drm/i915: Covert ILK-IVB to choose DPLLS before disabling CRTCs
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2198                            struct drm_i915_gem_object *obj,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         u32 alignment;
2203         int ret;
2204
2205         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
2207         switch (obj->tiling_mode) {
2208         case I915_TILING_NONE:
2209                 if (INTEL_INFO(dev)->gen >= 9)
2210                         alignment = 256 * 1024;
2211                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2212                         alignment = 128 * 1024;
2213                 else if (INTEL_INFO(dev)->gen >= 4)
2214                         alignment = 4 * 1024;
2215                 else
2216                         alignment = 64 * 1024;
2217                 break;
2218         case I915_TILING_X:
2219                 if (INTEL_INFO(dev)->gen >= 9)
2220                         alignment = 256 * 1024;
2221                 else {
2222                         /* pin() will align the object as required by fence */
2223                         alignment = 0;
2224                 }
2225                 break;
2226         case I915_TILING_Y:
2227                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2228                 return -EINVAL;
2229         default:
2230                 BUG();
2231         }
2232
2233         /* Note that the w/a also requires 64 PTE of padding following the
2234          * bo. We currently fill all unused PTE with the shadow page and so
2235          * we should always have valid PTE following the scanout preventing
2236          * the VT-d warning.
2237          */
2238         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239                 alignment = 256 * 1024;
2240
2241         /*
2242          * Global gtt pte registers are special registers which actually forward
2243          * writes to a chunk of system memory. Which means that there is no risk
2244          * that the register values disappear as soon as we call
2245          * intel_runtime_pm_put(), so it is correct to wrap only the
2246          * pin/unpin/fence and not more.
2247          */
2248         intel_runtime_pm_get(dev_priv);
2249
2250         dev_priv->mm.interruptible = false;
2251         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2252         if (ret)
2253                 goto err_interruptible;
2254
2255         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256          * fence, whereas 965+ only requires a fence if using
2257          * framebuffer compression.  For simplicity, we always install
2258          * a fence as the cost is not that onerous.
2259          */
2260         ret = i915_gem_object_get_fence(obj);
2261         if (ret)
2262                 goto err_unpin;
2263
2264         i915_gem_object_pin_fence(obj);
2265
2266         dev_priv->mm.interruptible = true;
2267         intel_runtime_pm_put(dev_priv);
2268         return 0;
2269
2270 err_unpin:
2271         i915_gem_object_unpin_from_display_plane(obj);
2272 err_interruptible:
2273         dev_priv->mm.interruptible = true;
2274         intel_runtime_pm_put(dev_priv);
2275         return ret;
2276 }
2277
2278 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279 {
2280         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
2282         i915_gem_object_unpin_fence(obj);
2283         i915_gem_object_unpin_from_display_plane(obj);
2284 }
2285
2286 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287  * is assumed to be a power-of-two. */
2288 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289                                              unsigned int tiling_mode,
2290                                              unsigned int cpp,
2291                                              unsigned int pitch)
2292 {
2293         if (tiling_mode != I915_TILING_NONE) {
2294                 unsigned int tile_rows, tiles;
2295
2296                 tile_rows = *y / 8;
2297                 *y %= 8;
2298
2299                 tiles = *x / (512/cpp);
2300                 *x %= 512/cpp;
2301
2302                 return tile_rows * pitch * 8 + tiles * 4096;
2303         } else {
2304                 unsigned int offset;
2305
2306                 offset = *y * pitch + *x * cpp;
2307                 *y = 0;
2308                 *x = (offset & 4095) / cpp;
2309                 return offset & -4096;
2310         }
2311 }
2312
2313 int intel_format_to_fourcc(int format)
2314 {
2315         switch (format) {
2316         case DISPPLANE_8BPP:
2317                 return DRM_FORMAT_C8;
2318         case DISPPLANE_BGRX555:
2319                 return DRM_FORMAT_XRGB1555;
2320         case DISPPLANE_BGRX565:
2321                 return DRM_FORMAT_RGB565;
2322         default:
2323         case DISPPLANE_BGRX888:
2324                 return DRM_FORMAT_XRGB8888;
2325         case DISPPLANE_RGBX888:
2326                 return DRM_FORMAT_XBGR8888;
2327         case DISPPLANE_BGRX101010:
2328                 return DRM_FORMAT_XRGB2101010;
2329         case DISPPLANE_RGBX101010:
2330                 return DRM_FORMAT_XBGR2101010;
2331         }
2332 }
2333
2334 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2335                                   struct intel_plane_config *plane_config)
2336 {
2337         struct drm_device *dev = crtc->base.dev;
2338         struct drm_i915_gem_object *obj = NULL;
2339         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340         u32 base = plane_config->base;
2341
2342         if (plane_config->size == 0)
2343                 return false;
2344
2345         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346                                                              plane_config->size);
2347         if (!obj)
2348                 return false;
2349
2350         if (plane_config->tiled) {
2351                 obj->tiling_mode = I915_TILING_X;
2352                 obj->stride = crtc->base.primary->fb->pitches[0];
2353         }
2354
2355         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356         mode_cmd.width = crtc->base.primary->fb->width;
2357         mode_cmd.height = crtc->base.primary->fb->height;
2358         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2359
2360         mutex_lock(&dev->struct_mutex);
2361
2362         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2363                                    &mode_cmd, obj)) {
2364                 DRM_DEBUG_KMS("intel fb init failed\n");
2365                 goto out_unref_obj;
2366         }
2367
2368         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2369         mutex_unlock(&dev->struct_mutex);
2370
2371         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372         return true;
2373
2374 out_unref_obj:
2375         drm_gem_object_unreference(&obj->base);
2376         mutex_unlock(&dev->struct_mutex);
2377         return false;
2378 }
2379
2380 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381                                  struct intel_plane_config *plane_config)
2382 {
2383         struct drm_device *dev = intel_crtc->base.dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct drm_crtc *c;
2386         struct intel_crtc *i;
2387         struct drm_i915_gem_object *obj;
2388
2389         if (!intel_crtc->base.primary->fb)
2390                 return;
2391
2392         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393                 return;
2394
2395         kfree(intel_crtc->base.primary->fb);
2396         intel_crtc->base.primary->fb = NULL;
2397
2398         /*
2399          * Failed to alloc the obj, check to see if we should share
2400          * an fb with another CRTC instead
2401          */
2402         for_each_crtc(dev, c) {
2403                 i = to_intel_crtc(c);
2404
2405                 if (c == &intel_crtc->base)
2406                         continue;
2407
2408                 if (!i->active)
2409                         continue;
2410
2411                 obj = intel_fb_obj(c->primary->fb);
2412                 if (obj == NULL)
2413                         continue;
2414
2415                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2416                         if (obj->tiling_mode != I915_TILING_NONE)
2417                                 dev_priv->preserve_bios_swizzle = true;
2418
2419                         drm_framebuffer_reference(c->primary->fb);
2420                         intel_crtc->base.primary->fb = c->primary->fb;
2421                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2422                         break;
2423                 }
2424         }
2425 }
2426
2427 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428                                       struct drm_framebuffer *fb,
2429                                       int x, int y)
2430 {
2431         struct drm_device *dev = crtc->dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434         struct drm_i915_gem_object *obj;
2435         int plane = intel_crtc->plane;
2436         unsigned long linear_offset;
2437         u32 dspcntr;
2438         u32 reg = DSPCNTR(plane);
2439         int pixel_size;
2440
2441         if (!intel_crtc->primary_enabled) {
2442                 I915_WRITE(reg, 0);
2443                 if (INTEL_INFO(dev)->gen >= 4)
2444                         I915_WRITE(DSPSURF(plane), 0);
2445                 else
2446                         I915_WRITE(DSPADDR(plane), 0);
2447                 POSTING_READ(reg);
2448                 return;
2449         }
2450
2451         obj = intel_fb_obj(fb);
2452         if (WARN_ON(obj == NULL))
2453                 return;
2454
2455         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
2457         dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
2459         dspcntr |= DISPLAY_PLANE_ENABLE;
2460
2461         if (INTEL_INFO(dev)->gen < 4) {
2462                 if (intel_crtc->pipe == PIPE_B)
2463                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465                 /* pipesrc and dspsize control the size that is scaled from,
2466                  * which should always be the user's requested size.
2467                  */
2468                 I915_WRITE(DSPSIZE(plane),
2469                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470                            (intel_crtc->config.pipe_src_w - 1));
2471                 I915_WRITE(DSPPOS(plane), 0);
2472         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473                 I915_WRITE(PRIMSIZE(plane),
2474                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475                            (intel_crtc->config.pipe_src_w - 1));
2476                 I915_WRITE(PRIMPOS(plane), 0);
2477                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2478         }
2479
2480         switch (fb->pixel_format) {
2481         case DRM_FORMAT_C8:
2482                 dspcntr |= DISPPLANE_8BPP;
2483                 break;
2484         case DRM_FORMAT_XRGB1555:
2485         case DRM_FORMAT_ARGB1555:
2486                 dspcntr |= DISPPLANE_BGRX555;
2487                 break;
2488         case DRM_FORMAT_RGB565:
2489                 dspcntr |= DISPPLANE_BGRX565;
2490                 break;
2491         case DRM_FORMAT_XRGB8888:
2492         case DRM_FORMAT_ARGB8888:
2493                 dspcntr |= DISPPLANE_BGRX888;
2494                 break;
2495         case DRM_FORMAT_XBGR8888:
2496         case DRM_FORMAT_ABGR8888:
2497                 dspcntr |= DISPPLANE_RGBX888;
2498                 break;
2499         case DRM_FORMAT_XRGB2101010:
2500         case DRM_FORMAT_ARGB2101010:
2501                 dspcntr |= DISPPLANE_BGRX101010;
2502                 break;
2503         case DRM_FORMAT_XBGR2101010:
2504         case DRM_FORMAT_ABGR2101010:
2505                 dspcntr |= DISPPLANE_RGBX101010;
2506                 break;
2507         default:
2508                 BUG();
2509         }
2510
2511         if (INTEL_INFO(dev)->gen >= 4 &&
2512             obj->tiling_mode != I915_TILING_NONE)
2513                 dspcntr |= DISPPLANE_TILED;
2514
2515         if (IS_G4X(dev))
2516                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
2518         linear_offset = y * fb->pitches[0] + x * pixel_size;
2519
2520         if (INTEL_INFO(dev)->gen >= 4) {
2521                 intel_crtc->dspaddr_offset =
2522                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2523                                                        pixel_size,
2524                                                        fb->pitches[0]);
2525                 linear_offset -= intel_crtc->dspaddr_offset;
2526         } else {
2527                 intel_crtc->dspaddr_offset = linear_offset;
2528         }
2529
2530         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531                 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533                 x += (intel_crtc->config.pipe_src_w - 1);
2534                 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536                 /* Finding the last pixel of the last line of the display
2537                 data and adding to linear_offset*/
2538                 linear_offset +=
2539                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541         }
2542
2543         I915_WRITE(reg, dspcntr);
2544
2545         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547                       fb->pitches[0]);
2548         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2549         if (INTEL_INFO(dev)->gen >= 4) {
2550                 I915_WRITE(DSPSURF(plane),
2551                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2552                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2553                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2554         } else
2555                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2556         POSTING_READ(reg);
2557 }
2558
2559 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560                                           struct drm_framebuffer *fb,
2561                                           int x, int y)
2562 {
2563         struct drm_device *dev = crtc->dev;
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2566         struct drm_i915_gem_object *obj;
2567         int plane = intel_crtc->plane;
2568         unsigned long linear_offset;
2569         u32 dspcntr;
2570         u32 reg = DSPCNTR(plane);
2571         int pixel_size;
2572
2573         if (!intel_crtc->primary_enabled) {
2574                 I915_WRITE(reg, 0);
2575                 I915_WRITE(DSPSURF(plane), 0);
2576                 POSTING_READ(reg);
2577                 return;
2578         }
2579
2580         obj = intel_fb_obj(fb);
2581         if (WARN_ON(obj == NULL))
2582                 return;
2583
2584         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
2586         dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
2588         dspcntr |= DISPLAY_PLANE_ENABLE;
2589
2590         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2592
2593         switch (fb->pixel_format) {
2594         case DRM_FORMAT_C8:
2595                 dspcntr |= DISPPLANE_8BPP;
2596                 break;
2597         case DRM_FORMAT_RGB565:
2598                 dspcntr |= DISPPLANE_BGRX565;
2599                 break;
2600         case DRM_FORMAT_XRGB8888:
2601         case DRM_FORMAT_ARGB8888:
2602                 dspcntr |= DISPPLANE_BGRX888;
2603                 break;
2604         case DRM_FORMAT_XBGR8888:
2605         case DRM_FORMAT_ABGR8888:
2606                 dspcntr |= DISPPLANE_RGBX888;
2607                 break;
2608         case DRM_FORMAT_XRGB2101010:
2609         case DRM_FORMAT_ARGB2101010:
2610                 dspcntr |= DISPPLANE_BGRX101010;
2611                 break;
2612         case DRM_FORMAT_XBGR2101010:
2613         case DRM_FORMAT_ABGR2101010:
2614                 dspcntr |= DISPPLANE_RGBX101010;
2615                 break;
2616         default:
2617                 BUG();
2618         }
2619
2620         if (obj->tiling_mode != I915_TILING_NONE)
2621                 dspcntr |= DISPPLANE_TILED;
2622
2623         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2624                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2625
2626         linear_offset = y * fb->pitches[0] + x * pixel_size;
2627         intel_crtc->dspaddr_offset =
2628                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2629                                                pixel_size,
2630                                                fb->pitches[0]);
2631         linear_offset -= intel_crtc->dspaddr_offset;
2632         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633                 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636                         x += (intel_crtc->config.pipe_src_w - 1);
2637                         y += (intel_crtc->config.pipe_src_h - 1);
2638
2639                         /* Finding the last pixel of the last line of the display
2640                         data and adding to linear_offset*/
2641                         linear_offset +=
2642                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644                 }
2645         }
2646
2647         I915_WRITE(reg, dspcntr);
2648
2649         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651                       fb->pitches[0]);
2652         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2653         I915_WRITE(DSPSURF(plane),
2654                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2655         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2656                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657         } else {
2658                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660         }
2661         POSTING_READ(reg);
2662 }
2663
2664 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665                                          struct drm_framebuffer *fb,
2666                                          int x, int y)
2667 {
2668         struct drm_device *dev = crtc->dev;
2669         struct drm_i915_private *dev_priv = dev->dev_private;
2670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671         struct intel_framebuffer *intel_fb;
2672         struct drm_i915_gem_object *obj;
2673         int pipe = intel_crtc->pipe;
2674         u32 plane_ctl, stride;
2675
2676         if (!intel_crtc->primary_enabled) {
2677                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679                 POSTING_READ(PLANE_CTL(pipe, 0));
2680                 return;
2681         }
2682
2683         plane_ctl = PLANE_CTL_ENABLE |
2684                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2685                     PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687         switch (fb->pixel_format) {
2688         case DRM_FORMAT_RGB565:
2689                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690                 break;
2691         case DRM_FORMAT_XRGB8888:
2692                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693                 break;
2694         case DRM_FORMAT_XBGR8888:
2695                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697                 break;
2698         case DRM_FORMAT_XRGB2101010:
2699                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700                 break;
2701         case DRM_FORMAT_XBGR2101010:
2702                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704                 break;
2705         default:
2706                 BUG();
2707         }
2708
2709         intel_fb = to_intel_framebuffer(fb);
2710         obj = intel_fb->obj;
2711
2712         /*
2713          * The stride is either expressed as a multiple of 64 bytes chunks for
2714          * linear buffers or in number of tiles for tiled buffers.
2715          */
2716         switch (obj->tiling_mode) {
2717         case I915_TILING_NONE:
2718                 stride = fb->pitches[0] >> 6;
2719                 break;
2720         case I915_TILING_X:
2721                 plane_ctl |= PLANE_CTL_TILED_X;
2722                 stride = fb->pitches[0] >> 9;
2723                 break;
2724         default:
2725                 BUG();
2726         }
2727
2728         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2729         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730                 plane_ctl |= PLANE_CTL_ROTATE_180;
2731
2732         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735                       i915_gem_obj_ggtt_offset(obj),
2736                       x, y, fb->width, fb->height,
2737                       fb->pitches[0]);
2738
2739         I915_WRITE(PLANE_POS(pipe, 0), 0);
2740         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741         I915_WRITE(PLANE_SIZE(pipe, 0),
2742                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2743                    (intel_crtc->config.pipe_src_w - 1));
2744         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747         POSTING_READ(PLANE_SURF(pipe, 0));
2748 }
2749
2750 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2751 static int
2752 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753                            int x, int y, enum mode_set_atomic state)
2754 {
2755         struct drm_device *dev = crtc->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757
2758         if (dev_priv->display.disable_fbc)
2759                 dev_priv->display.disable_fbc(dev);
2760
2761         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763         return 0;
2764 }
2765
2766 void intel_display_handle_reset(struct drm_device *dev)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct drm_crtc *crtc;
2770
2771         /*
2772          * Flips in the rings have been nuked by the reset,
2773          * so complete all pending flips so that user space
2774          * will get its events and not get stuck.
2775          *
2776          * Also update the base address of all primary
2777          * planes to the the last fb to make sure we're
2778          * showing the correct fb after a reset.
2779          *
2780          * Need to make two loops over the crtcs so that we
2781          * don't try to grab a crtc mutex before the
2782          * pending_flip_queue really got woken up.
2783          */
2784
2785         for_each_crtc(dev, crtc) {
2786                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787                 enum plane plane = intel_crtc->plane;
2788
2789                 intel_prepare_page_flip(dev, plane);
2790                 intel_finish_page_flip_plane(dev, plane);
2791         }
2792
2793         for_each_crtc(dev, crtc) {
2794                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
2796                 drm_modeset_lock(&crtc->mutex, NULL);
2797                 /*
2798                  * FIXME: Once we have proper support for primary planes (and
2799                  * disabling them without disabling the entire crtc) allow again
2800                  * a NULL crtc->primary->fb.
2801                  */
2802                 if (intel_crtc->active && crtc->primary->fb)
2803                         dev_priv->display.update_primary_plane(crtc,
2804                                                                crtc->primary->fb,
2805                                                                crtc->x,
2806                                                                crtc->y);
2807                 drm_modeset_unlock(&crtc->mutex);
2808         }
2809 }
2810
2811 static int
2812 intel_finish_fb(struct drm_framebuffer *old_fb)
2813 {
2814         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2815         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816         bool was_interruptible = dev_priv->mm.interruptible;
2817         int ret;
2818
2819         /* Big Hammer, we also need to ensure that any pending
2820          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821          * current scanout is retired before unpinning the old
2822          * framebuffer.
2823          *
2824          * This should only fail upon a hung GPU, in which case we
2825          * can safely continue.
2826          */
2827         dev_priv->mm.interruptible = false;
2828         ret = i915_gem_object_finish_gpu(obj);
2829         dev_priv->mm.interruptible = was_interruptible;
2830
2831         return ret;
2832 }
2833
2834 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835 {
2836         struct drm_device *dev = crtc->dev;
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839         bool pending;
2840
2841         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843                 return false;
2844
2845         spin_lock_irq(&dev->event_lock);
2846         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847         spin_unlock_irq(&dev->event_lock);
2848
2849         return pending;
2850 }
2851
2852 static void intel_update_pipe_size(struct intel_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->base.dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856         const struct drm_display_mode *adjusted_mode;
2857
2858         if (!i915.fastboot)
2859                 return;
2860
2861         /*
2862          * Update pipe size and adjust fitter if needed: the reason for this is
2863          * that in compute_mode_changes we check the native mode (not the pfit
2864          * mode) to see if we can flip rather than do a full mode set. In the
2865          * fastboot case, we'll flip, but if we don't update the pipesrc and
2866          * pfit state, we'll end up with a big fb scanned out into the wrong
2867          * sized surface.
2868          *
2869          * To fix this properly, we need to hoist the checks up into
2870          * compute_mode_changes (or above), check the actual pfit state and
2871          * whether the platform allows pfit disable with pipe active, and only
2872          * then update the pipesrc and pfit state, even on the flip path.
2873          */
2874
2875         adjusted_mode = &crtc->config.adjusted_mode;
2876
2877         I915_WRITE(PIPESRC(crtc->pipe),
2878                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879                    (adjusted_mode->crtc_vdisplay - 1));
2880         if (!crtc->config.pch_pfit.enabled &&
2881             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2883                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886         }
2887         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889 }
2890
2891 static int
2892 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2893                     struct drm_framebuffer *fb)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898         enum pipe pipe = intel_crtc->pipe;
2899         struct drm_framebuffer *old_fb = crtc->primary->fb;
2900         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2902         int ret;
2903
2904         if (intel_crtc_has_pending_flip(crtc)) {
2905                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906                 return -EBUSY;
2907         }
2908
2909         /* no fb bound */
2910         if (!fb) {
2911                 DRM_ERROR("No FB bound\n");
2912                 return 0;
2913         }
2914
2915         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2916                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917                           plane_name(intel_crtc->plane),
2918                           INTEL_INFO(dev)->num_pipes);
2919                 return -EINVAL;
2920         }
2921
2922         mutex_lock(&dev->struct_mutex);
2923         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924         if (ret == 0)
2925                 i915_gem_track_fb(old_obj, obj,
2926                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2927         mutex_unlock(&dev->struct_mutex);
2928         if (ret != 0) {
2929                 DRM_ERROR("pin & fence failed\n");
2930                 return ret;
2931         }
2932
2933         intel_update_pipe_size(intel_crtc);
2934
2935         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2936
2937         if (intel_crtc->active)
2938                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
2940         crtc->primary->fb = fb;
2941         crtc->x = x;
2942         crtc->y = y;
2943
2944         if (old_fb) {
2945                 if (intel_crtc->active && old_fb != fb)
2946                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2947                 mutex_lock(&dev->struct_mutex);
2948                 intel_unpin_fb_obj(old_obj);
2949                 mutex_unlock(&dev->struct_mutex);
2950         }
2951
2952         mutex_lock(&dev->struct_mutex);
2953         intel_update_fbc(dev);
2954         mutex_unlock(&dev->struct_mutex);
2955
2956         return 0;
2957 }
2958
2959 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         int pipe = intel_crtc->pipe;
2965         u32 reg, temp;
2966
2967         /* enable normal train */
2968         reg = FDI_TX_CTL(pipe);
2969         temp = I915_READ(reg);
2970         if (IS_IVYBRIDGE(dev)) {
2971                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2973         } else {
2974                 temp &= ~FDI_LINK_TRAIN_NONE;
2975                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2976         }
2977         I915_WRITE(reg, temp);
2978
2979         reg = FDI_RX_CTL(pipe);
2980         temp = I915_READ(reg);
2981         if (HAS_PCH_CPT(dev)) {
2982                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984         } else {
2985                 temp &= ~FDI_LINK_TRAIN_NONE;
2986                 temp |= FDI_LINK_TRAIN_NONE;
2987         }
2988         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990         /* wait one idle pattern time */
2991         POSTING_READ(reg);
2992         udelay(1000);
2993
2994         /* IVB wants error correction enabled */
2995         if (IS_IVYBRIDGE(dev))
2996                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997                            FDI_FE_ERRC_ENABLE);
2998 }
2999
3000 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3001 {
3002         return crtc->base.enabled && crtc->active &&
3003                 crtc->config.has_pch_encoder;
3004 }
3005
3006 static void ivb_modeset_global_resources(struct drm_device *dev)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         struct intel_crtc *pipe_B_crtc =
3010                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011         struct intel_crtc *pipe_C_crtc =
3012                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013         uint32_t temp;
3014
3015         /*
3016          * When everything is off disable fdi C so that we could enable fdi B
3017          * with all lanes. Note that we don't care about enabled pipes without
3018          * an enabled pch encoder.
3019          */
3020         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021             !pipe_has_enabled_pch(pipe_C_crtc)) {
3022                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025                 temp = I915_READ(SOUTH_CHICKEN1);
3026                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028                 I915_WRITE(SOUTH_CHICKEN1, temp);
3029         }
3030 }
3031
3032 /* The FDI link training functions for ILK/Ibexpeak. */
3033 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp, tries;
3040
3041         /* FDI needs bits from pipe first */
3042         assert_pipe_enabled(dev_priv, pipe);
3043
3044         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045            for train result */
3046         reg = FDI_RX_IMR(pipe);
3047         temp = I915_READ(reg);
3048         temp &= ~FDI_RX_SYMBOL_LOCK;
3049         temp &= ~FDI_RX_BIT_LOCK;
3050         I915_WRITE(reg, temp);
3051         I915_READ(reg);
3052         udelay(150);
3053
3054         /* enable CPU FDI TX and PCH FDI RX */
3055         reg = FDI_TX_CTL(pipe);
3056         temp = I915_READ(reg);
3057         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3059         temp &= ~FDI_LINK_TRAIN_NONE;
3060         temp |= FDI_LINK_TRAIN_PATTERN_1;
3061         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3062
3063         reg = FDI_RX_CTL(pipe);
3064         temp = I915_READ(reg);
3065         temp &= ~FDI_LINK_TRAIN_NONE;
3066         temp |= FDI_LINK_TRAIN_PATTERN_1;
3067         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069         POSTING_READ(reg);
3070         udelay(150);
3071
3072         /* Ironlake workaround, enable clock pointer after FDI enable*/
3073         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075                    FDI_RX_PHASE_SYNC_POINTER_EN);
3076
3077         reg = FDI_RX_IIR(pipe);
3078         for (tries = 0; tries < 5; tries++) {
3079                 temp = I915_READ(reg);
3080                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082                 if ((temp & FDI_RX_BIT_LOCK)) {
3083                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3084                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3085                         break;
3086                 }
3087         }
3088         if (tries == 5)
3089                 DRM_ERROR("FDI train 1 fail!\n");
3090
3091         /* Train 2 */
3092         reg = FDI_TX_CTL(pipe);
3093         temp = I915_READ(reg);
3094         temp &= ~FDI_LINK_TRAIN_NONE;
3095         temp |= FDI_LINK_TRAIN_PATTERN_2;
3096         I915_WRITE(reg, temp);
3097
3098         reg = FDI_RX_CTL(pipe);
3099         temp = I915_READ(reg);
3100         temp &= ~FDI_LINK_TRAIN_NONE;
3101         temp |= FDI_LINK_TRAIN_PATTERN_2;
3102         I915_WRITE(reg, temp);
3103
3104         POSTING_READ(reg);
3105         udelay(150);
3106
3107         reg = FDI_RX_IIR(pipe);
3108         for (tries = 0; tries < 5; tries++) {
3109                 temp = I915_READ(reg);
3110                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112                 if (temp & FDI_RX_SYMBOL_LOCK) {
3113                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3114                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3115                         break;
3116                 }
3117         }
3118         if (tries == 5)
3119                 DRM_ERROR("FDI train 2 fail!\n");
3120
3121         DRM_DEBUG_KMS("FDI train done\n");
3122
3123 }
3124
3125 static const int snb_b_fdi_train_param[] = {
3126         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130 };
3131
3132 /* The FDI link training functions for SNB/Cougarpoint. */
3133 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134 {
3135         struct drm_device *dev = crtc->dev;
3136         struct drm_i915_private *dev_priv = dev->dev_private;
3137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138         int pipe = intel_crtc->pipe;
3139         u32 reg, temp, i, retry;
3140
3141         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142            for train result */
3143         reg = FDI_RX_IMR(pipe);
3144         temp = I915_READ(reg);
3145         temp &= ~FDI_RX_SYMBOL_LOCK;
3146         temp &= ~FDI_RX_BIT_LOCK;
3147         I915_WRITE(reg, temp);
3148
3149         POSTING_READ(reg);
3150         udelay(150);
3151
3152         /* enable CPU FDI TX and PCH FDI RX */
3153         reg = FDI_TX_CTL(pipe);
3154         temp = I915_READ(reg);
3155         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3157         temp &= ~FDI_LINK_TRAIN_NONE;
3158         temp |= FDI_LINK_TRAIN_PATTERN_1;
3159         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160         /* SNB-B */
3161         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3162         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3163
3164         I915_WRITE(FDI_RX_MISC(pipe),
3165                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
3167         reg = FDI_RX_CTL(pipe);
3168         temp = I915_READ(reg);
3169         if (HAS_PCH_CPT(dev)) {
3170                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172         } else {
3173                 temp &= ~FDI_LINK_TRAIN_NONE;
3174                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175         }
3176         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178         POSTING_READ(reg);
3179         udelay(150);
3180
3181         for (i = 0; i < 4; i++) {
3182                 reg = FDI_TX_CTL(pipe);
3183                 temp = I915_READ(reg);
3184                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185                 temp |= snb_b_fdi_train_param[i];
3186                 I915_WRITE(reg, temp);
3187
3188                 POSTING_READ(reg);
3189                 udelay(500);
3190
3191                 for (retry = 0; retry < 5; retry++) {
3192                         reg = FDI_RX_IIR(pipe);
3193                         temp = I915_READ(reg);
3194                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195                         if (temp & FDI_RX_BIT_LOCK) {
3196                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198                                 break;
3199                         }
3200                         udelay(50);
3201                 }
3202                 if (retry < 5)
3203                         break;
3204         }
3205         if (i == 4)
3206                 DRM_ERROR("FDI train 1 fail!\n");
3207
3208         /* Train 2 */
3209         reg = FDI_TX_CTL(pipe);
3210         temp = I915_READ(reg);
3211         temp &= ~FDI_LINK_TRAIN_NONE;
3212         temp |= FDI_LINK_TRAIN_PATTERN_2;
3213         if (IS_GEN6(dev)) {
3214                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215                 /* SNB-B */
3216                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217         }
3218         I915_WRITE(reg, temp);
3219
3220         reg = FDI_RX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         if (HAS_PCH_CPT(dev)) {
3223                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225         } else {
3226                 temp &= ~FDI_LINK_TRAIN_NONE;
3227                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228         }
3229         I915_WRITE(reg, temp);
3230
3231         POSTING_READ(reg);
3232         udelay(150);
3233
3234         for (i = 0; i < 4; i++) {
3235                 reg = FDI_TX_CTL(pipe);
3236                 temp = I915_READ(reg);
3237                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238                 temp |= snb_b_fdi_train_param[i];
3239                 I915_WRITE(reg, temp);
3240
3241                 POSTING_READ(reg);
3242                 udelay(500);
3243
3244                 for (retry = 0; retry < 5; retry++) {
3245                         reg = FDI_RX_IIR(pipe);
3246                         temp = I915_READ(reg);
3247                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248                         if (temp & FDI_RX_SYMBOL_LOCK) {
3249                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251                                 break;
3252                         }
3253                         udelay(50);
3254                 }
3255                 if (retry < 5)
3256                         break;
3257         }
3258         if (i == 4)
3259                 DRM_ERROR("FDI train 2 fail!\n");
3260
3261         DRM_DEBUG_KMS("FDI train done.\n");
3262 }
3263
3264 /* Manual link training for Ivy Bridge A0 parts */
3265 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266 {
3267         struct drm_device *dev = crtc->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270         int pipe = intel_crtc->pipe;
3271         u32 reg, temp, i, j;
3272
3273         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274            for train result */
3275         reg = FDI_RX_IMR(pipe);
3276         temp = I915_READ(reg);
3277         temp &= ~FDI_RX_SYMBOL_LOCK;
3278         temp &= ~FDI_RX_BIT_LOCK;
3279         I915_WRITE(reg, temp);
3280
3281         POSTING_READ(reg);
3282         udelay(150);
3283
3284         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285                       I915_READ(FDI_RX_IIR(pipe)));
3286
3287         /* Try each vswing and preemphasis setting twice before moving on */
3288         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289                 /* disable first in case we need to retry */
3290                 reg = FDI_TX_CTL(pipe);
3291                 temp = I915_READ(reg);
3292                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293                 temp &= ~FDI_TX_ENABLE;
3294                 I915_WRITE(reg, temp);
3295
3296                 reg = FDI_RX_CTL(pipe);
3297                 temp = I915_READ(reg);
3298                 temp &= ~FDI_LINK_TRAIN_AUTO;
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp &= ~FDI_RX_ENABLE;
3301                 I915_WRITE(reg, temp);
3302
3303                 /* enable CPU FDI TX and PCH FDI RX */
3304                 reg = FDI_TX_CTL(pipe);
3305                 temp = I915_READ(reg);
3306                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3309                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3310                 temp |= snb_b_fdi_train_param[j/2];
3311                 temp |= FDI_COMPOSITE_SYNC;
3312                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3313
3314                 I915_WRITE(FDI_RX_MISC(pipe),
3315                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3316
3317                 reg = FDI_RX_CTL(pipe);
3318                 temp = I915_READ(reg);
3319                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320                 temp |= FDI_COMPOSITE_SYNC;
3321                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3322
3323                 POSTING_READ(reg);
3324                 udelay(1); /* should be 0.5us */
3325
3326                 for (i = 0; i < 4; i++) {
3327                         reg = FDI_RX_IIR(pipe);
3328                         temp = I915_READ(reg);
3329                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3330
3331                         if (temp & FDI_RX_BIT_LOCK ||
3332                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335                                               i);
3336                                 break;
3337                         }
3338                         udelay(1); /* should be 0.5us */
3339                 }
3340                 if (i == 4) {
3341                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342                         continue;
3343                 }
3344
3345                 /* Train 2 */
3346                 reg = FDI_TX_CTL(pipe);
3347                 temp = I915_READ(reg);
3348                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350                 I915_WRITE(reg, temp);
3351
3352                 reg = FDI_RX_CTL(pipe);
3353                 temp = I915_READ(reg);
3354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3356                 I915_WRITE(reg, temp);
3357
3358                 POSTING_READ(reg);
3359                 udelay(2); /* should be 1.5us */
3360
3361                 for (i = 0; i < 4; i++) {
3362                         reg = FDI_RX_IIR(pipe);
3363                         temp = I915_READ(reg);
3364                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3365
3366                         if (temp & FDI_RX_SYMBOL_LOCK ||
3367                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370                                               i);
3371                                 goto train_done;
3372                         }
3373                         udelay(2); /* should be 1.5us */
3374                 }
3375                 if (i == 4)
3376                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3377         }
3378
3379 train_done:
3380         DRM_DEBUG_KMS("FDI train done.\n");
3381 }
3382
3383 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3384 {
3385         struct drm_device *dev = intel_crtc->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         int pipe = intel_crtc->pipe;
3388         u32 reg, temp;
3389
3390
3391         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3392         reg = FDI_RX_CTL(pipe);
3393         temp = I915_READ(reg);
3394         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3396         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3397         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399         POSTING_READ(reg);
3400         udelay(200);
3401
3402         /* Switch from Rawclk to PCDclk */
3403         temp = I915_READ(reg);
3404         I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406         POSTING_READ(reg);
3407         udelay(200);
3408
3409         /* Enable CPU FDI TX PLL, always on for Ironlake */
3410         reg = FDI_TX_CTL(pipe);
3411         temp = I915_READ(reg);
3412         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3414
3415                 POSTING_READ(reg);
3416                 udelay(100);
3417         }
3418 }
3419
3420 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421 {
3422         struct drm_device *dev = intel_crtc->base.dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         int pipe = intel_crtc->pipe;
3425         u32 reg, temp;
3426
3427         /* Switch from PCDclk to Rawclk */
3428         reg = FDI_RX_CTL(pipe);
3429         temp = I915_READ(reg);
3430         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432         /* Disable CPU FDI TX PLL */
3433         reg = FDI_TX_CTL(pipe);
3434         temp = I915_READ(reg);
3435         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437         POSTING_READ(reg);
3438         udelay(100);
3439
3440         reg = FDI_RX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444         /* Wait for the clocks to turn off. */
3445         POSTING_READ(reg);
3446         udelay(100);
3447 }
3448
3449 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         /* disable CPU FDI tx and PCH FDI rx */
3458         reg = FDI_TX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461         POSTING_READ(reg);
3462
3463         reg = FDI_RX_CTL(pipe);
3464         temp = I915_READ(reg);
3465         temp &= ~(0x7 << 16);
3466         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3467         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469         POSTING_READ(reg);
3470         udelay(100);
3471
3472         /* Ironlake workaround, disable clock pointer after downing FDI */
3473         if (HAS_PCH_IBX(dev))
3474                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3475
3476         /* still set train pattern 1 */
3477         reg = FDI_TX_CTL(pipe);
3478         temp = I915_READ(reg);
3479         temp &= ~FDI_LINK_TRAIN_NONE;
3480         temp |= FDI_LINK_TRAIN_PATTERN_1;
3481         I915_WRITE(reg, temp);
3482
3483         reg = FDI_RX_CTL(pipe);
3484         temp = I915_READ(reg);
3485         if (HAS_PCH_CPT(dev)) {
3486                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488         } else {
3489                 temp &= ~FDI_LINK_TRAIN_NONE;
3490                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491         }
3492         /* BPC in FDI rx is consistent with that in PIPECONF */
3493         temp &= ~(0x07 << 16);
3494         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3495         I915_WRITE(reg, temp);
3496
3497         POSTING_READ(reg);
3498         udelay(100);
3499 }
3500
3501 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502 {
3503         struct intel_crtc *crtc;
3504
3505         /* Note that we don't need to be called with mode_config.lock here
3506          * as our list of CRTC objects is static for the lifetime of the
3507          * device and so cannot disappear as we iterate. Similarly, we can
3508          * happily treat the predicates as racy, atomic checks as userspace
3509          * cannot claim and pin a new fb without at least acquring the
3510          * struct_mutex and so serialising with us.
3511          */
3512         for_each_intel_crtc(dev, crtc) {
3513                 if (atomic_read(&crtc->unpin_work_count) == 0)
3514                         continue;
3515
3516                 if (crtc->unpin_work)
3517                         intel_wait_for_vblank(dev, crtc->pipe);
3518
3519                 return true;
3520         }
3521
3522         return false;
3523 }
3524
3525 static void page_flip_completed(struct intel_crtc *intel_crtc)
3526 {
3527         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528         struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530         /* ensure that the unpin work is consistent wrt ->pending. */
3531         smp_rmb();
3532         intel_crtc->unpin_work = NULL;
3533
3534         if (work->event)
3535                 drm_send_vblank_event(intel_crtc->base.dev,
3536                                       intel_crtc->pipe,
3537                                       work->event);
3538
3539         drm_crtc_vblank_put(&intel_crtc->base);
3540
3541         wake_up_all(&dev_priv->pending_flip_queue);
3542         queue_work(dev_priv->wq, &work->work);
3543
3544         trace_i915_flip_complete(intel_crtc->plane,
3545                                  work->pending_flip_obj);
3546 }
3547
3548 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552
3553         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3554         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555                                        !intel_crtc_has_pending_flip(crtc),
3556                                        60*HZ) == 0)) {
3557                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3558
3559                 spin_lock_irq(&dev->event_lock);
3560                 if (intel_crtc->unpin_work) {
3561                         WARN_ONCE(1, "Removing stuck page flip\n");
3562                         page_flip_completed(intel_crtc);
3563                 }
3564                 spin_unlock_irq(&dev->event_lock);
3565         }
3566
3567         if (crtc->primary->fb) {
3568                 mutex_lock(&dev->struct_mutex);
3569                 intel_finish_fb(crtc->primary->fb);
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572 }
3573
3574 /* Program iCLKIP clock to the desired frequency */
3575 static void lpt_program_iclkip(struct drm_crtc *crtc)
3576 {
3577         struct drm_device *dev = crtc->dev;
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3580         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581         u32 temp;
3582
3583         mutex_lock(&dev_priv->dpio_lock);
3584
3585         /* It is necessary to ungate the pixclk gate prior to programming
3586          * the divisors, and gate it back when it is done.
3587          */
3588         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590         /* Disable SSCCTL */
3591         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3592                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593                                 SBI_SSCCTL_DISABLE,
3594                         SBI_ICLK);
3595
3596         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3597         if (clock == 20000) {
3598                 auxdiv = 1;
3599                 divsel = 0x41;
3600                 phaseinc = 0x20;
3601         } else {
3602                 /* The iCLK virtual clock root frequency is in MHz,
3603                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3604                  * divisors, it is necessary to divide one by another, so we
3605                  * convert the virtual clock precision to KHz here for higher
3606                  * precision.
3607                  */
3608                 u32 iclk_virtual_root_freq = 172800 * 1000;
3609                 u32 iclk_pi_range = 64;
3610                 u32 desired_divisor, msb_divisor_value, pi_value;
3611
3612                 desired_divisor = (iclk_virtual_root_freq / clock);
3613                 msb_divisor_value = desired_divisor / iclk_pi_range;
3614                 pi_value = desired_divisor % iclk_pi_range;
3615
3616                 auxdiv = 0;
3617                 divsel = msb_divisor_value - 2;
3618                 phaseinc = pi_value;
3619         }
3620
3621         /* This should not happen with any sane values */
3622         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3628                         clock,
3629                         auxdiv,
3630                         divsel,
3631                         phasedir,
3632                         phaseinc);
3633
3634         /* Program SSCDIVINTPHASE6 */
3635         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3636         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3642         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3643
3644         /* Program SSCAUXDIV */
3645         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3646         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3648         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3649
3650         /* Enable modulator and associated divider */
3651         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3652         temp &= ~SBI_SSCCTL_DISABLE;
3653         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3654
3655         /* Wait for initialization time */
3656         udelay(24);
3657
3658         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3659
3660         mutex_unlock(&dev_priv->dpio_lock);
3661 }
3662
3663 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664                                                 enum pipe pch_transcoder)
3665 {
3666         struct drm_device *dev = crtc->base.dev;
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671                    I915_READ(HTOTAL(cpu_transcoder)));
3672         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673                    I915_READ(HBLANK(cpu_transcoder)));
3674         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675                    I915_READ(HSYNC(cpu_transcoder)));
3676
3677         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678                    I915_READ(VTOTAL(cpu_transcoder)));
3679         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680                    I915_READ(VBLANK(cpu_transcoder)));
3681         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682                    I915_READ(VSYNC(cpu_transcoder)));
3683         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685 }
3686
3687 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         uint32_t temp;
3691
3692         temp = I915_READ(SOUTH_CHICKEN1);
3693         if (temp & FDI_BC_BIFURCATION_SELECT)
3694                 return;
3695
3696         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699         temp |= FDI_BC_BIFURCATION_SELECT;
3700         DRM_DEBUG_KMS("enabling fdi C rx\n");
3701         I915_WRITE(SOUTH_CHICKEN1, temp);
3702         POSTING_READ(SOUTH_CHICKEN1);
3703 }
3704
3705 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706 {
3707         struct drm_device *dev = intel_crtc->base.dev;
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710         switch (intel_crtc->pipe) {
3711         case PIPE_A:
3712                 break;
3713         case PIPE_B:
3714                 if (intel_crtc->config.fdi_lanes > 2)
3715                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716                 else
3717                         cpt_enable_fdi_bc_bifurcation(dev);
3718
3719                 break;
3720         case PIPE_C:
3721                 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723                 break;
3724         default:
3725                 BUG();
3726         }
3727 }
3728
3729 /*
3730  * Enable PCH resources required for PCH ports:
3731  *   - PCH PLLs
3732  *   - FDI training & RX/TX
3733  *   - update transcoder timings
3734  *   - DP transcoding bits
3735  *   - transcoder
3736  */
3737 static void ironlake_pch_enable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         int pipe = intel_crtc->pipe;
3743         u32 reg, temp;
3744
3745         assert_pch_transcoder_disabled(dev_priv, pipe);
3746
3747         if (IS_IVYBRIDGE(dev))
3748                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
3750         /* Write the TU size bits before fdi link training, so that error
3751          * detection works. */
3752         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
3755         /* For PCH output, training FDI link */
3756         dev_priv->display.fdi_link_train(crtc);
3757
3758         /* We need to program the right clock selection before writing the pixel
3759          * mutliplier into the DPLL. */
3760         if (HAS_PCH_CPT(dev)) {
3761                 u32 sel;
3762
3763                 temp = I915_READ(PCH_DPLL_SEL);
3764                 temp |= TRANS_DPLL_ENABLE(pipe);
3765                 sel = TRANS_DPLLB_SEL(pipe);
3766                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3767                         temp |= sel;
3768                 else
3769                         temp &= ~sel;
3770                 I915_WRITE(PCH_DPLL_SEL, temp);
3771         }
3772
3773         /* XXX: pch pll's can be enabled any time before we enable the PCH
3774          * transcoder, and we actually should do this to not upset any PCH
3775          * transcoder that already use the clock when we share it.
3776          *
3777          * Note that enable_shared_dpll tries to do the right thing, but
3778          * get_shared_dpll unconditionally resets the pll - we need that to have
3779          * the right LVDS enable sequence. */
3780         intel_enable_shared_dpll(intel_crtc);
3781
3782         /* set transcoder timing, panel must allow it */
3783         assert_panel_unlocked(dev_priv, pipe);
3784         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3785
3786         intel_fdi_normal_train(crtc);
3787
3788         /* For PCH DP, enable TRANS_DP_CTL */
3789         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3790                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3791                 reg = TRANS_DP_CTL(pipe);
3792                 temp = I915_READ(reg);
3793                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3794                           TRANS_DP_SYNC_MASK |
3795                           TRANS_DP_BPC_MASK);
3796                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797                          TRANS_DP_ENH_FRAMING);
3798                 temp |= bpc << 9; /* same format but at 11:9 */
3799
3800                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3801                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3802                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3803                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3804
3805                 switch (intel_trans_dp_port_sel(crtc)) {
3806                 case PCH_DP_B:
3807                         temp |= TRANS_DP_PORT_SEL_B;
3808                         break;
3809                 case PCH_DP_C:
3810                         temp |= TRANS_DP_PORT_SEL_C;
3811                         break;
3812                 case PCH_DP_D:
3813                         temp |= TRANS_DP_PORT_SEL_D;
3814                         break;
3815                 default:
3816                         BUG();
3817                 }
3818
3819                 I915_WRITE(reg, temp);
3820         }
3821
3822         ironlake_enable_pch_transcoder(dev_priv, pipe);
3823 }
3824
3825 static void lpt_pch_enable(struct drm_crtc *crtc)
3826 {
3827         struct drm_device *dev = crtc->dev;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3830         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3831
3832         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3833
3834         lpt_program_iclkip(crtc);
3835
3836         /* Set transcoder timing. */
3837         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3838
3839         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3840 }
3841
3842 void intel_put_shared_dpll(struct intel_crtc *crtc)
3843 {
3844         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3845
3846         if (pll == NULL)
3847                 return;
3848
3849         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3850                 WARN(1, "bad %s crtc mask\n", pll->name);
3851                 return;
3852         }
3853
3854         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3855         if (pll->config.crtc_mask == 0) {
3856                 WARN_ON(pll->on);
3857                 WARN_ON(pll->active);
3858         }
3859
3860         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3861 }
3862
3863 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3864 {
3865         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3866         struct intel_shared_dpll *pll;
3867         enum intel_dpll_id i;
3868
3869         if (HAS_PCH_IBX(dev_priv->dev)) {
3870                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3871                 i = (enum intel_dpll_id) crtc->pipe;
3872                 pll = &dev_priv->shared_dplls[i];
3873
3874                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3875                               crtc->base.base.id, pll->name);
3876
3877                 WARN_ON(pll->new_config->crtc_mask);
3878
3879                 goto found;
3880         }
3881
3882         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3883                 pll = &dev_priv->shared_dplls[i];
3884
3885                 /* Only want to check enabled timings first */
3886                 if (pll->new_config->crtc_mask == 0)
3887                         continue;
3888
3889                 if (memcmp(&crtc->new_config->dpll_hw_state,
3890                            &pll->new_config->hw_state,
3891                            sizeof(pll->new_config->hw_state)) == 0) {
3892                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3893                                       crtc->base.base.id, pll->name,
3894                                       pll->new_config->crtc_mask,
3895                                       pll->active);
3896                         goto found;
3897                 }
3898         }
3899
3900         /* Ok no matching timings, maybe there's a free one? */
3901         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3902                 pll = &dev_priv->shared_dplls[i];
3903                 if (pll->new_config->crtc_mask == 0) {
3904                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3905                                       crtc->base.base.id, pll->name);
3906                         goto found;
3907                 }
3908         }
3909
3910         return NULL;
3911
3912 found:
3913         if (pll->new_config->crtc_mask == 0)
3914                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3915
3916         crtc->new_config->shared_dpll = i;
3917         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3918                          pipe_name(crtc->pipe));
3919
3920         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3921
3922         return pll;
3923 }
3924
3925 /**
3926  * intel_shared_dpll_start_config - start a new PLL staged config
3927  * @dev_priv: DRM device
3928  * @clear_pipes: mask of pipes that will have their PLLs freed
3929  *
3930  * Starts a new PLL staged config, copying the current config but
3931  * releasing the references of pipes specified in clear_pipes.
3932  */
3933 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3934                                           unsigned clear_pipes)
3935 {
3936         struct intel_shared_dpll *pll;
3937         enum intel_dpll_id i;
3938
3939         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3940                 pll = &dev_priv->shared_dplls[i];
3941
3942                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3943                                           GFP_KERNEL);
3944                 if (!pll->new_config)
3945                         goto cleanup;
3946
3947                 pll->new_config->crtc_mask &= ~clear_pipes;
3948         }
3949
3950         return 0;
3951
3952 cleanup:
3953         while (--i >= 0) {
3954                 pll = &dev_priv->shared_dplls[i];
3955                 pll->new_config = NULL;
3956         }
3957
3958         return -ENOMEM;
3959 }
3960
3961 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962 {
3963         struct intel_shared_dpll *pll;
3964         enum intel_dpll_id i;
3965
3966         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967                 pll = &dev_priv->shared_dplls[i];
3968
3969                 WARN_ON(pll->new_config == &pll->config);
3970
3971                 pll->config = *pll->new_config;
3972                 kfree(pll->new_config);
3973                 pll->new_config = NULL;
3974         }
3975 }
3976
3977 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978 {
3979         struct intel_shared_dpll *pll;
3980         enum intel_dpll_id i;
3981
3982         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983                 pll = &dev_priv->shared_dplls[i];
3984
3985                 WARN_ON(pll->new_config == &pll->config);
3986
3987                 kfree(pll->new_config);
3988                 pll->new_config = NULL;
3989         }
3990 }
3991
3992 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int dslreg = PIPEDSL(pipe);
3996         u32 temp;
3997
3998         temp = I915_READ(dslreg);
3999         udelay(500);
4000         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4001                 if (wait_for(I915_READ(dslreg) != temp, 5))
4002                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4003         }
4004 }
4005
4006 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007 {
4008         struct drm_device *dev = crtc->base.dev;
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int pipe = crtc->pipe;
4011
4012         if (crtc->config.pch_pfit.enabled) {
4013                 /* Force use of hard-coded filter coefficients
4014                  * as some pre-programmed values are broken,
4015                  * e.g. x201.
4016                  */
4017                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019                                                  PF_PIPE_SEL_IVB(pipe));
4020                 else
4021                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4024         }
4025 }
4026
4027 static void intel_enable_planes(struct drm_crtc *crtc)
4028 {
4029         struct drm_device *dev = crtc->dev;
4030         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4031         struct drm_plane *plane;
4032         struct intel_plane *intel_plane;
4033
4034         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035                 intel_plane = to_intel_plane(plane);
4036                 if (intel_plane->pipe == pipe)
4037                         intel_plane_restore(&intel_plane->base);
4038         }
4039 }
4040
4041 static void intel_disable_planes(struct drm_crtc *crtc)
4042 {
4043         struct drm_device *dev = crtc->dev;
4044         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4045         struct drm_plane *plane;
4046         struct intel_plane *intel_plane;
4047
4048         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049                 intel_plane = to_intel_plane(plane);
4050                 if (intel_plane->pipe == pipe)
4051                         intel_plane_disable(&intel_plane->base);
4052         }
4053 }
4054
4055 void hsw_enable_ips(struct intel_crtc *crtc)
4056 {
4057         struct drm_device *dev = crtc->base.dev;
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059
4060         if (!crtc->config.ips_enabled)
4061                 return;
4062
4063         /* We can only enable IPS after we enable a plane and wait for a vblank */
4064         intel_wait_for_vblank(dev, crtc->pipe);
4065
4066         assert_plane_enabled(dev_priv, crtc->plane);
4067         if (IS_BROADWELL(dev)) {
4068                 mutex_lock(&dev_priv->rps.hw_lock);
4069                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070                 mutex_unlock(&dev_priv->rps.hw_lock);
4071                 /* Quoting Art Runyan: "its not safe to expect any particular
4072                  * value in IPS_CTL bit 31 after enabling IPS through the
4073                  * mailbox." Moreover, the mailbox may return a bogus state,
4074                  * so we need to just enable it and continue on.
4075                  */
4076         } else {
4077                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078                 /* The bit only becomes 1 in the next vblank, so this wait here
4079                  * is essentially intel_wait_for_vblank. If we don't have this
4080                  * and don't wait for vblanks until the end of crtc_enable, then
4081                  * the HW state readout code will complain that the expected
4082                  * IPS_CTL value is not the one we read. */
4083                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084                         DRM_ERROR("Timed out waiting for IPS enable\n");
4085         }
4086 }
4087
4088 void hsw_disable_ips(struct intel_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->base.dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093         if (!crtc->config.ips_enabled)
4094                 return;
4095
4096         assert_plane_enabled(dev_priv, crtc->plane);
4097         if (IS_BROADWELL(dev)) {
4098                 mutex_lock(&dev_priv->rps.hw_lock);
4099                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100                 mutex_unlock(&dev_priv->rps.hw_lock);
4101                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103                         DRM_ERROR("Timed out waiting for IPS disable\n");
4104         } else {
4105                 I915_WRITE(IPS_CTL, 0);
4106                 POSTING_READ(IPS_CTL);
4107         }
4108
4109         /* We need to wait for a vblank before we can disable the plane. */
4110         intel_wait_for_vblank(dev, crtc->pipe);
4111 }
4112
4113 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4114 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         enum pipe pipe = intel_crtc->pipe;
4120         int palreg = PALETTE(pipe);
4121         int i;
4122         bool reenable_ips = false;
4123
4124         /* The clocks have to be on to load the palette. */
4125         if (!crtc->enabled || !intel_crtc->active)
4126                 return;
4127
4128         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4129                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4130                         assert_dsi_pll_enabled(dev_priv);
4131                 else
4132                         assert_pll_enabled(dev_priv, pipe);
4133         }
4134
4135         /* use legacy palette for Ironlake */
4136         if (!HAS_GMCH_DISPLAY(dev))
4137                 palreg = LGC_PALETTE(pipe);
4138
4139         /* Workaround : Do not read or write the pipe palette/gamma data while
4140          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141          */
4142         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4143             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144              GAMMA_MODE_MODE_SPLIT)) {
4145                 hsw_disable_ips(intel_crtc);
4146                 reenable_ips = true;
4147         }
4148
4149         for (i = 0; i < 256; i++) {
4150                 I915_WRITE(palreg + 4 * i,
4151                            (intel_crtc->lut_r[i] << 16) |
4152                            (intel_crtc->lut_g[i] << 8) |
4153                            intel_crtc->lut_b[i]);
4154         }
4155
4156         if (reenable_ips)
4157                 hsw_enable_ips(intel_crtc);
4158 }
4159
4160 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161 {
4162         if (!enable && intel_crtc->overlay) {
4163                 struct drm_device *dev = intel_crtc->base.dev;
4164                 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166                 mutex_lock(&dev->struct_mutex);
4167                 dev_priv->mm.interruptible = false;
4168                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169                 dev_priv->mm.interruptible = true;
4170                 mutex_unlock(&dev->struct_mutex);
4171         }
4172
4173         /* Let userspace switch the overlay on again. In most cases userspace
4174          * has to recompute where to put it anyway.
4175          */
4176 }
4177
4178 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182         int pipe = intel_crtc->pipe;
4183
4184         intel_enable_primary_hw_plane(crtc->primary, crtc);
4185         intel_enable_planes(crtc);
4186         intel_crtc_update_cursor(crtc, true);
4187         intel_crtc_dpms_overlay(intel_crtc, true);
4188
4189         hsw_enable_ips(intel_crtc);
4190
4191         mutex_lock(&dev->struct_mutex);
4192         intel_update_fbc(dev);
4193         mutex_unlock(&dev->struct_mutex);
4194
4195         /*
4196          * FIXME: Once we grow proper nuclear flip support out of this we need
4197          * to compute the mask of flip planes precisely. For the time being
4198          * consider this a flip from a NULL plane.
4199          */
4200         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4201 }
4202
4203 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208         int pipe = intel_crtc->pipe;
4209         int plane = intel_crtc->plane;
4210
4211         intel_crtc_wait_for_pending_flips(crtc);
4212
4213         if (dev_priv->fbc.plane == plane)
4214                 intel_disable_fbc(dev);
4215
4216         hsw_disable_ips(intel_crtc);
4217
4218         intel_crtc_dpms_overlay(intel_crtc, false);
4219         intel_crtc_update_cursor(crtc, false);
4220         intel_disable_planes(crtc);
4221         intel_disable_primary_hw_plane(crtc->primary, crtc);
4222
4223         /*
4224          * FIXME: Once we grow proper nuclear flip support out of this we need
4225          * to compute the mask of flip planes precisely. For the time being
4226          * consider this a flip to a NULL plane.
4227          */
4228         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4229 }
4230
4231 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->dev;
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236         struct intel_encoder *encoder;
4237         int pipe = intel_crtc->pipe;
4238
4239         WARN_ON(!crtc->enabled);
4240
4241         if (intel_crtc->active)
4242                 return;
4243
4244         if (intel_crtc->config.has_pch_encoder)
4245                 intel_prepare_shared_dpll(intel_crtc);
4246
4247         if (intel_crtc->config.has_dp_encoder)
4248                 intel_dp_set_m_n(intel_crtc);
4249
4250         intel_set_pipe_timings(intel_crtc);
4251
4252         if (intel_crtc->config.has_pch_encoder) {
4253                 intel_cpu_transcoder_set_m_n(intel_crtc,
4254                                      &intel_crtc->config.fdi_m_n, NULL);
4255         }
4256
4257         ironlake_set_pipeconf(crtc);
4258
4259         intel_crtc->active = true;
4260
4261         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4263
4264         for_each_encoder_on_crtc(dev, crtc, encoder)
4265                 if (encoder->pre_enable)
4266                         encoder->pre_enable(encoder);
4267
4268         if (intel_crtc->config.has_pch_encoder) {
4269                 /* Note: FDI PLL enabling _must_ be done before we enable the
4270                  * cpu pipes, hence this is separate from all the other fdi/pch
4271                  * enabling. */
4272                 ironlake_fdi_pll_enable(intel_crtc);
4273         } else {
4274                 assert_fdi_tx_disabled(dev_priv, pipe);
4275                 assert_fdi_rx_disabled(dev_priv, pipe);
4276         }
4277
4278         ironlake_pfit_enable(intel_crtc);
4279
4280         /*
4281          * On ILK+ LUT must be loaded before the pipe is running but with
4282          * clocks enabled
4283          */
4284         intel_crtc_load_lut(crtc);
4285
4286         intel_update_watermarks(crtc);
4287         intel_enable_pipe(intel_crtc);
4288
4289         if (intel_crtc->config.has_pch_encoder)
4290                 ironlake_pch_enable(crtc);
4291
4292         for_each_encoder_on_crtc(dev, crtc, encoder)
4293                 encoder->enable(encoder);
4294
4295         if (HAS_PCH_CPT(dev))
4296                 cpt_verify_modeset(dev, intel_crtc->pipe);
4297
4298         assert_vblank_disabled(crtc);
4299         drm_crtc_vblank_on(crtc);
4300
4301         intel_crtc_enable_planes(crtc);
4302 }
4303
4304 /* IPS only exists on ULT machines and is tied to pipe A. */
4305 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306 {
4307         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4308 }
4309
4310 /*
4311  * This implements the workaround described in the "notes" section of the mode
4312  * set sequence documentation. When going from no pipes or single pipe to
4313  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315  */
4316 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317 {
4318         struct drm_device *dev = crtc->base.dev;
4319         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321         /* We want to get the other_active_crtc only if there's only 1 other
4322          * active crtc. */
4323         for_each_intel_crtc(dev, crtc_it) {
4324                 if (!crtc_it->active || crtc_it == crtc)
4325                         continue;
4326
4327                 if (other_active_crtc)
4328                         return;
4329
4330                 other_active_crtc = crtc_it;
4331         }
4332         if (!other_active_crtc)
4333                 return;
4334
4335         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337 }
4338
4339 static void haswell_crtc_enable(struct drm_crtc *crtc)
4340 {
4341         struct drm_device *dev = crtc->dev;
4342         struct drm_i915_private *dev_priv = dev->dev_private;
4343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344         struct intel_encoder *encoder;
4345         int pipe = intel_crtc->pipe;
4346
4347         WARN_ON(!crtc->enabled);
4348
4349         if (intel_crtc->active)
4350                 return;
4351
4352         if (intel_crtc_to_shared_dpll(intel_crtc))
4353                 intel_enable_shared_dpll(intel_crtc);
4354
4355         if (intel_crtc->config.has_dp_encoder)
4356                 intel_dp_set_m_n(intel_crtc);
4357
4358         intel_set_pipe_timings(intel_crtc);
4359
4360         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362                            intel_crtc->config.pixel_multiplier - 1);
4363         }
4364
4365         if (intel_crtc->config.has_pch_encoder) {
4366                 intel_cpu_transcoder_set_m_n(intel_crtc,
4367                                      &intel_crtc->config.fdi_m_n, NULL);
4368         }
4369
4370         haswell_set_pipeconf(crtc);
4371
4372         intel_set_pipe_csc(crtc);
4373
4374         intel_crtc->active = true;
4375
4376         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4377         for_each_encoder_on_crtc(dev, crtc, encoder)
4378                 if (encoder->pre_enable)
4379                         encoder->pre_enable(encoder);
4380
4381         if (intel_crtc->config.has_pch_encoder) {
4382                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383                                                       true);
4384                 dev_priv->display.fdi_link_train(crtc);
4385         }
4386
4387         intel_ddi_enable_pipe_clock(intel_crtc);
4388
4389         ironlake_pfit_enable(intel_crtc);
4390
4391         /*
4392          * On ILK+ LUT must be loaded before the pipe is running but with
4393          * clocks enabled
4394          */
4395         intel_crtc_load_lut(crtc);
4396
4397         intel_ddi_set_pipe_settings(crtc);
4398         intel_ddi_enable_transcoder_func(crtc);
4399
4400         intel_update_watermarks(crtc);
4401         intel_enable_pipe(intel_crtc);
4402
4403         if (intel_crtc->config.has_pch_encoder)
4404                 lpt_pch_enable(crtc);
4405
4406         if (intel_crtc->config.dp_encoder_is_mst)
4407                 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
4409         for_each_encoder_on_crtc(dev, crtc, encoder) {
4410                 encoder->enable(encoder);
4411                 intel_opregion_notify_encoder(encoder, true);
4412         }
4413
4414         assert_vblank_disabled(crtc);
4415         drm_crtc_vblank_on(crtc);
4416
4417         /* If we change the relative order between pipe/planes enabling, we need
4418          * to change the workaround. */
4419         haswell_mode_set_planes_workaround(intel_crtc);
4420         intel_crtc_enable_planes(crtc);
4421 }
4422
4423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424 {
4425         struct drm_device *dev = crtc->base.dev;
4426         struct drm_i915_private *dev_priv = dev->dev_private;
4427         int pipe = crtc->pipe;
4428
4429         /* To avoid upsetting the power well on haswell only disable the pfit if
4430          * it's in use. The hw state code will make sure we get this right. */
4431         if (crtc->config.pch_pfit.enabled) {
4432                 I915_WRITE(PF_CTL(pipe), 0);
4433                 I915_WRITE(PF_WIN_POS(pipe), 0);
4434                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435         }
4436 }
4437
4438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439 {
4440         struct drm_device *dev = crtc->dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4443         struct intel_encoder *encoder;
4444         int pipe = intel_crtc->pipe;
4445         u32 reg, temp;
4446
4447         if (!intel_crtc->active)
4448                 return;
4449
4450         intel_crtc_disable_planes(crtc);
4451
4452         drm_crtc_vblank_off(crtc);
4453         assert_vblank_disabled(crtc);
4454
4455         for_each_encoder_on_crtc(dev, crtc, encoder)
4456                 encoder->disable(encoder);
4457
4458         if (intel_crtc->config.has_pch_encoder)
4459                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4460
4461         intel_disable_pipe(intel_crtc);
4462
4463         ironlake_pfit_disable(intel_crtc);
4464
4465         for_each_encoder_on_crtc(dev, crtc, encoder)
4466                 if (encoder->post_disable)
4467                         encoder->post_disable(encoder);
4468
4469         if (intel_crtc->config.has_pch_encoder) {
4470                 ironlake_fdi_disable(crtc);
4471
4472                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4473                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4474
4475                 if (HAS_PCH_CPT(dev)) {
4476                         /* disable TRANS_DP_CTL */
4477                         reg = TRANS_DP_CTL(pipe);
4478                         temp = I915_READ(reg);
4479                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480                                   TRANS_DP_PORT_SEL_MASK);
4481                         temp |= TRANS_DP_PORT_SEL_NONE;
4482                         I915_WRITE(reg, temp);
4483
4484                         /* disable DPLL_SEL */
4485                         temp = I915_READ(PCH_DPLL_SEL);
4486                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4487                         I915_WRITE(PCH_DPLL_SEL, temp);
4488                 }
4489
4490                 /* disable PCH DPLL */
4491                 intel_disable_shared_dpll(intel_crtc);
4492
4493                 ironlake_fdi_pll_disable(intel_crtc);
4494         }
4495
4496         intel_crtc->active = false;
4497         intel_update_watermarks(crtc);
4498
4499         mutex_lock(&dev->struct_mutex);
4500         intel_update_fbc(dev);
4501         mutex_unlock(&dev->struct_mutex);
4502 }
4503
4504 static void haswell_crtc_disable(struct drm_crtc *crtc)
4505 {
4506         struct drm_device *dev = crtc->dev;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509         struct intel_encoder *encoder;
4510         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4511
4512         if (!intel_crtc->active)
4513                 return;
4514
4515         intel_crtc_disable_planes(crtc);
4516
4517         drm_crtc_vblank_off(crtc);
4518         assert_vblank_disabled(crtc);
4519
4520         for_each_encoder_on_crtc(dev, crtc, encoder) {
4521                 intel_opregion_notify_encoder(encoder, false);
4522                 encoder->disable(encoder);
4523         }
4524
4525         if (intel_crtc->config.has_pch_encoder)
4526                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527                                                       false);
4528         intel_disable_pipe(intel_crtc);
4529
4530         if (intel_crtc->config.dp_encoder_is_mst)
4531                 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
4533         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4534
4535         ironlake_pfit_disable(intel_crtc);
4536
4537         intel_ddi_disable_pipe_clock(intel_crtc);
4538
4539         if (intel_crtc->config.has_pch_encoder) {
4540                 lpt_disable_pch_transcoder(dev_priv);
4541                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542                                                       true);
4543                 intel_ddi_fdi_disable(crtc);
4544         }
4545
4546         for_each_encoder_on_crtc(dev, crtc, encoder)
4547                 if (encoder->post_disable)
4548                         encoder->post_disable(encoder);
4549
4550         intel_crtc->active = false;
4551         intel_update_watermarks(crtc);
4552
4553         mutex_lock(&dev->struct_mutex);
4554         intel_update_fbc(dev);
4555         mutex_unlock(&dev->struct_mutex);
4556
4557         if (intel_crtc_to_shared_dpll(intel_crtc))
4558                 intel_disable_shared_dpll(intel_crtc);
4559 }
4560
4561 static void ironlake_crtc_off(struct drm_crtc *crtc)
4562 {
4563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4564         intel_put_shared_dpll(intel_crtc);
4565 }
4566
4567
4568 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->base.dev;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         struct intel_crtc_config *pipe_config = &crtc->config;
4573
4574         if (!crtc->config.gmch_pfit.control)
4575                 return;
4576
4577         /*
4578          * The panel fitter should only be adjusted whilst the pipe is disabled,
4579          * according to register description and PRM.
4580          */
4581         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582         assert_pipe_disabled(dev_priv, crtc->pipe);
4583
4584         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4586
4587         /* Border color in case we don't scale up to the full screen. Black by
4588          * default, change to something else for debugging. */
4589         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4590 }
4591
4592 static enum intel_display_power_domain port_to_power_domain(enum port port)
4593 {
4594         switch (port) {
4595         case PORT_A:
4596                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597         case PORT_B:
4598                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599         case PORT_C:
4600                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601         case PORT_D:
4602                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603         default:
4604                 WARN_ON_ONCE(1);
4605                 return POWER_DOMAIN_PORT_OTHER;
4606         }
4607 }
4608
4609 #define for_each_power_domain(domain, mask)                             \
4610         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4611                 if ((1 << (domain)) & (mask))
4612
4613 enum intel_display_power_domain
4614 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615 {
4616         struct drm_device *dev = intel_encoder->base.dev;
4617         struct intel_digital_port *intel_dig_port;
4618
4619         switch (intel_encoder->type) {
4620         case INTEL_OUTPUT_UNKNOWN:
4621                 /* Only DDI platforms should ever use this output type */
4622                 WARN_ON_ONCE(!HAS_DDI(dev));
4623         case INTEL_OUTPUT_DISPLAYPORT:
4624         case INTEL_OUTPUT_HDMI:
4625         case INTEL_OUTPUT_EDP:
4626                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4627                 return port_to_power_domain(intel_dig_port->port);
4628         case INTEL_OUTPUT_DP_MST:
4629                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630                 return port_to_power_domain(intel_dig_port->port);
4631         case INTEL_OUTPUT_ANALOG:
4632                 return POWER_DOMAIN_PORT_CRT;
4633         case INTEL_OUTPUT_DSI:
4634                 return POWER_DOMAIN_PORT_DSI;
4635         default:
4636                 return POWER_DOMAIN_PORT_OTHER;
4637         }
4638 }
4639
4640 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4641 {
4642         struct drm_device *dev = crtc->dev;
4643         struct intel_encoder *intel_encoder;
4644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645         enum pipe pipe = intel_crtc->pipe;
4646         unsigned long mask;
4647         enum transcoder transcoder;
4648
4649         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4653         if (intel_crtc->config.pch_pfit.enabled ||
4654             intel_crtc->config.pch_pfit.force_thru)
4655                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
4657         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
4660         return mask;
4661 }
4662
4663 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667         struct intel_crtc *crtc;
4668
4669         /*
4670          * First get all needed power domains, then put all unneeded, to avoid
4671          * any unnecessary toggling of the power wells.
4672          */
4673         for_each_intel_crtc(dev, crtc) {
4674                 enum intel_display_power_domain domain;
4675
4676                 if (!crtc->base.enabled)
4677                         continue;
4678
4679                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4680
4681                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682                         intel_display_power_get(dev_priv, domain);
4683         }
4684
4685         for_each_intel_crtc(dev, crtc) {
4686                 enum intel_display_power_domain domain;
4687
4688                 for_each_power_domain(domain, crtc->enabled_power_domains)
4689                         intel_display_power_put(dev_priv, domain);
4690
4691                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4692         }
4693
4694         intel_display_set_init_power(dev_priv, false);
4695 }
4696
4697 /* returns HPLL frequency in kHz */
4698 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4699 {
4700         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4701
4702         /* Obtain SKU information */
4703         mutex_lock(&dev_priv->dpio_lock);
4704         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4705                 CCK_FUSE_HPLL_FREQ_MASK;
4706         mutex_unlock(&dev_priv->dpio_lock);
4707
4708         return vco_freq[hpll_freq] * 1000;
4709 }
4710
4711 static void vlv_update_cdclk(struct drm_device *dev)
4712 {
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4716         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4717                          dev_priv->vlv_cdclk_freq);
4718
4719         /*
4720          * Program the gmbus_freq based on the cdclk frequency.
4721          * BSpec erroneously claims we should aim for 4MHz, but
4722          * in fact 1MHz is the correct frequency.
4723          */
4724         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4725 }
4726
4727 /* Adjust CDclk dividers to allow high res or save power if possible */
4728 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4729 {
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731         u32 val, cmd;
4732
4733         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4734
4735         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4736                 cmd = 2;
4737         else if (cdclk == 266667)
4738                 cmd = 1;
4739         else
4740                 cmd = 0;
4741
4742         mutex_lock(&dev_priv->rps.hw_lock);
4743         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4744         val &= ~DSPFREQGUAR_MASK;
4745         val |= (cmd << DSPFREQGUAR_SHIFT);
4746         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4747         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4748                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4749                      50)) {
4750                 DRM_ERROR("timed out waiting for CDclk change\n");
4751         }
4752         mutex_unlock(&dev_priv->rps.hw_lock);
4753
4754         if (cdclk == 400000) {
4755                 u32 divider, vco;
4756
4757                 vco = valleyview_get_vco(dev_priv);
4758                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4759
4760                 mutex_lock(&dev_priv->dpio_lock);
4761                 /* adjust cdclk divider */
4762                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4763                 val &= ~DISPLAY_FREQUENCY_VALUES;
4764                 val |= divider;
4765                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4766
4767                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4768                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4769                              50))
4770                         DRM_ERROR("timed out waiting for CDclk change\n");
4771                 mutex_unlock(&dev_priv->dpio_lock);
4772         }
4773
4774         mutex_lock(&dev_priv->dpio_lock);
4775         /* adjust self-refresh exit latency value */
4776         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4777         val &= ~0x7f;
4778
4779         /*
4780          * For high bandwidth configs, we set a higher latency in the bunit
4781          * so that the core display fetch happens in time to avoid underruns.
4782          */
4783         if (cdclk == 400000)
4784                 val |= 4500 / 250; /* 4.5 usec */
4785         else
4786                 val |= 3000 / 250; /* 3.0 usec */
4787         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4788         mutex_unlock(&dev_priv->dpio_lock);
4789
4790         vlv_update_cdclk(dev);
4791 }
4792
4793 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4794 {
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         u32 val, cmd;
4797
4798         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4799
4800         switch (cdclk) {
4801         case 400000:
4802                 cmd = 3;
4803                 break;
4804         case 333333:
4805         case 320000:
4806                 cmd = 2;
4807                 break;
4808         case 266667:
4809                 cmd = 1;
4810                 break;
4811         case 200000:
4812                 cmd = 0;
4813                 break;
4814         default:
4815                 WARN_ON(1);
4816                 return;
4817         }
4818
4819         mutex_lock(&dev_priv->rps.hw_lock);
4820         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4821         val &= ~DSPFREQGUAR_MASK_CHV;
4822         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4823         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4824         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4825                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4826                      50)) {
4827                 DRM_ERROR("timed out waiting for CDclk change\n");
4828         }
4829         mutex_unlock(&dev_priv->rps.hw_lock);
4830
4831         vlv_update_cdclk(dev);
4832 }
4833
4834 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4835                                  int max_pixclk)
4836 {
4837         int vco = valleyview_get_vco(dev_priv);
4838         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4839
4840         /* FIXME: Punit isn't quite ready yet */
4841         if (IS_CHERRYVIEW(dev_priv->dev))
4842                 return 400000;
4843
4844         /*
4845          * Really only a few cases to deal with, as only 4 CDclks are supported:
4846          *   200MHz
4847          *   267MHz
4848          *   320/333MHz (depends on HPLL freq)
4849          *   400MHz
4850          * So we check to see whether we're above 90% of the lower bin and
4851          * adjust if needed.
4852          *
4853          * We seem to get an unstable or solid color picture at 200MHz.
4854          * Not sure what's wrong. For now use 200MHz only when all pipes
4855          * are off.
4856          */
4857         if (max_pixclk > freq_320*9/10)
4858                 return 400000;
4859         else if (max_pixclk > 266667*9/10)
4860                 return freq_320;
4861         else if (max_pixclk > 0)
4862                 return 266667;
4863         else
4864                 return 200000;
4865 }
4866
4867 /* compute the max pixel clock for new configuration */
4868 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4869 {
4870         struct drm_device *dev = dev_priv->dev;
4871         struct intel_crtc *intel_crtc;
4872         int max_pixclk = 0;
4873
4874         for_each_intel_crtc(dev, intel_crtc) {
4875                 if (intel_crtc->new_enabled)
4876                         max_pixclk = max(max_pixclk,
4877                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4878         }
4879
4880         return max_pixclk;
4881 }
4882
4883 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4884                                             unsigned *prepare_pipes)
4885 {
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct intel_crtc *intel_crtc;
4888         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4889
4890         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4891             dev_priv->vlv_cdclk_freq)
4892                 return;
4893
4894         /* disable/enable all currently active pipes while we change cdclk */
4895         for_each_intel_crtc(dev, intel_crtc)
4896                 if (intel_crtc->base.enabled)
4897                         *prepare_pipes |= (1 << intel_crtc->pipe);
4898 }
4899
4900 static void valleyview_modeset_global_resources(struct drm_device *dev)
4901 {
4902         struct drm_i915_private *dev_priv = dev->dev_private;
4903         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4904         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4905
4906         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4907                 if (IS_CHERRYVIEW(dev))
4908                         cherryview_set_cdclk(dev, req_cdclk);
4909                 else
4910                         valleyview_set_cdclk(dev, req_cdclk);
4911         }
4912
4913         modeset_update_crtc_power_domains(dev);
4914 }
4915
4916 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4917 {
4918         struct drm_device *dev = crtc->dev;
4919         struct drm_i915_private *dev_priv = to_i915(dev);
4920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921         struct intel_encoder *encoder;
4922         int pipe = intel_crtc->pipe;
4923         bool is_dsi;
4924
4925         WARN_ON(!crtc->enabled);
4926
4927         if (intel_crtc->active)
4928                 return;
4929
4930         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4931
4932         if (!is_dsi) {
4933                 if (IS_CHERRYVIEW(dev))
4934                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4935                 else
4936                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4937         }
4938
4939         if (intel_crtc->config.has_dp_encoder)
4940                 intel_dp_set_m_n(intel_crtc);
4941
4942         intel_set_pipe_timings(intel_crtc);
4943
4944         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4945                 struct drm_i915_private *dev_priv = dev->dev_private;
4946
4947                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4948                 I915_WRITE(CHV_CANVAS(pipe), 0);
4949         }
4950
4951         i9xx_set_pipeconf(intel_crtc);
4952
4953         intel_crtc->active = true;
4954
4955         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4956
4957         for_each_encoder_on_crtc(dev, crtc, encoder)
4958                 if (encoder->pre_pll_enable)
4959                         encoder->pre_pll_enable(encoder);
4960
4961         if (!is_dsi) {
4962                 if (IS_CHERRYVIEW(dev))
4963                         chv_enable_pll(intel_crtc, &intel_crtc->config);
4964                 else
4965                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
4966         }
4967
4968         for_each_encoder_on_crtc(dev, crtc, encoder)
4969                 if (encoder->pre_enable)
4970                         encoder->pre_enable(encoder);
4971
4972         i9xx_pfit_enable(intel_crtc);
4973
4974         intel_crtc_load_lut(crtc);
4975
4976         intel_update_watermarks(crtc);
4977         intel_enable_pipe(intel_crtc);
4978
4979         for_each_encoder_on_crtc(dev, crtc, encoder)
4980                 encoder->enable(encoder);
4981
4982         assert_vblank_disabled(crtc);
4983         drm_crtc_vblank_on(crtc);
4984
4985         intel_crtc_enable_planes(crtc);
4986
4987         /* Underruns don't raise interrupts, so check manually. */
4988         i9xx_check_fifo_underruns(dev_priv);
4989 }
4990
4991 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4992 {
4993         struct drm_device *dev = crtc->base.dev;
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4997         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4998 }
4999
5000 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = to_i915(dev);
5004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005         struct intel_encoder *encoder;
5006         int pipe = intel_crtc->pipe;
5007
5008         WARN_ON(!crtc->enabled);
5009
5010         if (intel_crtc->active)
5011                 return;
5012
5013         i9xx_set_pll_dividers(intel_crtc);
5014
5015         if (intel_crtc->config.has_dp_encoder)
5016                 intel_dp_set_m_n(intel_crtc);
5017
5018         intel_set_pipe_timings(intel_crtc);
5019
5020         i9xx_set_pipeconf(intel_crtc);
5021
5022         intel_crtc->active = true;
5023
5024         if (!IS_GEN2(dev))
5025                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5026
5027         for_each_encoder_on_crtc(dev, crtc, encoder)
5028                 if (encoder->pre_enable)
5029                         encoder->pre_enable(encoder);
5030
5031         i9xx_enable_pll(intel_crtc);
5032
5033         i9xx_pfit_enable(intel_crtc);
5034
5035         intel_crtc_load_lut(crtc);
5036
5037         intel_update_watermarks(crtc);
5038         intel_enable_pipe(intel_crtc);
5039
5040         for_each_encoder_on_crtc(dev, crtc, encoder)
5041                 encoder->enable(encoder);
5042
5043         assert_vblank_disabled(crtc);
5044         drm_crtc_vblank_on(crtc);
5045
5046         intel_crtc_enable_planes(crtc);
5047
5048         /*
5049          * Gen2 reports pipe underruns whenever all planes are disabled.
5050          * So don't enable underrun reporting before at least some planes
5051          * are enabled.
5052          * FIXME: Need to fix the logic to work when we turn off all planes
5053          * but leave the pipe running.
5054          */
5055         if (IS_GEN2(dev))
5056                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5057
5058         /* Underruns don't raise interrupts, so check manually. */
5059         i9xx_check_fifo_underruns(dev_priv);
5060 }
5061
5062 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5063 {
5064         struct drm_device *dev = crtc->base.dev;
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066
5067         if (!crtc->config.gmch_pfit.control)
5068                 return;
5069
5070         assert_pipe_disabled(dev_priv, crtc->pipe);
5071
5072         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5073                          I915_READ(PFIT_CONTROL));
5074         I915_WRITE(PFIT_CONTROL, 0);
5075 }
5076
5077 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082         struct intel_encoder *encoder;
5083         int pipe = intel_crtc->pipe;
5084
5085         if (!intel_crtc->active)
5086                 return;
5087
5088         /*
5089          * Gen2 reports pipe underruns whenever all planes are disabled.
5090          * So diasble underrun reporting before all the planes get disabled.
5091          * FIXME: Need to fix the logic to work when we turn off all planes
5092          * but leave the pipe running.
5093          */
5094         if (IS_GEN2(dev))
5095                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097         /*
5098          * Vblank time updates from the shadow to live plane control register
5099          * are blocked if the memory self-refresh mode is active at that
5100          * moment. So to make sure the plane gets truly disabled, disable
5101          * first the self-refresh mode. The self-refresh enable bit in turn
5102          * will be checked/applied by the HW only at the next frame start
5103          * event which is after the vblank start event, so we need to have a
5104          * wait-for-vblank between disabling the plane and the pipe.
5105          */
5106         intel_set_memory_cxsr(dev_priv, false);
5107         intel_crtc_disable_planes(crtc);
5108
5109         /*
5110          * On gen2 planes are double buffered but the pipe isn't, so we must
5111          * wait for planes to fully turn off before disabling the pipe.
5112          * We also need to wait on all gmch platforms because of the
5113          * self-refresh mode constraint explained above.
5114          */
5115         intel_wait_for_vblank(dev, pipe);
5116
5117         drm_crtc_vblank_off(crtc);
5118         assert_vblank_disabled(crtc);
5119
5120         for_each_encoder_on_crtc(dev, crtc, encoder)
5121                 encoder->disable(encoder);
5122
5123         intel_disable_pipe(intel_crtc);
5124
5125         i9xx_pfit_disable(intel_crtc);
5126
5127         for_each_encoder_on_crtc(dev, crtc, encoder)
5128                 if (encoder->post_disable)
5129                         encoder->post_disable(encoder);
5130
5131         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5132                 if (IS_CHERRYVIEW(dev))
5133                         chv_disable_pll(dev_priv, pipe);
5134                 else if (IS_VALLEYVIEW(dev))
5135                         vlv_disable_pll(dev_priv, pipe);
5136                 else
5137                         i9xx_disable_pll(intel_crtc);
5138         }
5139
5140         if (!IS_GEN2(dev))
5141                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5142
5143         intel_crtc->active = false;
5144         intel_update_watermarks(crtc);
5145
5146         mutex_lock(&dev->struct_mutex);
5147         intel_update_fbc(dev);
5148         mutex_unlock(&dev->struct_mutex);
5149 }
5150
5151 static void i9xx_crtc_off(struct drm_crtc *crtc)
5152 {
5153 }
5154
5155 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5156                                     bool enabled)
5157 {
5158         struct drm_device *dev = crtc->dev;
5159         struct drm_i915_master_private *master_priv;
5160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161         int pipe = intel_crtc->pipe;
5162
5163         if (!dev->primary->master)
5164                 return;
5165
5166         master_priv = dev->primary->master->driver_priv;
5167         if (!master_priv->sarea_priv)
5168                 return;
5169
5170         switch (pipe) {
5171         case 0:
5172                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5173                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5174                 break;
5175         case 1:
5176                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5177                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5178                 break;
5179         default:
5180                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5181                 break;
5182         }
5183 }
5184
5185 /* Master function to enable/disable CRTC and corresponding power wells */
5186 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5187 {
5188         struct drm_device *dev = crtc->dev;
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5191         enum intel_display_power_domain domain;
5192         unsigned long domains;
5193
5194         if (enable) {
5195                 if (!intel_crtc->active) {
5196                         domains = get_crtc_power_domains(crtc);
5197                         for_each_power_domain(domain, domains)
5198                                 intel_display_power_get(dev_priv, domain);
5199                         intel_crtc->enabled_power_domains = domains;
5200
5201                         dev_priv->display.crtc_enable(crtc);
5202                 }
5203         } else {
5204                 if (intel_crtc->active) {
5205                         dev_priv->display.crtc_disable(crtc);
5206
5207                         domains = intel_crtc->enabled_power_domains;
5208                         for_each_power_domain(domain, domains)
5209                                 intel_display_power_put(dev_priv, domain);
5210                         intel_crtc->enabled_power_domains = 0;
5211                 }
5212         }
5213 }
5214
5215 /**
5216  * Sets the power management mode of the pipe and plane.
5217  */
5218 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5219 {
5220         struct drm_device *dev = crtc->dev;
5221         struct intel_encoder *intel_encoder;
5222         bool enable = false;
5223
5224         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225                 enable |= intel_encoder->connectors_active;
5226
5227         intel_crtc_control(crtc, enable);
5228
5229         intel_crtc_update_sarea(crtc, enable);
5230 }
5231
5232 static void intel_crtc_disable(struct drm_crtc *crtc)
5233 {
5234         struct drm_device *dev = crtc->dev;
5235         struct drm_connector *connector;
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5238         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5239
5240         /* crtc should still be enabled when we disable it. */
5241         WARN_ON(!crtc->enabled);
5242
5243         dev_priv->display.crtc_disable(crtc);
5244         intel_crtc_update_sarea(crtc, false);
5245         dev_priv->display.off(crtc);
5246
5247         if (crtc->primary->fb) {
5248                 mutex_lock(&dev->struct_mutex);
5249                 intel_unpin_fb_obj(old_obj);
5250                 i915_gem_track_fb(old_obj, NULL,
5251                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5252                 mutex_unlock(&dev->struct_mutex);
5253                 crtc->primary->fb = NULL;
5254         }
5255
5256         /* Update computed state. */
5257         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258                 if (!connector->encoder || !connector->encoder->crtc)
5259                         continue;
5260
5261                 if (connector->encoder->crtc != crtc)
5262                         continue;
5263
5264                 connector->dpms = DRM_MODE_DPMS_OFF;
5265                 to_intel_encoder(connector->encoder)->connectors_active = false;
5266         }
5267 }
5268
5269 void intel_encoder_destroy(struct drm_encoder *encoder)
5270 {
5271         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5272
5273         drm_encoder_cleanup(encoder);
5274         kfree(intel_encoder);
5275 }
5276
5277 /* Simple dpms helper for encoders with just one connector, no cloning and only
5278  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279  * state of the entire output pipe. */
5280 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5281 {
5282         if (mode == DRM_MODE_DPMS_ON) {
5283                 encoder->connectors_active = true;
5284
5285                 intel_crtc_update_dpms(encoder->base.crtc);
5286         } else {
5287                 encoder->connectors_active = false;
5288
5289                 intel_crtc_update_dpms(encoder->base.crtc);
5290         }
5291 }
5292
5293 /* Cross check the actual hw state with our own modeset state tracking (and it's
5294  * internal consistency). */
5295 static void intel_connector_check_state(struct intel_connector *connector)
5296 {
5297         if (connector->get_hw_state(connector)) {
5298                 struct intel_encoder *encoder = connector->encoder;
5299                 struct drm_crtc *crtc;
5300                 bool encoder_enabled;
5301                 enum pipe pipe;
5302
5303                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304                               connector->base.base.id,
5305                               connector->base.name);
5306
5307                 /* there is no real hw state for MST connectors */
5308                 if (connector->mst_port)
5309                         return;
5310
5311                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312                      "wrong connector dpms state\n");
5313                 WARN(connector->base.encoder != &encoder->base,
5314                      "active connector not linked to encoder\n");
5315
5316                 if (encoder) {
5317                         WARN(!encoder->connectors_active,
5318                              "encoder->connectors_active not set\n");
5319
5320                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321                         WARN(!encoder_enabled, "encoder not enabled\n");
5322                         if (WARN_ON(!encoder->base.crtc))
5323                                 return;
5324
5325                         crtc = encoder->base.crtc;
5326
5327                         WARN(!crtc->enabled, "crtc not enabled\n");
5328                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5330                              "encoder active on the wrong pipe\n");
5331                 }
5332         }
5333 }
5334
5335 /* Even simpler default implementation, if there's really no special case to
5336  * consider. */
5337 void intel_connector_dpms(struct drm_connector *connector, int mode)
5338 {
5339         /* All the simple cases only support two dpms states. */
5340         if (mode != DRM_MODE_DPMS_ON)
5341                 mode = DRM_MODE_DPMS_OFF;
5342
5343         if (mode == connector->dpms)
5344                 return;
5345
5346         connector->dpms = mode;
5347
5348         /* Only need to change hw state when actually enabled */
5349         if (connector->encoder)
5350                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5351
5352         intel_modeset_check_state(connector->dev);
5353 }
5354
5355 /* Simple connector->get_hw_state implementation for encoders that support only
5356  * one connector and no cloning and hence the encoder state determines the state
5357  * of the connector. */
5358 bool intel_connector_get_hw_state(struct intel_connector *connector)
5359 {
5360         enum pipe pipe = 0;
5361         struct intel_encoder *encoder = connector->encoder;
5362
5363         return encoder->get_hw_state(encoder, &pipe);
5364 }
5365
5366 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367                                      struct intel_crtc_config *pipe_config)
5368 {
5369         struct drm_i915_private *dev_priv = dev->dev_private;
5370         struct intel_crtc *pipe_B_crtc =
5371                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374                       pipe_name(pipe), pipe_config->fdi_lanes);
5375         if (pipe_config->fdi_lanes > 4) {
5376                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377                               pipe_name(pipe), pipe_config->fdi_lanes);
5378                 return false;
5379         }
5380
5381         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5382                 if (pipe_config->fdi_lanes > 2) {
5383                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384                                       pipe_config->fdi_lanes);
5385                         return false;
5386                 } else {
5387                         return true;
5388                 }
5389         }
5390
5391         if (INTEL_INFO(dev)->num_pipes == 2)
5392                 return true;
5393
5394         /* Ivybridge 3 pipe is really complicated */
5395         switch (pipe) {
5396         case PIPE_A:
5397                 return true;
5398         case PIPE_B:
5399                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400                     pipe_config->fdi_lanes > 2) {
5401                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402                                       pipe_name(pipe), pipe_config->fdi_lanes);
5403                         return false;
5404                 }
5405                 return true;
5406         case PIPE_C:
5407                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5408                     pipe_B_crtc->config.fdi_lanes <= 2) {
5409                         if (pipe_config->fdi_lanes > 2) {
5410                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411                                               pipe_name(pipe), pipe_config->fdi_lanes);
5412                                 return false;
5413                         }
5414                 } else {
5415                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416                         return false;
5417                 }
5418                 return true;
5419         default:
5420                 BUG();
5421         }
5422 }
5423
5424 #define RETRY 1
5425 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426                                        struct intel_crtc_config *pipe_config)
5427 {
5428         struct drm_device *dev = intel_crtc->base.dev;
5429         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5430         int lane, link_bw, fdi_dotclock;
5431         bool setup_ok, needs_recompute = false;
5432
5433 retry:
5434         /* FDI is a binary signal running at ~2.7GHz, encoding
5435          * each output octet as 10 bits. The actual frequency
5436          * is stored as a divider into a 100MHz clock, and the
5437          * mode pixel clock is stored in units of 1KHz.
5438          * Hence the bw of each lane in terms of the mode signal
5439          * is:
5440          */
5441         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
5443         fdi_dotclock = adjusted_mode->crtc_clock;
5444
5445         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5446                                            pipe_config->pipe_bpp);
5447
5448         pipe_config->fdi_lanes = lane;
5449
5450         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5451                                link_bw, &pipe_config->fdi_m_n);
5452
5453         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454                                             intel_crtc->pipe, pipe_config);
5455         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456                 pipe_config->pipe_bpp -= 2*3;
5457                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458                               pipe_config->pipe_bpp);
5459                 needs_recompute = true;
5460                 pipe_config->bw_constrained = true;
5461
5462                 goto retry;
5463         }
5464
5465         if (needs_recompute)
5466                 return RETRY;
5467
5468         return setup_ok ? 0 : -EINVAL;
5469 }
5470
5471 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472                                    struct intel_crtc_config *pipe_config)
5473 {
5474         pipe_config->ips_enabled = i915.enable_ips &&
5475                                    hsw_crtc_supports_ips(crtc) &&
5476                                    pipe_config->pipe_bpp <= 24;
5477 }
5478
5479 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5480                                      struct intel_crtc_config *pipe_config)
5481 {
5482         struct drm_device *dev = crtc->base.dev;
5483         struct drm_i915_private *dev_priv = dev->dev_private;
5484         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5485
5486         /* FIXME should check pixel clock limits on all platforms */
5487         if (INTEL_INFO(dev)->gen < 4) {
5488                 int clock_limit =
5489                         dev_priv->display.get_display_clock_speed(dev);
5490
5491                 /*
5492                  * Enable pixel doubling when the dot clock
5493                  * is > 90% of the (display) core speed.
5494                  *
5495                  * GDG double wide on either pipe,
5496                  * otherwise pipe A only.
5497                  */
5498                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5499                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5500                         clock_limit *= 2;
5501                         pipe_config->double_wide = true;
5502                 }
5503
5504                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5505                         return -EINVAL;
5506         }
5507
5508         /*
5509          * Pipe horizontal size must be even in:
5510          * - DVO ganged mode
5511          * - LVDS dual channel mode
5512          * - Double wide pipe
5513          */
5514         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5515              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516                 pipe_config->pipe_src_w &= ~1;
5517
5518         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5520          */
5521         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5523                 return -EINVAL;
5524
5525         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5526                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5527         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5528                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529                  * for lvds. */
5530                 pipe_config->pipe_bpp = 8*3;
5531         }
5532
5533         if (HAS_IPS(dev))
5534                 hsw_compute_ips_config(crtc, pipe_config);
5535
5536         /*
5537          * XXX: PCH/WRPLL clock sharing is done in ->mode_set if ->compute_clock is not
5538          * set, so make sure the old clock survives for now.
5539          */
5540         if (dev_priv->display.crtc_compute_clock == NULL &&
5541             (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)))
5542                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5543
5544         if (pipe_config->has_pch_encoder)
5545                 return ironlake_fdi_compute_config(crtc, pipe_config);
5546
5547         return 0;
5548 }
5549
5550 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5551 {
5552         struct drm_i915_private *dev_priv = dev->dev_private;
5553         int vco = valleyview_get_vco(dev_priv);
5554         u32 val;
5555         int divider;
5556
5557         /* FIXME: Punit isn't quite ready yet */
5558         if (IS_CHERRYVIEW(dev))
5559                 return 400000;
5560
5561         mutex_lock(&dev_priv->dpio_lock);
5562         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5563         mutex_unlock(&dev_priv->dpio_lock);
5564
5565         divider = val & DISPLAY_FREQUENCY_VALUES;
5566
5567         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5568              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5569              "cdclk change in progress\n");
5570
5571         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5572 }
5573
5574 static int i945_get_display_clock_speed(struct drm_device *dev)
5575 {
5576         return 400000;
5577 }
5578
5579 static int i915_get_display_clock_speed(struct drm_device *dev)
5580 {
5581         return 333000;
5582 }
5583
5584 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5585 {
5586         return 200000;
5587 }
5588
5589 static int pnv_get_display_clock_speed(struct drm_device *dev)
5590 {
5591         u16 gcfgc = 0;
5592
5593         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5594
5595         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5596         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5597                 return 267000;
5598         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5599                 return 333000;
5600         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5601                 return 444000;
5602         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5603                 return 200000;
5604         default:
5605                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5606         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5607                 return 133000;
5608         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5609                 return 167000;
5610         }
5611 }
5612
5613 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5614 {
5615         u16 gcfgc = 0;
5616
5617         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5618
5619         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5620                 return 133000;
5621         else {
5622                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623                 case GC_DISPLAY_CLOCK_333_MHZ:
5624                         return 333000;
5625                 default:
5626                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5627                         return 190000;
5628                 }
5629         }
5630 }
5631
5632 static int i865_get_display_clock_speed(struct drm_device *dev)
5633 {
5634         return 266000;
5635 }
5636
5637 static int i855_get_display_clock_speed(struct drm_device *dev)
5638 {
5639         u16 hpllcc = 0;
5640         /* Assume that the hardware is in the high speed state.  This
5641          * should be the default.
5642          */
5643         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5644         case GC_CLOCK_133_200:
5645         case GC_CLOCK_100_200:
5646                 return 200000;
5647         case GC_CLOCK_166_250:
5648                 return 250000;
5649         case GC_CLOCK_100_133:
5650                 return 133000;
5651         }
5652
5653         /* Shouldn't happen */
5654         return 0;
5655 }
5656
5657 static int i830_get_display_clock_speed(struct drm_device *dev)
5658 {
5659         return 133000;
5660 }
5661
5662 static void
5663 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5664 {
5665         while (*num > DATA_LINK_M_N_MASK ||
5666                *den > DATA_LINK_M_N_MASK) {
5667                 *num >>= 1;
5668                 *den >>= 1;
5669         }
5670 }
5671
5672 static void compute_m_n(unsigned int m, unsigned int n,
5673                         uint32_t *ret_m, uint32_t *ret_n)
5674 {
5675         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5676         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5677         intel_reduce_m_n_ratio(ret_m, ret_n);
5678 }
5679
5680 void
5681 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5682                        int pixel_clock, int link_clock,
5683                        struct intel_link_m_n *m_n)
5684 {
5685         m_n->tu = 64;
5686
5687         compute_m_n(bits_per_pixel * pixel_clock,
5688                     link_clock * nlanes * 8,
5689                     &m_n->gmch_m, &m_n->gmch_n);
5690
5691         compute_m_n(pixel_clock, link_clock,
5692                     &m_n->link_m, &m_n->link_n);
5693 }
5694
5695 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5696 {
5697         if (i915.panel_use_ssc >= 0)
5698                 return i915.panel_use_ssc != 0;
5699         return dev_priv->vbt.lvds_use_ssc
5700                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5701 }
5702
5703 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5704 {
5705         struct drm_device *dev = crtc->base.dev;
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         int refclk;
5708
5709         if (IS_VALLEYVIEW(dev)) {
5710                 refclk = 100000;
5711         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5712             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5713                 refclk = dev_priv->vbt.lvds_ssc_freq;
5714                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5715         } else if (!IS_GEN2(dev)) {
5716                 refclk = 96000;
5717         } else {
5718                 refclk = 48000;
5719         }
5720
5721         return refclk;
5722 }
5723
5724 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5725 {
5726         return (1 << dpll->n) << 16 | dpll->m2;
5727 }
5728
5729 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5730 {
5731         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5732 }
5733
5734 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5735                                      intel_clock_t *reduced_clock)
5736 {
5737         struct drm_device *dev = crtc->base.dev;
5738         u32 fp, fp2 = 0;
5739
5740         if (IS_PINEVIEW(dev)) {
5741                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5742                 if (reduced_clock)
5743                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5744         } else {
5745                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5746                 if (reduced_clock)
5747                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5748         }
5749
5750         crtc->config.dpll_hw_state.fp0 = fp;
5751
5752         crtc->lowfreq_avail = false;
5753         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5754             reduced_clock && i915.powersave) {
5755                 crtc->config.dpll_hw_state.fp1 = fp2;
5756                 crtc->lowfreq_avail = true;
5757         } else {
5758                 crtc->config.dpll_hw_state.fp1 = fp;
5759         }
5760 }
5761
5762 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5763                 pipe)
5764 {
5765         u32 reg_val;
5766
5767         /*
5768          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5769          * and set it to a reasonable value instead.
5770          */
5771         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5772         reg_val &= 0xffffff00;
5773         reg_val |= 0x00000030;
5774         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5775
5776         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5777         reg_val &= 0x8cffffff;
5778         reg_val = 0x8c000000;
5779         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5780
5781         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5782         reg_val &= 0xffffff00;
5783         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5784
5785         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5786         reg_val &= 0x00ffffff;
5787         reg_val |= 0xb0000000;
5788         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5789 }
5790
5791 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5792                                          struct intel_link_m_n *m_n)
5793 {
5794         struct drm_device *dev = crtc->base.dev;
5795         struct drm_i915_private *dev_priv = dev->dev_private;
5796         int pipe = crtc->pipe;
5797
5798         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5799         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5800         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5801         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5802 }
5803
5804 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5805                                          struct intel_link_m_n *m_n,
5806                                          struct intel_link_m_n *m2_n2)
5807 {
5808         struct drm_device *dev = crtc->base.dev;
5809         struct drm_i915_private *dev_priv = dev->dev_private;
5810         int pipe = crtc->pipe;
5811         enum transcoder transcoder = crtc->config.cpu_transcoder;
5812
5813         if (INTEL_INFO(dev)->gen >= 5) {
5814                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5815                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5816                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5817                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5818                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5819                  * for gen < 8) and if DRRS is supported (to make sure the
5820                  * registers are not unnecessarily accessed).
5821                  */
5822                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5823                         crtc->config.has_drrs) {
5824                         I915_WRITE(PIPE_DATA_M2(transcoder),
5825                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5826                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5827                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5828                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5829                 }
5830         } else {
5831                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5832                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5833                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5834                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5835         }
5836 }
5837
5838 void intel_dp_set_m_n(struct intel_crtc *crtc)
5839 {
5840         if (crtc->config.has_pch_encoder)
5841                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5842         else
5843                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5844                                                    &crtc->config.dp_m2_n2);
5845 }
5846
5847 static void vlv_update_pll(struct intel_crtc *crtc,
5848                            struct intel_crtc_config *pipe_config)
5849 {
5850         u32 dpll, dpll_md;
5851
5852         /*
5853          * Enable DPIO clock input. We should never disable the reference
5854          * clock for pipe B, since VGA hotplug / manual detection depends
5855          * on it.
5856          */
5857         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5858                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5859         /* We should never disable this, set it here for state tracking */
5860         if (crtc->pipe == PIPE_B)
5861                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5862         dpll |= DPLL_VCO_ENABLE;
5863         pipe_config->dpll_hw_state.dpll = dpll;
5864
5865         dpll_md = (pipe_config->pixel_multiplier - 1)
5866                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5867         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5868 }
5869
5870 static void vlv_prepare_pll(struct intel_crtc *crtc,
5871                             const struct intel_crtc_config *pipe_config)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         int pipe = crtc->pipe;
5876         u32 mdiv;
5877         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5878         u32 coreclk, reg_val;
5879
5880         mutex_lock(&dev_priv->dpio_lock);
5881
5882         bestn = pipe_config->dpll.n;
5883         bestm1 = pipe_config->dpll.m1;
5884         bestm2 = pipe_config->dpll.m2;
5885         bestp1 = pipe_config->dpll.p1;
5886         bestp2 = pipe_config->dpll.p2;
5887
5888         /* See eDP HDMI DPIO driver vbios notes doc */
5889
5890         /* PLL B needs special handling */
5891         if (pipe == PIPE_B)
5892                 vlv_pllb_recal_opamp(dev_priv, pipe);
5893
5894         /* Set up Tx target for periodic Rcomp update */
5895         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5896
5897         /* Disable target IRef on PLL */
5898         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5899         reg_val &= 0x00ffffff;
5900         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5901
5902         /* Disable fast lock */
5903         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5904
5905         /* Set idtafcrecal before PLL is enabled */
5906         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5907         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5908         mdiv |= ((bestn << DPIO_N_SHIFT));
5909         mdiv |= (1 << DPIO_K_SHIFT);
5910
5911         /*
5912          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5913          * but we don't support that).
5914          * Note: don't use the DAC post divider as it seems unstable.
5915          */
5916         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919         mdiv |= DPIO_ENABLE_CALIBRATION;
5920         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5921
5922         /* Set HBR and RBR LPF coefficients */
5923         if (pipe_config->port_clock == 162000 ||
5924             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5925             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5926                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927                                  0x009f0003);
5928         else
5929                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5930                                  0x00d0000f);
5931
5932         if (crtc->config.has_dp_encoder) {
5933                 /* Use SSC source */
5934                 if (pipe == PIPE_A)
5935                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936                                          0x0df40000);
5937                 else
5938                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5939                                          0x0df70000);
5940         } else { /* HDMI or VGA */
5941                 /* Use bend source */
5942                 if (pipe == PIPE_A)
5943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944                                          0x0df70000);
5945                 else
5946                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5947                                          0x0df40000);
5948         }
5949
5950         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5951         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5952         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5953             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5954                 coreclk |= 0x01000000;
5955         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5956
5957         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5958         mutex_unlock(&dev_priv->dpio_lock);
5959 }
5960
5961 static void chv_update_pll(struct intel_crtc *crtc,
5962                            struct intel_crtc_config *pipe_config)
5963 {
5964         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5965                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5966                 DPLL_VCO_ENABLE;
5967         if (crtc->pipe != PIPE_A)
5968                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5969
5970         pipe_config->dpll_hw_state.dpll_md =
5971                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5972 }
5973
5974 static void chv_prepare_pll(struct intel_crtc *crtc,
5975                             const struct intel_crtc_config *pipe_config)
5976 {
5977         struct drm_device *dev = crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         int pipe = crtc->pipe;
5980         int dpll_reg = DPLL(crtc->pipe);
5981         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5982         u32 loopfilter, intcoeff;
5983         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5984         int refclk;
5985
5986         bestn = pipe_config->dpll.n;
5987         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5988         bestm1 = pipe_config->dpll.m1;
5989         bestm2 = pipe_config->dpll.m2 >> 22;
5990         bestp1 = pipe_config->dpll.p1;
5991         bestp2 = pipe_config->dpll.p2;
5992
5993         /*
5994          * Enable Refclk and SSC
5995          */
5996         I915_WRITE(dpll_reg,
5997                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5998
5999         mutex_lock(&dev_priv->dpio_lock);
6000
6001         /* p1 and p2 divider */
6002         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6003                         5 << DPIO_CHV_S1_DIV_SHIFT |
6004                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6005                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6006                         1 << DPIO_CHV_K_DIV_SHIFT);
6007
6008         /* Feedback post-divider - m2 */
6009         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6010
6011         /* Feedback refclk divider - n and m1 */
6012         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6013                         DPIO_CHV_M1_DIV_BY_2 |
6014                         1 << DPIO_CHV_N_DIV_SHIFT);
6015
6016         /* M2 fraction division */
6017         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6018
6019         /* M2 fraction division enable */
6020         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6021                        DPIO_CHV_FRAC_DIV_EN |
6022                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6023
6024         /* Loop filter */
6025         refclk = i9xx_get_refclk(crtc, 0);
6026         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6027                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6028         if (refclk == 100000)
6029                 intcoeff = 11;
6030         else if (refclk == 38400)
6031                 intcoeff = 10;
6032         else
6033                 intcoeff = 9;
6034         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6035         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6036
6037         /* AFC Recal */
6038         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6039                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6040                         DPIO_AFC_RECAL);
6041
6042         mutex_unlock(&dev_priv->dpio_lock);
6043 }
6044
6045 /**
6046  * vlv_force_pll_on - forcibly enable just the PLL
6047  * @dev_priv: i915 private structure
6048  * @pipe: pipe PLL to enable
6049  * @dpll: PLL configuration
6050  *
6051  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6052  * in cases where we need the PLL enabled even when @pipe is not going to
6053  * be enabled.
6054  */
6055 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6056                       const struct dpll *dpll)
6057 {
6058         struct intel_crtc *crtc =
6059                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6060         struct intel_crtc_config pipe_config = {
6061                 .pixel_multiplier = 1,
6062                 .dpll = *dpll,
6063         };
6064
6065         if (IS_CHERRYVIEW(dev)) {
6066                 chv_update_pll(crtc, &pipe_config);
6067                 chv_prepare_pll(crtc, &pipe_config);
6068                 chv_enable_pll(crtc, &pipe_config);
6069         } else {
6070                 vlv_update_pll(crtc, &pipe_config);
6071                 vlv_prepare_pll(crtc, &pipe_config);
6072                 vlv_enable_pll(crtc, &pipe_config);
6073         }
6074 }
6075
6076 /**
6077  * vlv_force_pll_off - forcibly disable just the PLL
6078  * @dev_priv: i915 private structure
6079  * @pipe: pipe PLL to disable
6080  *
6081  * Disable the PLL for @pipe. To be used in cases where we need
6082  * the PLL enabled even when @pipe is not going to be enabled.
6083  */
6084 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6085 {
6086         if (IS_CHERRYVIEW(dev))
6087                 chv_disable_pll(to_i915(dev), pipe);
6088         else
6089                 vlv_disable_pll(to_i915(dev), pipe);
6090 }
6091
6092 static void i9xx_update_pll(struct intel_crtc *crtc,
6093                             intel_clock_t *reduced_clock,
6094                             int num_connectors)
6095 {
6096         struct drm_device *dev = crtc->base.dev;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098         u32 dpll;
6099         bool is_sdvo;
6100         struct dpll *clock = &crtc->new_config->dpll;
6101
6102         i9xx_update_pll_dividers(crtc, reduced_clock);
6103
6104         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6106
6107         dpll = DPLL_VGA_MODE_DIS;
6108
6109         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6110                 dpll |= DPLLB_MODE_LVDS;
6111         else
6112                 dpll |= DPLLB_MODE_DAC_SERIAL;
6113
6114         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6115                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6116                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6117         }
6118
6119         if (is_sdvo)
6120                 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122         if (crtc->new_config->has_dp_encoder)
6123                 dpll |= DPLL_SDVO_HIGH_SPEED;
6124
6125         /* compute bitmask from p1 value */
6126         if (IS_PINEVIEW(dev))
6127                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128         else {
6129                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130                 if (IS_G4X(dev) && reduced_clock)
6131                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132         }
6133         switch (clock->p2) {
6134         case 5:
6135                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136                 break;
6137         case 7:
6138                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139                 break;
6140         case 10:
6141                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142                 break;
6143         case 14:
6144                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145                 break;
6146         }
6147         if (INTEL_INFO(dev)->gen >= 4)
6148                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
6150         if (crtc->new_config->sdvo_tv_clock)
6151                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6152         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6153                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155         else
6156                 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158         dpll |= DPLL_VCO_ENABLE;
6159         crtc->new_config->dpll_hw_state.dpll = dpll;
6160
6161         if (INTEL_INFO(dev)->gen >= 4) {
6162                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6163                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6164                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6165         }
6166 }
6167
6168 static void i8xx_update_pll(struct intel_crtc *crtc,
6169                             intel_clock_t *reduced_clock,
6170                             int num_connectors)
6171 {
6172         struct drm_device *dev = crtc->base.dev;
6173         struct drm_i915_private *dev_priv = dev->dev_private;
6174         u32 dpll;
6175         struct dpll *clock = &crtc->new_config->dpll;
6176
6177         i9xx_update_pll_dividers(crtc, reduced_clock);
6178
6179         dpll = DPLL_VGA_MODE_DIS;
6180
6181         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6182                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6183         } else {
6184                 if (clock->p1 == 2)
6185                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6186                 else
6187                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6188                 if (clock->p2 == 4)
6189                         dpll |= PLL_P2_DIVIDE_BY_4;
6190         }
6191
6192         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6193                 dpll |= DPLL_DVO_2X_MODE;
6194
6195         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6196                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198         else
6199                 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201         dpll |= DPLL_VCO_ENABLE;
6202         crtc->new_config->dpll_hw_state.dpll = dpll;
6203 }
6204
6205 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6206 {
6207         struct drm_device *dev = intel_crtc->base.dev;
6208         struct drm_i915_private *dev_priv = dev->dev_private;
6209         enum pipe pipe = intel_crtc->pipe;
6210         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6211         struct drm_display_mode *adjusted_mode =
6212                 &intel_crtc->config.adjusted_mode;
6213         uint32_t crtc_vtotal, crtc_vblank_end;
6214         int vsyncshift = 0;
6215
6216         /* We need to be careful not to changed the adjusted mode, for otherwise
6217          * the hw state checker will get angry at the mismatch. */
6218         crtc_vtotal = adjusted_mode->crtc_vtotal;
6219         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6220
6221         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6222                 /* the chip adds 2 halflines automatically */
6223                 crtc_vtotal -= 1;
6224                 crtc_vblank_end -= 1;
6225
6226                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6227                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6228                 else
6229                         vsyncshift = adjusted_mode->crtc_hsync_start -
6230                                 adjusted_mode->crtc_htotal / 2;
6231                 if (vsyncshift < 0)
6232                         vsyncshift += adjusted_mode->crtc_htotal;
6233         }
6234
6235         if (INTEL_INFO(dev)->gen > 3)
6236                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6237
6238         I915_WRITE(HTOTAL(cpu_transcoder),
6239                    (adjusted_mode->crtc_hdisplay - 1) |
6240                    ((adjusted_mode->crtc_htotal - 1) << 16));
6241         I915_WRITE(HBLANK(cpu_transcoder),
6242                    (adjusted_mode->crtc_hblank_start - 1) |
6243                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6244         I915_WRITE(HSYNC(cpu_transcoder),
6245                    (adjusted_mode->crtc_hsync_start - 1) |
6246                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6247
6248         I915_WRITE(VTOTAL(cpu_transcoder),
6249                    (adjusted_mode->crtc_vdisplay - 1) |
6250                    ((crtc_vtotal - 1) << 16));
6251         I915_WRITE(VBLANK(cpu_transcoder),
6252                    (adjusted_mode->crtc_vblank_start - 1) |
6253                    ((crtc_vblank_end - 1) << 16));
6254         I915_WRITE(VSYNC(cpu_transcoder),
6255                    (adjusted_mode->crtc_vsync_start - 1) |
6256                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6257
6258         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6259          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6260          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6261          * bits. */
6262         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6263             (pipe == PIPE_B || pipe == PIPE_C))
6264                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6265
6266         /* pipesrc controls the size that is scaled from, which should
6267          * always be the user's requested size.
6268          */
6269         I915_WRITE(PIPESRC(pipe),
6270                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6271                    (intel_crtc->config.pipe_src_h - 1));
6272 }
6273
6274 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6275                                    struct intel_crtc_config *pipe_config)
6276 {
6277         struct drm_device *dev = crtc->base.dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6280         uint32_t tmp;
6281
6282         tmp = I915_READ(HTOTAL(cpu_transcoder));
6283         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6284         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6285         tmp = I915_READ(HBLANK(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6288         tmp = I915_READ(HSYNC(cpu_transcoder));
6289         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6290         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6291
6292         tmp = I915_READ(VTOTAL(cpu_transcoder));
6293         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6294         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6295         tmp = I915_READ(VBLANK(cpu_transcoder));
6296         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6297         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6298         tmp = I915_READ(VSYNC(cpu_transcoder));
6299         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6300         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6301
6302         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6303                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6304                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6305                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6306         }
6307
6308         tmp = I915_READ(PIPESRC(crtc->pipe));
6309         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6310         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6311
6312         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6313         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6314 }
6315
6316 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6317                                  struct intel_crtc_config *pipe_config)
6318 {
6319         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6320         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6321         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6322         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6323
6324         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6325         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6326         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6327         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6328
6329         mode->flags = pipe_config->adjusted_mode.flags;
6330
6331         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6332         mode->flags |= pipe_config->adjusted_mode.flags;
6333 }
6334
6335 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6336 {
6337         struct drm_device *dev = intel_crtc->base.dev;
6338         struct drm_i915_private *dev_priv = dev->dev_private;
6339         uint32_t pipeconf;
6340
6341         pipeconf = 0;
6342
6343         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6344             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6345                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6346
6347         if (intel_crtc->config.double_wide)
6348                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6349
6350         /* only g4x and later have fancy bpc/dither controls */
6351         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6352                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6353                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6354                         pipeconf |= PIPECONF_DITHER_EN |
6355                                     PIPECONF_DITHER_TYPE_SP;
6356
6357                 switch (intel_crtc->config.pipe_bpp) {
6358                 case 18:
6359                         pipeconf |= PIPECONF_6BPC;
6360                         break;
6361                 case 24:
6362                         pipeconf |= PIPECONF_8BPC;
6363                         break;
6364                 case 30:
6365                         pipeconf |= PIPECONF_10BPC;
6366                         break;
6367                 default:
6368                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6369                         BUG();
6370                 }
6371         }
6372
6373         if (HAS_PIPE_CXSR(dev)) {
6374                 if (intel_crtc->lowfreq_avail) {
6375                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6376                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6377                 } else {
6378                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6379                 }
6380         }
6381
6382         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6383                 if (INTEL_INFO(dev)->gen < 4 ||
6384                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6385                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6386                 else
6387                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6388         } else
6389                 pipeconf |= PIPECONF_PROGRESSIVE;
6390
6391         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6392                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6393
6394         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6395         POSTING_READ(PIPECONF(intel_crtc->pipe));
6396 }
6397
6398 static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
6399                               int x, int y,
6400                               struct drm_framebuffer *fb)
6401 {
6402         struct drm_device *dev = crtc->base.dev;
6403         struct drm_i915_private *dev_priv = dev->dev_private;
6404         int refclk, num_connectors = 0;
6405         intel_clock_t clock, reduced_clock;
6406         bool ok, has_reduced_clock = false;
6407         bool is_lvds = false, is_dsi = false;
6408         struct intel_encoder *encoder;
6409         const intel_limit_t *limit;
6410
6411         for_each_intel_encoder(dev, encoder) {
6412                 if (encoder->new_crtc != crtc)
6413                         continue;
6414
6415                 switch (encoder->type) {
6416                 case INTEL_OUTPUT_LVDS:
6417                         is_lvds = true;
6418                         break;
6419                 case INTEL_OUTPUT_DSI:
6420                         is_dsi = true;
6421                         break;
6422                 default:
6423                         break;
6424                 }
6425
6426                 num_connectors++;
6427         }
6428
6429         if (is_dsi)
6430                 return 0;
6431
6432         if (!crtc->new_config->clock_set) {
6433                 refclk = i9xx_get_refclk(crtc, num_connectors);
6434
6435                 /*
6436                  * Returns a set of divisors for the desired target clock with
6437                  * the given refclk, or FALSE.  The returned values represent
6438                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439                  * 2) / p1 / p2.
6440                  */
6441                 limit = intel_limit(crtc, refclk);
6442                 ok = dev_priv->display.find_dpll(limit, crtc,
6443                                                  crtc->new_config->port_clock,
6444                                                  refclk, NULL, &clock);
6445                 if (!ok) {
6446                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447                         return -EINVAL;
6448                 }
6449
6450                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451                         /*
6452                          * Ensure we match the reduced clock's P to the target
6453                          * clock.  If the clocks don't match, we can't switch
6454                          * the display clock by using the FP0/FP1. In such case
6455                          * we will disable the LVDS downclock feature.
6456                          */
6457                         has_reduced_clock =
6458                                 dev_priv->display.find_dpll(limit, crtc,
6459                                                             dev_priv->lvds_downclock,
6460                                                             refclk, &clock,
6461                                                             &reduced_clock);
6462                 }
6463                 /* Compat-code for transition, will disappear. */
6464                 crtc->new_config->dpll.n = clock.n;
6465                 crtc->new_config->dpll.m1 = clock.m1;
6466                 crtc->new_config->dpll.m2 = clock.m2;
6467                 crtc->new_config->dpll.p1 = clock.p1;
6468                 crtc->new_config->dpll.p2 = clock.p2;
6469         }
6470
6471         if (IS_GEN2(dev)) {
6472                 i8xx_update_pll(crtc,
6473                                 has_reduced_clock ? &reduced_clock : NULL,
6474                                 num_connectors);
6475         } else if (IS_CHERRYVIEW(dev)) {
6476                 chv_update_pll(crtc, crtc->new_config);
6477         } else if (IS_VALLEYVIEW(dev)) {
6478                 vlv_update_pll(crtc, crtc->new_config);
6479         } else {
6480                 i9xx_update_pll(crtc,
6481                                 has_reduced_clock ? &reduced_clock : NULL,
6482                                 num_connectors);
6483         }
6484
6485         return 0;
6486 }
6487
6488 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6489                                  struct intel_crtc_config *pipe_config)
6490 {
6491         struct drm_device *dev = crtc->base.dev;
6492         struct drm_i915_private *dev_priv = dev->dev_private;
6493         uint32_t tmp;
6494
6495         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496                 return;
6497
6498         tmp = I915_READ(PFIT_CONTROL);
6499         if (!(tmp & PFIT_ENABLE))
6500                 return;
6501
6502         /* Check whether the pfit is attached to our pipe. */
6503         if (INTEL_INFO(dev)->gen < 4) {
6504                 if (crtc->pipe != PIPE_B)
6505                         return;
6506         } else {
6507                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508                         return;
6509         }
6510
6511         pipe_config->gmch_pfit.control = tmp;
6512         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513         if (INTEL_INFO(dev)->gen < 5)
6514                 pipe_config->gmch_pfit.lvds_border_bits =
6515                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516 }
6517
6518 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6519                                struct intel_crtc_config *pipe_config)
6520 {
6521         struct drm_device *dev = crtc->base.dev;
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523         int pipe = pipe_config->cpu_transcoder;
6524         intel_clock_t clock;
6525         u32 mdiv;
6526         int refclk = 100000;
6527
6528         /* In case of MIPI DPLL will not even be used */
6529         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530                 return;
6531
6532         mutex_lock(&dev_priv->dpio_lock);
6533         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6534         mutex_unlock(&dev_priv->dpio_lock);
6535
6536         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
6542         vlv_clock(refclk, &clock);
6543
6544         /* clock.dot is the fast clock */
6545         pipe_config->port_clock = clock.dot / 5;
6546 }
6547
6548 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549                                   struct intel_plane_config *plane_config)
6550 {
6551         struct drm_device *dev = crtc->base.dev;
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553         u32 val, base, offset;
6554         int pipe = crtc->pipe, plane = crtc->plane;
6555         int fourcc, pixel_format;
6556         int aligned_height;
6557
6558         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6559         if (!crtc->base.primary->fb) {
6560                 DRM_DEBUG_KMS("failed to alloc fb\n");
6561                 return;
6562         }
6563
6564         val = I915_READ(DSPCNTR(plane));
6565
6566         if (INTEL_INFO(dev)->gen >= 4)
6567                 if (val & DISPPLANE_TILED)
6568                         plane_config->tiled = true;
6569
6570         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6571         fourcc = intel_format_to_fourcc(pixel_format);
6572         crtc->base.primary->fb->pixel_format = fourcc;
6573         crtc->base.primary->fb->bits_per_pixel =
6574                 drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576         if (INTEL_INFO(dev)->gen >= 4) {
6577                 if (plane_config->tiled)
6578                         offset = I915_READ(DSPTILEOFF(plane));
6579                 else
6580                         offset = I915_READ(DSPLINOFF(plane));
6581                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582         } else {
6583                 base = I915_READ(DSPADDR(plane));
6584         }
6585         plane_config->base = base;
6586
6587         val = I915_READ(PIPESRC(pipe));
6588         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6589         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6590
6591         val = I915_READ(DSPSTRIDE(pipe));
6592         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6593
6594         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6595                                             plane_config->tiled);
6596
6597         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6598                                         aligned_height);
6599
6600         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6601                       pipe, plane, crtc->base.primary->fb->width,
6602                       crtc->base.primary->fb->height,
6603                       crtc->base.primary->fb->bits_per_pixel, base,
6604                       crtc->base.primary->fb->pitches[0],
6605                       plane_config->size);
6606
6607 }
6608
6609 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6610                                struct intel_crtc_config *pipe_config)
6611 {
6612         struct drm_device *dev = crtc->base.dev;
6613         struct drm_i915_private *dev_priv = dev->dev_private;
6614         int pipe = pipe_config->cpu_transcoder;
6615         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616         intel_clock_t clock;
6617         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6618         int refclk = 100000;
6619
6620         mutex_lock(&dev_priv->dpio_lock);
6621         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6622         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6623         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6624         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6625         mutex_unlock(&dev_priv->dpio_lock);
6626
6627         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6628         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6629         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6630         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6631         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6632
6633         chv_clock(refclk, &clock);
6634
6635         /* clock.dot is the fast clock */
6636         pipe_config->port_clock = clock.dot / 5;
6637 }
6638
6639 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6640                                  struct intel_crtc_config *pipe_config)
6641 {
6642         struct drm_device *dev = crtc->base.dev;
6643         struct drm_i915_private *dev_priv = dev->dev_private;
6644         uint32_t tmp;
6645
6646         if (!intel_display_power_is_enabled(dev_priv,
6647                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6648                 return false;
6649
6650         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6651         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6652
6653         tmp = I915_READ(PIPECONF(crtc->pipe));
6654         if (!(tmp & PIPECONF_ENABLE))
6655                 return false;
6656
6657         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6658                 switch (tmp & PIPECONF_BPC_MASK) {
6659                 case PIPECONF_6BPC:
6660                         pipe_config->pipe_bpp = 18;
6661                         break;
6662                 case PIPECONF_8BPC:
6663                         pipe_config->pipe_bpp = 24;
6664                         break;
6665                 case PIPECONF_10BPC:
6666                         pipe_config->pipe_bpp = 30;
6667                         break;
6668                 default:
6669                         break;
6670                 }
6671         }
6672
6673         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6674                 pipe_config->limited_color_range = true;
6675
6676         if (INTEL_INFO(dev)->gen < 4)
6677                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6678
6679         intel_get_pipe_timings(crtc, pipe_config);
6680
6681         i9xx_get_pfit_config(crtc, pipe_config);
6682
6683         if (INTEL_INFO(dev)->gen >= 4) {
6684                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6685                 pipe_config->pixel_multiplier =
6686                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6687                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6688                 pipe_config->dpll_hw_state.dpll_md = tmp;
6689         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6690                 tmp = I915_READ(DPLL(crtc->pipe));
6691                 pipe_config->pixel_multiplier =
6692                         ((tmp & SDVO_MULTIPLIER_MASK)
6693                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6694         } else {
6695                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6696                  * port and will be fixed up in the encoder->get_config
6697                  * function. */
6698                 pipe_config->pixel_multiplier = 1;
6699         }
6700         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6701         if (!IS_VALLEYVIEW(dev)) {
6702                 /*
6703                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6704                  * on 830. Filter it out here so that we don't
6705                  * report errors due to that.
6706                  */
6707                 if (IS_I830(dev))
6708                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6709
6710                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6711                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6712         } else {
6713                 /* Mask out read-only status bits. */
6714                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6715                                                      DPLL_PORTC_READY_MASK |
6716                                                      DPLL_PORTB_READY_MASK);
6717         }
6718
6719         if (IS_CHERRYVIEW(dev))
6720                 chv_crtc_clock_get(crtc, pipe_config);
6721         else if (IS_VALLEYVIEW(dev))
6722                 vlv_crtc_clock_get(crtc, pipe_config);
6723         else
6724                 i9xx_crtc_clock_get(crtc, pipe_config);
6725
6726         return true;
6727 }
6728
6729 static void ironlake_init_pch_refclk(struct drm_device *dev)
6730 {
6731         struct drm_i915_private *dev_priv = dev->dev_private;
6732         struct intel_encoder *encoder;
6733         u32 val, final;
6734         bool has_lvds = false;
6735         bool has_cpu_edp = false;
6736         bool has_panel = false;
6737         bool has_ck505 = false;
6738         bool can_ssc = false;
6739
6740         /* We need to take the global config into account */
6741         for_each_intel_encoder(dev, encoder) {
6742                 switch (encoder->type) {
6743                 case INTEL_OUTPUT_LVDS:
6744                         has_panel = true;
6745                         has_lvds = true;
6746                         break;
6747                 case INTEL_OUTPUT_EDP:
6748                         has_panel = true;
6749                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6750                                 has_cpu_edp = true;
6751                         break;
6752                 default:
6753                         break;
6754                 }
6755         }
6756
6757         if (HAS_PCH_IBX(dev)) {
6758                 has_ck505 = dev_priv->vbt.display_clock_mode;
6759                 can_ssc = has_ck505;
6760         } else {
6761                 has_ck505 = false;
6762                 can_ssc = true;
6763         }
6764
6765         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6766                       has_panel, has_lvds, has_ck505);
6767
6768         /* Ironlake: try to setup display ref clock before DPLL
6769          * enabling. This is only under driver's control after
6770          * PCH B stepping, previous chipset stepping should be
6771          * ignoring this setting.
6772          */
6773         val = I915_READ(PCH_DREF_CONTROL);
6774
6775         /* As we must carefully and slowly disable/enable each source in turn,
6776          * compute the final state we want first and check if we need to
6777          * make any changes at all.
6778          */
6779         final = val;
6780         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6781         if (has_ck505)
6782                 final |= DREF_NONSPREAD_CK505_ENABLE;
6783         else
6784                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6785
6786         final &= ~DREF_SSC_SOURCE_MASK;
6787         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6788         final &= ~DREF_SSC1_ENABLE;
6789
6790         if (has_panel) {
6791                 final |= DREF_SSC_SOURCE_ENABLE;
6792
6793                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6794                         final |= DREF_SSC1_ENABLE;
6795
6796                 if (has_cpu_edp) {
6797                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6798                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6799                         else
6800                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6801                 } else
6802                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803         } else {
6804                 final |= DREF_SSC_SOURCE_DISABLE;
6805                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6806         }
6807
6808         if (final == val)
6809                 return;
6810
6811         /* Always enable nonspread source */
6812         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6813
6814         if (has_ck505)
6815                 val |= DREF_NONSPREAD_CK505_ENABLE;
6816         else
6817                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6818
6819         if (has_panel) {
6820                 val &= ~DREF_SSC_SOURCE_MASK;
6821                 val |= DREF_SSC_SOURCE_ENABLE;
6822
6823                 /* SSC must be turned on before enabling the CPU output  */
6824                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6825                         DRM_DEBUG_KMS("Using SSC on panel\n");
6826                         val |= DREF_SSC1_ENABLE;
6827                 } else
6828                         val &= ~DREF_SSC1_ENABLE;
6829
6830                 /* Get SSC going before enabling the outputs */
6831                 I915_WRITE(PCH_DREF_CONTROL, val);
6832                 POSTING_READ(PCH_DREF_CONTROL);
6833                 udelay(200);
6834
6835                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6836
6837                 /* Enable CPU source on CPU attached eDP */
6838                 if (has_cpu_edp) {
6839                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6840                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6841                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6842                         } else
6843                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6844                 } else
6845                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6846
6847                 I915_WRITE(PCH_DREF_CONTROL, val);
6848                 POSTING_READ(PCH_DREF_CONTROL);
6849                 udelay(200);
6850         } else {
6851                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6852
6853                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6854
6855                 /* Turn off CPU output */
6856                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6857
6858                 I915_WRITE(PCH_DREF_CONTROL, val);
6859                 POSTING_READ(PCH_DREF_CONTROL);
6860                 udelay(200);
6861
6862                 /* Turn off the SSC source */
6863                 val &= ~DREF_SSC_SOURCE_MASK;
6864                 val |= DREF_SSC_SOURCE_DISABLE;
6865
6866                 /* Turn off SSC1 */
6867                 val &= ~DREF_SSC1_ENABLE;
6868
6869                 I915_WRITE(PCH_DREF_CONTROL, val);
6870                 POSTING_READ(PCH_DREF_CONTROL);
6871                 udelay(200);
6872         }
6873
6874         BUG_ON(val != final);
6875 }
6876
6877 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6878 {
6879         uint32_t tmp;
6880
6881         tmp = I915_READ(SOUTH_CHICKEN2);
6882         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6883         I915_WRITE(SOUTH_CHICKEN2, tmp);
6884
6885         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6886                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6887                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6888
6889         tmp = I915_READ(SOUTH_CHICKEN2);
6890         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6891         I915_WRITE(SOUTH_CHICKEN2, tmp);
6892
6893         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6894                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6895                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6896 }
6897
6898 /* WaMPhyProgramming:hsw */
6899 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6900 {
6901         uint32_t tmp;
6902
6903         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6904         tmp &= ~(0xFF << 24);
6905         tmp |= (0x12 << 24);
6906         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6907
6908         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6909         tmp |= (1 << 11);
6910         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6911
6912         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6913         tmp |= (1 << 11);
6914         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6915
6916         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6917         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6918         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6919
6920         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6921         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6922         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6923
6924         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6925         tmp &= ~(7 << 13);
6926         tmp |= (5 << 13);
6927         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6928
6929         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6930         tmp &= ~(7 << 13);
6931         tmp |= (5 << 13);
6932         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6933
6934         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6935         tmp &= ~0xFF;
6936         tmp |= 0x1C;
6937         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6938
6939         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6940         tmp &= ~0xFF;
6941         tmp |= 0x1C;
6942         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6943
6944         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6945         tmp &= ~(0xFF << 16);
6946         tmp |= (0x1C << 16);
6947         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6950         tmp &= ~(0xFF << 16);
6951         tmp |= (0x1C << 16);
6952         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6953
6954         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6955         tmp |= (1 << 27);
6956         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6957
6958         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6959         tmp |= (1 << 27);
6960         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6961
6962         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6963         tmp &= ~(0xF << 28);
6964         tmp |= (4 << 28);
6965         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6966
6967         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6968         tmp &= ~(0xF << 28);
6969         tmp |= (4 << 28);
6970         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6971 }
6972
6973 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6974  * Programming" based on the parameters passed:
6975  * - Sequence to enable CLKOUT_DP
6976  * - Sequence to enable CLKOUT_DP without spread
6977  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6978  */
6979 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6980                                  bool with_fdi)
6981 {
6982         struct drm_i915_private *dev_priv = dev->dev_private;
6983         uint32_t reg, tmp;
6984
6985         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6986                 with_spread = true;
6987         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6988                  with_fdi, "LP PCH doesn't have FDI\n"))
6989                 with_fdi = false;
6990
6991         mutex_lock(&dev_priv->dpio_lock);
6992
6993         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994         tmp &= ~SBI_SSCCTL_DISABLE;
6995         tmp |= SBI_SSCCTL_PATHALT;
6996         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6997
6998         udelay(24);
6999
7000         if (with_spread) {
7001                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7002                 tmp &= ~SBI_SSCCTL_PATHALT;
7003                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7004
7005                 if (with_fdi) {
7006                         lpt_reset_fdi_mphy(dev_priv);
7007                         lpt_program_fdi_mphy(dev_priv);
7008                 }
7009         }
7010
7011         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7012                SBI_GEN0 : SBI_DBUFF0;
7013         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7014         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7015         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7016
7017         mutex_unlock(&dev_priv->dpio_lock);
7018 }
7019
7020 /* Sequence to disable CLKOUT_DP */
7021 static void lpt_disable_clkout_dp(struct drm_device *dev)
7022 {
7023         struct drm_i915_private *dev_priv = dev->dev_private;
7024         uint32_t reg, tmp;
7025
7026         mutex_lock(&dev_priv->dpio_lock);
7027
7028         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7029                SBI_GEN0 : SBI_DBUFF0;
7030         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7031         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7032         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7033
7034         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7035         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7036                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7037                         tmp |= SBI_SSCCTL_PATHALT;
7038                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7039                         udelay(32);
7040                 }
7041                 tmp |= SBI_SSCCTL_DISABLE;
7042                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7043         }
7044
7045         mutex_unlock(&dev_priv->dpio_lock);
7046 }
7047
7048 static void lpt_init_pch_refclk(struct drm_device *dev)
7049 {
7050         struct intel_encoder *encoder;
7051         bool has_vga = false;
7052
7053         for_each_intel_encoder(dev, encoder) {
7054                 switch (encoder->type) {
7055                 case INTEL_OUTPUT_ANALOG:
7056                         has_vga = true;
7057                         break;
7058                 default:
7059                         break;
7060                 }
7061         }
7062
7063         if (has_vga)
7064                 lpt_enable_clkout_dp(dev, true, true);
7065         else
7066                 lpt_disable_clkout_dp(dev);
7067 }
7068
7069 /*
7070  * Initialize reference clocks when the driver loads
7071  */
7072 void intel_init_pch_refclk(struct drm_device *dev)
7073 {
7074         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7075                 ironlake_init_pch_refclk(dev);
7076         else if (HAS_PCH_LPT(dev))
7077                 lpt_init_pch_refclk(dev);
7078 }
7079
7080 static int ironlake_get_refclk(struct drm_crtc *crtc)
7081 {
7082         struct drm_device *dev = crtc->dev;
7083         struct drm_i915_private *dev_priv = dev->dev_private;
7084         struct intel_encoder *encoder;
7085         int num_connectors = 0;
7086         bool is_lvds = false;
7087
7088         for_each_intel_encoder(dev, encoder) {
7089                 if (encoder->new_crtc != to_intel_crtc(crtc))
7090                         continue;
7091
7092                 switch (encoder->type) {
7093                 case INTEL_OUTPUT_LVDS:
7094                         is_lvds = true;
7095                         break;
7096                 default:
7097                         break;
7098                 }
7099                 num_connectors++;
7100         }
7101
7102         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7103                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7104                               dev_priv->vbt.lvds_ssc_freq);
7105                 return dev_priv->vbt.lvds_ssc_freq;
7106         }
7107
7108         return 120000;
7109 }
7110
7111 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7112 {
7113         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7115         int pipe = intel_crtc->pipe;
7116         uint32_t val;
7117
7118         val = 0;
7119
7120         switch (intel_crtc->config.pipe_bpp) {
7121         case 18:
7122                 val |= PIPECONF_6BPC;
7123                 break;
7124         case 24:
7125                 val |= PIPECONF_8BPC;
7126                 break;
7127         case 30:
7128                 val |= PIPECONF_10BPC;
7129                 break;
7130         case 36:
7131                 val |= PIPECONF_12BPC;
7132                 break;
7133         default:
7134                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7135                 BUG();
7136         }
7137
7138         if (intel_crtc->config.dither)
7139                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7140
7141         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7142                 val |= PIPECONF_INTERLACED_ILK;
7143         else
7144                 val |= PIPECONF_PROGRESSIVE;
7145
7146         if (intel_crtc->config.limited_color_range)
7147                 val |= PIPECONF_COLOR_RANGE_SELECT;
7148
7149         I915_WRITE(PIPECONF(pipe), val);
7150         POSTING_READ(PIPECONF(pipe));
7151 }
7152
7153 /*
7154  * Set up the pipe CSC unit.
7155  *
7156  * Currently only full range RGB to limited range RGB conversion
7157  * is supported, but eventually this should handle various
7158  * RGB<->YCbCr scenarios as well.
7159  */
7160 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7161 {
7162         struct drm_device *dev = crtc->dev;
7163         struct drm_i915_private *dev_priv = dev->dev_private;
7164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165         int pipe = intel_crtc->pipe;
7166         uint16_t coeff = 0x7800; /* 1.0 */
7167
7168         /*
7169          * TODO: Check what kind of values actually come out of the pipe
7170          * with these coeff/postoff values and adjust to get the best
7171          * accuracy. Perhaps we even need to take the bpc value into
7172          * consideration.
7173          */
7174
7175         if (intel_crtc->config.limited_color_range)
7176                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7177
7178         /*
7179          * GY/GU and RY/RU should be the other way around according
7180          * to BSpec, but reality doesn't agree. Just set them up in
7181          * a way that results in the correct picture.
7182          */
7183         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7184         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7185
7186         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7187         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7188
7189         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7190         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7191
7192         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7193         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7194         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7195
7196         if (INTEL_INFO(dev)->gen > 6) {
7197                 uint16_t postoff = 0;
7198
7199                 if (intel_crtc->config.limited_color_range)
7200                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7201
7202                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7203                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7204                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7205
7206                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7207         } else {
7208                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7209
7210                 if (intel_crtc->config.limited_color_range)
7211                         mode |= CSC_BLACK_SCREEN_OFFSET;
7212
7213                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7214         }
7215 }
7216
7217 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7218 {
7219         struct drm_device *dev = crtc->dev;
7220         struct drm_i915_private *dev_priv = dev->dev_private;
7221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7222         enum pipe pipe = intel_crtc->pipe;
7223         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7224         uint32_t val;
7225
7226         val = 0;
7227
7228         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7229                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7230
7231         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7232                 val |= PIPECONF_INTERLACED_ILK;
7233         else
7234                 val |= PIPECONF_PROGRESSIVE;
7235
7236         I915_WRITE(PIPECONF(cpu_transcoder), val);
7237         POSTING_READ(PIPECONF(cpu_transcoder));
7238
7239         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7240         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7241
7242         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7243                 val = 0;
7244
7245                 switch (intel_crtc->config.pipe_bpp) {
7246                 case 18:
7247                         val |= PIPEMISC_DITHER_6_BPC;
7248                         break;
7249                 case 24:
7250                         val |= PIPEMISC_DITHER_8_BPC;
7251                         break;
7252                 case 30:
7253                         val |= PIPEMISC_DITHER_10_BPC;
7254                         break;
7255                 case 36:
7256                         val |= PIPEMISC_DITHER_12_BPC;
7257                         break;
7258                 default:
7259                         /* Case prevented by pipe_config_set_bpp. */
7260                         BUG();
7261                 }
7262
7263                 if (intel_crtc->config.dither)
7264                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7265
7266                 I915_WRITE(PIPEMISC(pipe), val);
7267         }
7268 }
7269
7270 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7271                                     intel_clock_t *clock,
7272                                     bool *has_reduced_clock,
7273                                     intel_clock_t *reduced_clock)
7274 {
7275         struct drm_device *dev = crtc->dev;
7276         struct drm_i915_private *dev_priv = dev->dev_private;
7277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7278         int refclk;
7279         const intel_limit_t *limit;
7280         bool ret, is_lvds = false;
7281
7282         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7283
7284         refclk = ironlake_get_refclk(crtc);
7285
7286         /*
7287          * Returns a set of divisors for the desired target clock with the given
7288          * refclk, or FALSE.  The returned values represent the clock equation:
7289          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7290          */
7291         limit = intel_limit(intel_crtc, refclk);
7292         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7293                                           intel_crtc->new_config->port_clock,
7294                                           refclk, NULL, clock);
7295         if (!ret)
7296                 return false;
7297
7298         if (is_lvds && dev_priv->lvds_downclock_avail) {
7299                 /*
7300                  * Ensure we match the reduced clock's P to the target clock.
7301                  * If the clocks don't match, we can't switch the display clock
7302                  * by using the FP0/FP1. In such case we will disable the LVDS
7303                  * downclock feature.
7304                 */
7305                 *has_reduced_clock =
7306                         dev_priv->display.find_dpll(limit, intel_crtc,
7307                                                     dev_priv->lvds_downclock,
7308                                                     refclk, clock,
7309                                                     reduced_clock);
7310         }
7311
7312         return true;
7313 }
7314
7315 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7316 {
7317         /*
7318          * Account for spread spectrum to avoid
7319          * oversubscribing the link. Max center spread
7320          * is 2.5%; use 5% for safety's sake.
7321          */
7322         u32 bps = target_clock * bpp * 21 / 20;
7323         return DIV_ROUND_UP(bps, link_bw * 8);
7324 }
7325
7326 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7327 {
7328         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7329 }
7330
7331 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7332                                       u32 *fp,
7333                                       intel_clock_t *reduced_clock, u32 *fp2)
7334 {
7335         struct drm_crtc *crtc = &intel_crtc->base;
7336         struct drm_device *dev = crtc->dev;
7337         struct drm_i915_private *dev_priv = dev->dev_private;
7338         struct intel_encoder *intel_encoder;
7339         uint32_t dpll;
7340         int factor, num_connectors = 0;
7341         bool is_lvds = false, is_sdvo = false;
7342
7343         for_each_intel_encoder(dev, intel_encoder) {
7344                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7345                         continue;
7346
7347                 switch (intel_encoder->type) {
7348                 case INTEL_OUTPUT_LVDS:
7349                         is_lvds = true;
7350                         break;
7351                 case INTEL_OUTPUT_SDVO:
7352                 case INTEL_OUTPUT_HDMI:
7353                         is_sdvo = true;
7354                         break;
7355                 default:
7356                         break;
7357                 }
7358
7359                 num_connectors++;
7360         }
7361
7362         /* Enable autotuning of the PLL clock (if permissible) */
7363         factor = 21;
7364         if (is_lvds) {
7365                 if ((intel_panel_use_ssc(dev_priv) &&
7366                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7367                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7368                         factor = 25;
7369         } else if (intel_crtc->new_config->sdvo_tv_clock)
7370                 factor = 20;
7371
7372         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7373                 *fp |= FP_CB_TUNE;
7374
7375         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7376                 *fp2 |= FP_CB_TUNE;
7377
7378         dpll = 0;
7379
7380         if (is_lvds)
7381                 dpll |= DPLLB_MODE_LVDS;
7382         else
7383                 dpll |= DPLLB_MODE_DAC_SERIAL;
7384
7385         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7386                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7387
7388         if (is_sdvo)
7389                 dpll |= DPLL_SDVO_HIGH_SPEED;
7390         if (intel_crtc->new_config->has_dp_encoder)
7391                 dpll |= DPLL_SDVO_HIGH_SPEED;
7392
7393         /* compute bitmask from p1 value */
7394         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7395         /* also FPA1 */
7396         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7397
7398         switch (intel_crtc->new_config->dpll.p2) {
7399         case 5:
7400                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7401                 break;
7402         case 7:
7403                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7404                 break;
7405         case 10:
7406                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7407                 break;
7408         case 14:
7409                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7410                 break;
7411         }
7412
7413         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7414                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7415         else
7416                 dpll |= PLL_REF_INPUT_DREFCLK;
7417
7418         return dpll | DPLL_VCO_ENABLE;
7419 }
7420
7421 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7422 {
7423         struct drm_device *dev = crtc->base.dev;
7424         intel_clock_t clock, reduced_clock;
7425         u32 dpll = 0, fp = 0, fp2 = 0;
7426         bool ok, has_reduced_clock = false;
7427         bool is_lvds = false;
7428         struct intel_shared_dpll *pll;
7429
7430         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7431
7432         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7433              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7434
7435         ok = ironlake_compute_clocks(&crtc->base, &clock,
7436                                      &has_reduced_clock, &reduced_clock);
7437         if (!ok && !crtc->new_config->clock_set) {
7438                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7439                 return -EINVAL;
7440         }
7441         /* Compat-code for transition, will disappear. */
7442         if (!crtc->new_config->clock_set) {
7443                 crtc->new_config->dpll.n = clock.n;
7444                 crtc->new_config->dpll.m1 = clock.m1;
7445                 crtc->new_config->dpll.m2 = clock.m2;
7446                 crtc->new_config->dpll.p1 = clock.p1;
7447                 crtc->new_config->dpll.p2 = clock.p2;
7448         }
7449
7450         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7451         if (crtc->new_config->has_pch_encoder) {
7452                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7453                 if (has_reduced_clock)
7454                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7455
7456                 dpll = ironlake_compute_dpll(crtc,
7457                                              &fp, &reduced_clock,
7458                                              has_reduced_clock ? &fp2 : NULL);
7459
7460                 crtc->new_config->dpll_hw_state.dpll = dpll;
7461                 crtc->new_config->dpll_hw_state.fp0 = fp;
7462                 if (has_reduced_clock)
7463                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7464                 else
7465                         crtc->new_config->dpll_hw_state.fp1 = fp;
7466
7467                 pll = intel_get_shared_dpll(crtc);
7468                 if (pll == NULL) {
7469                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7470                                          pipe_name(crtc->pipe));
7471                         return -EINVAL;
7472                 }
7473         }
7474
7475         if (is_lvds && has_reduced_clock && i915.powersave)
7476                 crtc->lowfreq_avail = true;
7477         else
7478                 crtc->lowfreq_avail = false;
7479
7480         return 0;
7481 }
7482
7483 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7484                                          struct intel_link_m_n *m_n)
7485 {
7486         struct drm_device *dev = crtc->base.dev;
7487         struct drm_i915_private *dev_priv = dev->dev_private;
7488         enum pipe pipe = crtc->pipe;
7489
7490         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7491         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7492         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7493                 & ~TU_SIZE_MASK;
7494         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7495         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7496                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7497 }
7498
7499 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7500                                          enum transcoder transcoder,
7501                                          struct intel_link_m_n *m_n,
7502                                          struct intel_link_m_n *m2_n2)
7503 {
7504         struct drm_device *dev = crtc->base.dev;
7505         struct drm_i915_private *dev_priv = dev->dev_private;
7506         enum pipe pipe = crtc->pipe;
7507
7508         if (INTEL_INFO(dev)->gen >= 5) {
7509                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7510                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7511                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7512                         & ~TU_SIZE_MASK;
7513                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7514                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7515                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7516                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7517                  * gen < 8) and if DRRS is supported (to make sure the
7518                  * registers are not unnecessarily read).
7519                  */
7520                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7521                         crtc->config.has_drrs) {
7522                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7523                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7524                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7525                                         & ~TU_SIZE_MASK;
7526                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7527                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7528                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7529                 }
7530         } else {
7531                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7532                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7533                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7534                         & ~TU_SIZE_MASK;
7535                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7536                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7537                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7538         }
7539 }
7540
7541 void intel_dp_get_m_n(struct intel_crtc *crtc,
7542                       struct intel_crtc_config *pipe_config)
7543 {
7544         if (crtc->config.has_pch_encoder)
7545                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7546         else
7547                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7548                                              &pipe_config->dp_m_n,
7549                                              &pipe_config->dp_m2_n2);
7550 }
7551
7552 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7553                                         struct intel_crtc_config *pipe_config)
7554 {
7555         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7556                                      &pipe_config->fdi_m_n, NULL);
7557 }
7558
7559 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7560                                      struct intel_crtc_config *pipe_config)
7561 {
7562         struct drm_device *dev = crtc->base.dev;
7563         struct drm_i915_private *dev_priv = dev->dev_private;
7564         uint32_t tmp;
7565
7566         tmp = I915_READ(PF_CTL(crtc->pipe));
7567
7568         if (tmp & PF_ENABLE) {
7569                 pipe_config->pch_pfit.enabled = true;
7570                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7571                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7572
7573                 /* We currently do not free assignements of panel fitters on
7574                  * ivb/hsw (since we don't use the higher upscaling modes which
7575                  * differentiates them) so just WARN about this case for now. */
7576                 if (IS_GEN7(dev)) {
7577                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7578                                 PF_PIPE_SEL_IVB(crtc->pipe));
7579                 }
7580         }
7581 }
7582
7583 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7584                                       struct intel_plane_config *plane_config)
7585 {
7586         struct drm_device *dev = crtc->base.dev;
7587         struct drm_i915_private *dev_priv = dev->dev_private;
7588         u32 val, base, offset;
7589         int pipe = crtc->pipe, plane = crtc->plane;
7590         int fourcc, pixel_format;
7591         int aligned_height;
7592
7593         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7594         if (!crtc->base.primary->fb) {
7595                 DRM_DEBUG_KMS("failed to alloc fb\n");
7596                 return;
7597         }
7598
7599         val = I915_READ(DSPCNTR(plane));
7600
7601         if (INTEL_INFO(dev)->gen >= 4)
7602                 if (val & DISPPLANE_TILED)
7603                         plane_config->tiled = true;
7604
7605         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7606         fourcc = intel_format_to_fourcc(pixel_format);
7607         crtc->base.primary->fb->pixel_format = fourcc;
7608         crtc->base.primary->fb->bits_per_pixel =
7609                 drm_format_plane_cpp(fourcc, 0) * 8;
7610
7611         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7612         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7613                 offset = I915_READ(DSPOFFSET(plane));
7614         } else {
7615                 if (plane_config->tiled)
7616                         offset = I915_READ(DSPTILEOFF(plane));
7617                 else
7618                         offset = I915_READ(DSPLINOFF(plane));
7619         }
7620         plane_config->base = base;
7621
7622         val = I915_READ(PIPESRC(pipe));
7623         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7624         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7625
7626         val = I915_READ(DSPSTRIDE(pipe));
7627         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7628
7629         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7630                                             plane_config->tiled);
7631
7632         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7633                                         aligned_height);
7634
7635         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7636                       pipe, plane, crtc->base.primary->fb->width,
7637                       crtc->base.primary->fb->height,
7638                       crtc->base.primary->fb->bits_per_pixel, base,
7639                       crtc->base.primary->fb->pitches[0],
7640                       plane_config->size);
7641 }
7642
7643 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7644                                      struct intel_crtc_config *pipe_config)
7645 {
7646         struct drm_device *dev = crtc->base.dev;
7647         struct drm_i915_private *dev_priv = dev->dev_private;
7648         uint32_t tmp;
7649
7650         if (!intel_display_power_is_enabled(dev_priv,
7651                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7652                 return false;
7653
7654         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7655         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7656
7657         tmp = I915_READ(PIPECONF(crtc->pipe));
7658         if (!(tmp & PIPECONF_ENABLE))
7659                 return false;
7660
7661         switch (tmp & PIPECONF_BPC_MASK) {
7662         case PIPECONF_6BPC:
7663                 pipe_config->pipe_bpp = 18;
7664                 break;
7665         case PIPECONF_8BPC:
7666                 pipe_config->pipe_bpp = 24;
7667                 break;
7668         case PIPECONF_10BPC:
7669                 pipe_config->pipe_bpp = 30;
7670                 break;
7671         case PIPECONF_12BPC:
7672                 pipe_config->pipe_bpp = 36;
7673                 break;
7674         default:
7675                 break;
7676         }
7677
7678         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7679                 pipe_config->limited_color_range = true;
7680
7681         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7682                 struct intel_shared_dpll *pll;
7683
7684                 pipe_config->has_pch_encoder = true;
7685
7686                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7687                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7688                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7689
7690                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7691
7692                 if (HAS_PCH_IBX(dev_priv->dev)) {
7693                         pipe_config->shared_dpll =
7694                                 (enum intel_dpll_id) crtc->pipe;
7695                 } else {
7696                         tmp = I915_READ(PCH_DPLL_SEL);
7697                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7698                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7699                         else
7700                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7701                 }
7702
7703                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7704
7705                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7706                                            &pipe_config->dpll_hw_state));
7707
7708                 tmp = pipe_config->dpll_hw_state.dpll;
7709                 pipe_config->pixel_multiplier =
7710                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7711                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7712
7713                 ironlake_pch_clock_get(crtc, pipe_config);
7714         } else {
7715                 pipe_config->pixel_multiplier = 1;
7716         }
7717
7718         intel_get_pipe_timings(crtc, pipe_config);
7719
7720         ironlake_get_pfit_config(crtc, pipe_config);
7721
7722         return true;
7723 }
7724
7725 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7726 {
7727         struct drm_device *dev = dev_priv->dev;
7728         struct intel_crtc *crtc;
7729
7730         for_each_intel_crtc(dev, crtc)
7731                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7732                      pipe_name(crtc->pipe));
7733
7734         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7735         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7736         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7737         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7738         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7739         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7740              "CPU PWM1 enabled\n");
7741         if (IS_HASWELL(dev))
7742                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7743                      "CPU PWM2 enabled\n");
7744         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7745              "PCH PWM1 enabled\n");
7746         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7747              "Utility pin enabled\n");
7748         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7749
7750         /*
7751          * In theory we can still leave IRQs enabled, as long as only the HPD
7752          * interrupts remain enabled. We used to check for that, but since it's
7753          * gen-specific and since we only disable LCPLL after we fully disable
7754          * the interrupts, the check below should be enough.
7755          */
7756         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7757 }
7758
7759 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7760 {
7761         struct drm_device *dev = dev_priv->dev;
7762
7763         if (IS_HASWELL(dev))
7764                 return I915_READ(D_COMP_HSW);
7765         else
7766                 return I915_READ(D_COMP_BDW);
7767 }
7768
7769 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7770 {
7771         struct drm_device *dev = dev_priv->dev;
7772
7773         if (IS_HASWELL(dev)) {
7774                 mutex_lock(&dev_priv->rps.hw_lock);
7775                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7776                                             val))
7777                         DRM_ERROR("Failed to write to D_COMP\n");
7778                 mutex_unlock(&dev_priv->rps.hw_lock);
7779         } else {
7780                 I915_WRITE(D_COMP_BDW, val);
7781                 POSTING_READ(D_COMP_BDW);
7782         }
7783 }
7784
7785 /*
7786  * This function implements pieces of two sequences from BSpec:
7787  * - Sequence for display software to disable LCPLL
7788  * - Sequence for display software to allow package C8+
7789  * The steps implemented here are just the steps that actually touch the LCPLL
7790  * register. Callers should take care of disabling all the display engine
7791  * functions, doing the mode unset, fixing interrupts, etc.
7792  */
7793 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7794                               bool switch_to_fclk, bool allow_power_down)
7795 {
7796         uint32_t val;
7797
7798         assert_can_disable_lcpll(dev_priv);
7799
7800         val = I915_READ(LCPLL_CTL);
7801
7802         if (switch_to_fclk) {
7803                 val |= LCPLL_CD_SOURCE_FCLK;
7804                 I915_WRITE(LCPLL_CTL, val);
7805
7806                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7807                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7808                         DRM_ERROR("Switching to FCLK failed\n");
7809
7810                 val = I915_READ(LCPLL_CTL);
7811         }
7812
7813         val |= LCPLL_PLL_DISABLE;
7814         I915_WRITE(LCPLL_CTL, val);
7815         POSTING_READ(LCPLL_CTL);
7816
7817         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7818                 DRM_ERROR("LCPLL still locked\n");
7819
7820         val = hsw_read_dcomp(dev_priv);
7821         val |= D_COMP_COMP_DISABLE;
7822         hsw_write_dcomp(dev_priv, val);
7823         ndelay(100);
7824
7825         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7826                      1))
7827                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7828
7829         if (allow_power_down) {
7830                 val = I915_READ(LCPLL_CTL);
7831                 val |= LCPLL_POWER_DOWN_ALLOW;
7832                 I915_WRITE(LCPLL_CTL, val);
7833                 POSTING_READ(LCPLL_CTL);
7834         }
7835 }
7836
7837 /*
7838  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7839  * source.
7840  */
7841 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7842 {
7843         uint32_t val;
7844
7845         val = I915_READ(LCPLL_CTL);
7846
7847         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7848                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7849                 return;
7850
7851         /*
7852          * Make sure we're not on PC8 state before disabling PC8, otherwise
7853          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7854          *
7855          * The other problem is that hsw_restore_lcpll() is called as part of
7856          * the runtime PM resume sequence, so we can't just call
7857          * gen6_gt_force_wake_get() because that function calls
7858          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7859          * while we are on the resume sequence. So to solve this problem we have
7860          * to call special forcewake code that doesn't touch runtime PM and
7861          * doesn't enable the forcewake delayed work.
7862          */
7863         spin_lock_irq(&dev_priv->uncore.lock);
7864         if (dev_priv->uncore.forcewake_count++ == 0)
7865                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7866         spin_unlock_irq(&dev_priv->uncore.lock);
7867
7868         if (val & LCPLL_POWER_DOWN_ALLOW) {
7869                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7870                 I915_WRITE(LCPLL_CTL, val);
7871                 POSTING_READ(LCPLL_CTL);
7872         }
7873
7874         val = hsw_read_dcomp(dev_priv);
7875         val |= D_COMP_COMP_FORCE;
7876         val &= ~D_COMP_COMP_DISABLE;
7877         hsw_write_dcomp(dev_priv, val);
7878
7879         val = I915_READ(LCPLL_CTL);
7880         val &= ~LCPLL_PLL_DISABLE;
7881         I915_WRITE(LCPLL_CTL, val);
7882
7883         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7884                 DRM_ERROR("LCPLL not locked yet\n");
7885
7886         if (val & LCPLL_CD_SOURCE_FCLK) {
7887                 val = I915_READ(LCPLL_CTL);
7888                 val &= ~LCPLL_CD_SOURCE_FCLK;
7889                 I915_WRITE(LCPLL_CTL, val);
7890
7891                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7892                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7893                         DRM_ERROR("Switching back to LCPLL failed\n");
7894         }
7895
7896         /* See the big comment above. */
7897         spin_lock_irq(&dev_priv->uncore.lock);
7898         if (--dev_priv->uncore.forcewake_count == 0)
7899                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7900         spin_unlock_irq(&dev_priv->uncore.lock);
7901 }
7902
7903 /*
7904  * Package states C8 and deeper are really deep PC states that can only be
7905  * reached when all the devices on the system allow it, so even if the graphics
7906  * device allows PC8+, it doesn't mean the system will actually get to these
7907  * states. Our driver only allows PC8+ when going into runtime PM.
7908  *
7909  * The requirements for PC8+ are that all the outputs are disabled, the power
7910  * well is disabled and most interrupts are disabled, and these are also
7911  * requirements for runtime PM. When these conditions are met, we manually do
7912  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7913  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7914  * hang the machine.
7915  *
7916  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7917  * the state of some registers, so when we come back from PC8+ we need to
7918  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7919  * need to take care of the registers kept by RC6. Notice that this happens even
7920  * if we don't put the device in PCI D3 state (which is what currently happens
7921  * because of the runtime PM support).
7922  *
7923  * For more, read "Display Sequences for Package C8" on the hardware
7924  * documentation.
7925  */
7926 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7927 {
7928         struct drm_device *dev = dev_priv->dev;
7929         uint32_t val;
7930
7931         DRM_DEBUG_KMS("Enabling package C8+\n");
7932
7933         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7934                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7935                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7936                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7937         }
7938
7939         lpt_disable_clkout_dp(dev);
7940         hsw_disable_lcpll(dev_priv, true, true);
7941 }
7942
7943 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7944 {
7945         struct drm_device *dev = dev_priv->dev;
7946         uint32_t val;
7947
7948         DRM_DEBUG_KMS("Disabling package C8+\n");
7949
7950         hsw_restore_lcpll(dev_priv);
7951         lpt_init_pch_refclk(dev);
7952
7953         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7954                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7955                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7956                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7957         }
7958
7959         intel_prepare_ddi(dev);
7960 }
7961
7962 static void snb_modeset_global_resources(struct drm_device *dev)
7963 {
7964         modeset_update_crtc_power_domains(dev);
7965 }
7966
7967 static void haswell_modeset_global_resources(struct drm_device *dev)
7968 {
7969         modeset_update_crtc_power_domains(dev);
7970 }
7971
7972 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7973 {
7974         if (!intel_ddi_pll_select(crtc))
7975                 return -EINVAL;
7976
7977         crtc->lowfreq_avail = false;
7978
7979         return 0;
7980 }
7981
7982 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7983                                 enum port port,
7984                                 struct intel_crtc_config *pipe_config)
7985 {
7986         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7987
7988         switch (pipe_config->ddi_pll_sel) {
7989         case PORT_CLK_SEL_WRPLL1:
7990                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7991                 break;
7992         case PORT_CLK_SEL_WRPLL2:
7993                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7994                 break;
7995         }
7996 }
7997
7998 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7999                                        struct intel_crtc_config *pipe_config)
8000 {
8001         struct drm_device *dev = crtc->base.dev;
8002         struct drm_i915_private *dev_priv = dev->dev_private;
8003         struct intel_shared_dpll *pll;
8004         enum port port;
8005         uint32_t tmp;
8006
8007         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8008
8009         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8010
8011         haswell_get_ddi_pll(dev_priv, port, pipe_config);
8012
8013         if (pipe_config->shared_dpll >= 0) {
8014                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8015
8016                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8017                                            &pipe_config->dpll_hw_state));
8018         }
8019
8020         /*
8021          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8022          * DDI E. So just check whether this pipe is wired to DDI E and whether
8023          * the PCH transcoder is on.
8024          */
8025         if (INTEL_INFO(dev)->gen < 9 &&
8026             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8027                 pipe_config->has_pch_encoder = true;
8028
8029                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8030                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8031                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8032
8033                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8034         }
8035 }
8036
8037 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8038                                     struct intel_crtc_config *pipe_config)
8039 {
8040         struct drm_device *dev = crtc->base.dev;
8041         struct drm_i915_private *dev_priv = dev->dev_private;
8042         enum intel_display_power_domain pfit_domain;
8043         uint32_t tmp;
8044
8045         if (!intel_display_power_is_enabled(dev_priv,
8046                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8047                 return false;
8048
8049         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8050         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8051
8052         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8053         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8054                 enum pipe trans_edp_pipe;
8055                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8056                 default:
8057                         WARN(1, "unknown pipe linked to edp transcoder\n");
8058                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8059                 case TRANS_DDI_EDP_INPUT_A_ON:
8060                         trans_edp_pipe = PIPE_A;
8061                         break;
8062                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8063                         trans_edp_pipe = PIPE_B;
8064                         break;
8065                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8066                         trans_edp_pipe = PIPE_C;
8067                         break;
8068                 }
8069
8070                 if (trans_edp_pipe == crtc->pipe)
8071                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8072         }
8073
8074         if (!intel_display_power_is_enabled(dev_priv,
8075                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8076                 return false;
8077
8078         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8079         if (!(tmp & PIPECONF_ENABLE))
8080                 return false;
8081
8082         haswell_get_ddi_port_state(crtc, pipe_config);
8083
8084         intel_get_pipe_timings(crtc, pipe_config);
8085
8086         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8087         if (intel_display_power_is_enabled(dev_priv, pfit_domain))
8088                 ironlake_get_pfit_config(crtc, pipe_config);
8089
8090         if (IS_HASWELL(dev))
8091                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8092                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8093
8094         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8095                 pipe_config->pixel_multiplier =
8096                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8097         } else {
8098                 pipe_config->pixel_multiplier = 1;
8099         }
8100
8101         return true;
8102 }
8103
8104 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8105 {
8106         struct drm_device *dev = crtc->dev;
8107         struct drm_i915_private *dev_priv = dev->dev_private;
8108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8109         uint32_t cntl = 0, size = 0;
8110
8111         if (base) {
8112                 unsigned int width = intel_crtc->cursor_width;
8113                 unsigned int height = intel_crtc->cursor_height;
8114                 unsigned int stride = roundup_pow_of_two(width) * 4;
8115
8116                 switch (stride) {
8117                 default:
8118                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8119                                   width, stride);
8120                         stride = 256;
8121                         /* fallthrough */
8122                 case 256:
8123                 case 512:
8124                 case 1024:
8125                 case 2048:
8126                         break;
8127                 }
8128
8129                 cntl |= CURSOR_ENABLE |
8130                         CURSOR_GAMMA_ENABLE |
8131                         CURSOR_FORMAT_ARGB |
8132                         CURSOR_STRIDE(stride);
8133
8134                 size = (height << 12) | width;
8135         }
8136
8137         if (intel_crtc->cursor_cntl != 0 &&
8138             (intel_crtc->cursor_base != base ||
8139              intel_crtc->cursor_size != size ||
8140              intel_crtc->cursor_cntl != cntl)) {
8141                 /* On these chipsets we can only modify the base/size/stride
8142                  * whilst the cursor is disabled.
8143                  */
8144                 I915_WRITE(_CURACNTR, 0);
8145                 POSTING_READ(_CURACNTR);
8146                 intel_crtc->cursor_cntl = 0;
8147         }
8148
8149         if (intel_crtc->cursor_base != base) {
8150                 I915_WRITE(_CURABASE, base);
8151                 intel_crtc->cursor_base = base;
8152         }
8153
8154         if (intel_crtc->cursor_size != size) {
8155                 I915_WRITE(CURSIZE, size);
8156                 intel_crtc->cursor_size = size;
8157         }
8158
8159         if (intel_crtc->cursor_cntl != cntl) {
8160                 I915_WRITE(_CURACNTR, cntl);
8161                 POSTING_READ(_CURACNTR);
8162                 intel_crtc->cursor_cntl = cntl;
8163         }
8164 }
8165
8166 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8167 {
8168         struct drm_device *dev = crtc->dev;
8169         struct drm_i915_private *dev_priv = dev->dev_private;
8170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8171         int pipe = intel_crtc->pipe;
8172         uint32_t cntl;
8173
8174         cntl = 0;
8175         if (base) {
8176                 cntl = MCURSOR_GAMMA_ENABLE;
8177                 switch (intel_crtc->cursor_width) {
8178                         case 64:
8179                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8180                                 break;
8181                         case 128:
8182                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8183                                 break;
8184                         case 256:
8185                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8186                                 break;
8187                         default:
8188                                 WARN_ON(1);
8189                                 return;
8190                 }
8191                 cntl |= pipe << 28; /* Connect to correct pipe */
8192
8193                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8194                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8195         }
8196
8197         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8198                 cntl |= CURSOR_ROTATE_180;
8199
8200         if (intel_crtc->cursor_cntl != cntl) {
8201                 I915_WRITE(CURCNTR(pipe), cntl);
8202                 POSTING_READ(CURCNTR(pipe));
8203                 intel_crtc->cursor_cntl = cntl;
8204         }
8205
8206         /* and commit changes on next vblank */
8207         I915_WRITE(CURBASE(pipe), base);
8208         POSTING_READ(CURBASE(pipe));
8209
8210         intel_crtc->cursor_base = base;
8211 }
8212
8213 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8214 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8215                                      bool on)
8216 {
8217         struct drm_device *dev = crtc->dev;
8218         struct drm_i915_private *dev_priv = dev->dev_private;
8219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8220         int pipe = intel_crtc->pipe;
8221         int x = crtc->cursor_x;
8222         int y = crtc->cursor_y;
8223         u32 base = 0, pos = 0;
8224
8225         if (on)
8226                 base = intel_crtc->cursor_addr;
8227
8228         if (x >= intel_crtc->config.pipe_src_w)
8229                 base = 0;
8230
8231         if (y >= intel_crtc->config.pipe_src_h)
8232                 base = 0;
8233
8234         if (x < 0) {
8235                 if (x + intel_crtc->cursor_width <= 0)
8236                         base = 0;
8237
8238                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8239                 x = -x;
8240         }
8241         pos |= x << CURSOR_X_SHIFT;
8242
8243         if (y < 0) {
8244                 if (y + intel_crtc->cursor_height <= 0)
8245                         base = 0;
8246
8247                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8248                 y = -y;
8249         }
8250         pos |= y << CURSOR_Y_SHIFT;
8251
8252         if (base == 0 && intel_crtc->cursor_base == 0)
8253                 return;
8254
8255         I915_WRITE(CURPOS(pipe), pos);
8256
8257         /* ILK+ do this automagically */
8258         if (HAS_GMCH_DISPLAY(dev) &&
8259                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8260                 base += (intel_crtc->cursor_height *
8261                         intel_crtc->cursor_width - 1) * 4;
8262         }
8263
8264         if (IS_845G(dev) || IS_I865G(dev))
8265                 i845_update_cursor(crtc, base);
8266         else
8267                 i9xx_update_cursor(crtc, base);
8268 }
8269
8270 static bool cursor_size_ok(struct drm_device *dev,
8271                            uint32_t width, uint32_t height)
8272 {
8273         if (width == 0 || height == 0)
8274                 return false;
8275
8276         /*
8277          * 845g/865g are special in that they are only limited by
8278          * the width of their cursors, the height is arbitrary up to
8279          * the precision of the register. Everything else requires
8280          * square cursors, limited to a few power-of-two sizes.
8281          */
8282         if (IS_845G(dev) || IS_I865G(dev)) {
8283                 if ((width & 63) != 0)
8284                         return false;
8285
8286                 if (width > (IS_845G(dev) ? 64 : 512))
8287                         return false;
8288
8289                 if (height > 1023)
8290                         return false;
8291         } else {
8292                 switch (width | height) {
8293                 case 256:
8294                 case 128:
8295                         if (IS_GEN2(dev))
8296                                 return false;
8297                 case 64:
8298                         break;
8299                 default:
8300                         return false;
8301                 }
8302         }
8303
8304         return true;
8305 }
8306
8307 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8308                                      struct drm_i915_gem_object *obj,
8309                                      uint32_t width, uint32_t height)
8310 {
8311         struct drm_device *dev = crtc->dev;
8312         struct drm_i915_private *dev_priv = dev->dev_private;
8313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8314         enum pipe pipe = intel_crtc->pipe;
8315         unsigned old_width;
8316         uint32_t addr;
8317         int ret;
8318
8319         /* if we want to turn off the cursor ignore width and height */
8320         if (!obj) {
8321                 DRM_DEBUG_KMS("cursor off\n");
8322                 addr = 0;
8323                 mutex_lock(&dev->struct_mutex);
8324                 goto finish;
8325         }
8326
8327         /* we only need to pin inside GTT if cursor is non-phy */
8328         mutex_lock(&dev->struct_mutex);
8329         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8330                 unsigned alignment;
8331
8332                 /*
8333                  * Global gtt pte registers are special registers which actually
8334                  * forward writes to a chunk of system memory. Which means that
8335                  * there is no risk that the register values disappear as soon
8336                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8337                  * only the pin/unpin/fence and not more.
8338                  */
8339                 intel_runtime_pm_get(dev_priv);
8340
8341                 /* Note that the w/a also requires 2 PTE of padding following
8342                  * the bo. We currently fill all unused PTE with the shadow
8343                  * page and so we should always have valid PTE following the
8344                  * cursor preventing the VT-d warning.
8345                  */
8346                 alignment = 0;
8347                 if (need_vtd_wa(dev))
8348                         alignment = 64*1024;
8349
8350                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8351                 if (ret) {
8352                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8353                         intel_runtime_pm_put(dev_priv);
8354                         goto fail_locked;
8355                 }
8356
8357                 ret = i915_gem_object_put_fence(obj);
8358                 if (ret) {
8359                         DRM_DEBUG_KMS("failed to release fence for cursor");
8360                         intel_runtime_pm_put(dev_priv);
8361                         goto fail_unpin;
8362                 }
8363
8364                 addr = i915_gem_obj_ggtt_offset(obj);
8365
8366                 intel_runtime_pm_put(dev_priv);
8367         } else {
8368                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8369                 ret = i915_gem_object_attach_phys(obj, align);
8370                 if (ret) {
8371                         DRM_DEBUG_KMS("failed to attach phys object\n");
8372                         goto fail_locked;
8373                 }
8374                 addr = obj->phys_handle->busaddr;
8375         }
8376
8377  finish:
8378         if (intel_crtc->cursor_bo) {
8379                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8380                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8381         }
8382
8383         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8384                           INTEL_FRONTBUFFER_CURSOR(pipe));
8385         mutex_unlock(&dev->struct_mutex);
8386
8387         old_width = intel_crtc->cursor_width;
8388
8389         intel_crtc->cursor_addr = addr;
8390         intel_crtc->cursor_bo = obj;
8391         intel_crtc->cursor_width = width;
8392         intel_crtc->cursor_height = height;
8393
8394         if (intel_crtc->active) {
8395                 if (old_width != width)
8396                         intel_update_watermarks(crtc);
8397                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8398
8399                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8400         }
8401
8402         return 0;
8403 fail_unpin:
8404         i915_gem_object_unpin_from_display_plane(obj);
8405 fail_locked:
8406         mutex_unlock(&dev->struct_mutex);
8407         return ret;
8408 }
8409
8410 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8411                                  u16 *blue, uint32_t start, uint32_t size)
8412 {
8413         int end = (start + size > 256) ? 256 : start + size, i;
8414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8415
8416         for (i = start; i < end; i++) {
8417                 intel_crtc->lut_r[i] = red[i] >> 8;
8418                 intel_crtc->lut_g[i] = green[i] >> 8;
8419                 intel_crtc->lut_b[i] = blue[i] >> 8;
8420         }
8421
8422         intel_crtc_load_lut(crtc);
8423 }
8424
8425 /* VESA 640x480x72Hz mode to set on the pipe */
8426 static struct drm_display_mode load_detect_mode = {
8427         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8428                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8429 };
8430
8431 struct drm_framebuffer *
8432 __intel_framebuffer_create(struct drm_device *dev,
8433                            struct drm_mode_fb_cmd2 *mode_cmd,
8434                            struct drm_i915_gem_object *obj)
8435 {
8436         struct intel_framebuffer *intel_fb;
8437         int ret;
8438
8439         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8440         if (!intel_fb) {
8441                 drm_gem_object_unreference_unlocked(&obj->base);
8442                 return ERR_PTR(-ENOMEM);
8443         }
8444
8445         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8446         if (ret)
8447                 goto err;
8448
8449         return &intel_fb->base;
8450 err:
8451         drm_gem_object_unreference_unlocked(&obj->base);
8452         kfree(intel_fb);
8453
8454         return ERR_PTR(ret);
8455 }
8456
8457 static struct drm_framebuffer *
8458 intel_framebuffer_create(struct drm_device *dev,
8459                          struct drm_mode_fb_cmd2 *mode_cmd,
8460                          struct drm_i915_gem_object *obj)
8461 {
8462         struct drm_framebuffer *fb;
8463         int ret;
8464
8465         ret = i915_mutex_lock_interruptible(dev);
8466         if (ret)
8467                 return ERR_PTR(ret);
8468         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8469         mutex_unlock(&dev->struct_mutex);
8470
8471         return fb;
8472 }
8473
8474 static u32
8475 intel_framebuffer_pitch_for_width(int width, int bpp)
8476 {
8477         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8478         return ALIGN(pitch, 64);
8479 }
8480
8481 static u32
8482 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8483 {
8484         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8485         return PAGE_ALIGN(pitch * mode->vdisplay);
8486 }
8487
8488 static struct drm_framebuffer *
8489 intel_framebuffer_create_for_mode(struct drm_device *dev,
8490                                   struct drm_display_mode *mode,
8491                                   int depth, int bpp)
8492 {
8493         struct drm_i915_gem_object *obj;
8494         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8495
8496         obj = i915_gem_alloc_object(dev,
8497                                     intel_framebuffer_size_for_mode(mode, bpp));
8498         if (obj == NULL)
8499                 return ERR_PTR(-ENOMEM);
8500
8501         mode_cmd.width = mode->hdisplay;
8502         mode_cmd.height = mode->vdisplay;
8503         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8504                                                                 bpp);
8505         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8506
8507         return intel_framebuffer_create(dev, &mode_cmd, obj);
8508 }
8509
8510 static struct drm_framebuffer *
8511 mode_fits_in_fbdev(struct drm_device *dev,
8512                    struct drm_display_mode *mode)
8513 {
8514 #ifdef CONFIG_DRM_I915_FBDEV
8515         struct drm_i915_private *dev_priv = dev->dev_private;
8516         struct drm_i915_gem_object *obj;
8517         struct drm_framebuffer *fb;
8518
8519         if (!dev_priv->fbdev)
8520                 return NULL;
8521
8522         if (!dev_priv->fbdev->fb)
8523                 return NULL;
8524
8525         obj = dev_priv->fbdev->fb->obj;
8526         BUG_ON(!obj);
8527
8528         fb = &dev_priv->fbdev->fb->base;
8529         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8530                                                                fb->bits_per_pixel))
8531                 return NULL;
8532
8533         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8534                 return NULL;
8535
8536         return fb;
8537 #else
8538         return NULL;
8539 #endif
8540 }
8541
8542 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8543                                 struct drm_display_mode *mode,
8544                                 struct intel_load_detect_pipe *old,
8545                                 struct drm_modeset_acquire_ctx *ctx)
8546 {
8547         struct intel_crtc *intel_crtc;
8548         struct intel_encoder *intel_encoder =
8549                 intel_attached_encoder(connector);
8550         struct drm_crtc *possible_crtc;
8551         struct drm_encoder *encoder = &intel_encoder->base;
8552         struct drm_crtc *crtc = NULL;
8553         struct drm_device *dev = encoder->dev;
8554         struct drm_framebuffer *fb;
8555         struct drm_mode_config *config = &dev->mode_config;
8556         int ret, i = -1;
8557
8558         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8559                       connector->base.id, connector->name,
8560                       encoder->base.id, encoder->name);
8561
8562 retry:
8563         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8564         if (ret)
8565                 goto fail_unlock;
8566
8567         /*
8568          * Algorithm gets a little messy:
8569          *
8570          *   - if the connector already has an assigned crtc, use it (but make
8571          *     sure it's on first)
8572          *
8573          *   - try to find the first unused crtc that can drive this connector,
8574          *     and use that if we find one
8575          */
8576
8577         /* See if we already have a CRTC for this connector */
8578         if (encoder->crtc) {
8579                 crtc = encoder->crtc;
8580
8581                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8582                 if (ret)
8583                         goto fail_unlock;
8584
8585                 old->dpms_mode = connector->dpms;
8586                 old->load_detect_temp = false;
8587
8588                 /* Make sure the crtc and connector are running */
8589                 if (connector->dpms != DRM_MODE_DPMS_ON)
8590                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8591
8592                 return true;
8593         }
8594
8595         /* Find an unused one (if possible) */
8596         for_each_crtc(dev, possible_crtc) {
8597                 i++;
8598                 if (!(encoder->possible_crtcs & (1 << i)))
8599                         continue;
8600                 if (possible_crtc->enabled)
8601                         continue;
8602                 /* This can occur when applying the pipe A quirk on resume. */
8603                 if (to_intel_crtc(possible_crtc)->new_enabled)
8604                         continue;
8605
8606                 crtc = possible_crtc;
8607                 break;
8608         }
8609
8610         /*
8611          * If we didn't find an unused CRTC, don't use any.
8612          */
8613         if (!crtc) {
8614                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8615                 goto fail_unlock;
8616         }
8617
8618         ret = drm_modeset_lock(&crtc->mutex, ctx);
8619         if (ret)
8620                 goto fail_unlock;
8621         intel_encoder->new_crtc = to_intel_crtc(crtc);
8622         to_intel_connector(connector)->new_encoder = intel_encoder;
8623
8624         intel_crtc = to_intel_crtc(crtc);
8625         intel_crtc->new_enabled = true;
8626         intel_crtc->new_config = &intel_crtc->config;
8627         old->dpms_mode = connector->dpms;
8628         old->load_detect_temp = true;
8629         old->release_fb = NULL;
8630
8631         if (!mode)
8632                 mode = &load_detect_mode;
8633
8634         /* We need a framebuffer large enough to accommodate all accesses
8635          * that the plane may generate whilst we perform load detection.
8636          * We can not rely on the fbcon either being present (we get called
8637          * during its initialisation to detect all boot displays, or it may
8638          * not even exist) or that it is large enough to satisfy the
8639          * requested mode.
8640          */
8641         fb = mode_fits_in_fbdev(dev, mode);
8642         if (fb == NULL) {
8643                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8644                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8645                 old->release_fb = fb;
8646         } else
8647                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8648         if (IS_ERR(fb)) {
8649                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8650                 goto fail;
8651         }
8652
8653         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8654                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8655                 if (old->release_fb)
8656                         old->release_fb->funcs->destroy(old->release_fb);
8657                 goto fail;
8658         }
8659
8660         /* let the connector get through one full cycle before testing */
8661         intel_wait_for_vblank(dev, intel_crtc->pipe);
8662         return true;
8663
8664  fail:
8665         intel_crtc->new_enabled = crtc->enabled;
8666         if (intel_crtc->new_enabled)
8667                 intel_crtc->new_config = &intel_crtc->config;
8668         else
8669                 intel_crtc->new_config = NULL;
8670 fail_unlock:
8671         if (ret == -EDEADLK) {
8672                 drm_modeset_backoff(ctx);
8673                 goto retry;
8674         }
8675
8676         return false;
8677 }
8678
8679 void intel_release_load_detect_pipe(struct drm_connector *connector,
8680                                     struct intel_load_detect_pipe *old)
8681 {
8682         struct intel_encoder *intel_encoder =
8683                 intel_attached_encoder(connector);
8684         struct drm_encoder *encoder = &intel_encoder->base;
8685         struct drm_crtc *crtc = encoder->crtc;
8686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8687
8688         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8689                       connector->base.id, connector->name,
8690                       encoder->base.id, encoder->name);
8691
8692         if (old->load_detect_temp) {
8693                 to_intel_connector(connector)->new_encoder = NULL;
8694                 intel_encoder->new_crtc = NULL;
8695                 intel_crtc->new_enabled = false;
8696                 intel_crtc->new_config = NULL;
8697                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8698
8699                 if (old->release_fb) {
8700                         drm_framebuffer_unregister_private(old->release_fb);
8701                         drm_framebuffer_unreference(old->release_fb);
8702                 }
8703
8704                 return;
8705         }
8706
8707         /* Switch crtc and encoder back off if necessary */
8708         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8709                 connector->funcs->dpms(connector, old->dpms_mode);
8710 }
8711
8712 static int i9xx_pll_refclk(struct drm_device *dev,
8713                            const struct intel_crtc_config *pipe_config)
8714 {
8715         struct drm_i915_private *dev_priv = dev->dev_private;
8716         u32 dpll = pipe_config->dpll_hw_state.dpll;
8717
8718         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8719                 return dev_priv->vbt.lvds_ssc_freq;
8720         else if (HAS_PCH_SPLIT(dev))
8721                 return 120000;
8722         else if (!IS_GEN2(dev))
8723                 return 96000;
8724         else
8725                 return 48000;
8726 }
8727
8728 /* Returns the clock of the currently programmed mode of the given pipe. */
8729 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8730                                 struct intel_crtc_config *pipe_config)
8731 {
8732         struct drm_device *dev = crtc->base.dev;
8733         struct drm_i915_private *dev_priv = dev->dev_private;
8734         int pipe = pipe_config->cpu_transcoder;
8735         u32 dpll = pipe_config->dpll_hw_state.dpll;
8736         u32 fp;
8737         intel_clock_t clock;
8738         int refclk = i9xx_pll_refclk(dev, pipe_config);
8739
8740         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8741                 fp = pipe_config->dpll_hw_state.fp0;
8742         else
8743                 fp = pipe_config->dpll_hw_state.fp1;
8744
8745         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8746         if (IS_PINEVIEW(dev)) {
8747                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8748                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8749         } else {
8750                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8751                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8752         }
8753
8754         if (!IS_GEN2(dev)) {
8755                 if (IS_PINEVIEW(dev))
8756                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8757                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8758                 else
8759                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8760                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8761
8762                 switch (dpll & DPLL_MODE_MASK) {
8763                 case DPLLB_MODE_DAC_SERIAL:
8764                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8765                                 5 : 10;
8766                         break;
8767                 case DPLLB_MODE_LVDS:
8768                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8769                                 7 : 14;
8770                         break;
8771                 default:
8772                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8773                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8774                         return;
8775                 }
8776
8777                 if (IS_PINEVIEW(dev))
8778                         pineview_clock(refclk, &clock);
8779                 else
8780                         i9xx_clock(refclk, &clock);
8781         } else {
8782                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8783                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8784
8785                 if (is_lvds) {
8786                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8787                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8788
8789                         if (lvds & LVDS_CLKB_POWER_UP)
8790                                 clock.p2 = 7;
8791                         else
8792                                 clock.p2 = 14;
8793                 } else {
8794                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8795                                 clock.p1 = 2;
8796                         else {
8797                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8798                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8799                         }
8800                         if (dpll & PLL_P2_DIVIDE_BY_4)
8801                                 clock.p2 = 4;
8802                         else
8803                                 clock.p2 = 2;
8804                 }
8805
8806                 i9xx_clock(refclk, &clock);
8807         }
8808
8809         /*
8810          * This value includes pixel_multiplier. We will use
8811          * port_clock to compute adjusted_mode.crtc_clock in the
8812          * encoder's get_config() function.
8813          */
8814         pipe_config->port_clock = clock.dot;
8815 }
8816
8817 int intel_dotclock_calculate(int link_freq,
8818                              const struct intel_link_m_n *m_n)
8819 {
8820         /*
8821          * The calculation for the data clock is:
8822          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8823          * But we want to avoid losing precison if possible, so:
8824          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8825          *
8826          * and the link clock is simpler:
8827          * link_clock = (m * link_clock) / n
8828          */
8829
8830         if (!m_n->link_n)
8831                 return 0;
8832
8833         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8834 }
8835
8836 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8837                                    struct intel_crtc_config *pipe_config)
8838 {
8839         struct drm_device *dev = crtc->base.dev;
8840
8841         /* read out port_clock from the DPLL */
8842         i9xx_crtc_clock_get(crtc, pipe_config);
8843
8844         /*
8845          * This value does not include pixel_multiplier.
8846          * We will check that port_clock and adjusted_mode.crtc_clock
8847          * agree once we know their relationship in the encoder's
8848          * get_config() function.
8849          */
8850         pipe_config->adjusted_mode.crtc_clock =
8851                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8852                                          &pipe_config->fdi_m_n);
8853 }
8854
8855 /** Returns the currently programmed mode of the given pipe. */
8856 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8857                                              struct drm_crtc *crtc)
8858 {
8859         struct drm_i915_private *dev_priv = dev->dev_private;
8860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8861         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8862         struct drm_display_mode *mode;
8863         struct intel_crtc_config pipe_config;
8864         int htot = I915_READ(HTOTAL(cpu_transcoder));
8865         int hsync = I915_READ(HSYNC(cpu_transcoder));
8866         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8867         int vsync = I915_READ(VSYNC(cpu_transcoder));
8868         enum pipe pipe = intel_crtc->pipe;
8869
8870         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8871         if (!mode)
8872                 return NULL;
8873
8874         /*
8875          * Construct a pipe_config sufficient for getting the clock info
8876          * back out of crtc_clock_get.
8877          *
8878          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8879          * to use a real value here instead.
8880          */
8881         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8882         pipe_config.pixel_multiplier = 1;
8883         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8884         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8885         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8886         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8887
8888         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8889         mode->hdisplay = (htot & 0xffff) + 1;
8890         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8891         mode->hsync_start = (hsync & 0xffff) + 1;
8892         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8893         mode->vdisplay = (vtot & 0xffff) + 1;
8894         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8895         mode->vsync_start = (vsync & 0xffff) + 1;
8896         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8897
8898         drm_mode_set_name(mode);
8899
8900         return mode;
8901 }
8902
8903 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8904 {
8905         struct drm_device *dev = crtc->dev;
8906         struct drm_i915_private *dev_priv = dev->dev_private;
8907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8908
8909         if (!HAS_GMCH_DISPLAY(dev))
8910                 return;
8911
8912         if (!dev_priv->lvds_downclock_avail)
8913                 return;
8914
8915         /*
8916          * Since this is called by a timer, we should never get here in
8917          * the manual case.
8918          */
8919         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8920                 int pipe = intel_crtc->pipe;
8921                 int dpll_reg = DPLL(pipe);
8922                 int dpll;
8923
8924                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8925
8926                 assert_panel_unlocked(dev_priv, pipe);
8927
8928                 dpll = I915_READ(dpll_reg);
8929                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8930                 I915_WRITE(dpll_reg, dpll);
8931                 intel_wait_for_vblank(dev, pipe);
8932                 dpll = I915_READ(dpll_reg);
8933                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8934                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8935         }
8936
8937 }
8938
8939 void intel_mark_busy(struct drm_device *dev)
8940 {
8941         struct drm_i915_private *dev_priv = dev->dev_private;
8942
8943         if (dev_priv->mm.busy)
8944                 return;
8945
8946         intel_runtime_pm_get(dev_priv);
8947         i915_update_gfx_val(dev_priv);
8948         dev_priv->mm.busy = true;
8949 }
8950
8951 void intel_mark_idle(struct drm_device *dev)
8952 {
8953         struct drm_i915_private *dev_priv = dev->dev_private;
8954         struct drm_crtc *crtc;
8955
8956         if (!dev_priv->mm.busy)
8957                 return;
8958
8959         dev_priv->mm.busy = false;
8960
8961         if (!i915.powersave)
8962                 goto out;
8963
8964         for_each_crtc(dev, crtc) {
8965                 if (!crtc->primary->fb)
8966                         continue;
8967
8968                 intel_decrease_pllclock(crtc);
8969         }
8970
8971         if (INTEL_INFO(dev)->gen >= 6)
8972                 gen6_rps_idle(dev->dev_private);
8973
8974 out:
8975         intel_runtime_pm_put(dev_priv);
8976 }
8977
8978 static void intel_crtc_destroy(struct drm_crtc *crtc)
8979 {
8980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8981         struct drm_device *dev = crtc->dev;
8982         struct intel_unpin_work *work;
8983
8984         spin_lock_irq(&dev->event_lock);
8985         work = intel_crtc->unpin_work;
8986         intel_crtc->unpin_work = NULL;
8987         spin_unlock_irq(&dev->event_lock);
8988
8989         if (work) {
8990                 cancel_work_sync(&work->work);
8991                 kfree(work);
8992         }
8993
8994         drm_crtc_cleanup(crtc);
8995
8996         kfree(intel_crtc);
8997 }
8998
8999 static void intel_unpin_work_fn(struct work_struct *__work)
9000 {
9001         struct intel_unpin_work *work =
9002                 container_of(__work, struct intel_unpin_work, work);
9003         struct drm_device *dev = work->crtc->dev;
9004         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9005
9006         mutex_lock(&dev->struct_mutex);
9007         intel_unpin_fb_obj(work->old_fb_obj);
9008         drm_gem_object_unreference(&work->pending_flip_obj->base);
9009         drm_gem_object_unreference(&work->old_fb_obj->base);
9010
9011         intel_update_fbc(dev);
9012         mutex_unlock(&dev->struct_mutex);
9013
9014         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9015
9016         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9017         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9018
9019         kfree(work);
9020 }
9021
9022 static void do_intel_finish_page_flip(struct drm_device *dev,
9023                                       struct drm_crtc *crtc)
9024 {
9025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9026         struct intel_unpin_work *work;
9027         unsigned long flags;
9028
9029         /* Ignore early vblank irqs */
9030         if (intel_crtc == NULL)
9031                 return;
9032
9033         /*
9034          * This is called both by irq handlers and the reset code (to complete
9035          * lost pageflips) so needs the full irqsave spinlocks.
9036          */
9037         spin_lock_irqsave(&dev->event_lock, flags);
9038         work = intel_crtc->unpin_work;
9039
9040         /* Ensure we don't miss a work->pending update ... */
9041         smp_rmb();
9042
9043         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9044                 spin_unlock_irqrestore(&dev->event_lock, flags);
9045                 return;
9046         }
9047
9048         page_flip_completed(intel_crtc);
9049
9050         spin_unlock_irqrestore(&dev->event_lock, flags);
9051 }
9052
9053 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9054 {
9055         struct drm_i915_private *dev_priv = dev->dev_private;
9056         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9057
9058         do_intel_finish_page_flip(dev, crtc);
9059 }
9060
9061 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9062 {
9063         struct drm_i915_private *dev_priv = dev->dev_private;
9064         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9065
9066         do_intel_finish_page_flip(dev, crtc);
9067 }
9068
9069 /* Is 'a' after or equal to 'b'? */
9070 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9071 {
9072         return !((a - b) & 0x80000000);
9073 }
9074
9075 static bool page_flip_finished(struct intel_crtc *crtc)
9076 {
9077         struct drm_device *dev = crtc->base.dev;
9078         struct drm_i915_private *dev_priv = dev->dev_private;
9079
9080         /*
9081          * The relevant registers doen't exist on pre-ctg.
9082          * As the flip done interrupt doesn't trigger for mmio
9083          * flips on gmch platforms, a flip count check isn't
9084          * really needed there. But since ctg has the registers,
9085          * include it in the check anyway.
9086          */
9087         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9088                 return true;
9089
9090         /*
9091          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9092          * used the same base address. In that case the mmio flip might
9093          * have completed, but the CS hasn't even executed the flip yet.
9094          *
9095          * A flip count check isn't enough as the CS might have updated
9096          * the base address just after start of vblank, but before we
9097          * managed to process the interrupt. This means we'd complete the
9098          * CS flip too soon.
9099          *
9100          * Combining both checks should get us a good enough result. It may
9101          * still happen that the CS flip has been executed, but has not
9102          * yet actually completed. But in case the base address is the same
9103          * anyway, we don't really care.
9104          */
9105         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9106                 crtc->unpin_work->gtt_offset &&
9107                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9108                                     crtc->unpin_work->flip_count);
9109 }
9110
9111 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9112 {
9113         struct drm_i915_private *dev_priv = dev->dev_private;
9114         struct intel_crtc *intel_crtc =
9115                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9116         unsigned long flags;
9117
9118
9119         /*
9120          * This is called both by irq handlers and the reset code (to complete
9121          * lost pageflips) so needs the full irqsave spinlocks.
9122          *
9123          * NB: An MMIO update of the plane base pointer will also
9124          * generate a page-flip completion irq, i.e. every modeset
9125          * is also accompanied by a spurious intel_prepare_page_flip().
9126          */
9127         spin_lock_irqsave(&dev->event_lock, flags);
9128         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9129                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9130         spin_unlock_irqrestore(&dev->event_lock, flags);
9131 }
9132
9133 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9134 {
9135         /* Ensure that the work item is consistent when activating it ... */
9136         smp_wmb();
9137         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9138         /* and that it is marked active as soon as the irq could fire. */
9139         smp_wmb();
9140 }
9141
9142 static int intel_gen2_queue_flip(struct drm_device *dev,
9143                                  struct drm_crtc *crtc,
9144                                  struct drm_framebuffer *fb,
9145                                  struct drm_i915_gem_object *obj,
9146                                  struct intel_engine_cs *ring,
9147                                  uint32_t flags)
9148 {
9149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9150         u32 flip_mask;
9151         int ret;
9152
9153         ret = intel_ring_begin(ring, 6);
9154         if (ret)
9155                 return ret;
9156
9157         /* Can't queue multiple flips, so wait for the previous
9158          * one to finish before executing the next.
9159          */
9160         if (intel_crtc->plane)
9161                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9162         else
9163                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9164         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9165         intel_ring_emit(ring, MI_NOOP);
9166         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9167                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9168         intel_ring_emit(ring, fb->pitches[0]);
9169         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9170         intel_ring_emit(ring, 0); /* aux display base address, unused */
9171
9172         intel_mark_page_flip_active(intel_crtc);
9173         __intel_ring_advance(ring);
9174         return 0;
9175 }
9176
9177 static int intel_gen3_queue_flip(struct drm_device *dev,
9178                                  struct drm_crtc *crtc,
9179                                  struct drm_framebuffer *fb,
9180                                  struct drm_i915_gem_object *obj,
9181                                  struct intel_engine_cs *ring,
9182                                  uint32_t flags)
9183 {
9184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9185         u32 flip_mask;
9186         int ret;
9187
9188         ret = intel_ring_begin(ring, 6);
9189         if (ret)
9190                 return ret;
9191
9192         if (intel_crtc->plane)
9193                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9194         else
9195                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9196         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9197         intel_ring_emit(ring, MI_NOOP);
9198         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9199                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9200         intel_ring_emit(ring, fb->pitches[0]);
9201         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9202         intel_ring_emit(ring, MI_NOOP);
9203
9204         intel_mark_page_flip_active(intel_crtc);
9205         __intel_ring_advance(ring);
9206         return 0;
9207 }
9208
9209 static int intel_gen4_queue_flip(struct drm_device *dev,
9210                                  struct drm_crtc *crtc,
9211                                  struct drm_framebuffer *fb,
9212                                  struct drm_i915_gem_object *obj,
9213                                  struct intel_engine_cs *ring,
9214                                  uint32_t flags)
9215 {
9216         struct drm_i915_private *dev_priv = dev->dev_private;
9217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9218         uint32_t pf, pipesrc;
9219         int ret;
9220
9221         ret = intel_ring_begin(ring, 4);
9222         if (ret)
9223                 return ret;
9224
9225         /* i965+ uses the linear or tiled offsets from the
9226          * Display Registers (which do not change across a page-flip)
9227          * so we need only reprogram the base address.
9228          */
9229         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9230                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9231         intel_ring_emit(ring, fb->pitches[0]);
9232         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9233                         obj->tiling_mode);
9234
9235         /* XXX Enabling the panel-fitter across page-flip is so far
9236          * untested on non-native modes, so ignore it for now.
9237          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9238          */
9239         pf = 0;
9240         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9241         intel_ring_emit(ring, pf | pipesrc);
9242
9243         intel_mark_page_flip_active(intel_crtc);
9244         __intel_ring_advance(ring);
9245         return 0;
9246 }
9247
9248 static int intel_gen6_queue_flip(struct drm_device *dev,
9249                                  struct drm_crtc *crtc,
9250                                  struct drm_framebuffer *fb,
9251                                  struct drm_i915_gem_object *obj,
9252                                  struct intel_engine_cs *ring,
9253                                  uint32_t flags)
9254 {
9255         struct drm_i915_private *dev_priv = dev->dev_private;
9256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9257         uint32_t pf, pipesrc;
9258         int ret;
9259
9260         ret = intel_ring_begin(ring, 4);
9261         if (ret)
9262                 return ret;
9263
9264         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9265                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9266         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9267         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9268
9269         /* Contrary to the suggestions in the documentation,
9270          * "Enable Panel Fitter" does not seem to be required when page
9271          * flipping with a non-native mode, and worse causes a normal
9272          * modeset to fail.
9273          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9274          */
9275         pf = 0;
9276         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9277         intel_ring_emit(ring, pf | pipesrc);
9278
9279         intel_mark_page_flip_active(intel_crtc);
9280         __intel_ring_advance(ring);
9281         return 0;
9282 }
9283
9284 static int intel_gen7_queue_flip(struct drm_device *dev,
9285                                  struct drm_crtc *crtc,
9286                                  struct drm_framebuffer *fb,
9287                                  struct drm_i915_gem_object *obj,
9288                                  struct intel_engine_cs *ring,
9289                                  uint32_t flags)
9290 {
9291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9292         uint32_t plane_bit = 0;
9293         int len, ret;
9294
9295         switch (intel_crtc->plane) {
9296         case PLANE_A:
9297                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9298                 break;
9299         case PLANE_B:
9300                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9301                 break;
9302         case PLANE_C:
9303                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9304                 break;
9305         default:
9306                 WARN_ONCE(1, "unknown plane in flip command\n");
9307                 return -ENODEV;
9308         }
9309
9310         len = 4;
9311         if (ring->id == RCS) {
9312                 len += 6;
9313                 /*
9314                  * On Gen 8, SRM is now taking an extra dword to accommodate
9315                  * 48bits addresses, and we need a NOOP for the batch size to
9316                  * stay even.
9317                  */
9318                 if (IS_GEN8(dev))
9319                         len += 2;
9320         }
9321
9322         /*
9323          * BSpec MI_DISPLAY_FLIP for IVB:
9324          * "The full packet must be contained within the same cache line."
9325          *
9326          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9327          * cacheline, if we ever start emitting more commands before
9328          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9329          * then do the cacheline alignment, and finally emit the
9330          * MI_DISPLAY_FLIP.
9331          */
9332         ret = intel_ring_cacheline_align(ring);
9333         if (ret)
9334                 return ret;
9335
9336         ret = intel_ring_begin(ring, len);
9337         if (ret)
9338                 return ret;
9339
9340         /* Unmask the flip-done completion message. Note that the bspec says that
9341          * we should do this for both the BCS and RCS, and that we must not unmask
9342          * more than one flip event at any time (or ensure that one flip message
9343          * can be sent by waiting for flip-done prior to queueing new flips).
9344          * Experimentation says that BCS works despite DERRMR masking all
9345          * flip-done completion events and that unmasking all planes at once
9346          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9347          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9348          */
9349         if (ring->id == RCS) {
9350                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9351                 intel_ring_emit(ring, DERRMR);
9352                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9353                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9354                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9355                 if (IS_GEN8(dev))
9356                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9357                                               MI_SRM_LRM_GLOBAL_GTT);
9358                 else
9359                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9360                                               MI_SRM_LRM_GLOBAL_GTT);
9361                 intel_ring_emit(ring, DERRMR);
9362                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9363                 if (IS_GEN8(dev)) {
9364                         intel_ring_emit(ring, 0);
9365                         intel_ring_emit(ring, MI_NOOP);
9366                 }
9367         }
9368
9369         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9370         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9371         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9372         intel_ring_emit(ring, (MI_NOOP));
9373
9374         intel_mark_page_flip_active(intel_crtc);
9375         __intel_ring_advance(ring);
9376         return 0;
9377 }
9378
9379 static bool use_mmio_flip(struct intel_engine_cs *ring,
9380                           struct drm_i915_gem_object *obj)
9381 {
9382         /*
9383          * This is not being used for older platforms, because
9384          * non-availability of flip done interrupt forces us to use
9385          * CS flips. Older platforms derive flip done using some clever
9386          * tricks involving the flip_pending status bits and vblank irqs.
9387          * So using MMIO flips there would disrupt this mechanism.
9388          */
9389
9390         if (ring == NULL)
9391                 return true;
9392
9393         if (INTEL_INFO(ring->dev)->gen < 5)
9394                 return false;
9395
9396         if (i915.use_mmio_flip < 0)
9397                 return false;
9398         else if (i915.use_mmio_flip > 0)
9399                 return true;
9400         else if (i915.enable_execlists)
9401                 return true;
9402         else
9403                 return ring != obj->ring;
9404 }
9405
9406 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9407 {
9408         struct drm_device *dev = intel_crtc->base.dev;
9409         struct drm_i915_private *dev_priv = dev->dev_private;
9410         struct intel_framebuffer *intel_fb =
9411                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9412         struct drm_i915_gem_object *obj = intel_fb->obj;
9413         u32 dspcntr;
9414         u32 reg;
9415
9416         intel_mark_page_flip_active(intel_crtc);
9417
9418         reg = DSPCNTR(intel_crtc->plane);
9419         dspcntr = I915_READ(reg);
9420
9421         if (obj->tiling_mode != I915_TILING_NONE)
9422                 dspcntr |= DISPPLANE_TILED;
9423         else
9424                 dspcntr &= ~DISPPLANE_TILED;
9425
9426         I915_WRITE(reg, dspcntr);
9427
9428         I915_WRITE(DSPSURF(intel_crtc->plane),
9429                    intel_crtc->unpin_work->gtt_offset);
9430         POSTING_READ(DSPSURF(intel_crtc->plane));
9431 }
9432
9433 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9434 {
9435         struct intel_engine_cs *ring;
9436         int ret;
9437
9438         lockdep_assert_held(&obj->base.dev->struct_mutex);
9439
9440         if (!obj->last_write_seqno)
9441                 return 0;
9442
9443         ring = obj->ring;
9444
9445         if (i915_seqno_passed(ring->get_seqno(ring, true),
9446                               obj->last_write_seqno))
9447                 return 0;
9448
9449         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9450         if (ret)
9451                 return ret;
9452
9453         if (WARN_ON(!ring->irq_get(ring)))
9454                 return 0;
9455
9456         return 1;
9457 }
9458
9459 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9460 {
9461         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9462         struct intel_crtc *intel_crtc;
9463         unsigned long irq_flags;
9464         u32 seqno;
9465
9466         seqno = ring->get_seqno(ring, false);
9467
9468         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9469         for_each_intel_crtc(ring->dev, intel_crtc) {
9470                 struct intel_mmio_flip *mmio_flip;
9471
9472                 mmio_flip = &intel_crtc->mmio_flip;
9473                 if (mmio_flip->seqno == 0)
9474                         continue;
9475
9476                 if (ring->id != mmio_flip->ring_id)
9477                         continue;
9478
9479                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9480                         intel_do_mmio_flip(intel_crtc);
9481                         mmio_flip->seqno = 0;
9482                         ring->irq_put(ring);
9483                 }
9484         }
9485         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9486 }
9487
9488 static int intel_queue_mmio_flip(struct drm_device *dev,
9489                                  struct drm_crtc *crtc,
9490                                  struct drm_framebuffer *fb,
9491                                  struct drm_i915_gem_object *obj,
9492                                  struct intel_engine_cs *ring,
9493                                  uint32_t flags)
9494 {
9495         struct drm_i915_private *dev_priv = dev->dev_private;
9496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9497         int ret;
9498
9499         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9500                 return -EBUSY;
9501
9502         ret = intel_postpone_flip(obj);
9503         if (ret < 0)
9504                 return ret;
9505         if (ret == 0) {
9506                 intel_do_mmio_flip(intel_crtc);
9507                 return 0;
9508         }
9509
9510         spin_lock_irq(&dev_priv->mmio_flip_lock);
9511         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9512         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9513         spin_unlock_irq(&dev_priv->mmio_flip_lock);
9514
9515         /*
9516          * Double check to catch cases where irq fired before
9517          * mmio flip data was ready
9518          */
9519         intel_notify_mmio_flip(obj->ring);
9520         return 0;
9521 }
9522
9523 static int intel_default_queue_flip(struct drm_device *dev,
9524                                     struct drm_crtc *crtc,
9525                                     struct drm_framebuffer *fb,
9526                                     struct drm_i915_gem_object *obj,
9527                                     struct intel_engine_cs *ring,
9528                                     uint32_t flags)
9529 {
9530         return -ENODEV;
9531 }
9532
9533 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9534                                          struct drm_crtc *crtc)
9535 {
9536         struct drm_i915_private *dev_priv = dev->dev_private;
9537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9538         struct intel_unpin_work *work = intel_crtc->unpin_work;
9539         u32 addr;
9540
9541         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9542                 return true;
9543
9544         if (!work->enable_stall_check)
9545                 return false;
9546
9547         if (work->flip_ready_vblank == 0) {
9548                 if (work->flip_queued_ring &&
9549                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9550                                        work->flip_queued_seqno))
9551                         return false;
9552
9553                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9554         }
9555
9556         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9557                 return false;
9558
9559         /* Potential stall - if we see that the flip has happened,
9560          * assume a missed interrupt. */
9561         if (INTEL_INFO(dev)->gen >= 4)
9562                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9563         else
9564                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9565
9566         /* There is a potential issue here with a false positive after a flip
9567          * to the same address. We could address this by checking for a
9568          * non-incrementing frame counter.
9569          */
9570         return addr == work->gtt_offset;
9571 }
9572
9573 void intel_check_page_flip(struct drm_device *dev, int pipe)
9574 {
9575         struct drm_i915_private *dev_priv = dev->dev_private;
9576         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9578
9579         WARN_ON(!in_irq());
9580
9581         if (crtc == NULL)
9582                 return;
9583
9584         spin_lock(&dev->event_lock);
9585         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9586                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9587                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9588                 page_flip_completed(intel_crtc);
9589         }
9590         spin_unlock(&dev->event_lock);
9591 }
9592
9593 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9594                                 struct drm_framebuffer *fb,
9595                                 struct drm_pending_vblank_event *event,
9596                                 uint32_t page_flip_flags)
9597 {
9598         struct drm_device *dev = crtc->dev;
9599         struct drm_i915_private *dev_priv = dev->dev_private;
9600         struct drm_framebuffer *old_fb = crtc->primary->fb;
9601         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9603         enum pipe pipe = intel_crtc->pipe;
9604         struct intel_unpin_work *work;
9605         struct intel_engine_cs *ring;
9606         int ret;
9607
9608         /*
9609          * drm_mode_page_flip_ioctl() should already catch this, but double
9610          * check to be safe.  In the future we may enable pageflipping from
9611          * a disabled primary plane.
9612          */
9613         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9614                 return -EBUSY;
9615
9616         /* Can't change pixel format via MI display flips. */
9617         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9618                 return -EINVAL;
9619
9620         /*
9621          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9622          * Note that pitch changes could also affect these register.
9623          */
9624         if (INTEL_INFO(dev)->gen > 3 &&
9625             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9626              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9627                 return -EINVAL;
9628
9629         if (i915_terminally_wedged(&dev_priv->gpu_error))
9630                 goto out_hang;
9631
9632         work = kzalloc(sizeof(*work), GFP_KERNEL);
9633         if (work == NULL)
9634                 return -ENOMEM;
9635
9636         work->event = event;
9637         work->crtc = crtc;
9638         work->old_fb_obj = intel_fb_obj(old_fb);
9639         INIT_WORK(&work->work, intel_unpin_work_fn);
9640
9641         ret = drm_crtc_vblank_get(crtc);
9642         if (ret)
9643                 goto free_work;
9644
9645         /* We borrow the event spin lock for protecting unpin_work */
9646         spin_lock_irq(&dev->event_lock);
9647         if (intel_crtc->unpin_work) {
9648                 /* Before declaring the flip queue wedged, check if
9649                  * the hardware completed the operation behind our backs.
9650                  */
9651                 if (__intel_pageflip_stall_check(dev, crtc)) {
9652                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9653                         page_flip_completed(intel_crtc);
9654                 } else {
9655                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9656                         spin_unlock_irq(&dev->event_lock);
9657
9658                         drm_crtc_vblank_put(crtc);
9659                         kfree(work);
9660                         return -EBUSY;
9661                 }
9662         }
9663         intel_crtc->unpin_work = work;
9664         spin_unlock_irq(&dev->event_lock);
9665
9666         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9667                 flush_workqueue(dev_priv->wq);
9668
9669         ret = i915_mutex_lock_interruptible(dev);
9670         if (ret)
9671                 goto cleanup;
9672
9673         /* Reference the objects for the scheduled work. */
9674         drm_gem_object_reference(&work->old_fb_obj->base);
9675         drm_gem_object_reference(&obj->base);
9676
9677         crtc->primary->fb = fb;
9678
9679         work->pending_flip_obj = obj;
9680
9681         atomic_inc(&intel_crtc->unpin_work_count);
9682         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9683
9684         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9685                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9686
9687         if (IS_VALLEYVIEW(dev)) {
9688                 ring = &dev_priv->ring[BCS];
9689                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9690                         /* vlv: DISPLAY_FLIP fails to change tiling */
9691                         ring = NULL;
9692         } else if (IS_IVYBRIDGE(dev)) {
9693                 ring = &dev_priv->ring[BCS];
9694         } else if (INTEL_INFO(dev)->gen >= 7) {
9695                 ring = obj->ring;
9696                 if (ring == NULL || ring->id != RCS)
9697                         ring = &dev_priv->ring[BCS];
9698         } else {
9699                 ring = &dev_priv->ring[RCS];
9700         }
9701
9702         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9703         if (ret)
9704                 goto cleanup_pending;
9705
9706         work->gtt_offset =
9707                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9708
9709         if (use_mmio_flip(ring, obj)) {
9710                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9711                                             page_flip_flags);
9712                 if (ret)
9713                         goto cleanup_unpin;
9714
9715                 work->flip_queued_seqno = obj->last_write_seqno;
9716                 work->flip_queued_ring = obj->ring;
9717         } else {
9718                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9719                                                    page_flip_flags);
9720                 if (ret)
9721                         goto cleanup_unpin;
9722
9723                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9724                 work->flip_queued_ring = ring;
9725         }
9726
9727         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9728         work->enable_stall_check = true;
9729
9730         i915_gem_track_fb(work->old_fb_obj, obj,
9731                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9732
9733         intel_disable_fbc(dev);
9734         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9735         mutex_unlock(&dev->struct_mutex);
9736
9737         trace_i915_flip_request(intel_crtc->plane, obj);
9738
9739         return 0;
9740
9741 cleanup_unpin:
9742         intel_unpin_fb_obj(obj);
9743 cleanup_pending:
9744         atomic_dec(&intel_crtc->unpin_work_count);
9745         crtc->primary->fb = old_fb;
9746         drm_gem_object_unreference(&work->old_fb_obj->base);
9747         drm_gem_object_unreference(&obj->base);
9748         mutex_unlock(&dev->struct_mutex);
9749
9750 cleanup:
9751         spin_lock_irq(&dev->event_lock);
9752         intel_crtc->unpin_work = NULL;
9753         spin_unlock_irq(&dev->event_lock);
9754
9755         drm_crtc_vblank_put(crtc);
9756 free_work:
9757         kfree(work);
9758
9759         if (ret == -EIO) {
9760 out_hang:
9761                 intel_crtc_wait_for_pending_flips(crtc);
9762                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9763                 if (ret == 0 && event) {
9764                         spin_lock_irq(&dev->event_lock);
9765                         drm_send_vblank_event(dev, pipe, event);
9766                         spin_unlock_irq(&dev->event_lock);
9767                 }
9768         }
9769         return ret;
9770 }
9771
9772 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9773         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9774         .load_lut = intel_crtc_load_lut,
9775 };
9776
9777 /**
9778  * intel_modeset_update_staged_output_state
9779  *
9780  * Updates the staged output configuration state, e.g. after we've read out the
9781  * current hw state.
9782  */
9783 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9784 {
9785         struct intel_crtc *crtc;
9786         struct intel_encoder *encoder;
9787         struct intel_connector *connector;
9788
9789         list_for_each_entry(connector, &dev->mode_config.connector_list,
9790                             base.head) {
9791                 connector->new_encoder =
9792                         to_intel_encoder(connector->base.encoder);
9793         }
9794
9795         for_each_intel_encoder(dev, encoder) {
9796                 encoder->new_crtc =
9797                         to_intel_crtc(encoder->base.crtc);
9798         }
9799
9800         for_each_intel_crtc(dev, crtc) {
9801                 crtc->new_enabled = crtc->base.enabled;
9802
9803                 if (crtc->new_enabled)
9804                         crtc->new_config = &crtc->config;
9805                 else
9806                         crtc->new_config = NULL;
9807         }
9808 }
9809
9810 /**
9811  * intel_modeset_commit_output_state
9812  *
9813  * This function copies the stage display pipe configuration to the real one.
9814  */
9815 static void intel_modeset_commit_output_state(struct drm_device *dev)
9816 {
9817         struct intel_crtc *crtc;
9818         struct intel_encoder *encoder;
9819         struct intel_connector *connector;
9820
9821         list_for_each_entry(connector, &dev->mode_config.connector_list,
9822                             base.head) {
9823                 connector->base.encoder = &connector->new_encoder->base;
9824         }
9825
9826         for_each_intel_encoder(dev, encoder) {
9827                 encoder->base.crtc = &encoder->new_crtc->base;
9828         }
9829
9830         for_each_intel_crtc(dev, crtc) {
9831                 crtc->base.enabled = crtc->new_enabled;
9832         }
9833 }
9834
9835 static void
9836 connected_sink_compute_bpp(struct intel_connector *connector,
9837                            struct intel_crtc_config *pipe_config)
9838 {
9839         int bpp = pipe_config->pipe_bpp;
9840
9841         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9842                 connector->base.base.id,
9843                 connector->base.name);
9844
9845         /* Don't use an invalid EDID bpc value */
9846         if (connector->base.display_info.bpc &&
9847             connector->base.display_info.bpc * 3 < bpp) {
9848                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9849                               bpp, connector->base.display_info.bpc*3);
9850                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9851         }
9852
9853         /* Clamp bpp to 8 on screens without EDID 1.4 */
9854         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9855                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9856                               bpp);
9857                 pipe_config->pipe_bpp = 24;
9858         }
9859 }
9860
9861 static int
9862 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9863                           struct drm_framebuffer *fb,
9864                           struct intel_crtc_config *pipe_config)
9865 {
9866         struct drm_device *dev = crtc->base.dev;
9867         struct intel_connector *connector;
9868         int bpp;
9869
9870         switch (fb->pixel_format) {
9871         case DRM_FORMAT_C8:
9872                 bpp = 8*3; /* since we go through a colormap */
9873                 break;
9874         case DRM_FORMAT_XRGB1555:
9875         case DRM_FORMAT_ARGB1555:
9876                 /* checked in intel_framebuffer_init already */
9877                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9878                         return -EINVAL;
9879         case DRM_FORMAT_RGB565:
9880                 bpp = 6*3; /* min is 18bpp */
9881                 break;
9882         case DRM_FORMAT_XBGR8888:
9883         case DRM_FORMAT_ABGR8888:
9884                 /* checked in intel_framebuffer_init already */
9885                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9886                         return -EINVAL;
9887         case DRM_FORMAT_XRGB8888:
9888         case DRM_FORMAT_ARGB8888:
9889                 bpp = 8*3;
9890                 break;
9891         case DRM_FORMAT_XRGB2101010:
9892         case DRM_FORMAT_ARGB2101010:
9893         case DRM_FORMAT_XBGR2101010:
9894         case DRM_FORMAT_ABGR2101010:
9895                 /* checked in intel_framebuffer_init already */
9896                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9897                         return -EINVAL;
9898                 bpp = 10*3;
9899                 break;
9900         /* TODO: gen4+ supports 16 bpc floating point, too. */
9901         default:
9902                 DRM_DEBUG_KMS("unsupported depth\n");
9903                 return -EINVAL;
9904         }
9905
9906         pipe_config->pipe_bpp = bpp;
9907
9908         /* Clamp display bpp to EDID value */
9909         list_for_each_entry(connector, &dev->mode_config.connector_list,
9910                             base.head) {
9911                 if (!connector->new_encoder ||
9912                     connector->new_encoder->new_crtc != crtc)
9913                         continue;
9914
9915                 connected_sink_compute_bpp(connector, pipe_config);
9916         }
9917
9918         return bpp;
9919 }
9920
9921 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9922 {
9923         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9924                         "type: 0x%x flags: 0x%x\n",
9925                 mode->crtc_clock,
9926                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9927                 mode->crtc_hsync_end, mode->crtc_htotal,
9928                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9929                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9930 }
9931
9932 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9933                                    struct intel_crtc_config *pipe_config,
9934                                    const char *context)
9935 {
9936         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9937                       context, pipe_name(crtc->pipe));
9938
9939         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9940         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9941                       pipe_config->pipe_bpp, pipe_config->dither);
9942         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9943                       pipe_config->has_pch_encoder,
9944                       pipe_config->fdi_lanes,
9945                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9946                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9947                       pipe_config->fdi_m_n.tu);
9948         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9949                       pipe_config->has_dp_encoder,
9950                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9951                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9952                       pipe_config->dp_m_n.tu);
9953
9954         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9955                       pipe_config->has_dp_encoder,
9956                       pipe_config->dp_m2_n2.gmch_m,
9957                       pipe_config->dp_m2_n2.gmch_n,
9958                       pipe_config->dp_m2_n2.link_m,
9959                       pipe_config->dp_m2_n2.link_n,
9960                       pipe_config->dp_m2_n2.tu);
9961
9962         DRM_DEBUG_KMS("requested mode:\n");
9963         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9964         DRM_DEBUG_KMS("adjusted mode:\n");
9965         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9966         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9967         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9968         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9969                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9970         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9971                       pipe_config->gmch_pfit.control,
9972                       pipe_config->gmch_pfit.pgm_ratios,
9973                       pipe_config->gmch_pfit.lvds_border_bits);
9974         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9975                       pipe_config->pch_pfit.pos,
9976                       pipe_config->pch_pfit.size,
9977                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9978         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9979         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9980 }
9981
9982 static bool encoders_cloneable(const struct intel_encoder *a,
9983                                const struct intel_encoder *b)
9984 {
9985         /* masks could be asymmetric, so check both ways */
9986         return a == b || (a->cloneable & (1 << b->type) &&
9987                           b->cloneable & (1 << a->type));
9988 }
9989
9990 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9991                                          struct intel_encoder *encoder)
9992 {
9993         struct drm_device *dev = crtc->base.dev;
9994         struct intel_encoder *source_encoder;
9995
9996         for_each_intel_encoder(dev, source_encoder) {
9997                 if (source_encoder->new_crtc != crtc)
9998                         continue;
9999
10000                 if (!encoders_cloneable(encoder, source_encoder))
10001                         return false;
10002         }
10003
10004         return true;
10005 }
10006
10007 static bool check_encoder_cloning(struct intel_crtc *crtc)
10008 {
10009         struct drm_device *dev = crtc->base.dev;
10010         struct intel_encoder *encoder;
10011
10012         for_each_intel_encoder(dev, encoder) {
10013                 if (encoder->new_crtc != crtc)
10014                         continue;
10015
10016                 if (!check_single_encoder_cloning(crtc, encoder))
10017                         return false;
10018         }
10019
10020         return true;
10021 }
10022
10023 static struct intel_crtc_config *
10024 intel_modeset_pipe_config(struct drm_crtc *crtc,
10025                           struct drm_framebuffer *fb,
10026                           struct drm_display_mode *mode)
10027 {
10028         struct drm_device *dev = crtc->dev;
10029         struct intel_encoder *encoder;
10030         struct intel_crtc_config *pipe_config;
10031         int plane_bpp, ret = -EINVAL;
10032         bool retry = true;
10033
10034         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10035                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10036                 return ERR_PTR(-EINVAL);
10037         }
10038
10039         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10040         if (!pipe_config)
10041                 return ERR_PTR(-ENOMEM);
10042
10043         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10044         drm_mode_copy(&pipe_config->requested_mode, mode);
10045
10046         pipe_config->cpu_transcoder =
10047                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10048         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10049
10050         /*
10051          * Sanitize sync polarity flags based on requested ones. If neither
10052          * positive or negative polarity is requested, treat this as meaning
10053          * negative polarity.
10054          */
10055         if (!(pipe_config->adjusted_mode.flags &
10056               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10057                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10058
10059         if (!(pipe_config->adjusted_mode.flags &
10060               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10061                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10062
10063         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10064          * plane pixel format and any sink constraints into account. Returns the
10065          * source plane bpp so that dithering can be selected on mismatches
10066          * after encoders and crtc also have had their say. */
10067         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10068                                               fb, pipe_config);
10069         if (plane_bpp < 0)
10070                 goto fail;
10071
10072         /*
10073          * Determine the real pipe dimensions. Note that stereo modes can
10074          * increase the actual pipe size due to the frame doubling and
10075          * insertion of additional space for blanks between the frame. This
10076          * is stored in the crtc timings. We use the requested mode to do this
10077          * computation to clearly distinguish it from the adjusted mode, which
10078          * can be changed by the connectors in the below retry loop.
10079          */
10080         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10081         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10082         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10083
10084 encoder_retry:
10085         /* Ensure the port clock defaults are reset when retrying. */
10086         pipe_config->port_clock = 0;
10087         pipe_config->pixel_multiplier = 1;
10088
10089         /* Fill in default crtc timings, allow encoders to overwrite them. */
10090         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10091
10092         /* Pass our mode to the connectors and the CRTC to give them a chance to
10093          * adjust it according to limitations or connector properties, and also
10094          * a chance to reject the mode entirely.
10095          */
10096         for_each_intel_encoder(dev, encoder) {
10097
10098                 if (&encoder->new_crtc->base != crtc)
10099                         continue;
10100
10101                 if (!(encoder->compute_config(encoder, pipe_config))) {
10102                         DRM_DEBUG_KMS("Encoder config failure\n");
10103                         goto fail;
10104                 }
10105         }
10106
10107         /* Set default port clock if not overwritten by the encoder. Needs to be
10108          * done afterwards in case the encoder adjusts the mode. */
10109         if (!pipe_config->port_clock)
10110                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10111                         * pipe_config->pixel_multiplier;
10112
10113         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10114         if (ret < 0) {
10115                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10116                 goto fail;
10117         }
10118
10119         if (ret == RETRY) {
10120                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10121                         ret = -EINVAL;
10122                         goto fail;
10123                 }
10124
10125                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10126                 retry = false;
10127                 goto encoder_retry;
10128         }
10129
10130         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10131         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10132                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10133
10134         return pipe_config;
10135 fail:
10136         kfree(pipe_config);
10137         return ERR_PTR(ret);
10138 }
10139
10140 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10141  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10142 static void
10143 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10144                              unsigned *prepare_pipes, unsigned *disable_pipes)
10145 {
10146         struct intel_crtc *intel_crtc;
10147         struct drm_device *dev = crtc->dev;
10148         struct intel_encoder *encoder;
10149         struct intel_connector *connector;
10150         struct drm_crtc *tmp_crtc;
10151
10152         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10153
10154         /* Check which crtcs have changed outputs connected to them, these need
10155          * to be part of the prepare_pipes mask. We don't (yet) support global
10156          * modeset across multiple crtcs, so modeset_pipes will only have one
10157          * bit set at most. */
10158         list_for_each_entry(connector, &dev->mode_config.connector_list,
10159                             base.head) {
10160                 if (connector->base.encoder == &connector->new_encoder->base)
10161                         continue;
10162
10163                 if (connector->base.encoder) {
10164                         tmp_crtc = connector->base.encoder->crtc;
10165
10166                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10167                 }
10168
10169                 if (connector->new_encoder)
10170                         *prepare_pipes |=
10171                                 1 << connector->new_encoder->new_crtc->pipe;
10172         }
10173
10174         for_each_intel_encoder(dev, encoder) {
10175                 if (encoder->base.crtc == &encoder->new_crtc->base)
10176                         continue;
10177
10178                 if (encoder->base.crtc) {
10179                         tmp_crtc = encoder->base.crtc;
10180
10181                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10182                 }
10183
10184                 if (encoder->new_crtc)
10185                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10186         }
10187
10188         /* Check for pipes that will be enabled/disabled ... */
10189         for_each_intel_crtc(dev, intel_crtc) {
10190                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10191                         continue;
10192
10193                 if (!intel_crtc->new_enabled)
10194                         *disable_pipes |= 1 << intel_crtc->pipe;
10195                 else
10196                         *prepare_pipes |= 1 << intel_crtc->pipe;
10197         }
10198
10199
10200         /* set_mode is also used to update properties on life display pipes. */
10201         intel_crtc = to_intel_crtc(crtc);
10202         if (intel_crtc->new_enabled)
10203                 *prepare_pipes |= 1 << intel_crtc->pipe;
10204
10205         /*
10206          * For simplicity do a full modeset on any pipe where the output routing
10207          * changed. We could be more clever, but that would require us to be
10208          * more careful with calling the relevant encoder->mode_set functions.
10209          */
10210         if (*prepare_pipes)
10211                 *modeset_pipes = *prepare_pipes;
10212
10213         /* ... and mask these out. */
10214         *modeset_pipes &= ~(*disable_pipes);
10215         *prepare_pipes &= ~(*disable_pipes);
10216
10217         /*
10218          * HACK: We don't (yet) fully support global modesets. intel_set_config
10219          * obies this rule, but the modeset restore mode of
10220          * intel_modeset_setup_hw_state does not.
10221          */
10222         *modeset_pipes &= 1 << intel_crtc->pipe;
10223         *prepare_pipes &= 1 << intel_crtc->pipe;
10224
10225         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10226                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10227 }
10228
10229 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10230 {
10231         struct drm_encoder *encoder;
10232         struct drm_device *dev = crtc->dev;
10233
10234         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10235                 if (encoder->crtc == crtc)
10236                         return true;
10237
10238         return false;
10239 }
10240
10241 static void
10242 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10243 {
10244         struct intel_encoder *intel_encoder;
10245         struct intel_crtc *intel_crtc;
10246         struct drm_connector *connector;
10247
10248         for_each_intel_encoder(dev, intel_encoder) {
10249                 if (!intel_encoder->base.crtc)
10250                         continue;
10251
10252                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10253
10254                 if (prepare_pipes & (1 << intel_crtc->pipe))
10255                         intel_encoder->connectors_active = false;
10256         }
10257
10258         intel_modeset_commit_output_state(dev);
10259
10260         /* Double check state. */
10261         for_each_intel_crtc(dev, intel_crtc) {
10262                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10263                 WARN_ON(intel_crtc->new_config &&
10264                         intel_crtc->new_config != &intel_crtc->config);
10265                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10266         }
10267
10268         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10269                 if (!connector->encoder || !connector->encoder->crtc)
10270                         continue;
10271
10272                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10273
10274                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10275                         struct drm_property *dpms_property =
10276                                 dev->mode_config.dpms_property;
10277
10278                         connector->dpms = DRM_MODE_DPMS_ON;
10279                         drm_object_property_set_value(&connector->base,
10280                                                          dpms_property,
10281                                                          DRM_MODE_DPMS_ON);
10282
10283                         intel_encoder = to_intel_encoder(connector->encoder);
10284                         intel_encoder->connectors_active = true;
10285                 }
10286         }
10287
10288 }
10289
10290 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10291 {
10292         int diff;
10293
10294         if (clock1 == clock2)
10295                 return true;
10296
10297         if (!clock1 || !clock2)
10298                 return false;
10299
10300         diff = abs(clock1 - clock2);
10301
10302         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10303                 return true;
10304
10305         return false;
10306 }
10307
10308 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10309         list_for_each_entry((intel_crtc), \
10310                             &(dev)->mode_config.crtc_list, \
10311                             base.head) \
10312                 if (mask & (1 <<(intel_crtc)->pipe))
10313
10314 static bool
10315 intel_pipe_config_compare(struct drm_device *dev,
10316                           struct intel_crtc_config *current_config,
10317                           struct intel_crtc_config *pipe_config)
10318 {
10319 #define PIPE_CONF_CHECK_X(name) \
10320         if (current_config->name != pipe_config->name) { \
10321                 DRM_ERROR("mismatch in " #name " " \
10322                           "(expected 0x%08x, found 0x%08x)\n", \
10323                           current_config->name, \
10324                           pipe_config->name); \
10325                 return false; \
10326         }
10327
10328 #define PIPE_CONF_CHECK_I(name) \
10329         if (current_config->name != pipe_config->name) { \
10330                 DRM_ERROR("mismatch in " #name " " \
10331                           "(expected %i, found %i)\n", \
10332                           current_config->name, \
10333                           pipe_config->name); \
10334                 return false; \
10335         }
10336
10337 /* This is required for BDW+ where there is only one set of registers for
10338  * switching between high and low RR.
10339  * This macro can be used whenever a comparison has to be made between one
10340  * hw state and multiple sw state variables.
10341  */
10342 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10343         if ((current_config->name != pipe_config->name) && \
10344                 (current_config->alt_name != pipe_config->name)) { \
10345                         DRM_ERROR("mismatch in " #name " " \
10346                                   "(expected %i or %i, found %i)\n", \
10347                                   current_config->name, \
10348                                   current_config->alt_name, \
10349                                   pipe_config->name); \
10350                         return false; \
10351         }
10352
10353 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10354         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10355                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10356                           "(expected %i, found %i)\n", \
10357                           current_config->name & (mask), \
10358                           pipe_config->name & (mask)); \
10359                 return false; \
10360         }
10361
10362 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10363         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10364                 DRM_ERROR("mismatch in " #name " " \
10365                           "(expected %i, found %i)\n", \
10366                           current_config->name, \
10367                           pipe_config->name); \
10368                 return false; \
10369         }
10370
10371 #define PIPE_CONF_QUIRK(quirk)  \
10372         ((current_config->quirks | pipe_config->quirks) & (quirk))
10373
10374         PIPE_CONF_CHECK_I(cpu_transcoder);
10375
10376         PIPE_CONF_CHECK_I(has_pch_encoder);
10377         PIPE_CONF_CHECK_I(fdi_lanes);
10378         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10379         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10380         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10381         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10382         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10383
10384         PIPE_CONF_CHECK_I(has_dp_encoder);
10385
10386         if (INTEL_INFO(dev)->gen < 8) {
10387                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10388                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10389                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10390                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10391                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10392
10393                 if (current_config->has_drrs) {
10394                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10395                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10396                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10397                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10398                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10399                 }
10400         } else {
10401                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10402                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10403                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10404                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10405                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10406         }
10407
10408         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10409         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10410         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10411         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10412         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10413         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10414
10415         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10416         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10417         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10418         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10419         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10420         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10421
10422         PIPE_CONF_CHECK_I(pixel_multiplier);
10423         PIPE_CONF_CHECK_I(has_hdmi_sink);
10424         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10425             IS_VALLEYVIEW(dev))
10426                 PIPE_CONF_CHECK_I(limited_color_range);
10427
10428         PIPE_CONF_CHECK_I(has_audio);
10429
10430         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10431                               DRM_MODE_FLAG_INTERLACE);
10432
10433         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10434                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10435                                       DRM_MODE_FLAG_PHSYNC);
10436                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10437                                       DRM_MODE_FLAG_NHSYNC);
10438                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10439                                       DRM_MODE_FLAG_PVSYNC);
10440                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10441                                       DRM_MODE_FLAG_NVSYNC);
10442         }
10443
10444         PIPE_CONF_CHECK_I(pipe_src_w);
10445         PIPE_CONF_CHECK_I(pipe_src_h);
10446
10447         /*
10448          * FIXME: BIOS likes to set up a cloned config with lvds+external
10449          * screen. Since we don't yet re-compute the pipe config when moving
10450          * just the lvds port away to another pipe the sw tracking won't match.
10451          *
10452          * Proper atomic modesets with recomputed global state will fix this.
10453          * Until then just don't check gmch state for inherited modes.
10454          */
10455         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10456                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10457                 /* pfit ratios are autocomputed by the hw on gen4+ */
10458                 if (INTEL_INFO(dev)->gen < 4)
10459                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10460                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10461         }
10462
10463         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10464         if (current_config->pch_pfit.enabled) {
10465                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10466                 PIPE_CONF_CHECK_I(pch_pfit.size);
10467         }
10468
10469         /* BDW+ don't expose a synchronous way to read the state */
10470         if (IS_HASWELL(dev))
10471                 PIPE_CONF_CHECK_I(ips_enabled);
10472
10473         PIPE_CONF_CHECK_I(double_wide);
10474
10475         PIPE_CONF_CHECK_X(ddi_pll_sel);
10476
10477         PIPE_CONF_CHECK_I(shared_dpll);
10478         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10479         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10480         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10481         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10482         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10483
10484         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10485                 PIPE_CONF_CHECK_I(pipe_bpp);
10486
10487         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10488         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10489
10490 #undef PIPE_CONF_CHECK_X
10491 #undef PIPE_CONF_CHECK_I
10492 #undef PIPE_CONF_CHECK_I_ALT
10493 #undef PIPE_CONF_CHECK_FLAGS
10494 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10495 #undef PIPE_CONF_QUIRK
10496
10497         return true;
10498 }
10499
10500 static void
10501 check_connector_state(struct drm_device *dev)
10502 {
10503         struct intel_connector *connector;
10504
10505         list_for_each_entry(connector, &dev->mode_config.connector_list,
10506                             base.head) {
10507                 /* This also checks the encoder/connector hw state with the
10508                  * ->get_hw_state callbacks. */
10509                 intel_connector_check_state(connector);
10510
10511                 WARN(&connector->new_encoder->base != connector->base.encoder,
10512                      "connector's staged encoder doesn't match current encoder\n");
10513         }
10514 }
10515
10516 static void
10517 check_encoder_state(struct drm_device *dev)
10518 {
10519         struct intel_encoder *encoder;
10520         struct intel_connector *connector;
10521
10522         for_each_intel_encoder(dev, encoder) {
10523                 bool enabled = false;
10524                 bool active = false;
10525                 enum pipe pipe, tracked_pipe;
10526
10527                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10528                               encoder->base.base.id,
10529                               encoder->base.name);
10530
10531                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10532                      "encoder's stage crtc doesn't match current crtc\n");
10533                 WARN(encoder->connectors_active && !encoder->base.crtc,
10534                      "encoder's active_connectors set, but no crtc\n");
10535
10536                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10537                                     base.head) {
10538                         if (connector->base.encoder != &encoder->base)
10539                                 continue;
10540                         enabled = true;
10541                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10542                                 active = true;
10543                 }
10544                 /*
10545                  * for MST connectors if we unplug the connector is gone
10546                  * away but the encoder is still connected to a crtc
10547                  * until a modeset happens in response to the hotplug.
10548                  */
10549                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10550                         continue;
10551
10552                 WARN(!!encoder->base.crtc != enabled,
10553                      "encoder's enabled state mismatch "
10554                      "(expected %i, found %i)\n",
10555                      !!encoder->base.crtc, enabled);
10556                 WARN(active && !encoder->base.crtc,
10557                      "active encoder with no crtc\n");
10558
10559                 WARN(encoder->connectors_active != active,
10560                      "encoder's computed active state doesn't match tracked active state "
10561                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10562
10563                 active = encoder->get_hw_state(encoder, &pipe);
10564                 WARN(active != encoder->connectors_active,
10565                      "encoder's hw state doesn't match sw tracking "
10566                      "(expected %i, found %i)\n",
10567                      encoder->connectors_active, active);
10568
10569                 if (!encoder->base.crtc)
10570                         continue;
10571
10572                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10573                 WARN(active && pipe != tracked_pipe,
10574                      "active encoder's pipe doesn't match"
10575                      "(expected %i, found %i)\n",
10576                      tracked_pipe, pipe);
10577
10578         }
10579 }
10580
10581 static void
10582 check_crtc_state(struct drm_device *dev)
10583 {
10584         struct drm_i915_private *dev_priv = dev->dev_private;
10585         struct intel_crtc *crtc;
10586         struct intel_encoder *encoder;
10587         struct intel_crtc_config pipe_config;
10588
10589         for_each_intel_crtc(dev, crtc) {
10590                 bool enabled = false;
10591                 bool active = false;
10592
10593                 memset(&pipe_config, 0, sizeof(pipe_config));
10594
10595                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10596                               crtc->base.base.id);
10597
10598                 WARN(crtc->active && !crtc->base.enabled,
10599                      "active crtc, but not enabled in sw tracking\n");
10600
10601                 for_each_intel_encoder(dev, encoder) {
10602                         if (encoder->base.crtc != &crtc->base)
10603                                 continue;
10604                         enabled = true;
10605                         if (encoder->connectors_active)
10606                                 active = true;
10607                 }
10608
10609                 WARN(active != crtc->active,
10610                      "crtc's computed active state doesn't match tracked active state "
10611                      "(expected %i, found %i)\n", active, crtc->active);
10612                 WARN(enabled != crtc->base.enabled,
10613                      "crtc's computed enabled state doesn't match tracked enabled state "
10614                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10615
10616                 active = dev_priv->display.get_pipe_config(crtc,
10617                                                            &pipe_config);
10618
10619                 /* hw state is inconsistent with the pipe quirk */
10620                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10621                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10622                         active = crtc->active;
10623
10624                 for_each_intel_encoder(dev, encoder) {
10625                         enum pipe pipe;
10626                         if (encoder->base.crtc != &crtc->base)
10627                                 continue;
10628                         if (encoder->get_hw_state(encoder, &pipe))
10629                                 encoder->get_config(encoder, &pipe_config);
10630                 }
10631
10632                 WARN(crtc->active != active,
10633                      "crtc active state doesn't match with hw state "
10634                      "(expected %i, found %i)\n", crtc->active, active);
10635
10636                 if (active &&
10637                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10638                         WARN(1, "pipe state doesn't match!\n");
10639                         intel_dump_pipe_config(crtc, &pipe_config,
10640                                                "[hw state]");
10641                         intel_dump_pipe_config(crtc, &crtc->config,
10642                                                "[sw state]");
10643                 }
10644         }
10645 }
10646
10647 static void
10648 check_shared_dpll_state(struct drm_device *dev)
10649 {
10650         struct drm_i915_private *dev_priv = dev->dev_private;
10651         struct intel_crtc *crtc;
10652         struct intel_dpll_hw_state dpll_hw_state;
10653         int i;
10654
10655         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10656                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10657                 int enabled_crtcs = 0, active_crtcs = 0;
10658                 bool active;
10659
10660                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10661
10662                 DRM_DEBUG_KMS("%s\n", pll->name);
10663
10664                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10665
10666                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10667                      "more active pll users than references: %i vs %i\n",
10668                      pll->active, hweight32(pll->config.crtc_mask));
10669                 WARN(pll->active && !pll->on,
10670                      "pll in active use but not on in sw tracking\n");
10671                 WARN(pll->on && !pll->active,
10672                      "pll in on but not on in use in sw tracking\n");
10673                 WARN(pll->on != active,
10674                      "pll on state mismatch (expected %i, found %i)\n",
10675                      pll->on, active);
10676
10677                 for_each_intel_crtc(dev, crtc) {
10678                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10679                                 enabled_crtcs++;
10680                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10681                                 active_crtcs++;
10682                 }
10683                 WARN(pll->active != active_crtcs,
10684                      "pll active crtcs mismatch (expected %i, found %i)\n",
10685                      pll->active, active_crtcs);
10686                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10687                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10688                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10689
10690                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10691                                        sizeof(dpll_hw_state)),
10692                      "pll hw state mismatch\n");
10693         }
10694 }
10695
10696 void
10697 intel_modeset_check_state(struct drm_device *dev)
10698 {
10699         check_connector_state(dev);
10700         check_encoder_state(dev);
10701         check_crtc_state(dev);
10702         check_shared_dpll_state(dev);
10703 }
10704
10705 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10706                                      int dotclock)
10707 {
10708         /*
10709          * FDI already provided one idea for the dotclock.
10710          * Yell if the encoder disagrees.
10711          */
10712         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10713              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10714              pipe_config->adjusted_mode.crtc_clock, dotclock);
10715 }
10716
10717 static void update_scanline_offset(struct intel_crtc *crtc)
10718 {
10719         struct drm_device *dev = crtc->base.dev;
10720
10721         /*
10722          * The scanline counter increments at the leading edge of hsync.
10723          *
10724          * On most platforms it starts counting from vtotal-1 on the
10725          * first active line. That means the scanline counter value is
10726          * always one less than what we would expect. Ie. just after
10727          * start of vblank, which also occurs at start of hsync (on the
10728          * last active line), the scanline counter will read vblank_start-1.
10729          *
10730          * On gen2 the scanline counter starts counting from 1 instead
10731          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10732          * to keep the value positive), instead of adding one.
10733          *
10734          * On HSW+ the behaviour of the scanline counter depends on the output
10735          * type. For DP ports it behaves like most other platforms, but on HDMI
10736          * there's an extra 1 line difference. So we need to add two instead of
10737          * one to the value.
10738          */
10739         if (IS_GEN2(dev)) {
10740                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10741                 int vtotal;
10742
10743                 vtotal = mode->crtc_vtotal;
10744                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10745                         vtotal /= 2;
10746
10747                 crtc->scanline_offset = vtotal - 1;
10748         } else if (HAS_DDI(dev) &&
10749                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10750                 crtc->scanline_offset = 2;
10751         } else
10752                 crtc->scanline_offset = 1;
10753 }
10754
10755 static int __intel_set_mode(struct drm_crtc *crtc,
10756                             struct drm_display_mode *mode,
10757                             int x, int y, struct drm_framebuffer *fb)
10758 {
10759         struct drm_device *dev = crtc->dev;
10760         struct drm_i915_private *dev_priv = dev->dev_private;
10761         struct drm_display_mode *saved_mode;
10762         struct intel_crtc_config *pipe_config = NULL;
10763         struct intel_crtc *intel_crtc;
10764         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10765         int ret = 0;
10766
10767         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10768         if (!saved_mode)
10769                 return -ENOMEM;
10770
10771         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10772                                      &prepare_pipes, &disable_pipes);
10773
10774         *saved_mode = crtc->mode;
10775
10776         /* Hack: Because we don't (yet) support global modeset on multiple
10777          * crtcs, we don't keep track of the new mode for more than one crtc.
10778          * Hence simply check whether any bit is set in modeset_pipes in all the
10779          * pieces of code that are not yet converted to deal with mutliple crtcs
10780          * changing their mode at the same time. */
10781         if (modeset_pipes) {
10782                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10783                 if (IS_ERR(pipe_config)) {
10784                         ret = PTR_ERR(pipe_config);
10785                         pipe_config = NULL;
10786
10787                         goto out;
10788                 }
10789                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10790                                        "[modeset]");
10791                 to_intel_crtc(crtc)->new_config = pipe_config;
10792         }
10793
10794         /*
10795          * See if the config requires any additional preparation, e.g.
10796          * to adjust global state with pipes off.  We need to do this
10797          * here so we can get the modeset_pipe updated config for the new
10798          * mode set on this crtc.  For other crtcs we need to use the
10799          * adjusted_mode bits in the crtc directly.
10800          */
10801         if (IS_VALLEYVIEW(dev)) {
10802                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10803
10804                 /* may have added more to prepare_pipes than we should */
10805                 prepare_pipes &= ~disable_pipes;
10806         }
10807
10808         if (dev_priv->display.crtc_compute_clock) {
10809                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10810
10811                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10812                 if (ret)
10813                         goto done;
10814
10815                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10816                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10817                         if (ret) {
10818                                 intel_shared_dpll_abort_config(dev_priv);
10819                                 goto done;
10820                         }
10821                 }
10822         }
10823
10824         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10825                 intel_crtc_disable(&intel_crtc->base);
10826
10827         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10828                 if (intel_crtc->base.enabled)
10829                         dev_priv->display.crtc_disable(&intel_crtc->base);
10830         }
10831
10832         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10833          * to set it here already despite that we pass it down the callchain.
10834          */
10835         if (modeset_pipes) {
10836                 crtc->mode = *mode;
10837                 /* mode_set/enable/disable functions rely on a correct pipe
10838                  * config. */
10839                 to_intel_crtc(crtc)->config = *pipe_config;
10840                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10841
10842                 /*
10843                  * Calculate and store various constants which
10844                  * are later needed by vblank and swap-completion
10845                  * timestamping. They are derived from true hwmode.
10846                  */
10847                 drm_calc_timestamping_constants(crtc,
10848                                                 &pipe_config->adjusted_mode);
10849         }
10850
10851         if (dev_priv->display.crtc_compute_clock)
10852                 intel_shared_dpll_commit(dev_priv);
10853
10854         /* Only after disabling all output pipelines that will be changed can we
10855          * update the the output configuration. */
10856         intel_modeset_update_state(dev, prepare_pipes);
10857
10858         if (dev_priv->display.modeset_global_resources)
10859                 dev_priv->display.modeset_global_resources(dev);
10860
10861         /* Set up the DPLL and any encoders state that needs to adjust or depend
10862          * on the DPLL.
10863          */
10864         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10865                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10866                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10867                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10868
10869                 mutex_lock(&dev->struct_mutex);
10870                 ret = intel_pin_and_fence_fb_obj(dev,
10871                                                  obj,
10872                                                  NULL);
10873                 if (ret != 0) {
10874                         DRM_ERROR("pin & fence failed\n");
10875                         mutex_unlock(&dev->struct_mutex);
10876                         goto done;
10877                 }
10878                 if (old_fb)
10879                         intel_unpin_fb_obj(old_obj);
10880                 i915_gem_track_fb(old_obj, obj,
10881                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10882                 mutex_unlock(&dev->struct_mutex);
10883
10884                 crtc->primary->fb = fb;
10885                 crtc->x = x;
10886                 crtc->y = y;
10887
10888                 if (dev_priv->display.crtc_mode_set) {
10889                         ret = dev_priv->display.crtc_mode_set(intel_crtc,
10890                                                               x, y, fb);
10891                         if (ret)
10892                                 goto done;
10893                 }
10894         }
10895
10896         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10897         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10898                 update_scanline_offset(intel_crtc);
10899
10900                 dev_priv->display.crtc_enable(&intel_crtc->base);
10901         }
10902
10903         /* FIXME: add subpixel order */
10904 done:
10905         if (ret && crtc->enabled)
10906                 crtc->mode = *saved_mode;
10907
10908 out:
10909         kfree(pipe_config);
10910         kfree(saved_mode);
10911         return ret;
10912 }
10913
10914 static int intel_set_mode(struct drm_crtc *crtc,
10915                           struct drm_display_mode *mode,
10916                           int x, int y, struct drm_framebuffer *fb)
10917 {
10918         int ret;
10919
10920         ret = __intel_set_mode(crtc, mode, x, y, fb);
10921
10922         if (ret == 0)
10923                 intel_modeset_check_state(crtc->dev);
10924
10925         return ret;
10926 }
10927
10928 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10929 {
10930         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10931 }
10932
10933 #undef for_each_intel_crtc_masked
10934
10935 static void intel_set_config_free(struct intel_set_config *config)
10936 {
10937         if (!config)
10938                 return;
10939
10940         kfree(config->save_connector_encoders);
10941         kfree(config->save_encoder_crtcs);
10942         kfree(config->save_crtc_enabled);
10943         kfree(config);
10944 }
10945
10946 static int intel_set_config_save_state(struct drm_device *dev,
10947                                        struct intel_set_config *config)
10948 {
10949         struct drm_crtc *crtc;
10950         struct drm_encoder *encoder;
10951         struct drm_connector *connector;
10952         int count;
10953
10954         config->save_crtc_enabled =
10955                 kcalloc(dev->mode_config.num_crtc,
10956                         sizeof(bool), GFP_KERNEL);
10957         if (!config->save_crtc_enabled)
10958                 return -ENOMEM;
10959
10960         config->save_encoder_crtcs =
10961                 kcalloc(dev->mode_config.num_encoder,
10962                         sizeof(struct drm_crtc *), GFP_KERNEL);
10963         if (!config->save_encoder_crtcs)
10964                 return -ENOMEM;
10965
10966         config->save_connector_encoders =
10967                 kcalloc(dev->mode_config.num_connector,
10968                         sizeof(struct drm_encoder *), GFP_KERNEL);
10969         if (!config->save_connector_encoders)
10970                 return -ENOMEM;
10971
10972         /* Copy data. Note that driver private data is not affected.
10973          * Should anything bad happen only the expected state is
10974          * restored, not the drivers personal bookkeeping.
10975          */
10976         count = 0;
10977         for_each_crtc(dev, crtc) {
10978                 config->save_crtc_enabled[count++] = crtc->enabled;
10979         }
10980
10981         count = 0;
10982         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10983                 config->save_encoder_crtcs[count++] = encoder->crtc;
10984         }
10985
10986         count = 0;
10987         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10988                 config->save_connector_encoders[count++] = connector->encoder;
10989         }
10990
10991         return 0;
10992 }
10993
10994 static void intel_set_config_restore_state(struct drm_device *dev,
10995                                            struct intel_set_config *config)
10996 {
10997         struct intel_crtc *crtc;
10998         struct intel_encoder *encoder;
10999         struct intel_connector *connector;
11000         int count;
11001
11002         count = 0;
11003         for_each_intel_crtc(dev, crtc) {
11004                 crtc->new_enabled = config->save_crtc_enabled[count++];
11005
11006                 if (crtc->new_enabled)
11007                         crtc->new_config = &crtc->config;
11008                 else
11009                         crtc->new_config = NULL;
11010         }
11011
11012         count = 0;
11013         for_each_intel_encoder(dev, encoder) {
11014                 encoder->new_crtc =
11015                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11016         }
11017
11018         count = 0;
11019         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11020                 connector->new_encoder =
11021                         to_intel_encoder(config->save_connector_encoders[count++]);
11022         }
11023 }
11024
11025 static bool
11026 is_crtc_connector_off(struct drm_mode_set *set)
11027 {
11028         int i;
11029
11030         if (set->num_connectors == 0)
11031                 return false;
11032
11033         if (WARN_ON(set->connectors == NULL))
11034                 return false;
11035
11036         for (i = 0; i < set->num_connectors; i++)
11037                 if (set->connectors[i]->encoder &&
11038                     set->connectors[i]->encoder->crtc == set->crtc &&
11039                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11040                         return true;
11041
11042         return false;
11043 }
11044
11045 static void
11046 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11047                                       struct intel_set_config *config)
11048 {
11049
11050         /* We should be able to check here if the fb has the same properties
11051          * and then just flip_or_move it */
11052         if (is_crtc_connector_off(set)) {
11053                 config->mode_changed = true;
11054         } else if (set->crtc->primary->fb != set->fb) {
11055                 /*
11056                  * If we have no fb, we can only flip as long as the crtc is
11057                  * active, otherwise we need a full mode set.  The crtc may
11058                  * be active if we've only disabled the primary plane, or
11059                  * in fastboot situations.
11060                  */
11061                 if (set->crtc->primary->fb == NULL) {
11062                         struct intel_crtc *intel_crtc =
11063                                 to_intel_crtc(set->crtc);
11064
11065                         if (intel_crtc->active) {
11066                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11067                                 config->fb_changed = true;
11068                         } else {
11069                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11070                                 config->mode_changed = true;
11071                         }
11072                 } else if (set->fb == NULL) {
11073                         config->mode_changed = true;
11074                 } else if (set->fb->pixel_format !=
11075                            set->crtc->primary->fb->pixel_format) {
11076                         config->mode_changed = true;
11077                 } else {
11078                         config->fb_changed = true;
11079                 }
11080         }
11081
11082         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11083                 config->fb_changed = true;
11084
11085         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11086                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11087                 drm_mode_debug_printmodeline(&set->crtc->mode);
11088                 drm_mode_debug_printmodeline(set->mode);
11089                 config->mode_changed = true;
11090         }
11091
11092         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11093                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11094 }
11095
11096 static int
11097 intel_modeset_stage_output_state(struct drm_device *dev,
11098                                  struct drm_mode_set *set,
11099                                  struct intel_set_config *config)
11100 {
11101         struct intel_connector *connector;
11102         struct intel_encoder *encoder;
11103         struct intel_crtc *crtc;
11104         int ro;
11105
11106         /* The upper layers ensure that we either disable a crtc or have a list
11107          * of connectors. For paranoia, double-check this. */
11108         WARN_ON(!set->fb && (set->num_connectors != 0));
11109         WARN_ON(set->fb && (set->num_connectors == 0));
11110
11111         list_for_each_entry(connector, &dev->mode_config.connector_list,
11112                             base.head) {
11113                 /* Otherwise traverse passed in connector list and get encoders
11114                  * for them. */
11115                 for (ro = 0; ro < set->num_connectors; ro++) {
11116                         if (set->connectors[ro] == &connector->base) {
11117                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11118                                 break;
11119                         }
11120                 }
11121
11122                 /* If we disable the crtc, disable all its connectors. Also, if
11123                  * the connector is on the changing crtc but not on the new
11124                  * connector list, disable it. */
11125                 if ((!set->fb || ro == set->num_connectors) &&
11126                     connector->base.encoder &&
11127                     connector->base.encoder->crtc == set->crtc) {
11128                         connector->new_encoder = NULL;
11129
11130                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11131                                 connector->base.base.id,
11132                                 connector->base.name);
11133                 }
11134
11135
11136                 if (&connector->new_encoder->base != connector->base.encoder) {
11137                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11138                         config->mode_changed = true;
11139                 }
11140         }
11141         /* connector->new_encoder is now updated for all connectors. */
11142
11143         /* Update crtc of enabled connectors. */
11144         list_for_each_entry(connector, &dev->mode_config.connector_list,
11145                             base.head) {
11146                 struct drm_crtc *new_crtc;
11147
11148                 if (!connector->new_encoder)
11149                         continue;
11150
11151                 new_crtc = connector->new_encoder->base.crtc;
11152
11153                 for (ro = 0; ro < set->num_connectors; ro++) {
11154                         if (set->connectors[ro] == &connector->base)
11155                                 new_crtc = set->crtc;
11156                 }
11157
11158                 /* Make sure the new CRTC will work with the encoder */
11159                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11160                                          new_crtc)) {
11161                         return -EINVAL;
11162                 }
11163                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11164
11165                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11166                         connector->base.base.id,
11167                         connector->base.name,
11168                         new_crtc->base.id);
11169         }
11170
11171         /* Check for any encoders that needs to be disabled. */
11172         for_each_intel_encoder(dev, encoder) {
11173                 int num_connectors = 0;
11174                 list_for_each_entry(connector,
11175                                     &dev->mode_config.connector_list,
11176                                     base.head) {
11177                         if (connector->new_encoder == encoder) {
11178                                 WARN_ON(!connector->new_encoder->new_crtc);
11179                                 num_connectors++;
11180                         }
11181                 }
11182
11183                 if (num_connectors == 0)
11184                         encoder->new_crtc = NULL;
11185                 else if (num_connectors > 1)
11186                         return -EINVAL;
11187
11188                 /* Only now check for crtc changes so we don't miss encoders
11189                  * that will be disabled. */
11190                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11191                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11192                         config->mode_changed = true;
11193                 }
11194         }
11195         /* Now we've also updated encoder->new_crtc for all encoders. */
11196         list_for_each_entry(connector, &dev->mode_config.connector_list,
11197                             base.head) {
11198                 if (connector->new_encoder)
11199                         if (connector->new_encoder != connector->encoder)
11200                                 connector->encoder = connector->new_encoder;
11201         }
11202         for_each_intel_crtc(dev, crtc) {
11203                 crtc->new_enabled = false;
11204
11205                 for_each_intel_encoder(dev, encoder) {
11206                         if (encoder->new_crtc == crtc) {
11207                                 crtc->new_enabled = true;
11208                                 break;
11209                         }
11210                 }
11211
11212                 if (crtc->new_enabled != crtc->base.enabled) {
11213                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11214                                       crtc->new_enabled ? "en" : "dis");
11215                         config->mode_changed = true;
11216                 }
11217
11218                 if (crtc->new_enabled)
11219                         crtc->new_config = &crtc->config;
11220                 else
11221                         crtc->new_config = NULL;
11222         }
11223
11224         return 0;
11225 }
11226
11227 static void disable_crtc_nofb(struct intel_crtc *crtc)
11228 {
11229         struct drm_device *dev = crtc->base.dev;
11230         struct intel_encoder *encoder;
11231         struct intel_connector *connector;
11232
11233         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11234                       pipe_name(crtc->pipe));
11235
11236         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11237                 if (connector->new_encoder &&
11238                     connector->new_encoder->new_crtc == crtc)
11239                         connector->new_encoder = NULL;
11240         }
11241
11242         for_each_intel_encoder(dev, encoder) {
11243                 if (encoder->new_crtc == crtc)
11244                         encoder->new_crtc = NULL;
11245         }
11246
11247         crtc->new_enabled = false;
11248         crtc->new_config = NULL;
11249 }
11250
11251 static int intel_crtc_set_config(struct drm_mode_set *set)
11252 {
11253         struct drm_device *dev;
11254         struct drm_mode_set save_set;
11255         struct intel_set_config *config;
11256         int ret;
11257
11258         BUG_ON(!set);
11259         BUG_ON(!set->crtc);
11260         BUG_ON(!set->crtc->helper_private);
11261
11262         /* Enforce sane interface api - has been abused by the fb helper. */
11263         BUG_ON(!set->mode && set->fb);
11264         BUG_ON(set->fb && set->num_connectors == 0);
11265
11266         if (set->fb) {
11267                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11268                                 set->crtc->base.id, set->fb->base.id,
11269                                 (int)set->num_connectors, set->x, set->y);
11270         } else {
11271                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11272         }
11273
11274         dev = set->crtc->dev;
11275
11276         ret = -ENOMEM;
11277         config = kzalloc(sizeof(*config), GFP_KERNEL);
11278         if (!config)
11279                 goto out_config;
11280
11281         ret = intel_set_config_save_state(dev, config);
11282         if (ret)
11283                 goto out_config;
11284
11285         save_set.crtc = set->crtc;
11286         save_set.mode = &set->crtc->mode;
11287         save_set.x = set->crtc->x;
11288         save_set.y = set->crtc->y;
11289         save_set.fb = set->crtc->primary->fb;
11290
11291         /* Compute whether we need a full modeset, only an fb base update or no
11292          * change at all. In the future we might also check whether only the
11293          * mode changed, e.g. for LVDS where we only change the panel fitter in
11294          * such cases. */
11295         intel_set_config_compute_mode_changes(set, config);
11296
11297         ret = intel_modeset_stage_output_state(dev, set, config);
11298         if (ret)
11299                 goto fail;
11300
11301         if (config->mode_changed) {
11302                 ret = intel_set_mode(set->crtc, set->mode,
11303                                      set->x, set->y, set->fb);
11304         } else if (config->fb_changed) {
11305                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11306
11307                 intel_crtc_wait_for_pending_flips(set->crtc);
11308
11309                 ret = intel_pipe_set_base(set->crtc,
11310                                           set->x, set->y, set->fb);
11311
11312                 /*
11313                  * We need to make sure the primary plane is re-enabled if it
11314                  * has previously been turned off.
11315                  */
11316                 if (!intel_crtc->primary_enabled && ret == 0) {
11317                         WARN_ON(!intel_crtc->active);
11318                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11319                 }
11320
11321                 /*
11322                  * In the fastboot case this may be our only check of the
11323                  * state after boot.  It would be better to only do it on
11324                  * the first update, but we don't have a nice way of doing that
11325                  * (and really, set_config isn't used much for high freq page
11326                  * flipping, so increasing its cost here shouldn't be a big
11327                  * deal).
11328                  */
11329                 if (i915.fastboot && ret == 0)
11330                         intel_modeset_check_state(set->crtc->dev);
11331         }
11332
11333         if (ret) {
11334                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11335                               set->crtc->base.id, ret);
11336 fail:
11337                 intel_set_config_restore_state(dev, config);
11338
11339                 /*
11340                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11341                  * force the pipe off to avoid oopsing in the modeset code
11342                  * due to fb==NULL. This should only happen during boot since
11343                  * we don't yet reconstruct the FB from the hardware state.
11344                  */
11345                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11346                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11347
11348                 /* Try to restore the config */
11349                 if (config->mode_changed &&
11350                     intel_set_mode(save_set.crtc, save_set.mode,
11351                                    save_set.x, save_set.y, save_set.fb))
11352                         DRM_ERROR("failed to restore config after modeset failure\n");
11353         }
11354
11355 out_config:
11356         intel_set_config_free(config);
11357         return ret;
11358 }
11359
11360 static const struct drm_crtc_funcs intel_crtc_funcs = {
11361         .gamma_set = intel_crtc_gamma_set,
11362         .set_config = intel_crtc_set_config,
11363         .destroy = intel_crtc_destroy,
11364         .page_flip = intel_crtc_page_flip,
11365 };
11366
11367 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11368                                       struct intel_shared_dpll *pll,
11369                                       struct intel_dpll_hw_state *hw_state)
11370 {
11371         uint32_t val;
11372
11373         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11374                 return false;
11375
11376         val = I915_READ(PCH_DPLL(pll->id));
11377         hw_state->dpll = val;
11378         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11379         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11380
11381         return val & DPLL_VCO_ENABLE;
11382 }
11383
11384 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11385                                   struct intel_shared_dpll *pll)
11386 {
11387         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11388         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11389 }
11390
11391 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11392                                 struct intel_shared_dpll *pll)
11393 {
11394         /* PCH refclock must be enabled first */
11395         ibx_assert_pch_refclk_enabled(dev_priv);
11396
11397         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11398
11399         /* Wait for the clocks to stabilize. */
11400         POSTING_READ(PCH_DPLL(pll->id));
11401         udelay(150);
11402
11403         /* The pixel multiplier can only be updated once the
11404          * DPLL is enabled and the clocks are stable.
11405          *
11406          * So write it again.
11407          */
11408         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11409         POSTING_READ(PCH_DPLL(pll->id));
11410         udelay(200);
11411 }
11412
11413 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11414                                  struct intel_shared_dpll *pll)
11415 {
11416         struct drm_device *dev = dev_priv->dev;
11417         struct intel_crtc *crtc;
11418
11419         /* Make sure no transcoder isn't still depending on us. */
11420         for_each_intel_crtc(dev, crtc) {
11421                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11422                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11423         }
11424
11425         I915_WRITE(PCH_DPLL(pll->id), 0);
11426         POSTING_READ(PCH_DPLL(pll->id));
11427         udelay(200);
11428 }
11429
11430 static char *ibx_pch_dpll_names[] = {
11431         "PCH DPLL A",
11432         "PCH DPLL B",
11433 };
11434
11435 static void ibx_pch_dpll_init(struct drm_device *dev)
11436 {
11437         struct drm_i915_private *dev_priv = dev->dev_private;
11438         int i;
11439
11440         dev_priv->num_shared_dpll = 2;
11441
11442         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11443                 dev_priv->shared_dplls[i].id = i;
11444                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11445                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11446                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11447                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11448                 dev_priv->shared_dplls[i].get_hw_state =
11449                         ibx_pch_dpll_get_hw_state;
11450         }
11451 }
11452
11453 static void intel_shared_dpll_init(struct drm_device *dev)
11454 {
11455         struct drm_i915_private *dev_priv = dev->dev_private;
11456
11457         if (HAS_DDI(dev))
11458                 intel_ddi_pll_init(dev);
11459         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11460                 ibx_pch_dpll_init(dev);
11461         else
11462                 dev_priv->num_shared_dpll = 0;
11463
11464         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11465 }
11466
11467 static int
11468 intel_primary_plane_disable(struct drm_plane *plane)
11469 {
11470         struct drm_device *dev = plane->dev;
11471         struct intel_crtc *intel_crtc;
11472
11473         if (!plane->fb)
11474                 return 0;
11475
11476         BUG_ON(!plane->crtc);
11477
11478         intel_crtc = to_intel_crtc(plane->crtc);
11479
11480         /*
11481          * Even though we checked plane->fb above, it's still possible that
11482          * the primary plane has been implicitly disabled because the crtc
11483          * coordinates given weren't visible, or because we detected
11484          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11485          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11486          * In either case, we need to unpin the FB and let the fb pointer get
11487          * updated, but otherwise we don't need to touch the hardware.
11488          */
11489         if (!intel_crtc->primary_enabled)
11490                 goto disable_unpin;
11491
11492         intel_crtc_wait_for_pending_flips(plane->crtc);
11493         intel_disable_primary_hw_plane(plane, plane->crtc);
11494
11495 disable_unpin:
11496         mutex_lock(&dev->struct_mutex);
11497         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11498                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11499         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11500         mutex_unlock(&dev->struct_mutex);
11501         plane->fb = NULL;
11502
11503         return 0;
11504 }
11505
11506 static int
11507 intel_check_primary_plane(struct drm_plane *plane,
11508                           struct intel_plane_state *state)
11509 {
11510         struct drm_crtc *crtc = state->crtc;
11511         struct drm_framebuffer *fb = state->fb;
11512         struct drm_rect *dest = &state->dst;
11513         struct drm_rect *src = &state->src;
11514         const struct drm_rect *clip = &state->clip;
11515
11516         return drm_plane_helper_check_update(plane, crtc, fb,
11517                                              src, dest, clip,
11518                                              DRM_PLANE_HELPER_NO_SCALING,
11519                                              DRM_PLANE_HELPER_NO_SCALING,
11520                                              false, true, &state->visible);
11521 }
11522
11523 static int
11524 intel_prepare_primary_plane(struct drm_plane *plane,
11525                             struct intel_plane_state *state)
11526 {
11527         struct drm_crtc *crtc = state->crtc;
11528         struct drm_framebuffer *fb = state->fb;
11529         struct drm_device *dev = crtc->dev;
11530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11531         enum pipe pipe = intel_crtc->pipe;
11532         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11533         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11534         int ret;
11535
11536         intel_crtc_wait_for_pending_flips(crtc);
11537
11538         if (intel_crtc_has_pending_flip(crtc)) {
11539                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11540                 return -EBUSY;
11541         }
11542
11543         if (old_obj != obj) {
11544                 mutex_lock(&dev->struct_mutex);
11545                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11546                 if (ret == 0)
11547                         i915_gem_track_fb(old_obj, obj,
11548                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11549                 mutex_unlock(&dev->struct_mutex);
11550                 if (ret != 0) {
11551                         DRM_DEBUG_KMS("pin & fence failed\n");
11552                         return ret;
11553                 }
11554         }
11555
11556         return 0;
11557 }
11558
11559 static void
11560 intel_commit_primary_plane(struct drm_plane *plane,
11561                            struct intel_plane_state *state)
11562 {
11563         struct drm_crtc *crtc = state->crtc;
11564         struct drm_framebuffer *fb = state->fb;
11565         struct drm_device *dev = crtc->dev;
11566         struct drm_i915_private *dev_priv = dev->dev_private;
11567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11568         enum pipe pipe = intel_crtc->pipe;
11569         struct drm_framebuffer *old_fb = plane->fb;
11570         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11571         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11572         struct intel_plane *intel_plane = to_intel_plane(plane);
11573         struct drm_rect *src = &state->src;
11574
11575         crtc->primary->fb = fb;
11576         crtc->x = src->x1;
11577         crtc->y = src->y1;
11578
11579         intel_plane->crtc_x = state->orig_dst.x1;
11580         intel_plane->crtc_y = state->orig_dst.y1;
11581         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11582         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11583         intel_plane->src_x = state->orig_src.x1;
11584         intel_plane->src_y = state->orig_src.y1;
11585         intel_plane->src_w = drm_rect_width(&state->orig_src);
11586         intel_plane->src_h = drm_rect_height(&state->orig_src);
11587         intel_plane->obj = obj;
11588
11589         if (intel_crtc->active) {
11590                 /*
11591                  * FBC does not work on some platforms for rotated
11592                  * planes, so disable it when rotation is not 0 and
11593                  * update it when rotation is set back to 0.
11594                  *
11595                  * FIXME: This is redundant with the fbc update done in
11596                  * the primary plane enable function except that that
11597                  * one is done too late. We eventually need to unify
11598                  * this.
11599                  */
11600                 if (intel_crtc->primary_enabled &&
11601                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11602                     dev_priv->fbc.plane == intel_crtc->plane &&
11603                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11604                         intel_disable_fbc(dev);
11605                 }
11606
11607                 if (state->visible) {
11608                         bool was_enabled = intel_crtc->primary_enabled;
11609
11610                         /* FIXME: kill this fastboot hack */
11611                         intel_update_pipe_size(intel_crtc);
11612
11613                         intel_crtc->primary_enabled = true;
11614
11615                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11616                                         crtc->x, crtc->y);
11617
11618                         /*
11619                          * BDW signals flip done immediately if the plane
11620                          * is disabled, even if the plane enable is already
11621                          * armed to occur at the next vblank :(
11622                          */
11623                         if (IS_BROADWELL(dev) && !was_enabled)
11624                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11625                 } else {
11626                         /*
11627                          * If clipping results in a non-visible primary plane,
11628                          * we'll disable the primary plane.  Note that this is
11629                          * a bit different than what happens if userspace
11630                          * explicitly disables the plane by passing fb=0
11631                          * because plane->fb still gets set and pinned.
11632                          */
11633                         intel_disable_primary_hw_plane(plane, crtc);
11634                 }
11635
11636                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11637
11638                 mutex_lock(&dev->struct_mutex);
11639                 intel_update_fbc(dev);
11640                 mutex_unlock(&dev->struct_mutex);
11641         }
11642
11643         if (old_fb && old_fb != fb) {
11644                 if (intel_crtc->active)
11645                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11646
11647                 mutex_lock(&dev->struct_mutex);
11648                 intel_unpin_fb_obj(old_obj);
11649                 mutex_unlock(&dev->struct_mutex);
11650         }
11651 }
11652
11653 static int
11654 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11655                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11656                              unsigned int crtc_w, unsigned int crtc_h,
11657                              uint32_t src_x, uint32_t src_y,
11658                              uint32_t src_w, uint32_t src_h)
11659 {
11660         struct intel_plane_state state;
11661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11662         int ret;
11663
11664         state.crtc = crtc;
11665         state.fb = fb;
11666
11667         /* sample coordinates in 16.16 fixed point */
11668         state.src.x1 = src_x;
11669         state.src.x2 = src_x + src_w;
11670         state.src.y1 = src_y;
11671         state.src.y2 = src_y + src_h;
11672
11673         /* integer pixels */
11674         state.dst.x1 = crtc_x;
11675         state.dst.x2 = crtc_x + crtc_w;
11676         state.dst.y1 = crtc_y;
11677         state.dst.y2 = crtc_y + crtc_h;
11678
11679         state.clip.x1 = 0;
11680         state.clip.y1 = 0;
11681         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11682         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11683
11684         state.orig_src = state.src;
11685         state.orig_dst = state.dst;
11686
11687         ret = intel_check_primary_plane(plane, &state);
11688         if (ret)
11689                 return ret;
11690
11691         ret = intel_prepare_primary_plane(plane, &state);
11692         if (ret)
11693                 return ret;
11694
11695         intel_commit_primary_plane(plane, &state);
11696
11697         return 0;
11698 }
11699
11700 /* Common destruction function for both primary and cursor planes */
11701 static void intel_plane_destroy(struct drm_plane *plane)
11702 {
11703         struct intel_plane *intel_plane = to_intel_plane(plane);
11704         drm_plane_cleanup(plane);
11705         kfree(intel_plane);
11706 }
11707
11708 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11709         .update_plane = intel_primary_plane_setplane,
11710         .disable_plane = intel_primary_plane_disable,
11711         .destroy = intel_plane_destroy,
11712         .set_property = intel_plane_set_property
11713 };
11714
11715 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11716                                                     int pipe)
11717 {
11718         struct intel_plane *primary;
11719         const uint32_t *intel_primary_formats;
11720         int num_formats;
11721
11722         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11723         if (primary == NULL)
11724                 return NULL;
11725
11726         primary->can_scale = false;
11727         primary->max_downscale = 1;
11728         primary->pipe = pipe;
11729         primary->plane = pipe;
11730         primary->rotation = BIT(DRM_ROTATE_0);
11731         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11732                 primary->plane = !pipe;
11733
11734         if (INTEL_INFO(dev)->gen <= 3) {
11735                 intel_primary_formats = intel_primary_formats_gen2;
11736                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11737         } else {
11738                 intel_primary_formats = intel_primary_formats_gen4;
11739                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11740         }
11741
11742         drm_universal_plane_init(dev, &primary->base, 0,
11743                                  &intel_primary_plane_funcs,
11744                                  intel_primary_formats, num_formats,
11745                                  DRM_PLANE_TYPE_PRIMARY);
11746
11747         if (INTEL_INFO(dev)->gen >= 4) {
11748                 if (!dev->mode_config.rotation_property)
11749                         dev->mode_config.rotation_property =
11750                                 drm_mode_create_rotation_property(dev,
11751                                                         BIT(DRM_ROTATE_0) |
11752                                                         BIT(DRM_ROTATE_180));
11753                 if (dev->mode_config.rotation_property)
11754                         drm_object_attach_property(&primary->base.base,
11755                                 dev->mode_config.rotation_property,
11756                                 primary->rotation);
11757         }
11758
11759         return &primary->base;
11760 }
11761
11762 static int
11763 intel_cursor_plane_disable(struct drm_plane *plane)
11764 {
11765         if (!plane->fb)
11766                 return 0;
11767
11768         BUG_ON(!plane->crtc);
11769
11770         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11771 }
11772
11773 static int
11774 intel_check_cursor_plane(struct drm_plane *plane,
11775                          struct intel_plane_state *state)
11776 {
11777         struct drm_crtc *crtc = state->crtc;
11778         struct drm_device *dev = crtc->dev;
11779         struct drm_framebuffer *fb = state->fb;
11780         struct drm_rect *dest = &state->dst;
11781         struct drm_rect *src = &state->src;
11782         const struct drm_rect *clip = &state->clip;
11783         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11784         int crtc_w, crtc_h;
11785         unsigned stride;
11786         int ret;
11787
11788         ret = drm_plane_helper_check_update(plane, crtc, fb,
11789                                             src, dest, clip,
11790                                             DRM_PLANE_HELPER_NO_SCALING,
11791                                             DRM_PLANE_HELPER_NO_SCALING,
11792                                             true, true, &state->visible);
11793         if (ret)
11794                 return ret;
11795
11796
11797         /* if we want to turn off the cursor ignore width and height */
11798         if (!obj)
11799                 return 0;
11800
11801         /* Check for which cursor types we support */
11802         crtc_w = drm_rect_width(&state->orig_dst);
11803         crtc_h = drm_rect_height(&state->orig_dst);
11804         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11805                 DRM_DEBUG("Cursor dimension not supported\n");
11806                 return -EINVAL;
11807         }
11808
11809         stride = roundup_pow_of_two(crtc_w) * 4;
11810         if (obj->base.size < stride * crtc_h) {
11811                 DRM_DEBUG_KMS("buffer is too small\n");
11812                 return -ENOMEM;
11813         }
11814
11815         if (fb == crtc->cursor->fb)
11816                 return 0;
11817
11818         /* we only need to pin inside GTT if cursor is non-phy */
11819         mutex_lock(&dev->struct_mutex);
11820         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11821                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11822                 ret = -EINVAL;
11823         }
11824         mutex_unlock(&dev->struct_mutex);
11825
11826         return ret;
11827 }
11828
11829 static int
11830 intel_commit_cursor_plane(struct drm_plane *plane,
11831                           struct intel_plane_state *state)
11832 {
11833         struct drm_crtc *crtc = state->crtc;
11834         struct drm_framebuffer *fb = state->fb;
11835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11836         struct intel_plane *intel_plane = to_intel_plane(plane);
11837         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11838         struct drm_i915_gem_object *obj = intel_fb->obj;
11839         int crtc_w, crtc_h;
11840
11841         crtc->cursor_x = state->orig_dst.x1;
11842         crtc->cursor_y = state->orig_dst.y1;
11843
11844         intel_plane->crtc_x = state->orig_dst.x1;
11845         intel_plane->crtc_y = state->orig_dst.y1;
11846         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11847         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11848         intel_plane->src_x = state->orig_src.x1;
11849         intel_plane->src_y = state->orig_src.y1;
11850         intel_plane->src_w = drm_rect_width(&state->orig_src);
11851         intel_plane->src_h = drm_rect_height(&state->orig_src);
11852         intel_plane->obj = obj;
11853
11854         if (fb != crtc->cursor->fb) {
11855                 crtc_w = drm_rect_width(&state->orig_dst);
11856                 crtc_h = drm_rect_height(&state->orig_dst);
11857                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11858         } else {
11859                 intel_crtc_update_cursor(crtc, state->visible);
11860
11861                 intel_frontbuffer_flip(crtc->dev,
11862                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11863
11864                 return 0;
11865         }
11866 }
11867
11868 static int
11869 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11870                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11871                           unsigned int crtc_w, unsigned int crtc_h,
11872                           uint32_t src_x, uint32_t src_y,
11873                           uint32_t src_w, uint32_t src_h)
11874 {
11875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11876         struct intel_plane_state state;
11877         int ret;
11878
11879         state.crtc = crtc;
11880         state.fb = fb;
11881
11882         /* sample coordinates in 16.16 fixed point */
11883         state.src.x1 = src_x;
11884         state.src.x2 = src_x + src_w;
11885         state.src.y1 = src_y;
11886         state.src.y2 = src_y + src_h;
11887
11888         /* integer pixels */
11889         state.dst.x1 = crtc_x;
11890         state.dst.x2 = crtc_x + crtc_w;
11891         state.dst.y1 = crtc_y;
11892         state.dst.y2 = crtc_y + crtc_h;
11893
11894         state.clip.x1 = 0;
11895         state.clip.y1 = 0;
11896         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11897         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11898
11899         state.orig_src = state.src;
11900         state.orig_dst = state.dst;
11901
11902         ret = intel_check_cursor_plane(plane, &state);
11903         if (ret)
11904                 return ret;
11905
11906         return intel_commit_cursor_plane(plane, &state);
11907 }
11908
11909 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11910         .update_plane = intel_cursor_plane_update,
11911         .disable_plane = intel_cursor_plane_disable,
11912         .destroy = intel_plane_destroy,
11913         .set_property = intel_plane_set_property,
11914 };
11915
11916 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11917                                                    int pipe)
11918 {
11919         struct intel_plane *cursor;
11920
11921         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11922         if (cursor == NULL)
11923                 return NULL;
11924
11925         cursor->can_scale = false;
11926         cursor->max_downscale = 1;
11927         cursor->pipe = pipe;
11928         cursor->plane = pipe;
11929         cursor->rotation = BIT(DRM_ROTATE_0);
11930
11931         drm_universal_plane_init(dev, &cursor->base, 0,
11932                                  &intel_cursor_plane_funcs,
11933                                  intel_cursor_formats,
11934                                  ARRAY_SIZE(intel_cursor_formats),
11935                                  DRM_PLANE_TYPE_CURSOR);
11936
11937         if (INTEL_INFO(dev)->gen >= 4) {
11938                 if (!dev->mode_config.rotation_property)
11939                         dev->mode_config.rotation_property =
11940                                 drm_mode_create_rotation_property(dev,
11941                                                         BIT(DRM_ROTATE_0) |
11942                                                         BIT(DRM_ROTATE_180));
11943                 if (dev->mode_config.rotation_property)
11944                         drm_object_attach_property(&cursor->base.base,
11945                                 dev->mode_config.rotation_property,
11946                                 cursor->rotation);
11947         }
11948
11949         return &cursor->base;
11950 }
11951
11952 static void intel_crtc_init(struct drm_device *dev, int pipe)
11953 {
11954         struct drm_i915_private *dev_priv = dev->dev_private;
11955         struct intel_crtc *intel_crtc;
11956         struct drm_plane *primary = NULL;
11957         struct drm_plane *cursor = NULL;
11958         int i, ret;
11959
11960         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11961         if (intel_crtc == NULL)
11962                 return;
11963
11964         primary = intel_primary_plane_create(dev, pipe);
11965         if (!primary)
11966                 goto fail;
11967
11968         cursor = intel_cursor_plane_create(dev, pipe);
11969         if (!cursor)
11970                 goto fail;
11971
11972         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11973                                         cursor, &intel_crtc_funcs);
11974         if (ret)
11975                 goto fail;
11976
11977         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11978         for (i = 0; i < 256; i++) {
11979                 intel_crtc->lut_r[i] = i;
11980                 intel_crtc->lut_g[i] = i;
11981                 intel_crtc->lut_b[i] = i;
11982         }
11983
11984         /*
11985          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11986          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11987          */
11988         intel_crtc->pipe = pipe;
11989         intel_crtc->plane = pipe;
11990         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11991                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11992                 intel_crtc->plane = !pipe;
11993         }
11994
11995         intel_crtc->cursor_base = ~0;
11996         intel_crtc->cursor_cntl = ~0;
11997         intel_crtc->cursor_size = ~0;
11998
11999         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12000                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12001         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12002         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12003
12004         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12005
12006         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12007         return;
12008
12009 fail:
12010         if (primary)
12011                 drm_plane_cleanup(primary);
12012         if (cursor)
12013                 drm_plane_cleanup(cursor);
12014         kfree(intel_crtc);
12015 }
12016
12017 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12018 {
12019         struct drm_encoder *encoder = connector->base.encoder;
12020         struct drm_device *dev = connector->base.dev;
12021
12022         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12023
12024         if (!encoder)
12025                 return INVALID_PIPE;
12026
12027         return to_intel_crtc(encoder->crtc)->pipe;
12028 }
12029
12030 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12031                                 struct drm_file *file)
12032 {
12033         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12034         struct drm_crtc *drmmode_crtc;
12035         struct intel_crtc *crtc;
12036
12037         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12038                 return -ENODEV;
12039
12040         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12041
12042         if (!drmmode_crtc) {
12043                 DRM_ERROR("no such CRTC id\n");
12044                 return -ENOENT;
12045         }
12046
12047         crtc = to_intel_crtc(drmmode_crtc);
12048         pipe_from_crtc_id->pipe = crtc->pipe;
12049
12050         return 0;
12051 }
12052
12053 static int intel_encoder_clones(struct intel_encoder *encoder)
12054 {
12055         struct drm_device *dev = encoder->base.dev;
12056         struct intel_encoder *source_encoder;
12057         int index_mask = 0;
12058         int entry = 0;
12059
12060         for_each_intel_encoder(dev, source_encoder) {
12061                 if (encoders_cloneable(encoder, source_encoder))
12062                         index_mask |= (1 << entry);
12063
12064                 entry++;
12065         }
12066
12067         return index_mask;
12068 }
12069
12070 static bool has_edp_a(struct drm_device *dev)
12071 {
12072         struct drm_i915_private *dev_priv = dev->dev_private;
12073
12074         if (!IS_MOBILE(dev))
12075                 return false;
12076
12077         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12078                 return false;
12079
12080         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12081                 return false;
12082
12083         return true;
12084 }
12085
12086 const char *intel_output_name(int output)
12087 {
12088         static const char *names[] = {
12089                 [INTEL_OUTPUT_UNUSED] = "Unused",
12090                 [INTEL_OUTPUT_ANALOG] = "Analog",
12091                 [INTEL_OUTPUT_DVO] = "DVO",
12092                 [INTEL_OUTPUT_SDVO] = "SDVO",
12093                 [INTEL_OUTPUT_LVDS] = "LVDS",
12094                 [INTEL_OUTPUT_TVOUT] = "TV",
12095                 [INTEL_OUTPUT_HDMI] = "HDMI",
12096                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12097                 [INTEL_OUTPUT_EDP] = "eDP",
12098                 [INTEL_OUTPUT_DSI] = "DSI",
12099                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12100         };
12101
12102         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12103                 return "Invalid";
12104
12105         return names[output];
12106 }
12107
12108 static bool intel_crt_present(struct drm_device *dev)
12109 {
12110         struct drm_i915_private *dev_priv = dev->dev_private;
12111
12112         if (INTEL_INFO(dev)->gen >= 9)
12113                 return false;
12114
12115         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12116                 return false;
12117
12118         if (IS_CHERRYVIEW(dev))
12119                 return false;
12120
12121         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12122                 return false;
12123
12124         return true;
12125 }
12126
12127 static void intel_setup_outputs(struct drm_device *dev)
12128 {
12129         struct drm_i915_private *dev_priv = dev->dev_private;
12130         struct intel_encoder *encoder;
12131         bool dpd_is_edp = false;
12132
12133         intel_lvds_init(dev);
12134
12135         if (intel_crt_present(dev))
12136                 intel_crt_init(dev);
12137
12138         if (HAS_DDI(dev)) {
12139                 int found;
12140
12141                 /* Haswell uses DDI functions to detect digital outputs */
12142                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12143                 /* DDI A only supports eDP */
12144                 if (found)
12145                         intel_ddi_init(dev, PORT_A);
12146
12147                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12148                  * register */
12149                 found = I915_READ(SFUSE_STRAP);
12150
12151                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12152                         intel_ddi_init(dev, PORT_B);
12153                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12154                         intel_ddi_init(dev, PORT_C);
12155                 if (found & SFUSE_STRAP_DDID_DETECTED)
12156                         intel_ddi_init(dev, PORT_D);
12157         } else if (HAS_PCH_SPLIT(dev)) {
12158                 int found;
12159                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12160
12161                 if (has_edp_a(dev))
12162                         intel_dp_init(dev, DP_A, PORT_A);
12163
12164                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12165                         /* PCH SDVOB multiplex with HDMIB */
12166                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12167                         if (!found)
12168                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12169                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12170                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12171                 }
12172
12173                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12174                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12175
12176                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12177                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12178
12179                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12180                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12181
12182                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12183                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12184         } else if (IS_VALLEYVIEW(dev)) {
12185                 /*
12186                  * The DP_DETECTED bit is the latched state of the DDC
12187                  * SDA pin at boot. However since eDP doesn't require DDC
12188                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12189                  * eDP ports may have been muxed to an alternate function.
12190                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12191                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12192                  * detect eDP ports.
12193                  */
12194                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12195                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12196                                         PORT_B);
12197                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12198                     intel_dp_is_edp(dev, PORT_B))
12199                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12200
12201                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12202                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12203                                         PORT_C);
12204                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12205                     intel_dp_is_edp(dev, PORT_C))
12206                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12207
12208                 if (IS_CHERRYVIEW(dev)) {
12209                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12210                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12211                                                 PORT_D);
12212                         /* eDP not supported on port D, so don't check VBT */
12213                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12214                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12215                 }
12216
12217                 intel_dsi_init(dev);
12218         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12219                 bool found = false;
12220
12221                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12222                         DRM_DEBUG_KMS("probing SDVOB\n");
12223                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12224                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12225                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12226                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12227                         }
12228
12229                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12230                                 intel_dp_init(dev, DP_B, PORT_B);
12231                 }
12232
12233                 /* Before G4X SDVOC doesn't have its own detect register */
12234
12235                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12236                         DRM_DEBUG_KMS("probing SDVOC\n");
12237                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12238                 }
12239
12240                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12241
12242                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12243                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12244                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12245                         }
12246                         if (SUPPORTS_INTEGRATED_DP(dev))
12247                                 intel_dp_init(dev, DP_C, PORT_C);
12248                 }
12249
12250                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12251                     (I915_READ(DP_D) & DP_DETECTED))
12252                         intel_dp_init(dev, DP_D, PORT_D);
12253         } else if (IS_GEN2(dev))
12254                 intel_dvo_init(dev);
12255
12256         if (SUPPORTS_TV(dev))
12257                 intel_tv_init(dev);
12258
12259         intel_edp_psr_init(dev);
12260
12261         for_each_intel_encoder(dev, encoder) {
12262                 encoder->base.possible_crtcs = encoder->crtc_mask;
12263                 encoder->base.possible_clones =
12264                         intel_encoder_clones(encoder);
12265         }
12266
12267         intel_init_pch_refclk(dev);
12268
12269         drm_helper_move_panel_connectors_to_head(dev);
12270 }
12271
12272 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12273 {
12274         struct drm_device *dev = fb->dev;
12275         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12276
12277         drm_framebuffer_cleanup(fb);
12278         mutex_lock(&dev->struct_mutex);
12279         WARN_ON(!intel_fb->obj->framebuffer_references--);
12280         drm_gem_object_unreference(&intel_fb->obj->base);
12281         mutex_unlock(&dev->struct_mutex);
12282         kfree(intel_fb);
12283 }
12284
12285 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12286                                                 struct drm_file *file,
12287                                                 unsigned int *handle)
12288 {
12289         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12290         struct drm_i915_gem_object *obj = intel_fb->obj;
12291
12292         return drm_gem_handle_create(file, &obj->base, handle);
12293 }
12294
12295 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12296         .destroy = intel_user_framebuffer_destroy,
12297         .create_handle = intel_user_framebuffer_create_handle,
12298 };
12299
12300 static int intel_framebuffer_init(struct drm_device *dev,
12301                                   struct intel_framebuffer *intel_fb,
12302                                   struct drm_mode_fb_cmd2 *mode_cmd,
12303                                   struct drm_i915_gem_object *obj)
12304 {
12305         int aligned_height;
12306         int pitch_limit;
12307         int ret;
12308
12309         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12310
12311         if (obj->tiling_mode == I915_TILING_Y) {
12312                 DRM_DEBUG("hardware does not support tiling Y\n");
12313                 return -EINVAL;
12314         }
12315
12316         if (mode_cmd->pitches[0] & 63) {
12317                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12318                           mode_cmd->pitches[0]);
12319                 return -EINVAL;
12320         }
12321
12322         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12323                 pitch_limit = 32*1024;
12324         } else if (INTEL_INFO(dev)->gen >= 4) {
12325                 if (obj->tiling_mode)
12326                         pitch_limit = 16*1024;
12327                 else
12328                         pitch_limit = 32*1024;
12329         } else if (INTEL_INFO(dev)->gen >= 3) {
12330                 if (obj->tiling_mode)
12331                         pitch_limit = 8*1024;
12332                 else
12333                         pitch_limit = 16*1024;
12334         } else
12335                 /* XXX DSPC is limited to 4k tiled */
12336                 pitch_limit = 8*1024;
12337
12338         if (mode_cmd->pitches[0] > pitch_limit) {
12339                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12340                           obj->tiling_mode ? "tiled" : "linear",
12341                           mode_cmd->pitches[0], pitch_limit);
12342                 return -EINVAL;
12343         }
12344
12345         if (obj->tiling_mode != I915_TILING_NONE &&
12346             mode_cmd->pitches[0] != obj->stride) {
12347                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12348                           mode_cmd->pitches[0], obj->stride);
12349                 return -EINVAL;
12350         }
12351
12352         /* Reject formats not supported by any plane early. */
12353         switch (mode_cmd->pixel_format) {
12354         case DRM_FORMAT_C8:
12355         case DRM_FORMAT_RGB565:
12356         case DRM_FORMAT_XRGB8888:
12357         case DRM_FORMAT_ARGB8888:
12358                 break;
12359         case DRM_FORMAT_XRGB1555:
12360         case DRM_FORMAT_ARGB1555:
12361                 if (INTEL_INFO(dev)->gen > 3) {
12362                         DRM_DEBUG("unsupported pixel format: %s\n",
12363                                   drm_get_format_name(mode_cmd->pixel_format));
12364                         return -EINVAL;
12365                 }
12366                 break;
12367         case DRM_FORMAT_XBGR8888:
12368         case DRM_FORMAT_ABGR8888:
12369         case DRM_FORMAT_XRGB2101010:
12370         case DRM_FORMAT_ARGB2101010:
12371         case DRM_FORMAT_XBGR2101010:
12372         case DRM_FORMAT_ABGR2101010:
12373                 if (INTEL_INFO(dev)->gen < 4) {
12374                         DRM_DEBUG("unsupported pixel format: %s\n",
12375                                   drm_get_format_name(mode_cmd->pixel_format));
12376                         return -EINVAL;
12377                 }
12378                 break;
12379         case DRM_FORMAT_YUYV:
12380         case DRM_FORMAT_UYVY:
12381         case DRM_FORMAT_YVYU:
12382         case DRM_FORMAT_VYUY:
12383                 if (INTEL_INFO(dev)->gen < 5) {
12384                         DRM_DEBUG("unsupported pixel format: %s\n",
12385                                   drm_get_format_name(mode_cmd->pixel_format));
12386                         return -EINVAL;
12387                 }
12388                 break;
12389         default:
12390                 DRM_DEBUG("unsupported pixel format: %s\n",
12391                           drm_get_format_name(mode_cmd->pixel_format));
12392                 return -EINVAL;
12393         }
12394
12395         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12396         if (mode_cmd->offsets[0] != 0)
12397                 return -EINVAL;
12398
12399         aligned_height = intel_align_height(dev, mode_cmd->height,
12400                                             obj->tiling_mode);
12401         /* FIXME drm helper for size checks (especially planar formats)? */
12402         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12403                 return -EINVAL;
12404
12405         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12406         intel_fb->obj = obj;
12407         intel_fb->obj->framebuffer_references++;
12408
12409         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12410         if (ret) {
12411                 DRM_ERROR("framebuffer init failed %d\n", ret);
12412                 return ret;
12413         }
12414
12415         return 0;
12416 }
12417
12418 static struct drm_framebuffer *
12419 intel_user_framebuffer_create(struct drm_device *dev,
12420                               struct drm_file *filp,
12421                               struct drm_mode_fb_cmd2 *mode_cmd)
12422 {
12423         struct drm_i915_gem_object *obj;
12424
12425         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12426                                                 mode_cmd->handles[0]));
12427         if (&obj->base == NULL)
12428                 return ERR_PTR(-ENOENT);
12429
12430         return intel_framebuffer_create(dev, mode_cmd, obj);
12431 }
12432
12433 #ifndef CONFIG_DRM_I915_FBDEV
12434 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12435 {
12436 }
12437 #endif
12438
12439 static const struct drm_mode_config_funcs intel_mode_funcs = {
12440         .fb_create = intel_user_framebuffer_create,
12441         .output_poll_changed = intel_fbdev_output_poll_changed,
12442 };
12443
12444 /* Set up chip specific display functions */
12445 static void intel_init_display(struct drm_device *dev)
12446 {
12447         struct drm_i915_private *dev_priv = dev->dev_private;
12448
12449         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12450                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12451         else if (IS_CHERRYVIEW(dev))
12452                 dev_priv->display.find_dpll = chv_find_best_dpll;
12453         else if (IS_VALLEYVIEW(dev))
12454                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12455         else if (IS_PINEVIEW(dev))
12456                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12457         else
12458                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12459
12460         if (HAS_DDI(dev)) {
12461                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12462                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12463                 dev_priv->display.crtc_compute_clock =
12464                         haswell_crtc_compute_clock;
12465                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12466                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12467                 dev_priv->display.off = ironlake_crtc_off;
12468                 if (INTEL_INFO(dev)->gen >= 9)
12469                         dev_priv->display.update_primary_plane =
12470                                 skylake_update_primary_plane;
12471                 else
12472                         dev_priv->display.update_primary_plane =
12473                                 ironlake_update_primary_plane;
12474         } else if (HAS_PCH_SPLIT(dev)) {
12475                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12476                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12477                 dev_priv->display.crtc_compute_clock =
12478                         ironlake_crtc_compute_clock;
12479                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12480                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12481                 dev_priv->display.off = ironlake_crtc_off;
12482                 dev_priv->display.update_primary_plane =
12483                         ironlake_update_primary_plane;
12484         } else if (IS_VALLEYVIEW(dev)) {
12485                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12486                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12487                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12488                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12489                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12490                 dev_priv->display.off = i9xx_crtc_off;
12491                 dev_priv->display.update_primary_plane =
12492                         i9xx_update_primary_plane;
12493         } else {
12494                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12495                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12496                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12497                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12498                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12499                 dev_priv->display.off = i9xx_crtc_off;
12500                 dev_priv->display.update_primary_plane =
12501                         i9xx_update_primary_plane;
12502         }
12503
12504         /* Returns the core display clock speed */
12505         if (IS_VALLEYVIEW(dev))
12506                 dev_priv->display.get_display_clock_speed =
12507                         valleyview_get_display_clock_speed;
12508         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12509                 dev_priv->display.get_display_clock_speed =
12510                         i945_get_display_clock_speed;
12511         else if (IS_I915G(dev))
12512                 dev_priv->display.get_display_clock_speed =
12513                         i915_get_display_clock_speed;
12514         else if (IS_I945GM(dev) || IS_845G(dev))
12515                 dev_priv->display.get_display_clock_speed =
12516                         i9xx_misc_get_display_clock_speed;
12517         else if (IS_PINEVIEW(dev))
12518                 dev_priv->display.get_display_clock_speed =
12519                         pnv_get_display_clock_speed;
12520         else if (IS_I915GM(dev))
12521                 dev_priv->display.get_display_clock_speed =
12522                         i915gm_get_display_clock_speed;
12523         else if (IS_I865G(dev))
12524                 dev_priv->display.get_display_clock_speed =
12525                         i865_get_display_clock_speed;
12526         else if (IS_I85X(dev))
12527                 dev_priv->display.get_display_clock_speed =
12528                         i855_get_display_clock_speed;
12529         else /* 852, 830 */
12530                 dev_priv->display.get_display_clock_speed =
12531                         i830_get_display_clock_speed;
12532
12533         if (IS_GEN5(dev)) {
12534                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12535         } else if (IS_GEN6(dev)) {
12536                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12537                 dev_priv->display.modeset_global_resources =
12538                         snb_modeset_global_resources;
12539         } else if (IS_IVYBRIDGE(dev)) {
12540                 /* FIXME: detect B0+ stepping and use auto training */
12541                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12542                 dev_priv->display.modeset_global_resources =
12543                         ivb_modeset_global_resources;
12544         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12545                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12546                 dev_priv->display.modeset_global_resources =
12547                         haswell_modeset_global_resources;
12548         } else if (IS_VALLEYVIEW(dev)) {
12549                 dev_priv->display.modeset_global_resources =
12550                         valleyview_modeset_global_resources;
12551         } else if (INTEL_INFO(dev)->gen >= 9) {
12552                 dev_priv->display.modeset_global_resources =
12553                         haswell_modeset_global_resources;
12554         }
12555
12556         /* Default just returns -ENODEV to indicate unsupported */
12557         dev_priv->display.queue_flip = intel_default_queue_flip;
12558
12559         switch (INTEL_INFO(dev)->gen) {
12560         case 2:
12561                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12562                 break;
12563
12564         case 3:
12565                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12566                 break;
12567
12568         case 4:
12569         case 5:
12570                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12571                 break;
12572
12573         case 6:
12574                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12575                 break;
12576         case 7:
12577         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12578                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12579                 break;
12580         }
12581
12582         intel_panel_init_backlight_funcs(dev);
12583
12584         mutex_init(&dev_priv->pps_mutex);
12585 }
12586
12587 /*
12588  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12589  * resume, or other times.  This quirk makes sure that's the case for
12590  * affected systems.
12591  */
12592 static void quirk_pipea_force(struct drm_device *dev)
12593 {
12594         struct drm_i915_private *dev_priv = dev->dev_private;
12595
12596         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12597         DRM_INFO("applying pipe a force quirk\n");
12598 }
12599
12600 static void quirk_pipeb_force(struct drm_device *dev)
12601 {
12602         struct drm_i915_private *dev_priv = dev->dev_private;
12603
12604         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12605         DRM_INFO("applying pipe b force quirk\n");
12606 }
12607
12608 /*
12609  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12610  */
12611 static void quirk_ssc_force_disable(struct drm_device *dev)
12612 {
12613         struct drm_i915_private *dev_priv = dev->dev_private;
12614         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12615         DRM_INFO("applying lvds SSC disable quirk\n");
12616 }
12617
12618 /*
12619  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12620  * brightness value
12621  */
12622 static void quirk_invert_brightness(struct drm_device *dev)
12623 {
12624         struct drm_i915_private *dev_priv = dev->dev_private;
12625         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12626         DRM_INFO("applying inverted panel brightness quirk\n");
12627 }
12628
12629 /* Some VBT's incorrectly indicate no backlight is present */
12630 static void quirk_backlight_present(struct drm_device *dev)
12631 {
12632         struct drm_i915_private *dev_priv = dev->dev_private;
12633         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12634         DRM_INFO("applying backlight present quirk\n");
12635 }
12636
12637 struct intel_quirk {
12638         int device;
12639         int subsystem_vendor;
12640         int subsystem_device;
12641         void (*hook)(struct drm_device *dev);
12642 };
12643
12644 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12645 struct intel_dmi_quirk {
12646         void (*hook)(struct drm_device *dev);
12647         const struct dmi_system_id (*dmi_id_list)[];
12648 };
12649
12650 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12651 {
12652         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12653         return 1;
12654 }
12655
12656 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12657         {
12658                 .dmi_id_list = &(const struct dmi_system_id[]) {
12659                         {
12660                                 .callback = intel_dmi_reverse_brightness,
12661                                 .ident = "NCR Corporation",
12662                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12663                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12664                                 },
12665                         },
12666                         { }  /* terminating entry */
12667                 },
12668                 .hook = quirk_invert_brightness,
12669         },
12670 };
12671
12672 static struct intel_quirk intel_quirks[] = {
12673         /* HP Mini needs pipe A force quirk (LP: #322104) */
12674         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12675
12676         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12677         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12678
12679         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12680         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12681
12682         /* 830 needs to leave pipe A & dpll A up */
12683         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12684
12685         /* 830 needs to leave pipe B & dpll B up */
12686         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12687
12688         /* Lenovo U160 cannot use SSC on LVDS */
12689         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12690
12691         /* Sony Vaio Y cannot use SSC on LVDS */
12692         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12693
12694         /* Acer Aspire 5734Z must invert backlight brightness */
12695         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12696
12697         /* Acer/eMachines G725 */
12698         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12699
12700         /* Acer/eMachines e725 */
12701         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12702
12703         /* Acer/Packard Bell NCL20 */
12704         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12705
12706         /* Acer Aspire 4736Z */
12707         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12708
12709         /* Acer Aspire 5336 */
12710         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12711
12712         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12713         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12714
12715         /* Acer C720 Chromebook (Core i3 4005U) */
12716         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12717
12718         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12719         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12720
12721         /* HP Chromebook 14 (Celeron 2955U) */
12722         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12723 };
12724
12725 static void intel_init_quirks(struct drm_device *dev)
12726 {
12727         struct pci_dev *d = dev->pdev;
12728         int i;
12729
12730         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12731                 struct intel_quirk *q = &intel_quirks[i];
12732
12733                 if (d->device == q->device &&
12734                     (d->subsystem_vendor == q->subsystem_vendor ||
12735                      q->subsystem_vendor == PCI_ANY_ID) &&
12736                     (d->subsystem_device == q->subsystem_device ||
12737                      q->subsystem_device == PCI_ANY_ID))
12738                         q->hook(dev);
12739         }
12740         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12741                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12742                         intel_dmi_quirks[i].hook(dev);
12743         }
12744 }
12745
12746 /* Disable the VGA plane that we never use */
12747 static void i915_disable_vga(struct drm_device *dev)
12748 {
12749         struct drm_i915_private *dev_priv = dev->dev_private;
12750         u8 sr1;
12751         u32 vga_reg = i915_vgacntrl_reg(dev);
12752
12753         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12754         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12755         outb(SR01, VGA_SR_INDEX);
12756         sr1 = inb(VGA_SR_DATA);
12757         outb(sr1 | 1<<5, VGA_SR_DATA);
12758         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12759         udelay(300);
12760
12761         /*
12762          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12763          * from S3 without preserving (some of?) the other bits.
12764          */
12765         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12766         POSTING_READ(vga_reg);
12767 }
12768
12769 void intel_modeset_init_hw(struct drm_device *dev)
12770 {
12771         intel_prepare_ddi(dev);
12772
12773         if (IS_VALLEYVIEW(dev))
12774                 vlv_update_cdclk(dev);
12775
12776         intel_init_clock_gating(dev);
12777
12778         intel_enable_gt_powersave(dev);
12779 }
12780
12781 void intel_modeset_init(struct drm_device *dev)
12782 {
12783         struct drm_i915_private *dev_priv = dev->dev_private;
12784         int sprite, ret;
12785         enum pipe pipe;
12786         struct intel_crtc *crtc;
12787
12788         drm_mode_config_init(dev);
12789
12790         dev->mode_config.min_width = 0;
12791         dev->mode_config.min_height = 0;
12792
12793         dev->mode_config.preferred_depth = 24;
12794         dev->mode_config.prefer_shadow = 1;
12795
12796         dev->mode_config.funcs = &intel_mode_funcs;
12797
12798         intel_init_quirks(dev);
12799
12800         intel_init_pm(dev);
12801
12802         if (INTEL_INFO(dev)->num_pipes == 0)
12803                 return;
12804
12805         intel_init_display(dev);
12806         intel_init_audio(dev);
12807
12808         if (IS_GEN2(dev)) {
12809                 dev->mode_config.max_width = 2048;
12810                 dev->mode_config.max_height = 2048;
12811         } else if (IS_GEN3(dev)) {
12812                 dev->mode_config.max_width = 4096;
12813                 dev->mode_config.max_height = 4096;
12814         } else {
12815                 dev->mode_config.max_width = 8192;
12816                 dev->mode_config.max_height = 8192;
12817         }
12818
12819         if (IS_845G(dev) || IS_I865G(dev)) {
12820                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12821                 dev->mode_config.cursor_height = 1023;
12822         } else if (IS_GEN2(dev)) {
12823                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12824                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12825         } else {
12826                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12827                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12828         }
12829
12830         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12831
12832         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12833                       INTEL_INFO(dev)->num_pipes,
12834                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12835
12836         for_each_pipe(dev_priv, pipe) {
12837                 intel_crtc_init(dev, pipe);
12838                 for_each_sprite(pipe, sprite) {
12839                         ret = intel_plane_init(dev, pipe, sprite);
12840                         if (ret)
12841                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12842                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12843                 }
12844         }
12845
12846         intel_init_dpio(dev);
12847
12848         intel_shared_dpll_init(dev);
12849
12850         /* save the BIOS value before clobbering it */
12851         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12852         /* Just disable it once at startup */
12853         i915_disable_vga(dev);
12854         intel_setup_outputs(dev);
12855
12856         /* Just in case the BIOS is doing something questionable. */
12857         intel_disable_fbc(dev);
12858
12859         drm_modeset_lock_all(dev);
12860         intel_modeset_setup_hw_state(dev, false);
12861         drm_modeset_unlock_all(dev);
12862
12863         for_each_intel_crtc(dev, crtc) {
12864                 if (!crtc->active)
12865                         continue;
12866
12867                 /*
12868                  * Note that reserving the BIOS fb up front prevents us
12869                  * from stuffing other stolen allocations like the ring
12870                  * on top.  This prevents some ugliness at boot time, and
12871                  * can even allow for smooth boot transitions if the BIOS
12872                  * fb is large enough for the active pipe configuration.
12873                  */
12874                 if (dev_priv->display.get_plane_config) {
12875                         dev_priv->display.get_plane_config(crtc,
12876                                                            &crtc->plane_config);
12877                         /*
12878                          * If the fb is shared between multiple heads, we'll
12879                          * just get the first one.
12880                          */
12881                         intel_find_plane_obj(crtc, &crtc->plane_config);
12882                 }
12883         }
12884 }
12885
12886 static void intel_enable_pipe_a(struct drm_device *dev)
12887 {
12888         struct intel_connector *connector;
12889         struct drm_connector *crt = NULL;
12890         struct intel_load_detect_pipe load_detect_temp;
12891         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12892
12893         /* We can't just switch on the pipe A, we need to set things up with a
12894          * proper mode and output configuration. As a gross hack, enable pipe A
12895          * by enabling the load detect pipe once. */
12896         list_for_each_entry(connector,
12897                             &dev->mode_config.connector_list,
12898                             base.head) {
12899                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12900                         crt = &connector->base;
12901                         break;
12902                 }
12903         }
12904
12905         if (!crt)
12906                 return;
12907
12908         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12909                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12910 }
12911
12912 static bool
12913 intel_check_plane_mapping(struct intel_crtc *crtc)
12914 {
12915         struct drm_device *dev = crtc->base.dev;
12916         struct drm_i915_private *dev_priv = dev->dev_private;
12917         u32 reg, val;
12918
12919         if (INTEL_INFO(dev)->num_pipes == 1)
12920                 return true;
12921
12922         reg = DSPCNTR(!crtc->plane);
12923         val = I915_READ(reg);
12924
12925         if ((val & DISPLAY_PLANE_ENABLE) &&
12926             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12927                 return false;
12928
12929         return true;
12930 }
12931
12932 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12933 {
12934         struct drm_device *dev = crtc->base.dev;
12935         struct drm_i915_private *dev_priv = dev->dev_private;
12936         u32 reg;
12937
12938         /* Clear any frame start delays used for debugging left by the BIOS */
12939         reg = PIPECONF(crtc->config.cpu_transcoder);
12940         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12941
12942         /* restore vblank interrupts to correct state */
12943         if (crtc->active) {
12944                 update_scanline_offset(crtc);
12945                 drm_vblank_on(dev, crtc->pipe);
12946         } else
12947                 drm_vblank_off(dev, crtc->pipe);
12948
12949         /* We need to sanitize the plane -> pipe mapping first because this will
12950          * disable the crtc (and hence change the state) if it is wrong. Note
12951          * that gen4+ has a fixed plane -> pipe mapping.  */
12952         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12953                 struct intel_connector *connector;
12954                 bool plane;
12955
12956                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12957                               crtc->base.base.id);
12958
12959                 /* Pipe has the wrong plane attached and the plane is active.
12960                  * Temporarily change the plane mapping and disable everything
12961                  * ...  */
12962                 plane = crtc->plane;
12963                 crtc->plane = !plane;
12964                 crtc->primary_enabled = true;
12965                 dev_priv->display.crtc_disable(&crtc->base);
12966                 crtc->plane = plane;
12967
12968                 /* ... and break all links. */
12969                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12970                                     base.head) {
12971                         if (connector->encoder->base.crtc != &crtc->base)
12972                                 continue;
12973
12974                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12975                         connector->base.encoder = NULL;
12976                 }
12977                 /* multiple connectors may have the same encoder:
12978                  *  handle them and break crtc link separately */
12979                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12980                                     base.head)
12981                         if (connector->encoder->base.crtc == &crtc->base) {
12982                                 connector->encoder->base.crtc = NULL;
12983                                 connector->encoder->connectors_active = false;
12984                         }
12985
12986                 WARN_ON(crtc->active);
12987                 crtc->base.enabled = false;
12988         }
12989
12990         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12991             crtc->pipe == PIPE_A && !crtc->active) {
12992                 /* BIOS forgot to enable pipe A, this mostly happens after
12993                  * resume. Force-enable the pipe to fix this, the update_dpms
12994                  * call below we restore the pipe to the right state, but leave
12995                  * the required bits on. */
12996                 intel_enable_pipe_a(dev);
12997         }
12998
12999         /* Adjust the state of the output pipe according to whether we
13000          * have active connectors/encoders. */
13001         intel_crtc_update_dpms(&crtc->base);
13002
13003         if (crtc->active != crtc->base.enabled) {
13004                 struct intel_encoder *encoder;
13005
13006                 /* This can happen either due to bugs in the get_hw_state
13007                  * functions or because the pipe is force-enabled due to the
13008                  * pipe A quirk. */
13009                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13010                               crtc->base.base.id,
13011                               crtc->base.enabled ? "enabled" : "disabled",
13012                               crtc->active ? "enabled" : "disabled");
13013
13014                 crtc->base.enabled = crtc->active;
13015
13016                 /* Because we only establish the connector -> encoder ->
13017                  * crtc links if something is active, this means the
13018                  * crtc is now deactivated. Break the links. connector
13019                  * -> encoder links are only establish when things are
13020                  *  actually up, hence no need to break them. */
13021                 WARN_ON(crtc->active);
13022
13023                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13024                         WARN_ON(encoder->connectors_active);
13025                         encoder->base.crtc = NULL;
13026                 }
13027         }
13028
13029         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13030                 /*
13031                  * We start out with underrun reporting disabled to avoid races.
13032                  * For correct bookkeeping mark this on active crtcs.
13033                  *
13034                  * Also on gmch platforms we dont have any hardware bits to
13035                  * disable the underrun reporting. Which means we need to start
13036                  * out with underrun reporting disabled also on inactive pipes,
13037                  * since otherwise we'll complain about the garbage we read when
13038                  * e.g. coming up after runtime pm.
13039                  *
13040                  * No protection against concurrent access is required - at
13041                  * worst a fifo underrun happens which also sets this to false.
13042                  */
13043                 crtc->cpu_fifo_underrun_disabled = true;
13044                 crtc->pch_fifo_underrun_disabled = true;
13045         }
13046 }
13047
13048 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13049 {
13050         struct intel_connector *connector;
13051         struct drm_device *dev = encoder->base.dev;
13052
13053         /* We need to check both for a crtc link (meaning that the
13054          * encoder is active and trying to read from a pipe) and the
13055          * pipe itself being active. */
13056         bool has_active_crtc = encoder->base.crtc &&
13057                 to_intel_crtc(encoder->base.crtc)->active;
13058
13059         if (encoder->connectors_active && !has_active_crtc) {
13060                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13061                               encoder->base.base.id,
13062                               encoder->base.name);
13063
13064                 /* Connector is active, but has no active pipe. This is
13065                  * fallout from our resume register restoring. Disable
13066                  * the encoder manually again. */
13067                 if (encoder->base.crtc) {
13068                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13069                                       encoder->base.base.id,
13070                                       encoder->base.name);
13071                         encoder->disable(encoder);
13072                         if (encoder->post_disable)
13073                                 encoder->post_disable(encoder);
13074                 }
13075                 encoder->base.crtc = NULL;
13076                 encoder->connectors_active = false;
13077
13078                 /* Inconsistent output/port/pipe state happens presumably due to
13079                  * a bug in one of the get_hw_state functions. Or someplace else
13080                  * in our code, like the register restore mess on resume. Clamp
13081                  * things to off as a safer default. */
13082                 list_for_each_entry(connector,
13083                                     &dev->mode_config.connector_list,
13084                                     base.head) {
13085                         if (connector->encoder != encoder)
13086                                 continue;
13087                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13088                         connector->base.encoder = NULL;
13089                 }
13090         }
13091         /* Enabled encoders without active connectors will be fixed in
13092          * the crtc fixup. */
13093 }
13094
13095 void i915_redisable_vga_power_on(struct drm_device *dev)
13096 {
13097         struct drm_i915_private *dev_priv = dev->dev_private;
13098         u32 vga_reg = i915_vgacntrl_reg(dev);
13099
13100         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13101                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13102                 i915_disable_vga(dev);
13103         }
13104 }
13105
13106 void i915_redisable_vga(struct drm_device *dev)
13107 {
13108         struct drm_i915_private *dev_priv = dev->dev_private;
13109
13110         /* This function can be called both from intel_modeset_setup_hw_state or
13111          * at a very early point in our resume sequence, where the power well
13112          * structures are not yet restored. Since this function is at a very
13113          * paranoid "someone might have enabled VGA while we were not looking"
13114          * level, just check if the power well is enabled instead of trying to
13115          * follow the "don't touch the power well if we don't need it" policy
13116          * the rest of the driver uses. */
13117         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13118                 return;
13119
13120         i915_redisable_vga_power_on(dev);
13121 }
13122
13123 static bool primary_get_hw_state(struct intel_crtc *crtc)
13124 {
13125         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13126
13127         if (!crtc->active)
13128                 return false;
13129
13130         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13131 }
13132
13133 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13134 {
13135         struct drm_i915_private *dev_priv = dev->dev_private;
13136         enum pipe pipe;
13137         struct intel_crtc *crtc;
13138         struct intel_encoder *encoder;
13139         struct intel_connector *connector;
13140         int i;
13141
13142         for_each_intel_crtc(dev, crtc) {
13143                 memset(&crtc->config, 0, sizeof(crtc->config));
13144
13145                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13146
13147                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13148                                                                  &crtc->config);
13149
13150                 crtc->base.enabled = crtc->active;
13151                 crtc->primary_enabled = primary_get_hw_state(crtc);
13152
13153                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13154                               crtc->base.base.id,
13155                               crtc->active ? "enabled" : "disabled");
13156         }
13157
13158         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13159                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13160
13161                 pll->on = pll->get_hw_state(dev_priv, pll,
13162                                             &pll->config.hw_state);
13163                 pll->active = 0;
13164                 pll->config.crtc_mask = 0;
13165                 for_each_intel_crtc(dev, crtc) {
13166                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13167                                 pll->active++;
13168                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13169                         }
13170                 }
13171
13172                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13173                               pll->name, pll->config.crtc_mask, pll->on);
13174
13175                 if (pll->config.crtc_mask)
13176                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13177         }
13178
13179         for_each_intel_encoder(dev, encoder) {
13180                 pipe = 0;
13181
13182                 if (encoder->get_hw_state(encoder, &pipe)) {
13183                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13184                         encoder->base.crtc = &crtc->base;
13185                         encoder->get_config(encoder, &crtc->config);
13186                 } else {
13187                         encoder->base.crtc = NULL;
13188                 }
13189
13190                 encoder->connectors_active = false;
13191                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13192                               encoder->base.base.id,
13193                               encoder->base.name,
13194                               encoder->base.crtc ? "enabled" : "disabled",
13195                               pipe_name(pipe));
13196         }
13197
13198         list_for_each_entry(connector, &dev->mode_config.connector_list,
13199                             base.head) {
13200                 if (connector->get_hw_state(connector)) {
13201                         connector->base.dpms = DRM_MODE_DPMS_ON;
13202                         connector->encoder->connectors_active = true;
13203                         connector->base.encoder = &connector->encoder->base;
13204                 } else {
13205                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13206                         connector->base.encoder = NULL;
13207                 }
13208                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13209                               connector->base.base.id,
13210                               connector->base.name,
13211                               connector->base.encoder ? "enabled" : "disabled");
13212         }
13213 }
13214
13215 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13216  * and i915 state tracking structures. */
13217 void intel_modeset_setup_hw_state(struct drm_device *dev,
13218                                   bool force_restore)
13219 {
13220         struct drm_i915_private *dev_priv = dev->dev_private;
13221         enum pipe pipe;
13222         struct intel_crtc *crtc;
13223         struct intel_encoder *encoder;
13224         int i;
13225
13226         intel_modeset_readout_hw_state(dev);
13227
13228         /*
13229          * Now that we have the config, copy it to each CRTC struct
13230          * Note that this could go away if we move to using crtc_config
13231          * checking everywhere.
13232          */
13233         for_each_intel_crtc(dev, crtc) {
13234                 if (crtc->active && i915.fastboot) {
13235                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13236                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13237                                       crtc->base.base.id);
13238                         drm_mode_debug_printmodeline(&crtc->base.mode);
13239                 }
13240         }
13241
13242         /* HW state is read out, now we need to sanitize this mess. */
13243         for_each_intel_encoder(dev, encoder) {
13244                 intel_sanitize_encoder(encoder);
13245         }
13246
13247         for_each_pipe(dev_priv, pipe) {
13248                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13249                 intel_sanitize_crtc(crtc);
13250                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13251         }
13252
13253         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13254                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13255
13256                 if (!pll->on || pll->active)
13257                         continue;
13258
13259                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13260
13261                 pll->disable(dev_priv, pll);
13262                 pll->on = false;
13263         }
13264
13265         if (HAS_PCH_SPLIT(dev))
13266                 ilk_wm_get_hw_state(dev);
13267
13268         if (force_restore) {
13269                 i915_redisable_vga(dev);
13270
13271                 /*
13272                  * We need to use raw interfaces for restoring state to avoid
13273                  * checking (bogus) intermediate states.
13274                  */
13275                 for_each_pipe(dev_priv, pipe) {
13276                         struct drm_crtc *crtc =
13277                                 dev_priv->pipe_to_crtc_mapping[pipe];
13278
13279                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13280                                          crtc->primary->fb);
13281                 }
13282         } else {
13283                 intel_modeset_update_staged_output_state(dev);
13284         }
13285
13286         intel_modeset_check_state(dev);
13287 }
13288
13289 void intel_modeset_gem_init(struct drm_device *dev)
13290 {
13291         struct drm_crtc *c;
13292         struct drm_i915_gem_object *obj;
13293
13294         mutex_lock(&dev->struct_mutex);
13295         intel_init_gt_powersave(dev);
13296         mutex_unlock(&dev->struct_mutex);
13297
13298         intel_modeset_init_hw(dev);
13299
13300         intel_setup_overlay(dev);
13301
13302         /*
13303          * Make sure any fbs we allocated at startup are properly
13304          * pinned & fenced.  When we do the allocation it's too early
13305          * for this.
13306          */
13307         mutex_lock(&dev->struct_mutex);
13308         for_each_crtc(dev, c) {
13309                 obj = intel_fb_obj(c->primary->fb);
13310                 if (obj == NULL)
13311                         continue;
13312
13313                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13314                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13315                                   to_intel_crtc(c)->pipe);
13316                         drm_framebuffer_unreference(c->primary->fb);
13317                         c->primary->fb = NULL;
13318                 }
13319         }
13320         mutex_unlock(&dev->struct_mutex);
13321 }
13322
13323 void intel_connector_unregister(struct intel_connector *intel_connector)
13324 {
13325         struct drm_connector *connector = &intel_connector->base;
13326
13327         intel_panel_destroy_backlight(connector);
13328         drm_connector_unregister(connector);
13329 }
13330
13331 void intel_modeset_cleanup(struct drm_device *dev)
13332 {
13333         struct drm_i915_private *dev_priv = dev->dev_private;
13334         struct drm_connector *connector;
13335
13336         /*
13337          * Interrupts and polling as the first thing to avoid creating havoc.
13338          * Too much stuff here (turning of rps, connectors, ...) would
13339          * experience fancy races otherwise.
13340          */
13341         intel_irq_uninstall(dev_priv);
13342
13343         /*
13344          * Due to the hpd irq storm handling the hotplug work can re-arm the
13345          * poll handlers. Hence disable polling after hpd handling is shut down.
13346          */
13347         drm_kms_helper_poll_fini(dev);
13348
13349         mutex_lock(&dev->struct_mutex);
13350
13351         intel_unregister_dsm_handler();
13352
13353         intel_disable_fbc(dev);
13354
13355         intel_disable_gt_powersave(dev);
13356
13357         ironlake_teardown_rc6(dev);
13358
13359         mutex_unlock(&dev->struct_mutex);
13360
13361         /* flush any delayed tasks or pending work */
13362         flush_scheduled_work();
13363
13364         /* destroy the backlight and sysfs files before encoders/connectors */
13365         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13366                 struct intel_connector *intel_connector;
13367
13368                 intel_connector = to_intel_connector(connector);
13369                 intel_connector->unregister(intel_connector);
13370         }
13371
13372         drm_mode_config_cleanup(dev);
13373
13374         intel_cleanup_overlay(dev);
13375
13376         mutex_lock(&dev->struct_mutex);
13377         intel_cleanup_gt_powersave(dev);
13378         mutex_unlock(&dev->struct_mutex);
13379 }
13380
13381 /*
13382  * Return which encoder is currently attached for connector.
13383  */
13384 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13385 {
13386         return &intel_attached_encoder(connector)->base;
13387 }
13388
13389 void intel_connector_attach_encoder(struct intel_connector *connector,
13390                                     struct intel_encoder *encoder)
13391 {
13392         connector->encoder = encoder;
13393         drm_mode_connector_attach_encoder(&connector->base,
13394                                           &encoder->base);
13395 }
13396
13397 /*
13398  * set vga decode state - true == enable VGA decode
13399  */
13400 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13401 {
13402         struct drm_i915_private *dev_priv = dev->dev_private;
13403         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13404         u16 gmch_ctrl;
13405
13406         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13407                 DRM_ERROR("failed to read control word\n");
13408                 return -EIO;
13409         }
13410
13411         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13412                 return 0;
13413
13414         if (state)
13415                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13416         else
13417                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13418
13419         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13420                 DRM_ERROR("failed to write control word\n");
13421                 return -EIO;
13422         }
13423
13424         return 0;
13425 }
13426
13427 struct intel_display_error_state {
13428
13429         u32 power_well_driver;
13430
13431         int num_transcoders;
13432
13433         struct intel_cursor_error_state {
13434                 u32 control;
13435                 u32 position;
13436                 u32 base;
13437                 u32 size;
13438         } cursor[I915_MAX_PIPES];
13439
13440         struct intel_pipe_error_state {
13441                 bool power_domain_on;
13442                 u32 source;
13443                 u32 stat;
13444         } pipe[I915_MAX_PIPES];
13445
13446         struct intel_plane_error_state {
13447                 u32 control;
13448                 u32 stride;
13449                 u32 size;
13450                 u32 pos;
13451                 u32 addr;
13452                 u32 surface;
13453                 u32 tile_offset;
13454         } plane[I915_MAX_PIPES];
13455
13456         struct intel_transcoder_error_state {
13457                 bool power_domain_on;
13458                 enum transcoder cpu_transcoder;
13459
13460                 u32 conf;
13461
13462                 u32 htotal;
13463                 u32 hblank;
13464                 u32 hsync;
13465                 u32 vtotal;
13466                 u32 vblank;
13467                 u32 vsync;
13468         } transcoder[4];
13469 };
13470
13471 struct intel_display_error_state *
13472 intel_display_capture_error_state(struct drm_device *dev)
13473 {
13474         struct drm_i915_private *dev_priv = dev->dev_private;
13475         struct intel_display_error_state *error;
13476         int transcoders[] = {
13477                 TRANSCODER_A,
13478                 TRANSCODER_B,
13479                 TRANSCODER_C,
13480                 TRANSCODER_EDP,
13481         };
13482         int i;
13483
13484         if (INTEL_INFO(dev)->num_pipes == 0)
13485                 return NULL;
13486
13487         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13488         if (error == NULL)
13489                 return NULL;
13490
13491         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13492                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13493
13494         for_each_pipe(dev_priv, i) {
13495                 error->pipe[i].power_domain_on =
13496                         __intel_display_power_is_enabled(dev_priv,
13497                                                          POWER_DOMAIN_PIPE(i));
13498                 if (!error->pipe[i].power_domain_on)
13499                         continue;
13500
13501                 error->cursor[i].control = I915_READ(CURCNTR(i));
13502                 error->cursor[i].position = I915_READ(CURPOS(i));
13503                 error->cursor[i].base = I915_READ(CURBASE(i));
13504
13505                 error->plane[i].control = I915_READ(DSPCNTR(i));
13506                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13507                 if (INTEL_INFO(dev)->gen <= 3) {
13508                         error->plane[i].size = I915_READ(DSPSIZE(i));
13509                         error->plane[i].pos = I915_READ(DSPPOS(i));
13510                 }
13511                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13512                         error->plane[i].addr = I915_READ(DSPADDR(i));
13513                 if (INTEL_INFO(dev)->gen >= 4) {
13514                         error->plane[i].surface = I915_READ(DSPSURF(i));
13515                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13516                 }
13517
13518                 error->pipe[i].source = I915_READ(PIPESRC(i));
13519
13520                 if (HAS_GMCH_DISPLAY(dev))
13521                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13522         }
13523
13524         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13525         if (HAS_DDI(dev_priv->dev))
13526                 error->num_transcoders++; /* Account for eDP. */
13527
13528         for (i = 0; i < error->num_transcoders; i++) {
13529                 enum transcoder cpu_transcoder = transcoders[i];
13530
13531                 error->transcoder[i].power_domain_on =
13532                         __intel_display_power_is_enabled(dev_priv,
13533                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13534                 if (!error->transcoder[i].power_domain_on)
13535                         continue;
13536
13537                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13538
13539                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13540                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13541                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13542                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13543                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13544                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13545                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13546         }
13547
13548         return error;
13549 }
13550
13551 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13552
13553 void
13554 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13555                                 struct drm_device *dev,
13556                                 struct intel_display_error_state *error)
13557 {
13558         struct drm_i915_private *dev_priv = dev->dev_private;
13559         int i;
13560
13561         if (!error)
13562                 return;
13563
13564         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13565         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13566                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13567                            error->power_well_driver);
13568         for_each_pipe(dev_priv, i) {
13569                 err_printf(m, "Pipe [%d]:\n", i);
13570                 err_printf(m, "  Power: %s\n",
13571                            error->pipe[i].power_domain_on ? "on" : "off");
13572                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13573                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13574
13575                 err_printf(m, "Plane [%d]:\n", i);
13576                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13577                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13578                 if (INTEL_INFO(dev)->gen <= 3) {
13579                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13580                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13581                 }
13582                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13583                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13584                 if (INTEL_INFO(dev)->gen >= 4) {
13585                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13586                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13587                 }
13588
13589                 err_printf(m, "Cursor [%d]:\n", i);
13590                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13591                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13592                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13593         }
13594
13595         for (i = 0; i < error->num_transcoders; i++) {
13596                 err_printf(m, "CPU transcoder: %c\n",
13597                            transcoder_name(error->transcoder[i].cpu_transcoder));
13598                 err_printf(m, "  Power: %s\n",
13599                            error->transcoder[i].power_domain_on ? "on" : "off");
13600                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13601                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13602                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13603                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13604                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13605                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13606                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13607         }
13608 }
13609
13610 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13611 {
13612         struct intel_crtc *crtc;
13613
13614         for_each_intel_crtc(dev, crtc) {
13615                 struct intel_unpin_work *work;
13616
13617                 spin_lock_irq(&dev->event_lock);
13618
13619                 work = crtc->unpin_work;
13620
13621                 if (work && work->event &&
13622                     work->event->base.file_priv == file) {
13623                         kfree(work->event);
13624                         work->event = NULL;
13625                 }
13626
13627                 spin_unlock_irq(&dev->event_lock);
13628         }
13629 }