtc->pipe;
6834                 } else {
6835                         tmp = I915_READ(PCH_DPLL_SEL);
6836                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6837                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6838                         else
6839                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6840                 }
6841
6842                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6843
6844                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6845                                            &pipe_config->dpll_hw_state));
6846
6847                 tmp = pipe_config->dpll_hw_state.dpll;
6848                 pipe_config->pixel_multiplier =
6849                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6850                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6851
6852                 ironlake_pch_clock_get(crtc, pipe_config);
6853         } else {
6854                 pipe_config->pixel_multiplier = 1;
6855         }
6856
6857         intel_get_pipe_timings(crtc, pipe_config);
6858
6859         ironlake_get_pfit_config(crtc, pipe_config);
6860
6861         return true;
6862 }
6863
6864 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6865 {
6866         struct drm_device *dev = dev_priv->dev;
6867         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6868         struct intel_crtc *crtc;
6869         unsigned long irqflags;
6870         uint32_t val;
6871
6872         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6873                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6874                      pipe_name(crtc->pipe));
6875
6876         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6877         WARN(plls->spll_refcount, "SPLL enabled\n");
6878         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6879         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6880         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6881         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6882              "CPU PWM1 enabled\n");
6883         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6884              "CPU PWM2 enabled\n");
6885         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6886              "PCH PWM1 enabled\n");
6887         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6888              "Utility pin enabled\n");
6889         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6890
6891         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6892         val = I915_READ(DEIMR);
6893         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6894              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6895         val = I915_READ(SDEIMR);
6896         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6897              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6898         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6899 }
6900
6901 /*
6902  * This function implements pieces of two sequences from BSpec:
6903  * - Sequence for display software to disable LCPLL
6904  * - Sequence for display software to allow package C8+
6905  * The steps implemented here are just the steps that actually touch the LCPLL
6906  * register. Callers should take care of disabling all the display engine
6907  * functions, doing the mode unset, fixing interrupts, etc.
6908  */
6909 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6910                               bool switch_to_fclk, bool allow_power_down)
6911 {
6912         uint32_t val;
6913
6914         assert_can_disable_lcpll(dev_priv);
6915
6916         val = I915_READ(LCPLL_CTL);
6917
6918         if (switch_to_fclk) {
6919                 val |= LCPLL_CD_SOURCE_FCLK;
6920                 I915_WRITE(LCPLL_CTL, val);
6921
6922                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6923                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6924                         DRM_ERROR("Switching to FCLK failed\n");
6925
6926                 val = I915_READ(LCPLL_CTL);
6927         }
6928
6929         val |= LCPLL_PLL_DISABLE;
6930         I915_WRITE(LCPLL_CTL, val);
6931         POSTING_READ(LCPLL_CTL);
6932
6933         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6934                 DRM_ERROR("LCPLL still locked\n");
6935
6936         val = I915_READ(D_COMP);
6937         val |= D_COMP_COMP_DISABLE;
6938         mutex_lock(&dev_priv->rps.hw_lock);
6939         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6940                 DRM_ERROR("Failed to disable D_COMP\n");
6941         mutex_unlock(&dev_priv->rps.hw_lock);
6942         POSTING_READ(D_COMP);
6943         ndelay(100);
6944
6945         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6946                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6947
6948         if (allow_power_down) {
6949                 val = I915_READ(LCPLL_CTL);
6950                 val |= LCPLL_POWER_DOWN_ALLOW;
6951                 I915_WRITE(LCPLL_CTL, val);
6952                 POSTING_READ(LCPLL_CTL);
6953         }
6954 }
6955
6956 /*
6957  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6958  * source.
6959  */
6960 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6961 {
6962         uint32_t val;
6963         unsigned long irqflags;
6964
6965         val = I915_READ(LCPLL_CTL);
6966
6967         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6968                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6969                 return;
6970
6971         /*
6972          * Make sure we're not on PC8 state before disabling PC8, otherwise
6973          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6974          *
6975          * The other problem is that hsw_restore_lcpll() is called as part of
6976          * the runtime PM resume sequence, so we can't just call
6977          * gen6_gt_force_wake_get() because that function calls
6978          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6979          * while we are on the resume sequence. So to solve this problem we have
6980          * to call special forcewake code that doesn't touch runtime PM and
6981          * doesn't enable the forcewake delayed work.
6982          */
6983         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6984         if (dev_priv->uncore.forcewake_count++ == 0)
6985                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6986         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6987
6988         if (val & LCPLL_POWER_DOWN_ALLOW) {
6989                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6990                 I915_WRITE(LCPLL_CTL, val);
6991                 POSTING_READ(LCPLL_CTL);
6992         }
6993
6994         val = I915_READ(D_COMP);
6995         val |= D_COMP_COMP_FORCE;
6996         val &= ~D_COMP_COMP_DISABLE;
6997         mutex_lock(&dev_priv->rps.hw_lock);
6998         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6999                 DRM_ERROR("Failed to enable D_COMP\n");
7000         mutex_unlock(&dev_priv->rps.hw_lock);
7001         POSTING_READ(D_COMP);
7002
7003         val = I915_READ(LCPLL_CTL);
7004         val &= ~LCPLL_PLL_DISABLE;
7005         I915_WRITE(LCPLL_CTL, val);
7006
7007         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7008                 DRM_ERROR("LCPLL not locked yet\n");
7009
7010         if (val & LCPLL_CD_SOURCE_FCLK) {
7011                 val = I915_READ(LCPLL_CTL);
7012                 val &= ~LCPLL_CD_SOURCE_FCLK;
7013                 I915_WRITE(LCPLL_CTL, val);
7014
7015                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7016                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7017                         DRM_ERROR("Switching back to LCPLL failed\n");
7018         }
7019
7020         /* See the big comment above. */
7021         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7022         if (--dev_priv->uncore.forcewake_count == 0)
7023                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7024         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7025 }
7026
7027 void __hsw_do_enable_pc8(struct drm_i915_private *dev_priv)
7028 {
7029         struct drm_device *dev = dev_priv->dev;
7030         uint32_t val;
7031
7032         WARN_ON(!HAS_PC8(dev));
7033
7034         DRM_DEBUG_KMS("Enabling package C8+\n");
7035
7036         dev_priv->pc8.enabled = true;
7037
7038         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7039                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7040                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7041                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7042         }
7043
7044         lpt_disable_clkout_dp(dev);
7045         hsw_pc8_disable_interrupts(dev);
7046         hsw_disable_lcpll(dev_priv, true, true);
7047 }
7048
7049 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
7050 {
7051         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
7052         intel_runtime_pm_put(dev_priv);
7053 }
7054
7055 void __hsw_do_disable_pc8(struct drm_i915_private *dev_priv)
7056 {
7057         struct drm_device *dev = dev_priv->dev;
7058         uint32_t val;
7059
7060         WARN_ON(!HAS_PC8(dev));
7061
7062         DRM_DEBUG_KMS("Disabling package C8+\n");
7063
7064         hsw_restore_lcpll(dev_priv);
7065         hsw_pc8_restore_interrupts(dev);
7066         lpt_init_pch_refclk(dev);
7067
7068         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7069                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7070                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7071                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7072         }
7073
7074         intel_prepare_ddi(dev);
7075         i915_gem_init_swizzling(dev);
7076         mutex_lock(&dev_priv->rps.hw_lock);
7077         gen6_update_ring_freq(dev);
7078         mutex_unlock(&dev_priv->rps.hw_lock);
7079         dev_priv->pc8.enabled = false;
7080 }
7081
7082 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
7083 {
7084         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
7085         intel_runtime_pm_get(dev_priv);
7086 }
7087
7088 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
7089 {
7090         if (!HAS_PC8(dev_priv->dev))
7091                 return;
7092
7093         mutex_lock(&dev_priv->pc8.lock);
7094         __hsw_enable_package_c8(dev_priv);
7095         mutex_unlock(&dev_priv->pc8.lock);
7096 }
7097
7098 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
7099 {
7100         if (!HAS_PC8(dev_priv->dev))
7101                 return;
7102
7103         mutex_lock(&dev_priv->pc8.lock);
7104         __hsw_disable_package_c8(dev_priv);
7105         mutex_unlock(&dev_priv->pc8.lock);
7106 }
7107
7108 static void haswell_modeset_global_resources(struct drm_device *dev)
7109 {
7110         modeset_update_crtc_power_domains(dev);
7111 }
7112
7113 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7114                                  int x, int y,
7115                                  struct drm_framebuffer *fb)
7116 {
7117         struct drm_device *dev = crtc->dev;
7118         struct drm_i915_private *dev_priv = dev->dev_private;
7119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7120         int plane = intel_crtc->plane;
7121         int ret;
7122
7123         if (!intel_ddi_pll_select(intel_crtc))
7124                 return -EINVAL;
7125         intel_ddi_pll_enable(intel_crtc);
7126
7127         if (intel_crtc->config.has_dp_encoder)
7128                 intel_dp_set_m_n(intel_crtc);
7129
7130         intel_crtc->lowfreq_avail = false;
7131
7132         intel_set_pipe_timings(intel_crtc);
7133
7134         if (intel_crtc->config.has_pch_encoder) {
7135                 intel_cpu_transcoder_set_m_n(intel_crtc,
7136                                              &intel_crtc->config.fdi_m_n);
7137         }
7138
7139         haswell_set_pipeconf(crtc);
7140
7141         intel_set_pipe_csc(crtc);
7142
7143         /* Set up the display plane register */
7144         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7145         POSTING_READ(DSPCNTR(plane));
7146
7147         ret = intel_pipe_set_base(crtc, x, y, fb);
7148
7149         return ret;
7150 }
7151
7152 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7153                                     struct intel_crtc_config *pipe_config)
7154 {
7155         struct drm_device *dev = crtc->base.dev;
7156         struct drm_i915_private *dev_priv = dev->dev_private;
7157         enum intel_display_power_domain pfit_domain;
7158         uint32_t tmp;
7159
7160         if (!intel_display_power_enabled(dev_priv,
7161                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7162                 return false;
7163
7164         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7165         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7166
7167         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7168         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7169                 enum pipe trans_edp_pipe;
7170                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7171                 default:
7172                         WARN(1, "unknown pipe linked to edp transcoder\n");
7173                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7174                 case TRANS_DDI_EDP_INPUT_A_ON:
7175                         trans_edp_pipe = PIPE_A;
7176                         break;
7177                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7178                         trans_edp_pipe = PIPE_B;
7179                         break;
7180                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7181                         trans_edp_pipe = PIPE_C;
7182                         break;
7183                 }
7184
7185                 if (trans_edp_pipe == crtc->pipe)
7186                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7187         }
7188
7189         if (!intel_display_power_enabled(dev_priv,
7190                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7191                 return false;
7192
7193         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7194         if (!(tmp & PIPECONF_ENABLE))
7195                 return false;
7196
7197         /*
7198          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7199          * DDI E. So just check whether this pipe is wired to DDI E and whether
7200          * the PCH transcoder is on.
7201          */
7202         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7203         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7204             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7205                 pipe_config->has_pch_encoder = true;
7206
7207                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7208                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7209                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7210
7211                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7212         }
7213
7214         intel_get_pipe_timings(crtc, pipe_config);
7215
7216         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7217         if (intel_display_power_enabled(dev_priv, pfit_domain))
7218                 ironlake_get_pfit_config(crtc, pipe_config);
7219
7220         if (IS_HASWELL(dev))
7221                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7222                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7223
7224         pipe_config->pixel_multiplier = 1;
7225
7226         return true;
7227 }
7228
7229 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7230                                int x, int y,
7231                                struct drm_framebuffer *fb)
7232 {
7233         struct drm_device *dev = crtc->dev;
7234         struct drm_i915_private *dev_priv = dev->dev_private;
7235         struct intel_encoder *encoder;
7236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7237         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7238         int pipe = intel_crtc->pipe;
7239         int ret;
7240
7241         drm_vblank_pre_modeset(dev, pipe);
7242
7243         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7244
7245         drm_vblank_post_modeset(dev, pipe);
7246
7247         if (ret != 0)
7248                 return ret;
7249
7250         for_each_encoder_on_crtc(dev, crtc, encoder) {
7251                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7252                         encoder->base.base.id,
7253                         drm_get_encoder_name(&encoder->base),
7254                         mode->base.id, mode->name);
7255                 encoder->mode_set(encoder);
7256         }
7257
7258         return 0;
7259 }
7260
7261 static struct {
7262         int clock;
7263         u32 config;
7264 } hdmi_audio_clock[] = {
7265         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7266         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7267         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7268         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7269         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7270         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7271         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7272         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7273         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7274         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7275 };
7276
7277 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7278 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7279 {
7280         int i;
7281
7282         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7283                 if (mode->clock == hdmi_audio_clock[i].clock)
7284                         break;
7285         }
7286
7287         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7288                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7289                 i = 1;
7290         }
7291
7292         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7293                       hdmi_audio_clock[i].clock,
7294                       hdmi_audio_clock[i].config);
7295
7296         return hdmi_audio_clock[i].config;
7297 }
7298
7299 static bool intel_eld_uptodate(struct drm_connector *connector,
7300                                int reg_eldv, uint32_t bits_eldv,
7301                                int reg_elda, uint32_t bits_elda,
7302                                int reg_edid)
7303 {
7304         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7305         uint8_t *eld = connector->eld;
7306         uint32_t i;
7307
7308         i = I915_READ(reg_eldv);
7309         i &= bits_eldv;
7310
7311         if (!eld[0])
7312                 return !i;
7313
7314         if (!i)
7315                 return false;
7316
7317         i = I915_READ(reg_elda);
7318         i &= ~bits_elda;
7319         I915_WRITE(reg_elda, i);
7320
7321         for (i = 0; i < eld[2]; i++)
7322                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7323                         return false;
7324
7325         return true;
7326 }
7327
7328 static void g4x_write_eld(struct drm_connector *connector,
7329                           struct drm_crtc *crtc,
7330                           struct drm_display_mode *mode)
7331 {
7332         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7333         uint8_t *eld = connector->eld;
7334         uint32_t eldv;
7335         uint32_t len;
7336         uint32_t i;
7337
7338         i = I915_READ(G4X_AUD_VID_DID);
7339
7340         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7341                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7342         else
7343                 eldv = G4X_ELDV_DEVCTG;
7344
7345         if (intel_eld_uptodate(connector,
7346                                G4X_AUD_CNTL_ST, eldv,
7347                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7348                                G4X_HDMIW_HDMIEDID))
7349                 return;
7350
7351         i = I915_READ(G4X_AUD_CNTL_ST);
7352         i &= ~(eldv | G4X_ELD_ADDR);
7353         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7354         I915_WRITE(G4X_AUD_CNTL_ST, i);
7355
7356         if (!eld[0])
7357                 return;
7358
7359         len = min_t(uint8_t, eld[2], len);
7360         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7361         for (i = 0; i < len; i++)
7362                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7363
7364         i = I915_READ(G4X_AUD_CNTL_ST);
7365         i |= eldv;
7366         I915_WRITE(G4X_AUD_CNTL_ST, i);
7367 }
7368
7369 static void haswell_write_eld(struct drm_connector *connector,
7370                               struct drm_crtc *crtc,
7371                               struct drm_display_mode *mode)
7372 {
7373         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7374         uint8_t *eld = connector->eld;
7375         struct drm_device *dev = crtc->dev;
7376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7377         uint32_t eldv;
7378         uint32_t i;
7379         int len;
7380         int pipe = to_intel_crtc(crtc)->pipe;
7381         int tmp;
7382
7383         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7384         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7385         int aud_config = HSW_AUD_CFG(pipe);
7386         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7387
7388
7389         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7390
7391         /* Audio output enable */
7392         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7393         tmp = I915_READ(aud_cntrl_st2);
7394         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7395         I915_WRITE(aud_cntrl_st2, tmp);
7396
7397         /* Wait for 1 vertical blank */
7398         intel_wait_for_vblank(dev, pipe);
7399
7400         /* Set ELD valid state */
7401         tmp = I915_READ(aud_cntrl_st2);
7402         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7403         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7404         I915_WRITE(aud_cntrl_st2, tmp);
7405         tmp = I915_READ(aud_cntrl_st2);
7406         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7407
7408         /* Enable HDMI mode */
7409         tmp = I915_READ(aud_config);
7410         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7411         /* clear N_programing_enable and N_value_index */
7412         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7413         I915_WRITE(aud_config, tmp);
7414
7415         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7416
7417         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7418         intel_crtc->eld_vld = true;
7419
7420         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7421                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7422                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7423                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7424         } else {
7425                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7426         }
7427
7428         if (intel_eld_uptodate(connector,
7429                                aud_cntrl_st2, eldv,
7430                                aud_cntl_st, IBX_ELD_ADDRESS,
7431                                hdmiw_hdmiedid))
7432                 return;
7433
7434         i = I915_READ(aud_cntrl_st2);
7435         i &= ~eldv;
7436         I915_WRITE(aud_cntrl_st2, i);
7437
7438         if (!eld[0])
7439                 return;
7440
7441         i = I915_READ(aud_cntl_st);
7442         i &= ~IBX_ELD_ADDRESS;
7443         I915_WRITE(aud_cntl_st, i);
7444         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7445         DRM_DEBUG_DRIVER("port num:%d\n", i);
7446
7447         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7448         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7449         for (i = 0; i < len; i++)
7450                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7451
7452         i = I915_READ(aud_cntrl_st2);
7453         i |= eldv;
7454         I915_WRITE(aud_cntrl_st2, i);
7455
7456 }
7457
7458 static void ironlake_write_eld(struct drm_connector *connector,
7459                                struct drm_crtc *crtc,
7460                                struct drm_display_mode *mode)
7461 {
7462         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7463         uint8_t *eld = connector->eld;
7464         uint32_t eldv;
7465         uint32_t i;
7466         int len;
7467         int hdmiw_hdmiedid;
7468         int aud_config;
7469         int aud_cntl_st;
7470         int aud_cntrl_st2;
7471         int pipe = to_intel_crtc(crtc)->pipe;
7472
7473         if (HAS_PCH_IBX(connector->dev)) {
7474                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7475                 aud_config = IBX_AUD_CFG(pipe);
7476                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7477                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7478         } else if (IS_VALLEYVIEW(connector->dev)) {
7479                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7480                 aud_config = VLV_AUD_CFG(pipe);
7481                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7482                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7483         } else {
7484                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7485                 aud_config = CPT_AUD_CFG(pipe);
7486                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7487                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7488         }
7489
7490         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7491
7492         if (IS_VALLEYVIEW(connector->dev))  {
7493                 struct intel_encoder *intel_encoder;
7494                 struct intel_digital_port *intel_dig_port;
7495
7496                 intel_encoder = intel_attached_encoder(connector);
7497                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7498                 i = intel_dig_port->port;
7499         } else {
7500                 i = I915_READ(aud_cntl_st);
7501                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7502                 /* DIP_Port_Select, 0x1 = PortB */
7503         }
7504
7505         if (!i) {
7506                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7507                 /* operate blindly on all ports */
7508                 eldv = IBX_ELD_VALIDB;
7509                 eldv |= IBX_ELD_VALIDB << 4;
7510                 eldv |= IBX_ELD_VALIDB << 8;
7511         } else {
7512                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7513                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7514         }
7515
7516         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7517                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7518                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7519                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7520         } else {
7521                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7522         }
7523
7524         if (intel_eld_uptodate(connector,
7525                                aud_cntrl_st2, eldv,
7526                                aud_cntl_st, IBX_ELD_ADDRESS,
7527                                hdmiw_hdmiedid))
7528                 return;
7529
7530         i = I915_READ(aud_cntrl_st2);
7531         i &= ~eldv;
7532         I915_WRITE(aud_cntrl_st2, i);
7533
7534         if (!eld[0])
7535                 return;
7536
7537         i = I915_READ(aud_cntl_st);
7538         i &= ~IBX_ELD_ADDRESS;
7539         I915_WRITE(aud_cntl_st, i);
7540
7541         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7542         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7543         for (i = 0; i < len; i++)
7544                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7545
7546         i = I915_READ(aud_cntrl_st2);
7547         i |= eldv;
7548         I915_WRITE(aud_cntrl_st2, i);
7549 }
7550
7551 void intel_write_eld(struct drm_encoder *encoder,
7552                      struct drm_display_mode *mode)
7553 {
7554         struct drm_crtc *crtc = encoder->crtc;
7555         struct drm_connector *connector;
7556         struct drm_device *dev = encoder->dev;
7557         struct drm_i915_private *dev_priv = dev->dev_private;
7558
7559         connector = drm_select_eld(encoder, mode);
7560         if (!connector)
7561                 return;
7562
7563         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7564                          connector->base.id,
7565                          drm_get_connector_name(connector),
7566                          connector->encoder->base.id,
7567                          drm_get_encoder_name(connector->encoder));
7568
7569         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7570
7571         if (dev_priv->display.write_eld)
7572                 dev_priv->display.write_eld(connector, crtc, mode);
7573 }
7574
7575 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7576 {
7577         struct drm_device *dev = crtc->dev;
7578         struct drm_i915_private *dev_priv = dev->dev_private;
7579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7580         bool visible = base != 0;
7581         u32 cntl;
7582
7583         if (intel_crtc->cursor_visible == visible)
7584                 return;
7585
7586         cntl = I915_READ(_CURACNTR);
7587         if (visible) {
7588                 /* On these chipsets we can only modify the base whilst
7589                  * the cursor is disabled.
7590                  */
7591                 I915_WRITE(_CURABASE, base);
7592
7593                 cntl &= ~(CURSOR_FORMAT_MASK);
7594                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7595                 cntl |= CURSOR_ENABLE |
7596                         CURSOR_GAMMA_ENABLE |
7597                         CURSOR_FORMAT_ARGB;
7598         } else
7599                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7600         I915_WRITE(_CURACNTR, cntl);
7601
7602         intel_crtc->cursor_visible = visible;
7603 }
7604
7605 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7606 {
7607         struct drm_device *dev = crtc->dev;
7608         struct drm_i915_private *dev_priv = dev->dev_private;
7609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7610         int pipe = intel_crtc->pipe;
7611         bool visible = base != 0;
7612
7613         if (intel_crtc->cursor_visible != visible) {
7614                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7615                 if (base) {
7616                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7617                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7618                         cntl |= pipe << 28; /* Connect to correct pipe */
7619                 } else {
7620                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7621                         cntl |= CURSOR_MODE_DISABLE;
7622                 }
7623                 I915_WRITE(CURCNTR(pipe), cntl);
7624
7625                 intel_crtc->cursor_visible = visible;
7626         }
7627         /* and commit changes on next vblank */
7628         POSTING_READ(CURCNTR(pipe));
7629         I915_WRITE(CURBASE(pipe), base);
7630         POSTING_READ(CURBASE(pipe));
7631 }
7632
7633 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7634 {
7635         struct drm_device *dev = crtc->dev;
7636         struct drm_i915_private *dev_priv = dev->dev_private;
7637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7638         int pipe = intel_crtc->pipe;
7639         bool visible = base != 0;
7640
7641         if (intel_crtc->cursor_visible != visible) {
7642                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7643                 if (base) {
7644                         cntl &= ~CURSOR_MODE;
7645                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7646                 } else {
7647                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7648                         cntl |= CURSOR_MODE_DISABLE;
7649                 }
7650                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7651                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7652                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7653                 }
7654                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7655
7656                 intel_crtc->cursor_visible = visible;
7657         }
7658         /* and commit changes on next vblank */
7659         POSTING_READ(CURCNTR_IVB(pipe));
7660         I915_WRITE(CURBASE_IVB(pipe), base);
7661         POSTING_READ(CURBASE_IVB(pipe));
7662 }
7663
7664 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7665 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7666                                      bool on)
7667 {
7668         struct drm_device *dev = crtc->dev;
7669         struct drm_i915_private *dev_priv = dev->dev_private;
7670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7671         int pipe = intel_crtc->pipe;
7672         int x = intel_crtc->cursor_x;
7673         int y = intel_crtc->cursor_y;
7674         u32 base = 0, pos = 0;
7675         bool visible;
7676
7677         if (on)
7678                 base = intel_crtc->cursor_addr;
7679
7680         if (x >= intel_crtc->config.pipe_src_w)
7681                 base = 0;
7682
7683         if (y >= intel_crtc->config.pipe_src_h)
7684                 base = 0;
7685
7686         if (x < 0) {
7687                 if (x + intel_crtc->cursor_width <= 0)
7688                         base = 0;
7689
7690                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7691                 x = -x;
7692         }
7693         pos |= x << CURSOR_X_SHIFT;
7694
7695         if (y < 0) {
7696                 if (y + intel_crtc->cursor_height <= 0)
7697                         base = 0;
7698
7699                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7700                 y = -y;
7701         }
7702         pos |= y << CURSOR_Y_SHIFT;
7703
7704         visible = base != 0;
7705         if (!visible && !intel_crtc->cursor_visible)
7706                 return;
7707
7708         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7709                 I915_WRITE(CURPOS_IVB(pipe), pos);
7710                 ivb_update_cursor(crtc, base);
7711         } else {
7712                 I915_WRITE(CURPOS(pipe), pos);
7713                 if (IS_845G(dev) || IS_I865G(dev))
7714                         i845_update_cursor(crtc, base);
7715                 else
7716                         i9xx_update_cursor(crtc, base);
7717         }
7718 }
7719
7720 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7721                                  struct drm_file *file,
7722                                  uint32_t handle,
7723                                  uint32_t width, uint32_t height)
7724 {
7725         struct drm_device *dev = crtc->dev;
7726         struct drm_i915_private *dev_priv = dev->dev_private;
7727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7728         struct drm_i915_gem_object *obj;
7729         uint32_t addr;
7730         int ret;
7731
7732         /* if we want to turn off the cursor ignore width and height */
7733         if (!handle) {
7734                 DRM_DEBUG_KMS("cursor off\n");
7735                 addr = 0;
7736                 obj = NULL;
7737                 mutex_lock(&dev->struct_mutex);
7738                 goto finish;
7739         }
7740
7741         /* Currently we only support 64x64 cursors */
7742         if (width != 64 || height != 64) {
7743                 DRM_ERROR("we currently only support 64x64 cursors\n");
7744                 return -EINVAL;
7745         }
7746
7747         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7748         if (&obj->base == NULL)
7749                 return -ENOENT;
7750
7751         if (obj->base.size < width * height * 4) {
7752                 DRM_DEBUG_KMS("buffer is to small\n");
7753                 ret = -ENOMEM;
7754                 goto fail;
7755         }
7756
7757         /* we only need to pin inside GTT if cursor is non-phy */
7758         mutex_lock(&dev->struct_mutex);
7759         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7760                 unsigned alignment;
7761
7762                 if (obj->tiling_mode) {
7763                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7764                         ret = -EINVAL;
7765                         goto fail_locked;
7766                 }
7767
7768                 /* Note that the w/a also requires 2 PTE of padding following
7769                  * the bo. We currently fill all unused PTE with the shadow
7770                  * page and so we should always have valid PTE following the
7771                  * cursor preventing the VT-d warning.
7772                  */
7773                 alignment = 0;
7774                 if (need_vtd_wa(dev))
7775                         alignment = 64*1024;
7776
7777                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7778                 if (ret) {
7779                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7780                         goto fail_locked;
7781                 }
7782
7783                 ret = i915_gem_object_put_fence(obj);
7784                 if (ret) {
7785                         DRM_DEBUG_KMS("failed to release fence for cursor");
7786                         goto fail_unpin;
7787                 }
7788
7789                 addr = i915_gem_obj_ggtt_offset(obj);
7790         } else {
7791                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7792                 ret = i915_gem_attach_phys_object(dev, obj,
7793                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7794                                                   align);
7795                 if (ret) {
7796                         DRM_DEBUG_KMS("failed to attach phys object\n");
7797                         goto fail_locked;
7798                 }
7799                 addr = obj->phys_obj->handle->busaddr;
7800         }
7801
7802         if (IS_GEN2(dev))
7803                 I915_WRITE(CURSIZE, (height << 12) | width);
7804
7805  finish:
7806         if (intel_crtc->cursor_bo) {
7807                 if (INTEL_INFO(dev)->cursor_needs_physical) {
7808                         if (intel_crtc->cursor_bo != obj)
7809                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7810                 } else
7811                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7812                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7813         }
7814
7815         mutex_unlock(&dev->struct_mutex);
7816
7817         intel_crtc->cursor_addr = addr;
7818         intel_crtc->cursor_bo = obj;
7819         intel_crtc->cursor_width = width;
7820         intel_crtc->cursor_height = height;
7821
7822         if (intel_crtc->active)
7823                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7824
7825         return 0;
7826 fail_unpin:
7827         i915_gem_object_unpin_from_display_plane(obj);
7828 fail_locked:
7829         mutex_unlock(&dev->struct_mutex);
7830 fail:
7831         drm_gem_object_unreference_unlocked(&obj->base);
7832         return ret;
7833 }
7834
7835 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7836 {
7837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7838
7839         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7840         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7841
7842         if (intel_crtc->active)
7843                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7844
7845         return 0;
7846 }
7847
7848 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7849                                  u16 *blue, uint32_t start, uint32_t size)
7850 {
7851         int end = (start + size > 256) ? 256 : start + size, i;
7852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7853
7854         for (i = start; i < end; i++) {
7855                 intel_crtc->lut_r[i] = red[i] >> 8;
7856                 intel_crtc->lut_g[i] = green[i] >> 8;
7857                 intel_crtc->lut_b[i] = blue[i] >> 8;
7858         }
7859
7860         intel_crtc_load_lut(crtc);
7861 }
7862
7863 /* VESA 640x480x72Hz mode to set on the pipe */
7864 static struct drm_display_mode load_detect_mode = {
7865         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7866                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7867 };
7868
7869 struct drm_framebuffer *
7870 __intel_framebuffer_create(struct drm_device *dev,
7871                            struct drm_mode_fb_cmd2 *mode_cmd,
7872                            struct drm_i915_gem_object *obj)
7873 {
7874         struct intel_framebuffer *intel_fb;
7875         int ret;
7876
7877         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7878         if (!intel_fb) {
7879                 drm_gem_object_unreference_unlocked(&obj->base);
7880                 return ERR_PTR(-ENOMEM);
7881         }
7882
7883         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7884         if (ret)
7885                 goto err;
7886
7887         return &intel_fb->base;
7888 err:
7889         drm_gem_object_unreference_unlocked(&obj->base);
7890         kfree(intel_fb);
7891
7892         return ERR_PTR(ret);
7893 }
7894
7895 static struct drm_framebuffer *
7896 intel_framebuffer_create(struct drm_device *dev,
7897                          struct drm_mode_fb_cmd2 *mode_cmd,
7898                          struct drm_i915_gem_object *obj)
7899 {
7900         struct drm_framebuffer *fb;
7901         int ret;
7902
7903         ret = i915_mutex_lock_interruptible(dev);
7904         if (ret)
7905                 return ERR_PTR(ret);
7906         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7907         mutex_unlock(&dev->struct_mutex);
7908
7909         return fb;
7910 }
7911
7912 static u32
7913 intel_framebuffer_pitch_for_width(int width, int bpp)
7914 {
7915         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7916         return ALIGN(pitch, 64);
7917 }
7918
7919 static u32
7920 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7921 {
7922         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7923         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7924 }
7925
7926 static struct drm_framebuffer *
7927 intel_framebuffer_create_for_mode(struct drm_device *dev,
7928                                   struct drm_display_mode *mode,
7929                                   int depth, int bpp)
7930 {
7931         struct drm_i915_gem_object *obj;
7932         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7933
7934         obj = i915_gem_alloc_object(dev,
7935                                     intel_framebuffer_size_for_mode(mode, bpp));
7936         if (obj == NULL)
7937                 return ERR_PTR(-ENOMEM);
7938
7939         mode_cmd.width = mode->hdisplay;
7940         mode_cmd.height = mode->vdisplay;
7941         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7942                                                                 bpp);
7943         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7944
7945         return intel_framebuffer_create(dev, &mode_cmd, obj);
7946 }
7947
7948 static struct drm_framebuffer *
7949 mode_fits_in_fbdev(struct drm_device *dev,
7950                    struct drm_display_mode *mode)
7951 {
7952 #ifdef CONFIG_DRM_I915_FBDEV
7953         struct drm_i915_private *dev_priv = dev->dev_private;
7954         struct drm_i915_gem_object *obj;
7955         struct drm_framebuffer *fb;
7956
7957         if (!dev_priv->fbdev)
7958                 return NULL;
7959
7960         if (!dev_priv->fbdev->fb)
7961                 return NULL;
7962
7963         obj = dev_priv->fbdev->fb->obj;
7964         BUG_ON(!obj);
7965
7966         fb = &dev_priv->fbdev->fb->base;
7967         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7968                                                                fb->bits_per_pixel))
7969                 return NULL;
7970
7971         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7972                 return NULL;
7973
7974         return fb;
7975 #else
7976         return NULL;
7977 #endif
7978 }
7979
7980 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7981                                 struct drm_display_mode *mode,
7982                                 struct intel_load_detect_pipe *old)
7983 {
7984         struct intel_crtc *intel_crtc;
7985         struct intel_encoder *intel_encoder =
7986                 intel_attached_encoder(connector);
7987         struct drm_crtc *possible_crtc;
7988         struct drm_encoder *encoder = &intel_encoder->base;
7989         struct drm_crtc *crtc = NULL;
7990         struct drm_device *dev = encoder->dev;
7991         struct drm_framebuffer *fb;
7992         int i = -1;
7993
7994         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7995                       connector->base.id, drm_get_connector_name(connector),
7996                       encoder->base.id, drm_get_encoder_name(encoder));
7997
7998         /*
7999          * Algorithm gets a little messy:
8000          *
8001          *   - if the connector already has an assigned crtc, use it (but make
8002          *     sure it's on first)
8003          *
8004          *   - try to find the first unused crtc that can drive this connector,
8005          *     and use that if we find one
8006          */
8007
8008         /* See if we already have a CRTC for this connector */
8009         if (encoder->crtc) {
8010                 crtc = encoder->crtc;
8011
8012                 mutex_lock(&crtc->mutex);
8013
8014                 old->dpms_mode = connector->dpms;
8015                 old->load_detect_temp = false;
8016
8017                 /* Make sure the crtc and connector are running */
8018                 if (connector->dpms != DRM_MODE_DPMS_ON)
8019                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8020
8021                 return true;
8022         }
8023
8024         /* Find an unused one (if possible) */
8025         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8026                 i++;
8027                 if (!(encoder->possible_crtcs & (1 << i)))
8028                         continue;
8029                 if (!possible_crtc->enabled) {
8030                         crtc = possible_crtc;
8031                         break;
8032                 }
8033         }
8034
8035         /*
8036          * If we didn't find an unused CRTC, don't use any.
8037          */
8038         if (!crtc) {
8039                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8040                 return false;
8041         }
8042
8043         mutex_lock(&crtc->mutex);
8044         intel_encoder->new_crtc = to_intel_crtc(crtc);
8045         to_intel_connector(connector)->new_encoder = intel_encoder;
8046
8047         intel_crtc = to_intel_crtc(crtc);
8048         intel_crtc->new_enabled = true;
8049         intel_crtc->new_config = &intel_crtc->config;
8050         old->dpms_mode = connector->dpms;
8051         old->load_detect_temp = true;
8052         old->release_fb = NULL;
8053
8054         if (!mode)
8055                 mode = &load_detect_mode;
8056
8057         /* We need a framebuffer large enough to accommodate all accesses
8058          * that the plane may generate whilst we perform load detection.
8059          * We can not rely on the fbcon either being present (we get called
8060          * during its initialisation to detect all boot displays, or it may
8061          * not even exist) or that it is large enough to satisfy the
8062          * requested mode.
8063          */
8064         fb = mode_fits_in_fbdev(dev, mode);
8065         if (fb == NULL) {
8066                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8067                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8068                 old->release_fb = fb;
8069         } else
8070                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8071         if (IS_ERR(fb)) {
8072                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8073                 goto fail;
8074         }
8075
8076         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8077                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8078                 if (old->release_fb)
8079                         old->release_fb->funcs->destroy(old->release_fb);
8080                 goto fail;
8081         }
8082
8083         /* let the connector get through one full cycle before testing */
8084         intel_wait_for_vblank(dev, intel_crtc->pipe);
8085         return true;
8086
8087  fail:
8088         intel_crtc->new_enabled = crtc->enabled;
8089         if (intel_crtc->new_enabled)
8090                 intel_crtc->new_config = &intel_crtc->config;
8091         else
8092                 intel_crtc->new_config = NULL;
8093         mutex_unlock(&crtc->mutex);
8094         return false;
8095 }
8096
8097 void intel_release_load_detect_pipe(struct drm_connector *connector,
8098                                     struct intel_load_detect_pipe *old)
8099 {
8100         struct intel_encoder *intel_encoder =
8101                 intel_attached_encoder(connector);
8102         struct drm_encoder *encoder = &intel_encoder->base;
8103         struct drm_crtc *crtc = encoder->crtc;
8104         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8105
8106         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8107                       connector->base.id, drm_get_connector_name(connector),
8108                       encoder->base.id, drm_get_encoder_name(encoder));
8109
8110         if (old->load_detect_temp) {
8111                 to_intel_connector(connector)->new_encoder = NULL;
8112                 intel_encoder->new_crtc = NULL;
8113                 intel_crtc->new_enabled = false;
8114                 intel_crtc->new_config = NULL;
8115                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8116
8117                 if (old->release_fb) {
8118                         drm_framebuffer_unregister_private(old->release_fb);
8119                         drm_framebuffer_unreference(old->release_fb);
8120                 }
8121
8122                 mutex_unlock(&crtc->mutex);
8123                 return;
8124         }
8125
8126         /* Switch crtc and encoder back off if necessary */
8127         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8128                 connector->funcs->dpms(connector, old->dpms_mode);
8129
8130         mutex_unlock(&crtc->mutex);
8131 }
8132
8133 static int i9xx_pll_refclk(struct drm_device *dev,
8134                            const struct intel_crtc_config *pipe_config)
8135 {
8136         struct drm_i915_private *dev_priv = dev->dev_private;
8137         u32 dpll = pipe_config->dpll_hw_state.dpll;
8138
8139         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8140                 return dev_priv->vbt.lvds_ssc_freq;
8141         else if (HAS_PCH_SPLIT(dev))
8142                 return 120000;
8143         else if (!IS_GEN2(dev))
8144                 return 96000;
8145         else
8146                 return 48000;
8147 }
8148
8149 /* Returns the clock of the currently programmed mode of the given pipe. */
8150 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8151                                 struct intel_crtc_config *pipe_config)
8152 {
8153         struct drm_device *dev = crtc->base.dev;
8154         struct drm_i915_private *dev_priv = dev->dev_private;
8155         int pipe = pipe_config->cpu_transcoder;
8156         u32 dpll = pipe_config->dpll_hw_state.dpll;
8157         u32 fp;
8158         intel_clock_t clock;
8159         int refclk = i9xx_pll_refclk(dev, pipe_config);
8160
8161         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8162                 fp = pipe_config->dpll_hw_state.fp0;
8163         else
8164                 fp = pipe_config->dpll_hw_state.fp1;
8165
8166         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8167         if (IS_PINEVIEW(dev)) {
8168                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8169                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8170         } else {
8171                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8172                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8173         }
8174
8175         if (!IS_GEN2(dev)) {
8176                 if (IS_PINEVIEW(dev))
8177                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8178                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8179                 else
8180                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8181                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8182
8183                 switch (dpll & DPLL_MODE_MASK) {
8184                 case DPLLB_MODE_DAC_SERIAL:
8185                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8186                                 5 : 10;
8187                         break;
8188                 case DPLLB_MODE_LVDS:
8189                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8190                                 7 : 14;
8191                         break;
8192                 default:
8193                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8194                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8195                         return;
8196                 }
8197
8198                 if (IS_PINEVIEW(dev))
8199                         pineview_clock(refclk, &clock);
8200                 else
8201                         i9xx_clock(refclk, &clock);
8202         } else {
8203                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8204                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8205
8206                 if (is_lvds) {
8207                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8208                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8209
8210                         if (lvds & LVDS_CLKB_POWER_UP)
8211                                 clock.p2 = 7;
8212                         else
8213                                 clock.p2 = 14;
8214                 } else {
8215                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8216                                 clock.p1 = 2;
8217                         else {
8218                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8219                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8220                         }
8221                         if (dpll & PLL_P2_DIVIDE_BY_4)
8222                                 clock.p2 = 4;
8223                         else
8224                                 clock.p2 = 2;
8225                 }
8226
8227                 i9xx_clock(refclk, &clock);
8228         }
8229
8230         /*
8231          * This value includes pixel_multiplier. We will use
8232          * port_clock to compute adjusted_mode.crtc_clock in the
8233          * encoder's get_config() function.
8234          */
8235         pipe_config->port_clock = clock.dot;
8236 }
8237
8238 int intel_dotclock_calculate(int link_freq,
8239                              const struct intel_link_m_n *m_n)
8240 {
8241         /*
8242          * The calculation for the data clock is:
8243          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8244          * But we want to avoid losing precison if possible, so:
8245          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8246          *
8247          * and the link clock is simpler:
8248          * link_clock = (m * link_clock) / n
8249          */
8250
8251         if (!m_n->link_n)
8252                 return 0;
8253
8254         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8255 }
8256
8257 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8258                                    struct intel_crtc_config *pipe_config)
8259 {
8260         struct drm_device *dev = crtc->base.dev;
8261
8262         /* read out port_clock from the DPLL */
8263         i9xx_crtc_clock_get(crtc, pipe_config);
8264
8265         /*
8266          * This value does not include pixel_multiplier.
8267          * We will check that port_clock and adjusted_mode.crtc_clock
8268          * agree once we know their relationship in the encoder's
8269          * get_config() function.
8270          */
8271         pipe_config->adjusted_mode.crtc_clock =
8272                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8273                                          &pipe_config->fdi_m_n);
8274 }
8275
8276 /** Returns the currently programmed mode of the given pipe. */
8277 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8278                                              struct drm_crtc *crtc)
8279 {
8280         struct drm_i915_private *dev_priv = dev->dev_private;
8281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8282         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8283         struct drm_display_mode *mode;
8284         struct intel_crtc_config pipe_config;
8285         int htot = I915_READ(HTOTAL(cpu_transcoder));
8286         int hsync = I915_READ(HSYNC(cpu_transcoder));
8287         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8288         int vsync = I915_READ(VSYNC(cpu_transcoder));
8289         enum pipe pipe = intel_crtc->pipe;
8290
8291         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8292         if (!mode)
8293                 return NULL;
8294
8295         /*
8296          * Construct a pipe_config sufficient for getting the clock info
8297          * back out of crtc_clock_get.
8298          *
8299          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8300          * to use a real value here instead.
8301          */
8302         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8303         pipe_config.pixel_multiplier = 1;
8304         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8305         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8306         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8307         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8308
8309         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8310         mode->hdisplay = (htot & 0xffff) + 1;
8311         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8312         mode->hsync_start = (hsync & 0xffff) + 1;
8313         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8314         mode->vdisplay = (vtot & 0xffff) + 1;
8315         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8316         mode->vsync_start = (vsync & 0xffff) + 1;
8317         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8318
8319         drm_mode_set_name(mode);
8320
8321         return mode;
8322 }
8323
8324 static void intel_increase_pllclock(struct drm_crtc *crtc)
8325 {
8326         struct drm_device *dev = crtc->dev;
8327         drm_i915_private_t *dev_priv = dev->dev_private;
8328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8329         int pipe = intel_crtc->pipe;
8330         int dpll_reg = DPLL(pipe);
8331         int dpll;
8332
8333         if (HAS_PCH_SPLIT(dev))
8334                 return;
8335
8336         if (!dev_priv->lvds_downclock_avail)
8337                 return;
8338
8339         dpll = I915_READ(dpll_reg);
8340         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8341                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8342
8343                 assert_panel_unlocked(dev_priv, pipe);
8344
8345                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8346                 I915_WRITE(dpll_reg, dpll);
8347                 intel_wait_for_vblank(dev, pipe);
8348
8349                 dpll = I915_READ(dpll_reg);
8350                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8351                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8352         }
8353 }
8354
8355 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8356 {
8357         struct drm_device *dev = crtc->dev;
8358         drm_i915_private_t *dev_priv = dev->dev_private;
8359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8360
8361         if (HAS_PCH_SPLIT(dev))
8362                 return;
8363
8364         if (!dev_priv->lvds_downclock_avail)
8365                 return;
8366
8367         /*
8368          * Since this is called by a timer, we should never get here in
8369          * the manual case.
8370          */
8371         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8372                 int pipe = intel_crtc->pipe;
8373                 int dpll_reg = DPLL(pipe);
8374                 int dpll;
8375
8376                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8377
8378                 assert_panel_unlocked(dev_priv, pipe);
8379
8380                 dpll = I915_READ(dpll_reg);
8381                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8382                 I915_WRITE(dpll_reg, dpll);
8383                 intel_wait_for_vblank(dev, pipe);
8384                 dpll = I915_READ(dpll_reg);
8385                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8386                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8387         }
8388
8389 }
8390
8391 void intel_mark_busy(struct drm_device *dev)
8392 {
8393         struct drm_i915_private *dev_priv = dev->dev_private;
8394
8395         if (dev_priv->mm.busy)
8396                 return;
8397
8398         intel_runtime_pm_get(dev_priv);
8399         i915_update_gfx_val(dev_priv);
8400         dev_priv->mm.busy = true;
8401 }
8402
8403 void intel_mark_idle(struct drm_device *dev)
8404 {
8405         struct drm_i915_private *dev_priv = dev->dev_private;
8406         struct drm_crtc *crtc;
8407
8408         if (!dev_priv->mm.busy)
8409                 return;
8410
8411         dev_priv->mm.busy = false;
8412
8413         if (!i915.powersave)
8414                 goto out;
8415
8416         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8417                 if (!crtc->fb)
8418                         continue;
8419
8420                 intel_decrease_pllclock(crtc);
8421         }
8422
8423         if (INTEL_INFO(dev)->gen >= 6)
8424                 gen6_rps_idle(dev->dev_private);
8425
8426 out:
8427         intel_runtime_pm_put(dev_priv);
8428 }
8429
8430 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8431                         struct intel_ring_buffer *ring)
8432 {
8433         struct drm_device *dev = obj->base.dev;
8434         struct drm_crtc *crtc;
8435
8436         if (!i915.powersave)
8437                 return;
8438
8439         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8440                 if (!crtc->fb)
8441                         continue;
8442
8443                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8444                         continue;
8445
8446                 intel_increase_pllclock(crtc);
8447                 if (ring && intel_fbc_enabled(dev))
8448                         ring->fbc_dirty = true;
8449         }
8450 }
8451
8452 static void intel_crtc_destroy(struct drm_crtc *crtc)
8453 {
8454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8455         struct drm_device *dev = crtc->dev;
8456         struct intel_unpin_work *work;
8457         unsigned long flags;
8458
8459         spin_lock_irqsave(&dev->event_lock, flags);
8460         work = intel_crtc->unpin_work;
8461         intel_crtc->unpin_work = NULL;
8462         spin_unlock_irqrestore(&dev->event_lock, flags);
8463
8464         if (work) {
8465                 cancel_work_sync(&work->work);
8466                 kfree(work);
8467         }
8468
8469         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8470
8471         drm_crtc_cleanup(crtc);
8472
8473         kfree(intel_crtc);
8474 }
8475
8476 static void intel_unpin_work_fn(struct work_struct *__work)
8477 {
8478         struct intel_unpin_work *work =
8479                 container_of(__work, struct intel_unpin_work, work);
8480         struct drm_device *dev = work->crtc->dev;
8481
8482         mutex_lock(&dev->struct_mutex);
8483         intel_unpin_fb_obj(work->old_fb_obj);
8484         drm_gem_object_unreference(&work->pending_flip_obj->base);
8485         drm_gem_object_unreference(&work->old_fb_obj->base);
8486
8487         intel_update_fbc(dev);
8488         mutex_unlock(&dev->struct_mutex);
8489
8490         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8491         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8492
8493         kfree(work);
8494 }
8495
8496 static void do_intel_finish_page_flip(struct drm_device *dev,
8497                                       struct drm_crtc *crtc)
8498 {
8499         drm_i915_private_t *dev_priv = dev->dev_private;
8500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8501         struct intel_unpin_work *work;
8502         unsigned long flags;
8503
8504         /* Ignore early vblank irqs */
8505         if (intel_crtc == NULL)
8506                 return;
8507
8508         spin_lock_irqsave(&dev->event_lock, flags);
8509         work = intel_crtc->unpin_work;
8510
8511         /* Ensure we don't miss a work->pending update ... */
8512         smp_rmb();
8513
8514         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8515                 spin_unlock_irqrestore(&dev->event_lock, flags);
8516                 return;
8517         }
8518
8519         /* and that the unpin work is consistent wrt ->pending. */
8520         smp_rmb();
8521
8522         intel_crtc->unpin_work = NULL;
8523
8524         if (work->event)
8525                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8526
8527         drm_vblank_put(dev, intel_crtc->pipe);
8528
8529         spin_unlock_irqrestore(&dev->event_lock, flags);
8530
8531         wake_up_all(&dev_priv->pending_flip_queue);
8532
8533         queue_work(dev_priv->wq, &work->work);
8534
8535         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8536 }
8537
8538 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8539 {
8540         drm_i915_private_t *dev_priv = dev->dev_private;
8541         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8542
8543         do_intel_finish_page_flip(dev, crtc);
8544 }
8545
8546 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8547 {
8548         drm_i915_private_t *dev_priv = dev->dev_private;
8549         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8550
8551         do_intel_finish_page_flip(dev, crtc);
8552 }
8553
8554 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8555 {
8556         drm_i915_private_t *dev_priv = dev->dev_private;
8557         struct intel_crtc *intel_crtc =
8558                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8559         unsigned long flags;
8560
8561         /* NB: An MMIO update of the plane base pointer will also
8562          * generate a page-flip completion irq, i.e. every modeset
8563          * is also accompanied by a spurious intel_prepare_page_flip().
8564          */
8565         spin_lock_irqsave(&dev->event_lock, flags);
8566         if (intel_crtc->unpin_work)
8567                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8568         spin_unlock_irqrestore(&dev->event_lock, flags);
8569 }
8570
8571 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8572 {
8573         /* Ensure that the work item is consistent when activating it ... */
8574         smp_wmb();
8575         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8576         /* and that it is marked active as soon as the irq could fire. */
8577         smp_wmb();
8578 }
8579
8580 static int intel_gen2_queue_flip(struct drm_device *dev,
8581                                  struct drm_crtc *crtc,
8582                                  struct drm_framebuffer *fb,
8583                                  struct drm_i915_gem_object *obj,
8584                                  uint32_t flags)
8585 {
8586         struct drm_i915_private *dev_priv = dev->dev_private;
8587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8588         u32 flip_mask;
8589         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8590         int ret;
8591
8592         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8593         if (ret)
8594                 goto err;
8595
8596         ret = intel_ring_begin(ring, 6);
8597         if (ret)
8598                 goto err_unpin;
8599
8600         /* Can't queue multiple flips, so wait for the previous
8601          * one to finish before executing the next.
8602          */
8603         if (intel_crtc->plane)
8604                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8605         else
8606                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8607         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8608         intel_ring_emit(ring, MI_NOOP);
8609         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8610                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8611         intel_ring_emit(ring, fb->pitches[0]);
8612         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8613         intel_ring_emit(ring, 0); /* aux display base address, unused */
8614
8615         intel_mark_page_flip_active(intel_crtc);
8616         __intel_ring_advance(ring);
8617         return 0;
8618
8619 err_unpin:
8620         intel_unpin_fb_obj(obj);
8621 err:
8622         return ret;
8623 }
8624
8625 static int intel_gen3_queue_flip(struct drm_device *dev,
8626                                  struct drm_crtc *crtc,
8627                                  struct drm_framebuffer *fb,
8628                                  struct drm_i915_gem_object *obj,
8629                                  uint32_t flags)
8630 {
8631         struct drm_i915_private *dev_priv = dev->dev_private;
8632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8633         u32 flip_mask;
8634         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8635         int ret;
8636
8637         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8638         if (ret)
8639                 goto err;
8640
8641         ret = intel_ring_begin(ring, 6);
8642         if (ret)
8643                 goto err_unpin;
8644
8645         if (intel_crtc->plane)
8646                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8647         else
8648                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8649         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8650         intel_ring_emit(ring, MI_NOOP);
8651         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8652                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8653         intel_ring_emit(ring, fb->pitches[0]);
8654         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8655         intel_ring_emit(ring, MI_NOOP);
8656
8657         intel_mark_page_flip_active(intel_crtc);
8658         __intel_ring_advance(ring);
8659         return 0;
8660
8661 err_unpin:
8662         intel_unpin_fb_obj(obj);
8663 err:
8664         return ret;
8665 }
8666
8667 static int intel_gen4_queue_flip(struct drm_device *dev,
8668                                  struct drm_crtc *crtc,
8669                                  struct drm_framebuffer *fb,
8670                                  struct drm_i915_gem_object *obj,
8671                                  uint32_t flags)
8672 {
8673         struct drm_i915_private *dev_priv = dev->dev_private;
8674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8675         uint32_t pf, pipesrc;
8676         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8677         int ret;
8678
8679         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8680         if (ret)
8681                 goto err;
8682
8683         ret = intel_ring_begin(ring, 4);
8684         if (ret)
8685                 goto err_unpin;
8686
8687         /* i965+ uses the linear or tiled offsets from the
8688          * Display Registers (which do not change across a page-flip)
8689          * so we need only reprogram the base address.
8690          */
8691         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8692                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8693         intel_ring_emit(ring, fb->pitches[0]);
8694         intel_ring_emit(ring,
8695                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8696                         obj->tiling_mode);
8697
8698         /* XXX Enabling the panel-fitter across page-flip is so far
8699          * untested on non-native modes, so ignore it for now.
8700          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8701          */
8702         pf = 0;
8703         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8704         intel_ring_emit(ring, pf | pipesrc);
8705
8706         intel_mark_page_flip_active(intel_crtc);
8707         __intel_ring_advance(ring);
8708         return 0;
8709
8710 err_unpin:
8711         intel_unpin_fb_obj(obj);
8712 err:
8713         return ret;
8714 }
8715
8716 static int intel_gen6_queue_flip(struct drm_device *dev,
8717                                  struct drm_crtc *crtc,
8718                                  struct drm_framebuffer *fb,
8719                                  struct drm_i915_gem_object *obj,
8720                                  uint32_t flags)
8721 {
8722         struct drm_i915_private *dev_priv = dev->dev_private;
8723         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8724         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8725         uint32_t pf, pipesrc;
8726         int ret;
8727
8728         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8729         if (ret)
8730                 goto err;
8731
8732         ret = intel_ring_begin(ring, 4);
8733         if (ret)
8734                 goto err_unpin;
8735
8736         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8737                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8738         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8739         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8740
8741         /* Contrary to the suggestions in the documentation,
8742          * "Enable Panel Fitter" does not seem to be required when page
8743          * flipping with a non-native mode, and worse causes a normal
8744          * modeset to fail.
8745          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8746          */
8747         pf = 0;
8748         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8749         intel_ring_emit(ring, pf | pipesrc);
8750
8751         intel_mark_page_flip_active(intel_crtc);
8752         __intel_ring_advance(ring);
8753         return 0;
8754
8755 err_unpin:
8756         intel_unpin_fb_obj(obj);
8757 err:
8758         return ret;
8759 }
8760
8761 static int intel_gen7_queue_flip(struct drm_device *dev,
8762                                  struct drm_crtc *crtc,
8763                                  struct drm_framebuffer *fb,
8764                                  struct drm_i915_gem_object *obj,
8765                                  uint32_t flags)
8766 {
8767         struct drm_i915_private *dev_priv = dev->dev_private;
8768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8769         struct intel_ring_buffer *ring;
8770         uint32_t plane_bit = 0;
8771         int len, ret;
8772
8773         ring = obj->ring;
8774         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8775                 ring = &dev_priv->ring[BCS];
8776
8777         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8778         if (ret)
8779                 goto err;
8780
8781         switch(intel_crtc->plane) {
8782         case PLANE_A:
8783                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8784                 break;
8785         case PLANE_B:
8786                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8787                 break;
8788         case PLANE_C:
8789                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8790                 break;
8791         default:
8792                 WARN_ONCE(1, "unknown plane in flip command\n");
8793                 ret = -ENODEV;
8794                 goto err_unpin;
8795         }
8796
8797         len = 4;
8798         if (ring->id == RCS)
8799                 len += 6;
8800
8801         /*
8802          * BSpec MI_DISPLAY_FLIP for IVB:
8803          * "The full packet must be contained within the same cache line."
8804          *
8805          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8806          * cacheline, if we ever start emitting more commands before
8807          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8808          * then do the cacheline alignment, and finally emit the
8809          * MI_DISPLAY_FLIP.
8810          */
8811         ret = intel_ring_cacheline_align(ring);
8812         if (ret)
8813                 goto err_unpin;
8814
8815         ret = intel_ring_begin(ring, len);
8816         if (ret)
8817                 goto err_unpin;
8818
8819         /* Unmask the flip-done completion message. Note that the bspec says that
8820          * we should do this for both the BCS and RCS, and that we must not unmask
8821          * more than one flip event at any time (or ensure that one flip message
8822          * can be sent by waiting for flip-done prior to queueing new flips).
8823          * Experimentation says that BCS works despite DERRMR masking all
8824          * flip-done completion events and that unmasking all planes at once
8825          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8826          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8827          */
8828         if (ring->id == RCS) {
8829                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8830                 intel_ring_emit(ring, DERRMR);
8831                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8832                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8833                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8834                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8835                                 MI_SRM_LRM_GLOBAL_GTT);
8836                 intel_ring_emit(ring, DERRMR);
8837                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8838         }
8839
8840         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8841         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8842         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8843         intel_ring_emit(ring, (MI_NOOP));
8844
8845         intel_mark_page_flip_active(intel_crtc);
8846         __intel_ring_advance(ring);
8847         return 0;
8848
8849 err_unpin:
8850         intel_unpin_fb_obj(obj);
8851 err:
8852         return ret;
8853 }
8854
8855 static int intel_default_queue_flip(struct drm_device *dev,
8856                                     struct drm_crtc *crtc,
8857                                     struct drm_framebuffer *fb,
8858                                     struct drm_i915_gem_object *obj,
8859                                     uint32_t flags)
8860 {
8861         return -ENODEV;
8862 }
8863
8864 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8865                                 struct drm_framebuffer *fb,
8866                                 struct drm_pending_vblank_event *event,
8867                                 uint32_t page_flip_flags)
8868 {
8869         struct drm_device *dev = crtc->dev;
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         struct drm_framebuffer *old_fb = crtc->fb;
8872         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8874         struct intel_unpin_work *work;
8875         unsigned long flags;
8876         int ret;
8877
8878         /* Can't change pixel format via MI display flips. */
8879         if (fb->pixel_format != crtc->fb->pixel_format)
8880                 return -EINVAL;
8881
8882         /*
8883          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8884          * Note that pitch changes could also affect these register.
8885          */
8886         if (INTEL_INFO(dev)->gen > 3 &&
8887             (fb->offsets[0] != crtc->fb->offsets[0] ||
8888              fb->pitches[0] != crtc->fb->pitches[0]))
8889                 return -EINVAL;
8890
8891         if (i915_terminally_wedged(&dev_priv->gpu_error))
8892                 goto out_hang;
8893
8894         work = kzalloc(sizeof(*work), GFP_KERNEL);
8895         if (work == NULL)
8896                 return -ENOMEM;
8897
8898         work->event = event;
8899         work->crtc = crtc;
8900         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8901         INIT_WORK(&work->work, intel_unpin_work_fn);
8902
8903         ret = drm_vblank_get(dev, intel_crtc->pipe);
8904         if (ret)
8905                 goto free_work;
8906
8907         /* We borrow the event spin lock for protecting unpin_work */
8908         spin_lock_irqsave(&dev->event_lock, flags);
8909         if (intel_crtc->unpin_work) {
8910                 spin_unlock_irqrestore(&dev->event_lock, flags);
8911                 kfree(work);
8912                 drm_vblank_put(dev, intel_crtc->pipe);
8913
8914                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8915                 return -EBUSY;
8916         }
8917         intel_crtc->unpin_work = work;
8918         spin_unlock_irqrestore(&dev->event_lock, flags);
8919
8920         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8921                 flush_workqueue(dev_priv->wq);
8922
8923         ret = i915_mutex_lock_interruptible(dev);
8924         if (ret)
8925                 goto cleanup;
8926
8927         /* Reference the objects for the scheduled work. */
8928         drm_gem_object_reference(&work->old_fb_obj->base);
8929         drm_gem_object_reference(&obj->base);
8930
8931         crtc->fb = fb;
8932
8933         work->pending_flip_obj = obj;
8934
8935         work->enable_stall_check = true;
8936
8937         atomic_inc(&intel_crtc->unpin_work_count);
8938         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8939
8940         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8941         if (ret)
8942                 goto cleanup_pending;
8943
8944         intel_disable_fbc(dev);
8945         intel_mark_fb_busy(obj, NULL);
8946         mutex_unlock(&dev->struct_mutex);
8947
8948         trace_i915_flip_request(intel_crtc->plane, obj);
8949
8950         return 0;
8951
8952 cleanup_pending:
8953         atomic_dec(&intel_crtc->unpin_work_count);
8954         crtc->fb = old_fb;
8955         drm_gem_object_unreference(&work->old_fb_obj->base);
8956         drm_gem_object_unreference(&obj->base);
8957         mutex_unlock(&dev->struct_mutex);
8958
8959 cleanup:
8960         spin_lock_irqsave(&dev->event_lock, flags);
8961         intel_crtc->unpin_work = NULL;
8962         spin_unlock_irqrestore(&dev->event_lock, flags);
8963
8964         drm_vblank_put(dev, intel_crtc->pipe);
8965 free_work:
8966         kfree(work);
8967
8968         if (ret == -EIO) {
8969 out_hang:
8970                 intel_crtc_wait_for_pending_flips(crtc);
8971                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
8972                 if (ret == 0 && event)
8973                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
8974         }
8975         return ret;
8976 }
8977
8978 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8979         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8980         .load_lut = intel_crtc_load_lut,
8981 };
8982
8983 /**
8984  * intel_modeset_update_staged_output_state
8985  *
8986  * Updates the staged output configuration state, e.g. after we've read out the
8987  * current hw state.
8988  */
8989 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8990 {
8991         struct intel_crtc *crtc;
8992         struct intel_encoder *encoder;
8993         struct intel_connector *connector;
8994
8995         list_for_each_entry(connector, &dev->mode_config.connector_list,
8996                             base.head) {
8997                 connector->new_encoder =
8998                         to_intel_encoder(connector->base.encoder);
8999         }
9000
9001         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9002                             base.head) {
9003                 encoder->new_crtc =
9004                         to_intel_crtc(encoder->base.crtc);
9005         }
9006
9007         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9008                             base.head) {
9009                 crtc->new_enabled = crtc->base.enabled;
9010
9011                 if (crtc->new_enabled)
9012                         crtc->new_config = &crtc->config;
9013                 else
9014                         crtc->new_config = NULL;
9015         }
9016 }
9017
9018 /**
9019  * intel_modeset_commit_output_state
9020  *
9021  * This function copies the stage display pipe configuration to the real one.
9022  */
9023 static void intel_modeset_commit_output_state(struct drm_device *dev)
9024 {
9025         struct intel_crtc *crtc;
9026         struct intel_encoder *encoder;
9027         struct intel_connector *connector;
9028
9029         list_for_each_entry(connector, &dev->mode_config.connector_list,
9030                             base.head) {
9031                 connector->base.encoder = &connector->new_encoder->base;
9032         }
9033
9034         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9035                             base.head) {
9036                 encoder->base.crtc = &encoder->new_crtc->base;
9037         }
9038
9039         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9040                             base.head) {
9041                 crtc->base.enabled = crtc->new_enabled;
9042         }
9043 }
9044
9045 static void
9046 connected_sink_compute_bpp(struct intel_connector * connector,
9047                            struct intel_crtc_config *pipe_config)
9048 {
9049         int bpp = pipe_config->pipe_bpp;
9050
9051         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9052                 connector->base.base.id,
9053                 drm_get_connector_name(&connector->base));
9054
9055         /* Don't use an invalid EDID bpc value */
9056         if (connector->base.display_info.bpc &&
9057             connector->base.display_info.bpc * 3 < bpp) {
9058                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9059                               bpp, connector->base.display_info.bpc*3);
9060                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9061         }
9062
9063         /* Clamp bpp to 8 on screens without EDID 1.4 */
9064         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9065                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9066                               bpp);
9067                 pipe_config->pipe_bpp = 24;
9068         }
9069 }
9070
9071 static int
9072 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9073                           struct drm_framebuffer *fb,
9074                           struct intel_crtc_config *pipe_config)
9075 {
9076         struct drm_device *dev = crtc->base.dev;
9077         struct intel_connector *connector;
9078         int bpp;
9079
9080         switch (fb->pixel_format) {
9081         case DRM_FORMAT_C8:
9082                 bpp = 8*3; /* since we go through a colormap */
9083                 break;
9084         case DRM_FORMAT_XRGB1555:
9085         case DRM_FORMAT_ARGB1555:
9086                 /* checked in intel_framebuffer_init already */
9087                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9088                         return -EINVAL;
9089         case DRM_FORMAT_RGB565:
9090                 bpp = 6*3; /* min is 18bpp */
9091                 break;
9092         case DRM_FORMAT_XBGR8888:
9093         case DRM_FORMAT_ABGR8888:
9094                 /* checked in intel_framebuffer_init already */
9095                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9096                         return -EINVAL;
9097         case DRM_FORMAT_XRGB8888:
9098         case DRM_FORMAT_ARGB8888:
9099                 bpp = 8*3;
9100                 break;
9101         case DRM_FORMAT_XRGB2101010:
9102         case DRM_FORMAT_ARGB2101010:
9103         case DRM_FORMAT_XBGR2101010:
9104         case DRM_FORMAT_ABGR2101010:
9105                 /* checked in intel_framebuffer_init already */
9106                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9107                         return -EINVAL;
9108                 bpp = 10*3;
9109                 break;
9110         /* TODO: gen4+ supports 16 bpc floating point, too. */
9111         default:
9112                 DRM_DEBUG_KMS("unsupported depth\n");
9113                 return -EINVAL;
9114         }
9115
9116         pipe_config->pipe_bpp = bpp;
9117
9118         /* Clamp display bpp to EDID value */
9119         list_for_each_entry(connector, &dev->mode_config.connector_list,
9120                             base.head) {
9121                 if (!connector->new_encoder ||
9122                     connector->new_encoder->new_crtc != crtc)
9123                         continue;
9124
9125                 connected_sink_compute_bpp(connector, pipe_config);
9126         }
9127
9128         return bpp;
9129 }
9130
9131 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9132 {
9133         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9134                         "type: 0x%x flags: 0x%x\n",
9135                 mode->crtc_clock,
9136                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9137                 mode->crtc_hsync_end, mode->crtc_htotal,
9138                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9139                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9140 }
9141
9142 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9143                                    struct intel_crtc_config *pipe_config,
9144                                    const char *context)
9145 {
9146         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9147                       context, pipe_name(crtc->pipe));
9148
9149         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9150         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9151                       pipe_config->pipe_bpp, pipe_config->dither);
9152         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9153                       pipe_config->has_pch_encoder,
9154                       pipe_config->fdi_lanes,
9155                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9156                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9157                       pipe_config->fdi_m_n.tu);
9158         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9159                       pipe_config->has_dp_encoder,
9160                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9161                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9162                       pipe_config->dp_m_n.tu);
9163         DRM_DEBUG_KMS("requested mode:\n");
9164         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9165         DRM_DEBUG_KMS("adjusted mode:\n");
9166         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9167         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9168         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9169         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9170                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9171         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9172                       pipe_config->gmch_pfit.control,
9173                       pipe_config->gmch_pfit.pgm_ratios,
9174                       pipe_config->gmch_pfit.lvds_border_bits);
9175         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9176                       pipe_config->pch_pfit.pos,
9177                       pipe_config->pch_pfit.size,
9178                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9179         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9180         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9181 }
9182
9183 static bool encoders_cloneable(const struct intel_encoder *a,
9184                                const struct intel_encoder *b)
9185 {
9186         /* masks could be asymmetric, so check both ways */
9187         return a == b || (a->cloneable & (1 << b->type) &&
9188                           b->cloneable & (1 << a->type));
9189 }
9190
9191 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9192                                          struct intel_encoder *encoder)
9193 {
9194         struct drm_device *dev = crtc->base.dev;
9195         struct intel_encoder *source_encoder;
9196
9197         list_for_each_entry(source_encoder,
9198                             &dev->mode_config.encoder_list, base.head) {
9199                 if (source_encoder->new_crtc != crtc)
9200                         continue;
9201
9202                 if (!encoders_cloneable(encoder, source_encoder))
9203                         return false;
9204         }
9205
9206         return true;
9207 }
9208
9209 static bool check_encoder_cloning(struct intel_crtc *crtc)
9210 {
9211         struct drm_device *dev = crtc->base.dev;
9212         struct intel_encoder *encoder;
9213
9214         list_for_each_entry(encoder,
9215                             &dev->mode_config.encoder_list, base.head) {
9216                 if (encoder->new_crtc != crtc)
9217                         continue;
9218
9219                 if (!check_single_encoder_cloning(crtc, encoder))
9220                         return false;
9221         }
9222
9223         return true;
9224 }
9225
9226 static struct intel_crtc_config *
9227 intel_modeset_pipe_config(struct drm_crtc *crtc,
9228                           struct drm_framebuffer *fb,
9229                           struct drm_display_mode *mode)
9230 {
9231         struct drm_device *dev = crtc->dev;
9232         struct intel_encoder *encoder;
9233         struct intel_crtc_config *pipe_config;
9234         int plane_bpp, ret = -EINVAL;
9235         bool retry = true;
9236
9237         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9238                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9239                 return ERR_PTR(-EINVAL);
9240         }
9241
9242         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9243         if (!pipe_config)
9244                 return ERR_PTR(-ENOMEM);
9245
9246         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9247         drm_mode_copy(&pipe_config->requested_mode, mode);
9248
9249         pipe_config->cpu_transcoder =
9250                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9251         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9252
9253         /*
9254          * Sanitize sync polarity flags based on requested ones. If neither
9255          * positive or negative polarity is requested, treat this as meaning
9256          * negative polarity.
9257          */
9258         if (!(pipe_config->adjusted_mode.flags &
9259               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9260                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9261
9262         if (!(pipe_config->adjusted_mode.flags &
9263               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9264                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9265
9266         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9267          * plane pixel format and any sink constraints into account. Returns the
9268          * source plane bpp so that dithering can be selected on mismatches
9269          * after encoders and crtc also have had their say. */
9270         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9271                                               fb, pipe_config);
9272         if (plane_bpp < 0)
9273                 goto fail;
9274
9275         /*
9276          * Determine the real pipe dimensions. Note that stereo modes can
9277          * increase the actual pipe size due to the frame doubling and
9278          * insertion of additional space for blanks between the frame. This
9279          * is stored in the crtc timings. We use the requested mode to do this
9280          * computation to clearly distinguish it from the adjusted mode, which
9281          * can be changed by the connectors in the below retry loop.
9282          */
9283         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9284         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9285         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9286
9287 encoder_retry:
9288         /* Ensure the port clock defaults are reset when retrying. */
9289         pipe_config->port_clock = 0;
9290         pipe_config->pixel_multiplier = 1;
9291
9292         /* Fill in default crtc timings, allow encoders to overwrite them. */
9293         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9294
9295         /* Pass our mode to the connectors and the CRTC to give them a chance to
9296          * adjust it according to limitations or connector properties, and also
9297          * a chance to reject the mode entirely.
9298          */
9299         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9300                             base.head) {
9301
9302                 if (&encoder->new_crtc->base != crtc)
9303                         continue;
9304
9305                 if (!(encoder->compute_config(encoder, pipe_config))) {
9306                         DRM_DEBUG_KMS("Encoder config failure\n");
9307                         goto fail;
9308                 }
9309         }
9310
9311         /* Set default port clock if not overwritten by the encoder. Needs to be
9312          * done afterwards in case the encoder adjusts the mode. */
9313         if (!pipe_config->port_clock)
9314                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9315                         * pipe_config->pixel_multiplier;
9316
9317         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9318         if (ret < 0) {
9319                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9320                 goto fail;
9321         }
9322
9323         if (ret == RETRY) {
9324                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9325                         ret = -EINVAL;
9326                         goto fail;
9327                 }
9328
9329                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9330                 retry = false;
9331                 goto encoder_retry;
9332         }
9333
9334         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9335         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9336                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9337
9338         return pipe_config;
9339 fail:
9340         kfree(pipe_config);
9341         return ERR_PTR(ret);
9342 }
9343
9344 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9345  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9346 static void
9347 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9348                              unsigned *prepare_pipes, unsigned *disable_pipes)
9349 {
9350         struct intel_crtc *intel_crtc;
9351         struct drm_device *dev = crtc->dev;
9352         struct intel_encoder *encoder;
9353         struct intel_connector *connector;
9354         struct drm_crtc *tmp_crtc;
9355
9356         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9357
9358         /* Check which crtcs have changed outputs connected to them, these need
9359          * to be part of the prepare_pipes mask. We don't (yet) support global
9360          * modeset across multiple crtcs, so modeset_pipes will only have one
9361          * bit set at most. */
9362         list_for_each_entry(connector, &dev->mode_config.connector_list,
9363                             base.head) {
9364                 if (connector->base.encoder == &connector->new_encoder->base)
9365                         continue;
9366
9367                 if (connector->base.encoder) {
9368                         tmp_crtc = connector->base.encoder->crtc;
9369
9370                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9371                 }
9372
9373                 if (connector->new_encoder)
9374                         *prepare_pipes |=
9375                                 1 << connector->new_encoder->new_crtc->pipe;
9376         }
9377
9378         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9379                             base.head) {
9380                 if (encoder->base.crtc == &encoder->new_crtc->base)
9381                         continue;
9382
9383                 if (encoder->base.crtc) {
9384                         tmp_crtc = encoder->base.crtc;
9385
9386                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9387                 }
9388
9389                 if (encoder->new_crtc)
9390                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9391         }
9392
9393         /* Check for pipes that will be enabled/disabled ... */
9394         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9395                             base.head) {
9396                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9397                         continue;
9398
9399                 if (!intel_crtc->new_enabled)
9400                         *disable_pipes |= 1 << intel_crtc->pipe;
9401                 else
9402                         *prepare_pipes |= 1 << intel_crtc->pipe;
9403         }
9404
9405
9406         /* set_mode is also used to update properties on life display pipes. */
9407         intel_crtc = to_intel_crtc(crtc);
9408         if (intel_crtc->new_enabled)
9409                 *prepare_pipes |= 1 << intel_crtc->pipe;
9410
9411         /*
9412          * For simplicity do a full modeset on any pipe where the output routing
9413          * changed. We could be more clever, but that would require us to be
9414          * more careful with calling the relevant encoder->mode_set functions.
9415          */
9416         if (*prepare_pipes)
9417                 *modeset_pipes = *prepare_pipes;
9418
9419         /* ... and mask these out. */
9420         *modeset_pipes &= ~(*disable_pipes);
9421         *prepare_pipes &= ~(*disable_pipes);
9422
9423         /*
9424          * HACK: We don't (yet) fully support global modesets. intel_set_config
9425          * obies this rule, but the modeset restore mode of
9426          * intel_modeset_setup_hw_state does not.
9427          */
9428         *modeset_pipes &= 1 << intel_crtc->pipe;
9429         *prepare_pipes &= 1 << intel_crtc->pipe;
9430
9431         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9432                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9433 }
9434
9435 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9436 {
9437         struct drm_encoder *encoder;
9438         struct drm_device *dev = crtc->dev;
9439
9440         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9441                 if (encoder->crtc == crtc)
9442                         return true;
9443
9444         return false;
9445 }
9446
9447 static void
9448 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9449 {
9450         struct intel_encoder *intel_encoder;
9451         struct intel_crtc *intel_crtc;
9452         struct drm_connector *connector;
9453
9454         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9455                             base.head) {
9456                 if (!intel_encoder->base.crtc)
9457                         continue;
9458
9459                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9460
9461                 if (prepare_pipes & (1 << intel_crtc->pipe))
9462                         intel_encoder->connectors_active = false;
9463         }
9464
9465         intel_modeset_commit_output_state(dev);
9466
9467         /* Double check state. */
9468         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9469                             base.head) {
9470                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9471                 WARN_ON(intel_crtc->new_config &&
9472                         intel_crtc->new_config != &intel_crtc->config);
9473                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9474         }
9475
9476         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9477                 if (!connector->encoder || !connector->encoder->crtc)
9478                         continue;
9479
9480                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9481
9482                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9483                         struct drm_property *dpms_property =
9484                                 dev->mode_config.dpms_property;
9485
9486                         connector->dpms = DRM_MODE_DPMS_ON;
9487                         drm_object_property_set_value(&connector->base,
9488                                                          dpms_property,
9489                                                          DRM_MODE_DPMS_ON);
9490
9491                         intel_encoder = to_intel_encoder(connector->encoder);
9492                         intel_encoder->connectors_active = true;
9493                 }
9494         }
9495
9496 }
9497
9498 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9499 {
9500         int diff;
9501
9502         if (clock1 == clock2)
9503                 return true;
9504
9505         if (!clock1 || !clock2)
9506                 return false;
9507
9508         diff = abs(clock1 - clock2);
9509
9510         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9511                 return true;
9512
9513         return false;
9514 }
9515
9516 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9517         list_for_each_entry((intel_crtc), \
9518                             &(dev)->mode_config.crtc_list, \
9519                             base.head) \
9520                 if (mask & (1 <<(intel_crtc)->pipe))
9521
9522 static bool
9523 intel_pipe_config_compare(struct drm_device *dev,
9524                           struct intel_crtc_config *current_config,
9525                           struct intel_crtc_config *pipe_config)
9526 {
9527 #define PIPE_CONF_CHECK_X(name) \
9528         if (current_config->name != pipe_config->name) { \
9529                 DRM_ERROR("mismatch in " #name " " \
9530                           "(expected 0x%08x, found 0x%08x)\n", \
9531                           current_config->name, \
9532                           pipe_config->name); \
9533                 return false; \
9534         }
9535
9536 #define PIPE_CONF_CHECK_I(name) \
9537         if (current_config->name != pipe_config->name) { \
9538                 DRM_ERROR("mismatch in " #name " " \
9539                           "(expected %i, found %i)\n", \
9540                           current_config->name, \
9541                           pipe_config->name); \
9542                 return false; \
9543         }
9544
9545 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9546         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9547                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9548                           "(expected %i, found %i)\n", \
9549                           current_config->name & (mask), \
9550                           pipe_config->name & (mask)); \
9551                 return false; \
9552         }
9553
9554 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9555         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9556                 DRM_ERROR("mismatch in " #name " " \
9557                           "(expected %i, found %i)\n", \
9558                           current_config->name, \
9559                           pipe_config->name); \
9560                 return false; \
9561         }
9562
9563 #define PIPE_CONF_QUIRK(quirk)  \
9564         ((current_config->quirks | pipe_config->quirks) & (quirk))
9565
9566         PIPE_CONF_CHECK_I(cpu_transcoder);
9567
9568         PIPE_CONF_CHECK_I(has_pch_encoder);
9569         PIPE_CONF_CHECK_I(fdi_lanes);
9570         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9571         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9572         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9573         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9574         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9575
9576         PIPE_CONF_CHECK_I(has_dp_encoder);
9577         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9578         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9579         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9580         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9581         PIPE_CONF_CHECK_I(dp_m_n.tu);
9582
9583         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9584         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9585         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9586         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9587         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9588         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9589
9590         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9591         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9592         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9593         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9594         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9595         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9596
9597         PIPE_CONF_CHECK_I(pixel_multiplier);
9598
9599         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9600                               DRM_MODE_FLAG_INTERLACE);
9601
9602         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9603                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9604                                       DRM_MODE_FLAG_PHSYNC);
9605                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9606                                       DRM_MODE_FLAG_NHSYNC);
9607                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9608                                       DRM_MODE_FLAG_PVSYNC);
9609                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9610                                       DRM_MODE_FLAG_NVSYNC);
9611         }
9612
9613         PIPE_CONF_CHECK_I(pipe_src_w);
9614         PIPE_CONF_CHECK_I(pipe_src_h);
9615
9616         PIPE_CONF_CHECK_I(gmch_pfit.control);
9617         /* pfit ratios are autocomputed by the hw on gen4+ */
9618         if (INTEL_INFO(dev)->gen < 4)
9619                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9620         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9621         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9622         if (current_config->pch_pfit.enabled) {
9623                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9624                 PIPE_CONF_CHECK_I(pch_pfit.size);
9625         }
9626
9627         /* BDW+ don't expose a synchronous way to read the state */
9628         if (IS_HASWELL(dev))
9629                 PIPE_CONF_CHECK_I(ips_enabled);
9630
9631         PIPE_CONF_CHECK_I(double_wide);
9632
9633         PIPE_CONF_CHECK_I(shared_dpll);
9634         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9635         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9636         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9637         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9638
9639         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9640                 PIPE_CONF_CHECK_I(pipe_bpp);
9641
9642         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9643         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9644
9645 #undef PIPE_CONF_CHECK_X
9646 #undef PIPE_CONF_CHECK_I
9647 #undef PIPE_CONF_CHECK_FLAGS
9648 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9649 #undef PIPE_CONF_QUIRK
9650
9651         return true;
9652 }
9653
9654 static void
9655 check_connector_state(struct drm_device *dev)
9656 {
9657         struct intel_connector *connector;
9658
9659         list_for_each_entry(connector, &dev->mode_config.connector_list,
9660                             base.head) {
9661                 /* This also checks the encoder/connector hw state with the
9662                  * ->get_hw_state callbacks. */
9663                 intel_connector_check_state(connector);
9664
9665                 WARN(&connector->new_encoder->base != connector->base.encoder,
9666                      "connector's staged encoder doesn't match current encoder\n");
9667         }
9668 }
9669
9670 static void
9671 check_encoder_state(struct drm_device *dev)
9672 {
9673         struct intel_encoder *encoder;
9674         struct intel_connector *connector;
9675
9676         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9677                             base.head) {
9678                 bool enabled = false;
9679                 bool active = false;
9680                 enum pipe pipe, tracked_pipe;
9681
9682                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9683                               encoder->base.base.id,
9684                               drm_get_encoder_name(&encoder->base));
9685
9686                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9687                      "encoder's stage crtc doesn't match current crtc\n");
9688                 WARN(encoder->connectors_active && !encoder->base.crtc,
9689                      "encoder's active_connectors set, but no crtc\n");
9690
9691                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9692                                     base.head) {
9693                         if (connector->base.encoder != &encoder->base)
9694                                 continue;
9695                         enabled = true;
9696                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9697                                 active = true;
9698                 }
9699                 WARN(!!encoder->base.crtc != enabled,
9700                      "encoder's enabled state mismatch "
9701                      "(expected %i, found %i)\n",
9702                      !!encoder->base.crtc, enabled);
9703                 WARN(active && !encoder->base.crtc,
9704                      "active encoder with no crtc\n");
9705
9706                 WARN(encoder->connectors_active != active,
9707                      "encoder's computed active state doesn't match tracked active state "
9708                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9709
9710                 active = encoder->get_hw_state(encoder, &pipe);
9711                 WARN(active != encoder->connectors_active,
9712                      "encoder's hw state doesn't match sw tracking "
9713                      "(expected %i, found %i)\n",
9714                      encoder->connectors_active, active);
9715
9716                 if (!encoder->base.crtc)
9717                         continue;
9718
9719                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9720                 WARN(active && pipe != tracked_pipe,
9721                      "active encoder's pipe doesn't match"
9722                      "(expected %i, found %i)\n",
9723                      tracked_pipe, pipe);
9724
9725         }
9726 }
9727
9728 static void
9729 check_crtc_state(struct drm_device *dev)
9730 {
9731         drm_i915_private_t *dev_priv = dev->dev_private;
9732         struct intel_crtc *crtc;
9733         struct intel_encoder *encoder;
9734         struct intel_crtc_config pipe_config;
9735
9736         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9737                             base.head) {
9738                 bool enabled = false;
9739                 bool active = false;
9740
9741                 memset(&pipe_config, 0, sizeof(pipe_config));
9742
9743                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9744                               crtc->base.base.id);
9745
9746                 WARN(crtc->active && !crtc->base.enabled,
9747                      "active crtc, but not enabled in sw tracking\n");
9748
9749                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9750                                     base.head) {
9751                         if (encoder->base.crtc != &crtc->base)
9752                                 continue;
9753                         enabled = true;
9754                         if (encoder->connectors_active)
9755                                 active = true;
9756                 }
9757
9758                 WARN(active != crtc->active,
9759                      "crtc's computed active state doesn't match tracked active state "
9760                      "(expected %i, found %i)\n", active, crtc->active);
9761                 WARN(enabled != crtc->base.enabled,
9762                      "crtc's computed enabled state doesn't match tracked enabled state "
9763                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9764
9765                 active = dev_priv->display.get_pipe_config(crtc,
9766                                                            &pipe_config);
9767
9768                 /* hw state is inconsistent with the pipe A quirk */
9769                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9770                         active = crtc->active;
9771
9772                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9773                                     base.head) {
9774                         enum pipe pipe;
9775                         if (encoder->base.crtc != &crtc->base)
9776                                 continue;
9777                         if (encoder->get_hw_state(encoder, &pipe))
9778                                 encoder->get_config(encoder, &pipe_config);
9779                 }
9780
9781                 WARN(crtc->active != active,
9782                      "crtc active state doesn't match with hw state "
9783                      "(expected %i, found %i)\n", crtc->active, active);
9784
9785                 if (active &&
9786                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9787                         WARN(1, "pipe state doesn't match!\n");
9788                         intel_dump_pipe_config(crtc, &pipe_config,
9789                                                "[hw state]");
9790                         intel_dump_pipe_config(crtc, &crtc->config,
9791                                                "[sw state]");
9792                 }
9793         }
9794 }
9795
9796 static void
9797 check_shared_dpll_state(struct drm_device *dev)
9798 {
9799         drm_i915_private_t *dev_priv = dev->dev_private;
9800         struct intel_crtc *crtc;
9801         struct intel_dpll_hw_state dpll_hw_state;
9802         int i;
9803
9804         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9805                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9806                 int enabled_crtcs = 0, active_crtcs = 0;
9807                 bool active;
9808
9809                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9810
9811                 DRM_DEBUG_KMS("%s\n", pll->name);
9812
9813                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9814
9815                 WARN(pll->active > pll->refcount,
9816                      "more active pll users than references: %i vs %i\n",
9817                      pll->active, pll->refcount);
9818                 WARN(pll->active && !pll->on,
9819                      "pll in active use but not on in sw tracking\n");
9820                 WARN(pll->on && !pll->active,
9821                      "pll in on but not on in use in sw tracking\n");
9822                 WARN(pll->on != active,
9823                      "pll on state mismatch (expected %i, found %i)\n",
9824                      pll->on, active);
9825
9826                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9827                                     base.head) {
9828                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9829                                 enabled_crtcs++;
9830                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9831                                 active_crtcs++;
9832                 }
9833                 WARN(pll->active != active_crtcs,
9834                      "pll active crtcs mismatch (expected %i, found %i)\n",
9835                      pll->active, active_crtcs);
9836                 WARN(pll->refcount != enabled_crtcs,
9837                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9838                      pll->refcount, enabled_crtcs);
9839
9840                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9841                                        sizeof(dpll_hw_state)),
9842                      "pll hw state mismatch\n");
9843         }
9844 }
9845
9846 void
9847 intel_modeset_check_state(struct drm_device *dev)
9848 {
9849         check_connector_state(dev);
9850         check_encoder_state(dev);
9851         check_crtc_state(dev);
9852         check_shared_dpll_state(dev);
9853 }
9854
9855 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9856                                      int dotclock)
9857 {
9858         /*
9859          * FDI already provided one idea for the dotclock.
9860          * Yell if the encoder disagrees.
9861          */
9862         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9863              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9864              pipe_config->adjusted_mode.crtc_clock, dotclock);
9865 }
9866
9867 static int __intel_set_mode(struct drm_crtc *crtc,
9868                             struct drm_display_mode *mode,
9869                             int x, int y, struct drm_framebuffer *fb)
9870 {
9871         struct drm_device *dev = crtc->dev;
9872         drm_i915_private_t *dev_priv = dev->dev_private;
9873         struct drm_display_mode *saved_mode;
9874         struct intel_crtc_config *pipe_config = NULL;
9875         struct intel_crtc *intel_crtc;
9876         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9877         int ret = 0;
9878
9879         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9880         if (!saved_mode)
9881                 return -ENOMEM;
9882
9883         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9884                                      &prepare_pipes, &disable_pipes);
9885
9886         *saved_mode = crtc->mode;
9887
9888         /* Hack: Because we don't (yet) support global modeset on multiple
9889          * crtcs, we don't keep track of the new mode for more than one crtc.
9890          * Hence simply check whether any bit is set in modeset_pipes in all the
9891          * pieces of code that are not yet converted to deal with mutliple crtcs
9892          * changing their mode at the same time. */
9893         if (modeset_pipes) {
9894                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9895                 if (IS_ERR(pipe_config)) {
9896                         ret = PTR_ERR(pipe_config);
9897                         pipe_config = NULL;
9898
9899                         goto out;
9900                 }
9901                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9902                                        "[modeset]");
9903                 to_intel_crtc(crtc)->new_config = pipe_config;
9904         }
9905
9906         /*
9907          * See if the config requires any additional preparation, e.g.
9908          * to adjust global state with pipes off.  We need to do this
9909          * here so we can get the modeset_pipe updated config for the new
9910          * mode set on this crtc.  For other crtcs we need to use the
9911          * adjusted_mode bits in the crtc directly.
9912          */
9913         if (IS_VALLEYVIEW(dev)) {
9914                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9915
9916                 /* may have added more to prepare_pipes than we should */
9917                 prepare_pipes &= ~disable_pipes;
9918         }
9919
9920         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9921                 intel_crtc_disable(&intel_crtc->base);
9922
9923         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9924                 if (intel_crtc->base.enabled)
9925                         dev_priv->display.crtc_disable(&intel_crtc->base);
9926         }
9927
9928         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9929          * to set it here already despite that we pass it down the callchain.
9930          */
9931         if (modeset_pipes) {
9932                 crtc->mode = *mode;
9933                 /* mode_set/enable/disable functions rely on a correct pipe
9934                  * config. */
9935                 to_intel_crtc(crtc)->config = *pipe_config;
9936                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9937
9938                 /*
9939                  * Calculate and store various constants which
9940                  * are later needed by vblank and swap-completion
9941                  * timestamping. They are derived from true hwmode.
9942                  */
9943                 drm_calc_timestamping_constants(crtc,
9944                                                 &pipe_config->adjusted_mode);
9945         }
9946
9947         /* Only after disabling all output pipelines that will be changed can we
9948          * update the the output configuration. */
9949         intel_modeset_update_state(dev, prepare_pipes);
9950
9951         if (dev_priv->display.modeset_global_resources)
9952                 dev_priv->display.modeset_global_resources(dev);
9953
9954         /* Set up the DPLL and any encoders state that needs to adjust or depend
9955          * on the DPLL.
9956          */
9957         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9958                 ret = intel_crtc_mode_set(&intel_crtc->base,
9959                                           x, y, fb);
9960                 if (ret)
9961                         goto done;
9962         }
9963
9964         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9965         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9966                 dev_priv->display.crtc_enable(&intel_crtc->base);
9967
9968         /* FIXME: add subpixel order */
9969 done:
9970         if (ret && crtc->enabled)
9971                 crtc->mode = *saved_mode;
9972
9973 out:
9974         kfree(pipe_config);
9975         kfree(saved_mode);
9976         return ret;
9977 }
9978
9979 static int intel_set_mode(struct drm_crtc *crtc,
9980                           struct drm_display_mode *mode,
9981                           int x, int y, struct drm_framebuffer *fb)
9982 {
9983         int ret;
9984
9985         ret = __intel_set_mode(crtc, mode, x, y, fb);
9986
9987         if (ret == 0)
9988                 intel_modeset_check_state(crtc->dev);
9989
9990         return ret;
9991 }
9992
9993 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9994 {
9995         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9996 }
9997
9998 #undef for_each_intel_crtc_masked
9999
10000 static void intel_set_config_free(struct intel_set_config *config)
10001 {
10002         if (!config)
10003                 return;
10004
10005         kfree(config->save_connector_encoders);
10006         kfree(config->save_encoder_crtcs);
10007         kfree(config->save_crtc_enabled);
10008         kfree(config);
10009 }
10010
10011 static int intel_set_config_save_state(struct drm_device *dev,
10012                                        struct intel_set_config *config)
10013 {
10014         struct drm_crtc *crtc;
10015         struct drm_encoder *encoder;
10016         struct drm_connector *connector;
10017         int count;
10018
10019         config->save_crtc_enabled =
10020                 kcalloc(dev->mode_config.num_crtc,
10021                         sizeof(bool), GFP_KERNEL);
10022         if (!config->save_crtc_enabled)
10023                 return -ENOMEM;
10024
10025         config->save_encoder_crtcs =
10026                 kcalloc(dev->mode_config.num_encoder,
10027                         sizeof(struct drm_crtc *), GFP_KERNEL);
10028         if (!config->save_encoder_crtcs)
10029                 return -ENOMEM;
10030
10031         config->save_connector_encoders =
10032                 kcalloc(dev->mode_config.num_connector,
10033                         sizeof(struct drm_encoder *), GFP_KERNEL);
10034         if (!config->save_connector_encoders)
10035                 return -ENOMEM;
10036
10037         /* Copy data. Note that driver private data is not affected.
10038          * Should anything bad happen only the expected state is
10039          * restored, not the drivers personal bookkeeping.
10040          */
10041         count = 0;
10042         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10043                 config->save_crtc_enabled[count++] = crtc->enabled;
10044         }
10045
10046         count = 0;
10047         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10048                 config->save_encoder_crtcs[count++] = encoder->crtc;
10049         }
10050
10051         count = 0;
10052         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10053                 config->save_connector_encoders[count++] = connector->encoder;
10054         }
10055
10056         return 0;
10057 }
10058
10059 static void intel_set_config_restore_state(struct drm_device *dev,
10060                                            struct intel_set_config *config)
10061 {
10062         struct intel_crtc *crtc;
10063         struct intel_encoder *encoder;
10064         struct intel_connector *connector;
10065         int count;
10066
10067         count = 0;
10068         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10069                 crtc->new_enabled = config->save_crtc_enabled[count++];
10070
10071                 if (crtc->new_enabled)
10072                         crtc->new_config = &crtc->config;
10073                 else
10074                         crtc->new_config = NULL;
10075         }
10076
10077         count = 0;
10078         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10079                 encoder->new_crtc =
10080                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10081         }
10082
10083         count = 0;
10084         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10085                 connector->new_encoder =
10086                         to_intel_encoder(config->save_connector_encoders[count++]);
10087         }
10088 }
10089
10090 static bool
10091 is_crtc_connector_off(struct drm_mode_set *set)
10092 {
10093         int i;
10094
10095         if (set->num_connectors == 0)
10096                 return false;
10097
10098         if (WARN_ON(set->connectors == NULL))
10099                 return false;
10100
10101         for (i = 0; i < set->num_connectors; i++)
10102                 if (set->connectors[i]->encoder &&
10103                     set->connectors[i]->encoder->crtc == set->crtc &&
10104                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10105                         return true;
10106
10107         return false;
10108 }
10109
10110 static void
10111 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10112                                       struct intel_set_config *config)
10113 {
10114
10115         /* We should be able to check here if the fb has the same properties
10116          * and then just flip_or_move it */
10117         if (is_crtc_connector_off(set)) {
10118                 config->mode_changed = true;
10119         } else if (set->crtc->fb != set->fb) {
10120                 /* If we have no fb then treat it as a full mode set */
10121                 if (set->crtc->fb == NULL) {
10122                         struct intel_crtc *intel_crtc =
10123                                 to_intel_crtc(set->crtc);
10124
10125                         if (intel_crtc->active && i915.fastboot) {
10126                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10127                                 config->fb_changed = true;
10128                         } else {
10129                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10130                                 config->mode_changed = true;
10131                         }
10132                 } else if (set->fb == NULL) {
10133                         config->mode_changed = true;
10134                 } else if (set->fb->pixel_format !=
10135                            set->crtc->fb->pixel_format) {
10136                         config->mode_changed = true;
10137                 } else {
10138                         config->fb_changed = true;
10139                 }
10140         }
10141
10142         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10143                 config->fb_changed = true;
10144
10145         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10146                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10147                 drm_mode_debug_printmodeline(&set->crtc->mode);
10148                 drm_mode_debug_printmodeline(set->mode);
10149                 config->mode_changed = true;
10150         }
10151
10152         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10153                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10154 }
10155
10156 static int
10157 intel_modeset_stage_output_state(struct drm_device *dev,
10158                                  struct drm_mode_set *set,
10159                                  struct intel_set_config *config)
10160 {
10161         struct intel_connector *connector;
10162         struct intel_encoder *encoder;
10163         struct intel_crtc *crtc;
10164         int ro;
10165
10166         /* The upper layers ensure that we either disable a crtc or have a list
10167          * of connectors. For paranoia, double-check this. */
10168         WARN_ON(!set->fb && (set->num_connectors != 0));
10169         WARN_ON(set->fb && (set->num_connectors == 0));
10170
10171         list_for_each_entry(connector, &dev->mode_config.connector_list,
10172                             base.head) {
10173                 /* Otherwise traverse passed in connector list and get encoders
10174                  * for them. */
10175                 for (ro = 0; ro < set->num_connectors; ro++) {
10176                         if (set->connectors[ro] == &connector->base) {
10177                                 connector->new_encoder = connector->encoder;
10178                                 break;
10179                         }
10180                 }
10181
10182                 /* If we disable the crtc, disable all its connectors. Also, if
10183                  * the connector is on the changing crtc but not on the new
10184                  * connector list, disable it. */
10185                 if ((!set->fb || ro == set->num_connectors) &&
10186                     connector->base.encoder &&
10187                     connector->base.encoder->crtc == set->crtc) {
10188                         connector->new_encoder = NULL;
10189
10190                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10191                                 connector->base.base.id,
10192                                 drm_get_connector_name(&connector->base));
10193                 }
10194
10195
10196                 if (&connector->new_encoder->base != connector->base.encoder) {
10197                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10198                         config->mode_changed = true;
10199                 }
10200         }
10201         /* connector->new_encoder is now updated for all connectors. */
10202
10203         /* Update crtc of enabled connectors. */
10204         list_for_each_entry(connector, &dev->mode_config.connector_list,
10205                             base.head) {
10206                 struct drm_crtc *new_crtc;
10207
10208                 if (!connector->new_encoder)
10209                         continue;
10210
10211                 new_crtc = connector->new_encoder->base.crtc;
10212
10213                 for (ro = 0; ro < set->num_connectors; ro++) {
10214                         if (set->connectors[ro] == &connector->base)
10215                                 new_crtc = set->crtc;
10216                 }
10217
10218                 /* Make sure the new CRTC will work with the encoder */
10219                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10220                                          new_crtc)) {
10221                         return -EINVAL;
10222                 }
10223                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10224
10225                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10226                         connector->base.base.id,
10227                         drm_get_connector_name(&connector->base),
10228                         new_crtc->base.id);
10229         }
10230
10231         /* Check for any encoders that needs to be disabled. */
10232         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10233                             base.head) {
10234                 int num_connectors = 0;
10235                 list_for_each_entry(connector,
10236                                     &dev->mode_config.connector_list,
10237                                     base.head) {
10238                         if (connector->new_encoder == encoder) {
10239                                 WARN_ON(!connector->new_encoder->new_crtc);
10240                                 num_connectors++;
10241                         }
10242                 }
10243
10244                 if (num_connectors == 0)
10245                         encoder->new_crtc = NULL;
10246                 else if (num_connectors > 1)
10247                         return -EINVAL;
10248
10249                 /* Only now check for crtc changes so we don't miss encoders
10250                  * that will be disabled. */
10251                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10252                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10253                         config->mode_changed = true;
10254                 }
10255         }
10256         /* Now we've also updated encoder->new_crtc for all encoders. */
10257
10258         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10259                             base.head) {
10260                 crtc->new_enabled = false;
10261
10262                 list_for_each_entry(encoder,
10263                                     &dev->mode_config.encoder_list,
10264                                     base.head) {
10265                         if (encoder->new_crtc == crtc) {
10266                                 crtc->new_enabled = true;
10267                                 break;
10268                         }
10269                 }
10270
10271                 if (crtc->new_enabled != crtc->base.enabled) {
10272                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10273                                       crtc->new_enabled ? "en" : "dis");
10274                         config->mode_changed = true;
10275                 }
10276
10277                 if (crtc->new_enabled)
10278                         crtc->new_config = &crtc->config;
10279                 else
10280                         crtc->new_config = NULL;
10281         }
10282
10283         return 0;
10284 }
10285
10286 static void disable_crtc_nofb(struct intel_crtc *crtc)
10287 {
10288         struct drm_device *dev = crtc->base.dev;
10289         struct intel_encoder *encoder;
10290         struct intel_connector *connector;
10291
10292         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10293                       pipe_name(crtc->pipe));
10294
10295         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10296                 if (connector->new_encoder &&
10297                     connector->new_encoder->new_crtc == crtc)
10298                         connector->new_encoder = NULL;
10299         }
10300
10301         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10302                 if (encoder->new_crtc == crtc)
10303                         encoder->new_crtc = NULL;
10304         }
10305
10306         crtc->new_enabled = false;
10307         crtc->new_config = NULL;
10308 }
10309
10310 static int intel_crtc_set_config(struct drm_mode_set *set)
10311 {
10312         struct drm_device *dev;
10313         struct drm_mode_set save_set;
10314         struct intel_set_config *config;
10315         int ret;
10316
10317         BUG_ON(!set);
10318         BUG_ON(!set->crtc);
10319         BUG_ON(!set->crtc->helper_private);
10320
10321         /* Enforce sane interface api - has been abused by the fb helper. */
10322         BUG_ON(!set->mode && set->fb);
10323         BUG_ON(set->fb && set->num_connectors == 0);
10324
10325         if (set->fb) {
10326                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10327                                 set->crtc->base.id, set->fb->base.id,
10328                                 (int)set->num_connectors, set->x, set->y);
10329         } else {
10330                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10331         }
10332
10333         dev = set->crtc->dev;
10334
10335         ret = -ENOMEM;
10336         config = kzalloc(sizeof(*config), GFP_KERNEL);
10337         if (!config)
10338                 goto out_config;
10339
10340         ret = intel_set_config_save_state(dev, config);
10341         if (ret)
10342                 goto out_config;
10343
10344         save_set.crtc = set->crtc;
10345         save_set.mode = &set->crtc->mode;
10346         save_set.x = set->crtc->x;
10347         save_set.y = set->crtc->y;
10348         save_set.fb = set->crtc->fb;
10349
10350         /* Compute whether we need a full modeset, only an fb base update or no
10351          * change at all. In the future we might also check whether only the
10352          * mode changed, e.g. for LVDS where we only change the panel fitter in
10353          * such cases. */
10354         intel_set_config_compute_mode_changes(set, config);
10355
10356         ret = intel_modeset_stage_output_state(dev, set, config);
10357         if (ret)
10358                 goto fail;
10359
10360         if (config->mode_changed) {
10361                 ret = intel_set_mode(set->crtc, set->mode,
10362                                      set->x, set->y, set->fb);
10363         } else if (config->fb_changed) {
10364                 intel_crtc_wait_for_pending_flips(set->crtc);
10365
10366                 ret = intel_pipe_set_base(set->crtc,
10367                                           set->x, set->y, set->fb);
10368                 /*
10369                  * In the fastboot case this may be our only check of the
10370                  * state after boot.  It would be better to only do it on
10371                  * the first update, but we don't have a nice way of doing that
10372                  * (and really, set_config isn't used much for high freq page
10373                  * flipping, so increasing its cost here shouldn't be a big
10374                  * deal).
10375                  */
10376                 if (i915.fastboot && ret == 0)
10377                         intel_modeset_check_state(set->crtc->dev);
10378         }
10379
10380         if (ret) {
10381                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10382                               set->crtc->base.id, ret);
10383 fail:
10384                 intel_set_config_restore_state(dev, config);
10385
10386                 /*
10387                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10388                  * force the pipe off to avoid oopsing in the modeset code
10389                  * due to fb==NULL. This should only happen during boot since
10390                  * we don't yet reconstruct the FB from the hardware state.
10391                  */
10392                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10393                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10394
10395                 /* Try to restore the config */
10396                 if (config->mode_changed &&
10397                     intel_set_mode(save_set.crtc, save_set.mode,
10398                                    save_set.x, save_set.y, save_set.fb))
10399                         DRM_ERROR("failed to restore config after modeset failure\n");
10400         }
10401
10402 out_config:
10403         intel_set_config_free(config);
10404         return ret;
10405 }
10406
10407 static const struct drm_crtc_funcs intel_crtc_funcs = {
10408         .cursor_set = intel_crtc_cursor_set,
10409         .cursor_move = intel_crtc_cursor_move,
10410         .gamma_set = intel_crtc_gamma_set,
10411         .set_config = intel_crtc_set_config,
10412         .destroy = intel_crtc_destroy,
10413         .page_flip = intel_crtc_page_flip,
10414 };
10415
10416 static void intel_cpu_pll_init(struct drm_device *dev)
10417 {
10418         if (HAS_DDI(dev))
10419                 intel_ddi_pll_init(dev);
10420 }
10421
10422 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10423                                       struct intel_shared_dpll *pll,
10424                                       struct intel_dpll_hw_state *hw_state)
10425 {
10426         uint32_t val;
10427
10428         val = I915_READ(PCH_DPLL(pll->id));
10429         hw_state->dpll = val;
10430         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10431         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10432
10433         return val & DPLL_VCO_ENABLE;
10434 }
10435
10436 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10437                                   struct intel_shared_dpll *pll)
10438 {
10439         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10440         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10441 }
10442
10443 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10444                                 struct intel_shared_dpll *pll)
10445 {
10446         /* PCH refclock must be enabled first */
10447         ibx_assert_pch_refclk_enabled(dev_priv);
10448
10449         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10450
10451         /* Wait for the clocks to stabilize. */
10452         POSTING_READ(PCH_DPLL(pll->id));
10453         udelay(150);
10454
10455         /* The pixel multiplier can only be updated once the
10456          * DPLL is enabled and the clocks are stable.
10457          *
10458          * So write it again.
10459          */
10460         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10461         POSTING_READ(PCH_DPLL(pll->id));
10462         udelay(200);
10463 }
10464
10465 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10466                                  struct intel_shared_dpll *pll)
10467 {
10468         struct drm_device *dev = dev_priv->dev;
10469         struct intel_crtc *crtc;
10470
10471         /* Make sure no transcoder isn't still depending on us. */
10472         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10473                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10474                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10475         }
10476
10477         I915_WRITE(PCH_DPLL(pll->id), 0);
10478         POSTING_READ(PCH_DPLL(pll->id));
10479         udelay(200);
10480 }
10481
10482 static char *ibx_pch_dpll_names[] = {
10483         "PCH DPLL A",
10484         "PCH DPLL B",
10485 };
10486
10487 static void ibx_pch_dpll_init(struct drm_device *dev)
10488 {
10489         struct drm_i915_private *dev_priv = dev->dev_private;
10490         int i;
10491
10492         dev_priv->num_shared_dpll = 2;
10493
10494         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10495                 dev_priv->shared_dplls[i].id = i;
10496                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10497                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10498                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10499                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10500                 dev_priv->shared_dplls[i].get_hw_state =
10501                         ibx_pch_dpll_get_hw_state;
10502         }
10503 }
10504
10505 static void intel_shared_dpll_init(struct drm_device *dev)
10506 {
10507         struct drm_i915_private *dev_priv = dev->dev_private;
10508
10509         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10510                 ibx_pch_dpll_init(dev);
10511         else
10512                 dev_priv->num_shared_dpll = 0;
10513
10514         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10515 }
10516
10517 static void intel_crtc_init(struct drm_device *dev, int pipe)
10518 {
10519         drm_i915_private_t *dev_priv = dev->dev_private;
10520         struct intel_crtc *intel_crtc;
10521         int i;
10522
10523         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10524         if (intel_crtc == NULL)
10525                 return;
10526
10527         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10528
10529         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10530         for (i = 0; i < 256; i++) {
10531                 intel_crtc->lut_r[i] = i;
10532                 intel_crtc->lut_g[i] = i;
10533                 intel_crtc->lut_b[i] = i;
10534         }
10535
10536         /*
10537          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10538          * is hooked to plane B. Hence we want plane A feeding pipe B.
10539          */
10540         intel_crtc->pipe = pipe;
10541         intel_crtc->plane = pipe;
10542         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10543                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10544                 intel_crtc->plane = !pipe;
10545         }
10546
10547         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10548                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10549         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10550         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10551
10552         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10553 }
10554
10555 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10556 {
10557         struct drm_encoder *encoder = connector->base.encoder;
10558
10559         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10560
10561         if (!encoder)
10562                 return INVALID_PIPE;
10563
10564         return to_intel_crtc(encoder->crtc)->pipe;
10565 }
10566
10567 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10568                                 struct drm_file *file)
10569 {
10570         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10571         struct drm_mode_object *drmmode_obj;
10572         struct intel_crtc *crtc;
10573
10574         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10575                 return -ENODEV;
10576
10577         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10578                         DRM_MODE_OBJECT_CRTC);
10579
10580         if (!drmmode_obj) {
10581                 DRM_ERROR("no such CRTC id\n");
10582                 return -ENOENT;
10583         }
10584
10585         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10586         pipe_from_crtc_id->pipe = crtc->pipe;
10587
10588         return 0;
10589 }
10590
10591 static int intel_encoder_clones(struct intel_encoder *encoder)
10592 {
10593         struct drm_device *dev = encoder->base.dev;
10594         struct intel_encoder *source_encoder;
10595         int index_mask = 0;
10596         int entry = 0;
10597
10598         list_for_each_entry(source_encoder,
10599                             &dev->mode_config.encoder_list, base.head) {
10600                 if (encoders_cloneable(encoder, source_encoder))
10601                         index_mask |= (1 << entry);
10602
10603                 entry++;
10604         }
10605
10606         return index_mask;
10607 }
10608
10609 static bool has_edp_a(struct drm_device *dev)
10610 {
10611         struct drm_i915_private *dev_priv = dev->dev_private;
10612
10613         if (!IS_MOBILE(dev))
10614                 return false;
10615
10616         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10617                 return false;
10618
10619         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10620                 return false;
10621
10622         return true;
10623 }
10624
10625 const char *intel_output_name(int output)
10626 {
10627         static const char *names[] = {
10628                 [INTEL_OUTPUT_UNUSED] = "Unused",
10629                 [INTEL_OUTPUT_ANALOG] = "Analog",
10630                 [INTEL_OUTPUT_DVO] = "DVO",
10631                 [INTEL_OUTPUT_SDVO] = "SDVO",
10632                 [INTEL_OUTPUT_LVDS] = "LVDS",
10633                 [INTEL_OUTPUT_TVOUT] = "TV",
10634                 [INTEL_OUTPUT_HDMI] = "HDMI",
10635                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10636                 [INTEL_OUTPUT_EDP] = "eDP",
10637                 [INTEL_OUTPUT_DSI] = "DSI",
10638                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10639         };
10640
10641         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10642                 return "Invalid";
10643
10644         return names[output];
10645 }
10646
10647 static void intel_setup_outputs(struct drm_device *dev)
10648 {
10649         struct drm_i915_private *dev_priv = dev->dev_private;
10650         struct intel_encoder *encoder;
10651         bool dpd_is_edp = false;
10652
10653         intel_lvds_init(dev);
10654
10655         if (!IS_ULT(dev))
10656                 intel_crt_init(dev);
10657
10658         if (HAS_DDI(dev)) {
10659                 int found;
10660
10661                 /* Haswell uses DDI functions to detect digital outputs */
10662                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10663                 /* DDI A only supports eDP */
10664                 if (found)
10665                         intel_ddi_init(dev, PORT_A);
10666
10667                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10668                  * register */
10669                 found = I915_READ(SFUSE_STRAP);
10670
10671                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10672                         intel_ddi_init(dev, PORT_B);
10673                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10674                         intel_ddi_init(dev, PORT_C);
10675                 if (found & SFUSE_STRAP_DDID_DETECTED)
10676                         intel_ddi_init(dev, PORT_D);
10677         } else if (HAS_PCH_SPLIT(dev)) {
10678                 int found;
10679                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10680
10681                 if (has_edp_a(dev))
10682                         intel_dp_init(dev, DP_A, PORT_A);
10683
10684                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10685                         /* PCH SDVOB multiplex with HDMIB */
10686                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10687                         if (!found)
10688                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10689                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10690                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10691                 }
10692
10693                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10694                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10695
10696                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10697                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10698
10699                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10700                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10701
10702                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10703                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10704         } else if (IS_VALLEYVIEW(dev)) {
10705                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10706                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10707                                         PORT_B);
10708                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10709                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10710                 }
10711
10712                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10713                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10714                                         PORT_C);
10715                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10716                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10717                 }
10718
10719                 intel_dsi_init(dev);
10720         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10721                 bool found = false;
10722
10723                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10724                         DRM_DEBUG_KMS("probing SDVOB\n");
10725                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10726                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10727                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10728                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10729                         }
10730
10731                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10732                                 intel_dp_init(dev, DP_B, PORT_B);
10733                 }
10734
10735                 /* Before G4X SDVOC doesn't have its own detect register */
10736
10737                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10738                         DRM_DEBUG_KMS("probing SDVOC\n");
10739                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10740                 }
10741
10742                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10743
10744                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10745                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10746                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10747                         }
10748                         if (SUPPORTS_INTEGRATED_DP(dev))
10749                                 intel_dp_init(dev, DP_C, PORT_C);
10750                 }
10751
10752                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10753                     (I915_READ(DP_D) & DP_DETECTED))
10754                         intel_dp_init(dev, DP_D, PORT_D);
10755         } else if (IS_GEN2(dev))
10756                 intel_dvo_init(dev);
10757
10758         if (SUPPORTS_TV(dev))
10759                 intel_tv_init(dev);
10760
10761         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10762                 encoder->base.possible_crtcs = encoder->crtc_mask;
10763                 encoder->base.possible_clones =
10764                         intel_encoder_clones(encoder);
10765         }
10766
10767         intel_init_pch_refclk(dev);
10768
10769         drm_helper_move_panel_connectors_to_head(dev);
10770 }
10771
10772 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10773 {
10774         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10775
10776         drm_framebuffer_cleanup(fb);
10777         WARN_ON(!intel_fb->obj->framebuffer_references--);
10778         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10779         kfree(intel_fb);
10780 }
10781
10782 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10783                                                 struct drm_file *file,
10784                                                 unsigned int *handle)
10785 {
10786         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10787         struct drm_i915_gem_object *obj = intel_fb->obj;
10788
10789         return drm_gem_handle_create(file, &obj->base, handle);
10790 }
10791
10792 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10793         .destroy = intel_user_framebuffer_destroy,
10794         .create_handle = intel_user_framebuffer_create_handle,
10795 };
10796
10797 static int intel_framebuffer_init(struct drm_device *dev,
10798                                   struct intel_framebuffer *intel_fb,
10799                                   struct drm_mode_fb_cmd2 *mode_cmd,
10800                                   struct drm_i915_gem_object *obj)
10801 {
10802         int aligned_height;
10803         int pitch_limit;
10804         int ret;
10805
10806         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10807
10808         if (obj->tiling_mode == I915_TILING_Y) {
10809                 DRM_DEBUG("hardware does not support tiling Y\n");
10810                 return -EINVAL;
10811         }
10812
10813         if (mode_cmd->pitches[0] & 63) {
10814                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10815                           mode_cmd->pitches[0]);
10816                 return -EINVAL;
10817         }
10818
10819         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10820                 pitch_limit = 32*1024;
10821         } else if (INTEL_INFO(dev)->gen >= 4) {
10822                 if (obj->tiling_mode)
10823                         pitch_limit = 16*1024;
10824                 else
10825                         pitch_limit = 32*1024;
10826         } else if (INTEL_INFO(dev)->gen >= 3) {
10827                 if (obj->tiling_mode)
10828                         pitch_limit = 8*1024;
10829                 else
10830                         pitch_limit = 16*1024;
10831         } else
10832                 /* XXX DSPC is limited to 4k tiled */
10833                 pitch_limit = 8*1024;
10834
10835         if (mode_cmd->pitches[0] > pitch_limit) {
10836                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10837                           obj->tiling_mode ? "tiled" : "linear",
10838                           mode_cmd->pitches[0], pitch_limit);
10839                 return -EINVAL;
10840         }
10841
10842         if (obj->tiling_mode != I915_TILING_NONE &&
10843             mode_cmd->pitches[0] != obj->stride) {
10844                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10845                           mode_cmd->pitches[0], obj->stride);
10846                 return -EINVAL;
10847         }
10848
10849         /* Reject formats not supported by any plane early. */
10850         switch (mode_cmd->pixel_format) {
10851         case DRM_FORMAT_C8:
10852         case DRM_FORMAT_RGB565:
10853         case DRM_FORMAT_XRGB8888:
10854         case DRM_FORMAT_ARGB8888:
10855                 break;
10856         case DRM_FORMAT_XRGB1555:
10857         case DRM_FORMAT_ARGB1555:
10858                 if (INTEL_INFO(dev)->gen > 3) {
10859                         DRM_DEBUG("unsupported pixel format: %s\n",
10860                                   drm_get_format_name(mode_cmd->pixel_format));
10861                         return -EINVAL;
10862                 }
10863                 break;
10864         case DRM_FORMAT_XBGR8888:
10865         case DRM_FORMAT_ABGR8888:
10866         case DRM_FORMAT_XRGB2101010:
10867         case DRM_FORMAT_ARGB2101010:
10868         case DRM_FORMAT_XBGR2101010:
10869         case DRM_FORMAT_ABGR2101010:
10870                 if (INTEL_INFO(dev)->gen < 4) {
10871                         DRM_DEBUG("unsupported pixel format: %s\n",
10872                                   drm_get_format_name(mode_cmd->pixel_format));
10873                         return -EINVAL;
10874                 }
10875                 break;
10876         case DRM_FORMAT_YUYV:
10877         case DRM_FORMAT_UYVY:
10878         case DRM_FORMAT_YVYU:
10879         case DRM_FORMAT_VYUY:
10880                 if (INTEL_INFO(dev)->gen < 5) {
10881                         DRM_DEBUG("unsupported pixel format: %s\n",
10882                                   drm_get_format_name(mode_cmd->pixel_format));
10883                         return -EINVAL;
10884                 }
10885                 break;
10886         default:
10887                 DRM_DEBUG("unsupported pixel format: %s\n",
10888                           drm_get_format_name(mode_cmd->pixel_format));
10889                 return -EINVAL;
10890         }
10891
10892         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10893         if (mode_cmd->offsets[0] != 0)
10894                 return -EINVAL;
10895
10896         aligned_height = intel_align_height(dev, mode_cmd->height,
10897                                             obj->tiling_mode);
10898         /* FIXME drm helper for size checks (especially planar formats)? */
10899         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10900                 return -EINVAL;
10901
10902         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10903         intel_fb->obj = obj;
10904         intel_fb->obj->framebuffer_references++;
10905
10906         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10907         if (ret) {
10908                 DRM_ERROR("framebuffer init failed %d\n", ret);
10909                 return ret;
10910         }
10911
10912         return 0;
10913 }
10914
10915 static struct drm_framebuffer *
10916 intel_user_framebuffer_create(struct drm_device *dev,
10917                               struct drm_file *filp,
10918                               struct drm_mode_fb_cmd2 *mode_cmd)
10919 {
10920         struct drm_i915_gem_object *obj;
10921
10922         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10923                                                 mode_cmd->handles[0]));
10924         if (&obj->base == NULL)
10925                 return ERR_PTR(-ENOENT);
10926
10927         return intel_framebuffer_create(dev, mode_cmd, obj);
10928 }
10929
10930 #ifndef CONFIG_DRM_I915_FBDEV
10931 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10932 {
10933 }
10934 #endif
10935
10936 static const struct drm_mode_config_funcs intel_mode_funcs = {
10937         .fb_create = intel_user_framebuffer_create,
10938         .output_poll_changed = intel_fbdev_output_poll_changed,
10939 };
10940
10941 /* Set up chip specific display functions */
10942 static void intel_init_display(struct drm_device *dev)
10943 {
10944         struct drm_i915_private *dev_priv = dev->dev_private;
10945
10946         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10947                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10948         else if (IS_VALLEYVIEW(dev))
10949                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10950         else if (IS_PINEVIEW(dev))
10951                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10952         else
10953                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10954
10955         if (HAS_DDI(dev)) {
10956                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10957                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10958                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10959                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10960                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10961                 dev_priv->display.off = haswell_crtc_off;
10962                 dev_priv->display.update_primary_plane =
10963                         ironlake_update_primary_plane;
10964         } else if (HAS_PCH_SPLIT(dev)) {
10965                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10966                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10967                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10968                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10969                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10970                 dev_priv->display.off = ironlake_crtc_off;
10971                 dev_priv->display.update_primary_plane =
10972                         ironlake_update_primary_plane;
10973         } else if (IS_VALLEYVIEW(dev)) {
10974                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10975                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
10976                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10977                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10978                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10979                 dev_priv->display.off = i9xx_crtc_off;
10980                 dev_priv->display.update_primary_plane =
10981                         i9xx_update_primary_plane;
10982         } else {
10983                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10984                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
10985                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10986                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10987                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10988                 dev_priv->display.off = i9xx_crtc_off;
10989                 dev_priv->display.update_primary_plane =
10990                         i9xx_update_primary_plane;
10991         }
10992
10993         /* Returns the core display clock speed */
10994         if (IS_VALLEYVIEW(dev))
10995                 dev_priv->display.get_display_clock_speed =
10996                         valleyview_get_display_clock_speed;
10997         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10998                 dev_priv->display.get_display_clock_speed =
10999                         i945_get_display_clock_speed;
11000         else if (IS_I915G(dev))
11001                 dev_priv->display.get_display_clock_speed =
11002                         i915_get_display_clock_speed;
11003         else if (IS_I945GM(dev) || IS_845G(dev))
11004                 dev_priv->display.get_display_clock_speed =
11005                         i9xx_misc_get_display_clock_speed;
11006         else if (IS_PINEVIEW(dev))
11007                 dev_priv->display.get_display_clock_speed =
11008                         pnv_get_display_clock_speed;
11009         else if (IS_I915GM(dev))
11010                 dev_priv->display.get_display_clock_speed =
11011                         i915gm_get_display_clock_speed;
11012         else if (IS_I865G(dev))
11013                 dev_priv->display.get_display_clock_speed =
11014                         i865_get_display_clock_speed;
11015         else if (IS_I85X(dev))
11016                 dev_priv->display.get_display_clock_speed =
11017                         i855_get_display_clock_speed;
11018         else /* 852, 830 */
11019                 dev_priv->display.get_display_clock_speed =
11020                         i830_get_display_clock_speed;
11021
11022         if (HAS_PCH_SPLIT(dev)) {
11023                 if (IS_GEN5(dev)) {
11024                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11025                         dev_priv->display.write_eld = ironlake_write_eld;
11026                 } else if (IS_GEN6(dev)) {
11027                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11028                         dev_priv->display.write_eld = ironlake_write_eld;
11029                 } else if (IS_IVYBRIDGE(dev)) {
11030                         /* FIXME: detect B0+ stepping and use auto training */
11031                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11032                         dev_priv->display.write_eld = ironlake_write_eld;
11033                         dev_priv->display.modeset_global_resources =
11034                                 ivb_modeset_global_resources;
11035                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11036                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11037                         dev_priv->display.write_eld = haswell_write_eld;
11038                         dev_priv->display.modeset_global_resources =
11039                                 haswell_modeset_global_resources;
11040                 }
11041         } else if (IS_G4X(dev)) {
11042                 dev_priv->display.write_eld = g4x_write_eld;
11043         } else if (IS_VALLEYVIEW(dev)) {
11044                 dev_priv->display.modeset_global_resources =
11045                         valleyview_modeset_global_resources;
11046                 dev_priv->display.write_eld = ironlake_write_eld;
11047         }
11048
11049         /* Default just returns -ENODEV to indicate unsupported */
11050         dev_priv->display.queue_flip = intel_default_queue_flip;
11051
11052         switch (INTEL_INFO(dev)->gen) {
11053         case 2:
11054                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11055                 break;
11056
11057         case 3:
11058                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11059                 break;
11060
11061         case 4:
11062         case 5:
11063                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11064                 break;
11065
11066         case 6:
11067                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11068                 break;
11069         case 7:
11070         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11071                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11072                 break;
11073         }
11074
11075         intel_panel_init_backlight_funcs(dev);
11076 }
11077
11078 /*
11079  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11080  * resume, or other times.  This quirk makes sure that's the case for
11081  * affected systems.
11082  */
11083 static void quirk_pipea_force(struct drm_device *dev)
11084 {
11085         struct drm_i915_private *dev_priv = dev->dev_private;
11086
11087         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11088         DRM_INFO("applying pipe a force quirk\n");
11089 }
11090
11091 /*
11092  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11093  */
11094 static void quirk_ssc_force_disable(struct drm_device *dev)
11095 {
11096         struct drm_i915_private *dev_priv = dev->dev_private;
11097         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11098         DRM_INFO("applying lvds SSC disable quirk\n");
11099 }
11100
11101 /*
11102  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11103  * brightness value
11104  */
11105 static void quirk_invert_brightness(struct drm_device *dev)
11106 {
11107         struct drm_i915_private *dev_priv = dev->dev_private;
11108         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11109         DRM_INFO("applying inverted panel brightness quirk\n");
11110 }
11111
11112 struct intel_quirk {
11113         int device;
11114         int subsystem_vendor;
11115         int subsystem_device;
11116         void (*hook)(struct drm_device *dev);
11117 };
11118
11119 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11120 struct intel_dmi_quirk {
11121         void (*hook)(struct drm_device *dev);
11122         const struct dmi_system_id (*dmi_id_list)[];
11123 };
11124
11125 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11126 {
11127         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11128         return 1;
11129 }
11130
11131 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11132         {
11133                 .dmi_id_list = &(const struct dmi_system_id[]) {
11134                         {
11135                                 .callback = intel_dmi_reverse_brightness,
11136                                 .ident = "NCR Corporation",
11137                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11138                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11139                                 },
11140                         },
11141                         { }  /* terminating entry */
11142                 },
11143                 .hook = quirk_invert_brightness,
11144         },
11145 };
11146
11147 static struct intel_quirk intel_quirks[] = {
11148         /* HP Mini needs pipe A force quirk (LP: #322104) */
11149         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11150
11151         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11152         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11153
11154         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11155         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11156
11157         /* 830 needs to leave pipe A & dpll A up */
11158         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11159
11160         /* Lenovo U160 cannot use SSC on LVDS */
11161         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11162
11163         /* Sony Vaio Y cannot use SSC on LVDS */
11164         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11165
11166         /* Acer Aspire 5734Z must invert backlight brightness */
11167         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11168
11169         /* Acer/eMachines G725 */
11170         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11171
11172         /* Acer/eMachines e725 */
11173         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11174
11175         /* Acer/Packard Bell NCL20 */
11176         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11177
11178         /* Acer Aspire 4736Z */
11179         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11180
11181         /* Acer Aspire 5336 */
11182         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11183 };
11184
11185 static void intel_init_quirks(struct drm_device *dev)
11186 {
11187         struct pci_dev *d = dev->pdev;
11188         int i;
11189
11190         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11191                 struct intel_quirk *q = &intel_quirks[i];
11192
11193                 if (d->device == q->device &&
11194                     (d->subsystem_vendor == q->subsystem_vendor ||
11195                      q->subsystem_vendor == PCI_ANY_ID) &&
11196                     (d->subsystem_device == q->subsystem_device ||
11197                      q->subsystem_device == PCI_ANY_ID))
11198                         q->hook(dev);
11199         }
11200         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11201                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11202                         intel_dmi_quirks[i].hook(dev);
11203         }
11204 }
11205
11206 /* Disable the VGA plane that we never use */
11207 static void i915_disable_vga(struct drm_device *dev)
11208 {
11209         struct drm_i915_private *dev_priv = dev->dev_private;
11210         u8 sr1;
11211         u32 vga_reg = i915_vgacntrl_reg(dev);
11212
11213         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11214         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11215         outb(SR01, VGA_SR_INDEX);
11216         sr1 = inb(VGA_SR_DATA);
11217         outb(sr1 | 1<<5, VGA_SR_DATA);
11218         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11219         udelay(300);
11220
11221         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11222         POSTING_READ(vga_reg);
11223 }
11224
11225 void intel_modeset_init_hw(struct drm_device *dev)
11226 {
11227         intel_prepare_ddi(dev);
11228
11229         intel_init_clock_gating(dev);
11230
11231         intel_reset_dpio(dev);
11232
11233         mutex_lock(&dev->struct_mutex);
11234         intel_enable_gt_powersave(dev);
11235         mutex_unlock(&dev->struct_mutex);
11236 }
11237
11238 void intel_modeset_suspend_hw(struct drm_device *dev)
11239 {
11240         intel_suspend_hw(dev);
11241 }
11242
11243 void intel_modeset_init(struct drm_device *dev)
11244 {
11245         struct drm_i915_private *dev_priv = dev->dev_private;
11246         int sprite, ret;
11247         enum pipe pipe;
11248         struct intel_crtc *crtc;
11249
11250         drm_mode_config_init(dev);
11251
11252         dev->mode_config.min_width = 0;
11253         dev->mode_config.min_height = 0;
11254
11255         dev->mode_config.preferred_depth = 24;
11256         dev->mode_config.prefer_shadow = 1;
11257
11258         dev->mode_config.funcs = &intel_mode_funcs;
11259
11260         intel_init_quirks(dev);
11261
11262         intel_init_pm(dev);
11263
11264         if (INTEL_INFO(dev)->num_pipes == 0)
11265                 return;
11266
11267         intel_init_display(dev);
11268
11269         if (IS_GEN2(dev)) {
11270                 dev->mode_config.max_width = 2048;
11271                 dev->mode_config.max_height = 2048;
11272         } else if (IS_GEN3(dev)) {
11273                 dev->mode_config.max_width = 4096;
11274                 dev->mode_config.max_height = 4096;
11275         } else {
11276                 dev->mode_config.max_width = 8192;
11277                 dev->mode_config.max_height = 8192;
11278         }
11279         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11280
11281         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11282                       INTEL_INFO(dev)->num_pipes,
11283                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11284
11285         for_each_pipe(pipe) {
11286                 intel_crtc_init(dev, pipe);
11287                 for_each_sprite(pipe, sprite) {
11288                         ret = intel_plane_init(dev, pipe, sprite);
11289                         if (ret)
11290                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11291                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11292                 }
11293         }
11294
11295         intel_init_dpio(dev);
11296         intel_reset_dpio(dev);
11297
11298         intel_cpu_pll_init(dev);
11299         intel_shared_dpll_init(dev);
11300
11301         /* Just disable it once at startup */
11302         i915_disable_vga(dev);
11303         intel_setup_outputs(dev);
11304
11305         /* Just in case the BIOS is doing something questionable. */
11306         intel_disable_fbc(dev);
11307
11308         mutex_lock(&dev->mode_config.mutex);
11309         intel_modeset_setup_hw_state(dev, false);
11310         mutex_unlock(&dev->mode_config.mutex);
11311
11312         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11313                             base.head) {
11314                 if (!crtc->active)
11315                         continue;
11316
11317                 /*
11318                  * Note that reserving the BIOS fb up front prevents us
11319                  * from stuffing other stolen allocations like the ring
11320                  * on top.  This prevents some ugliness at boot time, and
11321                  * can even allow for smooth boot transitions if the BIOS
11322                  * fb is large enough for the active pipe configuration.
11323                  */
11324                 if (dev_priv->display.get_plane_config) {
11325                         dev_priv->display.get_plane_config(crtc,
11326                                                            &crtc->plane_config);
11327                         /*
11328                          * If the fb is shared between multiple heads, we'll
11329                          * just get the first one.
11330                          */
11331                         intel_find_plane_obj(crtc, &crtc->plane_config);
11332                 }
11333         }
11334 }
11335
11336 static void
11337 intel_connector_break_all_links(struct intel_connector *connector)
11338 {
11339         connector->base.dpms = DRM_MODE_DPMS_OFF;
11340         connector->base.encoder = NULL;
11341         connector->encoder->connectors_active = false;
11342         connector->encoder->base.crtc = NULL;
11343 }
11344
11345 static void intel_enable_pipe_a(struct drm_device *dev)
11346 {
11347         struct intel_connector *connector;
11348         struct drm_connector *crt = NULL;
11349         struct intel_load_detect_pipe load_detect_temp;
11350
11351         /* We can't just switch on the pipe A, we need to set things up with a
11352          * proper mode and output configuration. As a gross hack, enable pipe A
11353          * by enabling the load detect pipe once. */
11354         list_for_each_entry(connector,
11355                             &dev->mode_config.connector_list,
11356                             base.head) {
11357                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11358                         crt = &connector->base;
11359                         break;
11360                 }
11361         }
11362
11363         if (!crt)
11364                 return;
11365
11366         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11367                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11368
11369
11370 }
11371
11372 static bool
11373 intel_check_plane_mapping(struct intel_crtc *crtc)
11374 {
11375         struct drm_device *dev = crtc->base.dev;
11376         struct drm_i915_private *dev_priv = dev->dev_private;
11377         u32 reg, val;
11378
11379         if (INTEL_INFO(dev)->num_pipes == 1)
11380                 return true;
11381
11382         reg = DSPCNTR(!crtc->plane);
11383         val = I915_READ(reg);
11384
11385         if ((val & DISPLAY_PLANE_ENABLE) &&
11386             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11387                 return false;
11388
11389         return true;
11390 }
11391
11392 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11393 {
11394         struct drm_device *dev = crtc->base.dev;
11395         struct drm_i915_private *dev_priv = dev->dev_private;
11396         u32 reg;
11397
11398         /* Clear any frame start delays used for debugging left by the BIOS */
11399         reg = PIPECONF(crtc->config.cpu_transcoder);
11400         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11401
11402         /* We need to sanitize the plane -> pipe mapping first because this will
11403          * disable the crtc (and hence change the state) if it is wrong. Note
11404          * that gen4+ has a fixed plane -> pipe mapping.  */
11405         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11406                 struct intel_connector *connector;
11407                 bool plane;
11408
11409                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11410                               crtc->base.base.id);
11411
11412                 /* Pipe has the wrong plane attached and the plane is active.
11413                  * Temporarily change the plane mapping and disable everything
11414                  * ...  */
11415                 plane = crtc->plane;
11416                 crtc->plane = !plane;
11417                 dev_priv->display.crtc_disable(&crtc->base);
11418                 crtc->plane = plane;
11419
11420                 /* ... and break all links. */
11421                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11422                                     base.head) {
11423                         if (connector->encoder->base.crtc != &crtc->base)
11424                                 continue;
11425
11426                         intel_connector_break_all_links(connector);
11427                 }
11428
11429                 WARN_ON(crtc->active);
11430                 crtc->base.enabled = false;
11431         }
11432
11433         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11434             crtc->pipe == PIPE_A && !crtc->active) {
11435                 /* BIOS forgot to enable pipe A, this mostly happens after
11436                  * resume. Force-enable the pipe to fix this, the update_dpms
11437                  * call below we restore the pipe to the right state, but leave
11438                  * the required bits on. */
11439                 intel_enable_pipe_a(dev);
11440         }
11441
11442         /* Adjust the state of the output pipe according to whether we
11443          * have active connectors/encoders. */
11444         intel_crtc_update_dpms(&crtc->base);
11445
11446         if (crtc->active != crtc->base.enabled) {
11447                 struct intel_encoder *encoder;
11448
11449                 /* This can happen either due to bugs in the get_hw_state
11450                  * functions or because the pipe is force-enabled due to the
11451                  * pipe A quirk. */
11452                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11453                               crtc->base.base.id,
11454                               crtc->base.enabled ? "enabled" : "disabled",
11455                               crtc->active ? "enabled" : "disabled");
11456
11457                 crtc->base.enabled = crtc->active;
11458
11459                 /* Because we only establish the connector -> encoder ->
11460                  * crtc links if something is active, this means the
11461                  * crtc is now deactivated. Break the links. connector
11462                  * -> encoder links are only establish when things are
11463                  *  actually up, hence no need to break them. */
11464                 WARN_ON(crtc->active);
11465
11466                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11467                         WARN_ON(encoder->connectors_active);
11468                         encoder->base.crtc = NULL;
11469                 }
11470         }
11471 }
11472
11473 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11474 {
11475         struct intel_connector *connector;
11476         struct drm_device *dev = encoder->base.dev;
11477
11478         /* We need to check both for a crtc link (meaning that the
11479          * encoder is active and trying to read from a pipe) and the
11480          * pipe itself being active. */
11481         bool has_active_crtc = encoder->base.crtc &&
11482                 to_intel_crtc(encoder->base.crtc)->active;
11483
11484         if (encoder->connectors_active && !has_active_crtc) {
11485                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11486                               encoder->base.base.id,
11487                               drm_get_encoder_name(&encoder->base));
11488
11489                 /* Connector is active, but has no active pipe. This is
11490                  * fallout from our resume register restoring. Disable
11491                  * the encoder manually again. */
11492                 if (encoder->base.crtc) {
11493                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11494                                       encoder->base.base.id,
11495                                       drm_get_encoder_name(&encoder->base));
11496                         encoder->disable(encoder);
11497                 }
11498
11499                 /* Inconsistent output/port/pipe state happens presumably due to
11500                  * a bug in one of the get_hw_state functions. Or someplace else
11501                  * in our code, like the register restore mess on resume. Clamp
11502                  * things to off as a safer default. */
11503                 list_for_each_entry(connector,
11504                                     &dev->mode_config.connector_list,
11505                                     base.head) {
11506                         if (connector->encoder != encoder)
11507                                 continue;
11508
11509                         intel_connector_break_all_links(connector);
11510                 }
11511         }
11512         /* Enabled encoders without active connectors will be fixed in
11513          * the crtc fixup. */
11514 }
11515
11516 void i915_redisable_vga_power_on(struct drm_device *dev)
11517 {
11518         struct drm_i915_private *dev_priv = dev->dev_private;
11519         u32 vga_reg = i915_vgacntrl_reg(dev);
11520
11521         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11522                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11523                 i915_disable_vga(dev);
11524         }
11525 }
11526
11527 void i915_redisable_vga(struct drm_device *dev)
11528 {
11529         struct drm_i915_private *dev_priv = dev->dev_private;
11530
11531         /* This function can be called both from intel_modeset_setup_hw_state or
11532          * at a very early point in our resume sequence, where the power well
11533          * structures are not yet restored. Since this function is at a very
11534          * paranoid "someone might have enabled VGA while we were not looking"
11535          * level, just check if the power well is enabled instead of trying to
11536          * follow the "don't touch the power well if we don't need it" policy
11537          * the rest of the driver uses. */
11538         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11539                 return;
11540
11541         i915_redisable_vga_power_on(dev);
11542 }
11543
11544 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11545 {
11546         struct drm_i915_private *dev_priv = dev->dev_private;
11547         enum pipe pipe;
11548         struct intel_crtc *crtc;
11549         struct intel_encoder *encoder;
11550         struct intel_connector *connector;
11551         int i;
11552
11553         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11554                             base.head) {
11555                 memset(&crtc->config, 0, sizeof(crtc->config));
11556
11557                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11558                                                                  &crtc->config);
11559
11560                 crtc->base.enabled = crtc->active;
11561                 crtc->primary_enabled = crtc->active;
11562
11563                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11564                               crtc->base.base.id,
11565                               crtc->active ? "enabled" : "disabled");
11566         }
11567
11568         /* FIXME: Smash this into the new shared dpll infrastructure. */
11569         if (HAS_DDI(dev))
11570                 intel_ddi_setup_hw_pll_state(dev);
11571
11572         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11573                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11574
11575                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11576                 pll->active = 0;
11577                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11578                                     base.head) {
11579                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11580                                 pll->active++;
11581                 }
11582                 pll->refcount = pll->active;
11583
11584                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11585                               pll->name, pll->refcount, pll->on);
11586         }
11587
11588         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11589                             base.head) {
11590                 pipe = 0;
11591
11592                 if (encoder->get_hw_state(encoder, &pipe)) {
11593                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11594                         encoder->base.crtc = &crtc->base;
11595                         encoder->get_config(encoder, &crtc->config);
11596                 } else {
11597                         encoder->base.crtc = NULL;
11598                 }
11599
11600                 encoder->connectors_active = false;
11601                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11602                               encoder->base.base.id,
11603                               drm_get_encoder_name(&encoder->base),
11604                               encoder->base.crtc ? "enabled" : "disabled",
11605                               pipe_name(pipe));
11606         }
11607
11608         list_for_each_entry(connector, &dev->mode_config.connector_list,
11609                             base.head) {
11610                 if (connector->get_hw_state(connector)) {
11611                         connector->base.dpms = DRM_MODE_DPMS_ON;
11612                         connector->encoder->connectors_active = true;
11613                         connector->base.encoder = &connector->encoder->base;
11614                 } else {
11615                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11616                         connector->base.encoder = NULL;
11617                 }
11618                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11619                               connector->base.base.id,
11620                               drm_get_connector_name(&connector->base),
11621                               connector->base.encoder ? "enabled" : "disabled");
11622         }
11623 }
11624
11625 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11626  * and i915 state tracking structures. */
11627 void intel_modeset_setup_hw_state(struct drm_device *dev,
11628                                   bool force_restore)
11629 {
11630         struct drm_i915_private *dev_priv = dev->dev_private;
11631         enum pipe pipe;
11632         struct intel_crtc *crtc;
11633         struct intel_encoder *encoder;
11634         int i;
11635
11636         intel_modeset_readout_hw_state(dev);
11637
11638         /*
11639          * Now that we have the config, copy it to each CRTC struct
11640          * Note that this could go away if we move to using crtc_config
11641          * checking everywhere.
11642          */
11643         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11644                             base.head) {
11645                 if (crtc->active && i915.fastboot) {
11646                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11647                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11648                                       crtc->base.base.id);
11649                         drm_mode_debug_printmodeline(&crtc->base.mode);
11650                 }
11651         }
11652
11653         /* HW state is read out, now we need to sanitize this mess. */
11654         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11655                             base.head) {
11656                 intel_sanitize_encoder(encoder);
11657         }
11658
11659         for_each_pipe(pipe) {
11660                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11661                 intel_sanitize_crtc(crtc);
11662                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11663         }
11664
11665         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11666                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11667
11668                 if (!pll->on || pll->active)
11669                         continue;
11670
11671                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11672
11673                 pll->disable(dev_priv, pll);
11674                 pll->on = false;
11675         }
11676
11677         if (HAS_PCH_SPLIT(dev))
11678                 ilk_wm_get_hw_state(dev);
11679
11680         if (force_restore) {
11681                 i915_redisable_vga(dev);
11682
11683                 /*
11684                  * We need to use raw interfaces for restoring state to avoid
11685                  * checking (bogus) intermediate states.
11686                  */
11687                 for_each_pipe(pipe) {
11688                         struct drm_crtc *crtc =
11689                                 dev_priv->pipe_to_crtc_mapping[pipe];
11690
11691                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11692                                          crtc->fb);
11693                 }
11694         } else {
11695                 intel_modeset_update_staged_output_state(dev);
11696         }
11697
11698         intel_modeset_check_state(dev);
11699 }
11700
11701 void intel_modeset_gem_init(struct drm_device *dev)
11702 {
11703         struct drm_crtc *c;
11704         struct intel_framebuffer *fb;
11705
11706         intel_modeset_init_hw(dev);
11707
11708         intel_setup_overlay(dev);
11709
11710         /*
11711          * Make sure any fbs we allocated at startup are properly
11712          * pinned & fenced.  When we do the allocation it's too early
11713          * for this.
11714          */
11715         mutex_lock(&dev->struct_mutex);
11716         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11717                 if (!c->fb)
11718                         continue;
11719
11720                 fb = to_intel_framebuffer(c->fb);
11721                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11722                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
11723                                   to_intel_crtc(c)->pipe);
11724                         drm_framebuffer_unreference(c->fb);
11725                         c->fb = NULL;
11726                 }
11727         }
11728         mutex_unlock(&dev->struct_mutex);
11729 }
11730
11731 void intel_connector_unregister(struct intel_connector *intel_connector)
11732 {
11733         struct drm_connector *connector = &intel_connector->base;
11734
11735         intel_panel_destroy_backlight(connector);
11736         drm_sysfs_connector_remove(connector);
11737 }
11738
11739 void intel_modeset_cleanup(struct drm_device *dev)
11740 {
11741         struct drm_i915_private *dev_priv = dev->dev_private;
11742         struct drm_crtc *crtc;
11743         struct drm_connector *connector;
11744
11745         /*
11746          * Interrupts and polling as the first thing to avoid creating havoc.
11747          * Too much stuff here (turning of rps, connectors, ...) would
11748          * experience fancy races otherwise.
11749          */
11750         drm_irq_uninstall(dev);
11751         cancel_work_sync(&dev_priv->hotplug_work);
11752         /*
11753          * Due to the hpd irq storm handling the hotplug work can re-arm the
11754          * poll handlers. Hence disable polling after hpd handling is shut down.
11755          */
11756         drm_kms_helper_poll_fini(dev);
11757
11758         mutex_lock(&dev->struct_mutex);
11759
11760         intel_unregister_dsm_handler();
11761
11762         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11763                 /* Skip inactive CRTCs */
11764                 if (!crtc->fb)
11765                         continue;
11766
11767                 intel_increase_pllclock(crtc);
11768         }
11769
11770         intel_disable_fbc(dev);
11771
11772         intel_disable_gt_powersave(dev);
11773
11774         ironlake_teardown_rc6(dev);
11775
11776         mutex_unlock(&dev->struct_mutex);
11777
11778         /* flush any delayed tasks or pending work */
11779         flush_scheduled_work();
11780
11781         /* destroy the backlight and sysfs files before encoders/connectors */
11782         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11783                 struct intel_connector *intel_connector;
11784
11785                 intel_connector = to_intel_connector(connector);
11786                 intel_connector->unregister(intel_connector);
11787         }
11788
11789         drm_mode_config_cleanup(dev);
11790
11791         intel_cleanup_overlay(dev);
11792 }
11793
11794 /*
11795  * Return which encoder is currently attached for connector.
11796  */
11797 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11798 {
11799         return &intel_attached_encoder(connector)->base;
11800 }
11801
11802 void intel_connector_attach_encoder(struct intel_connector *connector,
11803                                     struct intel_encoder *encoder)
11804 {
11805         connector->encoder = encoder;
11806         drm_mode_connector_attach_encoder(&connector->base,
11807                                           &encoder->base);
11808 }
11809
11810 /*
11811  * set vga decode state - true == enable VGA decode
11812  */
11813 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11814 {
11815         struct drm_i915_private *dev_priv = dev->dev_private;
11816         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11817         u16 gmch_ctrl;
11818
11819         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11820                 DRM_ERROR("failed to read control word\n");
11821                 return -EIO;
11822         }
11823
11824         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11825                 return 0;
11826
11827         if (state)
11828                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11829         else
11830                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11831
11832         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11833                 DRM_ERROR("failed to write control word\n");
11834                 return -EIO;
11835         }
11836
11837         return 0;
11838 }
11839
11840 struct intel_display_error_state {
11841
11842         u32 power_well_driver;
11843
11844         int num_transcoders;
11845
11846         struct intel_cursor_error_state {
11847                 u32 control;
11848                 u32 position;
11849                 u32 base;
11850                 u32 size;
11851         } cursor[I915_MAX_PIPES];
11852
11853         struct intel_pipe_error_state {
11854                 bool power_domain_on;
11855                 u32 source;
11856         } pipe[I915_MAX_PIPES];
11857
11858         struct intel_plane_error_state {
11859                 u32 control;
11860                 u32 stride;
11861                 u32 size;
11862                 u32 pos;
11863                 u32 addr;
11864                 u32 surface;
11865                 u32 tile_offset;
11866         } plane[I915_MAX_PIPES];
11867
11868         struct intel_transcoder_error_state {
11869                 bool power_domain_on;
11870                 enum transcoder cpu_transcoder;
11871
11872                 u32 conf;
11873
11874                 u32 htotal;
11875                 u32 hblank;
11876                 u32 hsync;
11877                 u32 vtotal;
11878                 u32 vblank;
11879                 u32 vsync;
11880         } transcoder[4];
11881 };
11882
11883 struct intel_display_error_state *
11884 intel_display_capture_error_state(struct drm_device *dev)
11885 {
11886         drm_i915_private_t *dev_priv = dev->dev_private;
11887         struct intel_display_error_state *error;
11888         int transcoders[] = {
11889                 TRANSCODER_A,
11890                 TRANSCODER_B,
11891                 TRANSCODER_C,
11892                 TRANSCODER_EDP,
11893         };
11894         int i;
11895
11896         if (INTEL_INFO(dev)->num_pipes == 0)
11897                 return NULL;
11898
11899         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11900         if (error == NULL)
11901                 return NULL;
11902
11903         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11904                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11905
11906         for_each_pipe(i) {
11907                 error->pipe[i].power_domain_on =
11908                         intel_display_power_enabled_sw(dev_priv,
11909                                                        POWER_DOMAIN_PIPE(i));
11910                 if (!error->pipe[i].power_domain_on)
11911                         continue;
11912
11913                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11914                         error->cursor[i].control = I915_READ(CURCNTR(i));
11915                         error->cursor[i].position = I915_READ(CURPOS(i));
11916                         error->cursor[i].base = I915_READ(CURBASE(i));
11917                 } else {
11918                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11919                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11920                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11921                 }
11922
11923                 error->plane[i].control = I915_READ(DSPCNTR(i));
11924                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11925                 if (INTEL_INFO(dev)->gen <= 3) {
11926                         error->plane[i].size = I915_READ(DSPSIZE(i));
11927                         error->plane[i].pos = I915_READ(DSPPOS(i));
11928                 }
11929                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11930                         error->plane[i].addr = I915_READ(DSPADDR(i));
11931                 if (INTEL_INFO(dev)->gen >= 4) {
11932                         error->plane[i].surface = I915_READ(DSPSURF(i));
11933                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11934                 }
11935
11936                 error->pipe[i].source = I915_READ(PIPESRC(i));
11937         }
11938
11939         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11940         if (HAS_DDI(dev_priv->dev))
11941                 error->num_transcoders++; /* Account for eDP. */
11942
11943         for (i = 0; i < error->num_transcoders; i++) {
11944                 enum transcoder cpu_transcoder = transcoders[i];
11945
11946                 error->transcoder[i].power_domain_on =
11947                         intel_display_power_enabled_sw(dev_priv,
11948                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11949                 if (!error->transcoder[i].power_domain_on)
11950                         continue;
11951
11952                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11953
11954                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11955                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11956                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11957                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11958                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11959                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11960                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11961         }
11962
11963         return error;
11964 }
11965
11966 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11967
11968 void
11969 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11970                                 struct drm_device *dev,
11971                                 struct intel_display_error_state *error)
11972 {
11973         int i;
11974
11975         if (!error)
11976                 return;
11977
11978         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11979         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11980                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11981                            error->power_well_driver);
11982         for_each_pipe(i) {
11983                 err_printf(m, "Pipe [%d]:\n", i);
11984                 err_printf(m, "  Power: %s\n",
11985                            error->pipe[i].power_domain_on ? "on" : "off");
11986                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11987
11988                 err_printf(m, "Plane [%d]:\n", i);
11989                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11990                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11991                 if (INTEL_INFO(dev)->gen <= 3) {
11992                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11993                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11994                 }
11995                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11996                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11997                 if (INTEL_INFO(dev)->gen >= 4) {
11998                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11999                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12000                 }
12001
12002                 err_printf(m, "Cursor [%d]:\n", i);
12003                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12004                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12005                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12006         }
12007
12008         for (i = 0; i < error->num_transcoders; i++) {
12009                 err_printf(m, "CPU transcoder: %c\n",
12010                            transcoder_name(error->transcoder[i].cpu_transcoder));
12011                 err_printf(m, "  Power: %s\n",
12012                            error->transcoder[i].power_domain_on ? "on" : "off");
12013                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12014                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12015                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12016                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12017                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12018                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12019                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12020         }
12021 }