drm/i915/chv: Pipe select change for DP and HDMI
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74         intel_p2_t          p2;
75 };
76
77 int
78 intel_pch_rawclk(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81
82         WARN_ON(!HAS_PCH_SPLIT(dev));
83
84         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
85 }
86
87 static inline u32 /* units of 100MHz */
88 intel_fdi_link_freq(struct drm_device *dev)
89 {
90         if (IS_GEN5(dev)) {
91                 struct drm_i915_private *dev_priv = dev->dev_private;
92                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
93         } else
94                 return 27;
95 }
96
97 static const intel_limit_t intel_limits_i8xx_dac = {
98         .dot = { .min = 25000, .max = 350000 },
99         .vco = { .min = 908000, .max = 1512000 },
100         .n = { .min = 2, .max = 16 },
101         .m = { .min = 96, .max = 140 },
102         .m1 = { .min = 18, .max = 26 },
103         .m2 = { .min = 6, .max = 16 },
104         .p = { .min = 4, .max = 128 },
105         .p1 = { .min = 2, .max = 33 },
106         .p2 = { .dot_limit = 165000,
107                 .p2_slow = 4, .p2_fast = 2 },
108 };
109
110 static const intel_limit_t intel_limits_i8xx_dvo = {
111         .dot = { .min = 25000, .max = 350000 },
112         .vco = { .min = 908000, .max = 1512000 },
113         .n = { .min = 2, .max = 16 },
114         .m = { .min = 96, .max = 140 },
115         .m1 = { .min = 18, .max = 26 },
116         .m2 = { .min = 6, .max = 16 },
117         .p = { .min = 4, .max = 128 },
118         .p1 = { .min = 2, .max = 33 },
119         .p2 = { .dot_limit = 165000,
120                 .p2_slow = 4, .p2_fast = 4 },
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 908000, .max = 1512000 },
126         .n = { .min = 2, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 8, .max = 18 },
142         .m2 = { .min = 3, .max = 7 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 8, .max = 18 },
155         .m2 = { .min = 3, .max = 7 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176 };
177
178 static const intel_limit_t intel_limits_g4x_hdmi = {
179         .dot = { .min = 22000, .max = 400000 },
180         .vco = { .min = 1750000, .max = 3500000},
181         .n = { .min = 1, .max = 4 },
182         .m = { .min = 104, .max = 138 },
183         .m1 = { .min = 16, .max = 23 },
184         .m2 = { .min = 5, .max = 11 },
185         .p = { .min = 5, .max = 80 },
186         .p1 = { .min = 1, .max = 8},
187         .p2 = { .dot_limit = 165000,
188                 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
192         .dot = { .min = 20000, .max = 115000 },
193         .vco = { .min = 1750000, .max = 3500000 },
194         .n = { .min = 1, .max = 3 },
195         .m = { .min = 104, .max = 138 },
196         .m1 = { .min = 17, .max = 23 },
197         .m2 = { .min = 5, .max = 11 },
198         .p = { .min = 28, .max = 112 },
199         .p1 = { .min = 2, .max = 8 },
200         .p2 = { .dot_limit = 0,
201                 .p2_slow = 14, .p2_fast = 14
202         },
203 };
204
205 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
206         .dot = { .min = 80000, .max = 224000 },
207         .vco = { .min = 1750000, .max = 3500000 },
208         .n = { .min = 1, .max = 3 },
209         .m = { .min = 104, .max = 138 },
210         .m1 = { .min = 17, .max = 23 },
211         .m2 = { .min = 5, .max = 11 },
212         .p = { .min = 14, .max = 42 },
213         .p1 = { .min = 2, .max = 6 },
214         .p2 = { .dot_limit = 0,
215                 .p2_slow = 7, .p2_fast = 7
216         },
217 };
218
219 static const intel_limit_t intel_limits_pineview_sdvo = {
220         .dot = { .min = 20000, .max = 400000},
221         .vco = { .min = 1700000, .max = 3500000 },
222         /* Pineview's Ncounter is a ring counter */
223         .n = { .min = 3, .max = 6 },
224         .m = { .min = 2, .max = 256 },
225         /* Pineview only has one combined m divider, which we treat as m2. */
226         .m1 = { .min = 0, .max = 0 },
227         .m2 = { .min = 0, .max = 254 },
228         .p = { .min = 5, .max = 80 },
229         .p1 = { .min = 1, .max = 8 },
230         .p2 = { .dot_limit = 200000,
231                 .p2_slow = 10, .p2_fast = 5 },
232 };
233
234 static const intel_limit_t intel_limits_pineview_lvds = {
235         .dot = { .min = 20000, .max = 400000 },
236         .vco = { .min = 1700000, .max = 3500000 },
237         .n = { .min = 3, .max = 6 },
238         .m = { .min = 2, .max = 256 },
239         .m1 = { .min = 0, .max = 0 },
240         .m2 = { .min = 0, .max = 254 },
241         .p = { .min = 7, .max = 112 },
242         .p1 = { .min = 1, .max = 8 },
243         .p2 = { .dot_limit = 112000,
244                 .p2_slow = 14, .p2_fast = 14 },
245 };
246
247 /* Ironlake / Sandybridge
248  *
249  * We calculate clock using (register_value + 2) for N/M1/M2, so here
250  * the range value for them is (actual_value - 2).
251  */
252 static const intel_limit_t intel_limits_ironlake_dac = {
253         .dot = { .min = 25000, .max = 350000 },
254         .vco = { .min = 1760000, .max = 3510000 },
255         .n = { .min = 1, .max = 5 },
256         .m = { .min = 79, .max = 127 },
257         .m1 = { .min = 12, .max = 22 },
258         .m2 = { .min = 5, .max = 9 },
259         .p = { .min = 5, .max = 80 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 225000,
262                 .p2_slow = 10, .p2_fast = 5 },
263 };
264
265 static const intel_limit_t intel_limits_ironlake_single_lvds = {
266         .dot = { .min = 25000, .max = 350000 },
267         .vco = { .min = 1760000, .max = 3510000 },
268         .n = { .min = 1, .max = 3 },
269         .m = { .min = 79, .max = 118 },
270         .m1 = { .min = 12, .max = 22 },
271         .m2 = { .min = 5, .max = 9 },
272         .p = { .min = 28, .max = 112 },
273         .p1 = { .min = 2, .max = 8 },
274         .p2 = { .dot_limit = 225000,
275                 .p2_slow = 14, .p2_fast = 14 },
276 };
277
278 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 3 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 14, .max = 56 },
286         .p1 = { .min = 2, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 7, .p2_fast = 7 },
289 };
290
291 /* LVDS 100mhz refclk limits. */
292 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 2 },
296         .m = { .min = 79, .max = 126 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 126 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 42 },
313         .p1 = { .min = 2, .max = 6 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316 };
317
318 static const intel_limit_t intel_limits_vlv = {
319          /*
320           * These are the data rate limits (measured in fast clocks)
321           * since those are the strictest limits we have. The fast
322           * clock and actual rate limits are more relaxed, so checking
323           * them would make no difference.
324           */
325         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
326         .vco = { .min = 4000000, .max = 6000000 },
327         .n = { .min = 1, .max = 7 },
328         .m1 = { .min = 2, .max = 3 },
329         .m2 = { .min = 11, .max = 156 },
330         .p1 = { .min = 2, .max = 3 },
331         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
332 };
333
334 static const intel_limit_t intel_limits_chv = {
335         /*
336          * These are the data rate limits (measured in fast clocks)
337          * since those are the strictest limits we have.  The fast
338          * clock and actual rate limits are more relaxed, so checking
339          * them would make no difference.
340          */
341         .dot = { .min = 25000 * 5, .max = 540000 * 5},
342         .vco = { .min = 4860000, .max = 6700000 },
343         .n = { .min = 1, .max = 1 },
344         .m1 = { .min = 2, .max = 2 },
345         .m2 = { .min = 24 << 22, .max = 175 << 22 },
346         .p1 = { .min = 2, .max = 4 },
347         .p2 = { .p2_slow = 1, .p2_fast = 14 },
348 };
349
350 static void vlv_clock(int refclk, intel_clock_t *clock)
351 {
352         clock->m = clock->m1 * clock->m2;
353         clock->p = clock->p1 * clock->p2;
354         if (WARN_ON(clock->n == 0 || clock->p == 0))
355                 return;
356         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
357         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
358 }
359
360 /**
361  * Returns whether any output on the specified pipe is of the specified type
362  */
363 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
364 {
365         struct drm_device *dev = crtc->dev;
366         struct intel_encoder *encoder;
367
368         for_each_encoder_on_crtc(dev, crtc, encoder)
369                 if (encoder->type == type)
370                         return true;
371
372         return false;
373 }
374
375 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
376                                                 int refclk)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev)) {
383                         if (refclk == 100000)
384                                 limit = &intel_limits_ironlake_dual_lvds_100m;
385                         else
386                                 limit = &intel_limits_ironlake_dual_lvds;
387                 } else {
388                         if (refclk == 100000)
389                                 limit = &intel_limits_ironlake_single_lvds_100m;
390                         else
391                                 limit = &intel_limits_ironlake_single_lvds;
392                 }
393         } else
394                 limit = &intel_limits_ironlake_dac;
395
396         return limit;
397 }
398
399 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
400 {
401         struct drm_device *dev = crtc->dev;
402         const intel_limit_t *limit;
403
404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
405                 if (intel_is_dual_link_lvds(dev))
406                         limit = &intel_limits_g4x_dual_channel_lvds;
407                 else
408                         limit = &intel_limits_g4x_single_channel_lvds;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
410                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
411                 limit = &intel_limits_g4x_hdmi;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
413                 limit = &intel_limits_g4x_sdvo;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (IS_CHERRYVIEW(dev)) {
435                 limit = &intel_limits_chv;
436         } else if (IS_VALLEYVIEW(dev)) {
437                 limit = &intel_limits_vlv;
438         } else if (!IS_GEN2(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_i9xx_lvds;
441                 else
442                         limit = &intel_limits_i9xx_sdvo;
443         } else {
444                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
445                         limit = &intel_limits_i8xx_lvds;
446                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
447                         limit = &intel_limits_i8xx_dvo;
448                 else
449                         limit = &intel_limits_i8xx_dac;
450         }
451         return limit;
452 }
453
454 /* m1 is reserved as 0 in Pineview, n is a ring counter */
455 static void pineview_clock(int refclk, intel_clock_t *clock)
456 {
457         clock->m = clock->m2 + 2;
458         clock->p = clock->p1 * clock->p2;
459         if (WARN_ON(clock->n == 0 || clock->p == 0))
460                 return;
461         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
462         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
463 }
464
465 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
466 {
467         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
468 }
469
470 static void i9xx_clock(int refclk, intel_clock_t *clock)
471 {
472         clock->m = i9xx_dpll_compute_m(clock);
473         clock->p = clock->p1 * clock->p2;
474         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
475                 return;
476         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
477         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
478 }
479
480 static void chv_clock(int refclk, intel_clock_t *clock)
481 {
482         clock->m = clock->m1 * clock->m2;
483         clock->p = clock->p1 * clock->p2;
484         if (WARN_ON(clock->n == 0 || clock->p == 0))
485                 return;
486         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
487                         clock->n << 22);
488         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
489 }
490
491 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
492 /**
493  * Returns whether the given set of divisors are valid for a given refclk with
494  * the given connectors.
495  */
496
497 static bool intel_PLL_is_valid(struct drm_device *dev,
498                                const intel_limit_t *limit,
499                                const intel_clock_t *clock)
500 {
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid("n out of range\n");
503         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
504                 INTELPllInvalid("p1 out of range\n");
505         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
506                 INTELPllInvalid("m2 out of range\n");
507         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
508                 INTELPllInvalid("m1 out of range\n");
509
510         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
511                 if (clock->m1 <= clock->m2)
512                         INTELPllInvalid("m1 <= m2\n");
513
514         if (!IS_VALLEYVIEW(dev)) {
515                 if (clock->p < limit->p.min || limit->p.max < clock->p)
516                         INTELPllInvalid("p out of range\n");
517                 if (clock->m < limit->m.min || limit->m.max < clock->m)
518                         INTELPllInvalid("m out of range\n");
519         }
520
521         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
522                 INTELPllInvalid("vco out of range\n");
523         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
524          * connector, etc., rather than just a single range.
525          */
526         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
527                 INTELPllInvalid("dot out of range\n");
528
529         return true;
530 }
531
532 static bool
533 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
534                     int target, int refclk, intel_clock_t *match_clock,
535                     intel_clock_t *best_clock)
536 {
537         struct drm_device *dev = crtc->dev;
538         intel_clock_t clock;
539         int err = target;
540
541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
542                 /*
543                  * For LVDS just rely on its current settings for dual-channel.
544                  * We haven't figured out how to reliably set up different
545                  * single/dual channel state, if we even can.
546                  */
547                 if (intel_is_dual_link_lvds(dev))
548                         clock.p2 = limit->p2.p2_fast;
549                 else
550                         clock.p2 = limit->p2.p2_slow;
551         } else {
552                 if (target < limit->p2.dot_limit)
553                         clock.p2 = limit->p2.p2_slow;
554                 else
555                         clock.p2 = limit->p2.p2_fast;
556         }
557
558         memset(best_clock, 0, sizeof(*best_clock));
559
560         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
561              clock.m1++) {
562                 for (clock.m2 = limit->m2.min;
563                      clock.m2 <= limit->m2.max; clock.m2++) {
564                         if (clock.m2 >= clock.m1)
565                                 break;
566                         for (clock.n = limit->n.min;
567                              clock.n <= limit->n.max; clock.n++) {
568                                 for (clock.p1 = limit->p1.min;
569                                         clock.p1 <= limit->p1.max; clock.p1++) {
570                                         int this_err;
571
572                                         i9xx_clock(refclk, &clock);
573                                         if (!intel_PLL_is_valid(dev, limit,
574                                                                 &clock))
575                                                 continue;
576                                         if (match_clock &&
577                                             clock.p != match_clock->p)
578                                                 continue;
579
580                                         this_err = abs(clock.dot - target);
581                                         if (this_err < err) {
582                                                 *best_clock = clock;
583                                                 err = this_err;
584                                         }
585                                 }
586                         }
587                 }
588         }
589
590         return (err != target);
591 }
592
593 static bool
594 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
595                    int target, int refclk, intel_clock_t *match_clock,
596                    intel_clock_t *best_clock)
597 {
598         struct drm_device *dev = crtc->dev;
599         intel_clock_t clock;
600         int err = target;
601
602         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
603                 /*
604                  * For LVDS just rely on its current settings for dual-channel.
605                  * We haven't figured out how to reliably set up different
606                  * single/dual channel state, if we even can.
607                  */
608                 if (intel_is_dual_link_lvds(dev))
609                         clock.p2 = limit->p2.p2_fast;
610                 else
611                         clock.p2 = limit->p2.p2_slow;
612         } else {
613                 if (target < limit->p2.dot_limit)
614                         clock.p2 = limit->p2.p2_slow;
615                 else
616                         clock.p2 = limit->p2.p2_fast;
617         }
618
619         memset(best_clock, 0, sizeof(*best_clock));
620
621         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
622              clock.m1++) {
623                 for (clock.m2 = limit->m2.min;
624                      clock.m2 <= limit->m2.max; clock.m2++) {
625                         for (clock.n = limit->n.min;
626                              clock.n <= limit->n.max; clock.n++) {
627                                 for (clock.p1 = limit->p1.min;
628                                         clock.p1 <= limit->p1.max; clock.p1++) {
629                                         int this_err;
630
631                                         pineview_clock(refclk, &clock);
632                                         if (!intel_PLL_is_valid(dev, limit,
633                                                                 &clock))
634                                                 continue;
635                                         if (match_clock &&
636                                             clock.p != match_clock->p)
637                                                 continue;
638
639                                         this_err = abs(clock.dot - target);
640                                         if (this_err < err) {
641                                                 *best_clock = clock;
642                                                 err = this_err;
643                                         }
644                                 }
645                         }
646                 }
647         }
648
649         return (err != target);
650 }
651
652 static bool
653 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
654                    int target, int refclk, intel_clock_t *match_clock,
655                    intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659         int max_n;
660         bool found;
661         /* approximately equals target * 0.00585 */
662         int err_most = (target >> 8) + (target >> 9);
663         found = false;
664
665         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
666                 if (intel_is_dual_link_lvds(dev))
667                         clock.p2 = limit->p2.p2_fast;
668                 else
669                         clock.p2 = limit->p2.p2_slow;
670         } else {
671                 if (target < limit->p2.dot_limit)
672                         clock.p2 = limit->p2.p2_slow;
673                 else
674                         clock.p2 = limit->p2.p2_fast;
675         }
676
677         memset(best_clock, 0, sizeof(*best_clock));
678         max_n = limit->n.max;
679         /* based on hardware requirement, prefer smaller n to precision */
680         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
681                 /* based on hardware requirement, prefere larger m1,m2 */
682                 for (clock.m1 = limit->m1.max;
683                      clock.m1 >= limit->m1.min; clock.m1--) {
684                         for (clock.m2 = limit->m2.max;
685                              clock.m2 >= limit->m2.min; clock.m2--) {
686                                 for (clock.p1 = limit->p1.max;
687                                      clock.p1 >= limit->p1.min; clock.p1--) {
688                                         int this_err;
689
690                                         i9xx_clock(refclk, &clock);
691                                         if (!intel_PLL_is_valid(dev, limit,
692                                                                 &clock))
693                                                 continue;
694
695                                         this_err = abs(clock.dot - target);
696                                         if (this_err < err_most) {
697                                                 *best_clock = clock;
698                                                 err_most = this_err;
699                                                 max_n = clock.n;
700                                                 found = true;
701                                         }
702                                 }
703                         }
704                 }
705         }
706         return found;
707 }
708
709 static bool
710 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
711                    int target, int refclk, intel_clock_t *match_clock,
712                    intel_clock_t *best_clock)
713 {
714         struct drm_device *dev = crtc->dev;
715         intel_clock_t clock;
716         unsigned int bestppm = 1000000;
717         /* min update 19.2 MHz */
718         int max_n = min(limit->n.max, refclk / 19200);
719         bool found = false;
720
721         target *= 5; /* fast clock */
722
723         memset(best_clock, 0, sizeof(*best_clock));
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
727                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
728                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
729                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
730                                 clock.p = clock.p1 * clock.p2;
731                                 /* based on hardware requirement, prefer bigger m1,m2 values */
732                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
733                                         unsigned int ppm, diff;
734
735                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
736                                                                      refclk * clock.m1);
737
738                                         vlv_clock(refclk, &clock);
739
740                                         if (!intel_PLL_is_valid(dev, limit,
741                                                                 &clock))
742                                                 continue;
743
744                                         diff = abs(clock.dot - target);
745                                         ppm = div_u64(1000000ULL * diff, target);
746
747                                         if (ppm < 100 && clock.p > best_clock->p) {
748                                                 bestppm = 0;
749                                                 *best_clock = clock;
750                                                 found = true;
751                                         }
752
753                                         if (bestppm >= 10 && ppm < bestppm - 10) {
754                                                 bestppm = ppm;
755                                                 *best_clock = clock;
756                                                 found = true;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return found;
764 }
765
766 static bool
767 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc->dev;
772         intel_clock_t clock;
773         uint64_t m2;
774         int found = false;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         /*
779          * Based on hardware doc, the n always set to 1, and m1 always
780          * set to 2.  If requires to support 200Mhz refclk, we need to
781          * revisit this because n may not 1 anymore.
782          */
783         clock.n = 1, clock.m1 = 2;
784         target *= 5;    /* fast clock */
785
786         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
787                 for (clock.p2 = limit->p2.p2_fast;
788                                 clock.p2 >= limit->p2.p2_slow;
789                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
790
791                         clock.p = clock.p1 * clock.p2;
792
793                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
794                                         clock.n) << 22, refclk * clock.m1);
795
796                         if (m2 > INT_MAX/clock.m1)
797                                 continue;
798
799                         clock.m2 = m2;
800
801                         chv_clock(refclk, &clock);
802
803                         if (!intel_PLL_is_valid(dev, limit, &clock))
804                                 continue;
805
806                         /* based on hardware requirement, prefer bigger p
807                          */
808                         if (clock.p > best_clock->p) {
809                                 *best_clock = clock;
810                                 found = true;
811                         }
812                 }
813         }
814
815         return found;
816 }
817
818 bool intel_crtc_active(struct drm_crtc *crtc)
819 {
820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822         /* Be paranoid as we can arrive here with only partial
823          * state retrieved from the hardware during setup.
824          *
825          * We can ditch the adjusted_mode.crtc_clock check as soon
826          * as Haswell has gained clock readout/fastboot support.
827          *
828          * We can ditch the crtc->primary->fb check as soon as we can
829          * properly reconstruct framebuffers.
830          */
831         return intel_crtc->active && crtc->primary->fb &&
832                 intel_crtc->config.adjusted_mode.crtc_clock;
833 }
834
835 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
836                                              enum pipe pipe)
837 {
838         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
840
841         return intel_crtc->config.cpu_transcoder;
842 }
843
844 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
848
849         frame = I915_READ(frame_reg);
850
851         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
852                 WARN(1, "vblank wait timed out\n");
853 }
854
855 /**
856  * intel_wait_for_vblank - wait for vblank on a given pipe
857  * @dev: drm device
858  * @pipe: pipe to wait for
859  *
860  * Wait for vblank to occur on a given pipe.  Needed for various bits of
861  * mode setting code.
862  */
863 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int pipestat_reg = PIPESTAT(pipe);
867
868         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
869                 g4x_wait_for_vblank(dev, pipe);
870                 return;
871         }
872
873         /* Clear existing vblank status. Note this will clear any other
874          * sticky status fields as well.
875          *
876          * This races with i915_driver_irq_handler() with the result
877          * that either function could miss a vblank event.  Here it is not
878          * fatal, as we will either wait upon the next vblank interrupt or
879          * timeout.  Generally speaking intel_wait_for_vblank() is only
880          * called during modeset at which time the GPU should be idle and
881          * should *not* be performing page flips and thus not waiting on
882          * vblanks...
883          * Currently, the result of us stealing a vblank from the irq
884          * handler is that a single frame will be skipped during swapbuffers.
885          */
886         I915_WRITE(pipestat_reg,
887                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
888
889         /* Wait for vblank interrupt bit to set */
890         if (wait_for(I915_READ(pipestat_reg) &
891                      PIPE_VBLANK_INTERRUPT_STATUS,
892                      50))
893                 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
897 {
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         u32 reg = PIPEDSL(pipe);
900         u32 line1, line2;
901         u32 line_mask;
902
903         if (IS_GEN2(dev))
904                 line_mask = DSL_LINEMASK_GEN2;
905         else
906                 line_mask = DSL_LINEMASK_GEN3;
907
908         line1 = I915_READ(reg) & line_mask;
909         mdelay(5);
910         line2 = I915_READ(reg) & line_mask;
911
912         return line1 == line2;
913 }
914
915 /*
916  * intel_wait_for_pipe_off - wait for pipe to turn off
917  * @dev: drm device
918  * @pipe: pipe to wait for
919  *
920  * After disabling a pipe, we can't wait for vblank in the usual way,
921  * spinning on the vblank interrupt status bit, since we won't actually
922  * see an interrupt when the pipe is disabled.
923  *
924  * On Gen4 and above:
925  *   wait for the pipe register state bit to turn off
926  *
927  * Otherwise:
928  *   wait for the display line value to settle (it usually
929  *   ends up stopping at the start of the next frame).
930  *
931  */
932 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
933 {
934         struct drm_i915_private *dev_priv = dev->dev_private;
935         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
936                                                                       pipe);
937
938         if (INTEL_INFO(dev)->gen >= 4) {
939                 int reg = PIPECONF(cpu_transcoder);
940
941                 /* Wait for the Pipe State to go off */
942                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
943                              100))
944                         WARN(1, "pipe_off wait timed out\n");
945         } else {
946                 /* Wait for the display line to settle */
947                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
948                         WARN(1, "pipe_off wait timed out\n");
949         }
950 }
951
952 /*
953  * ibx_digital_port_connected - is the specified port connected?
954  * @dev_priv: i915 private structure
955  * @port: the port to test
956  *
957  * Returns true if @port is connected, false otherwise.
958  */
959 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
960                                 struct intel_digital_port *port)
961 {
962         u32 bit;
963
964         if (HAS_PCH_IBX(dev_priv->dev)) {
965                 switch(port->port) {
966                 case PORT_B:
967                         bit = SDE_PORTB_HOTPLUG;
968                         break;
969                 case PORT_C:
970                         bit = SDE_PORTC_HOTPLUG;
971                         break;
972                 case PORT_D:
973                         bit = SDE_PORTD_HOTPLUG;
974                         break;
975                 default:
976                         return true;
977                 }
978         } else {
979                 switch(port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG_CPT;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG_CPT;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG_CPT;
988                         break;
989                 default:
990                         return true;
991                 }
992         }
993
994         return I915_READ(SDEISR) & bit;
995 }
996
997 static const char *state_string(bool enabled)
998 {
999         return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 void assert_pll(struct drm_i915_private *dev_priv,
1004                 enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = DPLL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & DPLL_VCO_ENABLE);
1013         WARN(cur_state != state,
1014              "PLL state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017
1018 /* XXX: the dsi pll is shared between MIPI DSI ports */
1019 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1020 {
1021         u32 val;
1022         bool cur_state;
1023
1024         mutex_lock(&dev_priv->dpio_lock);
1025         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1026         mutex_unlock(&dev_priv->dpio_lock);
1027
1028         cur_state = val & DSI_PLL_VCO_EN;
1029         WARN(cur_state != state,
1030              "DSI PLL state assertion failure (expected %s, current %s)\n",
1031              state_string(state), state_string(cur_state));
1032 }
1033 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1034 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1035
1036 struct intel_shared_dpll *
1037 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1038 {
1039         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1040
1041         if (crtc->config.shared_dpll < 0)
1042                 return NULL;
1043
1044         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1045 }
1046
1047 /* For ILK+ */
1048 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1049                         struct intel_shared_dpll *pll,
1050                         bool state)
1051 {
1052         bool cur_state;
1053         struct intel_dpll_hw_state hw_state;
1054
1055         if (HAS_PCH_LPT(dev_priv->dev)) {
1056                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1057                 return;
1058         }
1059
1060         if (WARN (!pll,
1061                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1062                 return;
1063
1064         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1065         WARN(cur_state != state,
1066              "%s assertion failure (expected %s, current %s)\n",
1067              pll->name, state_string(state), state_string(cur_state));
1068 }
1069
1070 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1071                           enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         if (HAS_DDI(dev_priv->dev)) {
1080                 /* DDI does not have a specific FDI_TX register */
1081                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1082                 val = I915_READ(reg);
1083                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1084         } else {
1085                 reg = FDI_TX_CTL(pipe);
1086                 val = I915_READ(reg);
1087                 cur_state = !!(val & FDI_TX_ENABLE);
1088         }
1089         WARN(cur_state != state,
1090              "FDI TX state assertion failure (expected %s, current %s)\n",
1091              state_string(state), state_string(cur_state));
1092 }
1093 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1094 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1095
1096 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1097                           enum pipe pipe, bool state)
1098 {
1099         int reg;
1100         u32 val;
1101         bool cur_state;
1102
1103         reg = FDI_RX_CTL(pipe);
1104         val = I915_READ(reg);
1105         cur_state = !!(val & FDI_RX_ENABLE);
1106         WARN(cur_state != state,
1107              "FDI RX state assertion failure (expected %s, current %s)\n",
1108              state_string(state), state_string(cur_state));
1109 }
1110 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1111 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1112
1113 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1114                                       enum pipe pipe)
1115 {
1116         int reg;
1117         u32 val;
1118
1119         /* ILK FDI PLL is always enabled */
1120         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1121                 return;
1122
1123         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1124         if (HAS_DDI(dev_priv->dev))
1125                 return;
1126
1127         reg = FDI_TX_CTL(pipe);
1128         val = I915_READ(reg);
1129         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1130 }
1131
1132 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1133                        enum pipe pipe, bool state)
1134 {
1135         int reg;
1136         u32 val;
1137         bool cur_state;
1138
1139         reg = FDI_RX_CTL(pipe);
1140         val = I915_READ(reg);
1141         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1142         WARN(cur_state != state,
1143              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1144              state_string(state), state_string(cur_state));
1145 }
1146
1147 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1148                                   enum pipe pipe)
1149 {
1150         int pp_reg, lvds_reg;
1151         u32 val;
1152         enum pipe panel_pipe = PIPE_A;
1153         bool locked = true;
1154
1155         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1156                 pp_reg = PCH_PP_CONTROL;
1157                 lvds_reg = PCH_LVDS;
1158         } else {
1159                 pp_reg = PP_CONTROL;
1160                 lvds_reg = LVDS;
1161         }
1162
1163         val = I915_READ(pp_reg);
1164         if (!(val & PANEL_POWER_ON) ||
1165             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1166                 locked = false;
1167
1168         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1169                 panel_pipe = PIPE_B;
1170
1171         WARN(panel_pipe == pipe && locked,
1172              "panel assertion failure, pipe %c regs locked\n",
1173              pipe_name(pipe));
1174 }
1175
1176 static void assert_cursor(struct drm_i915_private *dev_priv,
1177                           enum pipe pipe, bool state)
1178 {
1179         struct drm_device *dev = dev_priv->dev;
1180         bool cur_state;
1181
1182         if (IS_845G(dev) || IS_I865G(dev))
1183                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1184         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1185                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1186         else
1187                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1188
1189         WARN(cur_state != state,
1190              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191              pipe_name(pipe), state_string(state), state_string(cur_state));
1192 }
1193 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
1196 void assert_pipe(struct drm_i915_private *dev_priv,
1197                  enum pipe pipe, bool state)
1198 {
1199         int reg;
1200         u32 val;
1201         bool cur_state;
1202         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203                                                                       pipe);
1204
1205         /* if we need the pipe A quirk it must be always on */
1206         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1207                 state = true;
1208
1209         if (!intel_display_power_enabled(dev_priv,
1210                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1211                 cur_state = false;
1212         } else {
1213                 reg = PIPECONF(cpu_transcoder);
1214                 val = I915_READ(reg);
1215                 cur_state = !!(val & PIPECONF_ENABLE);
1216         }
1217
1218         WARN(cur_state != state,
1219              "pipe %c assertion failure (expected %s, current %s)\n",
1220              pipe_name(pipe), state_string(state), state_string(cur_state));
1221 }
1222
1223 static void assert_plane(struct drm_i915_private *dev_priv,
1224                          enum plane plane, bool state)
1225 {
1226         int reg;
1227         u32 val;
1228         bool cur_state;
1229
1230         reg = DSPCNTR(plane);
1231         val = I915_READ(reg);
1232         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1233         WARN(cur_state != state,
1234              "plane %c assertion failure (expected %s, current %s)\n",
1235              plane_name(plane), state_string(state), state_string(cur_state));
1236 }
1237
1238 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1239 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1240
1241 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1242                                    enum pipe pipe)
1243 {
1244         struct drm_device *dev = dev_priv->dev;
1245         int reg, i;
1246         u32 val;
1247         int cur_pipe;
1248
1249         /* Primary planes are fixed to pipes on gen4+ */
1250         if (INTEL_INFO(dev)->gen >= 4) {
1251                 reg = DSPCNTR(pipe);
1252                 val = I915_READ(reg);
1253                 WARN(val & DISPLAY_PLANE_ENABLE,
1254                      "plane %c assertion failure, should be disabled but not\n",
1255                      plane_name(pipe));
1256                 return;
1257         }
1258
1259         /* Need to check both planes against the pipe */
1260         for_each_pipe(i) {
1261                 reg = DSPCNTR(i);
1262                 val = I915_READ(reg);
1263                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1264                         DISPPLANE_SEL_PIPE_SHIFT;
1265                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1266                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1267                      plane_name(i), pipe_name(pipe));
1268         }
1269 }
1270
1271 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1272                                     enum pipe pipe)
1273 {
1274         struct drm_device *dev = dev_priv->dev;
1275         int reg, sprite;
1276         u32 val;
1277
1278         if (IS_VALLEYVIEW(dev)) {
1279                 for_each_sprite(pipe, sprite) {
1280                         reg = SPCNTR(pipe, sprite);
1281                         val = I915_READ(reg);
1282                         WARN(val & SP_ENABLE,
1283                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                              sprite_name(pipe, sprite), pipe_name(pipe));
1285                 }
1286         } else if (INTEL_INFO(dev)->gen >= 7) {
1287                 reg = SPRCTL(pipe);
1288                 val = I915_READ(reg);
1289                 WARN(val & SPRITE_ENABLE,
1290                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                      plane_name(pipe), pipe_name(pipe));
1292         } else if (INTEL_INFO(dev)->gen >= 5) {
1293                 reg = DVSCNTR(pipe);
1294                 val = I915_READ(reg);
1295                 WARN(val & DVS_ENABLE,
1296                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1297                      plane_name(pipe), pipe_name(pipe));
1298         }
1299 }
1300
1301 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1302 {
1303         u32 val;
1304         bool enabled;
1305
1306         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                            enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = PCH_TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1341                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1342                         return false;
1343         } else {
1344                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1351                               enum pipe pipe, u32 val)
1352 {
1353         if ((val & SDVO_ENABLE) == 0)
1354                 return false;
1355
1356         if (HAS_PCH_CPT(dev_priv->dev)) {
1357                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1358                         return false;
1359         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1360                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1361                         return false;
1362         } else {
1363                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1364                         return false;
1365         }
1366         return true;
1367 }
1368
1369 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1370                               enum pipe pipe, u32 val)
1371 {
1372         if ((val & LVDS_PORT_EN) == 0)
1373                 return false;
1374
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1386                               enum pipe pipe, u32 val)
1387 {
1388         if ((val & ADPA_DAC_ENABLE) == 0)
1389                 return false;
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1392                         return false;
1393         } else {
1394                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1395                         return false;
1396         }
1397         return true;
1398 }
1399
1400 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1401                                    enum pipe pipe, int reg, u32 port_sel)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1405              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1409              && (val & DP_PIPEB_SELECT),
1410              "IBX PCH dp port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1414                                      enum pipe pipe, int reg)
1415 {
1416         u32 val = I915_READ(reg);
1417         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1418              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1419              reg, pipe_name(pipe));
1420
1421         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1422              && (val & SDVO_PIPE_B_SELECT),
1423              "IBX PCH hdmi port still using transcoder B\n");
1424 }
1425
1426 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1427                                       enum pipe pipe)
1428 {
1429         int reg;
1430         u32 val;
1431
1432         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1433         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1434         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1435
1436         reg = PCH_ADPA;
1437         val = I915_READ(reg);
1438         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1439              "PCH VGA enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         reg = PCH_LVDS;
1443         val = I915_READ(reg);
1444         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1445              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1449         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1450         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1451 }
1452
1453 static void intel_init_dpio(struct drm_device *dev)
1454 {
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457         if (!IS_VALLEYVIEW(dev))
1458                 return;
1459
1460         /*
1461          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1462          * CHV x1 PHY (DP/HDMI D)
1463          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1464          */
1465         if (IS_CHERRYVIEW(dev)) {
1466                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1467                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1468         } else {
1469                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1470         }
1471 }
1472
1473 static void intel_reset_dpio(struct drm_device *dev)
1474 {
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477         if (!IS_VALLEYVIEW(dev))
1478                 return;
1479
1480         /*
1481          * Enable the CRI clock source so we can get at the display and the
1482          * reference clock for VGA hotplug / manual detection.
1483          */
1484         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1485                    DPLL_REFA_CLK_ENABLE_VLV |
1486                    DPLL_INTEGRATED_CRI_CLK_VLV);
1487
1488         if (IS_CHERRYVIEW(dev)) {
1489                 enum dpio_phy phy;
1490                 u32 val;
1491
1492                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1493                         /* Poll for phypwrgood signal */
1494                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1495                                                 PHY_POWERGOOD(phy), 1))
1496                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1497
1498                         /*
1499                          * Deassert common lane reset for PHY.
1500                          *
1501                          * This should only be done on init and resume from S3
1502                          * with both PLLs disabled, or we risk losing DPIO and
1503                          * PLL synchronization.
1504                          */
1505                         val = I915_READ(DISPLAY_PHY_CONTROL);
1506                         I915_WRITE(DISPLAY_PHY_CONTROL,
1507                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1508                 }
1509
1510         } else {
1511                 /*
1512                  * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1513                  *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1514                  *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1515                  *   b. The other bits such as sfr settings / modesel may all
1516                  *      be set to 0.
1517                  *
1518                  * This should only be done on init and resume from S3 with
1519                  * both PLLs disabled, or we risk losing DPIO and PLL
1520                  * synchronization.
1521                  */
1522                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1523         }
1524 }
1525
1526 static void vlv_enable_pll(struct intel_crtc *crtc)
1527 {
1528         struct drm_device *dev = crtc->base.dev;
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         int reg = DPLL(crtc->pipe);
1531         u32 dpll = crtc->config.dpll_hw_state.dpll;
1532
1533         assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535         /* No really, not for ILK+ */
1536         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1537
1538         /* PLL is protected by panel, make sure we can write it */
1539         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1540                 assert_panel_unlocked(dev_priv, crtc->pipe);
1541
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150);
1545
1546         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1547                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1548
1549         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1550         POSTING_READ(DPLL_MD(crtc->pipe));
1551
1552         /* We do this three times for luck */
1553         I915_WRITE(reg, dpll);
1554         POSTING_READ(reg);
1555         udelay(150); /* wait for warmup */
1556         I915_WRITE(reg, dpll);
1557         POSTING_READ(reg);
1558         udelay(150); /* wait for warmup */
1559         I915_WRITE(reg, dpll);
1560         POSTING_READ(reg);
1561         udelay(150); /* wait for warmup */
1562 }
1563
1564 static void chv_enable_pll(struct intel_crtc *crtc)
1565 {
1566         struct drm_device *dev = crtc->base.dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         int pipe = crtc->pipe;
1569         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1570         int dpll = DPLL(crtc->pipe);
1571         u32 tmp;
1572
1573         assert_pipe_disabled(dev_priv, crtc->pipe);
1574
1575         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1576
1577         mutex_lock(&dev_priv->dpio_lock);
1578
1579         /* Enable back the 10bit clock to display controller */
1580         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1581         tmp |= DPIO_DCLKP_EN;
1582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         tmp = I915_READ(dpll);
1591         tmp |= DPLL_VCO_ENABLE;
1592         I915_WRITE(dpll, tmp);
1593
1594         /* Check PLL is locked */
1595         if (wait_for(((I915_READ(dpll) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1596                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1597
1598         /* Deassert soft data lane reset*/
1599         tmp = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
1600         tmp |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1601         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), tmp);
1602
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         int dpll = DPLL(pipe);
1696         u32 val;
1697
1698         /* Set PLL en = 0 */
1699         val = I915_READ(dpll);
1700         val &= ~DPLL_VCO_ENABLE;
1701         I915_WRITE(dpll, val);
1702
1703 }
1704
1705 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1706                 struct intel_digital_port *dport)
1707 {
1708         u32 port_mask;
1709         int dpll_reg;
1710
1711         switch (dport->port) {
1712         case PORT_B:
1713                 port_mask = DPLL_PORTB_READY_MASK;
1714                 dpll_reg = DPLL(0);
1715                 break;
1716         case PORT_C:
1717                 port_mask = DPLL_PORTC_READY_MASK;
1718                 dpll_reg = DPLL(0);
1719                 break;
1720         case PORT_D:
1721                 port_mask = DPLL_PORTD_READY_MASK;
1722                 dpll_reg = DPIO_PHY_STATUS;
1723                 break;
1724         default:
1725                 BUG();
1726         }
1727
1728         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1729                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1730                      port_name(dport->port), I915_READ(dpll_reg));
1731 }
1732
1733 /**
1734  * ironlake_enable_shared_dpll - enable PCH PLL
1735  * @dev_priv: i915 private structure
1736  * @pipe: pipe PLL to enable
1737  *
1738  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1739  * drives the transcoder clock.
1740  */
1741 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1742 {
1743         struct drm_device *dev = crtc->base.dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1746
1747         /* PCH PLLs only available on ILK, SNB and IVB */
1748         BUG_ON(INTEL_INFO(dev)->gen < 5);
1749         if (WARN_ON(pll == NULL))
1750                 return;
1751
1752         if (WARN_ON(pll->refcount == 0))
1753                 return;
1754
1755         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1756                       pll->name, pll->active, pll->on,
1757                       crtc->base.base.id);
1758
1759         if (pll->active++) {
1760                 WARN_ON(!pll->on);
1761                 assert_shared_dpll_enabled(dev_priv, pll);
1762                 return;
1763         }
1764         WARN_ON(pll->on);
1765
1766         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1767         pll->enable(dev_priv, pll);
1768         pll->on = true;
1769 }
1770
1771 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1772 {
1773         struct drm_device *dev = crtc->base.dev;
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1776
1777         /* PCH only available on ILK+ */
1778         BUG_ON(INTEL_INFO(dev)->gen < 5);
1779         if (WARN_ON(pll == NULL))
1780                return;
1781
1782         if (WARN_ON(pll->refcount == 0))
1783                 return;
1784
1785         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1786                       pll->name, pll->active, pll->on,
1787                       crtc->base.base.id);
1788
1789         if (WARN_ON(pll->active == 0)) {
1790                 assert_shared_dpll_disabled(dev_priv, pll);
1791                 return;
1792         }
1793
1794         assert_shared_dpll_enabled(dev_priv, pll);
1795         WARN_ON(!pll->on);
1796         if (--pll->active)
1797                 return;
1798
1799         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1800         pll->disable(dev_priv, pll);
1801         pll->on = false;
1802 }
1803
1804 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1805                                            enum pipe pipe)
1806 {
1807         struct drm_device *dev = dev_priv->dev;
1808         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810         uint32_t reg, val, pipeconf_val;
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814
1815         /* Make sure PCH DPLL is enabled */
1816         assert_shared_dpll_enabled(dev_priv,
1817                                    intel_crtc_to_shared_dpll(intel_crtc));
1818
1819         /* FDI must be feeding us bits for PCH ports */
1820         assert_fdi_tx_enabled(dev_priv, pipe);
1821         assert_fdi_rx_enabled(dev_priv, pipe);
1822
1823         if (HAS_PCH_CPT(dev)) {
1824                 /* Workaround: Set the timing override bit before enabling the
1825                  * pch transcoder. */
1826                 reg = TRANS_CHICKEN2(pipe);
1827                 val = I915_READ(reg);
1828                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1829                 I915_WRITE(reg, val);
1830         }
1831
1832         reg = PCH_TRANSCONF(pipe);
1833         val = I915_READ(reg);
1834         pipeconf_val = I915_READ(PIPECONF(pipe));
1835
1836         if (HAS_PCH_IBX(dev_priv->dev)) {
1837                 /*
1838                  * make the BPC in transcoder be consistent with
1839                  * that in pipeconf reg.
1840                  */
1841                 val &= ~PIPECONF_BPC_MASK;
1842                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1843         }
1844
1845         val &= ~TRANS_INTERLACE_MASK;
1846         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1847                 if (HAS_PCH_IBX(dev_priv->dev) &&
1848                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1849                         val |= TRANS_LEGACY_INTERLACED_ILK;
1850                 else
1851                         val |= TRANS_INTERLACED;
1852         else
1853                 val |= TRANS_PROGRESSIVE;
1854
1855         I915_WRITE(reg, val | TRANS_ENABLE);
1856         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1857                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1858 }
1859
1860 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1861                                       enum transcoder cpu_transcoder)
1862 {
1863         u32 val, pipeconf_val;
1864
1865         /* PCH only available on ILK+ */
1866         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1867
1868         /* FDI must be feeding us bits for PCH ports */
1869         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1870         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1871
1872         /* Workaround: set timing override bit. */
1873         val = I915_READ(_TRANSA_CHICKEN2);
1874         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875         I915_WRITE(_TRANSA_CHICKEN2, val);
1876
1877         val = TRANS_ENABLE;
1878         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1879
1880         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1881             PIPECONF_INTERLACED_ILK)
1882                 val |= TRANS_INTERLACED;
1883         else
1884                 val |= TRANS_PROGRESSIVE;
1885
1886         I915_WRITE(LPT_TRANSCONF, val);
1887         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1888                 DRM_ERROR("Failed to enable PCH transcoder\n");
1889 }
1890
1891 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1892                                             enum pipe pipe)
1893 {
1894         struct drm_device *dev = dev_priv->dev;
1895         uint32_t reg, val;
1896
1897         /* FDI relies on the transcoder */
1898         assert_fdi_tx_disabled(dev_priv, pipe);
1899         assert_fdi_rx_disabled(dev_priv, pipe);
1900
1901         /* Ports must be off as well */
1902         assert_pch_ports_disabled(dev_priv, pipe);
1903
1904         reg = PCH_TRANSCONF(pipe);
1905         val = I915_READ(reg);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(reg, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1910                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1911
1912         if (!HAS_PCH_IBX(dev)) {
1913                 /* Workaround: Clear the timing override chicken bit again. */
1914                 reg = TRANS_CHICKEN2(pipe);
1915                 val = I915_READ(reg);
1916                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                 I915_WRITE(reg, val);
1918         }
1919 }
1920
1921 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1922 {
1923         u32 val;
1924
1925         val = I915_READ(LPT_TRANSCONF);
1926         val &= ~TRANS_ENABLE;
1927         I915_WRITE(LPT_TRANSCONF, val);
1928         /* wait for PCH transcoder off, transcoder state */
1929         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1930                 DRM_ERROR("Failed to disable PCH transcoder\n");
1931
1932         /* Workaround: clear timing override bit. */
1933         val = I915_READ(_TRANSA_CHICKEN2);
1934         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1935         I915_WRITE(_TRANSA_CHICKEN2, val);
1936 }
1937
1938 /**
1939  * intel_enable_pipe - enable a pipe, asserting requirements
1940  * @crtc: crtc responsible for the pipe
1941  *
1942  * Enable @crtc's pipe, making sure that various hardware specific requirements
1943  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1944  */
1945 static void intel_enable_pipe(struct intel_crtc *crtc)
1946 {
1947         struct drm_device *dev = crtc->base.dev;
1948         struct drm_i915_private *dev_priv = dev->dev_private;
1949         enum pipe pipe = crtc->pipe;
1950         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1951                                                                       pipe);
1952         enum pipe pch_transcoder;
1953         int reg;
1954         u32 val;
1955
1956         assert_planes_disabled(dev_priv, pipe);
1957         assert_cursor_disabled(dev_priv, pipe);
1958         assert_sprites_disabled(dev_priv, pipe);
1959
1960         if (HAS_PCH_LPT(dev_priv->dev))
1961                 pch_transcoder = TRANSCODER_A;
1962         else
1963                 pch_transcoder = pipe;
1964
1965         /*
1966          * A pipe without a PLL won't actually be able to drive bits from
1967          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1968          * need the check.
1969          */
1970         if (!HAS_PCH_SPLIT(dev_priv->dev))
1971                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1972                         assert_dsi_pll_enabled(dev_priv);
1973                 else
1974                         assert_pll_enabled(dev_priv, pipe);
1975         else {
1976                 if (crtc->config.has_pch_encoder) {
1977                         /* if driving the PCH, we need FDI enabled */
1978                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1979                         assert_fdi_tx_pll_enabled(dev_priv,
1980                                                   (enum pipe) cpu_transcoder);
1981                 }
1982                 /* FIXME: assert CPU port conditions for SNB+ */
1983         }
1984
1985         reg = PIPECONF(cpu_transcoder);
1986         val = I915_READ(reg);
1987         if (val & PIPECONF_ENABLE) {
1988                 WARN_ON(!(pipe == PIPE_A &&
1989                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1990                 return;
1991         }
1992
1993         I915_WRITE(reg, val | PIPECONF_ENABLE);
1994         POSTING_READ(reg);
1995 }
1996
1997 /**
1998  * intel_disable_pipe - disable a pipe, asserting requirements
1999  * @dev_priv: i915 private structure
2000  * @pipe: pipe to disable
2001  *
2002  * Disable @pipe, making sure that various hardware specific requirements
2003  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2004  *
2005  * @pipe should be %PIPE_A or %PIPE_B.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2010                                enum pipe pipe)
2011 {
2012         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2013                                                                       pipe);
2014         int reg;
2015         u32 val;
2016
2017         /*
2018          * Make sure planes won't keep trying to pump pixels to us,
2019          * or we might hang the display.
2020          */
2021         assert_planes_disabled(dev_priv, pipe);
2022         assert_cursor_disabled(dev_priv, pipe);
2023         assert_sprites_disabled(dev_priv, pipe);
2024
2025         /* Don't disable pipe A or pipe A PLLs if needed */
2026         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2027                 return;
2028
2029         reg = PIPECONF(cpu_transcoder);
2030         val = I915_READ(reg);
2031         if ((val & PIPECONF_ENABLE) == 0)
2032                 return;
2033
2034         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2035         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2036 }
2037
2038 /*
2039  * Plane regs are double buffered, going from enabled->disabled needs a
2040  * trigger in order to latch.  The display address reg provides this.
2041  */
2042 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2043                                enum plane plane)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2047
2048         I915_WRITE(reg, I915_READ(reg));
2049         POSTING_READ(reg);
2050 }
2051
2052 /**
2053  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2054  * @dev_priv: i915 private structure
2055  * @plane: plane to enable
2056  * @pipe: pipe being fed
2057  *
2058  * Enable @plane on @pipe, making sure that @pipe is running first.
2059  */
2060 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2061                                           enum plane plane, enum pipe pipe)
2062 {
2063         struct intel_crtc *intel_crtc =
2064                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2065         int reg;
2066         u32 val;
2067
2068         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2069         assert_pipe_enabled(dev_priv, pipe);
2070
2071         if (intel_crtc->primary_enabled)
2072                 return;
2073
2074         intel_crtc->primary_enabled = true;
2075
2076         reg = DSPCNTR(plane);
2077         val = I915_READ(reg);
2078         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2079
2080         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2081         intel_flush_primary_plane(dev_priv, plane);
2082         intel_wait_for_vblank(dev_priv->dev, pipe);
2083 }
2084
2085 /**
2086  * intel_disable_primary_hw_plane - disable the primary hardware plane
2087  * @dev_priv: i915 private structure
2088  * @plane: plane to disable
2089  * @pipe: pipe consuming the data
2090  *
2091  * Disable @plane; should be an independent operation.
2092  */
2093 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2094                                            enum plane plane, enum pipe pipe)
2095 {
2096         struct intel_crtc *intel_crtc =
2097                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2098         int reg;
2099         u32 val;
2100
2101         if (!intel_crtc->primary_enabled)
2102                 return;
2103
2104         intel_crtc->primary_enabled = false;
2105
2106         reg = DSPCNTR(plane);
2107         val = I915_READ(reg);
2108         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2109
2110         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2111         intel_flush_primary_plane(dev_priv, plane);
2112         intel_wait_for_vblank(dev_priv->dev, pipe);
2113 }
2114
2115 static bool need_vtd_wa(struct drm_device *dev)
2116 {
2117 #ifdef CONFIG_INTEL_IOMMU
2118         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2119                 return true;
2120 #endif
2121         return false;
2122 }
2123
2124 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2125 {
2126         int tile_height;
2127
2128         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2129         return ALIGN(height, tile_height);
2130 }
2131
2132 int
2133 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2134                            struct drm_i915_gem_object *obj,
2135                            struct intel_ring_buffer *pipelined)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         u32 alignment;
2139         int ret;
2140
2141         switch (obj->tiling_mode) {
2142         case I915_TILING_NONE:
2143                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2144                         alignment = 128 * 1024;
2145                 else if (INTEL_INFO(dev)->gen >= 4)
2146                         alignment = 4 * 1024;
2147                 else
2148                         alignment = 64 * 1024;
2149                 break;
2150         case I915_TILING_X:
2151                 /* pin() will align the object as required by fence */
2152                 alignment = 0;
2153                 break;
2154         case I915_TILING_Y:
2155                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2156                 return -EINVAL;
2157         default:
2158                 BUG();
2159         }
2160
2161         /* Note that the w/a also requires 64 PTE of padding following the
2162          * bo. We currently fill all unused PTE with the shadow page and so
2163          * we should always have valid PTE following the scanout preventing
2164          * the VT-d warning.
2165          */
2166         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2167                 alignment = 256 * 1024;
2168
2169         dev_priv->mm.interruptible = false;
2170         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2171         if (ret)
2172                 goto err_interruptible;
2173
2174         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2175          * fence, whereas 965+ only requires a fence if using
2176          * framebuffer compression.  For simplicity, we always install
2177          * a fence as the cost is not that onerous.
2178          */
2179         ret = i915_gem_object_get_fence(obj);
2180         if (ret)
2181                 goto err_unpin;
2182
2183         i915_gem_object_pin_fence(obj);
2184
2185         dev_priv->mm.interruptible = true;
2186         return 0;
2187
2188 err_unpin:
2189         i915_gem_object_unpin_from_display_plane(obj);
2190 err_interruptible:
2191         dev_priv->mm.interruptible = true;
2192         return ret;
2193 }
2194
2195 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2196 {
2197         i915_gem_object_unpin_fence(obj);
2198         i915_gem_object_unpin_from_display_plane(obj);
2199 }
2200
2201 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2202  * is assumed to be a power-of-two. */
2203 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2204                                              unsigned int tiling_mode,
2205                                              unsigned int cpp,
2206                                              unsigned int pitch)
2207 {
2208         if (tiling_mode != I915_TILING_NONE) {
2209                 unsigned int tile_rows, tiles;
2210
2211                 tile_rows = *y / 8;
2212                 *y %= 8;
2213
2214                 tiles = *x / (512/cpp);
2215                 *x %= 512/cpp;
2216
2217                 return tile_rows * pitch * 8 + tiles * 4096;
2218         } else {
2219                 unsigned int offset;
2220
2221                 offset = *y * pitch + *x * cpp;
2222                 *y = 0;
2223                 *x = (offset & 4095) / cpp;
2224                 return offset & -4096;
2225         }
2226 }
2227
2228 int intel_format_to_fourcc(int format)
2229 {
2230         switch (format) {
2231         case DISPPLANE_8BPP:
2232                 return DRM_FORMAT_C8;
2233         case DISPPLANE_BGRX555:
2234                 return DRM_FORMAT_XRGB1555;
2235         case DISPPLANE_BGRX565:
2236                 return DRM_FORMAT_RGB565;
2237         default:
2238         case DISPPLANE_BGRX888:
2239                 return DRM_FORMAT_XRGB8888;
2240         case DISPPLANE_RGBX888:
2241                 return DRM_FORMAT_XBGR8888;
2242         case DISPPLANE_BGRX101010:
2243                 return DRM_FORMAT_XRGB2101010;
2244         case DISPPLANE_RGBX101010:
2245                 return DRM_FORMAT_XBGR2101010;
2246         }
2247 }
2248
2249 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2250                                   struct intel_plane_config *plane_config)
2251 {
2252         struct drm_device *dev = crtc->base.dev;
2253         struct drm_i915_gem_object *obj = NULL;
2254         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2255         u32 base = plane_config->base;
2256
2257         if (plane_config->size == 0)
2258                 return false;
2259
2260         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2261                                                              plane_config->size);
2262         if (!obj)
2263                 return false;
2264
2265         if (plane_config->tiled) {
2266                 obj->tiling_mode = I915_TILING_X;
2267                 obj->stride = crtc->base.primary->fb->pitches[0];
2268         }
2269
2270         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2271         mode_cmd.width = crtc->base.primary->fb->width;
2272         mode_cmd.height = crtc->base.primary->fb->height;
2273         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2274
2275         mutex_lock(&dev->struct_mutex);
2276
2277         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2278                                    &mode_cmd, obj)) {
2279                 DRM_DEBUG_KMS("intel fb init failed\n");
2280                 goto out_unref_obj;
2281         }
2282
2283         mutex_unlock(&dev->struct_mutex);
2284
2285         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2286         return true;
2287
2288 out_unref_obj:
2289         drm_gem_object_unreference(&obj->base);
2290         mutex_unlock(&dev->struct_mutex);
2291         return false;
2292 }
2293
2294 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2295                                  struct intel_plane_config *plane_config)
2296 {
2297         struct drm_device *dev = intel_crtc->base.dev;
2298         struct drm_crtc *c;
2299         struct intel_crtc *i;
2300         struct intel_framebuffer *fb;
2301
2302         if (!intel_crtc->base.primary->fb)
2303                 return;
2304
2305         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2306                 return;
2307
2308         kfree(intel_crtc->base.primary->fb);
2309         intel_crtc->base.primary->fb = NULL;
2310
2311         /*
2312          * Failed to alloc the obj, check to see if we should share
2313          * an fb with another CRTC instead
2314          */
2315         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2316                 i = to_intel_crtc(c);
2317
2318                 if (c == &intel_crtc->base)
2319                         continue;
2320
2321                 if (!i->active || !c->primary->fb)
2322                         continue;
2323
2324                 fb = to_intel_framebuffer(c->primary->fb);
2325                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2326                         drm_framebuffer_reference(c->primary->fb);
2327                         intel_crtc->base.primary->fb = c->primary->fb;
2328                         break;
2329                 }
2330         }
2331 }
2332
2333 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2334                                      struct drm_framebuffer *fb,
2335                                      int x, int y)
2336 {
2337         struct drm_device *dev = crtc->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2340         struct intel_framebuffer *intel_fb;
2341         struct drm_i915_gem_object *obj;
2342         int plane = intel_crtc->plane;
2343         unsigned long linear_offset;
2344         u32 dspcntr;
2345         u32 reg;
2346
2347         intel_fb = to_intel_framebuffer(fb);
2348         obj = intel_fb->obj;
2349
2350         reg = DSPCNTR(plane);
2351         dspcntr = I915_READ(reg);
2352         /* Mask out pixel format bits in case we change it */
2353         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2354         switch (fb->pixel_format) {
2355         case DRM_FORMAT_C8:
2356                 dspcntr |= DISPPLANE_8BPP;
2357                 break;
2358         case DRM_FORMAT_XRGB1555:
2359         case DRM_FORMAT_ARGB1555:
2360                 dspcntr |= DISPPLANE_BGRX555;
2361                 break;
2362         case DRM_FORMAT_RGB565:
2363                 dspcntr |= DISPPLANE_BGRX565;
2364                 break;
2365         case DRM_FORMAT_XRGB8888:
2366         case DRM_FORMAT_ARGB8888:
2367                 dspcntr |= DISPPLANE_BGRX888;
2368                 break;
2369         case DRM_FORMAT_XBGR8888:
2370         case DRM_FORMAT_ABGR8888:
2371                 dspcntr |= DISPPLANE_RGBX888;
2372                 break;
2373         case DRM_FORMAT_XRGB2101010:
2374         case DRM_FORMAT_ARGB2101010:
2375                 dspcntr |= DISPPLANE_BGRX101010;
2376                 break;
2377         case DRM_FORMAT_XBGR2101010:
2378         case DRM_FORMAT_ABGR2101010:
2379                 dspcntr |= DISPPLANE_RGBX101010;
2380                 break;
2381         default:
2382                 BUG();
2383         }
2384
2385         if (INTEL_INFO(dev)->gen >= 4) {
2386                 if (obj->tiling_mode != I915_TILING_NONE)
2387                         dspcntr |= DISPPLANE_TILED;
2388                 else
2389                         dspcntr &= ~DISPPLANE_TILED;
2390         }
2391
2392         if (IS_G4X(dev))
2393                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2394
2395         I915_WRITE(reg, dspcntr);
2396
2397         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2398
2399         if (INTEL_INFO(dev)->gen >= 4) {
2400                 intel_crtc->dspaddr_offset =
2401                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2402                                                        fb->bits_per_pixel / 8,
2403                                                        fb->pitches[0]);
2404                 linear_offset -= intel_crtc->dspaddr_offset;
2405         } else {
2406                 intel_crtc->dspaddr_offset = linear_offset;
2407         }
2408
2409         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2410                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2411                       fb->pitches[0]);
2412         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2413         if (INTEL_INFO(dev)->gen >= 4) {
2414                 I915_WRITE(DSPSURF(plane),
2415                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2416                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2417                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2418         } else
2419                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2420         POSTING_READ(reg);
2421
2422         return 0;
2423 }
2424
2425 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2426                                          struct drm_framebuffer *fb,
2427                                          int x, int y)
2428 {
2429         struct drm_device *dev = crtc->dev;
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2432         struct intel_framebuffer *intel_fb;
2433         struct drm_i915_gem_object *obj;
2434         int plane = intel_crtc->plane;
2435         unsigned long linear_offset;
2436         u32 dspcntr;
2437         u32 reg;
2438
2439         intel_fb = to_intel_framebuffer(fb);
2440         obj = intel_fb->obj;
2441
2442         reg = DSPCNTR(plane);
2443         dspcntr = I915_READ(reg);
2444         /* Mask out pixel format bits in case we change it */
2445         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2446         switch (fb->pixel_format) {
2447         case DRM_FORMAT_C8:
2448                 dspcntr |= DISPPLANE_8BPP;
2449                 break;
2450         case DRM_FORMAT_RGB565:
2451                 dspcntr |= DISPPLANE_BGRX565;
2452                 break;
2453         case DRM_FORMAT_XRGB8888:
2454         case DRM_FORMAT_ARGB8888:
2455                 dspcntr |= DISPPLANE_BGRX888;
2456                 break;
2457         case DRM_FORMAT_XBGR8888:
2458         case DRM_FORMAT_ABGR8888:
2459                 dspcntr |= DISPPLANE_RGBX888;
2460                 break;
2461         case DRM_FORMAT_XRGB2101010:
2462         case DRM_FORMAT_ARGB2101010:
2463                 dspcntr |= DISPPLANE_BGRX101010;
2464                 break;
2465         case DRM_FORMAT_XBGR2101010:
2466         case DRM_FORMAT_ABGR2101010:
2467                 dspcntr |= DISPPLANE_RGBX101010;
2468                 break;
2469         default:
2470                 BUG();
2471         }
2472
2473         if (obj->tiling_mode != I915_TILING_NONE)
2474                 dspcntr |= DISPPLANE_TILED;
2475         else
2476                 dspcntr &= ~DISPPLANE_TILED;
2477
2478         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2479                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2480         else
2481                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2482
2483         I915_WRITE(reg, dspcntr);
2484
2485         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2486         intel_crtc->dspaddr_offset =
2487                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2488                                                fb->bits_per_pixel / 8,
2489                                                fb->pitches[0]);
2490         linear_offset -= intel_crtc->dspaddr_offset;
2491
2492         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2493                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2494                       fb->pitches[0]);
2495         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2496         I915_WRITE(DSPSURF(plane),
2497                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2498         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2499                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2500         } else {
2501                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2502                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2503         }
2504         POSTING_READ(reg);
2505
2506         return 0;
2507 }
2508
2509 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2510 static int
2511 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2512                            int x, int y, enum mode_set_atomic state)
2513 {
2514         struct drm_device *dev = crtc->dev;
2515         struct drm_i915_private *dev_priv = dev->dev_private;
2516
2517         if (dev_priv->display.disable_fbc)
2518                 dev_priv->display.disable_fbc(dev);
2519         intel_increase_pllclock(crtc);
2520
2521         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522 }
2523
2524 void intel_display_handle_reset(struct drm_device *dev)
2525 {
2526         struct drm_i915_private *dev_priv = dev->dev_private;
2527         struct drm_crtc *crtc;
2528
2529         /*
2530          * Flips in the rings have been nuked by the reset,
2531          * so complete all pending flips so that user space
2532          * will get its events and not get stuck.
2533          *
2534          * Also update the base address of all primary
2535          * planes to the the last fb to make sure we're
2536          * showing the correct fb after a reset.
2537          *
2538          * Need to make two loops over the crtcs so that we
2539          * don't try to grab a crtc mutex before the
2540          * pending_flip_queue really got woken up.
2541          */
2542
2543         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2544                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2545                 enum plane plane = intel_crtc->plane;
2546
2547                 intel_prepare_page_flip(dev, plane);
2548                 intel_finish_page_flip_plane(dev, plane);
2549         }
2550
2551         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2552                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2553
2554                 mutex_lock(&crtc->mutex);
2555                 /*
2556                  * FIXME: Once we have proper support for primary planes (and
2557                  * disabling them without disabling the entire crtc) allow again
2558                  * a NULL crtc->primary->fb.
2559                  */
2560                 if (intel_crtc->active && crtc->primary->fb)
2561                         dev_priv->display.update_primary_plane(crtc,
2562                                                                crtc->primary->fb,
2563                                                                crtc->x,
2564                                                                crtc->y);
2565                 mutex_unlock(&crtc->mutex);
2566         }
2567 }
2568
2569 static int
2570 intel_finish_fb(struct drm_framebuffer *old_fb)
2571 {
2572         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2573         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2574         bool was_interruptible = dev_priv->mm.interruptible;
2575         int ret;
2576
2577         /* Big Hammer, we also need to ensure that any pending
2578          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2579          * current scanout is retired before unpinning the old
2580          * framebuffer.
2581          *
2582          * This should only fail upon a hung GPU, in which case we
2583          * can safely continue.
2584          */
2585         dev_priv->mm.interruptible = false;
2586         ret = i915_gem_object_finish_gpu(obj);
2587         dev_priv->mm.interruptible = was_interruptible;
2588
2589         return ret;
2590 }
2591
2592 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2593 {
2594         struct drm_device *dev = crtc->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         unsigned long flags;
2598         bool pending;
2599
2600         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2601             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2602                 return false;
2603
2604         spin_lock_irqsave(&dev->event_lock, flags);
2605         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2606         spin_unlock_irqrestore(&dev->event_lock, flags);
2607
2608         return pending;
2609 }
2610
2611 static int
2612 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2613                     struct drm_framebuffer *fb)
2614 {
2615         struct drm_device *dev = crtc->dev;
2616         struct drm_i915_private *dev_priv = dev->dev_private;
2617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2618         struct drm_framebuffer *old_fb;
2619         int ret;
2620
2621         if (intel_crtc_has_pending_flip(crtc)) {
2622                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2623                 return -EBUSY;
2624         }
2625
2626         /* no fb bound */
2627         if (!fb) {
2628                 DRM_ERROR("No FB bound\n");
2629                 return 0;
2630         }
2631
2632         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2633                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2634                           plane_name(intel_crtc->plane),
2635                           INTEL_INFO(dev)->num_pipes);
2636                 return -EINVAL;
2637         }
2638
2639         mutex_lock(&dev->struct_mutex);
2640         ret = intel_pin_and_fence_fb_obj(dev,
2641                                          to_intel_framebuffer(fb)->obj,
2642                                          NULL);
2643         mutex_unlock(&dev->struct_mutex);
2644         if (ret != 0) {
2645                 DRM_ERROR("pin & fence failed\n");
2646                 return ret;
2647         }
2648
2649         /*
2650          * Update pipe size and adjust fitter if needed: the reason for this is
2651          * that in compute_mode_changes we check the native mode (not the pfit
2652          * mode) to see if we can flip rather than do a full mode set. In the
2653          * fastboot case, we'll flip, but if we don't update the pipesrc and
2654          * pfit state, we'll end up with a big fb scanned out into the wrong
2655          * sized surface.
2656          *
2657          * To fix this properly, we need to hoist the checks up into
2658          * compute_mode_changes (or above), check the actual pfit state and
2659          * whether the platform allows pfit disable with pipe active, and only
2660          * then update the pipesrc and pfit state, even on the flip path.
2661          */
2662         if (i915.fastboot) {
2663                 const struct drm_display_mode *adjusted_mode =
2664                         &intel_crtc->config.adjusted_mode;
2665
2666                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2667                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2668                            (adjusted_mode->crtc_vdisplay - 1));
2669                 if (!intel_crtc->config.pch_pfit.enabled &&
2670                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2671                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2672                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2673                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2674                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2675                 }
2676                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2677                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2678         }
2679
2680         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2681         if (ret) {
2682                 mutex_lock(&dev->struct_mutex);
2683                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2684                 mutex_unlock(&dev->struct_mutex);
2685                 DRM_ERROR("failed to update base address\n");
2686                 return ret;
2687         }
2688
2689         old_fb = crtc->primary->fb;
2690         crtc->primary->fb = fb;
2691         crtc->x = x;
2692         crtc->y = y;
2693
2694         if (old_fb) {
2695                 if (intel_crtc->active && old_fb != fb)
2696                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2697                 mutex_lock(&dev->struct_mutex);
2698                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2699                 mutex_unlock(&dev->struct_mutex);
2700         }
2701
2702         mutex_lock(&dev->struct_mutex);
2703         intel_update_fbc(dev);
2704         intel_edp_psr_update(dev);
2705         mutex_unlock(&dev->struct_mutex);
2706
2707         return 0;
2708 }
2709
2710 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2711 {
2712         struct drm_device *dev = crtc->dev;
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2715         int pipe = intel_crtc->pipe;
2716         u32 reg, temp;
2717
2718         /* enable normal train */
2719         reg = FDI_TX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         if (IS_IVYBRIDGE(dev)) {
2722                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2723                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2724         } else {
2725                 temp &= ~FDI_LINK_TRAIN_NONE;
2726                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2727         }
2728         I915_WRITE(reg, temp);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         if (HAS_PCH_CPT(dev)) {
2733                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2734                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2735         } else {
2736                 temp &= ~FDI_LINK_TRAIN_NONE;
2737                 temp |= FDI_LINK_TRAIN_NONE;
2738         }
2739         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2740
2741         /* wait one idle pattern time */
2742         POSTING_READ(reg);
2743         udelay(1000);
2744
2745         /* IVB wants error correction enabled */
2746         if (IS_IVYBRIDGE(dev))
2747                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2748                            FDI_FE_ERRC_ENABLE);
2749 }
2750
2751 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2752 {
2753         return crtc->base.enabled && crtc->active &&
2754                 crtc->config.has_pch_encoder;
2755 }
2756
2757 static void ivb_modeset_global_resources(struct drm_device *dev)
2758 {
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         struct intel_crtc *pipe_B_crtc =
2761                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2762         struct intel_crtc *pipe_C_crtc =
2763                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2764         uint32_t temp;
2765
2766         /*
2767          * When everything is off disable fdi C so that we could enable fdi B
2768          * with all lanes. Note that we don't care about enabled pipes without
2769          * an enabled pch encoder.
2770          */
2771         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2772             !pipe_has_enabled_pch(pipe_C_crtc)) {
2773                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2774                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2775
2776                 temp = I915_READ(SOUTH_CHICKEN1);
2777                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2778                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2779                 I915_WRITE(SOUTH_CHICKEN1, temp);
2780         }
2781 }
2782
2783 /* The FDI link training functions for ILK/Ibexpeak. */
2784 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2785 {
2786         struct drm_device *dev = crtc->dev;
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789         int pipe = intel_crtc->pipe;
2790         u32 reg, temp, tries;
2791
2792         /* FDI needs bits from pipe first */
2793         assert_pipe_enabled(dev_priv, pipe);
2794
2795         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2796            for train result */
2797         reg = FDI_RX_IMR(pipe);
2798         temp = I915_READ(reg);
2799         temp &= ~FDI_RX_SYMBOL_LOCK;
2800         temp &= ~FDI_RX_BIT_LOCK;
2801         I915_WRITE(reg, temp);
2802         I915_READ(reg);
2803         udelay(150);
2804
2805         /* enable CPU FDI TX and PCH FDI RX */
2806         reg = FDI_TX_CTL(pipe);
2807         temp = I915_READ(reg);
2808         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2809         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2810         temp &= ~FDI_LINK_TRAIN_NONE;
2811         temp |= FDI_LINK_TRAIN_PATTERN_1;
2812         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         temp &= ~FDI_LINK_TRAIN_NONE;
2817         temp |= FDI_LINK_TRAIN_PATTERN_1;
2818         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2819
2820         POSTING_READ(reg);
2821         udelay(150);
2822
2823         /* Ironlake workaround, enable clock pointer after FDI enable*/
2824         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2825         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2826                    FDI_RX_PHASE_SYNC_POINTER_EN);
2827
2828         reg = FDI_RX_IIR(pipe);
2829         for (tries = 0; tries < 5; tries++) {
2830                 temp = I915_READ(reg);
2831                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2832
2833                 if ((temp & FDI_RX_BIT_LOCK)) {
2834                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2835                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2836                         break;
2837                 }
2838         }
2839         if (tries == 5)
2840                 DRM_ERROR("FDI train 1 fail!\n");
2841
2842         /* Train 2 */
2843         reg = FDI_TX_CTL(pipe);
2844         temp = I915_READ(reg);
2845         temp &= ~FDI_LINK_TRAIN_NONE;
2846         temp |= FDI_LINK_TRAIN_PATTERN_2;
2847         I915_WRITE(reg, temp);
2848
2849         reg = FDI_RX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         temp &= ~FDI_LINK_TRAIN_NONE;
2852         temp |= FDI_LINK_TRAIN_PATTERN_2;
2853         I915_WRITE(reg, temp);
2854
2855         POSTING_READ(reg);
2856         udelay(150);
2857
2858         reg = FDI_RX_IIR(pipe);
2859         for (tries = 0; tries < 5; tries++) {
2860                 temp = I915_READ(reg);
2861                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2862
2863                 if (temp & FDI_RX_SYMBOL_LOCK) {
2864                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2865                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2866                         break;
2867                 }
2868         }
2869         if (tries == 5)
2870                 DRM_ERROR("FDI train 2 fail!\n");
2871
2872         DRM_DEBUG_KMS("FDI train done\n");
2873
2874 }
2875
2876 static const int snb_b_fdi_train_param[] = {
2877         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2878         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2879         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2880         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2881 };
2882
2883 /* The FDI link training functions for SNB/Cougarpoint. */
2884 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2885 {
2886         struct drm_device *dev = crtc->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2889         int pipe = intel_crtc->pipe;
2890         u32 reg, temp, i, retry;
2891
2892         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2893            for train result */
2894         reg = FDI_RX_IMR(pipe);
2895         temp = I915_READ(reg);
2896         temp &= ~FDI_RX_SYMBOL_LOCK;
2897         temp &= ~FDI_RX_BIT_LOCK;
2898         I915_WRITE(reg, temp);
2899
2900         POSTING_READ(reg);
2901         udelay(150);
2902
2903         /* enable CPU FDI TX and PCH FDI RX */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2907         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2908         temp &= ~FDI_LINK_TRAIN_NONE;
2909         temp |= FDI_LINK_TRAIN_PATTERN_1;
2910         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2911         /* SNB-B */
2912         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2913         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2914
2915         I915_WRITE(FDI_RX_MISC(pipe),
2916                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2917
2918         reg = FDI_RX_CTL(pipe);
2919         temp = I915_READ(reg);
2920         if (HAS_PCH_CPT(dev)) {
2921                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2922                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2923         } else {
2924                 temp &= ~FDI_LINK_TRAIN_NONE;
2925                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2926         }
2927         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2928
2929         POSTING_READ(reg);
2930         udelay(150);
2931
2932         for (i = 0; i < 4; i++) {
2933                 reg = FDI_TX_CTL(pipe);
2934                 temp = I915_READ(reg);
2935                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2936                 temp |= snb_b_fdi_train_param[i];
2937                 I915_WRITE(reg, temp);
2938
2939                 POSTING_READ(reg);
2940                 udelay(500);
2941
2942                 for (retry = 0; retry < 5; retry++) {
2943                         reg = FDI_RX_IIR(pipe);
2944                         temp = I915_READ(reg);
2945                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2946                         if (temp & FDI_RX_BIT_LOCK) {
2947                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2948                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2949                                 break;
2950                         }
2951                         udelay(50);
2952                 }
2953                 if (retry < 5)
2954                         break;
2955         }
2956         if (i == 4)
2957                 DRM_ERROR("FDI train 1 fail!\n");
2958
2959         /* Train 2 */
2960         reg = FDI_TX_CTL(pipe);
2961         temp = I915_READ(reg);
2962         temp &= ~FDI_LINK_TRAIN_NONE;
2963         temp |= FDI_LINK_TRAIN_PATTERN_2;
2964         if (IS_GEN6(dev)) {
2965                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2966                 /* SNB-B */
2967                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2968         }
2969         I915_WRITE(reg, temp);
2970
2971         reg = FDI_RX_CTL(pipe);
2972         temp = I915_READ(reg);
2973         if (HAS_PCH_CPT(dev)) {
2974                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2975                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2976         } else {
2977                 temp &= ~FDI_LINK_TRAIN_NONE;
2978                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2979         }
2980         I915_WRITE(reg, temp);
2981
2982         POSTING_READ(reg);
2983         udelay(150);
2984
2985         for (i = 0; i < 4; i++) {
2986                 reg = FDI_TX_CTL(pipe);
2987                 temp = I915_READ(reg);
2988                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2989                 temp |= snb_b_fdi_train_param[i];
2990                 I915_WRITE(reg, temp);
2991
2992                 POSTING_READ(reg);
2993                 udelay(500);
2994
2995                 for (retry = 0; retry < 5; retry++) {
2996                         reg = FDI_RX_IIR(pipe);
2997                         temp = I915_READ(reg);
2998                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2999                         if (temp & FDI_RX_SYMBOL_LOCK) {
3000                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3001                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3002                                 break;
3003                         }
3004                         udelay(50);
3005                 }
3006                 if (retry < 5)
3007                         break;
3008         }
3009         if (i == 4)
3010                 DRM_ERROR("FDI train 2 fail!\n");
3011
3012         DRM_DEBUG_KMS("FDI train done.\n");
3013 }
3014
3015 /* Manual link training for Ivy Bridge A0 parts */
3016 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3017 {
3018         struct drm_device *dev = crtc->dev;
3019         struct drm_i915_private *dev_priv = dev->dev_private;
3020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3021         int pipe = intel_crtc->pipe;
3022         u32 reg, temp, i, j;
3023
3024         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3025            for train result */
3026         reg = FDI_RX_IMR(pipe);
3027         temp = I915_READ(reg);
3028         temp &= ~FDI_RX_SYMBOL_LOCK;
3029         temp &= ~FDI_RX_BIT_LOCK;
3030         I915_WRITE(reg, temp);
3031
3032         POSTING_READ(reg);
3033         udelay(150);
3034
3035         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3036                       I915_READ(FDI_RX_IIR(pipe)));
3037
3038         /* Try each vswing and preemphasis setting twice before moving on */
3039         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3040                 /* disable first in case we need to retry */
3041                 reg = FDI_TX_CTL(pipe);
3042                 temp = I915_READ(reg);
3043                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3044                 temp &= ~FDI_TX_ENABLE;
3045                 I915_WRITE(reg, temp);
3046
3047                 reg = FDI_RX_CTL(pipe);
3048                 temp = I915_READ(reg);
3049                 temp &= ~FDI_LINK_TRAIN_AUTO;
3050                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3051                 temp &= ~FDI_RX_ENABLE;
3052                 I915_WRITE(reg, temp);
3053
3054                 /* enable CPU FDI TX and PCH FDI RX */
3055                 reg = FDI_TX_CTL(pipe);
3056                 temp = I915_READ(reg);
3057                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3059                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3060                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3061                 temp |= snb_b_fdi_train_param[j/2];
3062                 temp |= FDI_COMPOSITE_SYNC;
3063                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3064
3065                 I915_WRITE(FDI_RX_MISC(pipe),
3066                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3067
3068                 reg = FDI_RX_CTL(pipe);
3069                 temp = I915_READ(reg);
3070                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3071                 temp |= FDI_COMPOSITE_SYNC;
3072                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3073
3074                 POSTING_READ(reg);
3075                 udelay(1); /* should be 0.5us */
3076
3077                 for (i = 0; i < 4; i++) {
3078                         reg = FDI_RX_IIR(pipe);
3079                         temp = I915_READ(reg);
3080                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082                         if (temp & FDI_RX_BIT_LOCK ||
3083                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3084                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3085                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3086                                               i);
3087                                 break;
3088                         }
3089                         udelay(1); /* should be 0.5us */
3090                 }
3091                 if (i == 4) {
3092                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3093                         continue;
3094                 }
3095
3096                 /* Train 2 */
3097                 reg = FDI_TX_CTL(pipe);
3098                 temp = I915_READ(reg);
3099                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3100                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3101                 I915_WRITE(reg, temp);
3102
3103                 reg = FDI_RX_CTL(pipe);
3104                 temp = I915_READ(reg);
3105                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3106                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3107                 I915_WRITE(reg, temp);
3108
3109                 POSTING_READ(reg);
3110                 udelay(2); /* should be 1.5us */
3111
3112                 for (i = 0; i < 4; i++) {
3113                         reg = FDI_RX_IIR(pipe);
3114                         temp = I915_READ(reg);
3115                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3116
3117                         if (temp & FDI_RX_SYMBOL_LOCK ||
3118                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3119                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3120                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3121                                               i);
3122                                 goto train_done;
3123                         }
3124                         udelay(2); /* should be 1.5us */
3125                 }
3126                 if (i == 4)
3127                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3128         }
3129
3130 train_done:
3131         DRM_DEBUG_KMS("FDI train done.\n");
3132 }
3133
3134 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3135 {
3136         struct drm_device *dev = intel_crtc->base.dev;
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138         int pipe = intel_crtc->pipe;
3139         u32 reg, temp;
3140
3141
3142         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3143         reg = FDI_RX_CTL(pipe);
3144         temp = I915_READ(reg);
3145         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3146         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3147         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3148         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3149
3150         POSTING_READ(reg);
3151         udelay(200);
3152
3153         /* Switch from Rawclk to PCDclk */
3154         temp = I915_READ(reg);
3155         I915_WRITE(reg, temp | FDI_PCDCLK);
3156
3157         POSTING_READ(reg);
3158         udelay(200);
3159
3160         /* Enable CPU FDI TX PLL, always on for Ironlake */
3161         reg = FDI_TX_CTL(pipe);
3162         temp = I915_READ(reg);
3163         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3164                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3165
3166                 POSTING_READ(reg);
3167                 udelay(100);
3168         }
3169 }
3170
3171 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3172 {
3173         struct drm_device *dev = intel_crtc->base.dev;
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         int pipe = intel_crtc->pipe;
3176         u32 reg, temp;
3177
3178         /* Switch from PCDclk to Rawclk */
3179         reg = FDI_RX_CTL(pipe);
3180         temp = I915_READ(reg);
3181         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3182
3183         /* Disable CPU FDI TX PLL */
3184         reg = FDI_TX_CTL(pipe);
3185         temp = I915_READ(reg);
3186         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3187
3188         POSTING_READ(reg);
3189         udelay(100);
3190
3191         reg = FDI_RX_CTL(pipe);
3192         temp = I915_READ(reg);
3193         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3194
3195         /* Wait for the clocks to turn off. */
3196         POSTING_READ(reg);
3197         udelay(100);
3198 }
3199
3200 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3201 {
3202         struct drm_device *dev = crtc->dev;
3203         struct drm_i915_private *dev_priv = dev->dev_private;
3204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3205         int pipe = intel_crtc->pipe;
3206         u32 reg, temp;
3207
3208         /* disable CPU FDI tx and PCH FDI rx */
3209         reg = FDI_TX_CTL(pipe);
3210         temp = I915_READ(reg);
3211         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3212         POSTING_READ(reg);
3213
3214         reg = FDI_RX_CTL(pipe);
3215         temp = I915_READ(reg);
3216         temp &= ~(0x7 << 16);
3217         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3218         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3219
3220         POSTING_READ(reg);
3221         udelay(100);
3222
3223         /* Ironlake workaround, disable clock pointer after downing FDI */
3224         if (HAS_PCH_IBX(dev)) {
3225                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3226         }
3227
3228         /* still set train pattern 1 */
3229         reg = FDI_TX_CTL(pipe);
3230         temp = I915_READ(reg);
3231         temp &= ~FDI_LINK_TRAIN_NONE;
3232         temp |= FDI_LINK_TRAIN_PATTERN_1;
3233         I915_WRITE(reg, temp);
3234
3235         reg = FDI_RX_CTL(pipe);
3236         temp = I915_READ(reg);
3237         if (HAS_PCH_CPT(dev)) {
3238                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3239                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3240         } else {
3241                 temp &= ~FDI_LINK_TRAIN_NONE;
3242                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3243         }
3244         /* BPC in FDI rx is consistent with that in PIPECONF */
3245         temp &= ~(0x07 << 16);
3246         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3247         I915_WRITE(reg, temp);
3248
3249         POSTING_READ(reg);
3250         udelay(100);
3251 }
3252
3253 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3254 {
3255         struct intel_crtc *crtc;
3256
3257         /* Note that we don't need to be called with mode_config.lock here
3258          * as our list of CRTC objects is static for the lifetime of the
3259          * device and so cannot disappear as we iterate. Similarly, we can
3260          * happily treat the predicates as racy, atomic checks as userspace
3261          * cannot claim and pin a new fb without at least acquring the
3262          * struct_mutex and so serialising with us.
3263          */
3264         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3265                 if (atomic_read(&crtc->unpin_work_count) == 0)
3266                         continue;
3267
3268                 if (crtc->unpin_work)
3269                         intel_wait_for_vblank(dev, crtc->pipe);
3270
3271                 return true;
3272         }
3273
3274         return false;
3275 }
3276
3277 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3278 {
3279         struct drm_device *dev = crtc->dev;
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281
3282         if (crtc->primary->fb == NULL)
3283                 return;
3284
3285         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3286
3287         wait_event(dev_priv->pending_flip_queue,
3288                    !intel_crtc_has_pending_flip(crtc));
3289
3290         mutex_lock(&dev->struct_mutex);
3291         intel_finish_fb(crtc->primary->fb);
3292         mutex_unlock(&dev->struct_mutex);
3293 }
3294
3295 /* Program iCLKIP clock to the desired frequency */
3296 static void lpt_program_iclkip(struct drm_crtc *crtc)
3297 {
3298         struct drm_device *dev = crtc->dev;
3299         struct drm_i915_private *dev_priv = dev->dev_private;
3300         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3301         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3302         u32 temp;
3303
3304         mutex_lock(&dev_priv->dpio_lock);
3305
3306         /* It is necessary to ungate the pixclk gate prior to programming
3307          * the divisors, and gate it back when it is done.
3308          */
3309         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3310
3311         /* Disable SSCCTL */
3312         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3313                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3314                                 SBI_SSCCTL_DISABLE,
3315                         SBI_ICLK);
3316
3317         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3318         if (clock == 20000) {
3319                 auxdiv = 1;
3320                 divsel = 0x41;
3321                 phaseinc = 0x20;
3322         } else {
3323                 /* The iCLK virtual clock root frequency is in MHz,
3324                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3325                  * divisors, it is necessary to divide one by another, so we
3326                  * convert the virtual clock precision to KHz here for higher
3327                  * precision.
3328                  */
3329                 u32 iclk_virtual_root_freq = 172800 * 1000;
3330                 u32 iclk_pi_range = 64;
3331                 u32 desired_divisor, msb_divisor_value, pi_value;
3332
3333                 desired_divisor = (iclk_virtual_root_freq / clock);
3334                 msb_divisor_value = desired_divisor / iclk_pi_range;
3335                 pi_value = desired_divisor % iclk_pi_range;
3336
3337                 auxdiv = 0;
3338                 divsel = msb_divisor_value - 2;
3339                 phaseinc = pi_value;
3340         }
3341
3342         /* This should not happen with any sane values */
3343         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3344                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3345         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3346                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3347
3348         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3349                         clock,
3350                         auxdiv,
3351                         divsel,
3352                         phasedir,
3353                         phaseinc);
3354
3355         /* Program SSCDIVINTPHASE6 */
3356         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3357         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3358         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3359         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3360         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3361         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3362         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3363         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3364
3365         /* Program SSCAUXDIV */
3366         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3367         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3368         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3369         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3370
3371         /* Enable modulator and associated divider */
3372         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3373         temp &= ~SBI_SSCCTL_DISABLE;
3374         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3375
3376         /* Wait for initialization time */
3377         udelay(24);
3378
3379         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3380
3381         mutex_unlock(&dev_priv->dpio_lock);
3382 }
3383
3384 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3385                                                 enum pipe pch_transcoder)
3386 {
3387         struct drm_device *dev = crtc->base.dev;
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3390
3391         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3392                    I915_READ(HTOTAL(cpu_transcoder)));
3393         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3394                    I915_READ(HBLANK(cpu_transcoder)));
3395         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3396                    I915_READ(HSYNC(cpu_transcoder)));
3397
3398         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3399                    I915_READ(VTOTAL(cpu_transcoder)));
3400         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3401                    I915_READ(VBLANK(cpu_transcoder)));
3402         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3403                    I915_READ(VSYNC(cpu_transcoder)));
3404         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3405                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3406 }
3407
3408 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411         uint32_t temp;
3412
3413         temp = I915_READ(SOUTH_CHICKEN1);
3414         if (temp & FDI_BC_BIFURCATION_SELECT)
3415                 return;
3416
3417         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3418         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3419
3420         temp |= FDI_BC_BIFURCATION_SELECT;
3421         DRM_DEBUG_KMS("enabling fdi C rx\n");
3422         I915_WRITE(SOUTH_CHICKEN1, temp);
3423         POSTING_READ(SOUTH_CHICKEN1);
3424 }
3425
3426 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3427 {
3428         struct drm_device *dev = intel_crtc->base.dev;
3429         struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431         switch (intel_crtc->pipe) {
3432         case PIPE_A:
3433                 break;
3434         case PIPE_B:
3435                 if (intel_crtc->config.fdi_lanes > 2)
3436                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3437                 else
3438                         cpt_enable_fdi_bc_bifurcation(dev);
3439
3440                 break;
3441         case PIPE_C:
3442                 cpt_enable_fdi_bc_bifurcation(dev);
3443
3444                 break;
3445         default:
3446                 BUG();
3447         }
3448 }
3449
3450 /*
3451  * Enable PCH resources required for PCH ports:
3452  *   - PCH PLLs
3453  *   - FDI training & RX/TX
3454  *   - update transcoder timings
3455  *   - DP transcoding bits
3456  *   - transcoder
3457  */
3458 static void ironlake_pch_enable(struct drm_crtc *crtc)
3459 {
3460         struct drm_device *dev = crtc->dev;
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3463         int pipe = intel_crtc->pipe;
3464         u32 reg, temp;
3465
3466         assert_pch_transcoder_disabled(dev_priv, pipe);
3467
3468         if (IS_IVYBRIDGE(dev))
3469                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3470
3471         /* Write the TU size bits before fdi link training, so that error
3472          * detection works. */
3473         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3474                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3475
3476         /* For PCH output, training FDI link */
3477         dev_priv->display.fdi_link_train(crtc);
3478
3479         /* We need to program the right clock selection before writing the pixel
3480          * mutliplier into the DPLL. */
3481         if (HAS_PCH_CPT(dev)) {
3482                 u32 sel;
3483
3484                 temp = I915_READ(PCH_DPLL_SEL);
3485                 temp |= TRANS_DPLL_ENABLE(pipe);
3486                 sel = TRANS_DPLLB_SEL(pipe);
3487                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3488                         temp |= sel;
3489                 else
3490                         temp &= ~sel;
3491                 I915_WRITE(PCH_DPLL_SEL, temp);
3492         }
3493
3494         /* XXX: pch pll's can be enabled any time before we enable the PCH
3495          * transcoder, and we actually should do this to not upset any PCH
3496          * transcoder that already use the clock when we share it.
3497          *
3498          * Note that enable_shared_dpll tries to do the right thing, but
3499          * get_shared_dpll unconditionally resets the pll - we need that to have
3500          * the right LVDS enable sequence. */
3501         ironlake_enable_shared_dpll(intel_crtc);
3502
3503         /* set transcoder timing, panel must allow it */
3504         assert_panel_unlocked(dev_priv, pipe);
3505         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3506
3507         intel_fdi_normal_train(crtc);
3508
3509         /* For PCH DP, enable TRANS_DP_CTL */
3510         if (HAS_PCH_CPT(dev) &&
3511             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3512              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3513                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3514                 reg = TRANS_DP_CTL(pipe);
3515                 temp = I915_READ(reg);
3516                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3517                           TRANS_DP_SYNC_MASK |
3518                           TRANS_DP_BPC_MASK);
3519                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3520                          TRANS_DP_ENH_FRAMING);
3521                 temp |= bpc << 9; /* same format but at 11:9 */
3522
3523                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3524                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3525                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3526                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3527
3528                 switch (intel_trans_dp_port_sel(crtc)) {
3529                 case PCH_DP_B:
3530                         temp |= TRANS_DP_PORT_SEL_B;
3531                         break;
3532                 case PCH_DP_C:
3533                         temp |= TRANS_DP_PORT_SEL_C;
3534                         break;
3535                 case PCH_DP_D:
3536                         temp |= TRANS_DP_PORT_SEL_D;
3537                         break;
3538                 default:
3539                         BUG();
3540                 }
3541
3542                 I915_WRITE(reg, temp);
3543         }
3544
3545         ironlake_enable_pch_transcoder(dev_priv, pipe);
3546 }
3547
3548 static void lpt_pch_enable(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3554
3555         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3556
3557         lpt_program_iclkip(crtc);
3558
3559         /* Set transcoder timing. */
3560         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3561
3562         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3563 }
3564
3565 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3566 {
3567         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3568
3569         if (pll == NULL)
3570                 return;
3571
3572         if (pll->refcount == 0) {
3573                 WARN(1, "bad %s refcount\n", pll->name);
3574                 return;
3575         }
3576
3577         if (--pll->refcount == 0) {
3578                 WARN_ON(pll->on);
3579                 WARN_ON(pll->active);
3580         }
3581
3582         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3583 }
3584
3585 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3586 {
3587         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3588         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3589         enum intel_dpll_id i;
3590
3591         if (pll) {
3592                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3593                               crtc->base.base.id, pll->name);
3594                 intel_put_shared_dpll(crtc);
3595         }
3596
3597         if (HAS_PCH_IBX(dev_priv->dev)) {
3598                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3599                 i = (enum intel_dpll_id) crtc->pipe;
3600                 pll = &dev_priv->shared_dplls[i];
3601
3602                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3603                               crtc->base.base.id, pll->name);
3604
3605                 goto found;
3606         }
3607
3608         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3609                 pll = &dev_priv->shared_dplls[i];
3610
3611                 /* Only want to check enabled timings first */
3612                 if (pll->refcount == 0)
3613                         continue;
3614
3615                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3616                            sizeof(pll->hw_state)) == 0) {
3617                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3618                                       crtc->base.base.id,
3619                                       pll->name, pll->refcount, pll->active);
3620
3621                         goto found;
3622                 }
3623         }
3624
3625         /* Ok no matching timings, maybe there's a free one? */
3626         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3627                 pll = &dev_priv->shared_dplls[i];
3628                 if (pll->refcount == 0) {
3629                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3630                                       crtc->base.base.id, pll->name);
3631                         goto found;
3632                 }
3633         }
3634
3635         return NULL;
3636
3637 found:
3638         crtc->config.shared_dpll = i;
3639         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3640                          pipe_name(crtc->pipe));
3641
3642         if (pll->active == 0) {
3643                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3644                        sizeof(pll->hw_state));
3645
3646                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3647                 WARN_ON(pll->on);
3648                 assert_shared_dpll_disabled(dev_priv, pll);
3649
3650                 pll->mode_set(dev_priv, pll);
3651         }
3652         pll->refcount++;
3653
3654         return pll;
3655 }
3656
3657 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3658 {
3659         struct drm_i915_private *dev_priv = dev->dev_private;
3660         int dslreg = PIPEDSL(pipe);
3661         u32 temp;
3662
3663         temp = I915_READ(dslreg);
3664         udelay(500);
3665         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3666                 if (wait_for(I915_READ(dslreg) != temp, 5))
3667                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3668         }
3669 }
3670
3671 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3672 {
3673         struct drm_device *dev = crtc->base.dev;
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         int pipe = crtc->pipe;
3676
3677         if (crtc->config.pch_pfit.enabled) {
3678                 /* Force use of hard-coded filter coefficients
3679                  * as some pre-programmed values are broken,
3680                  * e.g. x201.
3681                  */
3682                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3683                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3684                                                  PF_PIPE_SEL_IVB(pipe));
3685                 else
3686                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3687                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3688                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3689         }
3690 }
3691
3692 static void intel_enable_planes(struct drm_crtc *crtc)
3693 {
3694         struct drm_device *dev = crtc->dev;
3695         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3696         struct drm_plane *plane;
3697         struct intel_plane *intel_plane;
3698
3699         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3700                 intel_plane = to_intel_plane(plane);
3701                 if (intel_plane->pipe == pipe)
3702                         intel_plane_restore(&intel_plane->base);
3703         }
3704 }
3705
3706 static void intel_disable_planes(struct drm_crtc *crtc)
3707 {
3708         struct drm_device *dev = crtc->dev;
3709         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3710         struct drm_plane *plane;
3711         struct intel_plane *intel_plane;
3712
3713         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3714                 intel_plane = to_intel_plane(plane);
3715                 if (intel_plane->pipe == pipe)
3716                         intel_plane_disable(&intel_plane->base);
3717         }
3718 }
3719
3720 void hsw_enable_ips(struct intel_crtc *crtc)
3721 {
3722         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3723
3724         if (!crtc->config.ips_enabled)
3725                 return;
3726
3727         /* We can only enable IPS after we enable a plane and wait for a vblank.
3728          * We guarantee that the plane is enabled by calling intel_enable_ips
3729          * only after intel_enable_plane. And intel_enable_plane already waits
3730          * for a vblank, so all we need to do here is to enable the IPS bit. */
3731         assert_plane_enabled(dev_priv, crtc->plane);
3732         if (IS_BROADWELL(crtc->base.dev)) {
3733                 mutex_lock(&dev_priv->rps.hw_lock);
3734                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3735                 mutex_unlock(&dev_priv->rps.hw_lock);
3736                 /* Quoting Art Runyan: "its not safe to expect any particular
3737                  * value in IPS_CTL bit 31 after enabling IPS through the
3738                  * mailbox." Moreover, the mailbox may return a bogus state,
3739                  * so we need to just enable it and continue on.
3740                  */
3741         } else {
3742                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3743                 /* The bit only becomes 1 in the next vblank, so this wait here
3744                  * is essentially intel_wait_for_vblank. If we don't have this
3745                  * and don't wait for vblanks until the end of crtc_enable, then
3746                  * the HW state readout code will complain that the expected
3747                  * IPS_CTL value is not the one we read. */
3748                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3749                         DRM_ERROR("Timed out waiting for IPS enable\n");
3750         }
3751 }
3752
3753 void hsw_disable_ips(struct intel_crtc *crtc)
3754 {
3755         struct drm_device *dev = crtc->base.dev;
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757
3758         if (!crtc->config.ips_enabled)
3759                 return;
3760
3761         assert_plane_enabled(dev_priv, crtc->plane);
3762         if (IS_BROADWELL(dev)) {
3763                 mutex_lock(&dev_priv->rps.hw_lock);
3764                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3765                 mutex_unlock(&dev_priv->rps.hw_lock);
3766                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3767                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3768                         DRM_ERROR("Timed out waiting for IPS disable\n");
3769         } else {
3770                 I915_WRITE(IPS_CTL, 0);
3771                 POSTING_READ(IPS_CTL);
3772         }
3773
3774         /* We need to wait for a vblank before we can disable the plane. */
3775         intel_wait_for_vblank(dev, crtc->pipe);
3776 }
3777
3778 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3779 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3780 {
3781         struct drm_device *dev = crtc->dev;
3782         struct drm_i915_private *dev_priv = dev->dev_private;
3783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3784         enum pipe pipe = intel_crtc->pipe;
3785         int palreg = PALETTE(pipe);
3786         int i;
3787         bool reenable_ips = false;
3788
3789         /* The clocks have to be on to load the palette. */
3790         if (!crtc->enabled || !intel_crtc->active)
3791                 return;
3792
3793         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3794                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3795                         assert_dsi_pll_enabled(dev_priv);
3796                 else
3797                         assert_pll_enabled(dev_priv, pipe);
3798         }
3799
3800         /* use legacy palette for Ironlake */
3801         if (HAS_PCH_SPLIT(dev))
3802                 palreg = LGC_PALETTE(pipe);
3803
3804         /* Workaround : Do not read or write the pipe palette/gamma data while
3805          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3806          */
3807         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3808             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3809              GAMMA_MODE_MODE_SPLIT)) {
3810                 hsw_disable_ips(intel_crtc);
3811                 reenable_ips = true;
3812         }
3813
3814         for (i = 0; i < 256; i++) {
3815                 I915_WRITE(palreg + 4 * i,
3816                            (intel_crtc->lut_r[i] << 16) |
3817                            (intel_crtc->lut_g[i] << 8) |
3818                            intel_crtc->lut_b[i]);
3819         }
3820
3821         if (reenable_ips)
3822                 hsw_enable_ips(intel_crtc);
3823 }
3824
3825 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3826 {
3827         if (!enable && intel_crtc->overlay) {
3828                 struct drm_device *dev = intel_crtc->base.dev;
3829                 struct drm_i915_private *dev_priv = dev->dev_private;
3830
3831                 mutex_lock(&dev->struct_mutex);
3832                 dev_priv->mm.interruptible = false;
3833                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3834                 dev_priv->mm.interruptible = true;
3835                 mutex_unlock(&dev->struct_mutex);
3836         }
3837
3838         /* Let userspace switch the overlay on again. In most cases userspace
3839          * has to recompute where to put it anyway.
3840          */
3841 }
3842
3843 /**
3844  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3845  * cursor plane briefly if not already running after enabling the display
3846  * plane.
3847  * This workaround avoids occasional blank screens when self refresh is
3848  * enabled.
3849  */
3850 static void
3851 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3852 {
3853         u32 cntl = I915_READ(CURCNTR(pipe));
3854
3855         if ((cntl & CURSOR_MODE) == 0) {
3856                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3857
3858                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3859                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3860                 intel_wait_for_vblank(dev_priv->dev, pipe);
3861                 I915_WRITE(CURCNTR(pipe), cntl);
3862                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3863                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3864         }
3865 }
3866
3867 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3868 {
3869         struct drm_device *dev = crtc->dev;
3870         struct drm_i915_private *dev_priv = dev->dev_private;
3871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3872         int pipe = intel_crtc->pipe;
3873         int plane = intel_crtc->plane;
3874
3875         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3876         intel_enable_planes(crtc);
3877         /* The fixup needs to happen before cursor is enabled */
3878         if (IS_G4X(dev))
3879                 g4x_fixup_plane(dev_priv, pipe);
3880         intel_crtc_update_cursor(crtc, true);
3881         intel_crtc_dpms_overlay(intel_crtc, true);
3882
3883         hsw_enable_ips(intel_crtc);
3884
3885         mutex_lock(&dev->struct_mutex);
3886         intel_update_fbc(dev);
3887         mutex_unlock(&dev->struct_mutex);
3888 }
3889
3890 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3891 {
3892         struct drm_device *dev = crtc->dev;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3895         int pipe = intel_crtc->pipe;
3896         int plane = intel_crtc->plane;
3897
3898         intel_crtc_wait_for_pending_flips(crtc);
3899         drm_vblank_off(dev, pipe);
3900
3901         if (dev_priv->fbc.plane == plane)
3902                 intel_disable_fbc(dev);
3903
3904         hsw_disable_ips(intel_crtc);
3905
3906         intel_crtc_dpms_overlay(intel_crtc, false);
3907         intel_crtc_update_cursor(crtc, false);
3908         intel_disable_planes(crtc);
3909         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3910 }
3911
3912 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3913 {
3914         struct drm_device *dev = crtc->dev;
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3917         struct intel_encoder *encoder;
3918         int pipe = intel_crtc->pipe;
3919
3920         WARN_ON(!crtc->enabled);
3921
3922         if (intel_crtc->active)
3923                 return;
3924
3925         intel_crtc->active = true;
3926
3927         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3928         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3929
3930         for_each_encoder_on_crtc(dev, crtc, encoder)
3931                 if (encoder->pre_enable)
3932                         encoder->pre_enable(encoder);
3933
3934         if (intel_crtc->config.has_pch_encoder) {
3935                 /* Note: FDI PLL enabling _must_ be done before we enable the
3936                  * cpu pipes, hence this is separate from all the other fdi/pch
3937                  * enabling. */
3938                 ironlake_fdi_pll_enable(intel_crtc);
3939         } else {
3940                 assert_fdi_tx_disabled(dev_priv, pipe);
3941                 assert_fdi_rx_disabled(dev_priv, pipe);
3942         }
3943
3944         ironlake_pfit_enable(intel_crtc);
3945
3946         /*
3947          * On ILK+ LUT must be loaded before the pipe is running but with
3948          * clocks enabled
3949          */
3950         intel_crtc_load_lut(crtc);
3951
3952         intel_update_watermarks(crtc);
3953         intel_enable_pipe(intel_crtc);
3954
3955         if (intel_crtc->config.has_pch_encoder)
3956                 ironlake_pch_enable(crtc);
3957
3958         for_each_encoder_on_crtc(dev, crtc, encoder)
3959                 encoder->enable(encoder);
3960
3961         if (HAS_PCH_CPT(dev))
3962                 cpt_verify_modeset(dev, intel_crtc->pipe);
3963
3964         intel_crtc_enable_planes(crtc);
3965
3966         /*
3967          * There seems to be a race in PCH platform hw (at least on some
3968          * outputs) where an enabled pipe still completes any pageflip right
3969          * away (as if the pipe is off) instead of waiting for vblank. As soon
3970          * as the first vblank happend, everything works as expected. Hence just
3971          * wait for one vblank before returning to avoid strange things
3972          * happening.
3973          */
3974         intel_wait_for_vblank(dev, intel_crtc->pipe);
3975 }
3976
3977 /* IPS only exists on ULT machines and is tied to pipe A. */
3978 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3979 {
3980         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3981 }
3982
3983 /*
3984  * This implements the workaround described in the "notes" section of the mode
3985  * set sequence documentation. When going from no pipes or single pipe to
3986  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3987  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3988  */
3989 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3990 {
3991         struct drm_device *dev = crtc->base.dev;
3992         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3993
3994         /* We want to get the other_active_crtc only if there's only 1 other
3995          * active crtc. */
3996         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3997                 if (!crtc_it->active || crtc_it == crtc)
3998                         continue;
3999
4000                 if (other_active_crtc)
4001                         return;
4002
4003                 other_active_crtc = crtc_it;
4004         }
4005         if (!other_active_crtc)
4006                 return;
4007
4008         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4009         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4010 }
4011
4012 static void haswell_crtc_enable(struct drm_crtc *crtc)
4013 {
4014         struct drm_device *dev = crtc->dev;
4015         struct drm_i915_private *dev_priv = dev->dev_private;
4016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4017         struct intel_encoder *encoder;
4018         int pipe = intel_crtc->pipe;
4019
4020         WARN_ON(!crtc->enabled);
4021
4022         if (intel_crtc->active)
4023                 return;
4024
4025         intel_crtc->active = true;
4026
4027         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4028         if (intel_crtc->config.has_pch_encoder)
4029                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4030
4031         if (intel_crtc->config.has_pch_encoder)
4032                 dev_priv->display.fdi_link_train(crtc);
4033
4034         for_each_encoder_on_crtc(dev, crtc, encoder)
4035                 if (encoder->pre_enable)
4036                         encoder->pre_enable(encoder);
4037
4038         intel_ddi_enable_pipe_clock(intel_crtc);
4039
4040         ironlake_pfit_enable(intel_crtc);
4041
4042         /*
4043          * On ILK+ LUT must be loaded before the pipe is running but with
4044          * clocks enabled
4045          */
4046         intel_crtc_load_lut(crtc);
4047
4048         intel_ddi_set_pipe_settings(crtc);
4049         intel_ddi_enable_transcoder_func(crtc);
4050
4051         intel_update_watermarks(crtc);
4052         intel_enable_pipe(intel_crtc);
4053
4054         if (intel_crtc->config.has_pch_encoder)
4055                 lpt_pch_enable(crtc);
4056
4057         for_each_encoder_on_crtc(dev, crtc, encoder) {
4058                 encoder->enable(encoder);
4059                 intel_opregion_notify_encoder(encoder, true);
4060         }
4061
4062         /* If we change the relative order between pipe/planes enabling, we need
4063          * to change the workaround. */
4064         haswell_mode_set_planes_workaround(intel_crtc);
4065         intel_crtc_enable_planes(crtc);
4066 }
4067
4068 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4069 {
4070         struct drm_device *dev = crtc->base.dev;
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072         int pipe = crtc->pipe;
4073
4074         /* To avoid upsetting the power well on haswell only disable the pfit if
4075          * it's in use. The hw state code will make sure we get this right. */
4076         if (crtc->config.pch_pfit.enabled) {
4077                 I915_WRITE(PF_CTL(pipe), 0);
4078                 I915_WRITE(PF_WIN_POS(pipe), 0);
4079                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4080         }
4081 }
4082
4083 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4084 {
4085         struct drm_device *dev = crtc->dev;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4088         struct intel_encoder *encoder;
4089         int pipe = intel_crtc->pipe;
4090         u32 reg, temp;
4091
4092         if (!intel_crtc->active)
4093                 return;
4094
4095         intel_crtc_disable_planes(crtc);
4096
4097         for_each_encoder_on_crtc(dev, crtc, encoder)
4098                 encoder->disable(encoder);
4099
4100         if (intel_crtc->config.has_pch_encoder)
4101                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4102
4103         intel_disable_pipe(dev_priv, pipe);
4104
4105         ironlake_pfit_disable(intel_crtc);
4106
4107         for_each_encoder_on_crtc(dev, crtc, encoder)
4108                 if (encoder->post_disable)
4109                         encoder->post_disable(encoder);
4110
4111         if (intel_crtc->config.has_pch_encoder) {
4112                 ironlake_fdi_disable(crtc);
4113
4114                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4115                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4116
4117                 if (HAS_PCH_CPT(dev)) {
4118                         /* disable TRANS_DP_CTL */
4119                         reg = TRANS_DP_CTL(pipe);
4120                         temp = I915_READ(reg);
4121                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4122                                   TRANS_DP_PORT_SEL_MASK);
4123                         temp |= TRANS_DP_PORT_SEL_NONE;
4124                         I915_WRITE(reg, temp);
4125
4126                         /* disable DPLL_SEL */
4127                         temp = I915_READ(PCH_DPLL_SEL);
4128                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4129                         I915_WRITE(PCH_DPLL_SEL, temp);
4130                 }
4131
4132                 /* disable PCH DPLL */
4133                 intel_disable_shared_dpll(intel_crtc);
4134
4135                 ironlake_fdi_pll_disable(intel_crtc);
4136         }
4137
4138         intel_crtc->active = false;
4139         intel_update_watermarks(crtc);
4140
4141         mutex_lock(&dev->struct_mutex);
4142         intel_update_fbc(dev);
4143         mutex_unlock(&dev->struct_mutex);
4144 }
4145
4146 static void haswell_crtc_disable(struct drm_crtc *crtc)
4147 {
4148         struct drm_device *dev = crtc->dev;
4149         struct drm_i915_private *dev_priv = dev->dev_private;
4150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151         struct intel_encoder *encoder;
4152         int pipe = intel_crtc->pipe;
4153         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4154
4155         if (!intel_crtc->active)
4156                 return;
4157
4158         intel_crtc_disable_planes(crtc);
4159
4160         for_each_encoder_on_crtc(dev, crtc, encoder) {
4161                 intel_opregion_notify_encoder(encoder, false);
4162                 encoder->disable(encoder);
4163         }
4164
4165         if (intel_crtc->config.has_pch_encoder)
4166                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4167         intel_disable_pipe(dev_priv, pipe);
4168
4169         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4170
4171         ironlake_pfit_disable(intel_crtc);
4172
4173         intel_ddi_disable_pipe_clock(intel_crtc);
4174
4175         for_each_encoder_on_crtc(dev, crtc, encoder)
4176                 if (encoder->post_disable)
4177                         encoder->post_disable(encoder);
4178
4179         if (intel_crtc->config.has_pch_encoder) {
4180                 lpt_disable_pch_transcoder(dev_priv);
4181                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4182                 intel_ddi_fdi_disable(crtc);
4183         }
4184
4185         intel_crtc->active = false;
4186         intel_update_watermarks(crtc);
4187
4188         mutex_lock(&dev->struct_mutex);
4189         intel_update_fbc(dev);
4190         mutex_unlock(&dev->struct_mutex);
4191 }
4192
4193 static void ironlake_crtc_off(struct drm_crtc *crtc)
4194 {
4195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196         intel_put_shared_dpll(intel_crtc);
4197 }
4198
4199 static void haswell_crtc_off(struct drm_crtc *crtc)
4200 {
4201         intel_ddi_put_crtc_pll(crtc);
4202 }
4203
4204 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4205 {
4206         struct drm_device *dev = crtc->base.dev;
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct intel_crtc_config *pipe_config = &crtc->config;
4209
4210         if (!crtc->config.gmch_pfit.control)
4211                 return;
4212
4213         /*
4214          * The panel fitter should only be adjusted whilst the pipe is disabled,
4215          * according to register description and PRM.
4216          */
4217         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4218         assert_pipe_disabled(dev_priv, crtc->pipe);
4219
4220         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4221         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4222
4223         /* Border color in case we don't scale up to the full screen. Black by
4224          * default, change to something else for debugging. */
4225         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4226 }
4227
4228 #define for_each_power_domain(domain, mask)                             \
4229         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4230                 if ((1 << (domain)) & (mask))
4231
4232 enum intel_display_power_domain
4233 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4234 {
4235         struct drm_device *dev = intel_encoder->base.dev;
4236         struct intel_digital_port *intel_dig_port;
4237
4238         switch (intel_encoder->type) {
4239         case INTEL_OUTPUT_UNKNOWN:
4240                 /* Only DDI platforms should ever use this output type */
4241                 WARN_ON_ONCE(!HAS_DDI(dev));
4242         case INTEL_OUTPUT_DISPLAYPORT:
4243         case INTEL_OUTPUT_HDMI:
4244         case INTEL_OUTPUT_EDP:
4245                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4246                 switch (intel_dig_port->port) {
4247                 case PORT_A:
4248                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4249                 case PORT_B:
4250                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4251                 case PORT_C:
4252                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4253                 case PORT_D:
4254                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4255                 default:
4256                         WARN_ON_ONCE(1);
4257                         return POWER_DOMAIN_PORT_OTHER;
4258                 }
4259         case INTEL_OUTPUT_ANALOG:
4260                 return POWER_DOMAIN_PORT_CRT;
4261         case INTEL_OUTPUT_DSI:
4262                 return POWER_DOMAIN_PORT_DSI;
4263         default:
4264                 return POWER_DOMAIN_PORT_OTHER;
4265         }
4266 }
4267
4268 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4269 {
4270         struct drm_device *dev = crtc->dev;
4271         struct intel_encoder *intel_encoder;
4272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4273         enum pipe pipe = intel_crtc->pipe;
4274         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4275         unsigned long mask;
4276         enum transcoder transcoder;
4277
4278         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4279
4280         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4281         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4282         if (pfit_enabled)
4283                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4284
4285         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4286                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4287
4288         return mask;
4289 }
4290
4291 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4292                                   bool enable)
4293 {
4294         if (dev_priv->power_domains.init_power_on == enable)
4295                 return;
4296
4297         if (enable)
4298                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4299         else
4300                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4301
4302         dev_priv->power_domains.init_power_on = enable;
4303 }
4304
4305 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4306 {
4307         struct drm_i915_private *dev_priv = dev->dev_private;
4308         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4309         struct intel_crtc *crtc;
4310
4311         /*
4312          * First get all needed power domains, then put all unneeded, to avoid
4313          * any unnecessary toggling of the power wells.
4314          */
4315         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4316                 enum intel_display_power_domain domain;
4317
4318                 if (!crtc->base.enabled)
4319                         continue;
4320
4321                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4322
4323                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4324                         intel_display_power_get(dev_priv, domain);
4325         }
4326
4327         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4328                 enum intel_display_power_domain domain;
4329
4330                 for_each_power_domain(domain, crtc->enabled_power_domains)
4331                         intel_display_power_put(dev_priv, domain);
4332
4333                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4334         }
4335
4336         intel_display_set_init_power(dev_priv, false);
4337 }
4338
4339 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4340 {
4341         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4342
4343         /* Obtain SKU information */
4344         mutex_lock(&dev_priv->dpio_lock);
4345         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4346                 CCK_FUSE_HPLL_FREQ_MASK;
4347         mutex_unlock(&dev_priv->dpio_lock);
4348
4349         return vco_freq[hpll_freq];
4350 }
4351
4352 /* Adjust CDclk dividers to allow high res or save power if possible */
4353 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4354 {
4355         struct drm_i915_private *dev_priv = dev->dev_private;
4356         u32 val, cmd;
4357
4358         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4359         dev_priv->vlv_cdclk_freq = cdclk;
4360
4361         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4362                 cmd = 2;
4363         else if (cdclk == 266)
4364                 cmd = 1;
4365         else
4366                 cmd = 0;
4367
4368         mutex_lock(&dev_priv->rps.hw_lock);
4369         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4370         val &= ~DSPFREQGUAR_MASK;
4371         val |= (cmd << DSPFREQGUAR_SHIFT);
4372         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4373         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4374                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4375                      50)) {
4376                 DRM_ERROR("timed out waiting for CDclk change\n");
4377         }
4378         mutex_unlock(&dev_priv->rps.hw_lock);
4379
4380         if (cdclk == 400) {
4381                 u32 divider, vco;
4382
4383                 vco = valleyview_get_vco(dev_priv);
4384                 divider = ((vco << 1) / cdclk) - 1;
4385
4386                 mutex_lock(&dev_priv->dpio_lock);
4387                 /* adjust cdclk divider */
4388                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4389                 val &= ~0xf;
4390                 val |= divider;
4391                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4392                 mutex_unlock(&dev_priv->dpio_lock);
4393         }
4394
4395         mutex_lock(&dev_priv->dpio_lock);
4396         /* adjust self-refresh exit latency value */
4397         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4398         val &= ~0x7f;
4399
4400         /*
4401          * For high bandwidth configs, we set a higher latency in the bunit
4402          * so that the core display fetch happens in time to avoid underruns.
4403          */
4404         if (cdclk == 400)
4405                 val |= 4500 / 250; /* 4.5 usec */
4406         else
4407                 val |= 3000 / 250; /* 3.0 usec */
4408         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4409         mutex_unlock(&dev_priv->dpio_lock);
4410
4411         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4412         intel_i2c_reset(dev);
4413 }
4414
4415 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4416 {
4417         int cur_cdclk, vco;
4418         int divider;
4419
4420         vco = valleyview_get_vco(dev_priv);
4421
4422         mutex_lock(&dev_priv->dpio_lock);
4423         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4424         mutex_unlock(&dev_priv->dpio_lock);
4425
4426         divider &= 0xf;
4427
4428         cur_cdclk = (vco << 1) / (divider + 1);
4429
4430         return cur_cdclk;
4431 }
4432
4433 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4434                                  int max_pixclk)
4435 {
4436         /*
4437          * Really only a few cases to deal with, as only 4 CDclks are supported:
4438          *   200MHz
4439          *   267MHz
4440          *   320MHz
4441          *   400MHz
4442          * So we check to see whether we're above 90% of the lower bin and
4443          * adjust if needed.
4444          */
4445         if (max_pixclk > 288000) {
4446                 return 400;
4447         } else if (max_pixclk > 240000) {
4448                 return 320;
4449         } else
4450                 return 266;
4451         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4452 }
4453
4454 /* compute the max pixel clock for new configuration */
4455 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4456 {
4457         struct drm_device *dev = dev_priv->dev;
4458         struct intel_crtc *intel_crtc;
4459         int max_pixclk = 0;
4460
4461         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4462                             base.head) {
4463                 if (intel_crtc->new_enabled)
4464                         max_pixclk = max(max_pixclk,
4465                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4466         }
4467
4468         return max_pixclk;
4469 }
4470
4471 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4472                                             unsigned *prepare_pipes)
4473 {
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         struct intel_crtc *intel_crtc;
4476         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4477
4478         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4479             dev_priv->vlv_cdclk_freq)
4480                 return;
4481
4482         /* disable/enable all currently active pipes while we change cdclk */
4483         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4484                             base.head)
4485                 if (intel_crtc->base.enabled)
4486                         *prepare_pipes |= (1 << intel_crtc->pipe);
4487 }
4488
4489 static void valleyview_modeset_global_resources(struct drm_device *dev)
4490 {
4491         struct drm_i915_private *dev_priv = dev->dev_private;
4492         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4493         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4494
4495         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4496                 valleyview_set_cdclk(dev, req_cdclk);
4497         modeset_update_crtc_power_domains(dev);
4498 }
4499
4500 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4501 {
4502         struct drm_device *dev = crtc->dev;
4503         struct drm_i915_private *dev_priv = dev->dev_private;
4504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4505         struct intel_encoder *encoder;
4506         int pipe = intel_crtc->pipe;
4507         bool is_dsi;
4508
4509         WARN_ON(!crtc->enabled);
4510
4511         if (intel_crtc->active)
4512                 return;
4513
4514         intel_crtc->active = true;
4515
4516         for_each_encoder_on_crtc(dev, crtc, encoder)
4517                 if (encoder->pre_pll_enable)
4518                         encoder->pre_pll_enable(encoder);
4519
4520         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4521
4522         if (!is_dsi) {
4523                 if (IS_CHERRYVIEW(dev))
4524                         chv_enable_pll(intel_crtc);
4525                 else
4526                         vlv_enable_pll(intel_crtc);
4527         }
4528
4529         for_each_encoder_on_crtc(dev, crtc, encoder)
4530                 if (encoder->pre_enable)
4531                         encoder->pre_enable(encoder);
4532
4533         i9xx_pfit_enable(intel_crtc);
4534
4535         intel_crtc_load_lut(crtc);
4536
4537         intel_update_watermarks(crtc);
4538         intel_enable_pipe(intel_crtc);
4539         intel_wait_for_vblank(dev_priv->dev, pipe);
4540         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4541
4542         intel_crtc_enable_planes(crtc);
4543
4544         for_each_encoder_on_crtc(dev, crtc, encoder)
4545                 encoder->enable(encoder);
4546 }
4547
4548 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4549 {
4550         struct drm_device *dev = crtc->dev;
4551         struct drm_i915_private *dev_priv = dev->dev_private;
4552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4553         struct intel_encoder *encoder;
4554         int pipe = intel_crtc->pipe;
4555
4556         WARN_ON(!crtc->enabled);
4557
4558         if (intel_crtc->active)
4559                 return;
4560
4561         intel_crtc->active = true;
4562
4563         for_each_encoder_on_crtc(dev, crtc, encoder)
4564                 if (encoder->pre_enable)
4565                         encoder->pre_enable(encoder);
4566
4567         i9xx_enable_pll(intel_crtc);
4568
4569         i9xx_pfit_enable(intel_crtc);
4570
4571         intel_crtc_load_lut(crtc);
4572
4573         intel_update_watermarks(crtc);
4574         intel_enable_pipe(intel_crtc);
4575         intel_wait_for_vblank(dev_priv->dev, pipe);
4576         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4577
4578         intel_crtc_enable_planes(crtc);
4579
4580         for_each_encoder_on_crtc(dev, crtc, encoder)
4581                 encoder->enable(encoder);
4582 }
4583
4584 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4585 {
4586         struct drm_device *dev = crtc->base.dev;
4587         struct drm_i915_private *dev_priv = dev->dev_private;
4588
4589         if (!crtc->config.gmch_pfit.control)
4590                 return;
4591
4592         assert_pipe_disabled(dev_priv, crtc->pipe);
4593
4594         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4595                          I915_READ(PFIT_CONTROL));
4596         I915_WRITE(PFIT_CONTROL, 0);
4597 }
4598
4599 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4600 {
4601         struct drm_device *dev = crtc->dev;
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604         struct intel_encoder *encoder;
4605         int pipe = intel_crtc->pipe;
4606
4607         if (!intel_crtc->active)
4608                 return;
4609
4610         for_each_encoder_on_crtc(dev, crtc, encoder)
4611                 encoder->disable(encoder);
4612
4613         intel_crtc_disable_planes(crtc);
4614
4615         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4616         intel_disable_pipe(dev_priv, pipe);
4617
4618         i9xx_pfit_disable(intel_crtc);
4619
4620         for_each_encoder_on_crtc(dev, crtc, encoder)
4621                 if (encoder->post_disable)
4622                         encoder->post_disable(encoder);
4623
4624         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4625                 if (IS_CHERRYVIEW(dev))
4626                         chv_disable_pll(dev_priv, pipe);
4627                 else if (IS_VALLEYVIEW(dev))
4628                         vlv_disable_pll(dev_priv, pipe);
4629                 else
4630                         i9xx_disable_pll(dev_priv, pipe);
4631         }
4632
4633         intel_crtc->active = false;
4634         intel_update_watermarks(crtc);
4635
4636         intel_update_fbc(dev);
4637 }
4638
4639 static void i9xx_crtc_off(struct drm_crtc *crtc)
4640 {
4641 }
4642
4643 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4644                                     bool enabled)
4645 {
4646         struct drm_device *dev = crtc->dev;
4647         struct drm_i915_master_private *master_priv;
4648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4649         int pipe = intel_crtc->pipe;
4650
4651         if (!dev->primary->master)
4652                 return;
4653
4654         master_priv = dev->primary->master->driver_priv;
4655         if (!master_priv->sarea_priv)
4656                 return;
4657
4658         switch (pipe) {
4659         case 0:
4660                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4661                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4662                 break;
4663         case 1:
4664                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4665                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4666                 break;
4667         default:
4668                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4669                 break;
4670         }
4671 }
4672
4673 /**
4674  * Sets the power management mode of the pipe and plane.
4675  */
4676 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4677 {
4678         struct drm_device *dev = crtc->dev;
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680         struct intel_encoder *intel_encoder;
4681         bool enable = false;
4682
4683         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4684                 enable |= intel_encoder->connectors_active;
4685
4686         if (enable)
4687                 dev_priv->display.crtc_enable(crtc);
4688         else
4689                 dev_priv->display.crtc_disable(crtc);
4690
4691         intel_crtc_update_sarea(crtc, enable);
4692 }
4693
4694 static void intel_crtc_disable(struct drm_crtc *crtc)
4695 {
4696         struct drm_device *dev = crtc->dev;
4697         struct drm_connector *connector;
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4700
4701         /* crtc should still be enabled when we disable it. */
4702         WARN_ON(!crtc->enabled);
4703
4704         dev_priv->display.crtc_disable(crtc);
4705         intel_crtc->eld_vld = false;
4706         intel_crtc_update_sarea(crtc, false);
4707         dev_priv->display.off(crtc);
4708
4709         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4710         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4711         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4712
4713         if (crtc->primary->fb) {
4714                 mutex_lock(&dev->struct_mutex);
4715                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4716                 mutex_unlock(&dev->struct_mutex);
4717                 crtc->primary->fb = NULL;
4718         }
4719
4720         /* Update computed state. */
4721         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4722                 if (!connector->encoder || !connector->encoder->crtc)
4723                         continue;
4724
4725                 if (connector->encoder->crtc != crtc)
4726                         continue;
4727
4728                 connector->dpms = DRM_MODE_DPMS_OFF;
4729                 to_intel_encoder(connector->encoder)->connectors_active = false;
4730         }
4731 }
4732
4733 void intel_encoder_destroy(struct drm_encoder *encoder)
4734 {
4735         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4736
4737         drm_encoder_cleanup(encoder);
4738         kfree(intel_encoder);
4739 }
4740
4741 /* Simple dpms helper for encoders with just one connector, no cloning and only
4742  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4743  * state of the entire output pipe. */
4744 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4745 {
4746         if (mode == DRM_MODE_DPMS_ON) {
4747                 encoder->connectors_active = true;
4748
4749                 intel_crtc_update_dpms(encoder->base.crtc);
4750         } else {
4751                 encoder->connectors_active = false;
4752
4753                 intel_crtc_update_dpms(encoder->base.crtc);
4754         }
4755 }
4756
4757 /* Cross check the actual hw state with our own modeset state tracking (and it's
4758  * internal consistency). */
4759 static void intel_connector_check_state(struct intel_connector *connector)
4760 {
4761         if (connector->get_hw_state(connector)) {
4762                 struct intel_encoder *encoder = connector->encoder;
4763                 struct drm_crtc *crtc;
4764                 bool encoder_enabled;
4765                 enum pipe pipe;
4766
4767                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4768                               connector->base.base.id,
4769                               drm_get_connector_name(&connector->base));
4770
4771                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4772                      "wrong connector dpms state\n");
4773                 WARN(connector->base.encoder != &encoder->base,
4774                      "active connector not linked to encoder\n");
4775                 WARN(!encoder->connectors_active,
4776                      "encoder->connectors_active not set\n");
4777
4778                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4779                 WARN(!encoder_enabled, "encoder not enabled\n");
4780                 if (WARN_ON(!encoder->base.crtc))
4781                         return;
4782
4783                 crtc = encoder->base.crtc;
4784
4785                 WARN(!crtc->enabled, "crtc not enabled\n");
4786                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4787                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4788                      "encoder active on the wrong pipe\n");
4789         }
4790 }
4791
4792 /* Even simpler default implementation, if there's really no special case to
4793  * consider. */
4794 void intel_connector_dpms(struct drm_connector *connector, int mode)
4795 {
4796         /* All the simple cases only support two dpms states. */
4797         if (mode != DRM_MODE_DPMS_ON)
4798                 mode = DRM_MODE_DPMS_OFF;
4799
4800         if (mode == connector->dpms)
4801                 return;
4802
4803         connector->dpms = mode;
4804
4805         /* Only need to change hw state when actually enabled */
4806         if (connector->encoder)
4807                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4808
4809         intel_modeset_check_state(connector->dev);
4810 }
4811
4812 /* Simple connector->get_hw_state implementation for encoders that support only
4813  * one connector and no cloning and hence the encoder state determines the state
4814  * of the connector. */
4815 bool intel_connector_get_hw_state(struct intel_connector *connector)
4816 {
4817         enum pipe pipe = 0;
4818         struct intel_encoder *encoder = connector->encoder;
4819
4820         return encoder->get_hw_state(encoder, &pipe);
4821 }
4822
4823 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4824                                      struct intel_crtc_config *pipe_config)
4825 {
4826         struct drm_i915_private *dev_priv = dev->dev_private;
4827         struct intel_crtc *pipe_B_crtc =
4828                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4829
4830         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4831                       pipe_name(pipe), pipe_config->fdi_lanes);
4832         if (pipe_config->fdi_lanes > 4) {
4833                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4834                               pipe_name(pipe), pipe_config->fdi_lanes);
4835                 return false;
4836         }
4837
4838         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4839                 if (pipe_config->fdi_lanes > 2) {
4840                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4841                                       pipe_config->fdi_lanes);
4842                         return false;
4843                 } else {
4844                         return true;
4845                 }
4846         }
4847
4848         if (INTEL_INFO(dev)->num_pipes == 2)
4849                 return true;
4850
4851         /* Ivybridge 3 pipe is really complicated */
4852         switch (pipe) {
4853         case PIPE_A:
4854                 return true;
4855         case PIPE_B:
4856                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4857                     pipe_config->fdi_lanes > 2) {
4858                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4859                                       pipe_name(pipe), pipe_config->fdi_lanes);
4860                         return false;
4861                 }
4862                 return true;
4863         case PIPE_C:
4864                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4865                     pipe_B_crtc->config.fdi_lanes <= 2) {
4866                         if (pipe_config->fdi_lanes > 2) {
4867                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4868                                               pipe_name(pipe), pipe_config->fdi_lanes);
4869                                 return false;
4870                         }
4871                 } else {
4872                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4873                         return false;
4874                 }
4875                 return true;
4876         default:
4877                 BUG();
4878         }
4879 }
4880
4881 #define RETRY 1
4882 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4883                                        struct intel_crtc_config *pipe_config)
4884 {
4885         struct drm_device *dev = intel_crtc->base.dev;
4886         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4887         int lane, link_bw, fdi_dotclock;
4888         bool setup_ok, needs_recompute = false;
4889
4890 retry:
4891         /* FDI is a binary signal running at ~2.7GHz, encoding
4892          * each output octet as 10 bits. The actual frequency
4893          * is stored as a divider into a 100MHz clock, and the
4894          * mode pixel clock is stored in units of 1KHz.
4895          * Hence the bw of each lane in terms of the mode signal
4896          * is:
4897          */
4898         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4899
4900         fdi_dotclock = adjusted_mode->crtc_clock;
4901
4902         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4903                                            pipe_config->pipe_bpp);
4904
4905         pipe_config->fdi_lanes = lane;
4906
4907         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4908                                link_bw, &pipe_config->fdi_m_n);
4909
4910         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4911                                             intel_crtc->pipe, pipe_config);
4912         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4913                 pipe_config->pipe_bpp -= 2*3;
4914                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4915                               pipe_config->pipe_bpp);
4916                 needs_recompute = true;
4917                 pipe_config->bw_constrained = true;
4918
4919                 goto retry;
4920         }
4921
4922         if (needs_recompute)
4923                 return RETRY;
4924
4925         return setup_ok ? 0 : -EINVAL;
4926 }
4927
4928 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4929                                    struct intel_crtc_config *pipe_config)
4930 {
4931         pipe_config->ips_enabled = i915.enable_ips &&
4932                                    hsw_crtc_supports_ips(crtc) &&
4933                                    pipe_config->pipe_bpp <= 24;
4934 }
4935
4936 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4937                                      struct intel_crtc_config *pipe_config)
4938 {
4939         struct drm_device *dev = crtc->base.dev;
4940         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4941
4942         /* FIXME should check pixel clock limits on all platforms */
4943         if (INTEL_INFO(dev)->gen < 4) {
4944                 struct drm_i915_private *dev_priv = dev->dev_private;
4945                 int clock_limit =
4946                         dev_priv->display.get_display_clock_speed(dev);
4947
4948                 /*
4949                  * Enable pixel doubling when the dot clock
4950                  * is > 90% of the (display) core speed.
4951                  *
4952                  * GDG double wide on either pipe,
4953                  * otherwise pipe A only.
4954                  */
4955                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4956                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4957                         clock_limit *= 2;
4958                         pipe_config->double_wide = true;
4959                 }
4960
4961                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4962                         return -EINVAL;
4963         }
4964
4965         /*
4966          * Pipe horizontal size must be even in:
4967          * - DVO ganged mode
4968          * - LVDS dual channel mode
4969          * - Double wide pipe
4970          */
4971         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4972              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4973                 pipe_config->pipe_src_w &= ~1;
4974
4975         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4976          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4977          */
4978         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4979                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4980                 return -EINVAL;
4981
4982         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4983                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4984         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4985                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4986                  * for lvds. */
4987                 pipe_config->pipe_bpp = 8*3;
4988         }
4989
4990         if (HAS_IPS(dev))
4991                 hsw_compute_ips_config(crtc, pipe_config);
4992
4993         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4994          * clock survives for now. */
4995         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4996                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4997
4998         if (pipe_config->has_pch_encoder)
4999                 return ironlake_fdi_compute_config(crtc, pipe_config);
5000
5001         return 0;
5002 }
5003
5004 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5005 {
5006         return 400000; /* FIXME */
5007 }
5008
5009 static int i945_get_display_clock_speed(struct drm_device *dev)
5010 {
5011         return 400000;
5012 }
5013
5014 static int i915_get_display_clock_speed(struct drm_device *dev)
5015 {
5016         return 333000;
5017 }
5018
5019 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5020 {
5021         return 200000;
5022 }
5023
5024 static int pnv_get_display_clock_speed(struct drm_device *dev)
5025 {
5026         u16 gcfgc = 0;
5027
5028         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5029
5030         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5031         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5032                 return 267000;
5033         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5034                 return 333000;
5035         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5036                 return 444000;
5037         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5038                 return 200000;
5039         default:
5040                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5041         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5042                 return 133000;
5043         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5044                 return 167000;
5045         }
5046 }
5047
5048 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5049 {
5050         u16 gcfgc = 0;
5051
5052         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5053
5054         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5055                 return 133000;
5056         else {
5057                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5058                 case GC_DISPLAY_CLOCK_333_MHZ:
5059                         return 333000;
5060                 default:
5061                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5062                         return 190000;
5063                 }
5064         }
5065 }
5066
5067 static int i865_get_display_clock_speed(struct drm_device *dev)
5068 {
5069         return 266000;
5070 }
5071
5072 static int i855_get_display_clock_speed(struct drm_device *dev)
5073 {
5074         u16 hpllcc = 0;
5075         /* Assume that the hardware is in the high speed state.  This
5076          * should be the default.
5077          */
5078         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5079         case GC_CLOCK_133_200:
5080         case GC_CLOCK_100_200:
5081                 return 200000;
5082         case GC_CLOCK_166_250:
5083                 return 250000;
5084         case GC_CLOCK_100_133:
5085                 return 133000;
5086         }
5087
5088         /* Shouldn't happen */
5089         return 0;
5090 }
5091
5092 static int i830_get_display_clock_speed(struct drm_device *dev)
5093 {
5094         return 133000;
5095 }
5096
5097 static void
5098 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5099 {
5100         while (*num > DATA_LINK_M_N_MASK ||
5101                *den > DATA_LINK_M_N_MASK) {
5102                 *num >>= 1;
5103                 *den >>= 1;
5104         }
5105 }
5106
5107 static void compute_m_n(unsigned int m, unsigned int n,
5108                         uint32_t *ret_m, uint32_t *ret_n)
5109 {
5110         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5111         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5112         intel_reduce_m_n_ratio(ret_m, ret_n);
5113 }
5114
5115 void
5116 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5117                        int pixel_clock, int link_clock,
5118                        struct intel_link_m_n *m_n)
5119 {
5120         m_n->tu = 64;
5121
5122         compute_m_n(bits_per_pixel * pixel_clock,
5123                     link_clock * nlanes * 8,
5124                     &m_n->gmch_m, &m_n->gmch_n);
5125
5126         compute_m_n(pixel_clock, link_clock,
5127                     &m_n->link_m, &m_n->link_n);
5128 }
5129
5130 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5131 {
5132         if (i915.panel_use_ssc >= 0)
5133                 return i915.panel_use_ssc != 0;
5134         return dev_priv->vbt.lvds_use_ssc
5135                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5136 }
5137
5138 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5139 {
5140         struct drm_device *dev = crtc->dev;
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         int refclk;
5143
5144         if (IS_VALLEYVIEW(dev)) {
5145                 refclk = 100000;
5146         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5147             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5148                 refclk = dev_priv->vbt.lvds_ssc_freq;
5149                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5150         } else if (!IS_GEN2(dev)) {
5151                 refclk = 96000;
5152         } else {
5153                 refclk = 48000;
5154         }
5155
5156         return refclk;
5157 }
5158
5159 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5160 {
5161         return (1 << dpll->n) << 16 | dpll->m2;
5162 }
5163
5164 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5165 {
5166         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5167 }
5168
5169 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5170                                      intel_clock_t *reduced_clock)
5171 {
5172         struct drm_device *dev = crtc->base.dev;
5173         struct drm_i915_private *dev_priv = dev->dev_private;
5174         int pipe = crtc->pipe;
5175         u32 fp, fp2 = 0;
5176
5177         if (IS_PINEVIEW(dev)) {
5178                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5179                 if (reduced_clock)
5180                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5181         } else {
5182                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5183                 if (reduced_clock)
5184                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5185         }
5186
5187         I915_WRITE(FP0(pipe), fp);
5188         crtc->config.dpll_hw_state.fp0 = fp;
5189
5190         crtc->lowfreq_avail = false;
5191         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5192             reduced_clock && i915.powersave) {
5193                 I915_WRITE(FP1(pipe), fp2);
5194                 crtc->config.dpll_hw_state.fp1 = fp2;
5195                 crtc->lowfreq_avail = true;
5196         } else {
5197                 I915_WRITE(FP1(pipe), fp);
5198                 crtc->config.dpll_hw_state.fp1 = fp;
5199         }
5200 }
5201
5202 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5203                 pipe)
5204 {
5205         u32 reg_val;
5206
5207         /*
5208          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5209          * and set it to a reasonable value instead.
5210          */
5211         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5212         reg_val &= 0xffffff00;
5213         reg_val |= 0x00000030;
5214         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5215
5216         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5217         reg_val &= 0x8cffffff;
5218         reg_val = 0x8c000000;
5219         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5220
5221         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5222         reg_val &= 0xffffff00;
5223         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5224
5225         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5226         reg_val &= 0x00ffffff;
5227         reg_val |= 0xb0000000;
5228         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5229 }
5230
5231 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5232                                          struct intel_link_m_n *m_n)
5233 {
5234         struct drm_device *dev = crtc->base.dev;
5235         struct drm_i915_private *dev_priv = dev->dev_private;
5236         int pipe = crtc->pipe;
5237
5238         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5239         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5240         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5241         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5242 }
5243
5244 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5245                                          struct intel_link_m_n *m_n)
5246 {
5247         struct drm_device *dev = crtc->base.dev;
5248         struct drm_i915_private *dev_priv = dev->dev_private;
5249         int pipe = crtc->pipe;
5250         enum transcoder transcoder = crtc->config.cpu_transcoder;
5251
5252         if (INTEL_INFO(dev)->gen >= 5) {
5253                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5254                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5255                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5256                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5257         } else {
5258                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5259                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5260                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5261                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5262         }
5263 }
5264
5265 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5266 {
5267         if (crtc->config.has_pch_encoder)
5268                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5269         else
5270                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5271 }
5272
5273 static void vlv_update_pll(struct intel_crtc *crtc)
5274 {
5275         struct drm_device *dev = crtc->base.dev;
5276         struct drm_i915_private *dev_priv = dev->dev_private;
5277         int pipe = crtc->pipe;
5278         u32 dpll, mdiv;
5279         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5280         u32 coreclk, reg_val, dpll_md;
5281
5282         mutex_lock(&dev_priv->dpio_lock);
5283
5284         bestn = crtc->config.dpll.n;
5285         bestm1 = crtc->config.dpll.m1;
5286         bestm2 = crtc->config.dpll.m2;
5287         bestp1 = crtc->config.dpll.p1;
5288         bestp2 = crtc->config.dpll.p2;
5289
5290         /* See eDP HDMI DPIO driver vbios notes doc */
5291
5292         /* PLL B needs special handling */
5293         if (pipe)
5294                 vlv_pllb_recal_opamp(dev_priv, pipe);
5295
5296         /* Set up Tx target for periodic Rcomp update */
5297         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5298
5299         /* Disable target IRef on PLL */
5300         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5301         reg_val &= 0x00ffffff;
5302         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5303
5304         /* Disable fast lock */
5305         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5306
5307         /* Set idtafcrecal before PLL is enabled */
5308         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5309         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5310         mdiv |= ((bestn << DPIO_N_SHIFT));
5311         mdiv |= (1 << DPIO_K_SHIFT);
5312
5313         /*
5314          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5315          * but we don't support that).
5316          * Note: don't use the DAC post divider as it seems unstable.
5317          */
5318         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5319         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5320
5321         mdiv |= DPIO_ENABLE_CALIBRATION;
5322         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5323
5324         /* Set HBR and RBR LPF coefficients */
5325         if (crtc->config.port_clock == 162000 ||
5326             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5327             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5328                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5329                                  0x009f0003);
5330         else
5331                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5332                                  0x00d0000f);
5333
5334         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5335             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5336                 /* Use SSC source */
5337                 if (!pipe)
5338                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5339                                          0x0df40000);
5340                 else
5341                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5342                                          0x0df70000);
5343         } else { /* HDMI or VGA */
5344                 /* Use bend source */
5345                 if (!pipe)
5346                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5347                                          0x0df70000);
5348                 else
5349                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5350                                          0x0df40000);
5351         }
5352
5353         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5354         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5355         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5356             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5357                 coreclk |= 0x01000000;
5358         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5359
5360         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5361
5362         /*
5363          * Enable DPIO clock input. We should never disable the reference
5364          * clock for pipe B, since VGA hotplug / manual detection depends
5365          * on it.
5366          */
5367         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5368                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5369         /* We should never disable this, set it here for state tracking */
5370         if (pipe == PIPE_B)
5371                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5372         dpll |= DPLL_VCO_ENABLE;
5373         crtc->config.dpll_hw_state.dpll = dpll;
5374
5375         dpll_md = (crtc->config.pixel_multiplier - 1)
5376                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5377         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5378
5379         mutex_unlock(&dev_priv->dpio_lock);
5380 }
5381
5382 static void chv_update_pll(struct intel_crtc *crtc)
5383 {
5384         struct drm_device *dev = crtc->base.dev;
5385         struct drm_i915_private *dev_priv = dev->dev_private;
5386         int pipe = crtc->pipe;
5387         int dpll_reg = DPLL(crtc->pipe);
5388         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5389         u32 val, loopfilter, intcoeff;
5390         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5391         int refclk;
5392
5393         mutex_lock(&dev_priv->dpio_lock);
5394
5395         bestn = crtc->config.dpll.n;
5396         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5397         bestm1 = crtc->config.dpll.m1;
5398         bestm2 = crtc->config.dpll.m2 >> 22;
5399         bestp1 = crtc->config.dpll.p1;
5400         bestp2 = crtc->config.dpll.p2;
5401
5402         /*
5403          * Enable Refclk and SSC
5404          */
5405         val = I915_READ(dpll_reg);
5406         val |= (DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV);
5407         I915_WRITE(dpll_reg, val);
5408
5409         /* Propagate soft reset to data lane reset */
5410         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
5411         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
5412         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), val);
5413
5414         /* Disable 10bit clock to display controller */
5415         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
5416         val &= ~DPIO_DCLKP_EN;
5417         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
5418
5419         /* p1 and p2 divider */
5420         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5421                         5 << DPIO_CHV_S1_DIV_SHIFT |
5422                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5423                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5424                         1 << DPIO_CHV_K_DIV_SHIFT);
5425
5426         /* Feedback post-divider - m2 */
5427         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5428
5429         /* Feedback refclk divider - n and m1 */
5430         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5431                         DPIO_CHV_M1_DIV_BY_2 |
5432                         1 << DPIO_CHV_N_DIV_SHIFT);
5433
5434         /* M2 fraction division */
5435         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5436
5437         /* M2 fraction division enable */
5438         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5439                        DPIO_CHV_FRAC_DIV_EN |
5440                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5441
5442         /* Loop filter */
5443         refclk = i9xx_get_refclk(&crtc->base, 0);
5444         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5445                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5446         if (refclk == 100000)
5447                 intcoeff = 11;
5448         else if (refclk == 38400)
5449                 intcoeff = 10;
5450         else
5451                 intcoeff = 9;
5452         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5453         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5454
5455         /* AFC Recal */
5456         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5457                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5458                         DPIO_AFC_RECAL);
5459
5460         mutex_unlock(&dev_priv->dpio_lock);
5461 }
5462
5463 static void i9xx_update_pll(struct intel_crtc *crtc,
5464                             intel_clock_t *reduced_clock,
5465                             int num_connectors)
5466 {
5467         struct drm_device *dev = crtc->base.dev;
5468         struct drm_i915_private *dev_priv = dev->dev_private;
5469         u32 dpll;
5470         bool is_sdvo;
5471         struct dpll *clock = &crtc->config.dpll;
5472
5473         i9xx_update_pll_dividers(crtc, reduced_clock);
5474
5475         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5476                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5477
5478         dpll = DPLL_VGA_MODE_DIS;
5479
5480         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5481                 dpll |= DPLLB_MODE_LVDS;
5482         else
5483                 dpll |= DPLLB_MODE_DAC_SERIAL;
5484
5485         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5486                 dpll |= (crtc->config.pixel_multiplier - 1)
5487                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5488         }
5489
5490         if (is_sdvo)
5491                 dpll |= DPLL_SDVO_HIGH_SPEED;
5492
5493         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5494                 dpll |= DPLL_SDVO_HIGH_SPEED;
5495
5496         /* compute bitmask from p1 value */
5497         if (IS_PINEVIEW(dev))
5498                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5499         else {
5500                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5501                 if (IS_G4X(dev) && reduced_clock)
5502                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5503         }
5504         switch (clock->p2) {
5505         case 5:
5506                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5507                 break;
5508         case 7:
5509                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5510                 break;
5511         case 10:
5512                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5513                 break;
5514         case 14:
5515                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5516                 break;
5517         }
5518         if (INTEL_INFO(dev)->gen >= 4)
5519                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5520
5521         if (crtc->config.sdvo_tv_clock)
5522                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5523         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5524                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5525                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5526         else
5527                 dpll |= PLL_REF_INPUT_DREFCLK;
5528
5529         dpll |= DPLL_VCO_ENABLE;
5530         crtc->config.dpll_hw_state.dpll = dpll;
5531
5532         if (INTEL_INFO(dev)->gen >= 4) {
5533                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5534                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5535                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5536         }
5537 }
5538
5539 static void i8xx_update_pll(struct intel_crtc *crtc,
5540                             intel_clock_t *reduced_clock,
5541                             int num_connectors)
5542 {
5543         struct drm_device *dev = crtc->base.dev;
5544         struct drm_i915_private *dev_priv = dev->dev_private;
5545         u32 dpll;
5546         struct dpll *clock = &crtc->config.dpll;
5547
5548         i9xx_update_pll_dividers(crtc, reduced_clock);
5549
5550         dpll = DPLL_VGA_MODE_DIS;
5551
5552         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5553                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5554         } else {
5555                 if (clock->p1 == 2)
5556                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5557                 else
5558                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5559                 if (clock->p2 == 4)
5560                         dpll |= PLL_P2_DIVIDE_BY_4;
5561         }
5562
5563         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5564                 dpll |= DPLL_DVO_2X_MODE;
5565
5566         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5567                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5568                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5569         else
5570                 dpll |= PLL_REF_INPUT_DREFCLK;
5571
5572         dpll |= DPLL_VCO_ENABLE;
5573         crtc->config.dpll_hw_state.dpll = dpll;
5574 }
5575
5576 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5577 {
5578         struct drm_device *dev = intel_crtc->base.dev;
5579         struct drm_i915_private *dev_priv = dev->dev_private;
5580         enum pipe pipe = intel_crtc->pipe;
5581         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5582         struct drm_display_mode *adjusted_mode =
5583                 &intel_crtc->config.adjusted_mode;
5584         uint32_t crtc_vtotal, crtc_vblank_end;
5585         int vsyncshift = 0;
5586
5587         /* We need to be careful not to changed the adjusted mode, for otherwise
5588          * the hw state checker will get angry at the mismatch. */
5589         crtc_vtotal = adjusted_mode->crtc_vtotal;
5590         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5591
5592         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5593                 /* the chip adds 2 halflines automatically */
5594                 crtc_vtotal -= 1;
5595                 crtc_vblank_end -= 1;
5596
5597                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5598                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5599                 else
5600                         vsyncshift = adjusted_mode->crtc_hsync_start -
5601                                 adjusted_mode->crtc_htotal / 2;
5602                 if (vsyncshift < 0)
5603                         vsyncshift += adjusted_mode->crtc_htotal;
5604         }
5605
5606         if (INTEL_INFO(dev)->gen > 3)
5607                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5608
5609         I915_WRITE(HTOTAL(cpu_transcoder),
5610                    (adjusted_mode->crtc_hdisplay - 1) |
5611                    ((adjusted_mode->crtc_htotal - 1) << 16));
5612         I915_WRITE(HBLANK(cpu_transcoder),
5613                    (adjusted_mode->crtc_hblank_start - 1) |
5614                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5615         I915_WRITE(HSYNC(cpu_transcoder),
5616                    (adjusted_mode->crtc_hsync_start - 1) |
5617                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5618
5619         I915_WRITE(VTOTAL(cpu_transcoder),
5620                    (adjusted_mode->crtc_vdisplay - 1) |
5621                    ((crtc_vtotal - 1) << 16));
5622         I915_WRITE(VBLANK(cpu_transcoder),
5623                    (adjusted_mode->crtc_vblank_start - 1) |
5624                    ((crtc_vblank_end - 1) << 16));
5625         I915_WRITE(VSYNC(cpu_transcoder),
5626                    (adjusted_mode->crtc_vsync_start - 1) |
5627                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5628
5629         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5630          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5631          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5632          * bits. */
5633         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5634             (pipe == PIPE_B || pipe == PIPE_C))
5635                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5636
5637         /* pipesrc controls the size that is scaled from, which should
5638          * always be the user's requested size.
5639          */
5640         I915_WRITE(PIPESRC(pipe),
5641                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5642                    (intel_crtc->config.pipe_src_h - 1));
5643 }
5644
5645 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5646                                    struct intel_crtc_config *pipe_config)
5647 {
5648         struct drm_device *dev = crtc->base.dev;
5649         struct drm_i915_private *dev_priv = dev->dev_private;
5650         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5651         uint32_t tmp;
5652
5653         tmp = I915_READ(HTOTAL(cpu_transcoder));
5654         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5655         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5656         tmp = I915_READ(HBLANK(cpu_transcoder));
5657         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5658         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5659         tmp = I915_READ(HSYNC(cpu_transcoder));
5660         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5661         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5662
5663         tmp = I915_READ(VTOTAL(cpu_transcoder));
5664         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5665         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5666         tmp = I915_READ(VBLANK(cpu_transcoder));
5667         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5668         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5669         tmp = I915_READ(VSYNC(cpu_transcoder));
5670         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5671         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5672
5673         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5674                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5675                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5676                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5677         }
5678
5679         tmp = I915_READ(PIPESRC(crtc->pipe));
5680         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5681         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5682
5683         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5684         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5685 }
5686
5687 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5688                                  struct intel_crtc_config *pipe_config)
5689 {
5690         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5691         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5692         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5693         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5694
5695         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5696         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5697         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5698         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5699
5700         mode->flags = pipe_config->adjusted_mode.flags;
5701
5702         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5703         mode->flags |= pipe_config->adjusted_mode.flags;
5704 }
5705
5706 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5707 {
5708         struct drm_device *dev = intel_crtc->base.dev;
5709         struct drm_i915_private *dev_priv = dev->dev_private;
5710         uint32_t pipeconf;
5711
5712         pipeconf = 0;
5713
5714         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5715             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5716                 pipeconf |= PIPECONF_ENABLE;
5717
5718         if (intel_crtc->config.double_wide)
5719                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5720
5721         /* only g4x and later have fancy bpc/dither controls */
5722         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5723                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5724                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5725                         pipeconf |= PIPECONF_DITHER_EN |
5726                                     PIPECONF_DITHER_TYPE_SP;
5727
5728                 switch (intel_crtc->config.pipe_bpp) {
5729                 case 18:
5730                         pipeconf |= PIPECONF_6BPC;
5731                         break;
5732                 case 24:
5733                         pipeconf |= PIPECONF_8BPC;
5734                         break;
5735                 case 30:
5736                         pipeconf |= PIPECONF_10BPC;
5737                         break;
5738                 default:
5739                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5740                         BUG();
5741                 }
5742         }
5743
5744         if (HAS_PIPE_CXSR(dev)) {
5745                 if (intel_crtc->lowfreq_avail) {
5746                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5747                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5748                 } else {
5749                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5750                 }
5751         }
5752
5753         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5754                 if (INTEL_INFO(dev)->gen < 4 ||
5755                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5756                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5757                 else
5758                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5759         } else
5760                 pipeconf |= PIPECONF_PROGRESSIVE;
5761
5762         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5763                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5764
5765         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5766         POSTING_READ(PIPECONF(intel_crtc->pipe));
5767 }
5768
5769 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5770                               int x, int y,
5771                               struct drm_framebuffer *fb)
5772 {
5773         struct drm_device *dev = crtc->dev;
5774         struct drm_i915_private *dev_priv = dev->dev_private;
5775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5776         int pipe = intel_crtc->pipe;
5777         int plane = intel_crtc->plane;
5778         int refclk, num_connectors = 0;
5779         intel_clock_t clock, reduced_clock;
5780         u32 dspcntr;
5781         bool ok, has_reduced_clock = false;
5782         bool is_lvds = false, is_dsi = false;
5783         struct intel_encoder *encoder;
5784         const intel_limit_t *limit;
5785         int ret;
5786
5787         for_each_encoder_on_crtc(dev, crtc, encoder) {
5788                 switch (encoder->type) {
5789                 case INTEL_OUTPUT_LVDS:
5790                         is_lvds = true;
5791                         break;
5792                 case INTEL_OUTPUT_DSI:
5793                         is_dsi = true;
5794                         break;
5795                 }
5796
5797                 num_connectors++;
5798         }
5799
5800         if (is_dsi)
5801                 goto skip_dpll;
5802
5803         if (!intel_crtc->config.clock_set) {
5804                 refclk = i9xx_get_refclk(crtc, num_connectors);
5805
5806                 /*
5807                  * Returns a set of divisors for the desired target clock with
5808                  * the given refclk, or FALSE.  The returned values represent
5809                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5810                  * 2) / p1 / p2.
5811                  */
5812                 limit = intel_limit(crtc, refclk);
5813                 ok = dev_priv->display.find_dpll(limit, crtc,
5814                                                  intel_crtc->config.port_clock,
5815                                                  refclk, NULL, &clock);
5816                 if (!ok) {
5817                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5818                         return -EINVAL;
5819                 }
5820
5821                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5822                         /*
5823                          * Ensure we match the reduced clock's P to the target
5824                          * clock.  If the clocks don't match, we can't switch
5825                          * the display clock by using the FP0/FP1. In such case
5826                          * we will disable the LVDS downclock feature.
5827                          */
5828                         has_reduced_clock =
5829                                 dev_priv->display.find_dpll(limit, crtc,
5830                                                             dev_priv->lvds_downclock,
5831                                                             refclk, &clock,
5832                                                             &reduced_clock);
5833                 }
5834                 /* Compat-code for transition, will disappear. */
5835                 intel_crtc->config.dpll.n = clock.n;
5836                 intel_crtc->config.dpll.m1 = clock.m1;
5837                 intel_crtc->config.dpll.m2 = clock.m2;
5838                 intel_crtc->config.dpll.p1 = clock.p1;
5839                 intel_crtc->config.dpll.p2 = clock.p2;
5840         }
5841
5842         if (IS_GEN2(dev)) {
5843                 i8xx_update_pll(intel_crtc,
5844                                 has_reduced_clock ? &reduced_clock : NULL,
5845                                 num_connectors);
5846         } else if (IS_CHERRYVIEW(dev)) {
5847                 chv_update_pll(intel_crtc);
5848         } else if (IS_VALLEYVIEW(dev)) {
5849                 vlv_update_pll(intel_crtc);
5850         } else {
5851                 i9xx_update_pll(intel_crtc,
5852                                 has_reduced_clock ? &reduced_clock : NULL,
5853                                 num_connectors);
5854         }
5855
5856 skip_dpll:
5857         /* Set up the display plane register */
5858         dspcntr = DISPPLANE_GAMMA_ENABLE;
5859
5860         if (!IS_VALLEYVIEW(dev)) {
5861                 if (pipe == 0)
5862                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5863                 else
5864                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5865         }
5866
5867         if (intel_crtc->config.has_dp_encoder)
5868                 intel_dp_set_m_n(intel_crtc);
5869
5870         intel_set_pipe_timings(intel_crtc);
5871
5872         /* pipesrc and dspsize control the size that is scaled from,
5873          * which should always be the user's requested size.
5874          */
5875         I915_WRITE(DSPSIZE(plane),
5876                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5877                    (intel_crtc->config.pipe_src_w - 1));
5878         I915_WRITE(DSPPOS(plane), 0);
5879
5880         i9xx_set_pipeconf(intel_crtc);
5881
5882         I915_WRITE(DSPCNTR(plane), dspcntr);
5883         POSTING_READ(DSPCNTR(plane));
5884
5885         ret = intel_pipe_set_base(crtc, x, y, fb);
5886
5887         return ret;
5888 }
5889
5890 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5891                                  struct intel_crtc_config *pipe_config)
5892 {
5893         struct drm_device *dev = crtc->base.dev;
5894         struct drm_i915_private *dev_priv = dev->dev_private;
5895         uint32_t tmp;
5896
5897         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5898                 return;
5899
5900         tmp = I915_READ(PFIT_CONTROL);
5901         if (!(tmp & PFIT_ENABLE))
5902                 return;
5903
5904         /* Check whether the pfit is attached to our pipe. */
5905         if (INTEL_INFO(dev)->gen < 4) {
5906                 if (crtc->pipe != PIPE_B)
5907                         return;
5908         } else {
5909                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5910                         return;
5911         }
5912
5913         pipe_config->gmch_pfit.control = tmp;
5914         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5915         if (INTEL_INFO(dev)->gen < 5)
5916                 pipe_config->gmch_pfit.lvds_border_bits =
5917                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5918 }
5919
5920 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5921                                struct intel_crtc_config *pipe_config)
5922 {
5923         struct drm_device *dev = crtc->base.dev;
5924         struct drm_i915_private *dev_priv = dev->dev_private;
5925         int pipe = pipe_config->cpu_transcoder;
5926         intel_clock_t clock;
5927         u32 mdiv;
5928         int refclk = 100000;
5929
5930         mutex_lock(&dev_priv->dpio_lock);
5931         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5932         mutex_unlock(&dev_priv->dpio_lock);
5933
5934         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5935         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5936         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5937         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5938         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5939
5940         vlv_clock(refclk, &clock);
5941
5942         /* clock.dot is the fast clock */
5943         pipe_config->port_clock = clock.dot / 5;
5944 }
5945
5946 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5947                                   struct intel_plane_config *plane_config)
5948 {
5949         struct drm_device *dev = crtc->base.dev;
5950         struct drm_i915_private *dev_priv = dev->dev_private;
5951         u32 val, base, offset;
5952         int pipe = crtc->pipe, plane = crtc->plane;
5953         int fourcc, pixel_format;
5954         int aligned_height;
5955
5956         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5957         if (!crtc->base.primary->fb) {
5958                 DRM_DEBUG_KMS("failed to alloc fb\n");
5959                 return;
5960         }
5961
5962         val = I915_READ(DSPCNTR(plane));
5963
5964         if (INTEL_INFO(dev)->gen >= 4)
5965                 if (val & DISPPLANE_TILED)
5966                         plane_config->tiled = true;
5967
5968         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5969         fourcc = intel_format_to_fourcc(pixel_format);
5970         crtc->base.primary->fb->pixel_format = fourcc;
5971         crtc->base.primary->fb->bits_per_pixel =
5972                 drm_format_plane_cpp(fourcc, 0) * 8;
5973
5974         if (INTEL_INFO(dev)->gen >= 4) {
5975                 if (plane_config->tiled)
5976                         offset = I915_READ(DSPTILEOFF(plane));
5977                 else
5978                         offset = I915_READ(DSPLINOFF(plane));
5979                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5980         } else {
5981                 base = I915_READ(DSPADDR(plane));
5982         }
5983         plane_config->base = base;
5984
5985         val = I915_READ(PIPESRC(pipe));
5986         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5987         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5988
5989         val = I915_READ(DSPSTRIDE(pipe));
5990         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5991
5992         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5993                                             plane_config->tiled);
5994
5995         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5996                                    aligned_height, PAGE_SIZE);
5997
5998         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5999                       pipe, plane, crtc->base.primary->fb->width,
6000                       crtc->base.primary->fb->height,
6001                       crtc->base.primary->fb->bits_per_pixel, base,
6002                       crtc->base.primary->fb->pitches[0],
6003                       plane_config->size);
6004
6005 }
6006
6007 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6008                                  struct intel_crtc_config *pipe_config)
6009 {
6010         struct drm_device *dev = crtc->base.dev;
6011         struct drm_i915_private *dev_priv = dev->dev_private;
6012         uint32_t tmp;
6013
6014         if (!intel_display_power_enabled(dev_priv,
6015                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6016                 return false;
6017
6018         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6019         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6020
6021         tmp = I915_READ(PIPECONF(crtc->pipe));
6022         if (!(tmp & PIPECONF_ENABLE))
6023                 return false;
6024
6025         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6026                 switch (tmp & PIPECONF_BPC_MASK) {
6027                 case PIPECONF_6BPC:
6028                         pipe_config->pipe_bpp = 18;
6029                         break;
6030                 case PIPECONF_8BPC:
6031                         pipe_config->pipe_bpp = 24;
6032                         break;
6033                 case PIPECONF_10BPC:
6034                         pipe_config->pipe_bpp = 30;
6035                         break;
6036                 default:
6037                         break;
6038                 }
6039         }
6040
6041         if (INTEL_INFO(dev)->gen < 4)
6042                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6043
6044         intel_get_pipe_timings(crtc, pipe_config);
6045
6046         i9xx_get_pfit_config(crtc, pipe_config);
6047
6048         if (INTEL_INFO(dev)->gen >= 4) {
6049                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6050                 pipe_config->pixel_multiplier =
6051                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6052                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6053                 pipe_config->dpll_hw_state.dpll_md = tmp;
6054         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6055                 tmp = I915_READ(DPLL(crtc->pipe));
6056                 pipe_config->pixel_multiplier =
6057                         ((tmp & SDVO_MULTIPLIER_MASK)
6058                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6059         } else {
6060                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6061                  * port and will be fixed up in the encoder->get_config
6062                  * function. */
6063                 pipe_config->pixel_multiplier = 1;
6064         }
6065         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6066         if (!IS_VALLEYVIEW(dev)) {
6067                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6068                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6069         } else {
6070                 /* Mask out read-only status bits. */
6071                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6072                                                      DPLL_PORTC_READY_MASK |
6073                                                      DPLL_PORTB_READY_MASK);
6074         }
6075
6076         if (IS_VALLEYVIEW(dev))
6077                 vlv_crtc_clock_get(crtc, pipe_config);
6078         else
6079                 i9xx_crtc_clock_get(crtc, pipe_config);
6080
6081         return true;
6082 }
6083
6084 static void ironlake_init_pch_refclk(struct drm_device *dev)
6085 {
6086         struct drm_i915_private *dev_priv = dev->dev_private;
6087         struct drm_mode_config *mode_config = &dev->mode_config;
6088         struct intel_encoder *encoder;
6089         u32 val, final;
6090         bool has_lvds = false;
6091         bool has_cpu_edp = false;
6092         bool has_panel = false;
6093         bool has_ck505 = false;
6094         bool can_ssc = false;
6095
6096         /* We need to take the global config into account */
6097         list_for_each_entry(encoder, &mode_config->encoder_list,
6098                             base.head) {
6099                 switch (encoder->type) {
6100                 case INTEL_OUTPUT_LVDS:
6101                         has_panel = true;
6102                         has_lvds = true;
6103                         break;
6104                 case INTEL_OUTPUT_EDP:
6105                         has_panel = true;
6106                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6107                                 has_cpu_edp = true;
6108                         break;
6109                 }
6110         }
6111
6112         if (HAS_PCH_IBX(dev)) {
6113                 has_ck505 = dev_priv->vbt.display_clock_mode;
6114                 can_ssc = has_ck505;
6115         } else {
6116                 has_ck505 = false;
6117                 can_ssc = true;
6118         }
6119
6120         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6121                       has_panel, has_lvds, has_ck505);
6122
6123         /* Ironlake: try to setup display ref clock before DPLL
6124          * enabling. This is only under driver's control after
6125          * PCH B stepping, previous chipset stepping should be
6126          * ignoring this setting.
6127          */
6128         val = I915_READ(PCH_DREF_CONTROL);
6129
6130         /* As we must carefully and slowly disable/enable each source in turn,
6131          * compute the final state we want first and check if we need to
6132          * make any changes at all.
6133          */
6134         final = val;
6135         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6136         if (has_ck505)
6137                 final |= DREF_NONSPREAD_CK505_ENABLE;
6138         else
6139                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6140
6141         final &= ~DREF_SSC_SOURCE_MASK;
6142         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6143         final &= ~DREF_SSC1_ENABLE;
6144
6145         if (has_panel) {
6146                 final |= DREF_SSC_SOURCE_ENABLE;
6147
6148                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6149                         final |= DREF_SSC1_ENABLE;
6150
6151                 if (has_cpu_edp) {
6152                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6153                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6154                         else
6155                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6156                 } else
6157                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6158         } else {
6159                 final |= DREF_SSC_SOURCE_DISABLE;
6160                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6161         }
6162
6163         if (final == val)
6164                 return;
6165
6166         /* Always enable nonspread source */
6167         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6168
6169         if (has_ck505)
6170                 val |= DREF_NONSPREAD_CK505_ENABLE;
6171         else
6172                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6173
6174         if (has_panel) {
6175                 val &= ~DREF_SSC_SOURCE_MASK;
6176                 val |= DREF_SSC_SOURCE_ENABLE;
6177
6178                 /* SSC must be turned on before enabling the CPU output  */
6179                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6180                         DRM_DEBUG_KMS("Using SSC on panel\n");
6181                         val |= DREF_SSC1_ENABLE;
6182                 } else
6183                         val &= ~DREF_SSC1_ENABLE;
6184
6185                 /* Get SSC going before enabling the outputs */
6186                 I915_WRITE(PCH_DREF_CONTROL, val);
6187                 POSTING_READ(PCH_DREF_CONTROL);
6188                 udelay(200);
6189
6190                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6191
6192                 /* Enable CPU source on CPU attached eDP */
6193                 if (has_cpu_edp) {
6194                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6195                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6196                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6197                         }
6198                         else
6199                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6200                 } else
6201                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6202
6203                 I915_WRITE(PCH_DREF_CONTROL, val);
6204                 POSTING_READ(PCH_DREF_CONTROL);
6205                 udelay(200);
6206         } else {
6207                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6208
6209                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6210
6211                 /* Turn off CPU output */
6212                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6213
6214                 I915_WRITE(PCH_DREF_CONTROL, val);
6215                 POSTING_READ(PCH_DREF_CONTROL);
6216                 udelay(200);
6217
6218                 /* Turn off the SSC source */
6219                 val &= ~DREF_SSC_SOURCE_MASK;
6220                 val |= DREF_SSC_SOURCE_DISABLE;
6221
6222                 /* Turn off SSC1 */
6223                 val &= ~DREF_SSC1_ENABLE;
6224
6225                 I915_WRITE(PCH_DREF_CONTROL, val);
6226                 POSTING_READ(PCH_DREF_CONTROL);
6227                 udelay(200);
6228         }
6229
6230         BUG_ON(val != final);
6231 }
6232
6233 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6234 {
6235         uint32_t tmp;
6236
6237         tmp = I915_READ(SOUTH_CHICKEN2);
6238         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6239         I915_WRITE(SOUTH_CHICKEN2, tmp);
6240
6241         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6242                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6243                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6244
6245         tmp = I915_READ(SOUTH_CHICKEN2);
6246         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6247         I915_WRITE(SOUTH_CHICKEN2, tmp);
6248
6249         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6250                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6251                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6252 }
6253
6254 /* WaMPhyProgramming:hsw */
6255 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6256 {
6257         uint32_t tmp;
6258
6259         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6260         tmp &= ~(0xFF << 24);
6261         tmp |= (0x12 << 24);
6262         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6263
6264         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6265         tmp |= (1 << 11);
6266         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6267
6268         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6269         tmp |= (1 << 11);
6270         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6271
6272         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6273         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6274         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6275
6276         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6277         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6278         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6279
6280         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6281         tmp &= ~(7 << 13);
6282         tmp |= (5 << 13);
6283         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6284
6285         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6286         tmp &= ~(7 << 13);
6287         tmp |= (5 << 13);
6288         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6289
6290         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6291         tmp &= ~0xFF;
6292         tmp |= 0x1C;
6293         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6294
6295         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6296         tmp &= ~0xFF;
6297         tmp |= 0x1C;
6298         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6299
6300         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6301         tmp &= ~(0xFF << 16);
6302         tmp |= (0x1C << 16);
6303         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6304
6305         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6306         tmp &= ~(0xFF << 16);
6307         tmp |= (0x1C << 16);
6308         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6309
6310         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6311         tmp |= (1 << 27);
6312         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6313
6314         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6315         tmp |= (1 << 27);
6316         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6317
6318         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6319         tmp &= ~(0xF << 28);
6320         tmp |= (4 << 28);
6321         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6322
6323         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6324         tmp &= ~(0xF << 28);
6325         tmp |= (4 << 28);
6326         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6327 }
6328
6329 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6330  * Programming" based on the parameters passed:
6331  * - Sequence to enable CLKOUT_DP
6332  * - Sequence to enable CLKOUT_DP without spread
6333  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6334  */
6335 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6336                                  bool with_fdi)
6337 {
6338         struct drm_i915_private *dev_priv = dev->dev_private;
6339         uint32_t reg, tmp;
6340
6341         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6342                 with_spread = true;
6343         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6344                  with_fdi, "LP PCH doesn't have FDI\n"))
6345                 with_fdi = false;
6346
6347         mutex_lock(&dev_priv->dpio_lock);
6348
6349         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6350         tmp &= ~SBI_SSCCTL_DISABLE;
6351         tmp |= SBI_SSCCTL_PATHALT;
6352         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6353
6354         udelay(24);
6355
6356         if (with_spread) {
6357                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6358                 tmp &= ~SBI_SSCCTL_PATHALT;
6359                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6360
6361                 if (with_fdi) {
6362                         lpt_reset_fdi_mphy(dev_priv);
6363                         lpt_program_fdi_mphy(dev_priv);
6364                 }
6365         }
6366
6367         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6368                SBI_GEN0 : SBI_DBUFF0;
6369         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6370         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6371         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6372
6373         mutex_unlock(&dev_priv->dpio_lock);
6374 }
6375
6376 /* Sequence to disable CLKOUT_DP */
6377 static void lpt_disable_clkout_dp(struct drm_device *dev)
6378 {
6379         struct drm_i915_private *dev_priv = dev->dev_private;
6380         uint32_t reg, tmp;
6381
6382         mutex_lock(&dev_priv->dpio_lock);
6383
6384         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6385                SBI_GEN0 : SBI_DBUFF0;
6386         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6387         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6388         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6389
6390         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6391         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6392                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6393                         tmp |= SBI_SSCCTL_PATHALT;
6394                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6395                         udelay(32);
6396                 }
6397                 tmp |= SBI_SSCCTL_DISABLE;
6398                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6399         }
6400
6401         mutex_unlock(&dev_priv->dpio_lock);
6402 }
6403
6404 static void lpt_init_pch_refclk(struct drm_device *dev)
6405 {
6406         struct drm_mode_config *mode_config = &dev->mode_config;
6407         struct intel_encoder *encoder;
6408         bool has_vga = false;
6409
6410         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6411                 switch (encoder->type) {
6412                 case INTEL_OUTPUT_ANALOG:
6413                         has_vga = true;
6414                         break;
6415                 }
6416         }
6417
6418         if (has_vga)
6419                 lpt_enable_clkout_dp(dev, true, true);
6420         else
6421                 lpt_disable_clkout_dp(dev);
6422 }
6423
6424 /*
6425  * Initialize reference clocks when the driver loads
6426  */
6427 void intel_init_pch_refclk(struct drm_device *dev)
6428 {
6429         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6430                 ironlake_init_pch_refclk(dev);
6431         else if (HAS_PCH_LPT(dev))
6432                 lpt_init_pch_refclk(dev);
6433 }
6434
6435 static int ironlake_get_refclk(struct drm_crtc *crtc)
6436 {
6437         struct drm_device *dev = crtc->dev;
6438         struct drm_i915_private *dev_priv = dev->dev_private;
6439         struct intel_encoder *encoder;
6440         int num_connectors = 0;
6441         bool is_lvds = false;
6442
6443         for_each_encoder_on_crtc(dev, crtc, encoder) {
6444                 switch (encoder->type) {
6445                 case INTEL_OUTPUT_LVDS:
6446                         is_lvds = true;
6447                         break;
6448                 }
6449                 num_connectors++;
6450         }
6451
6452         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6453                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6454                               dev_priv->vbt.lvds_ssc_freq);
6455                 return dev_priv->vbt.lvds_ssc_freq;
6456         }
6457
6458         return 120000;
6459 }
6460
6461 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6462 {
6463         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6465         int pipe = intel_crtc->pipe;
6466         uint32_t val;
6467
6468         val = 0;
6469
6470         switch (intel_crtc->config.pipe_bpp) {
6471         case 18:
6472                 val |= PIPECONF_6BPC;
6473                 break;
6474         case 24:
6475                 val |= PIPECONF_8BPC;
6476                 break;
6477         case 30:
6478                 val |= PIPECONF_10BPC;
6479                 break;
6480         case 36:
6481                 val |= PIPECONF_12BPC;
6482                 break;
6483         default:
6484                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6485                 BUG();
6486         }
6487
6488         if (intel_crtc->config.dither)
6489                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6490
6491         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6492                 val |= PIPECONF_INTERLACED_ILK;
6493         else
6494                 val |= PIPECONF_PROGRESSIVE;
6495
6496         if (intel_crtc->config.limited_color_range)
6497                 val |= PIPECONF_COLOR_RANGE_SELECT;
6498
6499         I915_WRITE(PIPECONF(pipe), val);
6500         POSTING_READ(PIPECONF(pipe));
6501 }
6502
6503 /*
6504  * Set up the pipe CSC unit.
6505  *
6506  * Currently only full range RGB to limited range RGB conversion
6507  * is supported, but eventually this should handle various
6508  * RGB<->YCbCr scenarios as well.
6509  */
6510 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6511 {
6512         struct drm_device *dev = crtc->dev;
6513         struct drm_i915_private *dev_priv = dev->dev_private;
6514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6515         int pipe = intel_crtc->pipe;
6516         uint16_t coeff = 0x7800; /* 1.0 */
6517
6518         /*
6519          * TODO: Check what kind of values actually come out of the pipe
6520          * with these coeff/postoff values and adjust to get the best
6521          * accuracy. Perhaps we even need to take the bpc value into
6522          * consideration.
6523          */
6524
6525         if (intel_crtc->config.limited_color_range)
6526                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6527
6528         /*
6529          * GY/GU and RY/RU should be the other way around according
6530          * to BSpec, but reality doesn't agree. Just set them up in
6531          * a way that results in the correct picture.
6532          */
6533         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6534         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6535
6536         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6537         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6538
6539         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6540         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6541
6542         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6543         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6544         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6545
6546         if (INTEL_INFO(dev)->gen > 6) {
6547                 uint16_t postoff = 0;
6548
6549                 if (intel_crtc->config.limited_color_range)
6550                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6551
6552                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6553                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6554                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6555
6556                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6557         } else {
6558                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6559
6560                 if (intel_crtc->config.limited_color_range)
6561                         mode |= CSC_BLACK_SCREEN_OFFSET;
6562
6563                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6564         }
6565 }
6566
6567 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6568 {
6569         struct drm_device *dev = crtc->dev;
6570         struct drm_i915_private *dev_priv = dev->dev_private;
6571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6572         enum pipe pipe = intel_crtc->pipe;
6573         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6574         uint32_t val;
6575
6576         val = 0;
6577
6578         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6579                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6580
6581         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6582                 val |= PIPECONF_INTERLACED_ILK;
6583         else
6584                 val |= PIPECONF_PROGRESSIVE;
6585
6586         I915_WRITE(PIPECONF(cpu_transcoder), val);
6587         POSTING_READ(PIPECONF(cpu_transcoder));
6588
6589         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6590         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6591
6592         if (IS_BROADWELL(dev)) {
6593                 val = 0;
6594
6595                 switch (intel_crtc->config.pipe_bpp) {
6596                 case 18:
6597                         val |= PIPEMISC_DITHER_6_BPC;
6598                         break;
6599                 case 24:
6600                         val |= PIPEMISC_DITHER_8_BPC;
6601                         break;
6602                 case 30:
6603                         val |= PIPEMISC_DITHER_10_BPC;
6604                         break;
6605                 case 36:
6606                         val |= PIPEMISC_DITHER_12_BPC;
6607                         break;
6608                 default:
6609                         /* Case prevented by pipe_config_set_bpp. */
6610                         BUG();
6611                 }
6612
6613                 if (intel_crtc->config.dither)
6614                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6615
6616                 I915_WRITE(PIPEMISC(pipe), val);
6617         }
6618 }
6619
6620 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6621                                     intel_clock_t *clock,
6622                                     bool *has_reduced_clock,
6623                                     intel_clock_t *reduced_clock)
6624 {
6625         struct drm_device *dev = crtc->dev;
6626         struct drm_i915_private *dev_priv = dev->dev_private;
6627         struct intel_encoder *intel_encoder;
6628         int refclk;
6629         const intel_limit_t *limit;
6630         bool ret, is_lvds = false;
6631
6632         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6633                 switch (intel_encoder->type) {
6634                 case INTEL_OUTPUT_LVDS:
6635                         is_lvds = true;
6636                         break;
6637                 }
6638         }
6639
6640         refclk = ironlake_get_refclk(crtc);
6641
6642         /*
6643          * Returns a set of divisors for the desired target clock with the given
6644          * refclk, or FALSE.  The returned values represent the clock equation:
6645          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6646          */
6647         limit = intel_limit(crtc, refclk);
6648         ret = dev_priv->display.find_dpll(limit, crtc,
6649                                           to_intel_crtc(crtc)->config.port_clock,
6650                                           refclk, NULL, clock);
6651         if (!ret)
6652                 return false;
6653
6654         if (is_lvds && dev_priv->lvds_downclock_avail) {
6655                 /*
6656                  * Ensure we match the reduced clock's P to the target clock.
6657                  * If the clocks don't match, we can't switch the display clock
6658                  * by using the FP0/FP1. In such case we will disable the LVDS
6659                  * downclock feature.
6660                 */
6661                 *has_reduced_clock =
6662                         dev_priv->display.find_dpll(limit, crtc,
6663                                                     dev_priv->lvds_downclock,
6664                                                     refclk, clock,
6665                                                     reduced_clock);
6666         }
6667
6668         return true;
6669 }
6670
6671 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6672 {
6673         /*
6674          * Account for spread spectrum to avoid
6675          * oversubscribing the link. Max center spread
6676          * is 2.5%; use 5% for safety's sake.
6677          */
6678         u32 bps = target_clock * bpp * 21 / 20;
6679         return DIV_ROUND_UP(bps, link_bw * 8);
6680 }
6681
6682 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6683 {
6684         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6685 }
6686
6687 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6688                                       u32 *fp,
6689                                       intel_clock_t *reduced_clock, u32 *fp2)
6690 {
6691         struct drm_crtc *crtc = &intel_crtc->base;
6692         struct drm_device *dev = crtc->dev;
6693         struct drm_i915_private *dev_priv = dev->dev_private;
6694         struct intel_encoder *intel_encoder;
6695         uint32_t dpll;
6696         int factor, num_connectors = 0;
6697         bool is_lvds = false, is_sdvo = false;
6698
6699         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6700                 switch (intel_encoder->type) {
6701                 case INTEL_OUTPUT_LVDS:
6702                         is_lvds = true;
6703                         break;
6704                 case INTEL_OUTPUT_SDVO:
6705                 case INTEL_OUTPUT_HDMI:
6706                         is_sdvo = true;
6707                         break;
6708                 }
6709
6710                 num_connectors++;
6711         }
6712
6713         /* Enable autotuning of the PLL clock (if permissible) */
6714         factor = 21;
6715         if (is_lvds) {
6716                 if ((intel_panel_use_ssc(dev_priv) &&
6717                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6718                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6719                         factor = 25;
6720         } else if (intel_crtc->config.sdvo_tv_clock)
6721                 factor = 20;
6722
6723         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6724                 *fp |= FP_CB_TUNE;
6725
6726         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6727                 *fp2 |= FP_CB_TUNE;
6728
6729         dpll = 0;
6730
6731         if (is_lvds)
6732                 dpll |= DPLLB_MODE_LVDS;
6733         else
6734                 dpll |= DPLLB_MODE_DAC_SERIAL;
6735
6736         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6737                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6738
6739         if (is_sdvo)
6740                 dpll |= DPLL_SDVO_HIGH_SPEED;
6741         if (intel_crtc->config.has_dp_encoder)
6742                 dpll |= DPLL_SDVO_HIGH_SPEED;
6743
6744         /* compute bitmask from p1 value */
6745         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6746         /* also FPA1 */
6747         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6748
6749         switch (intel_crtc->config.dpll.p2) {
6750         case 5:
6751                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6752                 break;
6753         case 7:
6754                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6755                 break;
6756         case 10:
6757                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6758                 break;
6759         case 14:
6760                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6761                 break;
6762         }
6763
6764         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6765                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6766         else
6767                 dpll |= PLL_REF_INPUT_DREFCLK;
6768
6769         return dpll | DPLL_VCO_ENABLE;
6770 }
6771
6772 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6773                                   int x, int y,
6774                                   struct drm_framebuffer *fb)
6775 {
6776         struct drm_device *dev = crtc->dev;
6777         struct drm_i915_private *dev_priv = dev->dev_private;
6778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6779         int pipe = intel_crtc->pipe;
6780         int plane = intel_crtc->plane;
6781         int num_connectors = 0;
6782         intel_clock_t clock, reduced_clock;
6783         u32 dpll = 0, fp = 0, fp2 = 0;
6784         bool ok, has_reduced_clock = false;
6785         bool is_lvds = false;
6786         struct intel_encoder *encoder;
6787         struct intel_shared_dpll *pll;
6788         int ret;
6789
6790         for_each_encoder_on_crtc(dev, crtc, encoder) {
6791                 switch (encoder->type) {
6792                 case INTEL_OUTPUT_LVDS:
6793                         is_lvds = true;
6794                         break;
6795                 }
6796
6797                 num_connectors++;
6798         }
6799
6800         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6801              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6802
6803         ok = ironlake_compute_clocks(crtc, &clock,
6804                                      &has_reduced_clock, &reduced_clock);
6805         if (!ok && !intel_crtc->config.clock_set) {
6806                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6807                 return -EINVAL;
6808         }
6809         /* Compat-code for transition, will disappear. */
6810         if (!intel_crtc->config.clock_set) {
6811                 intel_crtc->config.dpll.n = clock.n;
6812                 intel_crtc->config.dpll.m1 = clock.m1;
6813                 intel_crtc->config.dpll.m2 = clock.m2;
6814                 intel_crtc->config.dpll.p1 = clock.p1;
6815                 intel_crtc->config.dpll.p2 = clock.p2;
6816         }
6817
6818         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6819         if (intel_crtc->config.has_pch_encoder) {
6820                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6821                 if (has_reduced_clock)
6822                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6823
6824                 dpll = ironlake_compute_dpll(intel_crtc,
6825                                              &fp, &reduced_clock,
6826                                              has_reduced_clock ? &fp2 : NULL);
6827
6828                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6829                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6830                 if (has_reduced_clock)
6831                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6832                 else
6833                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6834
6835                 pll = intel_get_shared_dpll(intel_crtc);
6836                 if (pll == NULL) {
6837                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6838                                          pipe_name(pipe));
6839                         return -EINVAL;
6840                 }
6841         } else
6842                 intel_put_shared_dpll(intel_crtc);
6843
6844         if (intel_crtc->config.has_dp_encoder)
6845                 intel_dp_set_m_n(intel_crtc);
6846
6847         if (is_lvds && has_reduced_clock && i915.powersave)
6848                 intel_crtc->lowfreq_avail = true;
6849         else
6850                 intel_crtc->lowfreq_avail = false;
6851
6852         intel_set_pipe_timings(intel_crtc);
6853
6854         if (intel_crtc->config.has_pch_encoder) {
6855                 intel_cpu_transcoder_set_m_n(intel_crtc,
6856                                              &intel_crtc->config.fdi_m_n);
6857         }
6858
6859         ironlake_set_pipeconf(crtc);
6860
6861         /* Set up the display plane register */
6862         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6863         POSTING_READ(DSPCNTR(plane));
6864
6865         ret = intel_pipe_set_base(crtc, x, y, fb);
6866
6867         return ret;
6868 }
6869
6870 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6871                                          struct intel_link_m_n *m_n)
6872 {
6873         struct drm_device *dev = crtc->base.dev;
6874         struct drm_i915_private *dev_priv = dev->dev_private;
6875         enum pipe pipe = crtc->pipe;
6876
6877         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6878         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6879         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6880                 & ~TU_SIZE_MASK;
6881         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6882         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6883                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6884 }
6885
6886 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6887                                          enum transcoder transcoder,
6888                                          struct intel_link_m_n *m_n)
6889 {
6890         struct drm_device *dev = crtc->base.dev;
6891         struct drm_i915_private *dev_priv = dev->dev_private;
6892         enum pipe pipe = crtc->pipe;
6893
6894         if (INTEL_INFO(dev)->gen >= 5) {
6895                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6896                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6897                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6898                         & ~TU_SIZE_MASK;
6899                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6900                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6901                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6902         } else {
6903                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6904                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6905                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6906                         & ~TU_SIZE_MASK;
6907                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6908                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6909                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6910         }
6911 }
6912
6913 void intel_dp_get_m_n(struct intel_crtc *crtc,
6914                       struct intel_crtc_config *pipe_config)
6915 {
6916         if (crtc->config.has_pch_encoder)
6917                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6918         else
6919                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6920                                              &pipe_config->dp_m_n);
6921 }
6922
6923 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6924                                         struct intel_crtc_config *pipe_config)
6925 {
6926         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6927                                      &pipe_config->fdi_m_n);
6928 }
6929
6930 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6931                                      struct intel_crtc_config *pipe_config)
6932 {
6933         struct drm_device *dev = crtc->base.dev;
6934         struct drm_i915_private *dev_priv = dev->dev_private;
6935         uint32_t tmp;
6936
6937         tmp = I915_READ(PF_CTL(crtc->pipe));
6938
6939         if (tmp & PF_ENABLE) {
6940                 pipe_config->pch_pfit.enabled = true;
6941                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6942                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6943
6944                 /* We currently do not free assignements of panel fitters on
6945                  * ivb/hsw (since we don't use the higher upscaling modes which
6946                  * differentiates them) so just WARN about this case for now. */
6947                 if (IS_GEN7(dev)) {
6948                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6949                                 PF_PIPE_SEL_IVB(crtc->pipe));
6950                 }
6951         }
6952 }
6953
6954 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6955                                       struct intel_plane_config *plane_config)
6956 {
6957         struct drm_device *dev = crtc->base.dev;
6958         struct drm_i915_private *dev_priv = dev->dev_private;
6959         u32 val, base, offset;
6960         int pipe = crtc->pipe, plane = crtc->plane;
6961         int fourcc, pixel_format;
6962         int aligned_height;
6963
6964         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6965         if (!crtc->base.primary->fb) {
6966                 DRM_DEBUG_KMS("failed to alloc fb\n");
6967                 return;
6968         }
6969
6970         val = I915_READ(DSPCNTR(plane));
6971
6972         if (INTEL_INFO(dev)->gen >= 4)
6973                 if (val & DISPPLANE_TILED)
6974                         plane_config->tiled = true;
6975
6976         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6977         fourcc = intel_format_to_fourcc(pixel_format);
6978         crtc->base.primary->fb->pixel_format = fourcc;
6979         crtc->base.primary->fb->bits_per_pixel =
6980                 drm_format_plane_cpp(fourcc, 0) * 8;
6981
6982         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6983         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6984                 offset = I915_READ(DSPOFFSET(plane));
6985         } else {
6986                 if (plane_config->tiled)
6987                         offset = I915_READ(DSPTILEOFF(plane));
6988                 else
6989                         offset = I915_READ(DSPLINOFF(plane));
6990         }
6991         plane_config->base = base;
6992
6993         val = I915_READ(PIPESRC(pipe));
6994         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6995         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6996
6997         val = I915_READ(DSPSTRIDE(pipe));
6998         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6999
7000         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7001                                             plane_config->tiled);
7002
7003         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7004                                    aligned_height, PAGE_SIZE);
7005
7006         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7007                       pipe, plane, crtc->base.primary->fb->width,
7008                       crtc->base.primary->fb->height,
7009                       crtc->base.primary->fb->bits_per_pixel, base,
7010                       crtc->base.primary->fb->pitches[0],
7011                       plane_config->size);
7012 }
7013
7014 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7015                                      struct intel_crtc_config *pipe_config)
7016 {
7017         struct drm_device *dev = crtc->base.dev;
7018         struct drm_i915_private *dev_priv = dev->dev_private;
7019         uint32_t tmp;
7020
7021         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7022         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7023
7024         tmp = I915_READ(PIPECONF(crtc->pipe));
7025         if (!(tmp & PIPECONF_ENABLE))
7026                 return false;
7027
7028         switch (tmp & PIPECONF_BPC_MASK) {
7029         case PIPECONF_6BPC:
7030                 pipe_config->pipe_bpp = 18;
7031                 break;
7032         case PIPECONF_8BPC:
7033                 pipe_config->pipe_bpp = 24;
7034                 break;
7035         case PIPECONF_10BPC:
7036                 pipe_config->pipe_bpp = 30;
7037                 break;
7038         case PIPECONF_12BPC:
7039                 pipe_config->pipe_bpp = 36;
7040                 break;
7041         default:
7042                 break;
7043         }
7044
7045         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7046                 struct intel_shared_dpll *pll;
7047
7048                 pipe_config->has_pch_encoder = true;
7049
7050                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7051                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7052                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7053
7054                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7055
7056                 if (HAS_PCH_IBX(dev_priv->dev)) {
7057                         pipe_config->shared_dpll =
7058                                 (enum intel_dpll_id) crtc->pipe;
7059                 } else {
7060                         tmp = I915_READ(PCH_DPLL_SEL);
7061                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7062                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7063                         else
7064                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7065                 }
7066
7067                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7068
7069                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7070                                            &pipe_config->dpll_hw_state));
7071
7072                 tmp = pipe_config->dpll_hw_state.dpll;
7073                 pipe_config->pixel_multiplier =
7074                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7075                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7076
7077                 ironlake_pch_clock_get(crtc, pipe_config);
7078         } else {
7079                 pipe_config->pixel_multiplier = 1;
7080         }
7081
7082         intel_get_pipe_timings(crtc, pipe_config);
7083
7084         ironlake_get_pfit_config(crtc, pipe_config);
7085
7086         return true;
7087 }
7088
7089 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7090 {
7091         struct drm_device *dev = dev_priv->dev;
7092         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7093         struct intel_crtc *crtc;
7094
7095         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
7096                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7097                      pipe_name(crtc->pipe));
7098
7099         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7100         WARN(plls->spll_refcount, "SPLL enabled\n");
7101         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7102         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7103         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7104         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7105              "CPU PWM1 enabled\n");
7106         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7107              "CPU PWM2 enabled\n");
7108         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7109              "PCH PWM1 enabled\n");
7110         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7111              "Utility pin enabled\n");
7112         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7113
7114         /*
7115          * In theory we can still leave IRQs enabled, as long as only the HPD
7116          * interrupts remain enabled. We used to check for that, but since it's
7117          * gen-specific and since we only disable LCPLL after we fully disable
7118          * the interrupts, the check below should be enough.
7119          */
7120         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7121 }
7122
7123 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7124 {
7125         struct drm_device *dev = dev_priv->dev;
7126
7127         if (IS_HASWELL(dev)) {
7128                 mutex_lock(&dev_priv->rps.hw_lock);
7129                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7130                                             val))
7131                         DRM_ERROR("Failed to disable D_COMP\n");
7132                 mutex_unlock(&dev_priv->rps.hw_lock);
7133         } else {
7134                 I915_WRITE(D_COMP, val);
7135         }
7136         POSTING_READ(D_COMP);
7137 }
7138
7139 /*
7140  * This function implements pieces of two sequences from BSpec:
7141  * - Sequence for display software to disable LCPLL
7142  * - Sequence for display software to allow package C8+
7143  * The steps implemented here are just the steps that actually touch the LCPLL
7144  * register. Callers should take care of disabling all the display engine
7145  * functions, doing the mode unset, fixing interrupts, etc.
7146  */
7147 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7148                               bool switch_to_fclk, bool allow_power_down)
7149 {
7150         uint32_t val;
7151
7152         assert_can_disable_lcpll(dev_priv);
7153
7154         val = I915_READ(LCPLL_CTL);
7155
7156         if (switch_to_fclk) {
7157                 val |= LCPLL_CD_SOURCE_FCLK;
7158                 I915_WRITE(LCPLL_CTL, val);
7159
7160                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7161                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7162                         DRM_ERROR("Switching to FCLK failed\n");
7163
7164                 val = I915_READ(LCPLL_CTL);
7165         }
7166
7167         val |= LCPLL_PLL_DISABLE;
7168         I915_WRITE(LCPLL_CTL, val);
7169         POSTING_READ(LCPLL_CTL);
7170
7171         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7172                 DRM_ERROR("LCPLL still locked\n");
7173
7174         val = I915_READ(D_COMP);
7175         val |= D_COMP_COMP_DISABLE;
7176         hsw_write_dcomp(dev_priv, val);
7177         ndelay(100);
7178
7179         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7180                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7181
7182         if (allow_power_down) {
7183                 val = I915_READ(LCPLL_CTL);
7184                 val |= LCPLL_POWER_DOWN_ALLOW;
7185                 I915_WRITE(LCPLL_CTL, val);
7186                 POSTING_READ(LCPLL_CTL);
7187         }
7188 }
7189
7190 /*
7191  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7192  * source.
7193  */
7194 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7195 {
7196         uint32_t val;
7197         unsigned long irqflags;
7198
7199         val = I915_READ(LCPLL_CTL);
7200
7201         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7202                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7203                 return;
7204
7205         /*
7206          * Make sure we're not on PC8 state before disabling PC8, otherwise
7207          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7208          *
7209          * The other problem is that hsw_restore_lcpll() is called as part of
7210          * the runtime PM resume sequence, so we can't just call
7211          * gen6_gt_force_wake_get() because that function calls
7212          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7213          * while we are on the resume sequence. So to solve this problem we have
7214          * to call special forcewake code that doesn't touch runtime PM and
7215          * doesn't enable the forcewake delayed work.
7216          */
7217         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7218         if (dev_priv->uncore.forcewake_count++ == 0)
7219                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7220         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7221
7222         if (val & LCPLL_POWER_DOWN_ALLOW) {
7223                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7224                 I915_WRITE(LCPLL_CTL, val);
7225                 POSTING_READ(LCPLL_CTL);
7226         }
7227
7228         val = I915_READ(D_COMP);
7229         val |= D_COMP_COMP_FORCE;
7230         val &= ~D_COMP_COMP_DISABLE;
7231         hsw_write_dcomp(dev_priv, val);
7232
7233         val = I915_READ(LCPLL_CTL);
7234         val &= ~LCPLL_PLL_DISABLE;
7235         I915_WRITE(LCPLL_CTL, val);
7236
7237         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7238                 DRM_ERROR("LCPLL not locked yet\n");
7239
7240         if (val & LCPLL_CD_SOURCE_FCLK) {
7241                 val = I915_READ(LCPLL_CTL);
7242                 val &= ~LCPLL_CD_SOURCE_FCLK;
7243                 I915_WRITE(LCPLL_CTL, val);
7244
7245                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7246                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7247                         DRM_ERROR("Switching back to LCPLL failed\n");
7248         }
7249
7250         /* See the big comment above. */
7251         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7252         if (--dev_priv->uncore.forcewake_count == 0)
7253                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7254         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7255 }
7256
7257 /*
7258  * Package states C8 and deeper are really deep PC states that can only be
7259  * reached when all the devices on the system allow it, so even if the graphics
7260  * device allows PC8+, it doesn't mean the system will actually get to these
7261  * states. Our driver only allows PC8+ when going into runtime PM.
7262  *
7263  * The requirements for PC8+ are that all the outputs are disabled, the power
7264  * well is disabled and most interrupts are disabled, and these are also
7265  * requirements for runtime PM. When these conditions are met, we manually do
7266  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7267  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7268  * hang the machine.
7269  *
7270  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7271  * the state of some registers, so when we come back from PC8+ we need to
7272  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7273  * need to take care of the registers kept by RC6. Notice that this happens even
7274  * if we don't put the device in PCI D3 state (which is what currently happens
7275  * because of the runtime PM support).
7276  *
7277  * For more, read "Display Sequences for Package C8" on the hardware
7278  * documentation.
7279  */
7280 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7281 {
7282         struct drm_device *dev = dev_priv->dev;
7283         uint32_t val;
7284
7285         DRM_DEBUG_KMS("Enabling package C8+\n");
7286
7287         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7288                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7289                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7290                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7291         }
7292
7293         lpt_disable_clkout_dp(dev);
7294         hsw_disable_lcpll(dev_priv, true, true);
7295 }
7296
7297 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7298 {
7299         struct drm_device *dev = dev_priv->dev;
7300         uint32_t val;
7301
7302         DRM_DEBUG_KMS("Disabling package C8+\n");
7303
7304         hsw_restore_lcpll(dev_priv);
7305         lpt_init_pch_refclk(dev);
7306
7307         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7308                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7309                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7310                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7311         }
7312
7313         intel_prepare_ddi(dev);
7314 }
7315
7316 static void snb_modeset_global_resources(struct drm_device *dev)
7317 {
7318         modeset_update_crtc_power_domains(dev);
7319 }
7320
7321 static void haswell_modeset_global_resources(struct drm_device *dev)
7322 {
7323         modeset_update_crtc_power_domains(dev);
7324 }
7325
7326 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7327                                  int x, int y,
7328                                  struct drm_framebuffer *fb)
7329 {
7330         struct drm_device *dev = crtc->dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7333         int plane = intel_crtc->plane;
7334         int ret;
7335
7336         if (!intel_ddi_pll_select(intel_crtc))
7337                 return -EINVAL;
7338         intel_ddi_pll_enable(intel_crtc);
7339
7340         if (intel_crtc->config.has_dp_encoder)
7341                 intel_dp_set_m_n(intel_crtc);
7342
7343         intel_crtc->lowfreq_avail = false;
7344
7345         intel_set_pipe_timings(intel_crtc);
7346
7347         if (intel_crtc->config.has_pch_encoder) {
7348                 intel_cpu_transcoder_set_m_n(intel_crtc,
7349                                              &intel_crtc->config.fdi_m_n);
7350         }
7351
7352         haswell_set_pipeconf(crtc);
7353
7354         intel_set_pipe_csc(crtc);
7355
7356         /* Set up the display plane register */
7357         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7358         POSTING_READ(DSPCNTR(plane));
7359
7360         ret = intel_pipe_set_base(crtc, x, y, fb);
7361
7362         return ret;
7363 }
7364
7365 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7366                                     struct intel_crtc_config *pipe_config)
7367 {
7368         struct drm_device *dev = crtc->base.dev;
7369         struct drm_i915_private *dev_priv = dev->dev_private;
7370         enum intel_display_power_domain pfit_domain;
7371         uint32_t tmp;
7372
7373         if (!intel_display_power_enabled(dev_priv,
7374                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7375                 return false;
7376
7377         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7378         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7379
7380         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7381         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7382                 enum pipe trans_edp_pipe;
7383                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7384                 default:
7385                         WARN(1, "unknown pipe linked to edp transcoder\n");
7386                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7387                 case TRANS_DDI_EDP_INPUT_A_ON:
7388                         trans_edp_pipe = PIPE_A;
7389                         break;
7390                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7391                         trans_edp_pipe = PIPE_B;
7392                         break;
7393                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7394                         trans_edp_pipe = PIPE_C;
7395                         break;
7396                 }
7397
7398                 if (trans_edp_pipe == crtc->pipe)
7399                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7400         }
7401
7402         if (!intel_display_power_enabled(dev_priv,
7403                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7404                 return false;
7405
7406         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7407         if (!(tmp & PIPECONF_ENABLE))
7408                 return false;
7409
7410         /*
7411          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7412          * DDI E. So just check whether this pipe is wired to DDI E and whether
7413          * the PCH transcoder is on.
7414          */
7415         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7416         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7417             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7418                 pipe_config->has_pch_encoder = true;
7419
7420                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7421                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7422                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7423
7424                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7425         }
7426
7427         intel_get_pipe_timings(crtc, pipe_config);
7428
7429         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7430         if (intel_display_power_enabled(dev_priv, pfit_domain))
7431                 ironlake_get_pfit_config(crtc, pipe_config);
7432
7433         if (IS_HASWELL(dev))
7434                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7435                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7436
7437         pipe_config->pixel_multiplier = 1;
7438
7439         return true;
7440 }
7441
7442 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7443                                int x, int y,
7444                                struct drm_framebuffer *fb)
7445 {
7446         struct drm_device *dev = crtc->dev;
7447         struct drm_i915_private *dev_priv = dev->dev_private;
7448         struct intel_encoder *encoder;
7449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7450         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7451         int pipe = intel_crtc->pipe;
7452         int ret;
7453
7454         drm_vblank_pre_modeset(dev, pipe);
7455
7456         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7457
7458         drm_vblank_post_modeset(dev, pipe);
7459
7460         if (ret != 0)
7461                 return ret;
7462
7463         for_each_encoder_on_crtc(dev, crtc, encoder) {
7464                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7465                         encoder->base.base.id,
7466                         drm_get_encoder_name(&encoder->base),
7467                         mode->base.id, mode->name);
7468
7469                 if (encoder->mode_set)
7470                         encoder->mode_set(encoder);
7471         }
7472
7473         return 0;
7474 }
7475
7476 static struct {
7477         int clock;
7478         u32 config;
7479 } hdmi_audio_clock[] = {
7480         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7481         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7482         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7483         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7484         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7485         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7486         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7487         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7488         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7489         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7490 };
7491
7492 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7493 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7494 {
7495         int i;
7496
7497         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7498                 if (mode->clock == hdmi_audio_clock[i].clock)
7499                         break;
7500         }
7501
7502         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7503                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7504                 i = 1;
7505         }
7506
7507         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7508                       hdmi_audio_clock[i].clock,
7509                       hdmi_audio_clock[i].config);
7510
7511         return hdmi_audio_clock[i].config;
7512 }
7513
7514 static bool intel_eld_uptodate(struct drm_connector *connector,
7515                                int reg_eldv, uint32_t bits_eldv,
7516                                int reg_elda, uint32_t bits_elda,
7517                                int reg_edid)
7518 {
7519         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7520         uint8_t *eld = connector->eld;
7521         uint32_t i;
7522
7523         i = I915_READ(reg_eldv);
7524         i &= bits_eldv;
7525
7526         if (!eld[0])
7527                 return !i;
7528
7529         if (!i)
7530                 return false;
7531
7532         i = I915_READ(reg_elda);
7533         i &= ~bits_elda;
7534         I915_WRITE(reg_elda, i);
7535
7536         for (i = 0; i < eld[2]; i++)
7537                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7538                         return false;
7539
7540         return true;
7541 }
7542
7543 static void g4x_write_eld(struct drm_connector *connector,
7544                           struct drm_crtc *crtc,
7545                           struct drm_display_mode *mode)
7546 {
7547         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7548         uint8_t *eld = connector->eld;
7549         uint32_t eldv;
7550         uint32_t len;
7551         uint32_t i;
7552
7553         i = I915_READ(G4X_AUD_VID_DID);
7554
7555         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7556                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7557         else
7558                 eldv = G4X_ELDV_DEVCTG;
7559
7560         if (intel_eld_uptodate(connector,
7561                                G4X_AUD_CNTL_ST, eldv,
7562                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7563                                G4X_HDMIW_HDMIEDID))
7564                 return;
7565
7566         i = I915_READ(G4X_AUD_CNTL_ST);
7567         i &= ~(eldv | G4X_ELD_ADDR);
7568         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7569         I915_WRITE(G4X_AUD_CNTL_ST, i);
7570
7571         if (!eld[0])
7572                 return;
7573
7574         len = min_t(uint8_t, eld[2], len);
7575         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7576         for (i = 0; i < len; i++)
7577                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7578
7579         i = I915_READ(G4X_AUD_CNTL_ST);
7580         i |= eldv;
7581         I915_WRITE(G4X_AUD_CNTL_ST, i);
7582 }
7583
7584 static void haswell_write_eld(struct drm_connector *connector,
7585                               struct drm_crtc *crtc,
7586                               struct drm_display_mode *mode)
7587 {
7588         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7589         uint8_t *eld = connector->eld;
7590         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7591         uint32_t eldv;
7592         uint32_t i;
7593         int len;
7594         int pipe = to_intel_crtc(crtc)->pipe;
7595         int tmp;
7596
7597         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7598         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7599         int aud_config = HSW_AUD_CFG(pipe);
7600         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7601
7602         /* Audio output enable */
7603         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7604         tmp = I915_READ(aud_cntrl_st2);
7605         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7606         I915_WRITE(aud_cntrl_st2, tmp);
7607         POSTING_READ(aud_cntrl_st2);
7608
7609         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7610
7611         /* Set ELD valid state */
7612         tmp = I915_READ(aud_cntrl_st2);
7613         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7614         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7615         I915_WRITE(aud_cntrl_st2, tmp);
7616         tmp = I915_READ(aud_cntrl_st2);
7617         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7618
7619         /* Enable HDMI mode */
7620         tmp = I915_READ(aud_config);
7621         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7622         /* clear N_programing_enable and N_value_index */
7623         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7624         I915_WRITE(aud_config, tmp);
7625
7626         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7627
7628         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7629         intel_crtc->eld_vld = true;
7630
7631         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7632                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7633                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7634                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7635         } else {
7636                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7637         }
7638
7639         if (intel_eld_uptodate(connector,
7640                                aud_cntrl_st2, eldv,
7641                                aud_cntl_st, IBX_ELD_ADDRESS,
7642                                hdmiw_hdmiedid))
7643                 return;
7644
7645         i = I915_READ(aud_cntrl_st2);
7646         i &= ~eldv;
7647         I915_WRITE(aud_cntrl_st2, i);
7648
7649         if (!eld[0])
7650                 return;
7651
7652         i = I915_READ(aud_cntl_st);
7653         i &= ~IBX_ELD_ADDRESS;
7654         I915_WRITE(aud_cntl_st, i);
7655         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7656         DRM_DEBUG_DRIVER("port num:%d\n", i);
7657
7658         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7659         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7660         for (i = 0; i < len; i++)
7661                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7662
7663         i = I915_READ(aud_cntrl_st2);
7664         i |= eldv;
7665         I915_WRITE(aud_cntrl_st2, i);
7666
7667 }
7668
7669 static void ironlake_write_eld(struct drm_connector *connector,
7670                                struct drm_crtc *crtc,
7671                                struct drm_display_mode *mode)
7672 {
7673         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7674         uint8_t *eld = connector->eld;
7675         uint32_t eldv;
7676         uint32_t i;
7677         int len;
7678         int hdmiw_hdmiedid;
7679         int aud_config;
7680         int aud_cntl_st;
7681         int aud_cntrl_st2;
7682         int pipe = to_intel_crtc(crtc)->pipe;
7683
7684         if (HAS_PCH_IBX(connector->dev)) {
7685                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7686                 aud_config = IBX_AUD_CFG(pipe);
7687                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7688                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7689         } else if (IS_VALLEYVIEW(connector->dev)) {
7690                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7691                 aud_config = VLV_AUD_CFG(pipe);
7692                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7693                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7694         } else {
7695                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7696                 aud_config = CPT_AUD_CFG(pipe);
7697                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7698                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7699         }
7700
7701         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7702
7703         if (IS_VALLEYVIEW(connector->dev))  {
7704                 struct intel_encoder *intel_encoder;
7705                 struct intel_digital_port *intel_dig_port;
7706
7707                 intel_encoder = intel_attached_encoder(connector);
7708                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7709                 i = intel_dig_port->port;
7710         } else {
7711                 i = I915_READ(aud_cntl_st);
7712                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7713                 /* DIP_Port_Select, 0x1 = PortB */
7714         }
7715
7716         if (!i) {
7717                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7718                 /* operate blindly on all ports */
7719                 eldv = IBX_ELD_VALIDB;
7720                 eldv |= IBX_ELD_VALIDB << 4;
7721                 eldv |= IBX_ELD_VALIDB << 8;
7722         } else {
7723                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7724                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7725         }
7726
7727         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7728                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7729                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7730                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7731         } else {
7732                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7733         }
7734
7735         if (intel_eld_uptodate(connector,
7736                                aud_cntrl_st2, eldv,
7737                                aud_cntl_st, IBX_ELD_ADDRESS,
7738                                hdmiw_hdmiedid))
7739                 return;
7740
7741         i = I915_READ(aud_cntrl_st2);
7742         i &= ~eldv;
7743         I915_WRITE(aud_cntrl_st2, i);
7744
7745         if (!eld[0])
7746                 return;
7747
7748         i = I915_READ(aud_cntl_st);
7749         i &= ~IBX_ELD_ADDRESS;
7750         I915_WRITE(aud_cntl_st, i);
7751
7752         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7753         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7754         for (i = 0; i < len; i++)
7755                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7756
7757         i = I915_READ(aud_cntrl_st2);
7758         i |= eldv;
7759         I915_WRITE(aud_cntrl_st2, i);
7760 }
7761
7762 void intel_write_eld(struct drm_encoder *encoder,
7763                      struct drm_display_mode *mode)
7764 {
7765         struct drm_crtc *crtc = encoder->crtc;
7766         struct drm_connector *connector;
7767         struct drm_device *dev = encoder->dev;
7768         struct drm_i915_private *dev_priv = dev->dev_private;
7769
7770         connector = drm_select_eld(encoder, mode);
7771         if (!connector)
7772                 return;
7773
7774         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7775                          connector->base.id,
7776                          drm_get_connector_name(connector),
7777                          connector->encoder->base.id,
7778                          drm_get_encoder_name(connector->encoder));
7779
7780         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7781
7782         if (dev_priv->display.write_eld)
7783                 dev_priv->display.write_eld(connector, crtc, mode);
7784 }
7785
7786 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7787 {
7788         struct drm_device *dev = crtc->dev;
7789         struct drm_i915_private *dev_priv = dev->dev_private;
7790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7791         bool visible = base != 0;
7792         u32 cntl;
7793
7794         if (intel_crtc->cursor_visible == visible)
7795                 return;
7796
7797         cntl = I915_READ(_CURACNTR);
7798         if (visible) {
7799                 /* On these chipsets we can only modify the base whilst
7800                  * the cursor is disabled.
7801                  */
7802                 I915_WRITE(_CURABASE, base);
7803
7804                 cntl &= ~(CURSOR_FORMAT_MASK);
7805                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7806                 cntl |= CURSOR_ENABLE |
7807                         CURSOR_GAMMA_ENABLE |
7808                         CURSOR_FORMAT_ARGB;
7809         } else
7810                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7811         I915_WRITE(_CURACNTR, cntl);
7812
7813         intel_crtc->cursor_visible = visible;
7814 }
7815
7816 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7817 {
7818         struct drm_device *dev = crtc->dev;
7819         struct drm_i915_private *dev_priv = dev->dev_private;
7820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7821         int pipe = intel_crtc->pipe;
7822         bool visible = base != 0;
7823
7824         if (intel_crtc->cursor_visible != visible) {
7825                 int16_t width = intel_crtc->cursor_width;
7826                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7827                 if (base) {
7828                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7829                         cntl |= MCURSOR_GAMMA_ENABLE;
7830
7831                         switch (width) {
7832                         case 64:
7833                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7834                                 break;
7835                         case 128:
7836                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7837                                 break;
7838                         case 256:
7839                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7840                                 break;
7841                         default:
7842                                 WARN_ON(1);
7843                                 return;
7844                         }
7845                         cntl |= pipe << 28; /* Connect to correct pipe */
7846                 } else {
7847                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7848                         cntl |= CURSOR_MODE_DISABLE;
7849                 }
7850                 I915_WRITE(CURCNTR(pipe), cntl);
7851
7852                 intel_crtc->cursor_visible = visible;
7853         }
7854         /* and commit changes on next vblank */
7855         POSTING_READ(CURCNTR(pipe));
7856         I915_WRITE(CURBASE(pipe), base);
7857         POSTING_READ(CURBASE(pipe));
7858 }
7859
7860 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7861 {
7862         struct drm_device *dev = crtc->dev;
7863         struct drm_i915_private *dev_priv = dev->dev_private;
7864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7865         int pipe = intel_crtc->pipe;
7866         bool visible = base != 0;
7867
7868         if (intel_crtc->cursor_visible != visible) {
7869                 int16_t width = intel_crtc->cursor_width;
7870                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7871                 if (base) {
7872                         cntl &= ~CURSOR_MODE;
7873                         cntl |= MCURSOR_GAMMA_ENABLE;
7874                         switch (width) {
7875                         case 64:
7876                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7877                                 break;
7878                         case 128:
7879                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7880                                 break;
7881                         case 256:
7882                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7883                                 break;
7884                         default:
7885                                 WARN_ON(1);
7886                                 return;
7887                         }
7888                 } else {
7889                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7890                         cntl |= CURSOR_MODE_DISABLE;
7891                 }
7892                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7893                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7894                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7895                 }
7896                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7897
7898                 intel_crtc->cursor_visible = visible;
7899         }
7900         /* and commit changes on next vblank */
7901         POSTING_READ(CURCNTR_IVB(pipe));
7902         I915_WRITE(CURBASE_IVB(pipe), base);
7903         POSTING_READ(CURBASE_IVB(pipe));
7904 }
7905
7906 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7907 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7908                                      bool on)
7909 {
7910         struct drm_device *dev = crtc->dev;
7911         struct drm_i915_private *dev_priv = dev->dev_private;
7912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7913         int pipe = intel_crtc->pipe;
7914         int x = intel_crtc->cursor_x;
7915         int y = intel_crtc->cursor_y;
7916         u32 base = 0, pos = 0;
7917         bool visible;
7918
7919         if (on)
7920                 base = intel_crtc->cursor_addr;
7921
7922         if (x >= intel_crtc->config.pipe_src_w)
7923                 base = 0;
7924
7925         if (y >= intel_crtc->config.pipe_src_h)
7926                 base = 0;
7927
7928         if (x < 0) {
7929                 if (x + intel_crtc->cursor_width <= 0)
7930                         base = 0;
7931
7932                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7933                 x = -x;
7934         }
7935         pos |= x << CURSOR_X_SHIFT;
7936
7937         if (y < 0) {
7938                 if (y + intel_crtc->cursor_height <= 0)
7939                         base = 0;
7940
7941                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7942                 y = -y;
7943         }
7944         pos |= y << CURSOR_Y_SHIFT;
7945
7946         visible = base != 0;
7947         if (!visible && !intel_crtc->cursor_visible)
7948                 return;
7949
7950         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7951                 I915_WRITE(CURPOS_IVB(pipe), pos);
7952                 ivb_update_cursor(crtc, base);
7953         } else {
7954                 I915_WRITE(CURPOS(pipe), pos);
7955                 if (IS_845G(dev) || IS_I865G(dev))
7956                         i845_update_cursor(crtc, base);
7957                 else
7958                         i9xx_update_cursor(crtc, base);
7959         }
7960 }
7961
7962 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7963                                  struct drm_file *file,
7964                                  uint32_t handle,
7965                                  uint32_t width, uint32_t height)
7966 {
7967         struct drm_device *dev = crtc->dev;
7968         struct drm_i915_private *dev_priv = dev->dev_private;
7969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7970         struct drm_i915_gem_object *obj;
7971         unsigned old_width;
7972         uint32_t addr;
7973         int ret;
7974
7975         /* if we want to turn off the cursor ignore width and height */
7976         if (!handle) {
7977                 DRM_DEBUG_KMS("cursor off\n");
7978                 addr = 0;
7979                 obj = NULL;
7980                 mutex_lock(&dev->struct_mutex);
7981                 goto finish;
7982         }
7983
7984         /* Check for which cursor types we support */
7985         if (!((width == 64 && height == 64) ||
7986                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7987                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7988                 DRM_DEBUG("Cursor dimension not supported\n");
7989                 return -EINVAL;
7990         }
7991
7992         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7993         if (&obj->base == NULL)
7994                 return -ENOENT;
7995
7996         if (obj->base.size < width * height * 4) {
7997                 DRM_DEBUG_KMS("buffer is to small\n");
7998                 ret = -ENOMEM;
7999                 goto fail;
8000         }
8001
8002         /* we only need to pin inside GTT if cursor is non-phy */
8003         mutex_lock(&dev->struct_mutex);
8004         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8005                 unsigned alignment;
8006
8007                 if (obj->tiling_mode) {
8008                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8009                         ret = -EINVAL;
8010                         goto fail_locked;
8011                 }
8012
8013                 /* Note that the w/a also requires 2 PTE of padding following
8014                  * the bo. We currently fill all unused PTE with the shadow
8015                  * page and so we should always have valid PTE following the
8016                  * cursor preventing the VT-d warning.
8017                  */
8018                 alignment = 0;
8019                 if (need_vtd_wa(dev))
8020                         alignment = 64*1024;
8021
8022                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8023                 if (ret) {
8024                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8025                         goto fail_locked;
8026                 }
8027
8028                 ret = i915_gem_object_put_fence(obj);
8029                 if (ret) {
8030                         DRM_DEBUG_KMS("failed to release fence for cursor");
8031                         goto fail_unpin;
8032                 }
8033
8034                 addr = i915_gem_obj_ggtt_offset(obj);
8035         } else {
8036                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8037                 ret = i915_gem_attach_phys_object(dev, obj,
8038                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
8039                                                   align);
8040                 if (ret) {
8041                         DRM_DEBUG_KMS("failed to attach phys object\n");
8042                         goto fail_locked;
8043                 }
8044                 addr = obj->phys_obj->handle->busaddr;
8045         }
8046
8047         if (IS_GEN2(dev))
8048                 I915_WRITE(CURSIZE, (height << 12) | width);
8049
8050  finish:
8051         if (intel_crtc->cursor_bo) {
8052                 if (INTEL_INFO(dev)->cursor_needs_physical) {
8053                         if (intel_crtc->cursor_bo != obj)
8054                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
8055                 } else
8056                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8057                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8058         }
8059
8060         mutex_unlock(&dev->struct_mutex);
8061
8062         old_width = intel_crtc->cursor_width;
8063
8064         intel_crtc->cursor_addr = addr;
8065         intel_crtc->cursor_bo = obj;
8066         intel_crtc->cursor_width = width;
8067         intel_crtc->cursor_height = height;
8068
8069         if (intel_crtc->active) {
8070                 if (old_width != width)
8071                         intel_update_watermarks(crtc);
8072                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8073         }
8074
8075         return 0;
8076 fail_unpin:
8077         i915_gem_object_unpin_from_display_plane(obj);
8078 fail_locked:
8079         mutex_unlock(&dev->struct_mutex);
8080 fail:
8081         drm_gem_object_unreference_unlocked(&obj->base);
8082         return ret;
8083 }
8084
8085 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8086 {
8087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8088
8089         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8090         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8091
8092         if (intel_crtc->active)
8093                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8094
8095         return 0;
8096 }
8097
8098 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8099                                  u16 *blue, uint32_t start, uint32_t size)
8100 {
8101         int end = (start + size > 256) ? 256 : start + size, i;
8102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8103
8104         for (i = start; i < end; i++) {
8105                 intel_crtc->lut_r[i] = red[i] >> 8;
8106                 intel_crtc->lut_g[i] = green[i] >> 8;
8107                 intel_crtc->lut_b[i] = blue[i] >> 8;
8108         }
8109
8110         intel_crtc_load_lut(crtc);
8111 }
8112
8113 /* VESA 640x480x72Hz mode to set on the pipe */
8114 static struct drm_display_mode load_detect_mode = {
8115         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8116                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8117 };
8118
8119 struct drm_framebuffer *
8120 __intel_framebuffer_create(struct drm_device *dev,
8121                            struct drm_mode_fb_cmd2 *mode_cmd,
8122                            struct drm_i915_gem_object *obj)
8123 {
8124         struct intel_framebuffer *intel_fb;
8125         int ret;
8126
8127         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8128         if (!intel_fb) {
8129                 drm_gem_object_unreference_unlocked(&obj->base);
8130                 return ERR_PTR(-ENOMEM);
8131         }
8132
8133         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8134         if (ret)
8135                 goto err;
8136
8137         return &intel_fb->base;
8138 err:
8139         drm_gem_object_unreference_unlocked(&obj->base);
8140         kfree(intel_fb);
8141
8142         return ERR_PTR(ret);
8143 }
8144
8145 static struct drm_framebuffer *
8146 intel_framebuffer_create(struct drm_device *dev,
8147                          struct drm_mode_fb_cmd2 *mode_cmd,
8148                          struct drm_i915_gem_object *obj)
8149 {
8150         struct drm_framebuffer *fb;
8151         int ret;
8152
8153         ret = i915_mutex_lock_interruptible(dev);
8154         if (ret)
8155                 return ERR_PTR(ret);
8156         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8157         mutex_unlock(&dev->struct_mutex);
8158
8159         return fb;
8160 }
8161
8162 static u32
8163 intel_framebuffer_pitch_for_width(int width, int bpp)
8164 {
8165         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8166         return ALIGN(pitch, 64);
8167 }
8168
8169 static u32
8170 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8171 {
8172         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8173         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8174 }
8175
8176 static struct drm_framebuffer *
8177 intel_framebuffer_create_for_mode(struct drm_device *dev,
8178                                   struct drm_display_mode *mode,
8179                                   int depth, int bpp)
8180 {
8181         struct drm_i915_gem_object *obj;
8182         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8183
8184         obj = i915_gem_alloc_object(dev,
8185                                     intel_framebuffer_size_for_mode(mode, bpp));
8186         if (obj == NULL)
8187                 return ERR_PTR(-ENOMEM);
8188
8189         mode_cmd.width = mode->hdisplay;
8190         mode_cmd.height = mode->vdisplay;
8191         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8192                                                                 bpp);
8193         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8194
8195         return intel_framebuffer_create(dev, &mode_cmd, obj);
8196 }
8197
8198 static struct drm_framebuffer *
8199 mode_fits_in_fbdev(struct drm_device *dev,
8200                    struct drm_display_mode *mode)
8201 {
8202 #ifdef CONFIG_DRM_I915_FBDEV
8203         struct drm_i915_private *dev_priv = dev->dev_private;
8204         struct drm_i915_gem_object *obj;
8205         struct drm_framebuffer *fb;
8206
8207         if (!dev_priv->fbdev)
8208                 return NULL;
8209
8210         if (!dev_priv->fbdev->fb)
8211                 return NULL;
8212
8213         obj = dev_priv->fbdev->fb->obj;
8214         BUG_ON(!obj);
8215
8216         fb = &dev_priv->fbdev->fb->base;
8217         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8218                                                                fb->bits_per_pixel))
8219                 return NULL;
8220
8221         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8222                 return NULL;
8223
8224         return fb;
8225 #else
8226         return NULL;
8227 #endif
8228 }
8229
8230 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8231                                 struct drm_display_mode *mode,
8232                                 struct intel_load_detect_pipe *old)
8233 {
8234         struct intel_crtc *intel_crtc;
8235         struct intel_encoder *intel_encoder =
8236                 intel_attached_encoder(connector);
8237         struct drm_crtc *possible_crtc;
8238         struct drm_encoder *encoder = &intel_encoder->base;
8239         struct drm_crtc *crtc = NULL;
8240         struct drm_device *dev = encoder->dev;
8241         struct drm_framebuffer *fb;
8242         int i = -1;
8243
8244         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8245                       connector->base.id, drm_get_connector_name(connector),
8246                       encoder->base.id, drm_get_encoder_name(encoder));
8247
8248         /*
8249          * Algorithm gets a little messy:
8250          *
8251          *   - if the connector already has an assigned crtc, use it (but make
8252          *     sure it's on first)
8253          *
8254          *   - try to find the first unused crtc that can drive this connector,
8255          *     and use that if we find one
8256          */
8257
8258         /* See if we already have a CRTC for this connector */
8259         if (encoder->crtc) {
8260                 crtc = encoder->crtc;
8261
8262                 mutex_lock(&crtc->mutex);
8263
8264                 old->dpms_mode = connector->dpms;
8265                 old->load_detect_temp = false;
8266
8267                 /* Make sure the crtc and connector are running */
8268                 if (connector->dpms != DRM_MODE_DPMS_ON)
8269                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8270
8271                 return true;
8272         }
8273
8274         /* Find an unused one (if possible) */
8275         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8276                 i++;
8277                 if (!(encoder->possible_crtcs & (1 << i)))
8278                         continue;
8279                 if (!possible_crtc->enabled) {
8280                         crtc = possible_crtc;
8281                         break;
8282                 }
8283         }
8284
8285         /*
8286          * If we didn't find an unused CRTC, don't use any.
8287          */
8288         if (!crtc) {
8289                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8290                 return false;
8291         }
8292
8293         mutex_lock(&crtc->mutex);
8294         intel_encoder->new_crtc = to_intel_crtc(crtc);
8295         to_intel_connector(connector)->new_encoder = intel_encoder;
8296
8297         intel_crtc = to_intel_crtc(crtc);
8298         intel_crtc->new_enabled = true;
8299         intel_crtc->new_config = &intel_crtc->config;
8300         old->dpms_mode = connector->dpms;
8301         old->load_detect_temp = true;
8302         old->release_fb = NULL;
8303
8304         if (!mode)
8305                 mode = &load_detect_mode;
8306
8307         /* We need a framebuffer large enough to accommodate all accesses
8308          * that the plane may generate whilst we perform load detection.
8309          * We can not rely on the fbcon either being present (we get called
8310          * during its initialisation to detect all boot displays, or it may
8311          * not even exist) or that it is large enough to satisfy the
8312          * requested mode.
8313          */
8314         fb = mode_fits_in_fbdev(dev, mode);
8315         if (fb == NULL) {
8316                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8317                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8318                 old->release_fb = fb;
8319         } else
8320                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8321         if (IS_ERR(fb)) {
8322                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8323                 goto fail;
8324         }
8325
8326         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8327                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8328                 if (old->release_fb)
8329                         old->release_fb->funcs->destroy(old->release_fb);
8330                 goto fail;
8331         }
8332
8333         /* let the connector get through one full cycle before testing */
8334         intel_wait_for_vblank(dev, intel_crtc->pipe);
8335         return true;
8336
8337  fail:
8338         intel_crtc->new_enabled = crtc->enabled;
8339         if (intel_crtc->new_enabled)
8340                 intel_crtc->new_config = &intel_crtc->config;
8341         else
8342                 intel_crtc->new_config = NULL;
8343         mutex_unlock(&crtc->mutex);
8344         return false;
8345 }
8346
8347 void intel_release_load_detect_pipe(struct drm_connector *connector,
8348                                     struct intel_load_detect_pipe *old)
8349 {
8350         struct intel_encoder *intel_encoder =
8351                 intel_attached_encoder(connector);
8352         struct drm_encoder *encoder = &intel_encoder->base;
8353         struct drm_crtc *crtc = encoder->crtc;
8354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8355
8356         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8357                       connector->base.id, drm_get_connector_name(connector),
8358                       encoder->base.id, drm_get_encoder_name(encoder));
8359
8360         if (old->load_detect_temp) {
8361                 to_intel_connector(connector)->new_encoder = NULL;
8362                 intel_encoder->new_crtc = NULL;
8363                 intel_crtc->new_enabled = false;
8364                 intel_crtc->new_config = NULL;
8365                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8366
8367                 if (old->release_fb) {
8368                         drm_framebuffer_unregister_private(old->release_fb);
8369                         drm_framebuffer_unreference(old->release_fb);
8370                 }
8371
8372                 mutex_unlock(&crtc->mutex);
8373                 return;
8374         }
8375
8376         /* Switch crtc and encoder back off if necessary */
8377         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8378                 connector->funcs->dpms(connector, old->dpms_mode);
8379
8380         mutex_unlock(&crtc->mutex);
8381 }
8382
8383 static int i9xx_pll_refclk(struct drm_device *dev,
8384                            const struct intel_crtc_config *pipe_config)
8385 {
8386         struct drm_i915_private *dev_priv = dev->dev_private;
8387         u32 dpll = pipe_config->dpll_hw_state.dpll;
8388
8389         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8390                 return dev_priv->vbt.lvds_ssc_freq;
8391         else if (HAS_PCH_SPLIT(dev))
8392                 return 120000;
8393         else if (!IS_GEN2(dev))
8394                 return 96000;
8395         else
8396                 return 48000;
8397 }
8398
8399 /* Returns the clock of the currently programmed mode of the given pipe. */
8400 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8401                                 struct intel_crtc_config *pipe_config)
8402 {
8403         struct drm_device *dev = crtc->base.dev;
8404         struct drm_i915_private *dev_priv = dev->dev_private;
8405         int pipe = pipe_config->cpu_transcoder;
8406         u32 dpll = pipe_config->dpll_hw_state.dpll;
8407         u32 fp;
8408         intel_clock_t clock;
8409         int refclk = i9xx_pll_refclk(dev, pipe_config);
8410
8411         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8412                 fp = pipe_config->dpll_hw_state.fp0;
8413         else
8414                 fp = pipe_config->dpll_hw_state.fp1;
8415
8416         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8417         if (IS_PINEVIEW(dev)) {
8418                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8419                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8420         } else {
8421                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8422                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8423         }
8424
8425         if (!IS_GEN2(dev)) {
8426                 if (IS_PINEVIEW(dev))
8427                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8428                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8429                 else
8430                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8431                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8432
8433                 switch (dpll & DPLL_MODE_MASK) {
8434                 case DPLLB_MODE_DAC_SERIAL:
8435                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8436                                 5 : 10;
8437                         break;
8438                 case DPLLB_MODE_LVDS:
8439                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8440                                 7 : 14;
8441                         break;
8442                 default:
8443                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8444                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8445                         return;
8446                 }
8447
8448                 if (IS_PINEVIEW(dev))
8449                         pineview_clock(refclk, &clock);
8450                 else
8451                         i9xx_clock(refclk, &clock);
8452         } else {
8453                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8454                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8455
8456                 if (is_lvds) {
8457                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8458                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8459
8460                         if (lvds & LVDS_CLKB_POWER_UP)
8461                                 clock.p2 = 7;
8462                         else
8463                                 clock.p2 = 14;
8464                 } else {
8465                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8466                                 clock.p1 = 2;
8467                         else {
8468                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8469                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8470                         }
8471                         if (dpll & PLL_P2_DIVIDE_BY_4)
8472                                 clock.p2 = 4;
8473                         else
8474                                 clock.p2 = 2;
8475                 }
8476
8477                 i9xx_clock(refclk, &clock);
8478         }
8479
8480         /*
8481          * This value includes pixel_multiplier. We will use
8482          * port_clock to compute adjusted_mode.crtc_clock in the
8483          * encoder's get_config() function.
8484          */
8485         pipe_config->port_clock = clock.dot;
8486 }
8487
8488 int intel_dotclock_calculate(int link_freq,
8489                              const struct intel_link_m_n *m_n)
8490 {
8491         /*
8492          * The calculation for the data clock is:
8493          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8494          * But we want to avoid losing precison if possible, so:
8495          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8496          *
8497          * and the link clock is simpler:
8498          * link_clock = (m * link_clock) / n
8499          */
8500
8501         if (!m_n->link_n)
8502                 return 0;
8503
8504         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8505 }
8506
8507 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8508                                    struct intel_crtc_config *pipe_config)
8509 {
8510         struct drm_device *dev = crtc->base.dev;
8511
8512         /* read out port_clock from the DPLL */
8513         i9xx_crtc_clock_get(crtc, pipe_config);
8514
8515         /*
8516          * This value does not include pixel_multiplier.
8517          * We will check that port_clock and adjusted_mode.crtc_clock
8518          * agree once we know their relationship in the encoder's
8519          * get_config() function.
8520          */
8521         pipe_config->adjusted_mode.crtc_clock =
8522                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8523                                          &pipe_config->fdi_m_n);
8524 }
8525
8526 /** Returns the currently programmed mode of the given pipe. */
8527 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8528                                              struct drm_crtc *crtc)
8529 {
8530         struct drm_i915_private *dev_priv = dev->dev_private;
8531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8532         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8533         struct drm_display_mode *mode;
8534         struct intel_crtc_config pipe_config;
8535         int htot = I915_READ(HTOTAL(cpu_transcoder));
8536         int hsync = I915_READ(HSYNC(cpu_transcoder));
8537         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8538         int vsync = I915_READ(VSYNC(cpu_transcoder));
8539         enum pipe pipe = intel_crtc->pipe;
8540
8541         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8542         if (!mode)
8543                 return NULL;
8544
8545         /*
8546          * Construct a pipe_config sufficient for getting the clock info
8547          * back out of crtc_clock_get.
8548          *
8549          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8550          * to use a real value here instead.
8551          */
8552         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8553         pipe_config.pixel_multiplier = 1;
8554         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8555         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8556         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8557         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8558
8559         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8560         mode->hdisplay = (htot & 0xffff) + 1;
8561         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8562         mode->hsync_start = (hsync & 0xffff) + 1;
8563         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8564         mode->vdisplay = (vtot & 0xffff) + 1;
8565         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8566         mode->vsync_start = (vsync & 0xffff) + 1;
8567         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8568
8569         drm_mode_set_name(mode);
8570
8571         return mode;
8572 }
8573
8574 static void intel_increase_pllclock(struct drm_crtc *crtc)
8575 {
8576         struct drm_device *dev = crtc->dev;
8577         struct drm_i915_private *dev_priv = dev->dev_private;
8578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8579         int pipe = intel_crtc->pipe;
8580         int dpll_reg = DPLL(pipe);
8581         int dpll;
8582
8583         if (HAS_PCH_SPLIT(dev))
8584                 return;
8585
8586         if (!dev_priv->lvds_downclock_avail)
8587                 return;
8588
8589         dpll = I915_READ(dpll_reg);
8590         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8591                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8592
8593                 assert_panel_unlocked(dev_priv, pipe);
8594
8595                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8596                 I915_WRITE(dpll_reg, dpll);
8597                 intel_wait_for_vblank(dev, pipe);
8598
8599                 dpll = I915_READ(dpll_reg);
8600                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8601                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8602         }
8603 }
8604
8605 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8606 {
8607         struct drm_device *dev = crtc->dev;
8608         struct drm_i915_private *dev_priv = dev->dev_private;
8609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8610
8611         if (HAS_PCH_SPLIT(dev))
8612                 return;
8613
8614         if (!dev_priv->lvds_downclock_avail)
8615                 return;
8616
8617         /*
8618          * Since this is called by a timer, we should never get here in
8619          * the manual case.
8620          */
8621         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8622                 int pipe = intel_crtc->pipe;
8623                 int dpll_reg = DPLL(pipe);
8624                 int dpll;
8625
8626                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8627
8628                 assert_panel_unlocked(dev_priv, pipe);
8629
8630                 dpll = I915_READ(dpll_reg);
8631                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8632                 I915_WRITE(dpll_reg, dpll);
8633                 intel_wait_for_vblank(dev, pipe);
8634                 dpll = I915_READ(dpll_reg);
8635                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8636                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8637         }
8638
8639 }
8640
8641 void intel_mark_busy(struct drm_device *dev)
8642 {
8643         struct drm_i915_private *dev_priv = dev->dev_private;
8644
8645         if (dev_priv->mm.busy)
8646                 return;
8647
8648         intel_runtime_pm_get(dev_priv);
8649         i915_update_gfx_val(dev_priv);
8650         dev_priv->mm.busy = true;
8651 }
8652
8653 void intel_mark_idle(struct drm_device *dev)
8654 {
8655         struct drm_i915_private *dev_priv = dev->dev_private;
8656         struct drm_crtc *crtc;
8657
8658         if (!dev_priv->mm.busy)
8659                 return;
8660
8661         dev_priv->mm.busy = false;
8662
8663         if (!i915.powersave)
8664                 goto out;
8665
8666         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8667                 if (!crtc->primary->fb)
8668                         continue;
8669
8670                 intel_decrease_pllclock(crtc);
8671         }
8672
8673         if (INTEL_INFO(dev)->gen >= 6)
8674                 gen6_rps_idle(dev->dev_private);
8675
8676 out:
8677         intel_runtime_pm_put(dev_priv);
8678 }
8679
8680 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8681                         struct intel_ring_buffer *ring)
8682 {
8683         struct drm_device *dev = obj->base.dev;
8684         struct drm_crtc *crtc;
8685
8686         if (!i915.powersave)
8687                 return;
8688
8689         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8690                 if (!crtc->primary->fb)
8691                         continue;
8692
8693                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8694                         continue;
8695
8696                 intel_increase_pllclock(crtc);
8697                 if (ring && intel_fbc_enabled(dev))
8698                         ring->fbc_dirty = true;
8699         }
8700 }
8701
8702 static void intel_crtc_destroy(struct drm_crtc *crtc)
8703 {
8704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8705         struct drm_device *dev = crtc->dev;
8706         struct intel_unpin_work *work;
8707         unsigned long flags;
8708
8709         spin_lock_irqsave(&dev->event_lock, flags);
8710         work = intel_crtc->unpin_work;
8711         intel_crtc->unpin_work = NULL;
8712         spin_unlock_irqrestore(&dev->event_lock, flags);
8713
8714         if (work) {
8715                 cancel_work_sync(&work->work);
8716                 kfree(work);
8717         }
8718
8719         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8720
8721         drm_crtc_cleanup(crtc);
8722
8723         kfree(intel_crtc);
8724 }
8725
8726 static void intel_unpin_work_fn(struct work_struct *__work)
8727 {
8728         struct intel_unpin_work *work =
8729                 container_of(__work, struct intel_unpin_work, work);
8730         struct drm_device *dev = work->crtc->dev;
8731
8732         mutex_lock(&dev->struct_mutex);
8733         intel_unpin_fb_obj(work->old_fb_obj);
8734         drm_gem_object_unreference(&work->pending_flip_obj->base);
8735         drm_gem_object_unreference(&work->old_fb_obj->base);
8736
8737         intel_update_fbc(dev);
8738         mutex_unlock(&dev->struct_mutex);
8739
8740         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8741         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8742
8743         kfree(work);
8744 }
8745
8746 static void do_intel_finish_page_flip(struct drm_device *dev,
8747                                       struct drm_crtc *crtc)
8748 {
8749         struct drm_i915_private *dev_priv = dev->dev_private;
8750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8751         struct intel_unpin_work *work;
8752         unsigned long flags;
8753
8754         /* Ignore early vblank irqs */
8755         if (intel_crtc == NULL)
8756                 return;
8757
8758         spin_lock_irqsave(&dev->event_lock, flags);
8759         work = intel_crtc->unpin_work;
8760
8761         /* Ensure we don't miss a work->pending update ... */
8762         smp_rmb();
8763
8764         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8765                 spin_unlock_irqrestore(&dev->event_lock, flags);
8766                 return;
8767         }
8768
8769         /* and that the unpin work is consistent wrt ->pending. */
8770         smp_rmb();
8771
8772         intel_crtc->unpin_work = NULL;
8773
8774         if (work->event)
8775                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8776
8777         drm_vblank_put(dev, intel_crtc->pipe);
8778
8779         spin_unlock_irqrestore(&dev->event_lock, flags);
8780
8781         wake_up_all(&dev_priv->pending_flip_queue);
8782
8783         queue_work(dev_priv->wq, &work->work);
8784
8785         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8786 }
8787
8788 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8789 {
8790         struct drm_i915_private *dev_priv = dev->dev_private;
8791         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8792
8793         do_intel_finish_page_flip(dev, crtc);
8794 }
8795
8796 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8797 {
8798         struct drm_i915_private *dev_priv = dev->dev_private;
8799         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8800
8801         do_intel_finish_page_flip(dev, crtc);
8802 }
8803
8804 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8805 {
8806         struct drm_i915_private *dev_priv = dev->dev_private;
8807         struct intel_crtc *intel_crtc =
8808                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8809         unsigned long flags;
8810
8811         /* NB: An MMIO update of the plane base pointer will also
8812          * generate a page-flip completion irq, i.e. every modeset
8813          * is also accompanied by a spurious intel_prepare_page_flip().
8814          */
8815         spin_lock_irqsave(&dev->event_lock, flags);
8816         if (intel_crtc->unpin_work)
8817                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8818         spin_unlock_irqrestore(&dev->event_lock, flags);
8819 }
8820
8821 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8822 {
8823         /* Ensure that the work item is consistent when activating it ... */
8824         smp_wmb();
8825         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8826         /* and that it is marked active as soon as the irq could fire. */
8827         smp_wmb();
8828 }
8829
8830 static int intel_gen2_queue_flip(struct drm_device *dev,
8831                                  struct drm_crtc *crtc,
8832                                  struct drm_framebuffer *fb,
8833                                  struct drm_i915_gem_object *obj,
8834                                  uint32_t flags)
8835 {
8836         struct drm_i915_private *dev_priv = dev->dev_private;
8837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8838         u32 flip_mask;
8839         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8840         int ret;
8841
8842         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8843         if (ret)
8844                 goto err;
8845
8846         ret = intel_ring_begin(ring, 6);
8847         if (ret)
8848                 goto err_unpin;
8849
8850         /* Can't queue multiple flips, so wait for the previous
8851          * one to finish before executing the next.
8852          */
8853         if (intel_crtc->plane)
8854                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8855         else
8856                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8857         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8858         intel_ring_emit(ring, MI_NOOP);
8859         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8860                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8861         intel_ring_emit(ring, fb->pitches[0]);
8862         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8863         intel_ring_emit(ring, 0); /* aux display base address, unused */
8864
8865         intel_mark_page_flip_active(intel_crtc);
8866         __intel_ring_advance(ring);
8867         return 0;
8868
8869 err_unpin:
8870         intel_unpin_fb_obj(obj);
8871 err:
8872         return ret;
8873 }
8874
8875 static int intel_gen3_queue_flip(struct drm_device *dev,
8876                                  struct drm_crtc *crtc,
8877                                  struct drm_framebuffer *fb,
8878                                  struct drm_i915_gem_object *obj,
8879                                  uint32_t flags)
8880 {
8881         struct drm_i915_private *dev_priv = dev->dev_private;
8882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8883         u32 flip_mask;
8884         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8885         int ret;
8886
8887         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8888         if (ret)
8889                 goto err;
8890
8891         ret = intel_ring_begin(ring, 6);
8892         if (ret)
8893                 goto err_unpin;
8894
8895         if (intel_crtc->plane)
8896                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8897         else
8898                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8899         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8900         intel_ring_emit(ring, MI_NOOP);
8901         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8902                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8903         intel_ring_emit(ring, fb->pitches[0]);
8904         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8905         intel_ring_emit(ring, MI_NOOP);
8906
8907         intel_mark_page_flip_active(intel_crtc);
8908         __intel_ring_advance(ring);
8909         return 0;
8910
8911 err_unpin:
8912         intel_unpin_fb_obj(obj);
8913 err:
8914         return ret;
8915 }
8916
8917 static int intel_gen4_queue_flip(struct drm_device *dev,
8918                                  struct drm_crtc *crtc,
8919                                  struct drm_framebuffer *fb,
8920                                  struct drm_i915_gem_object *obj,
8921                                  uint32_t flags)
8922 {
8923         struct drm_i915_private *dev_priv = dev->dev_private;
8924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8925         uint32_t pf, pipesrc;
8926         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8927         int ret;
8928
8929         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8930         if (ret)
8931                 goto err;
8932
8933         ret = intel_ring_begin(ring, 4);
8934         if (ret)
8935                 goto err_unpin;
8936
8937         /* i965+ uses the linear or tiled offsets from the
8938          * Display Registers (which do not change across a page-flip)
8939          * so we need only reprogram the base address.
8940          */
8941         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8942                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8943         intel_ring_emit(ring, fb->pitches[0]);
8944         intel_ring_emit(ring,
8945                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8946                         obj->tiling_mode);
8947
8948         /* XXX Enabling the panel-fitter across page-flip is so far
8949          * untested on non-native modes, so ignore it for now.
8950          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8951          */
8952         pf = 0;
8953         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8954         intel_ring_emit(ring, pf | pipesrc);
8955
8956         intel_mark_page_flip_active(intel_crtc);
8957         __intel_ring_advance(ring);
8958         return 0;
8959
8960 err_unpin:
8961         intel_unpin_fb_obj(obj);
8962 err:
8963         return ret;
8964 }
8965
8966 static int intel_gen6_queue_flip(struct drm_device *dev,
8967                                  struct drm_crtc *crtc,
8968                                  struct drm_framebuffer *fb,
8969                                  struct drm_i915_gem_object *obj,
8970                                  uint32_t flags)
8971 {
8972         struct drm_i915_private *dev_priv = dev->dev_private;
8973         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8974         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8975         uint32_t pf, pipesrc;
8976         int ret;
8977
8978         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8979         if (ret)
8980                 goto err;
8981
8982         ret = intel_ring_begin(ring, 4);
8983         if (ret)
8984                 goto err_unpin;
8985
8986         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8987                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8988         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8989         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8990
8991         /* Contrary to the suggestions in the documentation,
8992          * "Enable Panel Fitter" does not seem to be required when page
8993          * flipping with a non-native mode, and worse causes a normal
8994          * modeset to fail.
8995          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8996          */
8997         pf = 0;
8998         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8999         intel_ring_emit(ring, pf | pipesrc);
9000
9001         intel_mark_page_flip_active(intel_crtc);
9002         __intel_ring_advance(ring);
9003         return 0;
9004
9005 err_unpin:
9006         intel_unpin_fb_obj(obj);
9007 err:
9008         return ret;
9009 }
9010
9011 static int intel_gen7_queue_flip(struct drm_device *dev,
9012                                  struct drm_crtc *crtc,
9013                                  struct drm_framebuffer *fb,
9014                                  struct drm_i915_gem_object *obj,
9015                                  uint32_t flags)
9016 {
9017         struct drm_i915_private *dev_priv = dev->dev_private;
9018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9019         struct intel_ring_buffer *ring;
9020         uint32_t plane_bit = 0;
9021         int len, ret;
9022
9023         ring = obj->ring;
9024         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
9025                 ring = &dev_priv->ring[BCS];
9026
9027         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9028         if (ret)
9029                 goto err;
9030
9031         switch(intel_crtc->plane) {
9032         case PLANE_A:
9033                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9034                 break;
9035         case PLANE_B:
9036                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9037                 break;
9038         case PLANE_C:
9039                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9040                 break;
9041         default:
9042                 WARN_ONCE(1, "unknown plane in flip command\n");
9043                 ret = -ENODEV;
9044                 goto err_unpin;
9045         }
9046
9047         len = 4;
9048         if (ring->id == RCS) {
9049                 len += 6;
9050                 /*
9051                  * On Gen 8, SRM is now taking an extra dword to accommodate
9052                  * 48bits addresses, and we need a NOOP for the batch size to
9053                  * stay even.
9054                  */
9055                 if (IS_GEN8(dev))
9056                         len += 2;
9057         }
9058
9059         /*
9060          * BSpec MI_DISPLAY_FLIP for IVB:
9061          * "The full packet must be contained within the same cache line."
9062          *
9063          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9064          * cacheline, if we ever start emitting more commands before
9065          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9066          * then do the cacheline alignment, and finally emit the
9067          * MI_DISPLAY_FLIP.
9068          */
9069         ret = intel_ring_cacheline_align(ring);
9070         if (ret)
9071                 goto err_unpin;
9072
9073         ret = intel_ring_begin(ring, len);
9074         if (ret)
9075                 goto err_unpin;
9076
9077         /* Unmask the flip-done completion message. Note that the bspec says that
9078          * we should do this for both the BCS and RCS, and that we must not unmask
9079          * more than one flip event at any time (or ensure that one flip message
9080          * can be sent by waiting for flip-done prior to queueing new flips).
9081          * Experimentation says that BCS works despite DERRMR masking all
9082          * flip-done completion events and that unmasking all planes at once
9083          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9084          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9085          */
9086         if (ring->id == RCS) {
9087                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9088                 intel_ring_emit(ring, DERRMR);
9089                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9090                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9091                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9092                 if (IS_GEN8(dev))
9093                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9094                                               MI_SRM_LRM_GLOBAL_GTT);
9095                 else
9096                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9097                                               MI_SRM_LRM_GLOBAL_GTT);
9098                 intel_ring_emit(ring, DERRMR);
9099                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9100                 if (IS_GEN8(dev)) {
9101                         intel_ring_emit(ring, 0);
9102                         intel_ring_emit(ring, MI_NOOP);
9103                 }
9104         }
9105
9106         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9107         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9108         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
9109         intel_ring_emit(ring, (MI_NOOP));
9110
9111         intel_mark_page_flip_active(intel_crtc);
9112         __intel_ring_advance(ring);
9113         return 0;
9114
9115 err_unpin:
9116         intel_unpin_fb_obj(obj);
9117 err:
9118         return ret;
9119 }
9120
9121 static int intel_default_queue_flip(struct drm_device *dev,
9122                                     struct drm_crtc *crtc,
9123                                     struct drm_framebuffer *fb,
9124                                     struct drm_i915_gem_object *obj,
9125                                     uint32_t flags)
9126 {
9127         return -ENODEV;
9128 }
9129
9130 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9131                                 struct drm_framebuffer *fb,
9132                                 struct drm_pending_vblank_event *event,
9133                                 uint32_t page_flip_flags)
9134 {
9135         struct drm_device *dev = crtc->dev;
9136         struct drm_i915_private *dev_priv = dev->dev_private;
9137         struct drm_framebuffer *old_fb = crtc->primary->fb;
9138         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9140         struct intel_unpin_work *work;
9141         unsigned long flags;
9142         int ret;
9143
9144         /* Can't change pixel format via MI display flips. */
9145         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9146                 return -EINVAL;
9147
9148         /*
9149          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9150          * Note that pitch changes could also affect these register.
9151          */
9152         if (INTEL_INFO(dev)->gen > 3 &&
9153             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9154              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9155                 return -EINVAL;
9156
9157         if (i915_terminally_wedged(&dev_priv->gpu_error))
9158                 goto out_hang;
9159
9160         work = kzalloc(sizeof(*work), GFP_KERNEL);
9161         if (work == NULL)
9162                 return -ENOMEM;
9163
9164         work->event = event;
9165         work->crtc = crtc;
9166         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9167         INIT_WORK(&work->work, intel_unpin_work_fn);
9168
9169         ret = drm_vblank_get(dev, intel_crtc->pipe);
9170         if (ret)
9171                 goto free_work;
9172
9173         /* We borrow the event spin lock for protecting unpin_work */
9174         spin_lock_irqsave(&dev->event_lock, flags);
9175         if (intel_crtc->unpin_work) {
9176                 spin_unlock_irqrestore(&dev->event_lock, flags);
9177                 kfree(work);
9178                 drm_vblank_put(dev, intel_crtc->pipe);
9179
9180                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9181                 return -EBUSY;
9182         }
9183         intel_crtc->unpin_work = work;
9184         spin_unlock_irqrestore(&dev->event_lock, flags);
9185
9186         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9187                 flush_workqueue(dev_priv->wq);
9188
9189         ret = i915_mutex_lock_interruptible(dev);
9190         if (ret)
9191                 goto cleanup;
9192
9193         /* Reference the objects for the scheduled work. */
9194         drm_gem_object_reference(&work->old_fb_obj->base);
9195         drm_gem_object_reference(&obj->base);
9196
9197         crtc->primary->fb = fb;
9198
9199         work->pending_flip_obj = obj;
9200
9201         work->enable_stall_check = true;
9202
9203         atomic_inc(&intel_crtc->unpin_work_count);
9204         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9205
9206         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
9207         if (ret)
9208                 goto cleanup_pending;
9209
9210         intel_disable_fbc(dev);
9211         intel_mark_fb_busy(obj, NULL);
9212         mutex_unlock(&dev->struct_mutex);
9213
9214         trace_i915_flip_request(intel_crtc->plane, obj);
9215
9216         return 0;
9217
9218 cleanup_pending:
9219         atomic_dec(&intel_crtc->unpin_work_count);
9220         crtc->primary->fb = old_fb;
9221         drm_gem_object_unreference(&work->old_fb_obj->base);
9222         drm_gem_object_unreference(&obj->base);
9223         mutex_unlock(&dev->struct_mutex);
9224
9225 cleanup:
9226         spin_lock_irqsave(&dev->event_lock, flags);
9227         intel_crtc->unpin_work = NULL;
9228         spin_unlock_irqrestore(&dev->event_lock, flags);
9229
9230         drm_vblank_put(dev, intel_crtc->pipe);
9231 free_work:
9232         kfree(work);
9233
9234         if (ret == -EIO) {
9235 out_hang:
9236                 intel_crtc_wait_for_pending_flips(crtc);
9237                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9238                 if (ret == 0 && event)
9239                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9240         }
9241         return ret;
9242 }
9243
9244 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9245         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9246         .load_lut = intel_crtc_load_lut,
9247 };
9248
9249 /**
9250  * intel_modeset_update_staged_output_state
9251  *
9252  * Updates the staged output configuration state, e.g. after we've read out the
9253  * current hw state.
9254  */
9255 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9256 {
9257         struct intel_crtc *crtc;
9258         struct intel_encoder *encoder;
9259         struct intel_connector *connector;
9260
9261         list_for_each_entry(connector, &dev->mode_config.connector_list,
9262                             base.head) {
9263                 connector->new_encoder =
9264                         to_intel_encoder(connector->base.encoder);
9265         }
9266
9267         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9268                             base.head) {
9269                 encoder->new_crtc =
9270                         to_intel_crtc(encoder->base.crtc);
9271         }
9272
9273         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9274                             base.head) {
9275                 crtc->new_enabled = crtc->base.enabled;
9276
9277                 if (crtc->new_enabled)
9278                         crtc->new_config = &crtc->config;
9279                 else
9280                         crtc->new_config = NULL;
9281         }
9282 }
9283
9284 /**
9285  * intel_modeset_commit_output_state
9286  *
9287  * This function copies the stage display pipe configuration to the real one.
9288  */
9289 static void intel_modeset_commit_output_state(struct drm_device *dev)
9290 {
9291         struct intel_crtc *crtc;
9292         struct intel_encoder *encoder;
9293         struct intel_connector *connector;
9294
9295         list_for_each_entry(connector, &dev->mode_config.connector_list,
9296                             base.head) {
9297                 connector->base.encoder = &connector->new_encoder->base;
9298         }
9299
9300         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9301                             base.head) {
9302                 encoder->base.crtc = &encoder->new_crtc->base;
9303         }
9304
9305         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9306                             base.head) {
9307                 crtc->base.enabled = crtc->new_enabled;
9308         }
9309 }
9310
9311 static void
9312 connected_sink_compute_bpp(struct intel_connector * connector,
9313                            struct intel_crtc_config *pipe_config)
9314 {
9315         int bpp = pipe_config->pipe_bpp;
9316
9317         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9318                 connector->base.base.id,
9319                 drm_get_connector_name(&connector->base));
9320
9321         /* Don't use an invalid EDID bpc value */
9322         if (connector->base.display_info.bpc &&
9323             connector->base.display_info.bpc * 3 < bpp) {
9324                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9325                               bpp, connector->base.display_info.bpc*3);
9326                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9327         }
9328
9329         /* Clamp bpp to 8 on screens without EDID 1.4 */
9330         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9331                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9332                               bpp);
9333                 pipe_config->pipe_bpp = 24;
9334         }
9335 }
9336
9337 static int
9338 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9339                           struct drm_framebuffer *fb,
9340                           struct intel_crtc_config *pipe_config)
9341 {
9342         struct drm_device *dev = crtc->base.dev;
9343         struct intel_connector *connector;
9344         int bpp;
9345
9346         switch (fb->pixel_format) {
9347         case DRM_FORMAT_C8:
9348                 bpp = 8*3; /* since we go through a colormap */
9349                 break;
9350         case DRM_FORMAT_XRGB1555:
9351         case DRM_FORMAT_ARGB1555:
9352                 /* checked in intel_framebuffer_init already */
9353                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9354                         return -EINVAL;
9355         case DRM_FORMAT_RGB565:
9356                 bpp = 6*3; /* min is 18bpp */
9357                 break;
9358         case DRM_FORMAT_XBGR8888:
9359         case DRM_FORMAT_ABGR8888:
9360                 /* checked in intel_framebuffer_init already */
9361                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9362                         return -EINVAL;
9363         case DRM_FORMAT_XRGB8888:
9364         case DRM_FORMAT_ARGB8888:
9365                 bpp = 8*3;
9366                 break;
9367         case DRM_FORMAT_XRGB2101010:
9368         case DRM_FORMAT_ARGB2101010:
9369         case DRM_FORMAT_XBGR2101010:
9370         case DRM_FORMAT_ABGR2101010:
9371                 /* checked in intel_framebuffer_init already */
9372                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9373                         return -EINVAL;
9374                 bpp = 10*3;
9375                 break;
9376         /* TODO: gen4+ supports 16 bpc floating point, too. */
9377         default:
9378                 DRM_DEBUG_KMS("unsupported depth\n");
9379                 return -EINVAL;
9380         }
9381
9382         pipe_config->pipe_bpp = bpp;
9383
9384         /* Clamp display bpp to EDID value */
9385         list_for_each_entry(connector, &dev->mode_config.connector_list,
9386                             base.head) {
9387                 if (!connector->new_encoder ||
9388                     connector->new_encoder->new_crtc != crtc)
9389                         continue;
9390
9391                 connected_sink_compute_bpp(connector, pipe_config);
9392         }
9393
9394         return bpp;
9395 }
9396
9397 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9398 {
9399         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9400                         "type: 0x%x flags: 0x%x\n",
9401                 mode->crtc_clock,
9402                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9403                 mode->crtc_hsync_end, mode->crtc_htotal,
9404                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9405                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9406 }
9407
9408 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9409                                    struct intel_crtc_config *pipe_config,
9410                                    const char *context)
9411 {
9412         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9413                       context, pipe_name(crtc->pipe));
9414
9415         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9416         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9417                       pipe_config->pipe_bpp, pipe_config->dither);
9418         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9419                       pipe_config->has_pch_encoder,
9420                       pipe_config->fdi_lanes,
9421                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9422                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9423                       pipe_config->fdi_m_n.tu);
9424         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9425                       pipe_config->has_dp_encoder,
9426                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9427                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9428                       pipe_config->dp_m_n.tu);
9429         DRM_DEBUG_KMS("requested mode:\n");
9430         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9431         DRM_DEBUG_KMS("adjusted mode:\n");
9432         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9433         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9434         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9435         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9436                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9437         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9438                       pipe_config->gmch_pfit.control,
9439                       pipe_config->gmch_pfit.pgm_ratios,
9440                       pipe_config->gmch_pfit.lvds_border_bits);
9441         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9442                       pipe_config->pch_pfit.pos,
9443                       pipe_config->pch_pfit.size,
9444                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9445         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9446         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9447 }
9448
9449 static bool encoders_cloneable(const struct intel_encoder *a,
9450                                const struct intel_encoder *b)
9451 {
9452         /* masks could be asymmetric, so check both ways */
9453         return a == b || (a->cloneable & (1 << b->type) &&
9454                           b->cloneable & (1 << a->type));
9455 }
9456
9457 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9458                                          struct intel_encoder *encoder)
9459 {
9460         struct drm_device *dev = crtc->base.dev;
9461         struct intel_encoder *source_encoder;
9462
9463         list_for_each_entry(source_encoder,
9464                             &dev->mode_config.encoder_list, base.head) {
9465                 if (source_encoder->new_crtc != crtc)
9466                         continue;
9467
9468                 if (!encoders_cloneable(encoder, source_encoder))
9469                         return false;
9470         }
9471
9472         return true;
9473 }
9474
9475 static bool check_encoder_cloning(struct intel_crtc *crtc)
9476 {
9477         struct drm_device *dev = crtc->base.dev;
9478         struct intel_encoder *encoder;
9479
9480         list_for_each_entry(encoder,
9481                             &dev->mode_config.encoder_list, base.head) {
9482                 if (encoder->new_crtc != crtc)
9483                         continue;
9484
9485                 if (!check_single_encoder_cloning(crtc, encoder))
9486                         return false;
9487         }
9488
9489         return true;
9490 }
9491
9492 static struct intel_crtc_config *
9493 intel_modeset_pipe_config(struct drm_crtc *crtc,
9494                           struct drm_framebuffer *fb,
9495                           struct drm_display_mode *mode)
9496 {
9497         struct drm_device *dev = crtc->dev;
9498         struct intel_encoder *encoder;
9499         struct intel_crtc_config *pipe_config;
9500         int plane_bpp, ret = -EINVAL;
9501         bool retry = true;
9502
9503         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9504                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9505                 return ERR_PTR(-EINVAL);
9506         }
9507
9508         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9509         if (!pipe_config)
9510                 return ERR_PTR(-ENOMEM);
9511
9512         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9513         drm_mode_copy(&pipe_config->requested_mode, mode);
9514
9515         pipe_config->cpu_transcoder =
9516                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9517         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9518
9519         /*
9520          * Sanitize sync polarity flags based on requested ones. If neither
9521          * positive or negative polarity is requested, treat this as meaning
9522          * negative polarity.
9523          */
9524         if (!(pipe_config->adjusted_mode.flags &
9525               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9526                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9527
9528         if (!(pipe_config->adjusted_mode.flags &
9529               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9530                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9531
9532         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9533          * plane pixel format and any sink constraints into account. Returns the
9534          * source plane bpp so that dithering can be selected on mismatches
9535          * after encoders and crtc also have had their say. */
9536         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9537                                               fb, pipe_config);
9538         if (plane_bpp < 0)
9539                 goto fail;
9540
9541         /*
9542          * Determine the real pipe dimensions. Note that stereo modes can
9543          * increase the actual pipe size due to the frame doubling and
9544          * insertion of additional space for blanks between the frame. This
9545          * is stored in the crtc timings. We use the requested mode to do this
9546          * computation to clearly distinguish it from the adjusted mode, which
9547          * can be changed by the connectors in the below retry loop.
9548          */
9549         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9550         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9551         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9552
9553 encoder_retry:
9554         /* Ensure the port clock defaults are reset when retrying. */
9555         pipe_config->port_clock = 0;
9556         pipe_config->pixel_multiplier = 1;
9557
9558         /* Fill in default crtc timings, allow encoders to overwrite them. */
9559         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9560
9561         /* Pass our mode to the connectors and the CRTC to give them a chance to
9562          * adjust it according to limitations or connector properties, and also
9563          * a chance to reject the mode entirely.
9564          */
9565         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9566                             base.head) {
9567
9568                 if (&encoder->new_crtc->base != crtc)
9569                         continue;
9570
9571                 if (!(encoder->compute_config(encoder, pipe_config))) {
9572                         DRM_DEBUG_KMS("Encoder config failure\n");
9573                         goto fail;
9574                 }
9575         }
9576
9577         /* Set default port clock if not overwritten by the encoder. Needs to be
9578          * done afterwards in case the encoder adjusts the mode. */
9579         if (!pipe_config->port_clock)
9580                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9581                         * pipe_config->pixel_multiplier;
9582
9583         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9584         if (ret < 0) {
9585                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9586                 goto fail;
9587         }
9588
9589         if (ret == RETRY) {
9590                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9591                         ret = -EINVAL;
9592                         goto fail;
9593                 }
9594
9595                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9596                 retry = false;
9597                 goto encoder_retry;
9598         }
9599
9600         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9601         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9602                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9603
9604         return pipe_config;
9605 fail:
9606         kfree(pipe_config);
9607         return ERR_PTR(ret);
9608 }
9609
9610 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9611  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9612 static void
9613 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9614                              unsigned *prepare_pipes, unsigned *disable_pipes)
9615 {
9616         struct intel_crtc *intel_crtc;
9617         struct drm_device *dev = crtc->dev;
9618         struct intel_encoder *encoder;
9619         struct intel_connector *connector;
9620         struct drm_crtc *tmp_crtc;
9621
9622         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9623
9624         /* Check which crtcs have changed outputs connected to them, these need
9625          * to be part of the prepare_pipes mask. We don't (yet) support global
9626          * modeset across multiple crtcs, so modeset_pipes will only have one
9627          * bit set at most. */
9628         list_for_each_entry(connector, &dev->mode_config.connector_list,
9629                             base.head) {
9630                 if (connector->base.encoder == &connector->new_encoder->base)
9631                         continue;
9632
9633                 if (connector->base.encoder) {
9634                         tmp_crtc = connector->base.encoder->crtc;
9635
9636                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9637                 }
9638
9639                 if (connector->new_encoder)
9640                         *prepare_pipes |=
9641                                 1 << connector->new_encoder->new_crtc->pipe;
9642         }
9643
9644         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9645                             base.head) {
9646                 if (encoder->base.crtc == &encoder->new_crtc->base)
9647                         continue;
9648
9649                 if (encoder->base.crtc) {
9650                         tmp_crtc = encoder->base.crtc;
9651
9652                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9653                 }
9654
9655                 if (encoder->new_crtc)
9656                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9657         }
9658
9659         /* Check for pipes that will be enabled/disabled ... */
9660         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9661                             base.head) {
9662                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9663                         continue;
9664
9665                 if (!intel_crtc->new_enabled)
9666                         *disable_pipes |= 1 << intel_crtc->pipe;
9667                 else
9668                         *prepare_pipes |= 1 << intel_crtc->pipe;
9669         }
9670
9671
9672         /* set_mode is also used to update properties on life display pipes. */
9673         intel_crtc = to_intel_crtc(crtc);
9674         if (intel_crtc->new_enabled)
9675                 *prepare_pipes |= 1 << intel_crtc->pipe;
9676
9677         /*
9678          * For simplicity do a full modeset on any pipe where the output routing
9679          * changed. We could be more clever, but that would require us to be
9680          * more careful with calling the relevant encoder->mode_set functions.
9681          */
9682         if (*prepare_pipes)
9683                 *modeset_pipes = *prepare_pipes;
9684
9685         /* ... and mask these out. */
9686         *modeset_pipes &= ~(*disable_pipes);
9687         *prepare_pipes &= ~(*disable_pipes);
9688
9689         /*
9690          * HACK: We don't (yet) fully support global modesets. intel_set_config
9691          * obies this rule, but the modeset restore mode of
9692          * intel_modeset_setup_hw_state does not.
9693          */
9694         *modeset_pipes &= 1 << intel_crtc->pipe;
9695         *prepare_pipes &= 1 << intel_crtc->pipe;
9696
9697         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9698                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9699 }
9700
9701 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9702 {
9703         struct drm_encoder *encoder;
9704         struct drm_device *dev = crtc->dev;
9705
9706         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9707                 if (encoder->crtc == crtc)
9708                         return true;
9709
9710         return false;
9711 }
9712
9713 static void
9714 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9715 {
9716         struct intel_encoder *intel_encoder;
9717         struct intel_crtc *intel_crtc;
9718         struct drm_connector *connector;
9719
9720         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9721                             base.head) {
9722                 if (!intel_encoder->base.crtc)
9723                         continue;
9724
9725                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9726
9727                 if (prepare_pipes & (1 << intel_crtc->pipe))
9728                         intel_encoder->connectors_active = false;
9729         }
9730
9731         intel_modeset_commit_output_state(dev);
9732
9733         /* Double check state. */
9734         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9735                             base.head) {
9736                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9737                 WARN_ON(intel_crtc->new_config &&
9738                         intel_crtc->new_config != &intel_crtc->config);
9739                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9740         }
9741
9742         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9743                 if (!connector->encoder || !connector->encoder->crtc)
9744                         continue;
9745
9746                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9747
9748                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9749                         struct drm_property *dpms_property =
9750                                 dev->mode_config.dpms_property;
9751
9752                         connector->dpms = DRM_MODE_DPMS_ON;
9753                         drm_object_property_set_value(&connector->base,
9754                                                          dpms_property,
9755                                                          DRM_MODE_DPMS_ON);
9756
9757                         intel_encoder = to_intel_encoder(connector->encoder);
9758                         intel_encoder->connectors_active = true;
9759                 }
9760         }
9761
9762 }
9763
9764 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9765 {
9766         int diff;
9767
9768         if (clock1 == clock2)
9769                 return true;
9770
9771         if (!clock1 || !clock2)
9772                 return false;
9773
9774         diff = abs(clock1 - clock2);
9775
9776         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9777                 return true;
9778
9779         return false;
9780 }
9781
9782 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9783         list_for_each_entry((intel_crtc), \
9784                             &(dev)->mode_config.crtc_list, \
9785                             base.head) \
9786                 if (mask & (1 <<(intel_crtc)->pipe))
9787
9788 static bool
9789 intel_pipe_config_compare(struct drm_device *dev,
9790                           struct intel_crtc_config *current_config,
9791                           struct intel_crtc_config *pipe_config)
9792 {
9793 #define PIPE_CONF_CHECK_X(name) \
9794         if (current_config->name != pipe_config->name) { \
9795                 DRM_ERROR("mismatch in " #name " " \
9796                           "(expected 0x%08x, found 0x%08x)\n", \
9797                           current_config->name, \
9798                           pipe_config->name); \
9799                 return false; \
9800         }
9801
9802 #define PIPE_CONF_CHECK_I(name) \
9803         if (current_config->name != pipe_config->name) { \
9804                 DRM_ERROR("mismatch in " #name " " \
9805                           "(expected %i, found %i)\n", \
9806                           current_config->name, \
9807                           pipe_config->name); \
9808                 return false; \
9809         }
9810
9811 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9812         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9813                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9814                           "(expected %i, found %i)\n", \
9815                           current_config->name & (mask), \
9816                           pipe_config->name & (mask)); \
9817                 return false; \
9818         }
9819
9820 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9821         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9822                 DRM_ERROR("mismatch in " #name " " \
9823                           "(expected %i, found %i)\n", \
9824                           current_config->name, \
9825                           pipe_config->name); \
9826                 return false; \
9827         }
9828
9829 #define PIPE_CONF_QUIRK(quirk)  \
9830         ((current_config->quirks | pipe_config->quirks) & (quirk))
9831
9832         PIPE_CONF_CHECK_I(cpu_transcoder);
9833
9834         PIPE_CONF_CHECK_I(has_pch_encoder);
9835         PIPE_CONF_CHECK_I(fdi_lanes);
9836         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9837         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9838         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9839         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9840         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9841
9842         PIPE_CONF_CHECK_I(has_dp_encoder);
9843         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9844         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9845         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9846         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9847         PIPE_CONF_CHECK_I(dp_m_n.tu);
9848
9849         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9850         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9851         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9852         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9853         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9854         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9855
9856         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9857         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9858         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9859         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9860         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9861         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9862
9863         PIPE_CONF_CHECK_I(pixel_multiplier);
9864
9865         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9866                               DRM_MODE_FLAG_INTERLACE);
9867
9868         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9869                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9870                                       DRM_MODE_FLAG_PHSYNC);
9871                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9872                                       DRM_MODE_FLAG_NHSYNC);
9873                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9874                                       DRM_MODE_FLAG_PVSYNC);
9875                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9876                                       DRM_MODE_FLAG_NVSYNC);
9877         }
9878
9879         PIPE_CONF_CHECK_I(pipe_src_w);
9880         PIPE_CONF_CHECK_I(pipe_src_h);
9881
9882         /*
9883          * FIXME: BIOS likes to set up a cloned config with lvds+external
9884          * screen. Since we don't yet re-compute the pipe config when moving
9885          * just the lvds port away to another pipe the sw tracking won't match.
9886          *
9887          * Proper atomic modesets with recomputed global state will fix this.
9888          * Until then just don't check gmch state for inherited modes.
9889          */
9890         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9891                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9892                 /* pfit ratios are autocomputed by the hw on gen4+ */
9893                 if (INTEL_INFO(dev)->gen < 4)
9894                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9895                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9896         }
9897
9898         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9899         if (current_config->pch_pfit.enabled) {
9900                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9901                 PIPE_CONF_CHECK_I(pch_pfit.size);
9902         }
9903
9904         /* BDW+ don't expose a synchronous way to read the state */
9905         if (IS_HASWELL(dev))
9906                 PIPE_CONF_CHECK_I(ips_enabled);
9907
9908         PIPE_CONF_CHECK_I(double_wide);
9909
9910         PIPE_CONF_CHECK_I(shared_dpll);
9911         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9912         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9913         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9914         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9915
9916         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9917                 PIPE_CONF_CHECK_I(pipe_bpp);
9918
9919         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9920         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9921
9922 #undef PIPE_CONF_CHECK_X
9923 #undef PIPE_CONF_CHECK_I
9924 #undef PIPE_CONF_CHECK_FLAGS
9925 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9926 #undef PIPE_CONF_QUIRK
9927
9928         return true;
9929 }
9930
9931 static void
9932 check_connector_state(struct drm_device *dev)
9933 {
9934         struct intel_connector *connector;
9935
9936         list_for_each_entry(connector, &dev->mode_config.connector_list,
9937                             base.head) {
9938                 /* This also checks the encoder/connector hw state with the
9939                  * ->get_hw_state callbacks. */
9940                 intel_connector_check_state(connector);
9941
9942                 WARN(&connector->new_encoder->base != connector->base.encoder,
9943                      "connector's staged encoder doesn't match current encoder\n");
9944         }
9945 }
9946
9947 static void
9948 check_encoder_state(struct drm_device *dev)
9949 {
9950         struct intel_encoder *encoder;
9951         struct intel_connector *connector;
9952
9953         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9954                             base.head) {
9955                 bool enabled = false;
9956                 bool active = false;
9957                 enum pipe pipe, tracked_pipe;
9958
9959                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9960                               encoder->base.base.id,
9961                               drm_get_encoder_name(&encoder->base));
9962
9963                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9964                      "encoder's stage crtc doesn't match current crtc\n");
9965                 WARN(encoder->connectors_active && !encoder->base.crtc,
9966                      "encoder's active_connectors set, but no crtc\n");
9967
9968                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9969                                     base.head) {
9970                         if (connector->base.encoder != &encoder->base)
9971                                 continue;
9972                         enabled = true;
9973                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9974                                 active = true;
9975                 }
9976                 WARN(!!encoder->base.crtc != enabled,
9977                      "encoder's enabled state mismatch "
9978                      "(expected %i, found %i)\n",
9979                      !!encoder->base.crtc, enabled);
9980                 WARN(active && !encoder->base.crtc,
9981                      "active encoder with no crtc\n");
9982
9983                 WARN(encoder->connectors_active != active,
9984                      "encoder's computed active state doesn't match tracked active state "
9985                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9986
9987                 active = encoder->get_hw_state(encoder, &pipe);
9988                 WARN(active != encoder->connectors_active,
9989                      "encoder's hw state doesn't match sw tracking "
9990                      "(expected %i, found %i)\n",
9991                      encoder->connectors_active, active);
9992
9993                 if (!encoder->base.crtc)
9994                         continue;
9995
9996                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9997                 WARN(active && pipe != tracked_pipe,
9998                      "active encoder's pipe doesn't match"
9999                      "(expected %i, found %i)\n",
10000                      tracked_pipe, pipe);
10001
10002         }
10003 }
10004
10005 static void
10006 check_crtc_state(struct drm_device *dev)
10007 {
10008         struct drm_i915_private *dev_priv = dev->dev_private;
10009         struct intel_crtc *crtc;
10010         struct intel_encoder *encoder;
10011         struct intel_crtc_config pipe_config;
10012
10013         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10014                             base.head) {
10015                 bool enabled = false;
10016                 bool active = false;
10017
10018                 memset(&pipe_config, 0, sizeof(pipe_config));
10019
10020                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10021                               crtc->base.base.id);
10022
10023                 WARN(crtc->active && !crtc->base.enabled,
10024                      "active crtc, but not enabled in sw tracking\n");
10025
10026                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10027                                     base.head) {
10028                         if (encoder->base.crtc != &crtc->base)
10029                                 continue;
10030                         enabled = true;
10031                         if (encoder->connectors_active)
10032                                 active = true;
10033                 }
10034
10035                 WARN(active != crtc->active,
10036                      "crtc's computed active state doesn't match tracked active state "
10037                      "(expected %i, found %i)\n", active, crtc->active);
10038                 WARN(enabled != crtc->base.enabled,
10039                      "crtc's computed enabled state doesn't match tracked enabled state "
10040                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10041
10042                 active = dev_priv->display.get_pipe_config(crtc,
10043                                                            &pipe_config);
10044
10045                 /* hw state is inconsistent with the pipe A quirk */
10046                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10047                         active = crtc->active;
10048
10049                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10050                                     base.head) {
10051                         enum pipe pipe;
10052                         if (encoder->base.crtc != &crtc->base)
10053                                 continue;
10054                         if (encoder->get_hw_state(encoder, &pipe))
10055                                 encoder->get_config(encoder, &pipe_config);
10056                 }
10057
10058                 WARN(crtc->active != active,
10059                      "crtc active state doesn't match with hw state "
10060                      "(expected %i, found %i)\n", crtc->active, active);
10061
10062                 if (active &&
10063                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10064                         WARN(1, "pipe state doesn't match!\n");
10065                         intel_dump_pipe_config(crtc, &pipe_config,
10066                                                "[hw state]");
10067                         intel_dump_pipe_config(crtc, &crtc->config,
10068                                                "[sw state]");
10069                 }
10070         }
10071 }
10072
10073 static void
10074 check_shared_dpll_state(struct drm_device *dev)
10075 {
10076         struct drm_i915_private *dev_priv = dev->dev_private;
10077         struct intel_crtc *crtc;
10078         struct intel_dpll_hw_state dpll_hw_state;
10079         int i;
10080
10081         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10082                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10083                 int enabled_crtcs = 0, active_crtcs = 0;
10084                 bool active;
10085
10086                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10087
10088                 DRM_DEBUG_KMS("%s\n", pll->name);
10089
10090                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10091
10092                 WARN(pll->active > pll->refcount,
10093                      "more active pll users than references: %i vs %i\n",
10094                      pll->active, pll->refcount);
10095                 WARN(pll->active && !pll->on,
10096                      "pll in active use but not on in sw tracking\n");
10097                 WARN(pll->on && !pll->active,
10098                      "pll in on but not on in use in sw tracking\n");
10099                 WARN(pll->on != active,
10100                      "pll on state mismatch (expected %i, found %i)\n",
10101                      pll->on, active);
10102
10103                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10104                                     base.head) {
10105                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10106                                 enabled_crtcs++;
10107                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10108                                 active_crtcs++;
10109                 }
10110                 WARN(pll->active != active_crtcs,
10111                      "pll active crtcs mismatch (expected %i, found %i)\n",
10112                      pll->active, active_crtcs);
10113                 WARN(pll->refcount != enabled_crtcs,
10114                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10115                      pll->refcount, enabled_crtcs);
10116
10117                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10118                                        sizeof(dpll_hw_state)),
10119                      "pll hw state mismatch\n");
10120         }
10121 }
10122
10123 void
10124 intel_modeset_check_state(struct drm_device *dev)
10125 {
10126         check_connector_state(dev);
10127         check_encoder_state(dev);
10128         check_crtc_state(dev);
10129         check_shared_dpll_state(dev);
10130 }
10131
10132 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10133                                      int dotclock)
10134 {
10135         /*
10136          * FDI already provided one idea for the dotclock.
10137          * Yell if the encoder disagrees.
10138          */
10139         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10140              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10141              pipe_config->adjusted_mode.crtc_clock, dotclock);
10142 }
10143
10144 static int __intel_set_mode(struct drm_crtc *crtc,
10145                             struct drm_display_mode *mode,
10146                             int x, int y, struct drm_framebuffer *fb)
10147 {
10148         struct drm_device *dev = crtc->dev;
10149         struct drm_i915_private *dev_priv = dev->dev_private;
10150         struct drm_display_mode *saved_mode;
10151         struct intel_crtc_config *pipe_config = NULL;
10152         struct intel_crtc *intel_crtc;
10153         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10154         int ret = 0;
10155
10156         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10157         if (!saved_mode)
10158                 return -ENOMEM;
10159
10160         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10161                                      &prepare_pipes, &disable_pipes);
10162
10163         *saved_mode = crtc->mode;
10164
10165         /* Hack: Because we don't (yet) support global modeset on multiple
10166          * crtcs, we don't keep track of the new mode for more than one crtc.
10167          * Hence simply check whether any bit is set in modeset_pipes in all the
10168          * pieces of code that are not yet converted to deal with mutliple crtcs
10169          * changing their mode at the same time. */
10170         if (modeset_pipes) {
10171                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10172                 if (IS_ERR(pipe_config)) {
10173                         ret = PTR_ERR(pipe_config);
10174                         pipe_config = NULL;
10175
10176                         goto out;
10177                 }
10178                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10179                                        "[modeset]");
10180                 to_intel_crtc(crtc)->new_config = pipe_config;
10181         }
10182
10183         /*
10184          * See if the config requires any additional preparation, e.g.
10185          * to adjust global state with pipes off.  We need to do this
10186          * here so we can get the modeset_pipe updated config for the new
10187          * mode set on this crtc.  For other crtcs we need to use the
10188          * adjusted_mode bits in the crtc directly.
10189          */
10190         if (IS_VALLEYVIEW(dev)) {
10191                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10192
10193                 /* may have added more to prepare_pipes than we should */
10194                 prepare_pipes &= ~disable_pipes;
10195         }
10196
10197         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10198                 intel_crtc_disable(&intel_crtc->base);
10199
10200         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10201                 if (intel_crtc->base.enabled)
10202                         dev_priv->display.crtc_disable(&intel_crtc->base);
10203         }
10204
10205         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10206          * to set it here already despite that we pass it down the callchain.
10207          */
10208         if (modeset_pipes) {
10209                 crtc->mode = *mode;
10210                 /* mode_set/enable/disable functions rely on a correct pipe
10211                  * config. */
10212                 to_intel_crtc(crtc)->config = *pipe_config;
10213                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10214
10215                 /*
10216                  * Calculate and store various constants which
10217                  * are later needed by vblank and swap-completion
10218                  * timestamping. They are derived from true hwmode.
10219                  */
10220                 drm_calc_timestamping_constants(crtc,
10221                                                 &pipe_config->adjusted_mode);
10222         }
10223
10224         /* Only after disabling all output pipelines that will be changed can we
10225          * update the the output configuration. */
10226         intel_modeset_update_state(dev, prepare_pipes);
10227
10228         if (dev_priv->display.modeset_global_resources)
10229                 dev_priv->display.modeset_global_resources(dev);
10230
10231         /* Set up the DPLL and any encoders state that needs to adjust or depend
10232          * on the DPLL.
10233          */
10234         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10235                 ret = intel_crtc_mode_set(&intel_crtc->base,
10236                                           x, y, fb);
10237                 if (ret)
10238                         goto done;
10239         }
10240
10241         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10242         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10243                 dev_priv->display.crtc_enable(&intel_crtc->base);
10244
10245         /* FIXME: add subpixel order */
10246 done:
10247         if (ret && crtc->enabled)
10248                 crtc->mode = *saved_mode;
10249
10250 out:
10251         kfree(pipe_config);
10252         kfree(saved_mode);
10253         return ret;
10254 }
10255
10256 static int intel_set_mode(struct drm_crtc *crtc,
10257                           struct drm_display_mode *mode,
10258                           int x, int y, struct drm_framebuffer *fb)
10259 {
10260         int ret;
10261
10262         ret = __intel_set_mode(crtc, mode, x, y, fb);
10263
10264         if (ret == 0)
10265                 intel_modeset_check_state(crtc->dev);
10266
10267         return ret;
10268 }
10269
10270 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10271 {
10272         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10273 }
10274
10275 #undef for_each_intel_crtc_masked
10276
10277 static void intel_set_config_free(struct intel_set_config *config)
10278 {
10279         if (!config)
10280                 return;
10281
10282         kfree(config->save_connector_encoders);
10283         kfree(config->save_encoder_crtcs);
10284         kfree(config->save_crtc_enabled);
10285         kfree(config);
10286 }
10287
10288 static int intel_set_config_save_state(struct drm_device *dev,
10289                                        struct intel_set_config *config)
10290 {
10291         struct drm_crtc *crtc;
10292         struct drm_encoder *encoder;
10293         struct drm_connector *connector;
10294         int count;
10295
10296         config->save_crtc_enabled =
10297                 kcalloc(dev->mode_config.num_crtc,
10298                         sizeof(bool), GFP_KERNEL);
10299         if (!config->save_crtc_enabled)
10300                 return -ENOMEM;
10301
10302         config->save_encoder_crtcs =
10303                 kcalloc(dev->mode_config.num_encoder,
10304                         sizeof(struct drm_crtc *), GFP_KERNEL);
10305         if (!config->save_encoder_crtcs)
10306                 return -ENOMEM;
10307
10308         config->save_connector_encoders =
10309                 kcalloc(dev->mode_config.num_connector,
10310                         sizeof(struct drm_encoder *), GFP_KERNEL);
10311         if (!config->save_connector_encoders)
10312                 return -ENOMEM;
10313
10314         /* Copy data. Note that driver private data is not affected.
10315          * Should anything bad happen only the expected state is
10316          * restored, not the drivers personal bookkeeping.
10317          */
10318         count = 0;
10319         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10320                 config->save_crtc_enabled[count++] = crtc->enabled;
10321         }
10322
10323         count = 0;
10324         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10325                 config->save_encoder_crtcs[count++] = encoder->crtc;
10326         }
10327
10328         count = 0;
10329         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10330                 config->save_connector_encoders[count++] = connector->encoder;
10331         }
10332
10333         return 0;
10334 }
10335
10336 static void intel_set_config_restore_state(struct drm_device *dev,
10337                                            struct intel_set_config *config)
10338 {
10339         struct intel_crtc *crtc;
10340         struct intel_encoder *encoder;
10341         struct intel_connector *connector;
10342         int count;
10343
10344         count = 0;
10345         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10346                 crtc->new_enabled = config->save_crtc_enabled[count++];
10347
10348                 if (crtc->new_enabled)
10349                         crtc->new_config = &crtc->config;
10350                 else
10351                         crtc->new_config = NULL;
10352         }
10353
10354         count = 0;
10355         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10356                 encoder->new_crtc =
10357                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10358         }
10359
10360         count = 0;
10361         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10362                 connector->new_encoder =
10363                         to_intel_encoder(config->save_connector_encoders[count++]);
10364         }
10365 }
10366
10367 static bool
10368 is_crtc_connector_off(struct drm_mode_set *set)
10369 {
10370         int i;
10371
10372         if (set->num_connectors == 0)
10373                 return false;
10374
10375         if (WARN_ON(set->connectors == NULL))
10376                 return false;
10377
10378         for (i = 0; i < set->num_connectors; i++)
10379                 if (set->connectors[i]->encoder &&
10380                     set->connectors[i]->encoder->crtc == set->crtc &&
10381                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10382                         return true;
10383
10384         return false;
10385 }
10386
10387 static void
10388 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10389                                       struct intel_set_config *config)
10390 {
10391
10392         /* We should be able to check here if the fb has the same properties
10393          * and then just flip_or_move it */
10394         if (is_crtc_connector_off(set)) {
10395                 config->mode_changed = true;
10396         } else if (set->crtc->primary->fb != set->fb) {
10397                 /* If we have no fb then treat it as a full mode set */
10398                 if (set->crtc->primary->fb == NULL) {
10399                         struct intel_crtc *intel_crtc =
10400                                 to_intel_crtc(set->crtc);
10401
10402                         if (intel_crtc->active && i915.fastboot) {
10403                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10404                                 config->fb_changed = true;
10405                         } else {
10406                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10407                                 config->mode_changed = true;
10408                         }
10409                 } else if (set->fb == NULL) {
10410                         config->mode_changed = true;
10411                 } else if (set->fb->pixel_format !=
10412                            set->crtc->primary->fb->pixel_format) {
10413                         config->mode_changed = true;
10414                 } else {
10415                         config->fb_changed = true;
10416                 }
10417         }
10418
10419         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10420                 config->fb_changed = true;
10421
10422         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10423                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10424                 drm_mode_debug_printmodeline(&set->crtc->mode);
10425                 drm_mode_debug_printmodeline(set->mode);
10426                 config->mode_changed = true;
10427         }
10428
10429         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10430                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10431 }
10432
10433 static int
10434 intel_modeset_stage_output_state(struct drm_device *dev,
10435                                  struct drm_mode_set *set,
10436                                  struct intel_set_config *config)
10437 {
10438         struct intel_connector *connector;
10439         struct intel_encoder *encoder;
10440         struct intel_crtc *crtc;
10441         int ro;
10442
10443         /* The upper layers ensure that we either disable a crtc or have a list
10444          * of connectors. For paranoia, double-check this. */
10445         WARN_ON(!set->fb && (set->num_connectors != 0));
10446         WARN_ON(set->fb && (set->num_connectors == 0));
10447
10448         list_for_each_entry(connector, &dev->mode_config.connector_list,
10449                             base.head) {
10450                 /* Otherwise traverse passed in connector list and get encoders
10451                  * for them. */
10452                 for (ro = 0; ro < set->num_connectors; ro++) {
10453                         if (set->connectors[ro] == &connector->base) {
10454                                 connector->new_encoder = connector->encoder;
10455                                 break;
10456                         }
10457                 }
10458
10459                 /* If we disable the crtc, disable all its connectors. Also, if
10460                  * the connector is on the changing crtc but not on the new
10461                  * connector list, disable it. */
10462                 if ((!set->fb || ro == set->num_connectors) &&
10463                     connector->base.encoder &&
10464                     connector->base.encoder->crtc == set->crtc) {
10465                         connector->new_encoder = NULL;
10466
10467                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10468                                 connector->base.base.id,
10469                                 drm_get_connector_name(&connector->base));
10470                 }
10471
10472
10473                 if (&connector->new_encoder->base != connector->base.encoder) {
10474                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10475                         config->mode_changed = true;
10476                 }
10477         }
10478         /* connector->new_encoder is now updated for all connectors. */
10479
10480         /* Update crtc of enabled connectors. */
10481         list_for_each_entry(connector, &dev->mode_config.connector_list,
10482                             base.head) {
10483                 struct drm_crtc *new_crtc;
10484
10485                 if (!connector->new_encoder)
10486                         continue;
10487
10488                 new_crtc = connector->new_encoder->base.crtc;
10489
10490                 for (ro = 0; ro < set->num_connectors; ro++) {
10491                         if (set->connectors[ro] == &connector->base)
10492                                 new_crtc = set->crtc;
10493                 }
10494
10495                 /* Make sure the new CRTC will work with the encoder */
10496                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10497                                          new_crtc)) {
10498                         return -EINVAL;
10499                 }
10500                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10501
10502                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10503                         connector->base.base.id,
10504                         drm_get_connector_name(&connector->base),
10505                         new_crtc->base.id);
10506         }
10507
10508         /* Check for any encoders that needs to be disabled. */
10509         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10510                             base.head) {
10511                 int num_connectors = 0;
10512                 list_for_each_entry(connector,
10513                                     &dev->mode_config.connector_list,
10514                                     base.head) {
10515                         if (connector->new_encoder == encoder) {
10516                                 WARN_ON(!connector->new_encoder->new_crtc);
10517                                 num_connectors++;
10518                         }
10519                 }
10520
10521                 if (num_connectors == 0)
10522                         encoder->new_crtc = NULL;
10523                 else if (num_connectors > 1)
10524                         return -EINVAL;
10525
10526                 /* Only now check for crtc changes so we don't miss encoders
10527                  * that will be disabled. */
10528                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10529                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10530                         config->mode_changed = true;
10531                 }
10532         }
10533         /* Now we've also updated encoder->new_crtc for all encoders. */
10534
10535         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10536                             base.head) {
10537                 crtc->new_enabled = false;
10538
10539                 list_for_each_entry(encoder,
10540                                     &dev->mode_config.encoder_list,
10541                                     base.head) {
10542                         if (encoder->new_crtc == crtc) {
10543                                 crtc->new_enabled = true;
10544                                 break;
10545                         }
10546                 }
10547
10548                 if (crtc->new_enabled != crtc->base.enabled) {
10549                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10550                                       crtc->new_enabled ? "en" : "dis");
10551                         config->mode_changed = true;
10552                 }
10553
10554                 if (crtc->new_enabled)
10555                         crtc->new_config = &crtc->config;
10556                 else
10557                         crtc->new_config = NULL;
10558         }
10559
10560         return 0;
10561 }
10562
10563 static void disable_crtc_nofb(struct intel_crtc *crtc)
10564 {
10565         struct drm_device *dev = crtc->base.dev;
10566         struct intel_encoder *encoder;
10567         struct intel_connector *connector;
10568
10569         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10570                       pipe_name(crtc->pipe));
10571
10572         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10573                 if (connector->new_encoder &&
10574                     connector->new_encoder->new_crtc == crtc)
10575                         connector->new_encoder = NULL;
10576         }
10577
10578         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10579                 if (encoder->new_crtc == crtc)
10580                         encoder->new_crtc = NULL;
10581         }
10582
10583         crtc->new_enabled = false;
10584         crtc->new_config = NULL;
10585 }
10586
10587 static int intel_crtc_set_config(struct drm_mode_set *set)
10588 {
10589         struct drm_device *dev;
10590         struct drm_mode_set save_set;
10591         struct intel_set_config *config;
10592         int ret;
10593
10594         BUG_ON(!set);
10595         BUG_ON(!set->crtc);
10596         BUG_ON(!set->crtc->helper_private);
10597
10598         /* Enforce sane interface api - has been abused by the fb helper. */
10599         BUG_ON(!set->mode && set->fb);
10600         BUG_ON(set->fb && set->num_connectors == 0);
10601
10602         if (set->fb) {
10603                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10604                                 set->crtc->base.id, set->fb->base.id,
10605                                 (int)set->num_connectors, set->x, set->y);
10606         } else {
10607                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10608         }
10609
10610         dev = set->crtc->dev;
10611
10612         ret = -ENOMEM;
10613         config = kzalloc(sizeof(*config), GFP_KERNEL);
10614         if (!config)
10615                 goto out_config;
10616
10617         ret = intel_set_config_save_state(dev, config);
10618         if (ret)
10619                 goto out_config;
10620
10621         save_set.crtc = set->crtc;
10622         save_set.mode = &set->crtc->mode;
10623         save_set.x = set->crtc->x;
10624         save_set.y = set->crtc->y;
10625         save_set.fb = set->crtc->primary->fb;
10626
10627         /* Compute whether we need a full modeset, only an fb base update or no
10628          * change at all. In the future we might also check whether only the
10629          * mode changed, e.g. for LVDS where we only change the panel fitter in
10630          * such cases. */
10631         intel_set_config_compute_mode_changes(set, config);
10632
10633         ret = intel_modeset_stage_output_state(dev, set, config);
10634         if (ret)
10635                 goto fail;
10636
10637         if (config->mode_changed) {
10638                 ret = intel_set_mode(set->crtc, set->mode,
10639                                      set->x, set->y, set->fb);
10640         } else if (config->fb_changed) {
10641                 intel_crtc_wait_for_pending_flips(set->crtc);
10642
10643                 ret = intel_pipe_set_base(set->crtc,
10644                                           set->x, set->y, set->fb);
10645                 /*
10646                  * In the fastboot case this may be our only check of the
10647                  * state after boot.  It would be better to only do it on
10648                  * the first update, but we don't have a nice way of doing that
10649                  * (and really, set_config isn't used much for high freq page
10650                  * flipping, so increasing its cost here shouldn't be a big
10651                  * deal).
10652                  */
10653                 if (i915.fastboot && ret == 0)
10654                         intel_modeset_check_state(set->crtc->dev);
10655         }
10656
10657         if (ret) {
10658                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10659                               set->crtc->base.id, ret);
10660 fail:
10661                 intel_set_config_restore_state(dev, config);
10662
10663                 /*
10664                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10665                  * force the pipe off to avoid oopsing in the modeset code
10666                  * due to fb==NULL. This should only happen during boot since
10667                  * we don't yet reconstruct the FB from the hardware state.
10668                  */
10669                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10670                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10671
10672                 /* Try to restore the config */
10673                 if (config->mode_changed &&
10674                     intel_set_mode(save_set.crtc, save_set.mode,
10675                                    save_set.x, save_set.y, save_set.fb))
10676                         DRM_ERROR("failed to restore config after modeset failure\n");
10677         }
10678
10679 out_config:
10680         intel_set_config_free(config);
10681         return ret;
10682 }
10683
10684 static const struct drm_crtc_funcs intel_crtc_funcs = {
10685         .cursor_set = intel_crtc_cursor_set,
10686         .cursor_move = intel_crtc_cursor_move,
10687         .gamma_set = intel_crtc_gamma_set,
10688         .set_config = intel_crtc_set_config,
10689         .destroy = intel_crtc_destroy,
10690         .page_flip = intel_crtc_page_flip,
10691 };
10692
10693 static void intel_cpu_pll_init(struct drm_device *dev)
10694 {
10695         if (HAS_DDI(dev))
10696                 intel_ddi_pll_init(dev);
10697 }
10698
10699 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10700                                       struct intel_shared_dpll *pll,
10701                                       struct intel_dpll_hw_state *hw_state)
10702 {
10703         uint32_t val;
10704
10705         val = I915_READ(PCH_DPLL(pll->id));
10706         hw_state->dpll = val;
10707         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10708         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10709
10710         return val & DPLL_VCO_ENABLE;
10711 }
10712
10713 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10714                                   struct intel_shared_dpll *pll)
10715 {
10716         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10717         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10718 }
10719
10720 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10721                                 struct intel_shared_dpll *pll)
10722 {
10723         /* PCH refclock must be enabled first */
10724         ibx_assert_pch_refclk_enabled(dev_priv);
10725
10726         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10727
10728         /* Wait for the clocks to stabilize. */
10729         POSTING_READ(PCH_DPLL(pll->id));
10730         udelay(150);
10731
10732         /* The pixel multiplier can only be updated once the
10733          * DPLL is enabled and the clocks are stable.
10734          *
10735          * So write it again.
10736          */
10737         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10738         POSTING_READ(PCH_DPLL(pll->id));
10739         udelay(200);
10740 }
10741
10742 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10743                                  struct intel_shared_dpll *pll)
10744 {
10745         struct drm_device *dev = dev_priv->dev;
10746         struct intel_crtc *crtc;
10747
10748         /* Make sure no transcoder isn't still depending on us. */
10749         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10750                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10751                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10752         }
10753
10754         I915_WRITE(PCH_DPLL(pll->id), 0);
10755         POSTING_READ(PCH_DPLL(pll->id));
10756         udelay(200);
10757 }
10758
10759 static char *ibx_pch_dpll_names[] = {
10760         "PCH DPLL A",
10761         "PCH DPLL B",
10762 };
10763
10764 static void ibx_pch_dpll_init(struct drm_device *dev)
10765 {
10766         struct drm_i915_private *dev_priv = dev->dev_private;
10767         int i;
10768
10769         dev_priv->num_shared_dpll = 2;
10770
10771         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10772                 dev_priv->shared_dplls[i].id = i;
10773                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10774                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10775                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10776                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10777                 dev_priv->shared_dplls[i].get_hw_state =
10778                         ibx_pch_dpll_get_hw_state;
10779         }
10780 }
10781
10782 static void intel_shared_dpll_init(struct drm_device *dev)
10783 {
10784         struct drm_i915_private *dev_priv = dev->dev_private;
10785
10786         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10787                 ibx_pch_dpll_init(dev);
10788         else
10789                 dev_priv->num_shared_dpll = 0;
10790
10791         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10792 }
10793
10794 static void intel_crtc_init(struct drm_device *dev, int pipe)
10795 {
10796         struct drm_i915_private *dev_priv = dev->dev_private;
10797         struct intel_crtc *intel_crtc;
10798         int i;
10799
10800         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10801         if (intel_crtc == NULL)
10802                 return;
10803
10804         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10805
10806         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10807         for (i = 0; i < 256; i++) {
10808                 intel_crtc->lut_r[i] = i;
10809                 intel_crtc->lut_g[i] = i;
10810                 intel_crtc->lut_b[i] = i;
10811         }
10812
10813         /*
10814          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10815          * is hooked to plane B. Hence we want plane A feeding pipe B.
10816          */
10817         intel_crtc->pipe = pipe;
10818         intel_crtc->plane = pipe;
10819         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10820                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10821                 intel_crtc->plane = !pipe;
10822         }
10823
10824         init_waitqueue_head(&intel_crtc->vbl_wait);
10825
10826         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10827                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10828         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10829         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10830
10831         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10832 }
10833
10834 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10835 {
10836         struct drm_encoder *encoder = connector->base.encoder;
10837
10838         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10839
10840         if (!encoder)
10841                 return INVALID_PIPE;
10842
10843         return to_intel_crtc(encoder->crtc)->pipe;
10844 }
10845
10846 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10847                                 struct drm_file *file)
10848 {
10849         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10850         struct drm_mode_object *drmmode_obj;
10851         struct intel_crtc *crtc;
10852
10853         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10854                 return -ENODEV;
10855
10856         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10857                         DRM_MODE_OBJECT_CRTC);
10858
10859         if (!drmmode_obj) {
10860                 DRM_ERROR("no such CRTC id\n");
10861                 return -ENOENT;
10862         }
10863
10864         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10865         pipe_from_crtc_id->pipe = crtc->pipe;
10866
10867         return 0;
10868 }
10869
10870 static int intel_encoder_clones(struct intel_encoder *encoder)
10871 {
10872         struct drm_device *dev = encoder->base.dev;
10873         struct intel_encoder *source_encoder;
10874         int index_mask = 0;
10875         int entry = 0;
10876
10877         list_for_each_entry(source_encoder,
10878                             &dev->mode_config.encoder_list, base.head) {
10879                 if (encoders_cloneable(encoder, source_encoder))
10880                         index_mask |= (1 << entry);
10881
10882                 entry++;
10883         }
10884
10885         return index_mask;
10886 }
10887
10888 static bool has_edp_a(struct drm_device *dev)
10889 {
10890         struct drm_i915_private *dev_priv = dev->dev_private;
10891
10892         if (!IS_MOBILE(dev))
10893                 return false;
10894
10895         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10896                 return false;
10897
10898         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10899                 return false;
10900
10901         return true;
10902 }
10903
10904 const char *intel_output_name(int output)
10905 {
10906         static const char *names[] = {
10907                 [INTEL_OUTPUT_UNUSED] = "Unused",
10908                 [INTEL_OUTPUT_ANALOG] = "Analog",
10909                 [INTEL_OUTPUT_DVO] = "DVO",
10910                 [INTEL_OUTPUT_SDVO] = "SDVO",
10911                 [INTEL_OUTPUT_LVDS] = "LVDS",
10912                 [INTEL_OUTPUT_TVOUT] = "TV",
10913                 [INTEL_OUTPUT_HDMI] = "HDMI",
10914                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10915                 [INTEL_OUTPUT_EDP] = "eDP",
10916                 [INTEL_OUTPUT_DSI] = "DSI",
10917                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10918         };
10919
10920         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10921                 return "Invalid";
10922
10923         return names[output];
10924 }
10925
10926 static void intel_setup_outputs(struct drm_device *dev)
10927 {
10928         struct drm_i915_private *dev_priv = dev->dev_private;
10929         struct intel_encoder *encoder;
10930         bool dpd_is_edp = false;
10931
10932         intel_lvds_init(dev);
10933
10934         if (!IS_ULT(dev))
10935                 intel_crt_init(dev);
10936
10937         if (HAS_DDI(dev)) {
10938                 int found;
10939
10940                 /* Haswell uses DDI functions to detect digital outputs */
10941                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10942                 /* DDI A only supports eDP */
10943                 if (found)
10944                         intel_ddi_init(dev, PORT_A);
10945
10946                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10947                  * register */
10948                 found = I915_READ(SFUSE_STRAP);
10949
10950                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10951                         intel_ddi_init(dev, PORT_B);
10952                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10953                         intel_ddi_init(dev, PORT_C);
10954                 if (found & SFUSE_STRAP_DDID_DETECTED)
10955                         intel_ddi_init(dev, PORT_D);
10956         } else if (HAS_PCH_SPLIT(dev)) {
10957                 int found;
10958                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10959
10960                 if (has_edp_a(dev))
10961                         intel_dp_init(dev, DP_A, PORT_A);
10962
10963                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10964                         /* PCH SDVOB multiplex with HDMIB */
10965                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10966                         if (!found)
10967                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10968                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10969                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10970                 }
10971
10972                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10973                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10974
10975                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10976                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10977
10978                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10979                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10980
10981                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10982                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10983         } else if (IS_VALLEYVIEW(dev)) {
10984                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10985                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10986                                         PORT_B);
10987                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10988                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10989                 }
10990
10991                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10992                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10993                                         PORT_C);
10994                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10995                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10996                 }
10997
10998                 intel_dsi_init(dev);
10999         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11000                 bool found = false;
11001
11002                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11003                         DRM_DEBUG_KMS("probing SDVOB\n");
11004                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11005                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11006                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11007                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11008                         }
11009
11010                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11011                                 intel_dp_init(dev, DP_B, PORT_B);
11012                 }
11013
11014                 /* Before G4X SDVOC doesn't have its own detect register */
11015
11016                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11017                         DRM_DEBUG_KMS("probing SDVOC\n");
11018                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11019                 }
11020
11021                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11022
11023                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11024                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11025                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11026                         }
11027                         if (SUPPORTS_INTEGRATED_DP(dev))
11028                                 intel_dp_init(dev, DP_C, PORT_C);
11029                 }
11030
11031                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11032                     (I915_READ(DP_D) & DP_DETECTED))
11033                         intel_dp_init(dev, DP_D, PORT_D);
11034         } else if (IS_GEN2(dev))
11035                 intel_dvo_init(dev);
11036
11037         if (SUPPORTS_TV(dev))
11038                 intel_tv_init(dev);
11039
11040         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11041                 encoder->base.possible_crtcs = encoder->crtc_mask;
11042                 encoder->base.possible_clones =
11043                         intel_encoder_clones(encoder);
11044         }
11045
11046         intel_init_pch_refclk(dev);
11047
11048         drm_helper_move_panel_connectors_to_head(dev);
11049 }
11050
11051 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11052 {
11053         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11054
11055         drm_framebuffer_cleanup(fb);
11056         WARN_ON(!intel_fb->obj->framebuffer_references--);
11057         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11058         kfree(intel_fb);
11059 }
11060
11061 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11062                                                 struct drm_file *file,
11063                                                 unsigned int *handle)
11064 {
11065         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11066         struct drm_i915_gem_object *obj = intel_fb->obj;
11067
11068         return drm_gem_handle_create(file, &obj->base, handle);
11069 }
11070
11071 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11072         .destroy = intel_user_framebuffer_destroy,
11073         .create_handle = intel_user_framebuffer_create_handle,
11074 };
11075
11076 static int intel_framebuffer_init(struct drm_device *dev,
11077                                   struct intel_framebuffer *intel_fb,
11078                                   struct drm_mode_fb_cmd2 *mode_cmd,
11079                                   struct drm_i915_gem_object *obj)
11080 {
11081         int aligned_height;
11082         int pitch_limit;
11083         int ret;
11084
11085         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11086
11087         if (obj->tiling_mode == I915_TILING_Y) {
11088                 DRM_DEBUG("hardware does not support tiling Y\n");
11089                 return -EINVAL;
11090         }
11091
11092         if (mode_cmd->pitches[0] & 63) {
11093                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11094                           mode_cmd->pitches[0]);
11095                 return -EINVAL;
11096         }
11097
11098         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11099                 pitch_limit = 32*1024;
11100         } else if (INTEL_INFO(dev)->gen >= 4) {
11101                 if (obj->tiling_mode)
11102                         pitch_limit = 16*1024;
11103                 else
11104                         pitch_limit = 32*1024;
11105         } else if (INTEL_INFO(dev)->gen >= 3) {
11106                 if (obj->tiling_mode)
11107                         pitch_limit = 8*1024;
11108                 else
11109                         pitch_limit = 16*1024;
11110         } else
11111                 /* XXX DSPC is limited to 4k tiled */
11112                 pitch_limit = 8*1024;
11113
11114         if (mode_cmd->pitches[0] > pitch_limit) {
11115                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11116                           obj->tiling_mode ? "tiled" : "linear",
11117                           mode_cmd->pitches[0], pitch_limit);
11118                 return -EINVAL;
11119         }
11120
11121         if (obj->tiling_mode != I915_TILING_NONE &&
11122             mode_cmd->pitches[0] != obj->stride) {
11123                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11124                           mode_cmd->pitches[0], obj->stride);
11125                 return -EINVAL;
11126         }
11127
11128         /* Reject formats not supported by any plane early. */
11129         switch (mode_cmd->pixel_format) {
11130         case DRM_FORMAT_C8:
11131         case DRM_FORMAT_RGB565:
11132         case DRM_FORMAT_XRGB8888:
11133         case DRM_FORMAT_ARGB8888:
11134                 break;
11135         case DRM_FORMAT_XRGB1555:
11136         case DRM_FORMAT_ARGB1555:
11137                 if (INTEL_INFO(dev)->gen > 3) {
11138                         DRM_DEBUG("unsupported pixel format: %s\n",
11139                                   drm_get_format_name(mode_cmd->pixel_format));
11140                         return -EINVAL;
11141                 }
11142                 break;
11143         case DRM_FORMAT_XBGR8888:
11144         case DRM_FORMAT_ABGR8888:
11145         case DRM_FORMAT_XRGB2101010:
11146         case DRM_FORMAT_ARGB2101010:
11147         case DRM_FORMAT_XBGR2101010:
11148         case DRM_FORMAT_ABGR2101010:
11149                 if (INTEL_INFO(dev)->gen < 4) {
11150                         DRM_DEBUG("unsupported pixel format: %s\n",
11151                                   drm_get_format_name(mode_cmd->pixel_format));
11152                         return -EINVAL;
11153                 }
11154                 break;
11155         case DRM_FORMAT_YUYV:
11156         case DRM_FORMAT_UYVY:
11157         case DRM_FORMAT_YVYU:
11158         case DRM_FORMAT_VYUY:
11159                 if (INTEL_INFO(dev)->gen < 5) {
11160                         DRM_DEBUG("unsupported pixel format: %s\n",
11161                                   drm_get_format_name(mode_cmd->pixel_format));
11162                         return -EINVAL;
11163                 }
11164                 break;
11165         default:
11166                 DRM_DEBUG("unsupported pixel format: %s\n",
11167                           drm_get_format_name(mode_cmd->pixel_format));
11168                 return -EINVAL;
11169         }
11170
11171         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11172         if (mode_cmd->offsets[0] != 0)
11173                 return -EINVAL;
11174
11175         aligned_height = intel_align_height(dev, mode_cmd->height,
11176                                             obj->tiling_mode);
11177         /* FIXME drm helper for size checks (especially planar formats)? */
11178         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11179                 return -EINVAL;
11180
11181         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11182         intel_fb->obj = obj;
11183         intel_fb->obj->framebuffer_references++;
11184
11185         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11186         if (ret) {
11187                 DRM_ERROR("framebuffer init failed %d\n", ret);
11188                 return ret;
11189         }
11190
11191         return 0;
11192 }
11193
11194 static struct drm_framebuffer *
11195 intel_user_framebuffer_create(struct drm_device *dev,
11196                               struct drm_file *filp,
11197                               struct drm_mode_fb_cmd2 *mode_cmd)
11198 {
11199         struct drm_i915_gem_object *obj;
11200
11201         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11202                                                 mode_cmd->handles[0]));
11203         if (&obj->base == NULL)
11204                 return ERR_PTR(-ENOENT);
11205
11206         return intel_framebuffer_create(dev, mode_cmd, obj);
11207 }
11208
11209 #ifndef CONFIG_DRM_I915_FBDEV
11210 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11211 {
11212 }
11213 #endif
11214
11215 static const struct drm_mode_config_funcs intel_mode_funcs = {
11216         .fb_create = intel_user_framebuffer_create,
11217         .output_poll_changed = intel_fbdev_output_poll_changed,
11218 };
11219
11220 /* Set up chip specific display functions */
11221 static void intel_init_display(struct drm_device *dev)
11222 {
11223         struct drm_i915_private *dev_priv = dev->dev_private;
11224
11225         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11226                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11227         else if (IS_CHERRYVIEW(dev))
11228                 dev_priv->display.find_dpll = chv_find_best_dpll;
11229         else if (IS_VALLEYVIEW(dev))
11230                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11231         else if (IS_PINEVIEW(dev))
11232                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11233         else
11234                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11235
11236         if (HAS_DDI(dev)) {
11237                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11238                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11239                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11240                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11241                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11242                 dev_priv->display.off = haswell_crtc_off;
11243                 dev_priv->display.update_primary_plane =
11244                         ironlake_update_primary_plane;
11245         } else if (HAS_PCH_SPLIT(dev)) {
11246                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11247                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11248                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11249                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11250                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11251                 dev_priv->display.off = ironlake_crtc_off;
11252                 dev_priv->display.update_primary_plane =
11253                         ironlake_update_primary_plane;
11254         } else if (IS_VALLEYVIEW(dev)) {
11255                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11256                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11257                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11258                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11259                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11260                 dev_priv->display.off = i9xx_crtc_off;
11261                 dev_priv->display.update_primary_plane =
11262                         i9xx_update_primary_plane;
11263         } else {
11264                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11265                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11266                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11267                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11268                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11269                 dev_priv->display.off = i9xx_crtc_off;
11270                 dev_priv->display.update_primary_plane =
11271                         i9xx_update_primary_plane;
11272         }
11273
11274         /* Returns the core display clock speed */
11275         if (IS_VALLEYVIEW(dev))
11276                 dev_priv->display.get_display_clock_speed =
11277                         valleyview_get_display_clock_speed;
11278         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11279                 dev_priv->display.get_display_clock_speed =
11280                         i945_get_display_clock_speed;
11281         else if (IS_I915G(dev))
11282                 dev_priv->display.get_display_clock_speed =
11283                         i915_get_display_clock_speed;
11284         else if (IS_I945GM(dev) || IS_845G(dev))
11285                 dev_priv->display.get_display_clock_speed =
11286                         i9xx_misc_get_display_clock_speed;
11287         else if (IS_PINEVIEW(dev))
11288                 dev_priv->display.get_display_clock_speed =
11289                         pnv_get_display_clock_speed;
11290         else if (IS_I915GM(dev))
11291                 dev_priv->display.get_display_clock_speed =
11292                         i915gm_get_display_clock_speed;
11293         else if (IS_I865G(dev))
11294                 dev_priv->display.get_display_clock_speed =
11295                         i865_get_display_clock_speed;
11296         else if (IS_I85X(dev))
11297                 dev_priv->display.get_display_clock_speed =
11298                         i855_get_display_clock_speed;
11299         else /* 852, 830 */
11300                 dev_priv->display.get_display_clock_speed =
11301                         i830_get_display_clock_speed;
11302
11303         if (HAS_PCH_SPLIT(dev)) {
11304                 if (IS_GEN5(dev)) {
11305                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11306                         dev_priv->display.write_eld = ironlake_write_eld;
11307                 } else if (IS_GEN6(dev)) {
11308                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11309                         dev_priv->display.write_eld = ironlake_write_eld;
11310                         dev_priv->display.modeset_global_resources =
11311                                 snb_modeset_global_resources;
11312                 } else if (IS_IVYBRIDGE(dev)) {
11313                         /* FIXME: detect B0+ stepping and use auto training */
11314                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11315                         dev_priv->display.write_eld = ironlake_write_eld;
11316                         dev_priv->display.modeset_global_resources =
11317                                 ivb_modeset_global_resources;
11318                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11319                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11320                         dev_priv->display.write_eld = haswell_write_eld;
11321                         dev_priv->display.modeset_global_resources =
11322                                 haswell_modeset_global_resources;
11323                 }
11324         } else if (IS_G4X(dev)) {
11325                 dev_priv->display.write_eld = g4x_write_eld;
11326         } else if (IS_VALLEYVIEW(dev)) {
11327                 dev_priv->display.modeset_global_resources =
11328                         valleyview_modeset_global_resources;
11329                 dev_priv->display.write_eld = ironlake_write_eld;
11330         }
11331
11332         /* Default just returns -ENODEV to indicate unsupported */
11333         dev_priv->display.queue_flip = intel_default_queue_flip;
11334
11335         switch (INTEL_INFO(dev)->gen) {
11336         case 2:
11337                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11338                 break;
11339
11340         case 3:
11341                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11342                 break;
11343
11344         case 4:
11345         case 5:
11346                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11347                 break;
11348
11349         case 6:
11350                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11351                 break;
11352         case 7:
11353         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11354                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11355                 break;
11356         }
11357
11358         intel_panel_init_backlight_funcs(dev);
11359 }
11360
11361 /*
11362  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11363  * resume, or other times.  This quirk makes sure that's the case for
11364  * affected systems.
11365  */
11366 static void quirk_pipea_force(struct drm_device *dev)
11367 {
11368         struct drm_i915_private *dev_priv = dev->dev_private;
11369
11370         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11371         DRM_INFO("applying pipe a force quirk\n");
11372 }
11373
11374 /*
11375  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11376  */
11377 static void quirk_ssc_force_disable(struct drm_device *dev)
11378 {
11379         struct drm_i915_private *dev_priv = dev->dev_private;
11380         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11381         DRM_INFO("applying lvds SSC disable quirk\n");
11382 }
11383
11384 /*
11385  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11386  * brightness value
11387  */
11388 static void quirk_invert_brightness(struct drm_device *dev)
11389 {
11390         struct drm_i915_private *dev_priv = dev->dev_private;
11391         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11392         DRM_INFO("applying inverted panel brightness quirk\n");
11393 }
11394
11395 struct intel_quirk {
11396         int device;
11397         int subsystem_vendor;
11398         int subsystem_device;
11399         void (*hook)(struct drm_device *dev);
11400 };
11401
11402 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11403 struct intel_dmi_quirk {
11404         void (*hook)(struct drm_device *dev);
11405         const struct dmi_system_id (*dmi_id_list)[];
11406 };
11407
11408 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11409 {
11410         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11411         return 1;
11412 }
11413
11414 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11415         {
11416                 .dmi_id_list = &(const struct dmi_system_id[]) {
11417                         {
11418                                 .callback = intel_dmi_reverse_brightness,
11419                                 .ident = "NCR Corporation",
11420                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11421                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11422                                 },
11423                         },
11424                         { }  /* terminating entry */
11425                 },
11426                 .hook = quirk_invert_brightness,
11427         },
11428 };
11429
11430 static struct intel_quirk intel_quirks[] = {
11431         /* HP Mini needs pipe A force quirk (LP: #322104) */
11432         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11433
11434         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11435         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11436
11437         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11438         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11439
11440         /* 830 needs to leave pipe A & dpll A up */
11441         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11442
11443         /* Lenovo U160 cannot use SSC on LVDS */
11444         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11445
11446         /* Sony Vaio Y cannot use SSC on LVDS */
11447         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11448
11449         /* Acer Aspire 5734Z must invert backlight brightness */
11450         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11451
11452         /* Acer/eMachines G725 */
11453         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11454
11455         /* Acer/eMachines e725 */
11456         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11457
11458         /* Acer/Packard Bell NCL20 */
11459         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11460
11461         /* Acer Aspire 4736Z */
11462         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11463
11464         /* Acer Aspire 5336 */
11465         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11466 };
11467
11468 static void intel_init_quirks(struct drm_device *dev)
11469 {
11470         struct pci_dev *d = dev->pdev;
11471         int i;
11472
11473         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11474                 struct intel_quirk *q = &intel_quirks[i];
11475
11476                 if (d->device == q->device &&
11477                     (d->subsystem_vendor == q->subsystem_vendor ||
11478                      q->subsystem_vendor == PCI_ANY_ID) &&
11479                     (d->subsystem_device == q->subsystem_device ||
11480                      q->subsystem_device == PCI_ANY_ID))
11481                         q->hook(dev);
11482         }
11483         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11484                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11485                         intel_dmi_quirks[i].hook(dev);
11486         }
11487 }
11488
11489 /* Disable the VGA plane that we never use */
11490 static void i915_disable_vga(struct drm_device *dev)
11491 {
11492         struct drm_i915_private *dev_priv = dev->dev_private;
11493         u8 sr1;
11494         u32 vga_reg = i915_vgacntrl_reg(dev);
11495
11496         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11497         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11498         outb(SR01, VGA_SR_INDEX);
11499         sr1 = inb(VGA_SR_DATA);
11500         outb(sr1 | 1<<5, VGA_SR_DATA);
11501         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11502         udelay(300);
11503
11504         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11505         POSTING_READ(vga_reg);
11506 }
11507
11508 void intel_modeset_init_hw(struct drm_device *dev)
11509 {
11510         intel_prepare_ddi(dev);
11511
11512         intel_init_clock_gating(dev);
11513
11514         intel_reset_dpio(dev);
11515
11516         intel_enable_gt_powersave(dev);
11517 }
11518
11519 void intel_modeset_suspend_hw(struct drm_device *dev)
11520 {
11521         intel_suspend_hw(dev);
11522 }
11523
11524 void intel_modeset_init(struct drm_device *dev)
11525 {
11526         struct drm_i915_private *dev_priv = dev->dev_private;
11527         int sprite, ret;
11528         enum pipe pipe;
11529         struct intel_crtc *crtc;
11530
11531         drm_mode_config_init(dev);
11532
11533         dev->mode_config.min_width = 0;
11534         dev->mode_config.min_height = 0;
11535
11536         dev->mode_config.preferred_depth = 24;
11537         dev->mode_config.prefer_shadow = 1;
11538
11539         dev->mode_config.funcs = &intel_mode_funcs;
11540
11541         intel_init_quirks(dev);
11542
11543         intel_init_pm(dev);
11544
11545         if (INTEL_INFO(dev)->num_pipes == 0)
11546                 return;
11547
11548         intel_init_display(dev);
11549
11550         if (IS_GEN2(dev)) {
11551                 dev->mode_config.max_width = 2048;
11552                 dev->mode_config.max_height = 2048;
11553         } else if (IS_GEN3(dev)) {
11554                 dev->mode_config.max_width = 4096;
11555                 dev->mode_config.max_height = 4096;
11556         } else {
11557                 dev->mode_config.max_width = 8192;
11558                 dev->mode_config.max_height = 8192;
11559         }
11560
11561         if (IS_GEN2(dev)) {
11562                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11563                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11564         } else {
11565                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11566                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11567         }
11568
11569         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11570
11571         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11572                       INTEL_INFO(dev)->num_pipes,
11573                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11574
11575         for_each_pipe(pipe) {
11576                 intel_crtc_init(dev, pipe);
11577                 for_each_sprite(pipe, sprite) {
11578                         ret = intel_plane_init(dev, pipe, sprite);
11579                         if (ret)
11580                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11581                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11582                 }
11583         }
11584
11585         intel_init_dpio(dev);
11586         intel_reset_dpio(dev);
11587
11588         intel_cpu_pll_init(dev);
11589         intel_shared_dpll_init(dev);
11590
11591         /* Just disable it once at startup */
11592         i915_disable_vga(dev);
11593         intel_setup_outputs(dev);
11594
11595         /* Just in case the BIOS is doing something questionable. */
11596         intel_disable_fbc(dev);
11597
11598         mutex_lock(&dev->mode_config.mutex);
11599         intel_modeset_setup_hw_state(dev, false);
11600         mutex_unlock(&dev->mode_config.mutex);
11601
11602         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11603                             base.head) {
11604                 if (!crtc->active)
11605                         continue;
11606
11607                 /*
11608                  * Note that reserving the BIOS fb up front prevents us
11609                  * from stuffing other stolen allocations like the ring
11610                  * on top.  This prevents some ugliness at boot time, and
11611                  * can even allow for smooth boot transitions if the BIOS
11612                  * fb is large enough for the active pipe configuration.
11613                  */
11614                 if (dev_priv->display.get_plane_config) {
11615                         dev_priv->display.get_plane_config(crtc,
11616                                                            &crtc->plane_config);
11617                         /*
11618                          * If the fb is shared between multiple heads, we'll
11619                          * just get the first one.
11620                          */
11621                         intel_find_plane_obj(crtc, &crtc->plane_config);
11622                 }
11623         }
11624 }
11625
11626 static void
11627 intel_connector_break_all_links(struct intel_connector *connector)
11628 {
11629         connector->base.dpms = DRM_MODE_DPMS_OFF;
11630         connector->base.encoder = NULL;
11631         connector->encoder->connectors_active = false;
11632         connector->encoder->base.crtc = NULL;
11633 }
11634
11635 static void intel_enable_pipe_a(struct drm_device *dev)
11636 {
11637         struct intel_connector *connector;
11638         struct drm_connector *crt = NULL;
11639         struct intel_load_detect_pipe load_detect_temp;
11640
11641         /* We can't just switch on the pipe A, we need to set things up with a
11642          * proper mode and output configuration. As a gross hack, enable pipe A
11643          * by enabling the load detect pipe once. */
11644         list_for_each_entry(connector,
11645                             &dev->mode_config.connector_list,
11646                             base.head) {
11647                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11648                         crt = &connector->base;
11649                         break;
11650                 }
11651         }
11652
11653         if (!crt)
11654                 return;
11655
11656         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11657                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11658
11659
11660 }
11661
11662 static bool
11663 intel_check_plane_mapping(struct intel_crtc *crtc)
11664 {
11665         struct drm_device *dev = crtc->base.dev;
11666         struct drm_i915_private *dev_priv = dev->dev_private;
11667         u32 reg, val;
11668
11669         if (INTEL_INFO(dev)->num_pipes == 1)
11670                 return true;
11671
11672         reg = DSPCNTR(!crtc->plane);
11673         val = I915_READ(reg);
11674
11675         if ((val & DISPLAY_PLANE_ENABLE) &&
11676             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11677                 return false;
11678
11679         return true;
11680 }
11681
11682 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11683 {
11684         struct drm_device *dev = crtc->base.dev;
11685         struct drm_i915_private *dev_priv = dev->dev_private;
11686         u32 reg;
11687
11688         /* Clear any frame start delays used for debugging left by the BIOS */
11689         reg = PIPECONF(crtc->config.cpu_transcoder);
11690         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11691
11692         /* We need to sanitize the plane -> pipe mapping first because this will
11693          * disable the crtc (and hence change the state) if it is wrong. Note
11694          * that gen4+ has a fixed plane -> pipe mapping.  */
11695         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11696                 struct intel_connector *connector;
11697                 bool plane;
11698
11699                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11700                               crtc->base.base.id);
11701
11702                 /* Pipe has the wrong plane attached and the plane is active.
11703                  * Temporarily change the plane mapping and disable everything
11704                  * ...  */
11705                 plane = crtc->plane;
11706                 crtc->plane = !plane;
11707                 dev_priv->display.crtc_disable(&crtc->base);
11708                 crtc->plane = plane;
11709
11710                 /* ... and break all links. */
11711                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11712                                     base.head) {
11713                         if (connector->encoder->base.crtc != &crtc->base)
11714                                 continue;
11715
11716                         intel_connector_break_all_links(connector);
11717                 }
11718
11719                 WARN_ON(crtc->active);
11720                 crtc->base.enabled = false;
11721         }
11722
11723         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11724             crtc->pipe == PIPE_A && !crtc->active) {
11725                 /* BIOS forgot to enable pipe A, this mostly happens after
11726                  * resume. Force-enable the pipe to fix this, the update_dpms
11727                  * call below we restore the pipe to the right state, but leave
11728                  * the required bits on. */
11729                 intel_enable_pipe_a(dev);
11730         }
11731
11732         /* Adjust the state of the output pipe according to whether we
11733          * have active connectors/encoders. */
11734         intel_crtc_update_dpms(&crtc->base);
11735
11736         if (crtc->active != crtc->base.enabled) {
11737                 struct intel_encoder *encoder;
11738
11739                 /* This can happen either due to bugs in the get_hw_state
11740                  * functions or because the pipe is force-enabled due to the
11741                  * pipe A quirk. */
11742                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11743                               crtc->base.base.id,
11744                               crtc->base.enabled ? "enabled" : "disabled",
11745                               crtc->active ? "enabled" : "disabled");
11746
11747                 crtc->base.enabled = crtc->active;
11748
11749                 /* Because we only establish the connector -> encoder ->
11750                  * crtc links if something is active, this means the
11751                  * crtc is now deactivated. Break the links. connector
11752                  * -> encoder links are only establish when things are
11753                  *  actually up, hence no need to break them. */
11754                 WARN_ON(crtc->active);
11755
11756                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11757                         WARN_ON(encoder->connectors_active);
11758                         encoder->base.crtc = NULL;
11759                 }
11760         }
11761         if (crtc->active) {
11762                 /*
11763                  * We start out with underrun reporting disabled to avoid races.
11764                  * For correct bookkeeping mark this on active crtcs.
11765                  *
11766                  * No protection against concurrent access is required - at
11767                  * worst a fifo underrun happens which also sets this to false.
11768                  */
11769                 crtc->cpu_fifo_underrun_disabled = true;
11770                 crtc->pch_fifo_underrun_disabled = true;
11771         }
11772 }
11773
11774 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11775 {
11776         struct intel_connector *connector;
11777         struct drm_device *dev = encoder->base.dev;
11778
11779         /* We need to check both for a crtc link (meaning that the
11780          * encoder is active and trying to read from a pipe) and the
11781          * pipe itself being active. */
11782         bool has_active_crtc = encoder->base.crtc &&
11783                 to_intel_crtc(encoder->base.crtc)->active;
11784
11785         if (encoder->connectors_active && !has_active_crtc) {
11786                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11787                               encoder->base.base.id,
11788                               drm_get_encoder_name(&encoder->base));
11789
11790                 /* Connector is active, but has no active pipe. This is
11791                  * fallout from our resume register restoring. Disable
11792                  * the encoder manually again. */
11793                 if (encoder->base.crtc) {
11794                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11795                                       encoder->base.base.id,
11796                                       drm_get_encoder_name(&encoder->base));
11797                         encoder->disable(encoder);
11798                 }
11799
11800                 /* Inconsistent output/port/pipe state happens presumably due to
11801                  * a bug in one of the get_hw_state functions. Or someplace else
11802                  * in our code, like the register restore mess on resume. Clamp
11803                  * things to off as a safer default. */
11804                 list_for_each_entry(connector,
11805                                     &dev->mode_config.connector_list,
11806                                     base.head) {
11807                         if (connector->encoder != encoder)
11808                                 continue;
11809
11810                         intel_connector_break_all_links(connector);
11811                 }
11812         }
11813         /* Enabled encoders without active connectors will be fixed in
11814          * the crtc fixup. */
11815 }
11816
11817 void i915_redisable_vga_power_on(struct drm_device *dev)
11818 {
11819         struct drm_i915_private *dev_priv = dev->dev_private;
11820         u32 vga_reg = i915_vgacntrl_reg(dev);
11821
11822         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11823                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11824                 i915_disable_vga(dev);
11825         }
11826 }
11827
11828 void i915_redisable_vga(struct drm_device *dev)
11829 {
11830         struct drm_i915_private *dev_priv = dev->dev_private;
11831
11832         /* This function can be called both from intel_modeset_setup_hw_state or
11833          * at a very early point in our resume sequence, where the power well
11834          * structures are not yet restored. Since this function is at a very
11835          * paranoid "someone might have enabled VGA while we were not looking"
11836          * level, just check if the power well is enabled instead of trying to
11837          * follow the "don't touch the power well if we don't need it" policy
11838          * the rest of the driver uses. */
11839         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11840                 return;
11841
11842         i915_redisable_vga_power_on(dev);
11843 }
11844
11845 static bool primary_get_hw_state(struct intel_crtc *crtc)
11846 {
11847         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11848
11849         if (!crtc->active)
11850                 return false;
11851
11852         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11853 }
11854
11855 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11856 {
11857         struct drm_i915_private *dev_priv = dev->dev_private;
11858         enum pipe pipe;
11859         struct intel_crtc *crtc;
11860         struct intel_encoder *encoder;
11861         struct intel_connector *connector;
11862         int i;
11863
11864         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11865                             base.head) {
11866                 memset(&crtc->config, 0, sizeof(crtc->config));
11867
11868                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11869
11870                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11871                                                                  &crtc->config);
11872
11873                 crtc->base.enabled = crtc->active;
11874                 crtc->primary_enabled = primary_get_hw_state(crtc);
11875
11876                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11877                               crtc->base.base.id,
11878                               crtc->active ? "enabled" : "disabled");
11879         }
11880
11881         /* FIXME: Smash this into the new shared dpll infrastructure. */
11882         if (HAS_DDI(dev))
11883                 intel_ddi_setup_hw_pll_state(dev);
11884
11885         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11886                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11887
11888                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11889                 pll->active = 0;
11890                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11891                                     base.head) {
11892                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11893                                 pll->active++;
11894                 }
11895                 pll->refcount = pll->active;
11896
11897                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11898                               pll->name, pll->refcount, pll->on);
11899         }
11900
11901         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11902                             base.head) {
11903                 pipe = 0;
11904
11905                 if (encoder->get_hw_state(encoder, &pipe)) {
11906                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11907                         encoder->base.crtc = &crtc->base;
11908                         encoder->get_config(encoder, &crtc->config);
11909                 } else {
11910                         encoder->base.crtc = NULL;
11911                 }
11912
11913                 encoder->connectors_active = false;
11914                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11915                               encoder->base.base.id,
11916                               drm_get_encoder_name(&encoder->base),
11917                               encoder->base.crtc ? "enabled" : "disabled",
11918                               pipe_name(pipe));
11919         }
11920
11921         list_for_each_entry(connector, &dev->mode_config.connector_list,
11922                             base.head) {
11923                 if (connector->get_hw_state(connector)) {
11924                         connector->base.dpms = DRM_MODE_DPMS_ON;
11925                         connector->encoder->connectors_active = true;
11926                         connector->base.encoder = &connector->encoder->base;
11927                 } else {
11928                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11929                         connector->base.encoder = NULL;
11930                 }
11931                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11932                               connector->base.base.id,
11933                               drm_get_connector_name(&connector->base),
11934                               connector->base.encoder ? "enabled" : "disabled");
11935         }
11936 }
11937
11938 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11939  * and i915 state tracking structures. */
11940 void intel_modeset_setup_hw_state(struct drm_device *dev,
11941                                   bool force_restore)
11942 {
11943         struct drm_i915_private *dev_priv = dev->dev_private;
11944         enum pipe pipe;
11945         struct intel_crtc *crtc;
11946         struct intel_encoder *encoder;
11947         int i;
11948
11949         intel_modeset_readout_hw_state(dev);
11950
11951         /*
11952          * Now that we have the config, copy it to each CRTC struct
11953          * Note that this could go away if we move to using crtc_config
11954          * checking everywhere.
11955          */
11956         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11957                             base.head) {
11958                 if (crtc->active && i915.fastboot) {
11959                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11960                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11961                                       crtc->base.base.id);
11962                         drm_mode_debug_printmodeline(&crtc->base.mode);
11963                 }
11964         }
11965
11966         /* HW state is read out, now we need to sanitize this mess. */
11967         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11968                             base.head) {
11969                 intel_sanitize_encoder(encoder);
11970         }
11971
11972         for_each_pipe(pipe) {
11973                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11974                 intel_sanitize_crtc(crtc);
11975                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11976         }
11977
11978         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11979                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11980
11981                 if (!pll->on || pll->active)
11982                         continue;
11983
11984                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11985
11986                 pll->disable(dev_priv, pll);
11987                 pll->on = false;
11988         }
11989
11990         if (HAS_PCH_SPLIT(dev))
11991                 ilk_wm_get_hw_state(dev);
11992
11993         if (force_restore) {
11994                 i915_redisable_vga(dev);
11995
11996                 /*
11997                  * We need to use raw interfaces for restoring state to avoid
11998                  * checking (bogus) intermediate states.
11999                  */
12000                 for_each_pipe(pipe) {
12001                         struct drm_crtc *crtc =
12002                                 dev_priv->pipe_to_crtc_mapping[pipe];
12003
12004                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12005                                          crtc->primary->fb);
12006                 }
12007         } else {
12008                 intel_modeset_update_staged_output_state(dev);
12009         }
12010
12011         intel_modeset_check_state(dev);
12012 }
12013
12014 void intel_modeset_gem_init(struct drm_device *dev)
12015 {
12016         struct drm_crtc *c;
12017         struct intel_framebuffer *fb;
12018
12019         mutex_lock(&dev->struct_mutex);
12020         intel_init_gt_powersave(dev);
12021         mutex_unlock(&dev->struct_mutex);
12022
12023         intel_modeset_init_hw(dev);
12024
12025         intel_setup_overlay(dev);
12026
12027         /*
12028          * Make sure any fbs we allocated at startup are properly
12029          * pinned & fenced.  When we do the allocation it's too early
12030          * for this.
12031          */
12032         mutex_lock(&dev->struct_mutex);
12033         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
12034                 if (!c->primary->fb)
12035                         continue;
12036
12037                 fb = to_intel_framebuffer(c->primary->fb);
12038                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12039                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12040                                   to_intel_crtc(c)->pipe);
12041                         drm_framebuffer_unreference(c->primary->fb);
12042                         c->primary->fb = NULL;
12043                 }
12044         }
12045         mutex_unlock(&dev->struct_mutex);
12046 }
12047
12048 void intel_connector_unregister(struct intel_connector *intel_connector)
12049 {
12050         struct drm_connector *connector = &intel_connector->base;
12051
12052         intel_panel_destroy_backlight(connector);
12053         drm_sysfs_connector_remove(connector);
12054 }
12055
12056 void intel_modeset_cleanup(struct drm_device *dev)
12057 {
12058         struct drm_i915_private *dev_priv = dev->dev_private;
12059         struct drm_crtc *crtc;
12060         struct drm_connector *connector;
12061
12062         /*
12063          * Interrupts and polling as the first thing to avoid creating havoc.
12064          * Too much stuff here (turning of rps, connectors, ...) would
12065          * experience fancy races otherwise.
12066          */
12067         drm_irq_uninstall(dev);
12068         cancel_work_sync(&dev_priv->hotplug_work);
12069         /*
12070          * Due to the hpd irq storm handling the hotplug work can re-arm the
12071          * poll handlers. Hence disable polling after hpd handling is shut down.
12072          */
12073         drm_kms_helper_poll_fini(dev);
12074
12075         mutex_lock(&dev->struct_mutex);
12076
12077         intel_unregister_dsm_handler();
12078
12079         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
12080                 /* Skip inactive CRTCs */
12081                 if (!crtc->primary->fb)
12082                         continue;
12083
12084                 intel_increase_pllclock(crtc);
12085         }
12086
12087         intel_disable_fbc(dev);
12088
12089         intel_disable_gt_powersave(dev);
12090
12091         ironlake_teardown_rc6(dev);
12092
12093         mutex_unlock(&dev->struct_mutex);
12094
12095         /* flush any delayed tasks or pending work */
12096         flush_scheduled_work();
12097
12098         /* destroy the backlight and sysfs files before encoders/connectors */
12099         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12100                 struct intel_connector *intel_connector;
12101
12102                 intel_connector = to_intel_connector(connector);
12103                 intel_connector->unregister(intel_connector);
12104         }
12105
12106         drm_mode_config_cleanup(dev);
12107
12108         intel_cleanup_overlay(dev);
12109
12110         mutex_lock(&dev->struct_mutex);
12111         intel_cleanup_gt_powersave(dev);
12112         mutex_unlock(&dev->struct_mutex);
12113 }
12114
12115 /*
12116  * Return which encoder is currently attached for connector.
12117  */
12118 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12119 {
12120         return &intel_attached_encoder(connector)->base;
12121 }
12122
12123 void intel_connector_attach_encoder(struct intel_connector *connector,
12124                                     struct intel_encoder *encoder)
12125 {
12126         connector->encoder = encoder;
12127         drm_mode_connector_attach_encoder(&connector->base,
12128                                           &encoder->base);
12129 }
12130
12131 /*
12132  * set vga decode state - true == enable VGA decode
12133  */
12134 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12135 {
12136         struct drm_i915_private *dev_priv = dev->dev_private;
12137         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12138         u16 gmch_ctrl;
12139
12140         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12141                 DRM_ERROR("failed to read control word\n");
12142                 return -EIO;
12143         }
12144
12145         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12146                 return 0;
12147
12148         if (state)
12149                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12150         else
12151                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12152
12153         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12154                 DRM_ERROR("failed to write control word\n");
12155                 return -EIO;
12156         }
12157
12158         return 0;
12159 }
12160
12161 struct intel_display_error_state {
12162
12163         u32 power_well_driver;
12164
12165         int num_transcoders;
12166
12167         struct intel_cursor_error_state {
12168                 u32 control;
12169                 u32 position;
12170                 u32 base;
12171                 u32 size;
12172         } cursor[I915_MAX_PIPES];
12173
12174         struct intel_pipe_error_state {
12175                 bool power_domain_on;
12176                 u32 source;
12177                 u32 stat;
12178         } pipe[I915_MAX_PIPES];
12179
12180         struct intel_plane_error_state {
12181                 u32 control;
12182                 u32 stride;
12183                 u32 size;
12184                 u32 pos;
12185                 u32 addr;
12186                 u32 surface;
12187                 u32 tile_offset;
12188         } plane[I915_MAX_PIPES];
12189
12190         struct intel_transcoder_error_state {
12191                 bool power_domain_on;
12192                 enum transcoder cpu_transcoder;
12193
12194                 u32 conf;
12195
12196                 u32 htotal;
12197                 u32 hblank;
12198                 u32 hsync;
12199                 u32 vtotal;
12200                 u32 vblank;
12201                 u32 vsync;
12202         } transcoder[4];
12203 };
12204
12205 struct intel_display_error_state *
12206 intel_display_capture_error_state(struct drm_device *dev)
12207 {
12208         struct drm_i915_private *dev_priv = dev->dev_private;
12209         struct intel_display_error_state *error;
12210         int transcoders[] = {
12211                 TRANSCODER_A,
12212                 TRANSCODER_B,
12213                 TRANSCODER_C,
12214                 TRANSCODER_EDP,
12215         };
12216         int i;
12217
12218         if (INTEL_INFO(dev)->num_pipes == 0)
12219                 return NULL;
12220
12221         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12222         if (error == NULL)
12223                 return NULL;
12224
12225         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12226                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12227
12228         for_each_pipe(i) {
12229                 error->pipe[i].power_domain_on =
12230                         intel_display_power_enabled_sw(dev_priv,
12231                                                        POWER_DOMAIN_PIPE(i));
12232                 if (!error->pipe[i].power_domain_on)
12233                         continue;
12234
12235                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
12236                         error->cursor[i].control = I915_READ(CURCNTR(i));
12237                         error->cursor[i].position = I915_READ(CURPOS(i));
12238                         error->cursor[i].base = I915_READ(CURBASE(i));
12239                 } else {
12240                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
12241                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12242                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12243                 }
12244
12245                 error->plane[i].control = I915_READ(DSPCNTR(i));
12246                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12247                 if (INTEL_INFO(dev)->gen <= 3) {
12248                         error->plane[i].size = I915_READ(DSPSIZE(i));
12249                         error->plane[i].pos = I915_READ(DSPPOS(i));
12250                 }
12251                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12252                         error->plane[i].addr = I915_READ(DSPADDR(i));
12253                 if (INTEL_INFO(dev)->gen >= 4) {
12254                         error->plane[i].surface = I915_READ(DSPSURF(i));
12255                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12256                 }
12257
12258                 error->pipe[i].source = I915_READ(PIPESRC(i));
12259
12260                 if (!HAS_PCH_SPLIT(dev))
12261                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12262         }
12263
12264         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12265         if (HAS_DDI(dev_priv->dev))
12266                 error->num_transcoders++; /* Account for eDP. */
12267
12268         for (i = 0; i < error->num_transcoders; i++) {
12269                 enum transcoder cpu_transcoder = transcoders[i];
12270
12271                 error->transcoder[i].power_domain_on =
12272                         intel_display_power_enabled_sw(dev_priv,
12273                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12274                 if (!error->transcoder[i].power_domain_on)
12275                         continue;
12276
12277                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12278
12279                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12280                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12281                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12282                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12283                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12284                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12285                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12286         }
12287
12288         return error;
12289 }
12290
12291 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12292
12293 void
12294 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12295                                 struct drm_device *dev,
12296                                 struct intel_display_error_state *error)
12297 {
12298         int i;
12299
12300         if (!error)
12301                 return;
12302
12303         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12304         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12305                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12306                            error->power_well_driver);
12307         for_each_pipe(i) {
12308                 err_printf(m, "Pipe [%d]:\n", i);
12309                 err_printf(m, "  Power: %s\n",
12310                            error->pipe[i].power_domain_on ? "on" : "off");
12311                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12312                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12313
12314                 err_printf(m, "Plane [%d]:\n", i);
12315                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12316                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12317                 if (INTEL_INFO(dev)->gen <= 3) {
12318                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12319                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12320                 }
12321                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12322                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12323                 if (INTEL_INFO(dev)->gen >= 4) {
12324                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12325                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12326                 }
12327
12328                 err_printf(m, "Cursor [%d]:\n", i);
12329                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12330                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12331                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12332         }
12333
12334         for (i = 0; i < error->num_transcoders; i++) {
12335                 err_printf(m, "CPU transcoder: %c\n",
12336                            transcoder_name(error->transcoder[i].cpu_transcoder));
12337                 err_printf(m, "  Power: %s\n",
12338                            error->transcoder[i].power_domain_on ? "on" : "off");
12339                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12340                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12341                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12342                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12343                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12344                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12345                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12346         }
12347 }