drm/i915/vlv: fix up broken precision in vlv_crtc_clock_get
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv_dac = {
313         .dot = { .min = 25000, .max = 270000 },
314         .vco = { .min = 4000000, .max = 6000000 },
315         .n = { .min = 1, .max = 7 },
316         .m = { .min = 22, .max = 450 }, /* guess */
317         .m1 = { .min = 2, .max = 3 },
318         .m2 = { .min = 11, .max = 156 },
319         .p = { .min = 10, .max = 30 },
320         .p1 = { .min = 1, .max = 3 },
321         .p2 = { .dot_limit = 270000,
322                 .p2_slow = 2, .p2_fast = 20 },
323 };
324
325 static const intel_limit_t intel_limits_vlv_hdmi = {
326         .dot = { .min = 25000, .max = 270000 },
327         .vco = { .min = 4000000, .max = 6000000 },
328         .n = { .min = 1, .max = 7 },
329         .m = { .min = 60, .max = 300 }, /* guess */
330         .m1 = { .min = 2, .max = 3 },
331         .m2 = { .min = 11, .max = 156 },
332         .p = { .min = 10, .max = 30 },
333         .p1 = { .min = 2, .max = 3 },
334         .p2 = { .dot_limit = 270000,
335                 .p2_slow = 2, .p2_fast = 20 },
336 };
337
338 /**
339  * Returns whether any output on the specified pipe is of the specified type
340  */
341 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342 {
343         struct drm_device *dev = crtc->dev;
344         struct intel_encoder *encoder;
345
346         for_each_encoder_on_crtc(dev, crtc, encoder)
347                 if (encoder->type == type)
348                         return true;
349
350         return false;
351 }
352
353 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354                                                 int refclk)
355 {
356         struct drm_device *dev = crtc->dev;
357         const intel_limit_t *limit;
358
359         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360                 if (intel_is_dual_link_lvds(dev)) {
361                         if (refclk == 100000)
362                                 limit = &intel_limits_ironlake_dual_lvds_100m;
363                         else
364                                 limit = &intel_limits_ironlake_dual_lvds;
365                 } else {
366                         if (refclk == 100000)
367                                 limit = &intel_limits_ironlake_single_lvds_100m;
368                         else
369                                 limit = &intel_limits_ironlake_single_lvds;
370                 }
371         } else
372                 limit = &intel_limits_ironlake_dac;
373
374         return limit;
375 }
376
377 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378 {
379         struct drm_device *dev = crtc->dev;
380         const intel_limit_t *limit;
381
382         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383                 if (intel_is_dual_link_lvds(dev))
384                         limit = &intel_limits_g4x_dual_channel_lvds;
385                 else
386                         limit = &intel_limits_g4x_single_channel_lvds;
387         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389                 limit = &intel_limits_g4x_hdmi;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391                 limit = &intel_limits_g4x_sdvo;
392         } else /* The option is for other outputs */
393                 limit = &intel_limits_i9xx_sdvo;
394
395         return limit;
396 }
397
398 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399 {
400         struct drm_device *dev = crtc->dev;
401         const intel_limit_t *limit;
402
403         if (HAS_PCH_SPLIT(dev))
404                 limit = intel_ironlake_limit(crtc, refclk);
405         else if (IS_G4X(dev)) {
406                 limit = intel_g4x_limit(crtc);
407         } else if (IS_PINEVIEW(dev)) {
408                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409                         limit = &intel_limits_pineview_lvds;
410                 else
411                         limit = &intel_limits_pineview_sdvo;
412         } else if (IS_VALLEYVIEW(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
414                         limit = &intel_limits_vlv_dac;
415                 else
416                         limit = &intel_limits_vlv_hdmi;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         clock->vco = refclk * clock->m / clock->n;
439         clock->dot = clock->vco / clock->p;
440 }
441
442 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
443 {
444         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
445 }
446
447 static void i9xx_clock(int refclk, intel_clock_t *clock)
448 {
449         clock->m = i9xx_dpll_compute_m(clock);
450         clock->p = clock->p1 * clock->p2;
451         clock->vco = refclk * clock->m / (clock->n + 2);
452         clock->dot = clock->vco / clock->p;
453 }
454
455 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
456 /**
457  * Returns whether the given set of divisors are valid for a given refclk with
458  * the given connectors.
459  */
460
461 static bool intel_PLL_is_valid(struct drm_device *dev,
462                                const intel_limit_t *limit,
463                                const intel_clock_t *clock)
464 {
465         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
466                 INTELPllInvalid("p1 out of range\n");
467         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
468                 INTELPllInvalid("p out of range\n");
469         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
470                 INTELPllInvalid("m2 out of range\n");
471         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
472                 INTELPllInvalid("m1 out of range\n");
473         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
474                 INTELPllInvalid("m1 <= m2\n");
475         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
476                 INTELPllInvalid("m out of range\n");
477         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
478                 INTELPllInvalid("n out of range\n");
479         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
480                 INTELPllInvalid("vco out of range\n");
481         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
482          * connector, etc., rather than just a single range.
483          */
484         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
485                 INTELPllInvalid("dot out of range\n");
486
487         return true;
488 }
489
490 static bool
491 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
492                     int target, int refclk, intel_clock_t *match_clock,
493                     intel_clock_t *best_clock)
494 {
495         struct drm_device *dev = crtc->dev;
496         intel_clock_t clock;
497         int err = target;
498
499         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
500                 /*
501                  * For LVDS just rely on its current settings for dual-channel.
502                  * We haven't figured out how to reliably set up different
503                  * single/dual channel state, if we even can.
504                  */
505                 if (intel_is_dual_link_lvds(dev))
506                         clock.p2 = limit->p2.p2_fast;
507                 else
508                         clock.p2 = limit->p2.p2_slow;
509         } else {
510                 if (target < limit->p2.dot_limit)
511                         clock.p2 = limit->p2.p2_slow;
512                 else
513                         clock.p2 = limit->p2.p2_fast;
514         }
515
516         memset(best_clock, 0, sizeof(*best_clock));
517
518         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
519              clock.m1++) {
520                 for (clock.m2 = limit->m2.min;
521                      clock.m2 <= limit->m2.max; clock.m2++) {
522                         if (clock.m2 >= clock.m1)
523                                 break;
524                         for (clock.n = limit->n.min;
525                              clock.n <= limit->n.max; clock.n++) {
526                                 for (clock.p1 = limit->p1.min;
527                                         clock.p1 <= limit->p1.max; clock.p1++) {
528                                         int this_err;
529
530                                         i9xx_clock(refclk, &clock);
531                                         if (!intel_PLL_is_valid(dev, limit,
532                                                                 &clock))
533                                                 continue;
534                                         if (match_clock &&
535                                             clock.p != match_clock->p)
536                                                 continue;
537
538                                         this_err = abs(clock.dot - target);
539                                         if (this_err < err) {
540                                                 *best_clock = clock;
541                                                 err = this_err;
542                                         }
543                                 }
544                         }
545                 }
546         }
547
548         return (err != target);
549 }
550
551 static bool
552 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
553                    int target, int refclk, intel_clock_t *match_clock,
554                    intel_clock_t *best_clock)
555 {
556         struct drm_device *dev = crtc->dev;
557         intel_clock_t clock;
558         int err = target;
559
560         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
561                 /*
562                  * For LVDS just rely on its current settings for dual-channel.
563                  * We haven't figured out how to reliably set up different
564                  * single/dual channel state, if we even can.
565                  */
566                 if (intel_is_dual_link_lvds(dev))
567                         clock.p2 = limit->p2.p2_fast;
568                 else
569                         clock.p2 = limit->p2.p2_slow;
570         } else {
571                 if (target < limit->p2.dot_limit)
572                         clock.p2 = limit->p2.p2_slow;
573                 else
574                         clock.p2 = limit->p2.p2_fast;
575         }
576
577         memset(best_clock, 0, sizeof(*best_clock));
578
579         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
580              clock.m1++) {
581                 for (clock.m2 = limit->m2.min;
582                      clock.m2 <= limit->m2.max; clock.m2++) {
583                         for (clock.n = limit->n.min;
584                              clock.n <= limit->n.max; clock.n++) {
585                                 for (clock.p1 = limit->p1.min;
586                                         clock.p1 <= limit->p1.max; clock.p1++) {
587                                         int this_err;
588
589                                         pineview_clock(refclk, &clock);
590                                         if (!intel_PLL_is_valid(dev, limit,
591                                                                 &clock))
592                                                 continue;
593                                         if (match_clock &&
594                                             clock.p != match_clock->p)
595                                                 continue;
596
597                                         this_err = abs(clock.dot - target);
598                                         if (this_err < err) {
599                                                 *best_clock = clock;
600                                                 err = this_err;
601                                         }
602                                 }
603                         }
604                 }
605         }
606
607         return (err != target);
608 }
609
610 static bool
611 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
612                    int target, int refclk, intel_clock_t *match_clock,
613                    intel_clock_t *best_clock)
614 {
615         struct drm_device *dev = crtc->dev;
616         intel_clock_t clock;
617         int max_n;
618         bool found;
619         /* approximately equals target * 0.00585 */
620         int err_most = (target >> 8) + (target >> 9);
621         found = false;
622
623         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
624                 if (intel_is_dual_link_lvds(dev))
625                         clock.p2 = limit->p2.p2_fast;
626                 else
627                         clock.p2 = limit->p2.p2_slow;
628         } else {
629                 if (target < limit->p2.dot_limit)
630                         clock.p2 = limit->p2.p2_slow;
631                 else
632                         clock.p2 = limit->p2.p2_fast;
633         }
634
635         memset(best_clock, 0, sizeof(*best_clock));
636         max_n = limit->n.max;
637         /* based on hardware requirement, prefer smaller n to precision */
638         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
639                 /* based on hardware requirement, prefere larger m1,m2 */
640                 for (clock.m1 = limit->m1.max;
641                      clock.m1 >= limit->m1.min; clock.m1--) {
642                         for (clock.m2 = limit->m2.max;
643                              clock.m2 >= limit->m2.min; clock.m2--) {
644                                 for (clock.p1 = limit->p1.max;
645                                      clock.p1 >= limit->p1.min; clock.p1--) {
646                                         int this_err;
647
648                                         i9xx_clock(refclk, &clock);
649                                         if (!intel_PLL_is_valid(dev, limit,
650                                                                 &clock))
651                                                 continue;
652
653                                         this_err = abs(clock.dot - target);
654                                         if (this_err < err_most) {
655                                                 *best_clock = clock;
656                                                 err_most = this_err;
657                                                 max_n = clock.n;
658                                                 found = true;
659                                         }
660                                 }
661                         }
662                 }
663         }
664         return found;
665 }
666
667 static bool
668 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
669                    int target, int refclk, intel_clock_t *match_clock,
670                    intel_clock_t *best_clock)
671 {
672         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
673         u32 m, n, fastclk;
674         u32 updrate, minupdate, p;
675         unsigned long bestppm, ppm, absppm;
676         int dotclk, flag;
677
678         flag = 0;
679         dotclk = target * 1000;
680         bestppm = 1000000;
681         ppm = absppm = 0;
682         fastclk = dotclk / (2*100);
683         updrate = 0;
684         minupdate = 19200;
685         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
686         bestm1 = bestm2 = bestp1 = bestp2 = 0;
687
688         /* based on hardware requirement, prefer smaller n to precision */
689         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
690                 updrate = refclk / n;
691                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
692                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
693                                 if (p2 > 10)
694                                         p2 = p2 - 1;
695                                 p = p1 * p2;
696                                 /* based on hardware requirement, prefer bigger m1,m2 values */
697                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
698                                         m2 = (((2*(fastclk * p * n / m1 )) +
699                                                refclk) / (2*refclk));
700                                         m = m1 * m2;
701                                         vco = updrate * m;
702                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
703                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
704                                                 absppm = (ppm > 0) ? ppm : (-ppm);
705                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
706                                                         bestppm = 0;
707                                                         flag = 1;
708                                                 }
709                                                 if (absppm < bestppm - 10) {
710                                                         bestppm = absppm;
711                                                         flag = 1;
712                                                 }
713                                                 if (flag) {
714                                                         bestn = n;
715                                                         bestm1 = m1;
716                                                         bestm2 = m2;
717                                                         bestp1 = p1;
718                                                         bestp2 = p2;
719                                                         flag = 0;
720                                                 }
721                                         }
722                                 }
723                         }
724                 }
725         }
726         best_clock->n = bestn;
727         best_clock->m1 = bestm1;
728         best_clock->m2 = bestm2;
729         best_clock->p1 = bestp1;
730         best_clock->p2 = bestp2;
731
732         return true;
733 }
734
735 bool intel_crtc_active(struct drm_crtc *crtc)
736 {
737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
738
739         /* Be paranoid as we can arrive here with only partial
740          * state retrieved from the hardware during setup.
741          *
742          * We can ditch the adjusted_mode.clock check as soon
743          * as Haswell has gained clock readout/fastboot support.
744          *
745          * We can ditch the crtc->fb check as soon as we can
746          * properly reconstruct framebuffers.
747          */
748         return intel_crtc->active && crtc->fb &&
749                 intel_crtc->config.adjusted_mode.clock;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753                                              enum pipe pipe)
754 {
755         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758         return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763         struct drm_i915_private *dev_priv = dev->dev_private;
764         u32 frame, frame_reg = PIPEFRAME(pipe);
765
766         frame = I915_READ(frame_reg);
767
768         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769                 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773  * intel_wait_for_vblank - wait for vblank on a given pipe
774  * @dev: drm device
775  * @pipe: pipe to wait for
776  *
777  * Wait for vblank to occur on a given pipe.  Needed for various bits of
778  * mode setting code.
779  */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782         struct drm_i915_private *dev_priv = dev->dev_private;
783         int pipestat_reg = PIPESTAT(pipe);
784
785         if (INTEL_INFO(dev)->gen >= 5) {
786                 ironlake_wait_for_vblank(dev, pipe);
787                 return;
788         }
789
790         /* Clear existing vblank status. Note this will clear any other
791          * sticky status fields as well.
792          *
793          * This races with i915_driver_irq_handler() with the result
794          * that either function could miss a vblank event.  Here it is not
795          * fatal, as we will either wait upon the next vblank interrupt or
796          * timeout.  Generally speaking intel_wait_for_vblank() is only
797          * called during modeset at which time the GPU should be idle and
798          * should *not* be performing page flips and thus not waiting on
799          * vblanks...
800          * Currently, the result of us stealing a vblank from the irq
801          * handler is that a single frame will be skipped during swapbuffers.
802          */
803         I915_WRITE(pipestat_reg,
804                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806         /* Wait for vblank interrupt bit to set */
807         if (wait_for(I915_READ(pipestat_reg) &
808                      PIPE_VBLANK_INTERRUPT_STATUS,
809                      50))
810                 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814  * intel_wait_for_pipe_off - wait for pipe to turn off
815  * @dev: drm device
816  * @pipe: pipe to wait for
817  *
818  * After disabling a pipe, we can't wait for vblank in the usual way,
819  * spinning on the vblank interrupt status bit, since we won't actually
820  * see an interrupt when the pipe is disabled.
821  *
822  * On Gen4 and above:
823  *   wait for the pipe register state bit to turn off
824  *
825  * Otherwise:
826  *   wait for the display line value to settle (it usually
827  *   ends up stopping at the start of the next frame).
828  *
829  */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832         struct drm_i915_private *dev_priv = dev->dev_private;
833         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834                                                                       pipe);
835
836         if (INTEL_INFO(dev)->gen >= 4) {
837                 int reg = PIPECONF(cpu_transcoder);
838
839                 /* Wait for the Pipe State to go off */
840                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841                              100))
842                         WARN(1, "pipe_off wait timed out\n");
843         } else {
844                 u32 last_line, line_mask;
845                 int reg = PIPEDSL(pipe);
846                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848                 if (IS_GEN2(dev))
849                         line_mask = DSL_LINEMASK_GEN2;
850                 else
851                         line_mask = DSL_LINEMASK_GEN3;
852
853                 /* Wait for the display line to settle */
854                 do {
855                         last_line = I915_READ(reg) & line_mask;
856                         mdelay(5);
857                 } while (((I915_READ(reg) & line_mask) != last_line) &&
858                          time_after(timeout, jiffies));
859                 if (time_after(jiffies, timeout))
860                         WARN(1, "pipe_off wait timed out\n");
861         }
862 }
863
864 /*
865  * ibx_digital_port_connected - is the specified port connected?
866  * @dev_priv: i915 private structure
867  * @port: the port to test
868  *
869  * Returns true if @port is connected, false otherwise.
870  */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872                                 struct intel_digital_port *port)
873 {
874         u32 bit;
875
876         if (HAS_PCH_IBX(dev_priv->dev)) {
877                 switch(port->port) {
878                 case PORT_B:
879                         bit = SDE_PORTB_HOTPLUG;
880                         break;
881                 case PORT_C:
882                         bit = SDE_PORTC_HOTPLUG;
883                         break;
884                 case PORT_D:
885                         bit = SDE_PORTD_HOTPLUG;
886                         break;
887                 default:
888                         return true;
889                 }
890         } else {
891                 switch(port->port) {
892                 case PORT_B:
893                         bit = SDE_PORTB_HOTPLUG_CPT;
894                         break;
895                 case PORT_C:
896                         bit = SDE_PORTC_HOTPLUG_CPT;
897                         break;
898                 case PORT_D:
899                         bit = SDE_PORTD_HOTPLUG_CPT;
900                         break;
901                 default:
902                         return true;
903                 }
904         }
905
906         return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911         return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916                 enum pipe pipe, bool state)
917 {
918         int reg;
919         u32 val;
920         bool cur_state;
921
922         reg = DPLL(pipe);
923         val = I915_READ(reg);
924         cur_state = !!(val & DPLL_VCO_ENABLE);
925         WARN(cur_state != state,
926              "PLL state assertion failure (expected %s, current %s)\n",
927              state_string(state), state_string(cur_state));
928 }
929
930 /* XXX: the dsi pll is shared between MIPI DSI ports */
931 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
932 {
933         u32 val;
934         bool cur_state;
935
936         mutex_lock(&dev_priv->dpio_lock);
937         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
938         mutex_unlock(&dev_priv->dpio_lock);
939
940         cur_state = val & DSI_PLL_VCO_EN;
941         WARN(cur_state != state,
942              "DSI PLL state assertion failure (expected %s, current %s)\n",
943              state_string(state), state_string(cur_state));
944 }
945 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
946 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
947
948 struct intel_shared_dpll *
949 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
950 {
951         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
952
953         if (crtc->config.shared_dpll < 0)
954                 return NULL;
955
956         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
957 }
958
959 /* For ILK+ */
960 void assert_shared_dpll(struct drm_i915_private *dev_priv,
961                         struct intel_shared_dpll *pll,
962                         bool state)
963 {
964         bool cur_state;
965         struct intel_dpll_hw_state hw_state;
966
967         if (HAS_PCH_LPT(dev_priv->dev)) {
968                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
969                 return;
970         }
971
972         if (WARN (!pll,
973                   "asserting DPLL %s with no DPLL\n", state_string(state)))
974                 return;
975
976         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
977         WARN(cur_state != state,
978              "%s assertion failure (expected %s, current %s)\n",
979              pll->name, state_string(state), state_string(cur_state));
980 }
981
982 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
983                           enum pipe pipe, bool state)
984 {
985         int reg;
986         u32 val;
987         bool cur_state;
988         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
989                                                                       pipe);
990
991         if (HAS_DDI(dev_priv->dev)) {
992                 /* DDI does not have a specific FDI_TX register */
993                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
994                 val = I915_READ(reg);
995                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
996         } else {
997                 reg = FDI_TX_CTL(pipe);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & FDI_TX_ENABLE);
1000         }
1001         WARN(cur_state != state,
1002              "FDI TX state assertion failure (expected %s, current %s)\n",
1003              state_string(state), state_string(cur_state));
1004 }
1005 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1006 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1007
1008 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1009                           enum pipe pipe, bool state)
1010 {
1011         int reg;
1012         u32 val;
1013         bool cur_state;
1014
1015         reg = FDI_RX_CTL(pipe);
1016         val = I915_READ(reg);
1017         cur_state = !!(val & FDI_RX_ENABLE);
1018         WARN(cur_state != state,
1019              "FDI RX state assertion failure (expected %s, current %s)\n",
1020              state_string(state), state_string(cur_state));
1021 }
1022 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1023 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1024
1025 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1026                                       enum pipe pipe)
1027 {
1028         int reg;
1029         u32 val;
1030
1031         /* ILK FDI PLL is always enabled */
1032         if (dev_priv->info->gen == 5)
1033                 return;
1034
1035         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1036         if (HAS_DDI(dev_priv->dev))
1037                 return;
1038
1039         reg = FDI_TX_CTL(pipe);
1040         val = I915_READ(reg);
1041         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1042 }
1043
1044 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1045                        enum pipe pipe, bool state)
1046 {
1047         int reg;
1048         u32 val;
1049         bool cur_state;
1050
1051         reg = FDI_RX_CTL(pipe);
1052         val = I915_READ(reg);
1053         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1054         WARN(cur_state != state,
1055              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1056              state_string(state), state_string(cur_state));
1057 }
1058
1059 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1060                                   enum pipe pipe)
1061 {
1062         int pp_reg, lvds_reg;
1063         u32 val;
1064         enum pipe panel_pipe = PIPE_A;
1065         bool locked = true;
1066
1067         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1068                 pp_reg = PCH_PP_CONTROL;
1069                 lvds_reg = PCH_LVDS;
1070         } else {
1071                 pp_reg = PP_CONTROL;
1072                 lvds_reg = LVDS;
1073         }
1074
1075         val = I915_READ(pp_reg);
1076         if (!(val & PANEL_POWER_ON) ||
1077             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1078                 locked = false;
1079
1080         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1081                 panel_pipe = PIPE_B;
1082
1083         WARN(panel_pipe == pipe && locked,
1084              "panel assertion failure, pipe %c regs locked\n",
1085              pipe_name(pipe));
1086 }
1087
1088 static void assert_cursor(struct drm_i915_private *dev_priv,
1089                           enum pipe pipe, bool state)
1090 {
1091         struct drm_device *dev = dev_priv->dev;
1092         bool cur_state;
1093
1094         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1095                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1096         else if (IS_845G(dev) || IS_I865G(dev))
1097                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1098         else
1099                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1100
1101         WARN(cur_state != state,
1102              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1103              pipe_name(pipe), state_string(state), state_string(cur_state));
1104 }
1105 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1106 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1107
1108 void assert_pipe(struct drm_i915_private *dev_priv,
1109                  enum pipe pipe, bool state)
1110 {
1111         int reg;
1112         u32 val;
1113         bool cur_state;
1114         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1115                                                                       pipe);
1116
1117         /* if we need the pipe A quirk it must be always on */
1118         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1119                 state = true;
1120
1121         if (!intel_display_power_enabled(dev_priv->dev,
1122                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1123                 cur_state = false;
1124         } else {
1125                 reg = PIPECONF(cpu_transcoder);
1126                 val = I915_READ(reg);
1127                 cur_state = !!(val & PIPECONF_ENABLE);
1128         }
1129
1130         WARN(cur_state != state,
1131              "pipe %c assertion failure (expected %s, current %s)\n",
1132              pipe_name(pipe), state_string(state), state_string(cur_state));
1133 }
1134
1135 static void assert_plane(struct drm_i915_private *dev_priv,
1136                          enum plane plane, bool state)
1137 {
1138         int reg;
1139         u32 val;
1140         bool cur_state;
1141
1142         reg = DSPCNTR(plane);
1143         val = I915_READ(reg);
1144         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1145         WARN(cur_state != state,
1146              "plane %c assertion failure (expected %s, current %s)\n",
1147              plane_name(plane), state_string(state), state_string(cur_state));
1148 }
1149
1150 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1151 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1152
1153 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1154                                    enum pipe pipe)
1155 {
1156         struct drm_device *dev = dev_priv->dev;
1157         int reg, i;
1158         u32 val;
1159         int cur_pipe;
1160
1161         /* Primary planes are fixed to pipes on gen4+ */
1162         if (INTEL_INFO(dev)->gen >= 4) {
1163                 reg = DSPCNTR(pipe);
1164                 val = I915_READ(reg);
1165                 WARN((val & DISPLAY_PLANE_ENABLE),
1166                      "plane %c assertion failure, should be disabled but not\n",
1167                      plane_name(pipe));
1168                 return;
1169         }
1170
1171         /* Need to check both planes against the pipe */
1172         for_each_pipe(i) {
1173                 reg = DSPCNTR(i);
1174                 val = I915_READ(reg);
1175                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1176                         DISPPLANE_SEL_PIPE_SHIFT;
1177                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1178                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1179                      plane_name(i), pipe_name(pipe));
1180         }
1181 }
1182
1183 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1184                                     enum pipe pipe)
1185 {
1186         struct drm_device *dev = dev_priv->dev;
1187         int reg, i;
1188         u32 val;
1189
1190         if (IS_VALLEYVIEW(dev)) {
1191                 for (i = 0; i < dev_priv->num_plane; i++) {
1192                         reg = SPCNTR(pipe, i);
1193                         val = I915_READ(reg);
1194                         WARN((val & SP_ENABLE),
1195                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1196                              sprite_name(pipe, i), pipe_name(pipe));
1197                 }
1198         } else if (INTEL_INFO(dev)->gen >= 7) {
1199                 reg = SPRCTL(pipe);
1200                 val = I915_READ(reg);
1201                 WARN((val & SPRITE_ENABLE),
1202                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1203                      plane_name(pipe), pipe_name(pipe));
1204         } else if (INTEL_INFO(dev)->gen >= 5) {
1205                 reg = DVSCNTR(pipe);
1206                 val = I915_READ(reg);
1207                 WARN((val & DVS_ENABLE),
1208                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1209                      plane_name(pipe), pipe_name(pipe));
1210         }
1211 }
1212
1213 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1214 {
1215         u32 val;
1216         bool enabled;
1217
1218         if (HAS_PCH_LPT(dev_priv->dev)) {
1219                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1220                 return;
1221         }
1222
1223         val = I915_READ(PCH_DREF_CONTROL);
1224         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1225                             DREF_SUPERSPREAD_SOURCE_MASK));
1226         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1227 }
1228
1229 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1230                                            enum pipe pipe)
1231 {
1232         int reg;
1233         u32 val;
1234         bool enabled;
1235
1236         reg = PCH_TRANSCONF(pipe);
1237         val = I915_READ(reg);
1238         enabled = !!(val & TRANS_ENABLE);
1239         WARN(enabled,
1240              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1241              pipe_name(pipe));
1242 }
1243
1244 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1245                             enum pipe pipe, u32 port_sel, u32 val)
1246 {
1247         if ((val & DP_PORT_EN) == 0)
1248                 return false;
1249
1250         if (HAS_PCH_CPT(dev_priv->dev)) {
1251                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1252                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1253                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1254                         return false;
1255         } else {
1256                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1257                         return false;
1258         }
1259         return true;
1260 }
1261
1262 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1263                               enum pipe pipe, u32 val)
1264 {
1265         if ((val & SDVO_ENABLE) == 0)
1266                 return false;
1267
1268         if (HAS_PCH_CPT(dev_priv->dev)) {
1269                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1270                         return false;
1271         } else {
1272                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1273                         return false;
1274         }
1275         return true;
1276 }
1277
1278 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1279                               enum pipe pipe, u32 val)
1280 {
1281         if ((val & LVDS_PORT_EN) == 0)
1282                 return false;
1283
1284         if (HAS_PCH_CPT(dev_priv->dev)) {
1285                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1286                         return false;
1287         } else {
1288                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1289                         return false;
1290         }
1291         return true;
1292 }
1293
1294 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1295                               enum pipe pipe, u32 val)
1296 {
1297         if ((val & ADPA_DAC_ENABLE) == 0)
1298                 return false;
1299         if (HAS_PCH_CPT(dev_priv->dev)) {
1300                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1301                         return false;
1302         } else {
1303                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1304                         return false;
1305         }
1306         return true;
1307 }
1308
1309 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1310                                    enum pipe pipe, int reg, u32 port_sel)
1311 {
1312         u32 val = I915_READ(reg);
1313         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1314              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1315              reg, pipe_name(pipe));
1316
1317         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1318              && (val & DP_PIPEB_SELECT),
1319              "IBX PCH dp port still using transcoder B\n");
1320 }
1321
1322 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1323                                      enum pipe pipe, int reg)
1324 {
1325         u32 val = I915_READ(reg);
1326         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1327              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1328              reg, pipe_name(pipe));
1329
1330         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1331              && (val & SDVO_PIPE_B_SELECT),
1332              "IBX PCH hdmi port still using transcoder B\n");
1333 }
1334
1335 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1336                                       enum pipe pipe)
1337 {
1338         int reg;
1339         u32 val;
1340
1341         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1344
1345         reg = PCH_ADPA;
1346         val = I915_READ(reg);
1347         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1348              "PCH VGA enabled on transcoder %c, should be disabled\n",
1349              pipe_name(pipe));
1350
1351         reg = PCH_LVDS;
1352         val = I915_READ(reg);
1353         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1354              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1355              pipe_name(pipe));
1356
1357         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1360 }
1361
1362 static void vlv_enable_pll(struct intel_crtc *crtc)
1363 {
1364         struct drm_device *dev = crtc->base.dev;
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         int reg = DPLL(crtc->pipe);
1367         u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369         assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371         /* No really, not for ILK+ */
1372         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1373
1374         /* PLL is protected by panel, make sure we can write it */
1375         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1376                 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378         I915_WRITE(reg, dpll);
1379         POSTING_READ(reg);
1380         udelay(150);
1381
1382         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1383                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1384
1385         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1386         POSTING_READ(DPLL_MD(crtc->pipe));
1387
1388         /* We do this three times for luck */
1389         I915_WRITE(reg, dpll);
1390         POSTING_READ(reg);
1391         udelay(150); /* wait for warmup */
1392         I915_WRITE(reg, dpll);
1393         POSTING_READ(reg);
1394         udelay(150); /* wait for warmup */
1395         I915_WRITE(reg, dpll);
1396         POSTING_READ(reg);
1397         udelay(150); /* wait for warmup */
1398 }
1399
1400 static void i9xx_enable_pll(struct intel_crtc *crtc)
1401 {
1402         struct drm_device *dev = crtc->base.dev;
1403         struct drm_i915_private *dev_priv = dev->dev_private;
1404         int reg = DPLL(crtc->pipe);
1405         u32 dpll = crtc->config.dpll_hw_state.dpll;
1406
1407         assert_pipe_disabled(dev_priv, crtc->pipe);
1408
1409         /* No really, not for ILK+ */
1410         BUG_ON(dev_priv->info->gen >= 5);
1411
1412         /* PLL is protected by panel, make sure we can write it */
1413         if (IS_MOBILE(dev) && !IS_I830(dev))
1414                 assert_panel_unlocked(dev_priv, crtc->pipe);
1415
1416         I915_WRITE(reg, dpll);
1417
1418         /* Wait for the clocks to stabilize. */
1419         POSTING_READ(reg);
1420         udelay(150);
1421
1422         if (INTEL_INFO(dev)->gen >= 4) {
1423                 I915_WRITE(DPLL_MD(crtc->pipe),
1424                            crtc->config.dpll_hw_state.dpll_md);
1425         } else {
1426                 /* The pixel multiplier can only be updated once the
1427                  * DPLL is enabled and the clocks are stable.
1428                  *
1429                  * So write it again.
1430                  */
1431                 I915_WRITE(reg, dpll);
1432         }
1433
1434         /* We do this three times for luck */
1435         I915_WRITE(reg, dpll);
1436         POSTING_READ(reg);
1437         udelay(150); /* wait for warmup */
1438         I915_WRITE(reg, dpll);
1439         POSTING_READ(reg);
1440         udelay(150); /* wait for warmup */
1441         I915_WRITE(reg, dpll);
1442         POSTING_READ(reg);
1443         udelay(150); /* wait for warmup */
1444 }
1445
1446 /**
1447  * i9xx_disable_pll - disable a PLL
1448  * @dev_priv: i915 private structure
1449  * @pipe: pipe PLL to disable
1450  *
1451  * Disable the PLL for @pipe, making sure the pipe is off first.
1452  *
1453  * Note!  This is for pre-ILK only.
1454  */
1455 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1456 {
1457         /* Don't disable pipe A or pipe A PLLs if needed */
1458         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1459                 return;
1460
1461         /* Make sure the pipe isn't still relying on us */
1462         assert_pipe_disabled(dev_priv, pipe);
1463
1464         I915_WRITE(DPLL(pipe), 0);
1465         POSTING_READ(DPLL(pipe));
1466 }
1467
1468 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1469 {
1470         u32 port_mask;
1471
1472         if (!port)
1473                 port_mask = DPLL_PORTB_READY_MASK;
1474         else
1475                 port_mask = DPLL_PORTC_READY_MASK;
1476
1477         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1478                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1479                      'B' + port, I915_READ(DPLL(0)));
1480 }
1481
1482 /**
1483  * ironlake_enable_shared_dpll - enable PCH PLL
1484  * @dev_priv: i915 private structure
1485  * @pipe: pipe PLL to enable
1486  *
1487  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1488  * drives the transcoder clock.
1489  */
1490 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1491 {
1492         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1493         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1494
1495         /* PCH PLLs only available on ILK, SNB and IVB */
1496         BUG_ON(dev_priv->info->gen < 5);
1497         if (WARN_ON(pll == NULL))
1498                 return;
1499
1500         if (WARN_ON(pll->refcount == 0))
1501                 return;
1502
1503         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1504                       pll->name, pll->active, pll->on,
1505                       crtc->base.base.id);
1506
1507         if (pll->active++) {
1508                 WARN_ON(!pll->on);
1509                 assert_shared_dpll_enabled(dev_priv, pll);
1510                 return;
1511         }
1512         WARN_ON(pll->on);
1513
1514         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1515         pll->enable(dev_priv, pll);
1516         pll->on = true;
1517 }
1518
1519 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524         /* PCH only available on ILK+ */
1525         BUG_ON(dev_priv->info->gen < 5);
1526         if (WARN_ON(pll == NULL))
1527                return;
1528
1529         if (WARN_ON(pll->refcount == 0))
1530                 return;
1531
1532         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1533                       pll->name, pll->active, pll->on,
1534                       crtc->base.base.id);
1535
1536         if (WARN_ON(pll->active == 0)) {
1537                 assert_shared_dpll_disabled(dev_priv, pll);
1538                 return;
1539         }
1540
1541         assert_shared_dpll_enabled(dev_priv, pll);
1542         WARN_ON(!pll->on);
1543         if (--pll->active)
1544                 return;
1545
1546         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1547         pll->disable(dev_priv, pll);
1548         pll->on = false;
1549 }
1550
1551 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1552                                            enum pipe pipe)
1553 {
1554         struct drm_device *dev = dev_priv->dev;
1555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1557         uint32_t reg, val, pipeconf_val;
1558
1559         /* PCH only available on ILK+ */
1560         BUG_ON(dev_priv->info->gen < 5);
1561
1562         /* Make sure PCH DPLL is enabled */
1563         assert_shared_dpll_enabled(dev_priv,
1564                                    intel_crtc_to_shared_dpll(intel_crtc));
1565
1566         /* FDI must be feeding us bits for PCH ports */
1567         assert_fdi_tx_enabled(dev_priv, pipe);
1568         assert_fdi_rx_enabled(dev_priv, pipe);
1569
1570         if (HAS_PCH_CPT(dev)) {
1571                 /* Workaround: Set the timing override bit before enabling the
1572                  * pch transcoder. */
1573                 reg = TRANS_CHICKEN2(pipe);
1574                 val = I915_READ(reg);
1575                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1576                 I915_WRITE(reg, val);
1577         }
1578
1579         reg = PCH_TRANSCONF(pipe);
1580         val = I915_READ(reg);
1581         pipeconf_val = I915_READ(PIPECONF(pipe));
1582
1583         if (HAS_PCH_IBX(dev_priv->dev)) {
1584                 /*
1585                  * make the BPC in transcoder be consistent with
1586                  * that in pipeconf reg.
1587                  */
1588                 val &= ~PIPECONF_BPC_MASK;
1589                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1590         }
1591
1592         val &= ~TRANS_INTERLACE_MASK;
1593         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1594                 if (HAS_PCH_IBX(dev_priv->dev) &&
1595                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1596                         val |= TRANS_LEGACY_INTERLACED_ILK;
1597                 else
1598                         val |= TRANS_INTERLACED;
1599         else
1600                 val |= TRANS_PROGRESSIVE;
1601
1602         I915_WRITE(reg, val | TRANS_ENABLE);
1603         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1604                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1605 }
1606
1607 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1608                                       enum transcoder cpu_transcoder)
1609 {
1610         u32 val, pipeconf_val;
1611
1612         /* PCH only available on ILK+ */
1613         BUG_ON(dev_priv->info->gen < 5);
1614
1615         /* FDI must be feeding us bits for PCH ports */
1616         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1617         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1618
1619         /* Workaround: set timing override bit. */
1620         val = I915_READ(_TRANSA_CHICKEN2);
1621         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1622         I915_WRITE(_TRANSA_CHICKEN2, val);
1623
1624         val = TRANS_ENABLE;
1625         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1626
1627         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1628             PIPECONF_INTERLACED_ILK)
1629                 val |= TRANS_INTERLACED;
1630         else
1631                 val |= TRANS_PROGRESSIVE;
1632
1633         I915_WRITE(LPT_TRANSCONF, val);
1634         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1635                 DRM_ERROR("Failed to enable PCH transcoder\n");
1636 }
1637
1638 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1639                                             enum pipe pipe)
1640 {
1641         struct drm_device *dev = dev_priv->dev;
1642         uint32_t reg, val;
1643
1644         /* FDI relies on the transcoder */
1645         assert_fdi_tx_disabled(dev_priv, pipe);
1646         assert_fdi_rx_disabled(dev_priv, pipe);
1647
1648         /* Ports must be off as well */
1649         assert_pch_ports_disabled(dev_priv, pipe);
1650
1651         reg = PCH_TRANSCONF(pipe);
1652         val = I915_READ(reg);
1653         val &= ~TRANS_ENABLE;
1654         I915_WRITE(reg, val);
1655         /* wait for PCH transcoder off, transcoder state */
1656         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1657                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1658
1659         if (!HAS_PCH_IBX(dev)) {
1660                 /* Workaround: Clear the timing override chicken bit again. */
1661                 reg = TRANS_CHICKEN2(pipe);
1662                 val = I915_READ(reg);
1663                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1664                 I915_WRITE(reg, val);
1665         }
1666 }
1667
1668 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1669 {
1670         u32 val;
1671
1672         val = I915_READ(LPT_TRANSCONF);
1673         val &= ~TRANS_ENABLE;
1674         I915_WRITE(LPT_TRANSCONF, val);
1675         /* wait for PCH transcoder off, transcoder state */
1676         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1677                 DRM_ERROR("Failed to disable PCH transcoder\n");
1678
1679         /* Workaround: clear timing override bit. */
1680         val = I915_READ(_TRANSA_CHICKEN2);
1681         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1682         I915_WRITE(_TRANSA_CHICKEN2, val);
1683 }
1684
1685 /**
1686  * intel_enable_pipe - enable a pipe, asserting requirements
1687  * @dev_priv: i915 private structure
1688  * @pipe: pipe to enable
1689  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1690  *
1691  * Enable @pipe, making sure that various hardware specific requirements
1692  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1693  *
1694  * @pipe should be %PIPE_A or %PIPE_B.
1695  *
1696  * Will wait until the pipe is actually running (i.e. first vblank) before
1697  * returning.
1698  */
1699 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1700                               bool pch_port, bool dsi)
1701 {
1702         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1703                                                                       pipe);
1704         enum pipe pch_transcoder;
1705         int reg;
1706         u32 val;
1707
1708         assert_planes_disabled(dev_priv, pipe);
1709         assert_cursor_disabled(dev_priv, pipe);
1710         assert_sprites_disabled(dev_priv, pipe);
1711
1712         if (HAS_PCH_LPT(dev_priv->dev))
1713                 pch_transcoder = TRANSCODER_A;
1714         else
1715                 pch_transcoder = pipe;
1716
1717         /*
1718          * A pipe without a PLL won't actually be able to drive bits from
1719          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1720          * need the check.
1721          */
1722         if (!HAS_PCH_SPLIT(dev_priv->dev))
1723                 if (dsi)
1724                         assert_dsi_pll_enabled(dev_priv);
1725                 else
1726                         assert_pll_enabled(dev_priv, pipe);
1727         else {
1728                 if (pch_port) {
1729                         /* if driving the PCH, we need FDI enabled */
1730                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1731                         assert_fdi_tx_pll_enabled(dev_priv,
1732                                                   (enum pipe) cpu_transcoder);
1733                 }
1734                 /* FIXME: assert CPU port conditions for SNB+ */
1735         }
1736
1737         reg = PIPECONF(cpu_transcoder);
1738         val = I915_READ(reg);
1739         if (val & PIPECONF_ENABLE)
1740                 return;
1741
1742         I915_WRITE(reg, val | PIPECONF_ENABLE);
1743         intel_wait_for_vblank(dev_priv->dev, pipe);
1744 }
1745
1746 /**
1747  * intel_disable_pipe - disable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to disable
1750  *
1751  * Disable @pipe, making sure that various hardware specific requirements
1752  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1753  *
1754  * @pipe should be %PIPE_A or %PIPE_B.
1755  *
1756  * Will wait until the pipe has shut down before returning.
1757  */
1758 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1759                                enum pipe pipe)
1760 {
1761         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1762                                                                       pipe);
1763         int reg;
1764         u32 val;
1765
1766         /*
1767          * Make sure planes won't keep trying to pump pixels to us,
1768          * or we might hang the display.
1769          */
1770         assert_planes_disabled(dev_priv, pipe);
1771         assert_cursor_disabled(dev_priv, pipe);
1772         assert_sprites_disabled(dev_priv, pipe);
1773
1774         /* Don't disable pipe A or pipe A PLLs if needed */
1775         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1776                 return;
1777
1778         reg = PIPECONF(cpu_transcoder);
1779         val = I915_READ(reg);
1780         if ((val & PIPECONF_ENABLE) == 0)
1781                 return;
1782
1783         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1784         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1785 }
1786
1787 /*
1788  * Plane regs are double buffered, going from enabled->disabled needs a
1789  * trigger in order to latch.  The display address reg provides this.
1790  */
1791 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1792                                       enum plane plane)
1793 {
1794         if (dev_priv->info->gen >= 4)
1795                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1796         else
1797                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1798 }
1799
1800 /**
1801  * intel_enable_plane - enable a display plane on a given pipe
1802  * @dev_priv: i915 private structure
1803  * @plane: plane to enable
1804  * @pipe: pipe being fed
1805  *
1806  * Enable @plane on @pipe, making sure that @pipe is running first.
1807  */
1808 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1809                                enum plane plane, enum pipe pipe)
1810 {
1811         int reg;
1812         u32 val;
1813
1814         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1815         assert_pipe_enabled(dev_priv, pipe);
1816
1817         reg = DSPCNTR(plane);
1818         val = I915_READ(reg);
1819         if (val & DISPLAY_PLANE_ENABLE)
1820                 return;
1821
1822         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1823         intel_flush_display_plane(dev_priv, plane);
1824         intel_wait_for_vblank(dev_priv->dev, pipe);
1825 }
1826
1827 /**
1828  * intel_disable_plane - disable a display plane
1829  * @dev_priv: i915 private structure
1830  * @plane: plane to disable
1831  * @pipe: pipe consuming the data
1832  *
1833  * Disable @plane; should be an independent operation.
1834  */
1835 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1836                                 enum plane plane, enum pipe pipe)
1837 {
1838         int reg;
1839         u32 val;
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1844                 return;
1845
1846         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 static bool need_vtd_wa(struct drm_device *dev)
1852 {
1853 #ifdef CONFIG_INTEL_IOMMU
1854         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1855                 return true;
1856 #endif
1857         return false;
1858 }
1859
1860 int
1861 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1862                            struct drm_i915_gem_object *obj,
1863                            struct intel_ring_buffer *pipelined)
1864 {
1865         struct drm_i915_private *dev_priv = dev->dev_private;
1866         u32 alignment;
1867         int ret;
1868
1869         switch (obj->tiling_mode) {
1870         case I915_TILING_NONE:
1871                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1872                         alignment = 128 * 1024;
1873                 else if (INTEL_INFO(dev)->gen >= 4)
1874                         alignment = 4 * 1024;
1875                 else
1876                         alignment = 64 * 1024;
1877                 break;
1878         case I915_TILING_X:
1879                 /* pin() will align the object as required by fence */
1880                 alignment = 0;
1881                 break;
1882         case I915_TILING_Y:
1883                 /* Despite that we check this in framebuffer_init userspace can
1884                  * screw us over and change the tiling after the fact. Only
1885                  * pinned buffers can't change their tiling. */
1886                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1887                 return -EINVAL;
1888         default:
1889                 BUG();
1890         }
1891
1892         /* Note that the w/a also requires 64 PTE of padding following the
1893          * bo. We currently fill all unused PTE with the shadow page and so
1894          * we should always have valid PTE following the scanout preventing
1895          * the VT-d warning.
1896          */
1897         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1898                 alignment = 256 * 1024;
1899
1900         dev_priv->mm.interruptible = false;
1901         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1902         if (ret)
1903                 goto err_interruptible;
1904
1905         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1906          * fence, whereas 965+ only requires a fence if using
1907          * framebuffer compression.  For simplicity, we always install
1908          * a fence as the cost is not that onerous.
1909          */
1910         ret = i915_gem_object_get_fence(obj);
1911         if (ret)
1912                 goto err_unpin;
1913
1914         i915_gem_object_pin_fence(obj);
1915
1916         dev_priv->mm.interruptible = true;
1917         return 0;
1918
1919 err_unpin:
1920         i915_gem_object_unpin_from_display_plane(obj);
1921 err_interruptible:
1922         dev_priv->mm.interruptible = true;
1923         return ret;
1924 }
1925
1926 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1927 {
1928         i915_gem_object_unpin_fence(obj);
1929         i915_gem_object_unpin_from_display_plane(obj);
1930 }
1931
1932 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1933  * is assumed to be a power-of-two. */
1934 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1935                                              unsigned int tiling_mode,
1936                                              unsigned int cpp,
1937                                              unsigned int pitch)
1938 {
1939         if (tiling_mode != I915_TILING_NONE) {
1940                 unsigned int tile_rows, tiles;
1941
1942                 tile_rows = *y / 8;
1943                 *y %= 8;
1944
1945                 tiles = *x / (512/cpp);
1946                 *x %= 512/cpp;
1947
1948                 return tile_rows * pitch * 8 + tiles * 4096;
1949         } else {
1950                 unsigned int offset;
1951
1952                 offset = *y * pitch + *x * cpp;
1953                 *y = 0;
1954                 *x = (offset & 4095) / cpp;
1955                 return offset & -4096;
1956         }
1957 }
1958
1959 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1960                              int x, int y)
1961 {
1962         struct drm_device *dev = crtc->dev;
1963         struct drm_i915_private *dev_priv = dev->dev_private;
1964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965         struct intel_framebuffer *intel_fb;
1966         struct drm_i915_gem_object *obj;
1967         int plane = intel_crtc->plane;
1968         unsigned long linear_offset;
1969         u32 dspcntr;
1970         u32 reg;
1971
1972         switch (plane) {
1973         case 0:
1974         case 1:
1975                 break;
1976         default:
1977                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1978                 return -EINVAL;
1979         }
1980
1981         intel_fb = to_intel_framebuffer(fb);
1982         obj = intel_fb->obj;
1983
1984         reg = DSPCNTR(plane);
1985         dspcntr = I915_READ(reg);
1986         /* Mask out pixel format bits in case we change it */
1987         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1988         switch (fb->pixel_format) {
1989         case DRM_FORMAT_C8:
1990                 dspcntr |= DISPPLANE_8BPP;
1991                 break;
1992         case DRM_FORMAT_XRGB1555:
1993         case DRM_FORMAT_ARGB1555:
1994                 dspcntr |= DISPPLANE_BGRX555;
1995                 break;
1996         case DRM_FORMAT_RGB565:
1997                 dspcntr |= DISPPLANE_BGRX565;
1998                 break;
1999         case DRM_FORMAT_XRGB8888:
2000         case DRM_FORMAT_ARGB8888:
2001                 dspcntr |= DISPPLANE_BGRX888;
2002                 break;
2003         case DRM_FORMAT_XBGR8888:
2004         case DRM_FORMAT_ABGR8888:
2005                 dspcntr |= DISPPLANE_RGBX888;
2006                 break;
2007         case DRM_FORMAT_XRGB2101010:
2008         case DRM_FORMAT_ARGB2101010:
2009                 dspcntr |= DISPPLANE_BGRX101010;
2010                 break;
2011         case DRM_FORMAT_XBGR2101010:
2012         case DRM_FORMAT_ABGR2101010:
2013                 dspcntr |= DISPPLANE_RGBX101010;
2014                 break;
2015         default:
2016                 BUG();
2017         }
2018
2019         if (INTEL_INFO(dev)->gen >= 4) {
2020                 if (obj->tiling_mode != I915_TILING_NONE)
2021                         dspcntr |= DISPPLANE_TILED;
2022                 else
2023                         dspcntr &= ~DISPPLANE_TILED;
2024         }
2025
2026         if (IS_G4X(dev))
2027                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2028
2029         I915_WRITE(reg, dspcntr);
2030
2031         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2032
2033         if (INTEL_INFO(dev)->gen >= 4) {
2034                 intel_crtc->dspaddr_offset =
2035                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2036                                                        fb->bits_per_pixel / 8,
2037                                                        fb->pitches[0]);
2038                 linear_offset -= intel_crtc->dspaddr_offset;
2039         } else {
2040                 intel_crtc->dspaddr_offset = linear_offset;
2041         }
2042
2043         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2044                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2045                       fb->pitches[0]);
2046         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2047         if (INTEL_INFO(dev)->gen >= 4) {
2048                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2049                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2050                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2051                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2052         } else
2053                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2054         POSTING_READ(reg);
2055
2056         return 0;
2057 }
2058
2059 static int ironlake_update_plane(struct drm_crtc *crtc,
2060                                  struct drm_framebuffer *fb, int x, int y)
2061 {
2062         struct drm_device *dev = crtc->dev;
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2065         struct intel_framebuffer *intel_fb;
2066         struct drm_i915_gem_object *obj;
2067         int plane = intel_crtc->plane;
2068         unsigned long linear_offset;
2069         u32 dspcntr;
2070         u32 reg;
2071
2072         switch (plane) {
2073         case 0:
2074         case 1:
2075         case 2:
2076                 break;
2077         default:
2078                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2079                 return -EINVAL;
2080         }
2081
2082         intel_fb = to_intel_framebuffer(fb);
2083         obj = intel_fb->obj;
2084
2085         reg = DSPCNTR(plane);
2086         dspcntr = I915_READ(reg);
2087         /* Mask out pixel format bits in case we change it */
2088         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2089         switch (fb->pixel_format) {
2090         case DRM_FORMAT_C8:
2091                 dspcntr |= DISPPLANE_8BPP;
2092                 break;
2093         case DRM_FORMAT_RGB565:
2094                 dspcntr |= DISPPLANE_BGRX565;
2095                 break;
2096         case DRM_FORMAT_XRGB8888:
2097         case DRM_FORMAT_ARGB8888:
2098                 dspcntr |= DISPPLANE_BGRX888;
2099                 break;
2100         case DRM_FORMAT_XBGR8888:
2101         case DRM_FORMAT_ABGR8888:
2102                 dspcntr |= DISPPLANE_RGBX888;
2103                 break;
2104         case DRM_FORMAT_XRGB2101010:
2105         case DRM_FORMAT_ARGB2101010:
2106                 dspcntr |= DISPPLANE_BGRX101010;
2107                 break;
2108         case DRM_FORMAT_XBGR2101010:
2109         case DRM_FORMAT_ABGR2101010:
2110                 dspcntr |= DISPPLANE_RGBX101010;
2111                 break;
2112         default:
2113                 BUG();
2114         }
2115
2116         if (obj->tiling_mode != I915_TILING_NONE)
2117                 dspcntr |= DISPPLANE_TILED;
2118         else
2119                 dspcntr &= ~DISPPLANE_TILED;
2120
2121         if (IS_HASWELL(dev))
2122                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2123         else
2124                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2125
2126         I915_WRITE(reg, dspcntr);
2127
2128         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2129         intel_crtc->dspaddr_offset =
2130                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2131                                                fb->bits_per_pixel / 8,
2132                                                fb->pitches[0]);
2133         linear_offset -= intel_crtc->dspaddr_offset;
2134
2135         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2136                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2137                       fb->pitches[0]);
2138         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2139         I915_MODIFY_DISPBASE(DSPSURF(plane),
2140                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2141         if (IS_HASWELL(dev)) {
2142                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2143         } else {
2144                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2145                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2146         }
2147         POSTING_READ(reg);
2148
2149         return 0;
2150 }
2151
2152 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2153 static int
2154 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2155                            int x, int y, enum mode_set_atomic state)
2156 {
2157         struct drm_device *dev = crtc->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159
2160         if (dev_priv->display.disable_fbc)
2161                 dev_priv->display.disable_fbc(dev);
2162         intel_increase_pllclock(crtc);
2163
2164         return dev_priv->display.update_plane(crtc, fb, x, y);
2165 }
2166
2167 void intel_display_handle_reset(struct drm_device *dev)
2168 {
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170         struct drm_crtc *crtc;
2171
2172         /*
2173          * Flips in the rings have been nuked by the reset,
2174          * so complete all pending flips so that user space
2175          * will get its events and not get stuck.
2176          *
2177          * Also update the base address of all primary
2178          * planes to the the last fb to make sure we're
2179          * showing the correct fb after a reset.
2180          *
2181          * Need to make two loops over the crtcs so that we
2182          * don't try to grab a crtc mutex before the
2183          * pending_flip_queue really got woken up.
2184          */
2185
2186         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2187                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188                 enum plane plane = intel_crtc->plane;
2189
2190                 intel_prepare_page_flip(dev, plane);
2191                 intel_finish_page_flip_plane(dev, plane);
2192         }
2193
2194         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2195                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196
2197                 mutex_lock(&crtc->mutex);
2198                 if (intel_crtc->active)
2199                         dev_priv->display.update_plane(crtc, crtc->fb,
2200                                                        crtc->x, crtc->y);
2201                 mutex_unlock(&crtc->mutex);
2202         }
2203 }
2204
2205 static int
2206 intel_finish_fb(struct drm_framebuffer *old_fb)
2207 {
2208         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2209         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2210         bool was_interruptible = dev_priv->mm.interruptible;
2211         int ret;
2212
2213         /* Big Hammer, we also need to ensure that any pending
2214          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2215          * current scanout is retired before unpinning the old
2216          * framebuffer.
2217          *
2218          * This should only fail upon a hung GPU, in which case we
2219          * can safely continue.
2220          */
2221         dev_priv->mm.interruptible = false;
2222         ret = i915_gem_object_finish_gpu(obj);
2223         dev_priv->mm.interruptible = was_interruptible;
2224
2225         return ret;
2226 }
2227
2228 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2229 {
2230         struct drm_device *dev = crtc->dev;
2231         struct drm_i915_master_private *master_priv;
2232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2233
2234         if (!dev->primary->master)
2235                 return;
2236
2237         master_priv = dev->primary->master->driver_priv;
2238         if (!master_priv->sarea_priv)
2239                 return;
2240
2241         switch (intel_crtc->pipe) {
2242         case 0:
2243                 master_priv->sarea_priv->pipeA_x = x;
2244                 master_priv->sarea_priv->pipeA_y = y;
2245                 break;
2246         case 1:
2247                 master_priv->sarea_priv->pipeB_x = x;
2248                 master_priv->sarea_priv->pipeB_y = y;
2249                 break;
2250         default:
2251                 break;
2252         }
2253 }
2254
2255 static int
2256 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2257                     struct drm_framebuffer *fb)
2258 {
2259         struct drm_device *dev = crtc->dev;
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2262         struct drm_framebuffer *old_fb;
2263         int ret;
2264
2265         /* no fb bound */
2266         if (!fb) {
2267                 DRM_ERROR("No FB bound\n");
2268                 return 0;
2269         }
2270
2271         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2272                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2273                           plane_name(intel_crtc->plane),
2274                           INTEL_INFO(dev)->num_pipes);
2275                 return -EINVAL;
2276         }
2277
2278         mutex_lock(&dev->struct_mutex);
2279         ret = intel_pin_and_fence_fb_obj(dev,
2280                                          to_intel_framebuffer(fb)->obj,
2281                                          NULL);
2282         if (ret != 0) {
2283                 mutex_unlock(&dev->struct_mutex);
2284                 DRM_ERROR("pin & fence failed\n");
2285                 return ret;
2286         }
2287
2288         /* Update pipe size and adjust fitter if needed */
2289         if (i915_fastboot) {
2290                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2291                            ((crtc->mode.hdisplay - 1) << 16) |
2292                            (crtc->mode.vdisplay - 1));
2293                 if (!intel_crtc->config.pch_pfit.enabled &&
2294                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2295                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2296                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2297                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2298                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2299                 }
2300         }
2301
2302         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2303         if (ret) {
2304                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2305                 mutex_unlock(&dev->struct_mutex);
2306                 DRM_ERROR("failed to update base address\n");
2307                 return ret;
2308         }
2309
2310         old_fb = crtc->fb;
2311         crtc->fb = fb;
2312         crtc->x = x;
2313         crtc->y = y;
2314
2315         if (old_fb) {
2316                 if (intel_crtc->active && old_fb != fb)
2317                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2318                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2319         }
2320
2321         intel_update_fbc(dev);
2322         intel_edp_psr_update(dev);
2323         mutex_unlock(&dev->struct_mutex);
2324
2325         intel_crtc_update_sarea_pos(crtc, x, y);
2326
2327         return 0;
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         int pipe = intel_crtc->pipe;
2336         u32 reg, temp;
2337
2338         /* enable normal train */
2339         reg = FDI_TX_CTL(pipe);
2340         temp = I915_READ(reg);
2341         if (IS_IVYBRIDGE(dev)) {
2342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344         } else {
2345                 temp &= ~FDI_LINK_TRAIN_NONE;
2346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         }
2348         I915_WRITE(reg, temp);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         if (HAS_PCH_CPT(dev)) {
2353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355         } else {
2356                 temp &= ~FDI_LINK_TRAIN_NONE;
2357                 temp |= FDI_LINK_TRAIN_NONE;
2358         }
2359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361         /* wait one idle pattern time */
2362         POSTING_READ(reg);
2363         udelay(1000);
2364
2365         /* IVB wants error correction enabled */
2366         if (IS_IVYBRIDGE(dev))
2367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368                            FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2372 {
2373         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2374 }
2375
2376 static void ivb_modeset_global_resources(struct drm_device *dev)
2377 {
2378         struct drm_i915_private *dev_priv = dev->dev_private;
2379         struct intel_crtc *pipe_B_crtc =
2380                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2381         struct intel_crtc *pipe_C_crtc =
2382                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2383         uint32_t temp;
2384
2385         /*
2386          * When everything is off disable fdi C so that we could enable fdi B
2387          * with all lanes. Note that we don't care about enabled pipes without
2388          * an enabled pch encoder.
2389          */
2390         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2391             !pipe_has_enabled_pch(pipe_C_crtc)) {
2392                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2393                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2394
2395                 temp = I915_READ(SOUTH_CHICKEN1);
2396                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2397                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2398                 I915_WRITE(SOUTH_CHICKEN1, temp);
2399         }
2400 }
2401
2402 /* The FDI link training functions for ILK/Ibexpeak. */
2403 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2404 {
2405         struct drm_device *dev = crtc->dev;
2406         struct drm_i915_private *dev_priv = dev->dev_private;
2407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2408         int pipe = intel_crtc->pipe;
2409         int plane = intel_crtc->plane;
2410         u32 reg, temp, tries;
2411
2412         /* FDI needs bits from pipe & plane first */
2413         assert_pipe_enabled(dev_priv, pipe);
2414         assert_plane_enabled(dev_priv, plane);
2415
2416         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2417            for train result */
2418         reg = FDI_RX_IMR(pipe);
2419         temp = I915_READ(reg);
2420         temp &= ~FDI_RX_SYMBOL_LOCK;
2421         temp &= ~FDI_RX_BIT_LOCK;
2422         I915_WRITE(reg, temp);
2423         I915_READ(reg);
2424         udelay(150);
2425
2426         /* enable CPU FDI TX and PCH FDI RX */
2427         reg = FDI_TX_CTL(pipe);
2428         temp = I915_READ(reg);
2429         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2430         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2431         temp &= ~FDI_LINK_TRAIN_NONE;
2432         temp |= FDI_LINK_TRAIN_PATTERN_1;
2433         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2434
2435         reg = FDI_RX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         temp &= ~FDI_LINK_TRAIN_NONE;
2438         temp |= FDI_LINK_TRAIN_PATTERN_1;
2439         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2440
2441         POSTING_READ(reg);
2442         udelay(150);
2443
2444         /* Ironlake workaround, enable clock pointer after FDI enable*/
2445         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2447                    FDI_RX_PHASE_SYNC_POINTER_EN);
2448
2449         reg = FDI_RX_IIR(pipe);
2450         for (tries = 0; tries < 5; tries++) {
2451                 temp = I915_READ(reg);
2452                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2453
2454                 if ((temp & FDI_RX_BIT_LOCK)) {
2455                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2456                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2457                         break;
2458                 }
2459         }
2460         if (tries == 5)
2461                 DRM_ERROR("FDI train 1 fail!\n");
2462
2463         /* Train 2 */
2464         reg = FDI_TX_CTL(pipe);
2465         temp = I915_READ(reg);
2466         temp &= ~FDI_LINK_TRAIN_NONE;
2467         temp |= FDI_LINK_TRAIN_PATTERN_2;
2468         I915_WRITE(reg, temp);
2469
2470         reg = FDI_RX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_2;
2474         I915_WRITE(reg, temp);
2475
2476         POSTING_READ(reg);
2477         udelay(150);
2478
2479         reg = FDI_RX_IIR(pipe);
2480         for (tries = 0; tries < 5; tries++) {
2481                 temp = I915_READ(reg);
2482                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483
2484                 if (temp & FDI_RX_SYMBOL_LOCK) {
2485                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2486                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2487                         break;
2488                 }
2489         }
2490         if (tries == 5)
2491                 DRM_ERROR("FDI train 2 fail!\n");
2492
2493         DRM_DEBUG_KMS("FDI train done\n");
2494
2495 }
2496
2497 static const int snb_b_fdi_train_param[] = {
2498         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2499         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2500         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2501         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2502 };
2503
2504 /* The FDI link training functions for SNB/Cougarpoint. */
2505 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2506 {
2507         struct drm_device *dev = crtc->dev;
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2510         int pipe = intel_crtc->pipe;
2511         u32 reg, temp, i, retry;
2512
2513         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2514            for train result */
2515         reg = FDI_RX_IMR(pipe);
2516         temp = I915_READ(reg);
2517         temp &= ~FDI_RX_SYMBOL_LOCK;
2518         temp &= ~FDI_RX_BIT_LOCK;
2519         I915_WRITE(reg, temp);
2520
2521         POSTING_READ(reg);
2522         udelay(150);
2523
2524         /* enable CPU FDI TX and PCH FDI RX */
2525         reg = FDI_TX_CTL(pipe);
2526         temp = I915_READ(reg);
2527         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2528         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_1;
2531         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2532         /* SNB-B */
2533         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2534         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2535
2536         I915_WRITE(FDI_RX_MISC(pipe),
2537                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2538
2539         reg = FDI_RX_CTL(pipe);
2540         temp = I915_READ(reg);
2541         if (HAS_PCH_CPT(dev)) {
2542                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2543                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2544         } else {
2545                 temp &= ~FDI_LINK_TRAIN_NONE;
2546                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2547         }
2548         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2549
2550         POSTING_READ(reg);
2551         udelay(150);
2552
2553         for (i = 0; i < 4; i++) {
2554                 reg = FDI_TX_CTL(pipe);
2555                 temp = I915_READ(reg);
2556                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2557                 temp |= snb_b_fdi_train_param[i];
2558                 I915_WRITE(reg, temp);
2559
2560                 POSTING_READ(reg);
2561                 udelay(500);
2562
2563                 for (retry = 0; retry < 5; retry++) {
2564                         reg = FDI_RX_IIR(pipe);
2565                         temp = I915_READ(reg);
2566                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2567                         if (temp & FDI_RX_BIT_LOCK) {
2568                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2569                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2570                                 break;
2571                         }
2572                         udelay(50);
2573                 }
2574                 if (retry < 5)
2575                         break;
2576         }
2577         if (i == 4)
2578                 DRM_ERROR("FDI train 1 fail!\n");
2579
2580         /* Train 2 */
2581         reg = FDI_TX_CTL(pipe);
2582         temp = I915_READ(reg);
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_2;
2585         if (IS_GEN6(dev)) {
2586                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587                 /* SNB-B */
2588                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2589         }
2590         I915_WRITE(reg, temp);
2591
2592         reg = FDI_RX_CTL(pipe);
2593         temp = I915_READ(reg);
2594         if (HAS_PCH_CPT(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2596                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2597         } else {
2598                 temp &= ~FDI_LINK_TRAIN_NONE;
2599                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2600         }
2601         I915_WRITE(reg, temp);
2602
2603         POSTING_READ(reg);
2604         udelay(150);
2605
2606         for (i = 0; i < 4; i++) {
2607                 reg = FDI_TX_CTL(pipe);
2608                 temp = I915_READ(reg);
2609                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610                 temp |= snb_b_fdi_train_param[i];
2611                 I915_WRITE(reg, temp);
2612
2613                 POSTING_READ(reg);
2614                 udelay(500);
2615
2616                 for (retry = 0; retry < 5; retry++) {
2617                         reg = FDI_RX_IIR(pipe);
2618                         temp = I915_READ(reg);
2619                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2620                         if (temp & FDI_RX_SYMBOL_LOCK) {
2621                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2622                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2623                                 break;
2624                         }
2625                         udelay(50);
2626                 }
2627                 if (retry < 5)
2628                         break;
2629         }
2630         if (i == 4)
2631                 DRM_ERROR("FDI train 2 fail!\n");
2632
2633         DRM_DEBUG_KMS("FDI train done.\n");
2634 }
2635
2636 /* Manual link training for Ivy Bridge A0 parts */
2637 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2638 {
2639         struct drm_device *dev = crtc->dev;
2640         struct drm_i915_private *dev_priv = dev->dev_private;
2641         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2642         int pipe = intel_crtc->pipe;
2643         u32 reg, temp, i, j;
2644
2645         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2646            for train result */
2647         reg = FDI_RX_IMR(pipe);
2648         temp = I915_READ(reg);
2649         temp &= ~FDI_RX_SYMBOL_LOCK;
2650         temp &= ~FDI_RX_BIT_LOCK;
2651         I915_WRITE(reg, temp);
2652
2653         POSTING_READ(reg);
2654         udelay(150);
2655
2656         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2657                       I915_READ(FDI_RX_IIR(pipe)));
2658
2659         /* Try each vswing and preemphasis setting twice before moving on */
2660         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2661                 /* disable first in case we need to retry */
2662                 reg = FDI_TX_CTL(pipe);
2663                 temp = I915_READ(reg);
2664                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2665                 temp &= ~FDI_TX_ENABLE;
2666                 I915_WRITE(reg, temp);
2667
2668                 reg = FDI_RX_CTL(pipe);
2669                 temp = I915_READ(reg);
2670                 temp &= ~FDI_LINK_TRAIN_AUTO;
2671                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2672                 temp &= ~FDI_RX_ENABLE;
2673                 I915_WRITE(reg, temp);
2674
2675                 /* enable CPU FDI TX and PCH FDI RX */
2676                 reg = FDI_TX_CTL(pipe);
2677                 temp = I915_READ(reg);
2678                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2679                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2680                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2681                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682                 temp |= snb_b_fdi_train_param[j/2];
2683                 temp |= FDI_COMPOSITE_SYNC;
2684                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2685
2686                 I915_WRITE(FDI_RX_MISC(pipe),
2687                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2688
2689                 reg = FDI_RX_CTL(pipe);
2690                 temp = I915_READ(reg);
2691                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2692                 temp |= FDI_COMPOSITE_SYNC;
2693                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2694
2695                 POSTING_READ(reg);
2696                 udelay(1); /* should be 0.5us */
2697
2698                 for (i = 0; i < 4; i++) {
2699                         reg = FDI_RX_IIR(pipe);
2700                         temp = I915_READ(reg);
2701                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2702
2703                         if (temp & FDI_RX_BIT_LOCK ||
2704                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2705                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2706                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2707                                               i);
2708                                 break;
2709                         }
2710                         udelay(1); /* should be 0.5us */
2711                 }
2712                 if (i == 4) {
2713                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2714                         continue;
2715                 }
2716
2717                 /* Train 2 */
2718                 reg = FDI_TX_CTL(pipe);
2719                 temp = I915_READ(reg);
2720                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2721                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2722                 I915_WRITE(reg, temp);
2723
2724                 reg = FDI_RX_CTL(pipe);
2725                 temp = I915_READ(reg);
2726                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2727                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2728                 I915_WRITE(reg, temp);
2729
2730                 POSTING_READ(reg);
2731                 udelay(2); /* should be 1.5us */
2732
2733                 for (i = 0; i < 4; i++) {
2734                         reg = FDI_RX_IIR(pipe);
2735                         temp = I915_READ(reg);
2736                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2737
2738                         if (temp & FDI_RX_SYMBOL_LOCK ||
2739                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2740                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2741                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2742                                               i);
2743                                 goto train_done;
2744                         }
2745                         udelay(2); /* should be 1.5us */
2746                 }
2747                 if (i == 4)
2748                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2749         }
2750
2751 train_done:
2752         DRM_DEBUG_KMS("FDI train done.\n");
2753 }
2754
2755 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2756 {
2757         struct drm_device *dev = intel_crtc->base.dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         int pipe = intel_crtc->pipe;
2760         u32 reg, temp;
2761
2762
2763         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2764         reg = FDI_RX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2767         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2768         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2769         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(200);
2773
2774         /* Switch from Rawclk to PCDclk */
2775         temp = I915_READ(reg);
2776         I915_WRITE(reg, temp | FDI_PCDCLK);
2777
2778         POSTING_READ(reg);
2779         udelay(200);
2780
2781         /* Enable CPU FDI TX PLL, always on for Ironlake */
2782         reg = FDI_TX_CTL(pipe);
2783         temp = I915_READ(reg);
2784         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2785                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2786
2787                 POSTING_READ(reg);
2788                 udelay(100);
2789         }
2790 }
2791
2792 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2793 {
2794         struct drm_device *dev = intel_crtc->base.dev;
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         int pipe = intel_crtc->pipe;
2797         u32 reg, temp;
2798
2799         /* Switch from PCDclk to Rawclk */
2800         reg = FDI_RX_CTL(pipe);
2801         temp = I915_READ(reg);
2802         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2803
2804         /* Disable CPU FDI TX PLL */
2805         reg = FDI_TX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2808
2809         POSTING_READ(reg);
2810         udelay(100);
2811
2812         reg = FDI_RX_CTL(pipe);
2813         temp = I915_READ(reg);
2814         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2815
2816         /* Wait for the clocks to turn off. */
2817         POSTING_READ(reg);
2818         udelay(100);
2819 }
2820
2821 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2822 {
2823         struct drm_device *dev = crtc->dev;
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826         int pipe = intel_crtc->pipe;
2827         u32 reg, temp;
2828
2829         /* disable CPU FDI tx and PCH FDI rx */
2830         reg = FDI_TX_CTL(pipe);
2831         temp = I915_READ(reg);
2832         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2833         POSTING_READ(reg);
2834
2835         reg = FDI_RX_CTL(pipe);
2836         temp = I915_READ(reg);
2837         temp &= ~(0x7 << 16);
2838         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2839         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2840
2841         POSTING_READ(reg);
2842         udelay(100);
2843
2844         /* Ironlake workaround, disable clock pointer after downing FDI */
2845         if (HAS_PCH_IBX(dev)) {
2846                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2847         }
2848
2849         /* still set train pattern 1 */
2850         reg = FDI_TX_CTL(pipe);
2851         temp = I915_READ(reg);
2852         temp &= ~FDI_LINK_TRAIN_NONE;
2853         temp |= FDI_LINK_TRAIN_PATTERN_1;
2854         I915_WRITE(reg, temp);
2855
2856         reg = FDI_RX_CTL(pipe);
2857         temp = I915_READ(reg);
2858         if (HAS_PCH_CPT(dev)) {
2859                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2860                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2861         } else {
2862                 temp &= ~FDI_LINK_TRAIN_NONE;
2863                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2864         }
2865         /* BPC in FDI rx is consistent with that in PIPECONF */
2866         temp &= ~(0x07 << 16);
2867         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2868         I915_WRITE(reg, temp);
2869
2870         POSTING_READ(reg);
2871         udelay(100);
2872 }
2873
2874 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2875 {
2876         struct drm_device *dev = crtc->dev;
2877         struct drm_i915_private *dev_priv = dev->dev_private;
2878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2879         unsigned long flags;
2880         bool pending;
2881
2882         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2883             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2884                 return false;
2885
2886         spin_lock_irqsave(&dev->event_lock, flags);
2887         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2888         spin_unlock_irqrestore(&dev->event_lock, flags);
2889
2890         return pending;
2891 }
2892
2893 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897
2898         if (crtc->fb == NULL)
2899                 return;
2900
2901         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2902
2903         wait_event(dev_priv->pending_flip_queue,
2904                    !intel_crtc_has_pending_flip(crtc));
2905
2906         mutex_lock(&dev->struct_mutex);
2907         intel_finish_fb(crtc->fb);
2908         mutex_unlock(&dev->struct_mutex);
2909 }
2910
2911 /* Program iCLKIP clock to the desired frequency */
2912 static void lpt_program_iclkip(struct drm_crtc *crtc)
2913 {
2914         struct drm_device *dev = crtc->dev;
2915         struct drm_i915_private *dev_priv = dev->dev_private;
2916         int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2917         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2918         u32 temp;
2919
2920         mutex_lock(&dev_priv->dpio_lock);
2921
2922         /* It is necessary to ungate the pixclk gate prior to programming
2923          * the divisors, and gate it back when it is done.
2924          */
2925         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2926
2927         /* Disable SSCCTL */
2928         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2929                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2930                                 SBI_SSCCTL_DISABLE,
2931                         SBI_ICLK);
2932
2933         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2934         if (clock == 20000) {
2935                 auxdiv = 1;
2936                 divsel = 0x41;
2937                 phaseinc = 0x20;
2938         } else {
2939                 /* The iCLK virtual clock root frequency is in MHz,
2940                  * but the adjusted_mode->clock in in KHz. To get the divisors,
2941                  * it is necessary to divide one by another, so we
2942                  * convert the virtual clock precision to KHz here for higher
2943                  * precision.
2944                  */
2945                 u32 iclk_virtual_root_freq = 172800 * 1000;
2946                 u32 iclk_pi_range = 64;
2947                 u32 desired_divisor, msb_divisor_value, pi_value;
2948
2949                 desired_divisor = (iclk_virtual_root_freq / clock);
2950                 msb_divisor_value = desired_divisor / iclk_pi_range;
2951                 pi_value = desired_divisor % iclk_pi_range;
2952
2953                 auxdiv = 0;
2954                 divsel = msb_divisor_value - 2;
2955                 phaseinc = pi_value;
2956         }
2957
2958         /* This should not happen with any sane values */
2959         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2960                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2961         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2962                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2963
2964         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2965                         clock,
2966                         auxdiv,
2967                         divsel,
2968                         phasedir,
2969                         phaseinc);
2970
2971         /* Program SSCDIVINTPHASE6 */
2972         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2973         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2974         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2975         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2976         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2977         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2978         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2979         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2980
2981         /* Program SSCAUXDIV */
2982         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2983         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2984         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2985         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2986
2987         /* Enable modulator and associated divider */
2988         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2989         temp &= ~SBI_SSCCTL_DISABLE;
2990         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2991
2992         /* Wait for initialization time */
2993         udelay(24);
2994
2995         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2996
2997         mutex_unlock(&dev_priv->dpio_lock);
2998 }
2999
3000 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3001                                                 enum pipe pch_transcoder)
3002 {
3003         struct drm_device *dev = crtc->base.dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3006
3007         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3008                    I915_READ(HTOTAL(cpu_transcoder)));
3009         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3010                    I915_READ(HBLANK(cpu_transcoder)));
3011         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3012                    I915_READ(HSYNC(cpu_transcoder)));
3013
3014         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3015                    I915_READ(VTOTAL(cpu_transcoder)));
3016         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3017                    I915_READ(VBLANK(cpu_transcoder)));
3018         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3019                    I915_READ(VSYNC(cpu_transcoder)));
3020         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3021                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3022 }
3023
3024 /*
3025  * Enable PCH resources required for PCH ports:
3026  *   - PCH PLLs
3027  *   - FDI training & RX/TX
3028  *   - update transcoder timings
3029  *   - DP transcoding bits
3030  *   - transcoder
3031  */
3032 static void ironlake_pch_enable(struct drm_crtc *crtc)
3033 {
3034         struct drm_device *dev = crtc->dev;
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037         int pipe = intel_crtc->pipe;
3038         u32 reg, temp;
3039
3040         assert_pch_transcoder_disabled(dev_priv, pipe);
3041
3042         /* Write the TU size bits before fdi link training, so that error
3043          * detection works. */
3044         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3045                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3046
3047         /* For PCH output, training FDI link */
3048         dev_priv->display.fdi_link_train(crtc);
3049
3050         /* We need to program the right clock selection before writing the pixel
3051          * mutliplier into the DPLL. */
3052         if (HAS_PCH_CPT(dev)) {
3053                 u32 sel;
3054
3055                 temp = I915_READ(PCH_DPLL_SEL);
3056                 temp |= TRANS_DPLL_ENABLE(pipe);
3057                 sel = TRANS_DPLLB_SEL(pipe);
3058                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3059                         temp |= sel;
3060                 else
3061                         temp &= ~sel;
3062                 I915_WRITE(PCH_DPLL_SEL, temp);
3063         }
3064
3065         /* XXX: pch pll's can be enabled any time before we enable the PCH
3066          * transcoder, and we actually should do this to not upset any PCH
3067          * transcoder that already use the clock when we share it.
3068          *
3069          * Note that enable_shared_dpll tries to do the right thing, but
3070          * get_shared_dpll unconditionally resets the pll - we need that to have
3071          * the right LVDS enable sequence. */
3072         ironlake_enable_shared_dpll(intel_crtc);
3073
3074         /* set transcoder timing, panel must allow it */
3075         assert_panel_unlocked(dev_priv, pipe);
3076         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3077
3078         intel_fdi_normal_train(crtc);
3079
3080         /* For PCH DP, enable TRANS_DP_CTL */
3081         if (HAS_PCH_CPT(dev) &&
3082             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3083              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3084                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3085                 reg = TRANS_DP_CTL(pipe);
3086                 temp = I915_READ(reg);
3087                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3088                           TRANS_DP_SYNC_MASK |
3089                           TRANS_DP_BPC_MASK);
3090                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3091                          TRANS_DP_ENH_FRAMING);
3092                 temp |= bpc << 9; /* same format but at 11:9 */
3093
3094                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3095                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3096                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3097                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3098
3099                 switch (intel_trans_dp_port_sel(crtc)) {
3100                 case PCH_DP_B:
3101                         temp |= TRANS_DP_PORT_SEL_B;
3102                         break;
3103                 case PCH_DP_C:
3104                         temp |= TRANS_DP_PORT_SEL_C;
3105                         break;
3106                 case PCH_DP_D:
3107                         temp |= TRANS_DP_PORT_SEL_D;
3108                         break;
3109                 default:
3110                         BUG();
3111                 }
3112
3113                 I915_WRITE(reg, temp);
3114         }
3115
3116         ironlake_enable_pch_transcoder(dev_priv, pipe);
3117 }
3118
3119 static void lpt_pch_enable(struct drm_crtc *crtc)
3120 {
3121         struct drm_device *dev = crtc->dev;
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3124         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3125
3126         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3127
3128         lpt_program_iclkip(crtc);
3129
3130         /* Set transcoder timing. */
3131         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3132
3133         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3134 }
3135
3136 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3137 {
3138         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3139
3140         if (pll == NULL)
3141                 return;
3142
3143         if (pll->refcount == 0) {
3144                 WARN(1, "bad %s refcount\n", pll->name);
3145                 return;
3146         }
3147
3148         if (--pll->refcount == 0) {
3149                 WARN_ON(pll->on);
3150                 WARN_ON(pll->active);
3151         }
3152
3153         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3154 }
3155
3156 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3157 {
3158         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3159         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3160         enum intel_dpll_id i;
3161
3162         if (pll) {
3163                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3164                               crtc->base.base.id, pll->name);
3165                 intel_put_shared_dpll(crtc);
3166         }
3167
3168         if (HAS_PCH_IBX(dev_priv->dev)) {
3169                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3170                 i = (enum intel_dpll_id) crtc->pipe;
3171                 pll = &dev_priv->shared_dplls[i];
3172
3173                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3174                               crtc->base.base.id, pll->name);
3175
3176                 goto found;
3177         }
3178
3179         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3180                 pll = &dev_priv->shared_dplls[i];
3181
3182                 /* Only want to check enabled timings first */
3183                 if (pll->refcount == 0)
3184                         continue;
3185
3186                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3187                            sizeof(pll->hw_state)) == 0) {
3188                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3189                                       crtc->base.base.id,
3190                                       pll->name, pll->refcount, pll->active);
3191
3192                         goto found;
3193                 }
3194         }
3195
3196         /* Ok no matching timings, maybe there's a free one? */
3197         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3198                 pll = &dev_priv->shared_dplls[i];
3199                 if (pll->refcount == 0) {
3200                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3201                                       crtc->base.base.id, pll->name);
3202                         goto found;
3203                 }
3204         }
3205
3206         return NULL;
3207
3208 found:
3209         crtc->config.shared_dpll = i;
3210         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3211                          pipe_name(crtc->pipe));
3212
3213         if (pll->active == 0) {
3214                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3215                        sizeof(pll->hw_state));
3216
3217                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3218                 WARN_ON(pll->on);
3219                 assert_shared_dpll_disabled(dev_priv, pll);
3220
3221                 pll->mode_set(dev_priv, pll);
3222         }
3223         pll->refcount++;
3224
3225         return pll;
3226 }
3227
3228 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3229 {
3230         struct drm_i915_private *dev_priv = dev->dev_private;
3231         int dslreg = PIPEDSL(pipe);
3232         u32 temp;
3233
3234         temp = I915_READ(dslreg);
3235         udelay(500);
3236         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3237                 if (wait_for(I915_READ(dslreg) != temp, 5))
3238                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3239         }
3240 }
3241
3242 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3243 {
3244         struct drm_device *dev = crtc->base.dev;
3245         struct drm_i915_private *dev_priv = dev->dev_private;
3246         int pipe = crtc->pipe;
3247
3248         if (crtc->config.pch_pfit.enabled) {
3249                 /* Force use of hard-coded filter coefficients
3250                  * as some pre-programmed values are broken,
3251                  * e.g. x201.
3252                  */
3253                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3254                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3255                                                  PF_PIPE_SEL_IVB(pipe));
3256                 else
3257                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3258                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3259                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3260         }
3261 }
3262
3263 static void intel_enable_planes(struct drm_crtc *crtc)
3264 {
3265         struct drm_device *dev = crtc->dev;
3266         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3267         struct intel_plane *intel_plane;
3268
3269         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3270                 if (intel_plane->pipe == pipe)
3271                         intel_plane_restore(&intel_plane->base);
3272 }
3273
3274 static void intel_disable_planes(struct drm_crtc *crtc)
3275 {
3276         struct drm_device *dev = crtc->dev;
3277         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3278         struct intel_plane *intel_plane;
3279
3280         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3281                 if (intel_plane->pipe == pipe)
3282                         intel_plane_disable(&intel_plane->base);
3283 }
3284
3285 static void hsw_enable_ips(struct intel_crtc *crtc)
3286 {
3287         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3288
3289         if (!crtc->config.ips_enabled)
3290                 return;
3291
3292         /* We can only enable IPS after we enable a plane and wait for a vblank.
3293          * We guarantee that the plane is enabled by calling intel_enable_ips
3294          * only after intel_enable_plane. And intel_enable_plane already waits
3295          * for a vblank, so all we need to do here is to enable the IPS bit. */
3296         assert_plane_enabled(dev_priv, crtc->plane);
3297         I915_WRITE(IPS_CTL, IPS_ENABLE);
3298 }
3299
3300 static void hsw_disable_ips(struct intel_crtc *crtc)
3301 {
3302         struct drm_device *dev = crtc->base.dev;
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304
3305         if (!crtc->config.ips_enabled)
3306                 return;
3307
3308         assert_plane_enabled(dev_priv, crtc->plane);
3309         I915_WRITE(IPS_CTL, 0);
3310         POSTING_READ(IPS_CTL);
3311
3312         /* We need to wait for a vblank before we can disable the plane. */
3313         intel_wait_for_vblank(dev, crtc->pipe);
3314 }
3315
3316 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3317 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3318 {
3319         struct drm_device *dev = crtc->dev;
3320         struct drm_i915_private *dev_priv = dev->dev_private;
3321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322         enum pipe pipe = intel_crtc->pipe;
3323         int palreg = PALETTE(pipe);
3324         int i;
3325         bool reenable_ips = false;
3326
3327         /* The clocks have to be on to load the palette. */
3328         if (!crtc->enabled || !intel_crtc->active)
3329                 return;
3330
3331         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3332                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3333                         assert_dsi_pll_enabled(dev_priv);
3334                 else
3335                         assert_pll_enabled(dev_priv, pipe);
3336         }
3337
3338         /* use legacy palette for Ironlake */
3339         if (HAS_PCH_SPLIT(dev))
3340                 palreg = LGC_PALETTE(pipe);
3341
3342         /* Workaround : Do not read or write the pipe palette/gamma data while
3343          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3344          */
3345         if (intel_crtc->config.ips_enabled &&
3346             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3347              GAMMA_MODE_MODE_SPLIT)) {
3348                 hsw_disable_ips(intel_crtc);
3349                 reenable_ips = true;
3350         }
3351
3352         for (i = 0; i < 256; i++) {
3353                 I915_WRITE(palreg + 4 * i,
3354                            (intel_crtc->lut_r[i] << 16) |
3355                            (intel_crtc->lut_g[i] << 8) |
3356                            intel_crtc->lut_b[i]);
3357         }
3358
3359         if (reenable_ips)
3360                 hsw_enable_ips(intel_crtc);
3361 }
3362
3363 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3364 {
3365         struct drm_device *dev = crtc->dev;
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3368         struct intel_encoder *encoder;
3369         int pipe = intel_crtc->pipe;
3370         int plane = intel_crtc->plane;
3371
3372         WARN_ON(!crtc->enabled);
3373
3374         if (intel_crtc->active)
3375                 return;
3376
3377         intel_crtc->active = true;
3378
3379         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3380         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3381
3382         for_each_encoder_on_crtc(dev, crtc, encoder)
3383                 if (encoder->pre_enable)
3384                         encoder->pre_enable(encoder);
3385
3386         if (intel_crtc->config.has_pch_encoder) {
3387                 /* Note: FDI PLL enabling _must_ be done before we enable the
3388                  * cpu pipes, hence this is separate from all the other fdi/pch
3389                  * enabling. */
3390                 ironlake_fdi_pll_enable(intel_crtc);
3391         } else {
3392                 assert_fdi_tx_disabled(dev_priv, pipe);
3393                 assert_fdi_rx_disabled(dev_priv, pipe);
3394         }
3395
3396         ironlake_pfit_enable(intel_crtc);
3397
3398         /*
3399          * On ILK+ LUT must be loaded before the pipe is running but with
3400          * clocks enabled
3401          */
3402         intel_crtc_load_lut(crtc);
3403
3404         intel_update_watermarks(crtc);
3405         intel_enable_pipe(dev_priv, pipe,
3406                           intel_crtc->config.has_pch_encoder, false);
3407         intel_enable_plane(dev_priv, plane, pipe);
3408         intel_enable_planes(crtc);
3409         intel_crtc_update_cursor(crtc, true);
3410
3411         if (intel_crtc->config.has_pch_encoder)
3412                 ironlake_pch_enable(crtc);
3413
3414         mutex_lock(&dev->struct_mutex);
3415         intel_update_fbc(dev);
3416         mutex_unlock(&dev->struct_mutex);
3417
3418         for_each_encoder_on_crtc(dev, crtc, encoder)
3419                 encoder->enable(encoder);
3420
3421         if (HAS_PCH_CPT(dev))
3422                 cpt_verify_modeset(dev, intel_crtc->pipe);
3423
3424         /*
3425          * There seems to be a race in PCH platform hw (at least on some
3426          * outputs) where an enabled pipe still completes any pageflip right
3427          * away (as if the pipe is off) instead of waiting for vblank. As soon
3428          * as the first vblank happend, everything works as expected. Hence just
3429          * wait for one vblank before returning to avoid strange things
3430          * happening.
3431          */
3432         intel_wait_for_vblank(dev, intel_crtc->pipe);
3433 }
3434
3435 /* IPS only exists on ULT machines and is tied to pipe A. */
3436 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3437 {
3438         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3439 }
3440
3441 static void haswell_crtc_enable(struct drm_crtc *crtc)
3442 {
3443         struct drm_device *dev = crtc->dev;
3444         struct drm_i915_private *dev_priv = dev->dev_private;
3445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3446         struct intel_encoder *encoder;
3447         int pipe = intel_crtc->pipe;
3448         int plane = intel_crtc->plane;
3449
3450         WARN_ON(!crtc->enabled);
3451
3452         if (intel_crtc->active)
3453                 return;
3454
3455         intel_crtc->active = true;
3456
3457         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3458         if (intel_crtc->config.has_pch_encoder)
3459                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3460
3461         if (intel_crtc->config.has_pch_encoder)
3462                 dev_priv->display.fdi_link_train(crtc);
3463
3464         for_each_encoder_on_crtc(dev, crtc, encoder)
3465                 if (encoder->pre_enable)
3466                         encoder->pre_enable(encoder);
3467
3468         intel_ddi_enable_pipe_clock(intel_crtc);
3469
3470         ironlake_pfit_enable(intel_crtc);
3471
3472         /*
3473          * On ILK+ LUT must be loaded before the pipe is running but with
3474          * clocks enabled
3475          */
3476         intel_crtc_load_lut(crtc);
3477
3478         intel_ddi_set_pipe_settings(crtc);
3479         intel_ddi_enable_transcoder_func(crtc);
3480
3481         intel_update_watermarks(crtc);
3482         intel_enable_pipe(dev_priv, pipe,
3483                           intel_crtc->config.has_pch_encoder, false);
3484         intel_enable_plane(dev_priv, plane, pipe);
3485         intel_enable_planes(crtc);
3486         intel_crtc_update_cursor(crtc, true);
3487
3488         hsw_enable_ips(intel_crtc);
3489
3490         if (intel_crtc->config.has_pch_encoder)
3491                 lpt_pch_enable(crtc);
3492
3493         mutex_lock(&dev->struct_mutex);
3494         intel_update_fbc(dev);
3495         mutex_unlock(&dev->struct_mutex);
3496
3497         for_each_encoder_on_crtc(dev, crtc, encoder) {
3498                 encoder->enable(encoder);
3499                 intel_opregion_notify_encoder(encoder, true);
3500         }
3501
3502         /*
3503          * There seems to be a race in PCH platform hw (at least on some
3504          * outputs) where an enabled pipe still completes any pageflip right
3505          * away (as if the pipe is off) instead of waiting for vblank. As soon
3506          * as the first vblank happend, everything works as expected. Hence just
3507          * wait for one vblank before returning to avoid strange things
3508          * happening.
3509          */
3510         intel_wait_for_vblank(dev, intel_crtc->pipe);
3511 }
3512
3513 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3514 {
3515         struct drm_device *dev = crtc->base.dev;
3516         struct drm_i915_private *dev_priv = dev->dev_private;
3517         int pipe = crtc->pipe;
3518
3519         /* To avoid upsetting the power well on haswell only disable the pfit if
3520          * it's in use. The hw state code will make sure we get this right. */
3521         if (crtc->config.pch_pfit.enabled) {
3522                 I915_WRITE(PF_CTL(pipe), 0);
3523                 I915_WRITE(PF_WIN_POS(pipe), 0);
3524                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3525         }
3526 }
3527
3528 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3529 {
3530         struct drm_device *dev = crtc->dev;
3531         struct drm_i915_private *dev_priv = dev->dev_private;
3532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3533         struct intel_encoder *encoder;
3534         int pipe = intel_crtc->pipe;
3535         int plane = intel_crtc->plane;
3536         u32 reg, temp;
3537
3538
3539         if (!intel_crtc->active)
3540                 return;
3541
3542         for_each_encoder_on_crtc(dev, crtc, encoder)
3543                 encoder->disable(encoder);
3544
3545         intel_crtc_wait_for_pending_flips(crtc);
3546         drm_vblank_off(dev, pipe);
3547
3548         if (dev_priv->fbc.plane == plane)
3549                 intel_disable_fbc(dev);
3550
3551         intel_crtc_update_cursor(crtc, false);
3552         intel_disable_planes(crtc);
3553         intel_disable_plane(dev_priv, plane, pipe);
3554
3555         if (intel_crtc->config.has_pch_encoder)
3556                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3557
3558         intel_disable_pipe(dev_priv, pipe);
3559
3560         ironlake_pfit_disable(intel_crtc);
3561
3562         for_each_encoder_on_crtc(dev, crtc, encoder)
3563                 if (encoder->post_disable)
3564                         encoder->post_disable(encoder);
3565
3566         if (intel_crtc->config.has_pch_encoder) {
3567                 ironlake_fdi_disable(crtc);
3568
3569                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3570                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3571
3572                 if (HAS_PCH_CPT(dev)) {
3573                         /* disable TRANS_DP_CTL */
3574                         reg = TRANS_DP_CTL(pipe);
3575                         temp = I915_READ(reg);
3576                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3577                                   TRANS_DP_PORT_SEL_MASK);
3578                         temp |= TRANS_DP_PORT_SEL_NONE;
3579                         I915_WRITE(reg, temp);
3580
3581                         /* disable DPLL_SEL */
3582                         temp = I915_READ(PCH_DPLL_SEL);
3583                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3584                         I915_WRITE(PCH_DPLL_SEL, temp);
3585                 }
3586
3587                 /* disable PCH DPLL */
3588                 intel_disable_shared_dpll(intel_crtc);
3589
3590                 ironlake_fdi_pll_disable(intel_crtc);
3591         }
3592
3593         intel_crtc->active = false;
3594         intel_update_watermarks(crtc);
3595
3596         mutex_lock(&dev->struct_mutex);
3597         intel_update_fbc(dev);
3598         mutex_unlock(&dev->struct_mutex);
3599 }
3600
3601 static void haswell_crtc_disable(struct drm_crtc *crtc)
3602 {
3603         struct drm_device *dev = crtc->dev;
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606         struct intel_encoder *encoder;
3607         int pipe = intel_crtc->pipe;
3608         int plane = intel_crtc->plane;
3609         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3610
3611         if (!intel_crtc->active)
3612                 return;
3613
3614         for_each_encoder_on_crtc(dev, crtc, encoder) {
3615                 intel_opregion_notify_encoder(encoder, false);
3616                 encoder->disable(encoder);
3617         }
3618
3619         intel_crtc_wait_for_pending_flips(crtc);
3620         drm_vblank_off(dev, pipe);
3621
3622         /* FBC must be disabled before disabling the plane on HSW. */
3623         if (dev_priv->fbc.plane == plane)
3624                 intel_disable_fbc(dev);
3625
3626         hsw_disable_ips(intel_crtc);
3627
3628         intel_crtc_update_cursor(crtc, false);
3629         intel_disable_planes(crtc);
3630         intel_disable_plane(dev_priv, plane, pipe);
3631
3632         if (intel_crtc->config.has_pch_encoder)
3633                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3634         intel_disable_pipe(dev_priv, pipe);
3635
3636         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3637
3638         ironlake_pfit_disable(intel_crtc);
3639
3640         intel_ddi_disable_pipe_clock(intel_crtc);
3641
3642         for_each_encoder_on_crtc(dev, crtc, encoder)
3643                 if (encoder->post_disable)
3644                         encoder->post_disable(encoder);
3645
3646         if (intel_crtc->config.has_pch_encoder) {
3647                 lpt_disable_pch_transcoder(dev_priv);
3648                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3649                 intel_ddi_fdi_disable(crtc);
3650         }
3651
3652         intel_crtc->active = false;
3653         intel_update_watermarks(crtc);
3654
3655         mutex_lock(&dev->struct_mutex);
3656         intel_update_fbc(dev);
3657         mutex_unlock(&dev->struct_mutex);
3658 }
3659
3660 static void ironlake_crtc_off(struct drm_crtc *crtc)
3661 {
3662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663         intel_put_shared_dpll(intel_crtc);
3664 }
3665
3666 static void haswell_crtc_off(struct drm_crtc *crtc)
3667 {
3668         intel_ddi_put_crtc_pll(crtc);
3669 }
3670
3671 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3672 {
3673         if (!enable && intel_crtc->overlay) {
3674                 struct drm_device *dev = intel_crtc->base.dev;
3675                 struct drm_i915_private *dev_priv = dev->dev_private;
3676
3677                 mutex_lock(&dev->struct_mutex);
3678                 dev_priv->mm.interruptible = false;
3679                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3680                 dev_priv->mm.interruptible = true;
3681                 mutex_unlock(&dev->struct_mutex);
3682         }
3683
3684         /* Let userspace switch the overlay on again. In most cases userspace
3685          * has to recompute where to put it anyway.
3686          */
3687 }
3688
3689 /**
3690  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3691  * cursor plane briefly if not already running after enabling the display
3692  * plane.
3693  * This workaround avoids occasional blank screens when self refresh is
3694  * enabled.
3695  */
3696 static void
3697 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3698 {
3699         u32 cntl = I915_READ(CURCNTR(pipe));
3700
3701         if ((cntl & CURSOR_MODE) == 0) {
3702                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3703
3704                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3705                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3706                 intel_wait_for_vblank(dev_priv->dev, pipe);
3707                 I915_WRITE(CURCNTR(pipe), cntl);
3708                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3709                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3710         }
3711 }
3712
3713 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3714 {
3715         struct drm_device *dev = crtc->base.dev;
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717         struct intel_crtc_config *pipe_config = &crtc->config;
3718
3719         if (!crtc->config.gmch_pfit.control)
3720                 return;
3721
3722         /*
3723          * The panel fitter should only be adjusted whilst the pipe is disabled,
3724          * according to register description and PRM.
3725          */
3726         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3727         assert_pipe_disabled(dev_priv, crtc->pipe);
3728
3729         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3730         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3731
3732         /* Border color in case we don't scale up to the full screen. Black by
3733          * default, change to something else for debugging. */
3734         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3735 }
3736
3737 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         struct intel_encoder *encoder;
3743         int pipe = intel_crtc->pipe;
3744         int plane = intel_crtc->plane;
3745         bool is_dsi;
3746
3747         WARN_ON(!crtc->enabled);
3748
3749         if (intel_crtc->active)
3750                 return;
3751
3752         intel_crtc->active = true;
3753
3754         for_each_encoder_on_crtc(dev, crtc, encoder)
3755                 if (encoder->pre_pll_enable)
3756                         encoder->pre_pll_enable(encoder);
3757
3758         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3759
3760         if (!is_dsi)
3761                 vlv_enable_pll(intel_crtc);
3762
3763         for_each_encoder_on_crtc(dev, crtc, encoder)
3764                 if (encoder->pre_enable)
3765                         encoder->pre_enable(encoder);
3766
3767         i9xx_pfit_enable(intel_crtc);
3768
3769         intel_crtc_load_lut(crtc);
3770
3771         intel_update_watermarks(crtc);
3772         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3773         intel_enable_plane(dev_priv, plane, pipe);
3774         intel_enable_planes(crtc);
3775         intel_crtc_update_cursor(crtc, true);
3776
3777         intel_update_fbc(dev);
3778
3779         for_each_encoder_on_crtc(dev, crtc, encoder)
3780                 encoder->enable(encoder);
3781 }
3782
3783 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3784 {
3785         struct drm_device *dev = crtc->dev;
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788         struct intel_encoder *encoder;
3789         int pipe = intel_crtc->pipe;
3790         int plane = intel_crtc->plane;
3791
3792         WARN_ON(!crtc->enabled);
3793
3794         if (intel_crtc->active)
3795                 return;
3796
3797         intel_crtc->active = true;
3798
3799         for_each_encoder_on_crtc(dev, crtc, encoder)
3800                 if (encoder->pre_enable)
3801                         encoder->pre_enable(encoder);
3802
3803         i9xx_enable_pll(intel_crtc);
3804
3805         i9xx_pfit_enable(intel_crtc);
3806
3807         intel_crtc_load_lut(crtc);
3808
3809         intel_update_watermarks(crtc);
3810         intel_enable_pipe(dev_priv, pipe, false, false);
3811         intel_enable_plane(dev_priv, plane, pipe);
3812         intel_enable_planes(crtc);
3813         /* The fixup needs to happen before cursor is enabled */
3814         if (IS_G4X(dev))
3815                 g4x_fixup_plane(dev_priv, pipe);
3816         intel_crtc_update_cursor(crtc, true);
3817
3818         /* Give the overlay scaler a chance to enable if it's on this pipe */
3819         intel_crtc_dpms_overlay(intel_crtc, true);
3820
3821         intel_update_fbc(dev);
3822
3823         for_each_encoder_on_crtc(dev, crtc, encoder)
3824                 encoder->enable(encoder);
3825 }
3826
3827 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3828 {
3829         struct drm_device *dev = crtc->base.dev;
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832         if (!crtc->config.gmch_pfit.control)
3833                 return;
3834
3835         assert_pipe_disabled(dev_priv, crtc->pipe);
3836
3837         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3838                          I915_READ(PFIT_CONTROL));
3839         I915_WRITE(PFIT_CONTROL, 0);
3840 }
3841
3842 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3843 {
3844         struct drm_device *dev = crtc->dev;
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847         struct intel_encoder *encoder;
3848         int pipe = intel_crtc->pipe;
3849         int plane = intel_crtc->plane;
3850
3851         if (!intel_crtc->active)
3852                 return;
3853
3854         for_each_encoder_on_crtc(dev, crtc, encoder)
3855                 encoder->disable(encoder);
3856
3857         /* Give the overlay scaler a chance to disable if it's on this pipe */
3858         intel_crtc_wait_for_pending_flips(crtc);
3859         drm_vblank_off(dev, pipe);
3860
3861         if (dev_priv->fbc.plane == plane)
3862                 intel_disable_fbc(dev);
3863
3864         intel_crtc_dpms_overlay(intel_crtc, false);
3865         intel_crtc_update_cursor(crtc, false);
3866         intel_disable_planes(crtc);
3867         intel_disable_plane(dev_priv, plane, pipe);
3868
3869         intel_disable_pipe(dev_priv, pipe);
3870
3871         i9xx_pfit_disable(intel_crtc);
3872
3873         for_each_encoder_on_crtc(dev, crtc, encoder)
3874                 if (encoder->post_disable)
3875                         encoder->post_disable(encoder);
3876
3877         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3878                 i9xx_disable_pll(dev_priv, pipe);
3879
3880         intel_crtc->active = false;
3881         intel_update_watermarks(crtc);
3882
3883         intel_update_fbc(dev);
3884 }
3885
3886 static void i9xx_crtc_off(struct drm_crtc *crtc)
3887 {
3888 }
3889
3890 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3891                                     bool enabled)
3892 {
3893         struct drm_device *dev = crtc->dev;
3894         struct drm_i915_master_private *master_priv;
3895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3896         int pipe = intel_crtc->pipe;
3897
3898         if (!dev->primary->master)
3899                 return;
3900
3901         master_priv = dev->primary->master->driver_priv;
3902         if (!master_priv->sarea_priv)
3903                 return;
3904
3905         switch (pipe) {
3906         case 0:
3907                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3908                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3909                 break;
3910         case 1:
3911                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3912                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3913                 break;
3914         default:
3915                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3916                 break;
3917         }
3918 }
3919
3920 /**
3921  * Sets the power management mode of the pipe and plane.
3922  */
3923 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3924 {
3925         struct drm_device *dev = crtc->dev;
3926         struct drm_i915_private *dev_priv = dev->dev_private;
3927         struct intel_encoder *intel_encoder;
3928         bool enable = false;
3929
3930         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3931                 enable |= intel_encoder->connectors_active;
3932
3933         if (enable)
3934                 dev_priv->display.crtc_enable(crtc);
3935         else
3936                 dev_priv->display.crtc_disable(crtc);
3937
3938         intel_crtc_update_sarea(crtc, enable);
3939 }
3940
3941 static void intel_crtc_disable(struct drm_crtc *crtc)
3942 {
3943         struct drm_device *dev = crtc->dev;
3944         struct drm_connector *connector;
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3947
3948         /* crtc should still be enabled when we disable it. */
3949         WARN_ON(!crtc->enabled);
3950
3951         dev_priv->display.crtc_disable(crtc);
3952         intel_crtc->eld_vld = false;
3953         intel_crtc_update_sarea(crtc, false);
3954         dev_priv->display.off(crtc);
3955
3956         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3957         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3958         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3959
3960         if (crtc->fb) {
3961                 mutex_lock(&dev->struct_mutex);
3962                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3963                 mutex_unlock(&dev->struct_mutex);
3964                 crtc->fb = NULL;
3965         }
3966
3967         /* Update computed state. */
3968         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3969                 if (!connector->encoder || !connector->encoder->crtc)
3970                         continue;
3971
3972                 if (connector->encoder->crtc != crtc)
3973                         continue;
3974
3975                 connector->dpms = DRM_MODE_DPMS_OFF;
3976                 to_intel_encoder(connector->encoder)->connectors_active = false;
3977         }
3978 }
3979
3980 void intel_encoder_destroy(struct drm_encoder *encoder)
3981 {
3982         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3983
3984         drm_encoder_cleanup(encoder);
3985         kfree(intel_encoder);
3986 }
3987
3988 /* Simple dpms helper for encoders with just one connector, no cloning and only
3989  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3990  * state of the entire output pipe. */
3991 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3992 {
3993         if (mode == DRM_MODE_DPMS_ON) {
3994                 encoder->connectors_active = true;
3995
3996                 intel_crtc_update_dpms(encoder->base.crtc);
3997         } else {
3998                 encoder->connectors_active = false;
3999
4000                 intel_crtc_update_dpms(encoder->base.crtc);
4001         }
4002 }
4003
4004 /* Cross check the actual hw state with our own modeset state tracking (and it's
4005  * internal consistency). */
4006 static void intel_connector_check_state(struct intel_connector *connector)
4007 {
4008         if (connector->get_hw_state(connector)) {
4009                 struct intel_encoder *encoder = connector->encoder;
4010                 struct drm_crtc *crtc;
4011                 bool encoder_enabled;
4012                 enum pipe pipe;
4013
4014                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4015                               connector->base.base.id,
4016                               drm_get_connector_name(&connector->base));
4017
4018                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4019                      "wrong connector dpms state\n");
4020                 WARN(connector->base.encoder != &encoder->base,
4021                      "active connector not linked to encoder\n");
4022                 WARN(!encoder->connectors_active,
4023                      "encoder->connectors_active not set\n");
4024
4025                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4026                 WARN(!encoder_enabled, "encoder not enabled\n");
4027                 if (WARN_ON(!encoder->base.crtc))
4028                         return;
4029
4030                 crtc = encoder->base.crtc;
4031
4032                 WARN(!crtc->enabled, "crtc not enabled\n");
4033                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4034                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4035                      "encoder active on the wrong pipe\n");
4036         }
4037 }
4038
4039 /* Even simpler default implementation, if there's really no special case to
4040  * consider. */
4041 void intel_connector_dpms(struct drm_connector *connector, int mode)
4042 {
4043         struct intel_encoder *encoder = intel_attached_encoder(connector);
4044
4045         /* All the simple cases only support two dpms states. */
4046         if (mode != DRM_MODE_DPMS_ON)
4047                 mode = DRM_MODE_DPMS_OFF;
4048
4049         if (mode == connector->dpms)
4050                 return;
4051
4052         connector->dpms = mode;
4053
4054         /* Only need to change hw state when actually enabled */
4055         if (encoder->base.crtc)
4056                 intel_encoder_dpms(encoder, mode);
4057         else
4058                 WARN_ON(encoder->connectors_active != false);
4059
4060         intel_modeset_check_state(connector->dev);
4061 }
4062
4063 /* Simple connector->get_hw_state implementation for encoders that support only
4064  * one connector and no cloning and hence the encoder state determines the state
4065  * of the connector. */
4066 bool intel_connector_get_hw_state(struct intel_connector *connector)
4067 {
4068         enum pipe pipe = 0;
4069         struct intel_encoder *encoder = connector->encoder;
4070
4071         return encoder->get_hw_state(encoder, &pipe);
4072 }
4073
4074 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4075                                      struct intel_crtc_config *pipe_config)
4076 {
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         struct intel_crtc *pipe_B_crtc =
4079                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4080
4081         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4082                       pipe_name(pipe), pipe_config->fdi_lanes);
4083         if (pipe_config->fdi_lanes > 4) {
4084                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4085                               pipe_name(pipe), pipe_config->fdi_lanes);
4086                 return false;
4087         }
4088
4089         if (IS_HASWELL(dev)) {
4090                 if (pipe_config->fdi_lanes > 2) {
4091                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4092                                       pipe_config->fdi_lanes);
4093                         return false;
4094                 } else {
4095                         return true;
4096                 }
4097         }
4098
4099         if (INTEL_INFO(dev)->num_pipes == 2)
4100                 return true;
4101
4102         /* Ivybridge 3 pipe is really complicated */
4103         switch (pipe) {
4104         case PIPE_A:
4105                 return true;
4106         case PIPE_B:
4107                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4108                     pipe_config->fdi_lanes > 2) {
4109                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4110                                       pipe_name(pipe), pipe_config->fdi_lanes);
4111                         return false;
4112                 }
4113                 return true;
4114         case PIPE_C:
4115                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4116                     pipe_B_crtc->config.fdi_lanes <= 2) {
4117                         if (pipe_config->fdi_lanes > 2) {
4118                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4119                                               pipe_name(pipe), pipe_config->fdi_lanes);
4120                                 return false;
4121                         }
4122                 } else {
4123                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4124                         return false;
4125                 }
4126                 return true;
4127         default:
4128                 BUG();
4129         }
4130 }
4131
4132 #define RETRY 1
4133 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4134                                        struct intel_crtc_config *pipe_config)
4135 {
4136         struct drm_device *dev = intel_crtc->base.dev;
4137         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4138         int lane, link_bw, fdi_dotclock;
4139         bool setup_ok, needs_recompute = false;
4140
4141 retry:
4142         /* FDI is a binary signal running at ~2.7GHz, encoding
4143          * each output octet as 10 bits. The actual frequency
4144          * is stored as a divider into a 100MHz clock, and the
4145          * mode pixel clock is stored in units of 1KHz.
4146          * Hence the bw of each lane in terms of the mode signal
4147          * is:
4148          */
4149         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4150
4151         fdi_dotclock = adjusted_mode->clock;
4152
4153         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4154                                            pipe_config->pipe_bpp);
4155
4156         pipe_config->fdi_lanes = lane;
4157
4158         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4159                                link_bw, &pipe_config->fdi_m_n);
4160
4161         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4162                                             intel_crtc->pipe, pipe_config);
4163         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4164                 pipe_config->pipe_bpp -= 2*3;
4165                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4166                               pipe_config->pipe_bpp);
4167                 needs_recompute = true;
4168                 pipe_config->bw_constrained = true;
4169
4170                 goto retry;
4171         }
4172
4173         if (needs_recompute)
4174                 return RETRY;
4175
4176         return setup_ok ? 0 : -EINVAL;
4177 }
4178
4179 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4180                                    struct intel_crtc_config *pipe_config)
4181 {
4182         pipe_config->ips_enabled = i915_enable_ips &&
4183                                    hsw_crtc_supports_ips(crtc) &&
4184                                    pipe_config->pipe_bpp <= 24;
4185 }
4186
4187 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4188                                      struct intel_crtc_config *pipe_config)
4189 {
4190         struct drm_device *dev = crtc->base.dev;
4191         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4192
4193         /* FIXME should check pixel clock limits on all platforms */
4194         if (INTEL_INFO(dev)->gen < 4) {
4195                 struct drm_i915_private *dev_priv = dev->dev_private;
4196                 int clock_limit =
4197                         dev_priv->display.get_display_clock_speed(dev);
4198
4199                 /*
4200                  * Enable pixel doubling when the dot clock
4201                  * is > 90% of the (display) core speed.
4202                  *
4203                  * GDG double wide on either pipe,
4204                  * otherwise pipe A only.
4205                  */
4206                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4207                     adjusted_mode->clock > clock_limit * 9 / 10) {
4208                         clock_limit *= 2;
4209                         pipe_config->double_wide = true;
4210                 }
4211
4212                 if (adjusted_mode->clock > clock_limit * 9 / 10)
4213                         return -EINVAL;
4214         }
4215
4216         /*
4217          * Pipe horizontal size must be even in:
4218          * - DVO ganged mode
4219          * - LVDS dual channel mode
4220          * - Double wide pipe
4221          */
4222         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4223              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4224                 pipe_config->pipe_src_w &= ~1;
4225
4226         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4227          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4228          */
4229         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4230                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4231                 return -EINVAL;
4232
4233         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4234                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4235         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4236                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4237                  * for lvds. */
4238                 pipe_config->pipe_bpp = 8*3;
4239         }
4240
4241         if (HAS_IPS(dev))
4242                 hsw_compute_ips_config(crtc, pipe_config);
4243
4244         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4245          * clock survives for now. */
4246         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4247                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4248
4249         if (pipe_config->has_pch_encoder)
4250                 return ironlake_fdi_compute_config(crtc, pipe_config);
4251
4252         return 0;
4253 }
4254
4255 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4256 {
4257         return 400000; /* FIXME */
4258 }
4259
4260 static int i945_get_display_clock_speed(struct drm_device *dev)
4261 {
4262         return 400000;
4263 }
4264
4265 static int i915_get_display_clock_speed(struct drm_device *dev)
4266 {
4267         return 333000;
4268 }
4269
4270 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4271 {
4272         return 200000;
4273 }
4274
4275 static int pnv_get_display_clock_speed(struct drm_device *dev)
4276 {
4277         u16 gcfgc = 0;
4278
4279         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4280
4281         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4282         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4283                 return 267000;
4284         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4285                 return 333000;
4286         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4287                 return 444000;
4288         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4289                 return 200000;
4290         default:
4291                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4292         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4293                 return 133000;
4294         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4295                 return 167000;
4296         }
4297 }
4298
4299 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4300 {
4301         u16 gcfgc = 0;
4302
4303         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4304
4305         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4306                 return 133000;
4307         else {
4308                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4309                 case GC_DISPLAY_CLOCK_333_MHZ:
4310                         return 333000;
4311                 default:
4312                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4313                         return 190000;
4314                 }
4315         }
4316 }
4317
4318 static int i865_get_display_clock_speed(struct drm_device *dev)
4319 {
4320         return 266000;
4321 }
4322
4323 static int i855_get_display_clock_speed(struct drm_device *dev)
4324 {
4325         u16 hpllcc = 0;
4326         /* Assume that the hardware is in the high speed state.  This
4327          * should be the default.
4328          */
4329         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4330         case GC_CLOCK_133_200:
4331         case GC_CLOCK_100_200:
4332                 return 200000;
4333         case GC_CLOCK_166_250:
4334                 return 250000;
4335         case GC_CLOCK_100_133:
4336                 return 133000;
4337         }
4338
4339         /* Shouldn't happen */
4340         return 0;
4341 }
4342
4343 static int i830_get_display_clock_speed(struct drm_device *dev)
4344 {
4345         return 133000;
4346 }
4347
4348 static void
4349 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4350 {
4351         while (*num > DATA_LINK_M_N_MASK ||
4352                *den > DATA_LINK_M_N_MASK) {
4353                 *num >>= 1;
4354                 *den >>= 1;
4355         }
4356 }
4357
4358 static void compute_m_n(unsigned int m, unsigned int n,
4359                         uint32_t *ret_m, uint32_t *ret_n)
4360 {
4361         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4362         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4363         intel_reduce_m_n_ratio(ret_m, ret_n);
4364 }
4365
4366 void
4367 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4368                        int pixel_clock, int link_clock,
4369                        struct intel_link_m_n *m_n)
4370 {
4371         m_n->tu = 64;
4372
4373         compute_m_n(bits_per_pixel * pixel_clock,
4374                     link_clock * nlanes * 8,
4375                     &m_n->gmch_m, &m_n->gmch_n);
4376
4377         compute_m_n(pixel_clock, link_clock,
4378                     &m_n->link_m, &m_n->link_n);
4379 }
4380
4381 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4382 {
4383         if (i915_panel_use_ssc >= 0)
4384                 return i915_panel_use_ssc != 0;
4385         return dev_priv->vbt.lvds_use_ssc
4386                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4387 }
4388
4389 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4390 {
4391         struct drm_device *dev = crtc->dev;
4392         struct drm_i915_private *dev_priv = dev->dev_private;
4393         int refclk;
4394
4395         if (IS_VALLEYVIEW(dev)) {
4396                 refclk = 100000;
4397         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4398             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4399                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4400                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4401                               refclk / 1000);
4402         } else if (!IS_GEN2(dev)) {
4403                 refclk = 96000;
4404         } else {
4405                 refclk = 48000;
4406         }
4407
4408         return refclk;
4409 }
4410
4411 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4412 {
4413         return (1 << dpll->n) << 16 | dpll->m2;
4414 }
4415
4416 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4417 {
4418         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4419 }
4420
4421 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4422                                      intel_clock_t *reduced_clock)
4423 {
4424         struct drm_device *dev = crtc->base.dev;
4425         struct drm_i915_private *dev_priv = dev->dev_private;
4426         int pipe = crtc->pipe;
4427         u32 fp, fp2 = 0;
4428
4429         if (IS_PINEVIEW(dev)) {
4430                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4431                 if (reduced_clock)
4432                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4433         } else {
4434                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4435                 if (reduced_clock)
4436                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4437         }
4438
4439         I915_WRITE(FP0(pipe), fp);
4440         crtc->config.dpll_hw_state.fp0 = fp;
4441
4442         crtc->lowfreq_avail = false;
4443         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4444             reduced_clock && i915_powersave) {
4445                 I915_WRITE(FP1(pipe), fp2);
4446                 crtc->config.dpll_hw_state.fp1 = fp2;
4447                 crtc->lowfreq_avail = true;
4448         } else {
4449                 I915_WRITE(FP1(pipe), fp);
4450                 crtc->config.dpll_hw_state.fp1 = fp;
4451         }
4452 }
4453
4454 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4455                 pipe)
4456 {
4457         u32 reg_val;
4458
4459         /*
4460          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4461          * and set it to a reasonable value instead.
4462          */
4463         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4464         reg_val &= 0xffffff00;
4465         reg_val |= 0x00000030;
4466         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4467
4468         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4469         reg_val &= 0x8cffffff;
4470         reg_val = 0x8c000000;
4471         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4472
4473         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4474         reg_val &= 0xffffff00;
4475         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4476
4477         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4478         reg_val &= 0x00ffffff;
4479         reg_val |= 0xb0000000;
4480         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4481 }
4482
4483 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4484                                          struct intel_link_m_n *m_n)
4485 {
4486         struct drm_device *dev = crtc->base.dev;
4487         struct drm_i915_private *dev_priv = dev->dev_private;
4488         int pipe = crtc->pipe;
4489
4490         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4491         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4492         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4493         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4494 }
4495
4496 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4497                                          struct intel_link_m_n *m_n)
4498 {
4499         struct drm_device *dev = crtc->base.dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         int pipe = crtc->pipe;
4502         enum transcoder transcoder = crtc->config.cpu_transcoder;
4503
4504         if (INTEL_INFO(dev)->gen >= 5) {
4505                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4506                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4507                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4508                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4509         } else {
4510                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4511                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4512                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4513                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4514         }
4515 }
4516
4517 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4518 {
4519         if (crtc->config.has_pch_encoder)
4520                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4521         else
4522                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4523 }
4524
4525 static void vlv_update_pll(struct intel_crtc *crtc)
4526 {
4527         struct drm_device *dev = crtc->base.dev;
4528         struct drm_i915_private *dev_priv = dev->dev_private;
4529         int pipe = crtc->pipe;
4530         u32 dpll, mdiv;
4531         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4532         u32 coreclk, reg_val, dpll_md;
4533
4534         mutex_lock(&dev_priv->dpio_lock);
4535
4536         bestn = crtc->config.dpll.n;
4537         bestm1 = crtc->config.dpll.m1;
4538         bestm2 = crtc->config.dpll.m2;
4539         bestp1 = crtc->config.dpll.p1;
4540         bestp2 = crtc->config.dpll.p2;
4541
4542         /* See eDP HDMI DPIO driver vbios notes doc */
4543
4544         /* PLL B needs special handling */
4545         if (pipe)
4546                 vlv_pllb_recal_opamp(dev_priv, pipe);
4547
4548         /* Set up Tx target for periodic Rcomp update */
4549         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4550
4551         /* Disable target IRef on PLL */
4552         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4553         reg_val &= 0x00ffffff;
4554         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4555
4556         /* Disable fast lock */
4557         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4558
4559         /* Set idtafcrecal before PLL is enabled */
4560         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4561         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4562         mdiv |= ((bestn << DPIO_N_SHIFT));
4563         mdiv |= (1 << DPIO_K_SHIFT);
4564
4565         /*
4566          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4567          * but we don't support that).
4568          * Note: don't use the DAC post divider as it seems unstable.
4569          */
4570         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4571         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4572
4573         mdiv |= DPIO_ENABLE_CALIBRATION;
4574         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4575
4576         /* Set HBR and RBR LPF coefficients */
4577         if (crtc->config.port_clock == 162000 ||
4578             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4579             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4580                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4581                                  0x009f0003);
4582         else
4583                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4584                                  0x00d0000f);
4585
4586         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4587             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4588                 /* Use SSC source */
4589                 if (!pipe)
4590                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4591                                          0x0df40000);
4592                 else
4593                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4594                                          0x0df70000);
4595         } else { /* HDMI or VGA */
4596                 /* Use bend source */
4597                 if (!pipe)
4598                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4599                                          0x0df70000);
4600                 else
4601                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4602                                          0x0df40000);
4603         }
4604
4605         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4606         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4607         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4608             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4609                 coreclk |= 0x01000000;
4610         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4611
4612         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4613
4614         /* Enable DPIO clock input */
4615         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4616                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4617         if (pipe)
4618                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4619
4620         dpll |= DPLL_VCO_ENABLE;
4621         crtc->config.dpll_hw_state.dpll = dpll;
4622
4623         dpll_md = (crtc->config.pixel_multiplier - 1)
4624                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4625         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4626
4627         if (crtc->config.has_dp_encoder)
4628                 intel_dp_set_m_n(crtc);
4629
4630         mutex_unlock(&dev_priv->dpio_lock);
4631 }
4632
4633 static void i9xx_update_pll(struct intel_crtc *crtc,
4634                             intel_clock_t *reduced_clock,
4635                             int num_connectors)
4636 {
4637         struct drm_device *dev = crtc->base.dev;
4638         struct drm_i915_private *dev_priv = dev->dev_private;
4639         u32 dpll;
4640         bool is_sdvo;
4641         struct dpll *clock = &crtc->config.dpll;
4642
4643         i9xx_update_pll_dividers(crtc, reduced_clock);
4644
4645         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4646                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4647
4648         dpll = DPLL_VGA_MODE_DIS;
4649
4650         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4651                 dpll |= DPLLB_MODE_LVDS;
4652         else
4653                 dpll |= DPLLB_MODE_DAC_SERIAL;
4654
4655         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4656                 dpll |= (crtc->config.pixel_multiplier - 1)
4657                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4658         }
4659
4660         if (is_sdvo)
4661                 dpll |= DPLL_SDVO_HIGH_SPEED;
4662
4663         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4664                 dpll |= DPLL_SDVO_HIGH_SPEED;
4665
4666         /* compute bitmask from p1 value */
4667         if (IS_PINEVIEW(dev))
4668                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4669         else {
4670                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4671                 if (IS_G4X(dev) && reduced_clock)
4672                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4673         }
4674         switch (clock->p2) {
4675         case 5:
4676                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4677                 break;
4678         case 7:
4679                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4680                 break;
4681         case 10:
4682                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4683                 break;
4684         case 14:
4685                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4686                 break;
4687         }
4688         if (INTEL_INFO(dev)->gen >= 4)
4689                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4690
4691         if (crtc->config.sdvo_tv_clock)
4692                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4693         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4694                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4695                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4696         else
4697                 dpll |= PLL_REF_INPUT_DREFCLK;
4698
4699         dpll |= DPLL_VCO_ENABLE;
4700         crtc->config.dpll_hw_state.dpll = dpll;
4701
4702         if (INTEL_INFO(dev)->gen >= 4) {
4703                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4704                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4705                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4706         }
4707
4708         if (crtc->config.has_dp_encoder)
4709                 intel_dp_set_m_n(crtc);
4710 }
4711
4712 static void i8xx_update_pll(struct intel_crtc *crtc,
4713                             intel_clock_t *reduced_clock,
4714                             int num_connectors)
4715 {
4716         struct drm_device *dev = crtc->base.dev;
4717         struct drm_i915_private *dev_priv = dev->dev_private;
4718         u32 dpll;
4719         struct dpll *clock = &crtc->config.dpll;
4720
4721         i9xx_update_pll_dividers(crtc, reduced_clock);
4722
4723         dpll = DPLL_VGA_MODE_DIS;
4724
4725         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4726                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4727         } else {
4728                 if (clock->p1 == 2)
4729                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4730                 else
4731                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4732                 if (clock->p2 == 4)
4733                         dpll |= PLL_P2_DIVIDE_BY_4;
4734         }
4735
4736         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4737                 dpll |= DPLL_DVO_2X_MODE;
4738
4739         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4740                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4741                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4742         else
4743                 dpll |= PLL_REF_INPUT_DREFCLK;
4744
4745         dpll |= DPLL_VCO_ENABLE;
4746         crtc->config.dpll_hw_state.dpll = dpll;
4747 }
4748
4749 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4750 {
4751         struct drm_device *dev = intel_crtc->base.dev;
4752         struct drm_i915_private *dev_priv = dev->dev_private;
4753         enum pipe pipe = intel_crtc->pipe;
4754         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4755         struct drm_display_mode *adjusted_mode =
4756                 &intel_crtc->config.adjusted_mode;
4757         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4758
4759         /* We need to be careful not to changed the adjusted mode, for otherwise
4760          * the hw state checker will get angry at the mismatch. */
4761         crtc_vtotal = adjusted_mode->crtc_vtotal;
4762         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4763
4764         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4765                 /* the chip adds 2 halflines automatically */
4766                 crtc_vtotal -= 1;
4767                 crtc_vblank_end -= 1;
4768                 vsyncshift = adjusted_mode->crtc_hsync_start
4769                              - adjusted_mode->crtc_htotal / 2;
4770         } else {
4771                 vsyncshift = 0;
4772         }
4773
4774         if (INTEL_INFO(dev)->gen > 3)
4775                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4776
4777         I915_WRITE(HTOTAL(cpu_transcoder),
4778                    (adjusted_mode->crtc_hdisplay - 1) |
4779                    ((adjusted_mode->crtc_htotal - 1) << 16));
4780         I915_WRITE(HBLANK(cpu_transcoder),
4781                    (adjusted_mode->crtc_hblank_start - 1) |
4782                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4783         I915_WRITE(HSYNC(cpu_transcoder),
4784                    (adjusted_mode->crtc_hsync_start - 1) |
4785                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4786
4787         I915_WRITE(VTOTAL(cpu_transcoder),
4788                    (adjusted_mode->crtc_vdisplay - 1) |
4789                    ((crtc_vtotal - 1) << 16));
4790         I915_WRITE(VBLANK(cpu_transcoder),
4791                    (adjusted_mode->crtc_vblank_start - 1) |
4792                    ((crtc_vblank_end - 1) << 16));
4793         I915_WRITE(VSYNC(cpu_transcoder),
4794                    (adjusted_mode->crtc_vsync_start - 1) |
4795                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4796
4797         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4798          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4799          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4800          * bits. */
4801         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4802             (pipe == PIPE_B || pipe == PIPE_C))
4803                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4804
4805         /* pipesrc controls the size that is scaled from, which should
4806          * always be the user's requested size.
4807          */
4808         I915_WRITE(PIPESRC(pipe),
4809                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4810                    (intel_crtc->config.pipe_src_h - 1));
4811 }
4812
4813 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4814                                    struct intel_crtc_config *pipe_config)
4815 {
4816         struct drm_device *dev = crtc->base.dev;
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4819         uint32_t tmp;
4820
4821         tmp = I915_READ(HTOTAL(cpu_transcoder));
4822         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4823         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4824         tmp = I915_READ(HBLANK(cpu_transcoder));
4825         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4826         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4827         tmp = I915_READ(HSYNC(cpu_transcoder));
4828         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4829         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4830
4831         tmp = I915_READ(VTOTAL(cpu_transcoder));
4832         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4833         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4834         tmp = I915_READ(VBLANK(cpu_transcoder));
4835         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4836         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4837         tmp = I915_READ(VSYNC(cpu_transcoder));
4838         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4839         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4840
4841         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4842                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4843                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4844                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4845         }
4846
4847         tmp = I915_READ(PIPESRC(crtc->pipe));
4848         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4849         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4850
4851         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4852         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4853 }
4854
4855 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4856                                              struct intel_crtc_config *pipe_config)
4857 {
4858         struct drm_crtc *crtc = &intel_crtc->base;
4859
4860         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4861         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4862         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4863         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4864
4865         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4866         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4867         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4868         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4869
4870         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4871
4872         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4873         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4874 }
4875
4876 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4877 {
4878         struct drm_device *dev = intel_crtc->base.dev;
4879         struct drm_i915_private *dev_priv = dev->dev_private;
4880         uint32_t pipeconf;
4881
4882         pipeconf = 0;
4883
4884         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4885             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4886                 pipeconf |= PIPECONF_ENABLE;
4887
4888         if (intel_crtc->config.double_wide)
4889                 pipeconf |= PIPECONF_DOUBLE_WIDE;
4890
4891         /* only g4x and later have fancy bpc/dither controls */
4892         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4893                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4894                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4895                         pipeconf |= PIPECONF_DITHER_EN |
4896                                     PIPECONF_DITHER_TYPE_SP;
4897
4898                 switch (intel_crtc->config.pipe_bpp) {
4899                 case 18:
4900                         pipeconf |= PIPECONF_6BPC;
4901                         break;
4902                 case 24:
4903                         pipeconf |= PIPECONF_8BPC;
4904                         break;
4905                 case 30:
4906                         pipeconf |= PIPECONF_10BPC;
4907                         break;
4908                 default:
4909                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4910                         BUG();
4911                 }
4912         }
4913
4914         if (HAS_PIPE_CXSR(dev)) {
4915                 if (intel_crtc->lowfreq_avail) {
4916                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4917                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4918                 } else {
4919                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4920                 }
4921         }
4922
4923         if (!IS_GEN2(dev) &&
4924             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4925                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4926         else
4927                 pipeconf |= PIPECONF_PROGRESSIVE;
4928
4929         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4930                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4931
4932         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4933         POSTING_READ(PIPECONF(intel_crtc->pipe));
4934 }
4935
4936 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4937                               int x, int y,
4938                               struct drm_framebuffer *fb)
4939 {
4940         struct drm_device *dev = crtc->dev;
4941         struct drm_i915_private *dev_priv = dev->dev_private;
4942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4943         int pipe = intel_crtc->pipe;
4944         int plane = intel_crtc->plane;
4945         int refclk, num_connectors = 0;
4946         intel_clock_t clock, reduced_clock;
4947         u32 dspcntr;
4948         bool ok, has_reduced_clock = false;
4949         bool is_lvds = false, is_dsi = false;
4950         struct intel_encoder *encoder;
4951         const intel_limit_t *limit;
4952         int ret;
4953
4954         for_each_encoder_on_crtc(dev, crtc, encoder) {
4955                 switch (encoder->type) {
4956                 case INTEL_OUTPUT_LVDS:
4957                         is_lvds = true;
4958                         break;
4959                 case INTEL_OUTPUT_DSI:
4960                         is_dsi = true;
4961                         break;
4962                 }
4963
4964                 num_connectors++;
4965         }
4966
4967         if (is_dsi)
4968                 goto skip_dpll;
4969
4970         if (!intel_crtc->config.clock_set) {
4971                 refclk = i9xx_get_refclk(crtc, num_connectors);
4972
4973                 /*
4974                  * Returns a set of divisors for the desired target clock with
4975                  * the given refclk, or FALSE.  The returned values represent
4976                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4977                  * 2) / p1 / p2.
4978                  */
4979                 limit = intel_limit(crtc, refclk);
4980                 ok = dev_priv->display.find_dpll(limit, crtc,
4981                                                  intel_crtc->config.port_clock,
4982                                                  refclk, NULL, &clock);
4983                 if (!ok) {
4984                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
4985                         return -EINVAL;
4986                 }
4987
4988                 if (is_lvds && dev_priv->lvds_downclock_avail) {
4989                         /*
4990                          * Ensure we match the reduced clock's P to the target
4991                          * clock.  If the clocks don't match, we can't switch
4992                          * the display clock by using the FP0/FP1. In such case
4993                          * we will disable the LVDS downclock feature.
4994                          */
4995                         has_reduced_clock =
4996                                 dev_priv->display.find_dpll(limit, crtc,
4997                                                             dev_priv->lvds_downclock,
4998                                                             refclk, &clock,
4999                                                             &reduced_clock);
5000                 }
5001                 /* Compat-code for transition, will disappear. */
5002                 intel_crtc->config.dpll.n = clock.n;
5003                 intel_crtc->config.dpll.m1 = clock.m1;
5004                 intel_crtc->config.dpll.m2 = clock.m2;
5005                 intel_crtc->config.dpll.p1 = clock.p1;
5006                 intel_crtc->config.dpll.p2 = clock.p2;
5007         }
5008
5009         if (IS_GEN2(dev)) {
5010                 i8xx_update_pll(intel_crtc,
5011                                 has_reduced_clock ? &reduced_clock : NULL,
5012                                 num_connectors);
5013         } else if (IS_VALLEYVIEW(dev)) {
5014                 vlv_update_pll(intel_crtc);
5015         } else {
5016                 i9xx_update_pll(intel_crtc,
5017                                 has_reduced_clock ? &reduced_clock : NULL,
5018                                 num_connectors);
5019         }
5020
5021 skip_dpll:
5022         /* Set up the display plane register */
5023         dspcntr = DISPPLANE_GAMMA_ENABLE;
5024
5025         if (!IS_VALLEYVIEW(dev)) {
5026                 if (pipe == 0)
5027                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5028                 else
5029                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5030         }
5031
5032         intel_set_pipe_timings(intel_crtc);
5033
5034         /* pipesrc and dspsize control the size that is scaled from,
5035          * which should always be the user's requested size.
5036          */
5037         I915_WRITE(DSPSIZE(plane),
5038                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5039                    (intel_crtc->config.pipe_src_w - 1));
5040         I915_WRITE(DSPPOS(plane), 0);
5041
5042         i9xx_set_pipeconf(intel_crtc);
5043
5044         I915_WRITE(DSPCNTR(plane), dspcntr);
5045         POSTING_READ(DSPCNTR(plane));
5046
5047         ret = intel_pipe_set_base(crtc, x, y, fb);
5048
5049         return ret;
5050 }
5051
5052 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5053                                  struct intel_crtc_config *pipe_config)
5054 {
5055         struct drm_device *dev = crtc->base.dev;
5056         struct drm_i915_private *dev_priv = dev->dev_private;
5057         uint32_t tmp;
5058
5059         tmp = I915_READ(PFIT_CONTROL);
5060         if (!(tmp & PFIT_ENABLE))
5061                 return;
5062
5063         /* Check whether the pfit is attached to our pipe. */
5064         if (INTEL_INFO(dev)->gen < 4) {
5065                 if (crtc->pipe != PIPE_B)
5066                         return;
5067         } else {
5068                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5069                         return;
5070         }
5071
5072         pipe_config->gmch_pfit.control = tmp;
5073         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5074         if (INTEL_INFO(dev)->gen < 5)
5075                 pipe_config->gmch_pfit.lvds_border_bits =
5076                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5077 }
5078
5079 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5080                                struct intel_crtc_config *pipe_config)
5081 {
5082         struct drm_device *dev = crtc->base.dev;
5083         struct drm_i915_private *dev_priv = dev->dev_private;
5084         int pipe = pipe_config->cpu_transcoder;
5085         intel_clock_t clock;
5086         u32 mdiv;
5087         int refclk = 100000;
5088
5089         mutex_lock(&dev_priv->dpio_lock);
5090         mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5091         mutex_unlock(&dev_priv->dpio_lock);
5092
5093         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5094         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5095         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5096         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5097         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5098
5099         clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
5100         clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
5101
5102         pipe_config->port_clock = clock.dot / 10;
5103 }
5104
5105 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5106                                  struct intel_crtc_config *pipe_config)
5107 {
5108         struct drm_device *dev = crtc->base.dev;
5109         struct drm_i915_private *dev_priv = dev->dev_private;
5110         uint32_t tmp;
5111
5112         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5113         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5114
5115         tmp = I915_READ(PIPECONF(crtc->pipe));
5116         if (!(tmp & PIPECONF_ENABLE))
5117                 return false;
5118
5119         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5120                 switch (tmp & PIPECONF_BPC_MASK) {
5121                 case PIPECONF_6BPC:
5122                         pipe_config->pipe_bpp = 18;
5123                         break;
5124                 case PIPECONF_8BPC:
5125                         pipe_config->pipe_bpp = 24;
5126                         break;
5127                 case PIPECONF_10BPC:
5128                         pipe_config->pipe_bpp = 30;
5129                         break;
5130                 default:
5131                         break;
5132                 }
5133         }
5134
5135         if (INTEL_INFO(dev)->gen < 4)
5136                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5137
5138         intel_get_pipe_timings(crtc, pipe_config);
5139
5140         i9xx_get_pfit_config(crtc, pipe_config);
5141
5142         if (INTEL_INFO(dev)->gen >= 4) {
5143                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5144                 pipe_config->pixel_multiplier =
5145                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5146                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5147                 pipe_config->dpll_hw_state.dpll_md = tmp;
5148         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5149                 tmp = I915_READ(DPLL(crtc->pipe));
5150                 pipe_config->pixel_multiplier =
5151                         ((tmp & SDVO_MULTIPLIER_MASK)
5152                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5153         } else {
5154                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5155                  * port and will be fixed up in the encoder->get_config
5156                  * function. */
5157                 pipe_config->pixel_multiplier = 1;
5158         }
5159         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5160         if (!IS_VALLEYVIEW(dev)) {
5161                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5162                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5163         } else {
5164                 /* Mask out read-only status bits. */
5165                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5166                                                      DPLL_PORTC_READY_MASK |
5167                                                      DPLL_PORTB_READY_MASK);
5168         }
5169
5170         if (IS_VALLEYVIEW(dev))
5171                 vlv_crtc_clock_get(crtc, pipe_config);
5172         else
5173                 i9xx_crtc_clock_get(crtc, pipe_config);
5174
5175         return true;
5176 }
5177
5178 static void ironlake_init_pch_refclk(struct drm_device *dev)
5179 {
5180         struct drm_i915_private *dev_priv = dev->dev_private;
5181         struct drm_mode_config *mode_config = &dev->mode_config;
5182         struct intel_encoder *encoder;
5183         u32 val, final;
5184         bool has_lvds = false;
5185         bool has_cpu_edp = false;
5186         bool has_panel = false;
5187         bool has_ck505 = false;
5188         bool can_ssc = false;
5189
5190         /* We need to take the global config into account */
5191         list_for_each_entry(encoder, &mode_config->encoder_list,
5192                             base.head) {
5193                 switch (encoder->type) {
5194                 case INTEL_OUTPUT_LVDS:
5195                         has_panel = true;
5196                         has_lvds = true;
5197                         break;
5198                 case INTEL_OUTPUT_EDP:
5199                         has_panel = true;
5200                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5201                                 has_cpu_edp = true;
5202                         break;
5203                 }
5204         }
5205
5206         if (HAS_PCH_IBX(dev)) {
5207                 has_ck505 = dev_priv->vbt.display_clock_mode;
5208                 can_ssc = has_ck505;
5209         } else {
5210                 has_ck505 = false;
5211                 can_ssc = true;
5212         }
5213
5214         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5215                       has_panel, has_lvds, has_ck505);
5216
5217         /* Ironlake: try to setup display ref clock before DPLL
5218          * enabling. This is only under driver's control after
5219          * PCH B stepping, previous chipset stepping should be
5220          * ignoring this setting.
5221          */
5222         val = I915_READ(PCH_DREF_CONTROL);
5223
5224         /* As we must carefully and slowly disable/enable each source in turn,
5225          * compute the final state we want first and check if we need to
5226          * make any changes at all.
5227          */
5228         final = val;
5229         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5230         if (has_ck505)
5231                 final |= DREF_NONSPREAD_CK505_ENABLE;
5232         else
5233                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5234
5235         final &= ~DREF_SSC_SOURCE_MASK;
5236         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5237         final &= ~DREF_SSC1_ENABLE;
5238
5239         if (has_panel) {
5240                 final |= DREF_SSC_SOURCE_ENABLE;
5241
5242                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5243                         final |= DREF_SSC1_ENABLE;
5244
5245                 if (has_cpu_edp) {
5246                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5247                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5248                         else
5249                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5250                 } else
5251                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5252         } else {
5253                 final |= DREF_SSC_SOURCE_DISABLE;
5254                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5255         }
5256
5257         if (final == val)
5258                 return;
5259
5260         /* Always enable nonspread source */
5261         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5262
5263         if (has_ck505)
5264                 val |= DREF_NONSPREAD_CK505_ENABLE;
5265         else
5266                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5267
5268         if (has_panel) {
5269                 val &= ~DREF_SSC_SOURCE_MASK;
5270                 val |= DREF_SSC_SOURCE_ENABLE;
5271
5272                 /* SSC must be turned on before enabling the CPU output  */
5273                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5274                         DRM_DEBUG_KMS("Using SSC on panel\n");
5275                         val |= DREF_SSC1_ENABLE;
5276                 } else
5277                         val &= ~DREF_SSC1_ENABLE;
5278
5279                 /* Get SSC going before enabling the outputs */
5280                 I915_WRITE(PCH_DREF_CONTROL, val);
5281                 POSTING_READ(PCH_DREF_CONTROL);
5282                 udelay(200);
5283
5284                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5285
5286                 /* Enable CPU source on CPU attached eDP */
5287                 if (has_cpu_edp) {
5288                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5289                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5290                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5291                         }
5292                         else
5293                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5294                 } else
5295                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5296
5297                 I915_WRITE(PCH_DREF_CONTROL, val);
5298                 POSTING_READ(PCH_DREF_CONTROL);
5299                 udelay(200);
5300         } else {
5301                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5302
5303                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5304
5305                 /* Turn off CPU output */
5306                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5307
5308                 I915_WRITE(PCH_DREF_CONTROL, val);
5309                 POSTING_READ(PCH_DREF_CONTROL);
5310                 udelay(200);
5311
5312                 /* Turn off the SSC source */
5313                 val &= ~DREF_SSC_SOURCE_MASK;
5314                 val |= DREF_SSC_SOURCE_DISABLE;
5315
5316                 /* Turn off SSC1 */
5317                 val &= ~DREF_SSC1_ENABLE;
5318
5319                 I915_WRITE(PCH_DREF_CONTROL, val);
5320                 POSTING_READ(PCH_DREF_CONTROL);
5321                 udelay(200);
5322         }
5323
5324         BUG_ON(val != final);
5325 }
5326
5327 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5328 {
5329         uint32_t tmp;
5330
5331         tmp = I915_READ(SOUTH_CHICKEN2);
5332         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5333         I915_WRITE(SOUTH_CHICKEN2, tmp);
5334
5335         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5336                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5337                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5338
5339         tmp = I915_READ(SOUTH_CHICKEN2);
5340         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5341         I915_WRITE(SOUTH_CHICKEN2, tmp);
5342
5343         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5344                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5345                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5346 }
5347
5348 /* WaMPhyProgramming:hsw */
5349 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5350 {
5351         uint32_t tmp;
5352
5353         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5354         tmp &= ~(0xFF << 24);
5355         tmp |= (0x12 << 24);
5356         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5357
5358         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5359         tmp |= (1 << 11);
5360         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5361
5362         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5363         tmp |= (1 << 11);
5364         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5365
5366         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5367         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5368         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5369
5370         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5371         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5372         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5373
5374         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5375         tmp &= ~(7 << 13);
5376         tmp |= (5 << 13);
5377         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5378
5379         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5380         tmp &= ~(7 << 13);
5381         tmp |= (5 << 13);
5382         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5383
5384         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5385         tmp &= ~0xFF;
5386         tmp |= 0x1C;
5387         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5388
5389         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5390         tmp &= ~0xFF;
5391         tmp |= 0x1C;
5392         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5393
5394         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5395         tmp &= ~(0xFF << 16);
5396         tmp |= (0x1C << 16);
5397         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5398
5399         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5400         tmp &= ~(0xFF << 16);
5401         tmp |= (0x1C << 16);
5402         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5403
5404         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5405         tmp |= (1 << 27);
5406         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5407
5408         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5409         tmp |= (1 << 27);
5410         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5411
5412         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5413         tmp &= ~(0xF << 28);
5414         tmp |= (4 << 28);
5415         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5416
5417         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5418         tmp &= ~(0xF << 28);
5419         tmp |= (4 << 28);
5420         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5421 }
5422
5423 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5424  * Programming" based on the parameters passed:
5425  * - Sequence to enable CLKOUT_DP
5426  * - Sequence to enable CLKOUT_DP without spread
5427  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5428  */
5429 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5430                                  bool with_fdi)
5431 {
5432         struct drm_i915_private *dev_priv = dev->dev_private;
5433         uint32_t reg, tmp;
5434
5435         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5436                 with_spread = true;
5437         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5438                  with_fdi, "LP PCH doesn't have FDI\n"))
5439                 with_fdi = false;
5440
5441         mutex_lock(&dev_priv->dpio_lock);
5442
5443         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5444         tmp &= ~SBI_SSCCTL_DISABLE;
5445         tmp |= SBI_SSCCTL_PATHALT;
5446         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5447
5448         udelay(24);
5449
5450         if (with_spread) {
5451                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5452                 tmp &= ~SBI_SSCCTL_PATHALT;
5453                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5454
5455                 if (with_fdi) {
5456                         lpt_reset_fdi_mphy(dev_priv);
5457                         lpt_program_fdi_mphy(dev_priv);
5458                 }
5459         }
5460
5461         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5462                SBI_GEN0 : SBI_DBUFF0;
5463         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5464         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5465         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5466
5467         mutex_unlock(&dev_priv->dpio_lock);
5468 }
5469
5470 /* Sequence to disable CLKOUT_DP */
5471 static void lpt_disable_clkout_dp(struct drm_device *dev)
5472 {
5473         struct drm_i915_private *dev_priv = dev->dev_private;
5474         uint32_t reg, tmp;
5475
5476         mutex_lock(&dev_priv->dpio_lock);
5477
5478         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5479                SBI_GEN0 : SBI_DBUFF0;
5480         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5481         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5482         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5483
5484         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5485         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5486                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5487                         tmp |= SBI_SSCCTL_PATHALT;
5488                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5489                         udelay(32);
5490                 }
5491                 tmp |= SBI_SSCCTL_DISABLE;
5492                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5493         }
5494
5495         mutex_unlock(&dev_priv->dpio_lock);
5496 }
5497
5498 static void lpt_init_pch_refclk(struct drm_device *dev)
5499 {
5500         struct drm_mode_config *mode_config = &dev->mode_config;
5501         struct intel_encoder *encoder;
5502         bool has_vga = false;
5503
5504         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5505                 switch (encoder->type) {
5506                 case INTEL_OUTPUT_ANALOG:
5507                         has_vga = true;
5508                         break;
5509                 }
5510         }
5511
5512         if (has_vga)
5513                 lpt_enable_clkout_dp(dev, true, true);
5514         else
5515                 lpt_disable_clkout_dp(dev);
5516 }
5517
5518 /*
5519  * Initialize reference clocks when the driver loads
5520  */
5521 void intel_init_pch_refclk(struct drm_device *dev)
5522 {
5523         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5524                 ironlake_init_pch_refclk(dev);
5525         else if (HAS_PCH_LPT(dev))
5526                 lpt_init_pch_refclk(dev);
5527 }
5528
5529 static int ironlake_get_refclk(struct drm_crtc *crtc)
5530 {
5531         struct drm_device *dev = crtc->dev;
5532         struct drm_i915_private *dev_priv = dev->dev_private;
5533         struct intel_encoder *encoder;
5534         int num_connectors = 0;
5535         bool is_lvds = false;
5536
5537         for_each_encoder_on_crtc(dev, crtc, encoder) {
5538                 switch (encoder->type) {
5539                 case INTEL_OUTPUT_LVDS:
5540                         is_lvds = true;
5541                         break;
5542                 }
5543                 num_connectors++;
5544         }
5545
5546         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5547                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5548                               dev_priv->vbt.lvds_ssc_freq);
5549                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5550         }
5551
5552         return 120000;
5553 }
5554
5555 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5556 {
5557         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5559         int pipe = intel_crtc->pipe;
5560         uint32_t val;
5561
5562         val = 0;
5563
5564         switch (intel_crtc->config.pipe_bpp) {
5565         case 18:
5566                 val |= PIPECONF_6BPC;
5567                 break;
5568         case 24:
5569                 val |= PIPECONF_8BPC;
5570                 break;
5571         case 30:
5572                 val |= PIPECONF_10BPC;
5573                 break;
5574         case 36:
5575                 val |= PIPECONF_12BPC;
5576                 break;
5577         default:
5578                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5579                 BUG();
5580         }
5581
5582         if (intel_crtc->config.dither)
5583                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5584
5585         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5586                 val |= PIPECONF_INTERLACED_ILK;
5587         else
5588                 val |= PIPECONF_PROGRESSIVE;
5589
5590         if (intel_crtc->config.limited_color_range)
5591                 val |= PIPECONF_COLOR_RANGE_SELECT;
5592
5593         I915_WRITE(PIPECONF(pipe), val);
5594         POSTING_READ(PIPECONF(pipe));
5595 }
5596
5597 /*
5598  * Set up the pipe CSC unit.
5599  *
5600  * Currently only full range RGB to limited range RGB conversion
5601  * is supported, but eventually this should handle various
5602  * RGB<->YCbCr scenarios as well.
5603  */
5604 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5605 {
5606         struct drm_device *dev = crtc->dev;
5607         struct drm_i915_private *dev_priv = dev->dev_private;
5608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5609         int pipe = intel_crtc->pipe;
5610         uint16_t coeff = 0x7800; /* 1.0 */
5611
5612         /*
5613          * TODO: Check what kind of values actually come out of the pipe
5614          * with these coeff/postoff values and adjust to get the best
5615          * accuracy. Perhaps we even need to take the bpc value into
5616          * consideration.
5617          */
5618
5619         if (intel_crtc->config.limited_color_range)
5620                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5621
5622         /*
5623          * GY/GU and RY/RU should be the other way around according
5624          * to BSpec, but reality doesn't agree. Just set them up in
5625          * a way that results in the correct picture.
5626          */
5627         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5628         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5629
5630         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5631         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5632
5633         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5634         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5635
5636         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5637         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5638         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5639
5640         if (INTEL_INFO(dev)->gen > 6) {
5641                 uint16_t postoff = 0;
5642
5643                 if (intel_crtc->config.limited_color_range)
5644                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5645
5646                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5647                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5648                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5649
5650                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5651         } else {
5652                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5653
5654                 if (intel_crtc->config.limited_color_range)
5655                         mode |= CSC_BLACK_SCREEN_OFFSET;
5656
5657                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5658         }
5659 }
5660
5661 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5662 {
5663         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5665         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5666         uint32_t val;
5667
5668         val = 0;
5669
5670         if (intel_crtc->config.dither)
5671                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5672
5673         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5674                 val |= PIPECONF_INTERLACED_ILK;
5675         else
5676                 val |= PIPECONF_PROGRESSIVE;
5677
5678         I915_WRITE(PIPECONF(cpu_transcoder), val);
5679         POSTING_READ(PIPECONF(cpu_transcoder));
5680
5681         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5682         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5683 }
5684
5685 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5686                                     intel_clock_t *clock,
5687                                     bool *has_reduced_clock,
5688                                     intel_clock_t *reduced_clock)
5689 {
5690         struct drm_device *dev = crtc->dev;
5691         struct drm_i915_private *dev_priv = dev->dev_private;
5692         struct intel_encoder *intel_encoder;
5693         int refclk;
5694         const intel_limit_t *limit;
5695         bool ret, is_lvds = false;
5696
5697         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5698                 switch (intel_encoder->type) {
5699                 case INTEL_OUTPUT_LVDS:
5700                         is_lvds = true;
5701                         break;
5702                 }
5703         }
5704
5705         refclk = ironlake_get_refclk(crtc);
5706
5707         /*
5708          * Returns a set of divisors for the desired target clock with the given
5709          * refclk, or FALSE.  The returned values represent the clock equation:
5710          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5711          */
5712         limit = intel_limit(crtc, refclk);
5713         ret = dev_priv->display.find_dpll(limit, crtc,
5714                                           to_intel_crtc(crtc)->config.port_clock,
5715                                           refclk, NULL, clock);
5716         if (!ret)
5717                 return false;
5718
5719         if (is_lvds && dev_priv->lvds_downclock_avail) {
5720                 /*
5721                  * Ensure we match the reduced clock's P to the target clock.
5722                  * If the clocks don't match, we can't switch the display clock
5723                  * by using the FP0/FP1. In such case we will disable the LVDS
5724                  * downclock feature.
5725                 */
5726                 *has_reduced_clock =
5727                         dev_priv->display.find_dpll(limit, crtc,
5728                                                     dev_priv->lvds_downclock,
5729                                                     refclk, clock,
5730                                                     reduced_clock);
5731         }
5732
5733         return true;
5734 }
5735
5736 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5737 {
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         uint32_t temp;
5740
5741         temp = I915_READ(SOUTH_CHICKEN1);
5742         if (temp & FDI_BC_BIFURCATION_SELECT)
5743                 return;
5744
5745         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5746         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5747
5748         temp |= FDI_BC_BIFURCATION_SELECT;
5749         DRM_DEBUG_KMS("enabling fdi C rx\n");
5750         I915_WRITE(SOUTH_CHICKEN1, temp);
5751         POSTING_READ(SOUTH_CHICKEN1);
5752 }
5753
5754 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5755 {
5756         struct drm_device *dev = intel_crtc->base.dev;
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758
5759         switch (intel_crtc->pipe) {
5760         case PIPE_A:
5761                 break;
5762         case PIPE_B:
5763                 if (intel_crtc->config.fdi_lanes > 2)
5764                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5765                 else
5766                         cpt_enable_fdi_bc_bifurcation(dev);
5767
5768                 break;
5769         case PIPE_C:
5770                 cpt_enable_fdi_bc_bifurcation(dev);
5771
5772                 break;
5773         default:
5774                 BUG();
5775         }
5776 }
5777
5778 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5779 {
5780         /*
5781          * Account for spread spectrum to avoid
5782          * oversubscribing the link. Max center spread
5783          * is 2.5%; use 5% for safety's sake.
5784          */
5785         u32 bps = target_clock * bpp * 21 / 20;
5786         return bps / (link_bw * 8) + 1;
5787 }
5788
5789 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5790 {
5791         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5792 }
5793
5794 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5795                                       u32 *fp,
5796                                       intel_clock_t *reduced_clock, u32 *fp2)
5797 {
5798         struct drm_crtc *crtc = &intel_crtc->base;
5799         struct drm_device *dev = crtc->dev;
5800         struct drm_i915_private *dev_priv = dev->dev_private;
5801         struct intel_encoder *intel_encoder;
5802         uint32_t dpll;
5803         int factor, num_connectors = 0;
5804         bool is_lvds = false, is_sdvo = false;
5805
5806         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5807                 switch (intel_encoder->type) {
5808                 case INTEL_OUTPUT_LVDS:
5809                         is_lvds = true;
5810                         break;
5811                 case INTEL_OUTPUT_SDVO:
5812                 case INTEL_OUTPUT_HDMI:
5813                         is_sdvo = true;
5814                         break;
5815                 }
5816
5817                 num_connectors++;
5818         }
5819
5820         /* Enable autotuning of the PLL clock (if permissible) */
5821         factor = 21;
5822         if (is_lvds) {
5823                 if ((intel_panel_use_ssc(dev_priv) &&
5824                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5825                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5826                         factor = 25;
5827         } else if (intel_crtc->config.sdvo_tv_clock)
5828                 factor = 20;
5829
5830         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5831                 *fp |= FP_CB_TUNE;
5832
5833         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5834                 *fp2 |= FP_CB_TUNE;
5835
5836         dpll = 0;
5837
5838         if (is_lvds)
5839                 dpll |= DPLLB_MODE_LVDS;
5840         else
5841                 dpll |= DPLLB_MODE_DAC_SERIAL;
5842
5843         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5844                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5845
5846         if (is_sdvo)
5847                 dpll |= DPLL_SDVO_HIGH_SPEED;
5848         if (intel_crtc->config.has_dp_encoder)
5849                 dpll |= DPLL_SDVO_HIGH_SPEED;
5850
5851         /* compute bitmask from p1 value */
5852         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5853         /* also FPA1 */
5854         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5855
5856         switch (intel_crtc->config.dpll.p2) {
5857         case 5:
5858                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5859                 break;
5860         case 7:
5861                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5862                 break;
5863         case 10:
5864                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5865                 break;
5866         case 14:
5867                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5868                 break;
5869         }
5870
5871         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5872                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5873         else
5874                 dpll |= PLL_REF_INPUT_DREFCLK;
5875
5876         return dpll | DPLL_VCO_ENABLE;
5877 }
5878
5879 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5880                                   int x, int y,
5881                                   struct drm_framebuffer *fb)
5882 {
5883         struct drm_device *dev = crtc->dev;
5884         struct drm_i915_private *dev_priv = dev->dev_private;
5885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5886         int pipe = intel_crtc->pipe;
5887         int plane = intel_crtc->plane;
5888         int num_connectors = 0;
5889         intel_clock_t clock, reduced_clock;
5890         u32 dpll = 0, fp = 0, fp2 = 0;
5891         bool ok, has_reduced_clock = false;
5892         bool is_lvds = false;
5893         struct intel_encoder *encoder;
5894         struct intel_shared_dpll *pll;
5895         int ret;
5896
5897         for_each_encoder_on_crtc(dev, crtc, encoder) {
5898                 switch (encoder->type) {
5899                 case INTEL_OUTPUT_LVDS:
5900                         is_lvds = true;
5901                         break;
5902                 }
5903
5904                 num_connectors++;
5905         }
5906
5907         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5908              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5909
5910         ok = ironlake_compute_clocks(crtc, &clock,
5911                                      &has_reduced_clock, &reduced_clock);
5912         if (!ok && !intel_crtc->config.clock_set) {
5913                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5914                 return -EINVAL;
5915         }
5916         /* Compat-code for transition, will disappear. */
5917         if (!intel_crtc->config.clock_set) {
5918                 intel_crtc->config.dpll.n = clock.n;
5919                 intel_crtc->config.dpll.m1 = clock.m1;
5920                 intel_crtc->config.dpll.m2 = clock.m2;
5921                 intel_crtc->config.dpll.p1 = clock.p1;
5922                 intel_crtc->config.dpll.p2 = clock.p2;
5923         }
5924
5925         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5926         if (intel_crtc->config.has_pch_encoder) {
5927                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5928                 if (has_reduced_clock)
5929                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5930
5931                 dpll = ironlake_compute_dpll(intel_crtc,
5932                                              &fp, &reduced_clock,
5933                                              has_reduced_clock ? &fp2 : NULL);
5934
5935                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5936                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5937                 if (has_reduced_clock)
5938                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5939                 else
5940                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5941
5942                 pll = intel_get_shared_dpll(intel_crtc);
5943                 if (pll == NULL) {
5944                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5945                                          pipe_name(pipe));
5946                         return -EINVAL;
5947                 }
5948         } else
5949                 intel_put_shared_dpll(intel_crtc);
5950
5951         if (intel_crtc->config.has_dp_encoder)
5952                 intel_dp_set_m_n(intel_crtc);
5953
5954         if (is_lvds && has_reduced_clock && i915_powersave)
5955                 intel_crtc->lowfreq_avail = true;
5956         else
5957                 intel_crtc->lowfreq_avail = false;
5958
5959         if (intel_crtc->config.has_pch_encoder) {
5960                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5961
5962         }
5963
5964         intel_set_pipe_timings(intel_crtc);
5965
5966         if (intel_crtc->config.has_pch_encoder) {
5967                 intel_cpu_transcoder_set_m_n(intel_crtc,
5968                                              &intel_crtc->config.fdi_m_n);
5969         }
5970
5971         if (IS_IVYBRIDGE(dev))
5972                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5973
5974         ironlake_set_pipeconf(crtc);
5975
5976         /* Set up the display plane register */
5977         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5978         POSTING_READ(DSPCNTR(plane));
5979
5980         ret = intel_pipe_set_base(crtc, x, y, fb);
5981
5982         return ret;
5983 }
5984
5985 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5986                                          struct intel_link_m_n *m_n)
5987 {
5988         struct drm_device *dev = crtc->base.dev;
5989         struct drm_i915_private *dev_priv = dev->dev_private;
5990         enum pipe pipe = crtc->pipe;
5991
5992         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5993         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5994         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5995                 & ~TU_SIZE_MASK;
5996         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5997         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5998                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5999 }
6000
6001 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6002                                          enum transcoder transcoder,
6003                                          struct intel_link_m_n *m_n)
6004 {
6005         struct drm_device *dev = crtc->base.dev;
6006         struct drm_i915_private *dev_priv = dev->dev_private;
6007         enum pipe pipe = crtc->pipe;
6008
6009         if (INTEL_INFO(dev)->gen >= 5) {
6010                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6011                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6012                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6013                         & ~TU_SIZE_MASK;
6014                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6015                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6016                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6017         } else {
6018                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6019                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6020                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6021                         & ~TU_SIZE_MASK;
6022                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6023                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6024                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6025         }
6026 }
6027
6028 void intel_dp_get_m_n(struct intel_crtc *crtc,
6029                       struct intel_crtc_config *pipe_config)
6030 {
6031         if (crtc->config.has_pch_encoder)
6032                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6033         else
6034                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6035                                              &pipe_config->dp_m_n);
6036 }
6037
6038 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6039                                         struct intel_crtc_config *pipe_config)
6040 {
6041         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6042                                      &pipe_config->fdi_m_n);
6043 }
6044
6045 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6046                                      struct intel_crtc_config *pipe_config)
6047 {
6048         struct drm_device *dev = crtc->base.dev;
6049         struct drm_i915_private *dev_priv = dev->dev_private;
6050         uint32_t tmp;
6051
6052         tmp = I915_READ(PF_CTL(crtc->pipe));
6053
6054         if (tmp & PF_ENABLE) {
6055                 pipe_config->pch_pfit.enabled = true;
6056                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6057                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6058
6059                 /* We currently do not free assignements of panel fitters on
6060                  * ivb/hsw (since we don't use the higher upscaling modes which
6061                  * differentiates them) so just WARN about this case for now. */
6062                 if (IS_GEN7(dev)) {
6063                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6064                                 PF_PIPE_SEL_IVB(crtc->pipe));
6065                 }
6066         }
6067 }
6068
6069 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6070                                      struct intel_crtc_config *pipe_config)
6071 {
6072         struct drm_device *dev = crtc->base.dev;
6073         struct drm_i915_private *dev_priv = dev->dev_private;
6074         uint32_t tmp;
6075
6076         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6077         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6078
6079         tmp = I915_READ(PIPECONF(crtc->pipe));
6080         if (!(tmp & PIPECONF_ENABLE))
6081                 return false;
6082
6083         switch (tmp & PIPECONF_BPC_MASK) {
6084         case PIPECONF_6BPC:
6085                 pipe_config->pipe_bpp = 18;
6086                 break;
6087         case PIPECONF_8BPC:
6088                 pipe_config->pipe_bpp = 24;
6089                 break;
6090         case PIPECONF_10BPC:
6091                 pipe_config->pipe_bpp = 30;
6092                 break;
6093         case PIPECONF_12BPC:
6094                 pipe_config->pipe_bpp = 36;
6095                 break;
6096         default:
6097                 break;
6098         }
6099
6100         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6101                 struct intel_shared_dpll *pll;
6102
6103                 pipe_config->has_pch_encoder = true;
6104
6105                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6106                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6107                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6108
6109                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6110
6111                 if (HAS_PCH_IBX(dev_priv->dev)) {
6112                         pipe_config->shared_dpll =
6113                                 (enum intel_dpll_id) crtc->pipe;
6114                 } else {
6115                         tmp = I915_READ(PCH_DPLL_SEL);
6116                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6117                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6118                         else
6119                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6120                 }
6121
6122                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6123
6124                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6125                                            &pipe_config->dpll_hw_state));
6126
6127                 tmp = pipe_config->dpll_hw_state.dpll;
6128                 pipe_config->pixel_multiplier =
6129                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6130                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6131
6132                 ironlake_pch_clock_get(crtc, pipe_config);
6133         } else {
6134                 pipe_config->pixel_multiplier = 1;
6135         }
6136
6137         intel_get_pipe_timings(crtc, pipe_config);
6138
6139         ironlake_get_pfit_config(crtc, pipe_config);
6140
6141         return true;
6142 }
6143
6144 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6145 {
6146         struct drm_device *dev = dev_priv->dev;
6147         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6148         struct intel_crtc *crtc;
6149         unsigned long irqflags;
6150         uint32_t val;
6151
6152         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6153                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6154                      pipe_name(crtc->pipe));
6155
6156         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6157         WARN(plls->spll_refcount, "SPLL enabled\n");
6158         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6159         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6160         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6161         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6162              "CPU PWM1 enabled\n");
6163         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6164              "CPU PWM2 enabled\n");
6165         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6166              "PCH PWM1 enabled\n");
6167         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6168              "Utility pin enabled\n");
6169         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6170
6171         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6172         val = I915_READ(DEIMR);
6173         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6174              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6175         val = I915_READ(SDEIMR);
6176         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6177              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6178         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6179 }
6180
6181 /*
6182  * This function implements pieces of two sequences from BSpec:
6183  * - Sequence for display software to disable LCPLL
6184  * - Sequence for display software to allow package C8+
6185  * The steps implemented here are just the steps that actually touch the LCPLL
6186  * register. Callers should take care of disabling all the display engine
6187  * functions, doing the mode unset, fixing interrupts, etc.
6188  */
6189 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6190                               bool switch_to_fclk, bool allow_power_down)
6191 {
6192         uint32_t val;
6193
6194         assert_can_disable_lcpll(dev_priv);
6195
6196         val = I915_READ(LCPLL_CTL);
6197
6198         if (switch_to_fclk) {
6199                 val |= LCPLL_CD_SOURCE_FCLK;
6200                 I915_WRITE(LCPLL_CTL, val);
6201
6202                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6203                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6204                         DRM_ERROR("Switching to FCLK failed\n");
6205
6206                 val = I915_READ(LCPLL_CTL);
6207         }
6208
6209         val |= LCPLL_PLL_DISABLE;
6210         I915_WRITE(LCPLL_CTL, val);
6211         POSTING_READ(LCPLL_CTL);
6212
6213         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6214                 DRM_ERROR("LCPLL still locked\n");
6215
6216         val = I915_READ(D_COMP);
6217         val |= D_COMP_COMP_DISABLE;
6218         mutex_lock(&dev_priv->rps.hw_lock);
6219         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6220                 DRM_ERROR("Failed to disable D_COMP\n");
6221         mutex_unlock(&dev_priv->rps.hw_lock);
6222         POSTING_READ(D_COMP);
6223         ndelay(100);
6224
6225         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6226                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6227
6228         if (allow_power_down) {
6229                 val = I915_READ(LCPLL_CTL);
6230                 val |= LCPLL_POWER_DOWN_ALLOW;
6231                 I915_WRITE(LCPLL_CTL, val);
6232                 POSTING_READ(LCPLL_CTL);
6233         }
6234 }
6235
6236 /*
6237  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6238  * source.
6239  */
6240 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6241 {
6242         uint32_t val;
6243
6244         val = I915_READ(LCPLL_CTL);
6245
6246         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6247                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6248                 return;
6249
6250         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6251          * we'll hang the machine! */
6252         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6253
6254         if (val & LCPLL_POWER_DOWN_ALLOW) {
6255                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6256                 I915_WRITE(LCPLL_CTL, val);
6257                 POSTING_READ(LCPLL_CTL);
6258         }
6259
6260         val = I915_READ(D_COMP);
6261         val |= D_COMP_COMP_FORCE;
6262         val &= ~D_COMP_COMP_DISABLE;
6263         mutex_lock(&dev_priv->rps.hw_lock);
6264         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6265                 DRM_ERROR("Failed to enable D_COMP\n");
6266         mutex_unlock(&dev_priv->rps.hw_lock);
6267         POSTING_READ(D_COMP);
6268
6269         val = I915_READ(LCPLL_CTL);
6270         val &= ~LCPLL_PLL_DISABLE;
6271         I915_WRITE(LCPLL_CTL, val);
6272
6273         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6274                 DRM_ERROR("LCPLL not locked yet\n");
6275
6276         if (val & LCPLL_CD_SOURCE_FCLK) {
6277                 val = I915_READ(LCPLL_CTL);
6278                 val &= ~LCPLL_CD_SOURCE_FCLK;
6279                 I915_WRITE(LCPLL_CTL, val);
6280
6281                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6282                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6283                         DRM_ERROR("Switching back to LCPLL failed\n");
6284         }
6285
6286         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6287 }
6288
6289 void hsw_enable_pc8_work(struct work_struct *__work)
6290 {
6291         struct drm_i915_private *dev_priv =
6292                 container_of(to_delayed_work(__work), struct drm_i915_private,
6293                              pc8.enable_work);
6294         struct drm_device *dev = dev_priv->dev;
6295         uint32_t val;
6296
6297         if (dev_priv->pc8.enabled)
6298                 return;
6299
6300         DRM_DEBUG_KMS("Enabling package C8+\n");
6301
6302         dev_priv->pc8.enabled = true;
6303
6304         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6305                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6306                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6307                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6308         }
6309
6310         lpt_disable_clkout_dp(dev);
6311         hsw_pc8_disable_interrupts(dev);
6312         hsw_disable_lcpll(dev_priv, true, true);
6313 }
6314
6315 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6316 {
6317         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6318         WARN(dev_priv->pc8.disable_count < 1,
6319              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6320
6321         dev_priv->pc8.disable_count--;
6322         if (dev_priv->pc8.disable_count != 0)
6323                 return;
6324
6325         schedule_delayed_work(&dev_priv->pc8.enable_work,
6326                               msecs_to_jiffies(i915_pc8_timeout));
6327 }
6328
6329 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6330 {
6331         struct drm_device *dev = dev_priv->dev;
6332         uint32_t val;
6333
6334         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6335         WARN(dev_priv->pc8.disable_count < 0,
6336              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6337
6338         dev_priv->pc8.disable_count++;
6339         if (dev_priv->pc8.disable_count != 1)
6340                 return;
6341
6342         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6343         if (!dev_priv->pc8.enabled)
6344                 return;
6345
6346         DRM_DEBUG_KMS("Disabling package C8+\n");
6347
6348         hsw_restore_lcpll(dev_priv);
6349         hsw_pc8_restore_interrupts(dev);
6350         lpt_init_pch_refclk(dev);
6351
6352         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6353                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6354                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6355                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6356         }
6357
6358         intel_prepare_ddi(dev);
6359         i915_gem_init_swizzling(dev);
6360         mutex_lock(&dev_priv->rps.hw_lock);
6361         gen6_update_ring_freq(dev);
6362         mutex_unlock(&dev_priv->rps.hw_lock);
6363         dev_priv->pc8.enabled = false;
6364 }
6365
6366 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6367 {
6368         mutex_lock(&dev_priv->pc8.lock);
6369         __hsw_enable_package_c8(dev_priv);
6370         mutex_unlock(&dev_priv->pc8.lock);
6371 }
6372
6373 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6374 {
6375         mutex_lock(&dev_priv->pc8.lock);
6376         __hsw_disable_package_c8(dev_priv);
6377         mutex_unlock(&dev_priv->pc8.lock);
6378 }
6379
6380 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6381 {
6382         struct drm_device *dev = dev_priv->dev;
6383         struct intel_crtc *crtc;
6384         uint32_t val;
6385
6386         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6387                 if (crtc->base.enabled)
6388                         return false;
6389
6390         /* This case is still possible since we have the i915.disable_power_well
6391          * parameter and also the KVMr or something else might be requesting the
6392          * power well. */
6393         val = I915_READ(HSW_PWR_WELL_DRIVER);
6394         if (val != 0) {
6395                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6396                 return false;
6397         }
6398
6399         return true;
6400 }
6401
6402 /* Since we're called from modeset_global_resources there's no way to
6403  * symmetrically increase and decrease the refcount, so we use
6404  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6405  * or not.
6406  */
6407 static void hsw_update_package_c8(struct drm_device *dev)
6408 {
6409         struct drm_i915_private *dev_priv = dev->dev_private;
6410         bool allow;
6411
6412         if (!i915_enable_pc8)
6413                 return;
6414
6415         mutex_lock(&dev_priv->pc8.lock);
6416
6417         allow = hsw_can_enable_package_c8(dev_priv);
6418
6419         if (allow == dev_priv->pc8.requirements_met)
6420                 goto done;
6421
6422         dev_priv->pc8.requirements_met = allow;
6423
6424         if (allow)
6425                 __hsw_enable_package_c8(dev_priv);
6426         else
6427                 __hsw_disable_package_c8(dev_priv);
6428
6429 done:
6430         mutex_unlock(&dev_priv->pc8.lock);
6431 }
6432
6433 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6434 {
6435         if (!dev_priv->pc8.gpu_idle) {
6436                 dev_priv->pc8.gpu_idle = true;
6437                 hsw_enable_package_c8(dev_priv);
6438         }
6439 }
6440
6441 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6442 {
6443         if (dev_priv->pc8.gpu_idle) {
6444                 dev_priv->pc8.gpu_idle = false;
6445                 hsw_disable_package_c8(dev_priv);
6446         }
6447 }
6448
6449 static void haswell_modeset_global_resources(struct drm_device *dev)
6450 {
6451         bool enable = false;
6452         struct intel_crtc *crtc;
6453
6454         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6455                 if (!crtc->base.enabled)
6456                         continue;
6457
6458                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6459                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6460                         enable = true;
6461         }
6462
6463         intel_set_power_well(dev, enable);
6464
6465         hsw_update_package_c8(dev);
6466 }
6467
6468 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6469                                  int x, int y,
6470                                  struct drm_framebuffer *fb)
6471 {
6472         struct drm_device *dev = crtc->dev;
6473         struct drm_i915_private *dev_priv = dev->dev_private;
6474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6475         int plane = intel_crtc->plane;
6476         int ret;
6477
6478         if (!intel_ddi_pll_mode_set(crtc))
6479                 return -EINVAL;
6480
6481         if (intel_crtc->config.has_dp_encoder)
6482                 intel_dp_set_m_n(intel_crtc);
6483
6484         intel_crtc->lowfreq_avail = false;
6485
6486         intel_set_pipe_timings(intel_crtc);
6487
6488         if (intel_crtc->config.has_pch_encoder) {
6489                 intel_cpu_transcoder_set_m_n(intel_crtc,
6490                                              &intel_crtc->config.fdi_m_n);
6491         }
6492
6493         haswell_set_pipeconf(crtc);
6494
6495         intel_set_pipe_csc(crtc);
6496
6497         /* Set up the display plane register */
6498         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6499         POSTING_READ(DSPCNTR(plane));
6500
6501         ret = intel_pipe_set_base(crtc, x, y, fb);
6502
6503         return ret;
6504 }
6505
6506 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6507                                     struct intel_crtc_config *pipe_config)
6508 {
6509         struct drm_device *dev = crtc->base.dev;
6510         struct drm_i915_private *dev_priv = dev->dev_private;
6511         enum intel_display_power_domain pfit_domain;
6512         uint32_t tmp;
6513
6514         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6515         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6516
6517         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6518         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6519                 enum pipe trans_edp_pipe;
6520                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6521                 default:
6522                         WARN(1, "unknown pipe linked to edp transcoder\n");
6523                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6524                 case TRANS_DDI_EDP_INPUT_A_ON:
6525                         trans_edp_pipe = PIPE_A;
6526                         break;
6527                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6528                         trans_edp_pipe = PIPE_B;
6529                         break;
6530                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6531                         trans_edp_pipe = PIPE_C;
6532                         break;
6533                 }
6534
6535                 if (trans_edp_pipe == crtc->pipe)
6536                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6537         }
6538
6539         if (!intel_display_power_enabled(dev,
6540                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6541                 return false;
6542
6543         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6544         if (!(tmp & PIPECONF_ENABLE))
6545                 return false;
6546
6547         /*
6548          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6549          * DDI E. So just check whether this pipe is wired to DDI E and whether
6550          * the PCH transcoder is on.
6551          */
6552         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6553         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6554             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6555                 pipe_config->has_pch_encoder = true;
6556
6557                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6558                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6559                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6560
6561                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6562         }
6563
6564         intel_get_pipe_timings(crtc, pipe_config);
6565
6566         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6567         if (intel_display_power_enabled(dev, pfit_domain))
6568                 ironlake_get_pfit_config(crtc, pipe_config);
6569
6570         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6571                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6572
6573         pipe_config->pixel_multiplier = 1;
6574
6575         return true;
6576 }
6577
6578 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6579                                int x, int y,
6580                                struct drm_framebuffer *fb)
6581 {
6582         struct drm_device *dev = crtc->dev;
6583         struct drm_i915_private *dev_priv = dev->dev_private;
6584         struct intel_encoder *encoder;
6585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6586         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6587         int pipe = intel_crtc->pipe;
6588         int ret;
6589
6590         drm_vblank_pre_modeset(dev, pipe);
6591
6592         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6593
6594         drm_vblank_post_modeset(dev, pipe);
6595
6596         if (ret != 0)
6597                 return ret;
6598
6599         for_each_encoder_on_crtc(dev, crtc, encoder) {
6600                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6601                         encoder->base.base.id,
6602                         drm_get_encoder_name(&encoder->base),
6603                         mode->base.id, mode->name);
6604                 encoder->mode_set(encoder);
6605         }
6606
6607         return 0;
6608 }
6609
6610 static bool intel_eld_uptodate(struct drm_connector *connector,
6611                                int reg_eldv, uint32_t bits_eldv,
6612                                int reg_elda, uint32_t bits_elda,
6613                                int reg_edid)
6614 {
6615         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6616         uint8_t *eld = connector->eld;
6617         uint32_t i;
6618
6619         i = I915_READ(reg_eldv);
6620         i &= bits_eldv;
6621
6622         if (!eld[0])
6623                 return !i;
6624
6625         if (!i)
6626                 return false;
6627
6628         i = I915_READ(reg_elda);
6629         i &= ~bits_elda;
6630         I915_WRITE(reg_elda, i);
6631
6632         for (i = 0; i < eld[2]; i++)
6633                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6634                         return false;
6635
6636         return true;
6637 }
6638
6639 static void g4x_write_eld(struct drm_connector *connector,
6640                           struct drm_crtc *crtc)
6641 {
6642         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6643         uint8_t *eld = connector->eld;
6644         uint32_t eldv;
6645         uint32_t len;
6646         uint32_t i;
6647
6648         i = I915_READ(G4X_AUD_VID_DID);
6649
6650         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6651                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6652         else
6653                 eldv = G4X_ELDV_DEVCTG;
6654
6655         if (intel_eld_uptodate(connector,
6656                                G4X_AUD_CNTL_ST, eldv,
6657                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6658                                G4X_HDMIW_HDMIEDID))
6659                 return;
6660
6661         i = I915_READ(G4X_AUD_CNTL_ST);
6662         i &= ~(eldv | G4X_ELD_ADDR);
6663         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6664         I915_WRITE(G4X_AUD_CNTL_ST, i);
6665
6666         if (!eld[0])
6667                 return;
6668
6669         len = min_t(uint8_t, eld[2], len);
6670         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6671         for (i = 0; i < len; i++)
6672                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6673
6674         i = I915_READ(G4X_AUD_CNTL_ST);
6675         i |= eldv;
6676         I915_WRITE(G4X_AUD_CNTL_ST, i);
6677 }
6678
6679 static void haswell_write_eld(struct drm_connector *connector,
6680                                      struct drm_crtc *crtc)
6681 {
6682         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6683         uint8_t *eld = connector->eld;
6684         struct drm_device *dev = crtc->dev;
6685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6686         uint32_t eldv;
6687         uint32_t i;
6688         int len;
6689         int pipe = to_intel_crtc(crtc)->pipe;
6690         int tmp;
6691
6692         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6693         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6694         int aud_config = HSW_AUD_CFG(pipe);
6695         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6696
6697
6698         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6699
6700         /* Audio output enable */
6701         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6702         tmp = I915_READ(aud_cntrl_st2);
6703         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6704         I915_WRITE(aud_cntrl_st2, tmp);
6705
6706         /* Wait for 1 vertical blank */
6707         intel_wait_for_vblank(dev, pipe);
6708
6709         /* Set ELD valid state */
6710         tmp = I915_READ(aud_cntrl_st2);
6711         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6712         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6713         I915_WRITE(aud_cntrl_st2, tmp);
6714         tmp = I915_READ(aud_cntrl_st2);
6715         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6716
6717         /* Enable HDMI mode */
6718         tmp = I915_READ(aud_config);
6719         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6720         /* clear N_programing_enable and N_value_index */
6721         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6722         I915_WRITE(aud_config, tmp);
6723
6724         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6725
6726         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6727         intel_crtc->eld_vld = true;
6728
6729         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6730                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6731                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6732                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6733         } else
6734                 I915_WRITE(aud_config, 0);
6735
6736         if (intel_eld_uptodate(connector,
6737                                aud_cntrl_st2, eldv,
6738                                aud_cntl_st, IBX_ELD_ADDRESS,
6739                                hdmiw_hdmiedid))
6740                 return;
6741
6742         i = I915_READ(aud_cntrl_st2);
6743         i &= ~eldv;
6744         I915_WRITE(aud_cntrl_st2, i);
6745
6746         if (!eld[0])
6747                 return;
6748
6749         i = I915_READ(aud_cntl_st);
6750         i &= ~IBX_ELD_ADDRESS;
6751         I915_WRITE(aud_cntl_st, i);
6752         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6753         DRM_DEBUG_DRIVER("port num:%d\n", i);
6754
6755         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6756         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6757         for (i = 0; i < len; i++)
6758                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6759
6760         i = I915_READ(aud_cntrl_st2);
6761         i |= eldv;
6762         I915_WRITE(aud_cntrl_st2, i);
6763
6764 }
6765
6766 static void ironlake_write_eld(struct drm_connector *connector,
6767                                      struct drm_crtc *crtc)
6768 {
6769         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6770         uint8_t *eld = connector->eld;
6771         uint32_t eldv;
6772         uint32_t i;
6773         int len;
6774         int hdmiw_hdmiedid;
6775         int aud_config;
6776         int aud_cntl_st;
6777         int aud_cntrl_st2;
6778         int pipe = to_intel_crtc(crtc)->pipe;
6779
6780         if (HAS_PCH_IBX(connector->dev)) {
6781                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6782                 aud_config = IBX_AUD_CFG(pipe);
6783                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6784                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6785         } else {
6786                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6787                 aud_config = CPT_AUD_CFG(pipe);
6788                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6789                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6790         }
6791
6792         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6793
6794         i = I915_READ(aud_cntl_st);
6795         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6796         if (!i) {
6797                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6798                 /* operate blindly on all ports */
6799                 eldv = IBX_ELD_VALIDB;
6800                 eldv |= IBX_ELD_VALIDB << 4;
6801                 eldv |= IBX_ELD_VALIDB << 8;
6802         } else {
6803                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6804                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6805         }
6806
6807         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6808                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6809                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6810                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6811         } else
6812                 I915_WRITE(aud_config, 0);
6813
6814         if (intel_eld_uptodate(connector,
6815                                aud_cntrl_st2, eldv,
6816                                aud_cntl_st, IBX_ELD_ADDRESS,
6817                                hdmiw_hdmiedid))
6818                 return;
6819
6820         i = I915_READ(aud_cntrl_st2);
6821         i &= ~eldv;
6822         I915_WRITE(aud_cntrl_st2, i);
6823
6824         if (!eld[0])
6825                 return;
6826
6827         i = I915_READ(aud_cntl_st);
6828         i &= ~IBX_ELD_ADDRESS;
6829         I915_WRITE(aud_cntl_st, i);
6830
6831         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6832         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6833         for (i = 0; i < len; i++)
6834                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6835
6836         i = I915_READ(aud_cntrl_st2);
6837         i |= eldv;
6838         I915_WRITE(aud_cntrl_st2, i);
6839 }
6840
6841 void intel_write_eld(struct drm_encoder *encoder,
6842                      struct drm_display_mode *mode)
6843 {
6844         struct drm_crtc *crtc = encoder->crtc;
6845         struct drm_connector *connector;
6846         struct drm_device *dev = encoder->dev;
6847         struct drm_i915_private *dev_priv = dev->dev_private;
6848
6849         connector = drm_select_eld(encoder, mode);
6850         if (!connector)
6851                 return;
6852
6853         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6854                          connector->base.id,
6855                          drm_get_connector_name(connector),
6856                          connector->encoder->base.id,
6857                          drm_get_encoder_name(connector->encoder));
6858
6859         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6860
6861         if (dev_priv->display.write_eld)
6862                 dev_priv->display.write_eld(connector, crtc);
6863 }
6864
6865 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6866 {
6867         struct drm_device *dev = crtc->dev;
6868         struct drm_i915_private *dev_priv = dev->dev_private;
6869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6870         bool visible = base != 0;
6871         u32 cntl;
6872
6873         if (intel_crtc->cursor_visible == visible)
6874                 return;
6875
6876         cntl = I915_READ(_CURACNTR);
6877         if (visible) {
6878                 /* On these chipsets we can only modify the base whilst
6879                  * the cursor is disabled.
6880                  */
6881                 I915_WRITE(_CURABASE, base);
6882
6883                 cntl &= ~(CURSOR_FORMAT_MASK);
6884                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6885                 cntl |= CURSOR_ENABLE |
6886                         CURSOR_GAMMA_ENABLE |
6887                         CURSOR_FORMAT_ARGB;
6888         } else
6889                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6890         I915_WRITE(_CURACNTR, cntl);
6891
6892         intel_crtc->cursor_visible = visible;
6893 }
6894
6895 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6896 {
6897         struct drm_device *dev = crtc->dev;
6898         struct drm_i915_private *dev_priv = dev->dev_private;
6899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6900         int pipe = intel_crtc->pipe;
6901         bool visible = base != 0;
6902
6903         if (intel_crtc->cursor_visible != visible) {
6904                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6905                 if (base) {
6906                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6907                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6908                         cntl |= pipe << 28; /* Connect to correct pipe */
6909                 } else {
6910                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6911                         cntl |= CURSOR_MODE_DISABLE;
6912                 }
6913                 I915_WRITE(CURCNTR(pipe), cntl);
6914
6915                 intel_crtc->cursor_visible = visible;
6916         }
6917         /* and commit changes on next vblank */
6918         I915_WRITE(CURBASE(pipe), base);
6919 }
6920
6921 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6922 {
6923         struct drm_device *dev = crtc->dev;
6924         struct drm_i915_private *dev_priv = dev->dev_private;
6925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6926         int pipe = intel_crtc->pipe;
6927         bool visible = base != 0;
6928
6929         if (intel_crtc->cursor_visible != visible) {
6930                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6931                 if (base) {
6932                         cntl &= ~CURSOR_MODE;
6933                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6934                 } else {
6935                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6936                         cntl |= CURSOR_MODE_DISABLE;
6937                 }
6938                 if (IS_HASWELL(dev)) {
6939                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6940                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6941                 }
6942                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6943
6944                 intel_crtc->cursor_visible = visible;
6945         }
6946         /* and commit changes on next vblank */
6947         I915_WRITE(CURBASE_IVB(pipe), base);
6948 }
6949
6950 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6951 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6952                                      bool on)
6953 {
6954         struct drm_device *dev = crtc->dev;
6955         struct drm_i915_private *dev_priv = dev->dev_private;
6956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6957         int pipe = intel_crtc->pipe;
6958         int x = intel_crtc->cursor_x;
6959         int y = intel_crtc->cursor_y;
6960         u32 base = 0, pos = 0;
6961         bool visible;
6962
6963         if (on)
6964                 base = intel_crtc->cursor_addr;
6965
6966         if (x >= intel_crtc->config.pipe_src_w)
6967                 base = 0;
6968
6969         if (y >= intel_crtc->config.pipe_src_h)
6970                 base = 0;
6971
6972         if (x < 0) {
6973                 if (x + intel_crtc->cursor_width <= 0)
6974                         base = 0;
6975
6976                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6977                 x = -x;
6978         }
6979         pos |= x << CURSOR_X_SHIFT;
6980
6981         if (y < 0) {
6982                 if (y + intel_crtc->cursor_height <= 0)
6983                         base = 0;
6984
6985                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6986                 y = -y;
6987         }
6988         pos |= y << CURSOR_Y_SHIFT;
6989
6990         visible = base != 0;
6991         if (!visible && !intel_crtc->cursor_visible)
6992                 return;
6993
6994         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6995                 I915_WRITE(CURPOS_IVB(pipe), pos);
6996                 ivb_update_cursor(crtc, base);
6997         } else {
6998                 I915_WRITE(CURPOS(pipe), pos);
6999                 if (IS_845G(dev) || IS_I865G(dev))
7000                         i845_update_cursor(crtc, base);
7001                 else
7002                         i9xx_update_cursor(crtc, base);
7003         }
7004 }
7005
7006 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7007                                  struct drm_file *file,
7008                                  uint32_t handle,
7009                                  uint32_t width, uint32_t height)
7010 {
7011         struct drm_device *dev = crtc->dev;
7012         struct drm_i915_private *dev_priv = dev->dev_private;
7013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7014         struct drm_i915_gem_object *obj;
7015         uint32_t addr;
7016         int ret;
7017
7018         /* if we want to turn off the cursor ignore width and height */
7019         if (!handle) {
7020                 DRM_DEBUG_KMS("cursor off\n");
7021                 addr = 0;
7022                 obj = NULL;
7023                 mutex_lock(&dev->struct_mutex);
7024                 goto finish;
7025         }
7026
7027         /* Currently we only support 64x64 cursors */
7028         if (width != 64 || height != 64) {
7029                 DRM_ERROR("we currently only support 64x64 cursors\n");
7030                 return -EINVAL;
7031         }
7032
7033         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7034         if (&obj->base == NULL)
7035                 return -ENOENT;
7036
7037         if (obj->base.size < width * height * 4) {
7038                 DRM_ERROR("buffer is to small\n");
7039                 ret = -ENOMEM;
7040                 goto fail;
7041         }
7042
7043         /* we only need to pin inside GTT if cursor is non-phy */
7044         mutex_lock(&dev->struct_mutex);
7045         if (!dev_priv->info->cursor_needs_physical) {
7046                 unsigned alignment;
7047
7048                 if (obj->tiling_mode) {
7049                         DRM_ERROR("cursor cannot be tiled\n");
7050                         ret = -EINVAL;
7051                         goto fail_locked;
7052                 }
7053
7054                 /* Note that the w/a also requires 2 PTE of padding following
7055                  * the bo. We currently fill all unused PTE with the shadow
7056                  * page and so we should always have valid PTE following the
7057                  * cursor preventing the VT-d warning.
7058                  */
7059                 alignment = 0;
7060                 if (need_vtd_wa(dev))
7061                         alignment = 64*1024;
7062
7063                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7064                 if (ret) {
7065                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7066                         goto fail_locked;
7067                 }
7068
7069                 ret = i915_gem_object_put_fence(obj);
7070                 if (ret) {
7071                         DRM_ERROR("failed to release fence for cursor");
7072                         goto fail_unpin;
7073                 }
7074
7075                 addr = i915_gem_obj_ggtt_offset(obj);
7076         } else {
7077                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7078                 ret = i915_gem_attach_phys_object(dev, obj,
7079                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7080                                                   align);
7081                 if (ret) {
7082                         DRM_ERROR("failed to attach phys object\n");
7083                         goto fail_locked;
7084                 }
7085                 addr = obj->phys_obj->handle->busaddr;
7086         }
7087
7088         if (IS_GEN2(dev))
7089                 I915_WRITE(CURSIZE, (height << 12) | width);
7090
7091  finish:
7092         if (intel_crtc->cursor_bo) {
7093                 if (dev_priv->info->cursor_needs_physical) {
7094                         if (intel_crtc->cursor_bo != obj)
7095                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7096                 } else
7097                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7098                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7099         }
7100
7101         mutex_unlock(&dev->struct_mutex);
7102
7103         intel_crtc->cursor_addr = addr;
7104         intel_crtc->cursor_bo = obj;
7105         intel_crtc->cursor_width = width;
7106         intel_crtc->cursor_height = height;
7107
7108         if (intel_crtc->active)
7109                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7110
7111         return 0;
7112 fail_unpin:
7113         i915_gem_object_unpin_from_display_plane(obj);
7114 fail_locked:
7115         mutex_unlock(&dev->struct_mutex);
7116 fail:
7117         drm_gem_object_unreference_unlocked(&obj->base);
7118         return ret;
7119 }
7120
7121 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7122 {
7123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7124
7125         intel_crtc->cursor_x = x;
7126         intel_crtc->cursor_y = y;
7127
7128         if (intel_crtc->active)
7129                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7130
7131         return 0;
7132 }
7133
7134 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7135                                  u16 *blue, uint32_t start, uint32_t size)
7136 {
7137         int end = (start + size > 256) ? 256 : start + size, i;
7138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7139
7140         for (i = start; i < end; i++) {
7141                 intel_crtc->lut_r[i] = red[i] >> 8;
7142                 intel_crtc->lut_g[i] = green[i] >> 8;
7143                 intel_crtc->lut_b[i] = blue[i] >> 8;
7144         }
7145
7146         intel_crtc_load_lut(crtc);
7147 }
7148
7149 /* VESA 640x480x72Hz mode to set on the pipe */
7150 static struct drm_display_mode load_detect_mode = {
7151         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7152                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7153 };
7154
7155 static struct drm_framebuffer *
7156 intel_framebuffer_create(struct drm_device *dev,
7157                          struct drm_mode_fb_cmd2 *mode_cmd,
7158                          struct drm_i915_gem_object *obj)
7159 {
7160         struct intel_framebuffer *intel_fb;
7161         int ret;
7162
7163         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7164         if (!intel_fb) {
7165                 drm_gem_object_unreference_unlocked(&obj->base);
7166                 return ERR_PTR(-ENOMEM);
7167         }
7168
7169         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7170         if (ret) {
7171                 drm_gem_object_unreference_unlocked(&obj->base);
7172                 kfree(intel_fb);
7173                 return ERR_PTR(ret);
7174         }
7175
7176         return &intel_fb->base;
7177 }
7178
7179 static u32
7180 intel_framebuffer_pitch_for_width(int width, int bpp)
7181 {
7182         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7183         return ALIGN(pitch, 64);
7184 }
7185
7186 static u32
7187 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7188 {
7189         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7190         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7191 }
7192
7193 static struct drm_framebuffer *
7194 intel_framebuffer_create_for_mode(struct drm_device *dev,
7195                                   struct drm_display_mode *mode,
7196                                   int depth, int bpp)
7197 {
7198         struct drm_i915_gem_object *obj;
7199         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7200
7201         obj = i915_gem_alloc_object(dev,
7202                                     intel_framebuffer_size_for_mode(mode, bpp));
7203         if (obj == NULL)
7204                 return ERR_PTR(-ENOMEM);
7205
7206         mode_cmd.width = mode->hdisplay;
7207         mode_cmd.height = mode->vdisplay;
7208         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7209                                                                 bpp);
7210         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7211
7212         return intel_framebuffer_create(dev, &mode_cmd, obj);
7213 }
7214
7215 static struct drm_framebuffer *
7216 mode_fits_in_fbdev(struct drm_device *dev,
7217                    struct drm_display_mode *mode)
7218 {
7219         struct drm_i915_private *dev_priv = dev->dev_private;
7220         struct drm_i915_gem_object *obj;
7221         struct drm_framebuffer *fb;
7222
7223         if (dev_priv->fbdev == NULL)
7224                 return NULL;
7225
7226         obj = dev_priv->fbdev->ifb.obj;
7227         if (obj == NULL)
7228                 return NULL;
7229
7230         fb = &dev_priv->fbdev->ifb.base;
7231         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7232                                                                fb->bits_per_pixel))
7233                 return NULL;
7234
7235         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7236                 return NULL;
7237
7238         return fb;
7239 }
7240
7241 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7242                                 struct drm_display_mode *mode,
7243                                 struct intel_load_detect_pipe *old)
7244 {
7245         struct intel_crtc *intel_crtc;
7246         struct intel_encoder *intel_encoder =
7247                 intel_attached_encoder(connector);
7248         struct drm_crtc *possible_crtc;
7249         struct drm_encoder *encoder = &intel_encoder->base;
7250         struct drm_crtc *crtc = NULL;
7251         struct drm_device *dev = encoder->dev;
7252         struct drm_framebuffer *fb;
7253         int i = -1;
7254
7255         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7256                       connector->base.id, drm_get_connector_name(connector),
7257                       encoder->base.id, drm_get_encoder_name(encoder));
7258
7259         /*
7260          * Algorithm gets a little messy:
7261          *
7262          *   - if the connector already has an assigned crtc, use it (but make
7263          *     sure it's on first)
7264          *
7265          *   - try to find the first unused crtc that can drive this connector,
7266          *     and use that if we find one
7267          */
7268
7269         /* See if we already have a CRTC for this connector */
7270         if (encoder->crtc) {
7271                 crtc = encoder->crtc;
7272
7273                 mutex_lock(&crtc->mutex);
7274
7275                 old->dpms_mode = connector->dpms;
7276                 old->load_detect_temp = false;
7277
7278                 /* Make sure the crtc and connector are running */
7279                 if (connector->dpms != DRM_MODE_DPMS_ON)
7280                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7281
7282                 return true;
7283         }
7284
7285         /* Find an unused one (if possible) */
7286         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7287                 i++;
7288                 if (!(encoder->possible_crtcs & (1 << i)))
7289                         continue;
7290                 if (!possible_crtc->enabled) {
7291                         crtc = possible_crtc;
7292                         break;
7293                 }
7294         }
7295
7296         /*
7297          * If we didn't find an unused CRTC, don't use any.
7298          */
7299         if (!crtc) {
7300                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7301                 return false;
7302         }
7303
7304         mutex_lock(&crtc->mutex);
7305         intel_encoder->new_crtc = to_intel_crtc(crtc);
7306         to_intel_connector(connector)->new_encoder = intel_encoder;
7307
7308         intel_crtc = to_intel_crtc(crtc);
7309         old->dpms_mode = connector->dpms;
7310         old->load_detect_temp = true;
7311         old->release_fb = NULL;
7312
7313         if (!mode)
7314                 mode = &load_detect_mode;
7315
7316         /* We need a framebuffer large enough to accommodate all accesses
7317          * that the plane may generate whilst we perform load detection.
7318          * We can not rely on the fbcon either being present (we get called
7319          * during its initialisation to detect all boot displays, or it may
7320          * not even exist) or that it is large enough to satisfy the
7321          * requested mode.
7322          */
7323         fb = mode_fits_in_fbdev(dev, mode);
7324         if (fb == NULL) {
7325                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7326                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7327                 old->release_fb = fb;
7328         } else
7329                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7330         if (IS_ERR(fb)) {
7331                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7332                 mutex_unlock(&crtc->mutex);
7333                 return false;
7334         }
7335
7336         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7337                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7338                 if (old->release_fb)
7339                         old->release_fb->funcs->destroy(old->release_fb);
7340                 mutex_unlock(&crtc->mutex);
7341                 return false;
7342         }
7343
7344         /* let the connector get through one full cycle before testing */
7345         intel_wait_for_vblank(dev, intel_crtc->pipe);
7346         return true;
7347 }
7348
7349 void intel_release_load_detect_pipe(struct drm_connector *connector,
7350                                     struct intel_load_detect_pipe *old)
7351 {
7352         struct intel_encoder *intel_encoder =
7353                 intel_attached_encoder(connector);
7354         struct drm_encoder *encoder = &intel_encoder->base;
7355         struct drm_crtc *crtc = encoder->crtc;
7356
7357         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7358                       connector->base.id, drm_get_connector_name(connector),
7359                       encoder->base.id, drm_get_encoder_name(encoder));
7360
7361         if (old->load_detect_temp) {
7362                 to_intel_connector(connector)->new_encoder = NULL;
7363                 intel_encoder->new_crtc = NULL;
7364                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7365
7366                 if (old->release_fb) {
7367                         drm_framebuffer_unregister_private(old->release_fb);
7368                         drm_framebuffer_unreference(old->release_fb);
7369                 }
7370
7371                 mutex_unlock(&crtc->mutex);
7372                 return;
7373         }
7374
7375         /* Switch crtc and encoder back off if necessary */
7376         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7377                 connector->funcs->dpms(connector, old->dpms_mode);
7378
7379         mutex_unlock(&crtc->mutex);
7380 }
7381
7382 static int i9xx_pll_refclk(struct drm_device *dev,
7383                            const struct intel_crtc_config *pipe_config)
7384 {
7385         struct drm_i915_private *dev_priv = dev->dev_private;
7386         u32 dpll = pipe_config->dpll_hw_state.dpll;
7387
7388         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7389                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7390         else if (HAS_PCH_SPLIT(dev))
7391                 return 120000;
7392         else if (!IS_GEN2(dev))
7393                 return 96000;
7394         else
7395                 return 48000;
7396 }
7397
7398 /* Returns the clock of the currently programmed mode of the given pipe. */
7399 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7400                                 struct intel_crtc_config *pipe_config)
7401 {
7402         struct drm_device *dev = crtc->base.dev;
7403         struct drm_i915_private *dev_priv = dev->dev_private;
7404         int pipe = pipe_config->cpu_transcoder;
7405         u32 dpll = pipe_config->dpll_hw_state.dpll;
7406         u32 fp;
7407         intel_clock_t clock;
7408         int refclk = i9xx_pll_refclk(dev, pipe_config);
7409
7410         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7411                 fp = pipe_config->dpll_hw_state.fp0;
7412         else
7413                 fp = pipe_config->dpll_hw_state.fp1;
7414
7415         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7416         if (IS_PINEVIEW(dev)) {
7417                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7418                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7419         } else {
7420                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7421                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7422         }
7423
7424         if (!IS_GEN2(dev)) {
7425                 if (IS_PINEVIEW(dev))
7426                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7427                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7428                 else
7429                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7430                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7431
7432                 switch (dpll & DPLL_MODE_MASK) {
7433                 case DPLLB_MODE_DAC_SERIAL:
7434                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7435                                 5 : 10;
7436                         break;
7437                 case DPLLB_MODE_LVDS:
7438                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7439                                 7 : 14;
7440                         break;
7441                 default:
7442                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7443                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7444                         return;
7445                 }
7446
7447                 if (IS_PINEVIEW(dev))
7448                         pineview_clock(refclk, &clock);
7449                 else
7450                         i9xx_clock(refclk, &clock);
7451         } else {
7452                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7453
7454                 if (is_lvds) {
7455                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7456                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7457                         clock.p2 = 14;
7458                 } else {
7459                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7460                                 clock.p1 = 2;
7461                         else {
7462                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7463                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7464                         }
7465                         if (dpll & PLL_P2_DIVIDE_BY_4)
7466                                 clock.p2 = 4;
7467                         else
7468                                 clock.p2 = 2;
7469                 }
7470
7471                 i9xx_clock(refclk, &clock);
7472         }
7473
7474         /*
7475          * This value includes pixel_multiplier. We will use
7476          * port_clock to compute adjusted_mode.clock in the
7477          * encoder's get_config() function.
7478          */
7479         pipe_config->port_clock = clock.dot;
7480 }
7481
7482 int intel_dotclock_calculate(int link_freq,
7483                              const struct intel_link_m_n *m_n)
7484 {
7485         /*
7486          * The calculation for the data clock is:
7487          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7488          * But we want to avoid losing precison if possible, so:
7489          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7490          *
7491          * and the link clock is simpler:
7492          * link_clock = (m * link_clock) / n
7493          */
7494
7495         if (!m_n->link_n)
7496                 return 0;
7497
7498         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7499 }
7500
7501 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7502                                    struct intel_crtc_config *pipe_config)
7503 {
7504         struct drm_device *dev = crtc->base.dev;
7505
7506         /* read out port_clock from the DPLL */
7507         i9xx_crtc_clock_get(crtc, pipe_config);
7508
7509         /*
7510          * This value does not include pixel_multiplier.
7511          * We will check that port_clock and adjusted_mode.clock
7512          * agree once we know their relationship in the encoder's
7513          * get_config() function.
7514          */
7515         pipe_config->adjusted_mode.clock =
7516                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7517                                          &pipe_config->fdi_m_n);
7518 }
7519
7520 /** Returns the currently programmed mode of the given pipe. */
7521 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7522                                              struct drm_crtc *crtc)
7523 {
7524         struct drm_i915_private *dev_priv = dev->dev_private;
7525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7526         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7527         struct drm_display_mode *mode;
7528         struct intel_crtc_config pipe_config;
7529         int htot = I915_READ(HTOTAL(cpu_transcoder));
7530         int hsync = I915_READ(HSYNC(cpu_transcoder));
7531         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7532         int vsync = I915_READ(VSYNC(cpu_transcoder));
7533         enum pipe pipe = intel_crtc->pipe;
7534
7535         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7536         if (!mode)
7537                 return NULL;
7538
7539         /*
7540          * Construct a pipe_config sufficient for getting the clock info
7541          * back out of crtc_clock_get.
7542          *
7543          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7544          * to use a real value here instead.
7545          */
7546         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7547         pipe_config.pixel_multiplier = 1;
7548         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7549         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7550         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7551         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7552
7553         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7554         mode->hdisplay = (htot & 0xffff) + 1;
7555         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7556         mode->hsync_start = (hsync & 0xffff) + 1;
7557         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7558         mode->vdisplay = (vtot & 0xffff) + 1;
7559         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7560         mode->vsync_start = (vsync & 0xffff) + 1;
7561         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7562
7563         drm_mode_set_name(mode);
7564
7565         return mode;
7566 }
7567
7568 static void intel_increase_pllclock(struct drm_crtc *crtc)
7569 {
7570         struct drm_device *dev = crtc->dev;
7571         drm_i915_private_t *dev_priv = dev->dev_private;
7572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7573         int pipe = intel_crtc->pipe;
7574         int dpll_reg = DPLL(pipe);
7575         int dpll;
7576
7577         if (HAS_PCH_SPLIT(dev))
7578                 return;
7579
7580         if (!dev_priv->lvds_downclock_avail)
7581                 return;
7582
7583         dpll = I915_READ(dpll_reg);
7584         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7585                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7586
7587                 assert_panel_unlocked(dev_priv, pipe);
7588
7589                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7590                 I915_WRITE(dpll_reg, dpll);
7591                 intel_wait_for_vblank(dev, pipe);
7592
7593                 dpll = I915_READ(dpll_reg);
7594                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7595                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7596         }
7597 }
7598
7599 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7600 {
7601         struct drm_device *dev = crtc->dev;
7602         drm_i915_private_t *dev_priv = dev->dev_private;
7603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7604
7605         if (HAS_PCH_SPLIT(dev))
7606                 return;
7607
7608         if (!dev_priv->lvds_downclock_avail)
7609                 return;
7610
7611         /*
7612          * Since this is called by a timer, we should never get here in
7613          * the manual case.
7614          */
7615         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7616                 int pipe = intel_crtc->pipe;
7617                 int dpll_reg = DPLL(pipe);
7618                 int dpll;
7619
7620                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7621
7622                 assert_panel_unlocked(dev_priv, pipe);
7623
7624                 dpll = I915_READ(dpll_reg);
7625                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7626                 I915_WRITE(dpll_reg, dpll);
7627                 intel_wait_for_vblank(dev, pipe);
7628                 dpll = I915_READ(dpll_reg);
7629                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7630                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7631         }
7632
7633 }
7634
7635 void intel_mark_busy(struct drm_device *dev)
7636 {
7637         struct drm_i915_private *dev_priv = dev->dev_private;
7638
7639         hsw_package_c8_gpu_busy(dev_priv);
7640         i915_update_gfx_val(dev_priv);
7641 }
7642
7643 void intel_mark_idle(struct drm_device *dev)
7644 {
7645         struct drm_i915_private *dev_priv = dev->dev_private;
7646         struct drm_crtc *crtc;
7647
7648         hsw_package_c8_gpu_idle(dev_priv);
7649
7650         if (!i915_powersave)
7651                 return;
7652
7653         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7654                 if (!crtc->fb)
7655                         continue;
7656
7657                 intel_decrease_pllclock(crtc);
7658         }
7659 }
7660
7661 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7662                         struct intel_ring_buffer *ring)
7663 {
7664         struct drm_device *dev = obj->base.dev;
7665         struct drm_crtc *crtc;
7666
7667         if (!i915_powersave)
7668                 return;
7669
7670         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7671                 if (!crtc->fb)
7672                         continue;
7673
7674                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7675                         continue;
7676
7677                 intel_increase_pllclock(crtc);
7678                 if (ring && intel_fbc_enabled(dev))
7679                         ring->fbc_dirty = true;
7680         }
7681 }
7682
7683 static void intel_crtc_destroy(struct drm_crtc *crtc)
7684 {
7685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7686         struct drm_device *dev = crtc->dev;
7687         struct intel_unpin_work *work;
7688         unsigned long flags;
7689
7690         spin_lock_irqsave(&dev->event_lock, flags);
7691         work = intel_crtc->unpin_work;
7692         intel_crtc->unpin_work = NULL;
7693         spin_unlock_irqrestore(&dev->event_lock, flags);
7694
7695         if (work) {
7696                 cancel_work_sync(&work->work);
7697                 kfree(work);
7698         }
7699
7700         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7701
7702         drm_crtc_cleanup(crtc);
7703
7704         kfree(intel_crtc);
7705 }
7706
7707 static void intel_unpin_work_fn(struct work_struct *__work)
7708 {
7709         struct intel_unpin_work *work =
7710                 container_of(__work, struct intel_unpin_work, work);
7711         struct drm_device *dev = work->crtc->dev;
7712
7713         mutex_lock(&dev->struct_mutex);
7714         intel_unpin_fb_obj(work->old_fb_obj);
7715         drm_gem_object_unreference(&work->pending_flip_obj->base);
7716         drm_gem_object_unreference(&work->old_fb_obj->base);
7717
7718         intel_update_fbc(dev);
7719         mutex_unlock(&dev->struct_mutex);
7720
7721         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7722         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7723
7724         kfree(work);
7725 }
7726
7727 static void do_intel_finish_page_flip(struct drm_device *dev,
7728                                       struct drm_crtc *crtc)
7729 {
7730         drm_i915_private_t *dev_priv = dev->dev_private;
7731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7732         struct intel_unpin_work *work;
7733         unsigned long flags;
7734
7735         /* Ignore early vblank irqs */
7736         if (intel_crtc == NULL)
7737                 return;
7738
7739         spin_lock_irqsave(&dev->event_lock, flags);
7740         work = intel_crtc->unpin_work;
7741
7742         /* Ensure we don't miss a work->pending update ... */
7743         smp_rmb();
7744
7745         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7746                 spin_unlock_irqrestore(&dev->event_lock, flags);
7747                 return;
7748         }
7749
7750         /* and that the unpin work is consistent wrt ->pending. */
7751         smp_rmb();
7752
7753         intel_crtc->unpin_work = NULL;
7754
7755         if (work->event)
7756                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7757
7758         drm_vblank_put(dev, intel_crtc->pipe);
7759
7760         spin_unlock_irqrestore(&dev->event_lock, flags);
7761
7762         wake_up_all(&dev_priv->pending_flip_queue);
7763
7764         queue_work(dev_priv->wq, &work->work);
7765
7766         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7767 }
7768
7769 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7770 {
7771         drm_i915_private_t *dev_priv = dev->dev_private;
7772         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7773
7774         do_intel_finish_page_flip(dev, crtc);
7775 }
7776
7777 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7778 {
7779         drm_i915_private_t *dev_priv = dev->dev_private;
7780         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7781
7782         do_intel_finish_page_flip(dev, crtc);
7783 }
7784
7785 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7786 {
7787         drm_i915_private_t *dev_priv = dev->dev_private;
7788         struct intel_crtc *intel_crtc =
7789                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7790         unsigned long flags;
7791
7792         /* NB: An MMIO update of the plane base pointer will also
7793          * generate a page-flip completion irq, i.e. every modeset
7794          * is also accompanied by a spurious intel_prepare_page_flip().
7795          */
7796         spin_lock_irqsave(&dev->event_lock, flags);
7797         if (intel_crtc->unpin_work)
7798                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7799         spin_unlock_irqrestore(&dev->event_lock, flags);
7800 }
7801
7802 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7803 {
7804         /* Ensure that the work item is consistent when activating it ... */
7805         smp_wmb();
7806         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7807         /* and that it is marked active as soon as the irq could fire. */
7808         smp_wmb();
7809 }
7810
7811 static int intel_gen2_queue_flip(struct drm_device *dev,
7812                                  struct drm_crtc *crtc,
7813                                  struct drm_framebuffer *fb,
7814                                  struct drm_i915_gem_object *obj,
7815                                  uint32_t flags)
7816 {
7817         struct drm_i915_private *dev_priv = dev->dev_private;
7818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7819         u32 flip_mask;
7820         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7821         int ret;
7822
7823         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7824         if (ret)
7825                 goto err;
7826
7827         ret = intel_ring_begin(ring, 6);
7828         if (ret)
7829                 goto err_unpin;
7830
7831         /* Can't queue multiple flips, so wait for the previous
7832          * one to finish before executing the next.
7833          */
7834         if (intel_crtc->plane)
7835                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7836         else
7837                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7838         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7839         intel_ring_emit(ring, MI_NOOP);
7840         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7841                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7842         intel_ring_emit(ring, fb->pitches[0]);
7843         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7844         intel_ring_emit(ring, 0); /* aux display base address, unused */
7845
7846         intel_mark_page_flip_active(intel_crtc);
7847         __intel_ring_advance(ring);
7848         return 0;
7849
7850 err_unpin:
7851         intel_unpin_fb_obj(obj);
7852 err:
7853         return ret;
7854 }
7855
7856 static int intel_gen3_queue_flip(struct drm_device *dev,
7857                                  struct drm_crtc *crtc,
7858                                  struct drm_framebuffer *fb,
7859                                  struct drm_i915_gem_object *obj,
7860                                  uint32_t flags)
7861 {
7862         struct drm_i915_private *dev_priv = dev->dev_private;
7863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7864         u32 flip_mask;
7865         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7866         int ret;
7867
7868         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7869         if (ret)
7870                 goto err;
7871
7872         ret = intel_ring_begin(ring, 6);
7873         if (ret)
7874                 goto err_unpin;
7875
7876         if (intel_crtc->plane)
7877                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7878         else
7879                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7880         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7881         intel_ring_emit(ring, MI_NOOP);
7882         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7883                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7884         intel_ring_emit(ring, fb->pitches[0]);
7885         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7886         intel_ring_emit(ring, MI_NOOP);
7887
7888         intel_mark_page_flip_active(intel_crtc);
7889         __intel_ring_advance(ring);
7890         return 0;
7891
7892 err_unpin:
7893         intel_unpin_fb_obj(obj);
7894 err:
7895         return ret;
7896 }
7897
7898 static int intel_gen4_queue_flip(struct drm_device *dev,
7899                                  struct drm_crtc *crtc,
7900                                  struct drm_framebuffer *fb,
7901                                  struct drm_i915_gem_object *obj,
7902                                  uint32_t flags)
7903 {
7904         struct drm_i915_private *dev_priv = dev->dev_private;
7905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7906         uint32_t pf, pipesrc;
7907         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7908         int ret;
7909
7910         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7911         if (ret)
7912                 goto err;
7913
7914         ret = intel_ring_begin(ring, 4);
7915         if (ret)
7916                 goto err_unpin;
7917
7918         /* i965+ uses the linear or tiled offsets from the
7919          * Display Registers (which do not change across a page-flip)
7920          * so we need only reprogram the base address.
7921          */
7922         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7923                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7924         intel_ring_emit(ring, fb->pitches[0]);
7925         intel_ring_emit(ring,
7926                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7927                         obj->tiling_mode);
7928
7929         /* XXX Enabling the panel-fitter across page-flip is so far
7930          * untested on non-native modes, so ignore it for now.
7931          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7932          */
7933         pf = 0;
7934         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7935         intel_ring_emit(ring, pf | pipesrc);
7936
7937         intel_mark_page_flip_active(intel_crtc);
7938         __intel_ring_advance(ring);
7939         return 0;
7940
7941 err_unpin:
7942         intel_unpin_fb_obj(obj);
7943 err:
7944         return ret;
7945 }
7946
7947 static int intel_gen6_queue_flip(struct drm_device *dev,
7948                                  struct drm_crtc *crtc,
7949                                  struct drm_framebuffer *fb,
7950                                  struct drm_i915_gem_object *obj,
7951                                  uint32_t flags)
7952 {
7953         struct drm_i915_private *dev_priv = dev->dev_private;
7954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7955         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7956         uint32_t pf, pipesrc;
7957         int ret;
7958
7959         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7960         if (ret)
7961                 goto err;
7962
7963         ret = intel_ring_begin(ring, 4);
7964         if (ret)
7965                 goto err_unpin;
7966
7967         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7968                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7969         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7970         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7971
7972         /* Contrary to the suggestions in the documentation,
7973          * "Enable Panel Fitter" does not seem to be required when page
7974          * flipping with a non-native mode, and worse causes a normal
7975          * modeset to fail.
7976          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7977          */
7978         pf = 0;
7979         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7980         intel_ring_emit(ring, pf | pipesrc);
7981
7982         intel_mark_page_flip_active(intel_crtc);
7983         __intel_ring_advance(ring);
7984         return 0;
7985
7986 err_unpin:
7987         intel_unpin_fb_obj(obj);
7988 err:
7989         return ret;
7990 }
7991
7992 static int intel_gen7_queue_flip(struct drm_device *dev,
7993                                  struct drm_crtc *crtc,
7994                                  struct drm_framebuffer *fb,
7995                                  struct drm_i915_gem_object *obj,
7996                                  uint32_t flags)
7997 {
7998         struct drm_i915_private *dev_priv = dev->dev_private;
7999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8000         struct intel_ring_buffer *ring;
8001         uint32_t plane_bit = 0;
8002         int len, ret;
8003
8004         ring = obj->ring;
8005         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8006                 ring = &dev_priv->ring[BCS];
8007
8008         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8009         if (ret)
8010                 goto err;
8011
8012         switch(intel_crtc->plane) {
8013         case PLANE_A:
8014                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8015                 break;
8016         case PLANE_B:
8017                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8018                 break;
8019         case PLANE_C:
8020                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8021                 break;
8022         default:
8023                 WARN_ONCE(1, "unknown plane in flip command\n");
8024                 ret = -ENODEV;
8025                 goto err_unpin;
8026         }
8027
8028         len = 4;
8029         if (ring->id == RCS)
8030                 len += 6;
8031
8032         ret = intel_ring_begin(ring, len);
8033         if (ret)
8034                 goto err_unpin;
8035
8036         /* Unmask the flip-done completion message. Note that the bspec says that
8037          * we should do this for both the BCS and RCS, and that we must not unmask
8038          * more than one flip event at any time (or ensure that one flip message
8039          * can be sent by waiting for flip-done prior to queueing new flips).
8040          * Experimentation says that BCS works despite DERRMR masking all
8041          * flip-done completion events and that unmasking all planes at once
8042          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8043          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8044          */
8045         if (ring->id == RCS) {
8046                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8047                 intel_ring_emit(ring, DERRMR);
8048                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8049                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8050                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8051                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8052                 intel_ring_emit(ring, DERRMR);
8053                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8054         }
8055
8056         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8057         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8058         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8059         intel_ring_emit(ring, (MI_NOOP));
8060
8061         intel_mark_page_flip_active(intel_crtc);
8062         __intel_ring_advance(ring);
8063         return 0;
8064
8065 err_unpin:
8066         intel_unpin_fb_obj(obj);
8067 err:
8068         return ret;
8069 }
8070
8071 static int intel_default_queue_flip(struct drm_device *dev,
8072                                     struct drm_crtc *crtc,
8073                                     struct drm_framebuffer *fb,
8074                                     struct drm_i915_gem_object *obj,
8075                                     uint32_t flags)
8076 {
8077         return -ENODEV;
8078 }
8079
8080 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8081                                 struct drm_framebuffer *fb,
8082                                 struct drm_pending_vblank_event *event,
8083                                 uint32_t page_flip_flags)
8084 {
8085         struct drm_device *dev = crtc->dev;
8086         struct drm_i915_private *dev_priv = dev->dev_private;
8087         struct drm_framebuffer *old_fb = crtc->fb;
8088         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8090         struct intel_unpin_work *work;
8091         unsigned long flags;
8092         int ret;
8093
8094         /* Can't change pixel format via MI display flips. */
8095         if (fb->pixel_format != crtc->fb->pixel_format)
8096                 return -EINVAL;
8097
8098         /*
8099          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8100          * Note that pitch changes could also affect these register.
8101          */
8102         if (INTEL_INFO(dev)->gen > 3 &&
8103             (fb->offsets[0] != crtc->fb->offsets[0] ||
8104              fb->pitches[0] != crtc->fb->pitches[0]))
8105                 return -EINVAL;
8106
8107         work = kzalloc(sizeof(*work), GFP_KERNEL);
8108         if (work == NULL)
8109                 return -ENOMEM;
8110
8111         work->event = event;
8112         work->crtc = crtc;
8113         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8114         INIT_WORK(&work->work, intel_unpin_work_fn);
8115
8116         ret = drm_vblank_get(dev, intel_crtc->pipe);
8117         if (ret)
8118                 goto free_work;
8119
8120         /* We borrow the event spin lock for protecting unpin_work */
8121         spin_lock_irqsave(&dev->event_lock, flags);
8122         if (intel_crtc->unpin_work) {
8123                 spin_unlock_irqrestore(&dev->event_lock, flags);
8124                 kfree(work);
8125                 drm_vblank_put(dev, intel_crtc->pipe);
8126
8127                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8128                 return -EBUSY;
8129         }
8130         intel_crtc->unpin_work = work;
8131         spin_unlock_irqrestore(&dev->event_lock, flags);
8132
8133         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8134                 flush_workqueue(dev_priv->wq);
8135
8136         ret = i915_mutex_lock_interruptible(dev);
8137         if (ret)
8138                 goto cleanup;
8139
8140         /* Reference the objects for the scheduled work. */
8141         drm_gem_object_reference(&work->old_fb_obj->base);
8142         drm_gem_object_reference(&obj->base);
8143
8144         crtc->fb = fb;
8145
8146         work->pending_flip_obj = obj;
8147
8148         work->enable_stall_check = true;
8149
8150         atomic_inc(&intel_crtc->unpin_work_count);
8151         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8152
8153         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8154         if (ret)
8155                 goto cleanup_pending;
8156
8157         intel_disable_fbc(dev);
8158         intel_mark_fb_busy(obj, NULL);
8159         mutex_unlock(&dev->struct_mutex);
8160
8161         trace_i915_flip_request(intel_crtc->plane, obj);
8162
8163         return 0;
8164
8165 cleanup_pending:
8166         atomic_dec(&intel_crtc->unpin_work_count);
8167         crtc->fb = old_fb;
8168         drm_gem_object_unreference(&work->old_fb_obj->base);
8169         drm_gem_object_unreference(&obj->base);
8170         mutex_unlock(&dev->struct_mutex);
8171
8172 cleanup:
8173         spin_lock_irqsave(&dev->event_lock, flags);
8174         intel_crtc->unpin_work = NULL;
8175         spin_unlock_irqrestore(&dev->event_lock, flags);
8176
8177         drm_vblank_put(dev, intel_crtc->pipe);
8178 free_work:
8179         kfree(work);
8180
8181         return ret;
8182 }
8183
8184 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8185         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8186         .load_lut = intel_crtc_load_lut,
8187 };
8188
8189 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8190                                   struct drm_crtc *crtc)
8191 {
8192         struct drm_device *dev;
8193         struct drm_crtc *tmp;
8194         int crtc_mask = 1;
8195
8196         WARN(!crtc, "checking null crtc?\n");
8197
8198         dev = crtc->dev;
8199
8200         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8201                 if (tmp == crtc)
8202                         break;
8203                 crtc_mask <<= 1;
8204         }
8205
8206         if (encoder->possible_crtcs & crtc_mask)
8207                 return true;
8208         return false;
8209 }
8210
8211 /**
8212  * intel_modeset_update_staged_output_state
8213  *
8214  * Updates the staged output configuration state, e.g. after we've read out the
8215  * current hw state.
8216  */
8217 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8218 {
8219         struct intel_encoder *encoder;
8220         struct intel_connector *connector;
8221
8222         list_for_each_entry(connector, &dev->mode_config.connector_list,
8223                             base.head) {
8224                 connector->new_encoder =
8225                         to_intel_encoder(connector->base.encoder);
8226         }
8227
8228         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8229                             base.head) {
8230                 encoder->new_crtc =
8231                         to_intel_crtc(encoder->base.crtc);
8232         }
8233 }
8234
8235 /**
8236  * intel_modeset_commit_output_state
8237  *
8238  * This function copies the stage display pipe configuration to the real one.
8239  */
8240 static void intel_modeset_commit_output_state(struct drm_device *dev)
8241 {
8242         struct intel_encoder *encoder;
8243         struct intel_connector *connector;
8244
8245         list_for_each_entry(connector, &dev->mode_config.connector_list,
8246                             base.head) {
8247                 connector->base.encoder = &connector->new_encoder->base;
8248         }
8249
8250         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8251                             base.head) {
8252                 encoder->base.crtc = &encoder->new_crtc->base;
8253         }
8254 }
8255
8256 static void
8257 connected_sink_compute_bpp(struct intel_connector * connector,
8258                            struct intel_crtc_config *pipe_config)
8259 {
8260         int bpp = pipe_config->pipe_bpp;
8261
8262         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8263                 connector->base.base.id,
8264                 drm_get_connector_name(&connector->base));
8265
8266         /* Don't use an invalid EDID bpc value */
8267         if (connector->base.display_info.bpc &&
8268             connector->base.display_info.bpc * 3 < bpp) {
8269                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8270                               bpp, connector->base.display_info.bpc*3);
8271                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8272         }
8273
8274         /* Clamp bpp to 8 on screens without EDID 1.4 */
8275         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8276                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8277                               bpp);
8278                 pipe_config->pipe_bpp = 24;
8279         }
8280 }
8281
8282 static int
8283 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8284                           struct drm_framebuffer *fb,
8285                           struct intel_crtc_config *pipe_config)
8286 {
8287         struct drm_device *dev = crtc->base.dev;
8288         struct intel_connector *connector;
8289         int bpp;
8290
8291         switch (fb->pixel_format) {
8292         case DRM_FORMAT_C8:
8293                 bpp = 8*3; /* since we go through a colormap */
8294                 break;
8295         case DRM_FORMAT_XRGB1555:
8296         case DRM_FORMAT_ARGB1555:
8297                 /* checked in intel_framebuffer_init already */
8298                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8299                         return -EINVAL;
8300         case DRM_FORMAT_RGB565:
8301                 bpp = 6*3; /* min is 18bpp */
8302                 break;
8303         case DRM_FORMAT_XBGR8888:
8304         case DRM_FORMAT_ABGR8888:
8305                 /* checked in intel_framebuffer_init already */
8306                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8307                         return -EINVAL;
8308         case DRM_FORMAT_XRGB8888:
8309         case DRM_FORMAT_ARGB8888:
8310                 bpp = 8*3;
8311                 break;
8312         case DRM_FORMAT_XRGB2101010:
8313         case DRM_FORMAT_ARGB2101010:
8314         case DRM_FORMAT_XBGR2101010:
8315         case DRM_FORMAT_ABGR2101010:
8316                 /* checked in intel_framebuffer_init already */
8317                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8318                         return -EINVAL;
8319                 bpp = 10*3;
8320                 break;
8321         /* TODO: gen4+ supports 16 bpc floating point, too. */
8322         default:
8323                 DRM_DEBUG_KMS("unsupported depth\n");
8324                 return -EINVAL;
8325         }
8326
8327         pipe_config->pipe_bpp = bpp;
8328
8329         /* Clamp display bpp to EDID value */
8330         list_for_each_entry(connector, &dev->mode_config.connector_list,
8331                             base.head) {
8332                 if (!connector->new_encoder ||
8333                     connector->new_encoder->new_crtc != crtc)
8334                         continue;
8335
8336                 connected_sink_compute_bpp(connector, pipe_config);
8337         }
8338
8339         return bpp;
8340 }
8341
8342 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8343 {
8344         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8345                         "type: 0x%x flags: 0x%x\n",
8346                 mode->clock,
8347                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8348                 mode->crtc_hsync_end, mode->crtc_htotal,
8349                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8350                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8351 }
8352
8353 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8354                                    struct intel_crtc_config *pipe_config,
8355                                    const char *context)
8356 {
8357         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8358                       context, pipe_name(crtc->pipe));
8359
8360         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8361         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8362                       pipe_config->pipe_bpp, pipe_config->dither);
8363         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8364                       pipe_config->has_pch_encoder,
8365                       pipe_config->fdi_lanes,
8366                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8367                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8368                       pipe_config->fdi_m_n.tu);
8369         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8370                       pipe_config->has_dp_encoder,
8371                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8372                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8373                       pipe_config->dp_m_n.tu);
8374         DRM_DEBUG_KMS("requested mode:\n");
8375         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8376         DRM_DEBUG_KMS("adjusted mode:\n");
8377         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8378         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8379         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8380         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8381                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8382         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8383                       pipe_config->gmch_pfit.control,
8384                       pipe_config->gmch_pfit.pgm_ratios,
8385                       pipe_config->gmch_pfit.lvds_border_bits);
8386         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8387                       pipe_config->pch_pfit.pos,
8388                       pipe_config->pch_pfit.size,
8389                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8390         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8391         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8392 }
8393
8394 static bool check_encoder_cloning(struct drm_crtc *crtc)
8395 {
8396         int num_encoders = 0;
8397         bool uncloneable_encoders = false;
8398         struct intel_encoder *encoder;
8399
8400         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8401                             base.head) {
8402                 if (&encoder->new_crtc->base != crtc)
8403                         continue;
8404
8405                 num_encoders++;
8406                 if (!encoder->cloneable)
8407                         uncloneable_encoders = true;
8408         }
8409
8410         return !(num_encoders > 1 && uncloneable_encoders);
8411 }
8412
8413 static struct intel_crtc_config *
8414 intel_modeset_pipe_config(struct drm_crtc *crtc,
8415                           struct drm_framebuffer *fb,
8416                           struct drm_display_mode *mode)
8417 {
8418         struct drm_device *dev = crtc->dev;
8419         struct intel_encoder *encoder;
8420         struct intel_crtc_config *pipe_config;
8421         int plane_bpp, ret = -EINVAL;
8422         bool retry = true;
8423
8424         if (!check_encoder_cloning(crtc)) {
8425                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8426                 return ERR_PTR(-EINVAL);
8427         }
8428
8429         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8430         if (!pipe_config)
8431                 return ERR_PTR(-ENOMEM);
8432
8433         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8434         drm_mode_copy(&pipe_config->requested_mode, mode);
8435
8436         pipe_config->pipe_src_w = mode->hdisplay;
8437         pipe_config->pipe_src_h = mode->vdisplay;
8438
8439         pipe_config->cpu_transcoder =
8440                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8441         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8442
8443         /*
8444          * Sanitize sync polarity flags based on requested ones. If neither
8445          * positive or negative polarity is requested, treat this as meaning
8446          * negative polarity.
8447          */
8448         if (!(pipe_config->adjusted_mode.flags &
8449               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8450                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8451
8452         if (!(pipe_config->adjusted_mode.flags &
8453               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8454                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8455
8456         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8457          * plane pixel format and any sink constraints into account. Returns the
8458          * source plane bpp so that dithering can be selected on mismatches
8459          * after encoders and crtc also have had their say. */
8460         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8461                                               fb, pipe_config);
8462         if (plane_bpp < 0)
8463                 goto fail;
8464
8465 encoder_retry:
8466         /* Ensure the port clock defaults are reset when retrying. */
8467         pipe_config->port_clock = 0;
8468         pipe_config->pixel_multiplier = 1;
8469
8470         /* Fill in default crtc timings, allow encoders to overwrite them. */
8471         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8472
8473         /* Pass our mode to the connectors and the CRTC to give them a chance to
8474          * adjust it according to limitations or connector properties, and also
8475          * a chance to reject the mode entirely.
8476          */
8477         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8478                             base.head) {
8479
8480                 if (&encoder->new_crtc->base != crtc)
8481                         continue;
8482
8483                 if (!(encoder->compute_config(encoder, pipe_config))) {
8484                         DRM_DEBUG_KMS("Encoder config failure\n");
8485                         goto fail;
8486                 }
8487         }
8488
8489         /* Set default port clock if not overwritten by the encoder. Needs to be
8490          * done afterwards in case the encoder adjusts the mode. */
8491         if (!pipe_config->port_clock)
8492                 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8493                         pipe_config->pixel_multiplier;
8494
8495         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8496         if (ret < 0) {
8497                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8498                 goto fail;
8499         }
8500
8501         if (ret == RETRY) {
8502                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8503                         ret = -EINVAL;
8504                         goto fail;
8505                 }
8506
8507                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8508                 retry = false;
8509                 goto encoder_retry;
8510         }
8511
8512         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8513         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8514                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8515
8516         return pipe_config;
8517 fail:
8518         kfree(pipe_config);
8519         return ERR_PTR(ret);
8520 }
8521
8522 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8523  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8524 static void
8525 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8526                              unsigned *prepare_pipes, unsigned *disable_pipes)
8527 {
8528         struct intel_crtc *intel_crtc;
8529         struct drm_device *dev = crtc->dev;
8530         struct intel_encoder *encoder;
8531         struct intel_connector *connector;
8532         struct drm_crtc *tmp_crtc;
8533
8534         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8535
8536         /* Check which crtcs have changed outputs connected to them, these need
8537          * to be part of the prepare_pipes mask. We don't (yet) support global
8538          * modeset across multiple crtcs, so modeset_pipes will only have one
8539          * bit set at most. */
8540         list_for_each_entry(connector, &dev->mode_config.connector_list,
8541                             base.head) {
8542                 if (connector->base.encoder == &connector->new_encoder->base)
8543                         continue;
8544
8545                 if (connector->base.encoder) {
8546                         tmp_crtc = connector->base.encoder->crtc;
8547
8548                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8549                 }
8550
8551                 if (connector->new_encoder)
8552                         *prepare_pipes |=
8553                                 1 << connector->new_encoder->new_crtc->pipe;
8554         }
8555
8556         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8557                             base.head) {
8558                 if (encoder->base.crtc == &encoder->new_crtc->base)
8559                         continue;
8560
8561                 if (encoder->base.crtc) {
8562                         tmp_crtc = encoder->base.crtc;
8563
8564                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8565                 }
8566
8567                 if (encoder->new_crtc)
8568                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8569         }
8570
8571         /* Check for any pipes that will be fully disabled ... */
8572         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8573                             base.head) {
8574                 bool used = false;
8575
8576                 /* Don't try to disable disabled crtcs. */
8577                 if (!intel_crtc->base.enabled)
8578                         continue;
8579
8580                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8581                                     base.head) {
8582                         if (encoder->new_crtc == intel_crtc)
8583                                 used = true;
8584                 }
8585
8586                 if (!used)
8587                         *disable_pipes |= 1 << intel_crtc->pipe;
8588         }
8589
8590
8591         /* set_mode is also used to update properties on life display pipes. */
8592         intel_crtc = to_intel_crtc(crtc);
8593         if (crtc->enabled)
8594                 *prepare_pipes |= 1 << intel_crtc->pipe;
8595
8596         /*
8597          * For simplicity do a full modeset on any pipe where the output routing
8598          * changed. We could be more clever, but that would require us to be
8599          * more careful with calling the relevant encoder->mode_set functions.
8600          */
8601         if (*prepare_pipes)
8602                 *modeset_pipes = *prepare_pipes;
8603
8604         /* ... and mask these out. */
8605         *modeset_pipes &= ~(*disable_pipes);
8606         *prepare_pipes &= ~(*disable_pipes);
8607
8608         /*
8609          * HACK: We don't (yet) fully support global modesets. intel_set_config
8610          * obies this rule, but the modeset restore mode of
8611          * intel_modeset_setup_hw_state does not.
8612          */
8613         *modeset_pipes &= 1 << intel_crtc->pipe;
8614         *prepare_pipes &= 1 << intel_crtc->pipe;
8615
8616         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8617                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8618 }
8619
8620 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8621 {
8622         struct drm_encoder *encoder;
8623         struct drm_device *dev = crtc->dev;
8624
8625         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8626                 if (encoder->crtc == crtc)
8627                         return true;
8628
8629         return false;
8630 }
8631
8632 static void
8633 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8634 {
8635         struct intel_encoder *intel_encoder;
8636         struct intel_crtc *intel_crtc;
8637         struct drm_connector *connector;
8638
8639         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8640                             base.head) {
8641                 if (!intel_encoder->base.crtc)
8642                         continue;
8643
8644                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8645
8646                 if (prepare_pipes & (1 << intel_crtc->pipe))
8647                         intel_encoder->connectors_active = false;
8648         }
8649
8650         intel_modeset_commit_output_state(dev);
8651
8652         /* Update computed state. */
8653         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8654                             base.head) {
8655                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8656         }
8657
8658         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8659                 if (!connector->encoder || !connector->encoder->crtc)
8660                         continue;
8661
8662                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8663
8664                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8665                         struct drm_property *dpms_property =
8666                                 dev->mode_config.dpms_property;
8667
8668                         connector->dpms = DRM_MODE_DPMS_ON;
8669                         drm_object_property_set_value(&connector->base,
8670                                                          dpms_property,
8671                                                          DRM_MODE_DPMS_ON);
8672
8673                         intel_encoder = to_intel_encoder(connector->encoder);
8674                         intel_encoder->connectors_active = true;
8675                 }
8676         }
8677
8678 }
8679
8680 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8681 {
8682         int diff;
8683
8684         if (clock1 == clock2)
8685                 return true;
8686
8687         if (!clock1 || !clock2)
8688                 return false;
8689
8690         diff = abs(clock1 - clock2);
8691
8692         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8693                 return true;
8694
8695         return false;
8696 }
8697
8698 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8699         list_for_each_entry((intel_crtc), \
8700                             &(dev)->mode_config.crtc_list, \
8701                             base.head) \
8702                 if (mask & (1 <<(intel_crtc)->pipe))
8703
8704 static bool
8705 intel_pipe_config_compare(struct drm_device *dev,
8706                           struct intel_crtc_config *current_config,
8707                           struct intel_crtc_config *pipe_config)
8708 {
8709 #define PIPE_CONF_CHECK_X(name) \
8710         if (current_config->name != pipe_config->name) { \
8711                 DRM_ERROR("mismatch in " #name " " \
8712                           "(expected 0x%08x, found 0x%08x)\n", \
8713                           current_config->name, \
8714                           pipe_config->name); \
8715                 return false; \
8716         }
8717
8718 #define PIPE_CONF_CHECK_I(name) \
8719         if (current_config->name != pipe_config->name) { \
8720                 DRM_ERROR("mismatch in " #name " " \
8721                           "(expected %i, found %i)\n", \
8722                           current_config->name, \
8723                           pipe_config->name); \
8724                 return false; \
8725         }
8726
8727 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8728         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8729                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8730                           "(expected %i, found %i)\n", \
8731                           current_config->name & (mask), \
8732                           pipe_config->name & (mask)); \
8733                 return false; \
8734         }
8735
8736 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8737         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8738                 DRM_ERROR("mismatch in " #name " " \
8739                           "(expected %i, found %i)\n", \
8740                           current_config->name, \
8741                           pipe_config->name); \
8742                 return false; \
8743         }
8744
8745 #define PIPE_CONF_QUIRK(quirk)  \
8746         ((current_config->quirks | pipe_config->quirks) & (quirk))
8747
8748         PIPE_CONF_CHECK_I(cpu_transcoder);
8749
8750         PIPE_CONF_CHECK_I(has_pch_encoder);
8751         PIPE_CONF_CHECK_I(fdi_lanes);
8752         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8753         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8754         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8755         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8756         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8757
8758         PIPE_CONF_CHECK_I(has_dp_encoder);
8759         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8760         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8761         PIPE_CONF_CHECK_I(dp_m_n.link_m);
8762         PIPE_CONF_CHECK_I(dp_m_n.link_n);
8763         PIPE_CONF_CHECK_I(dp_m_n.tu);
8764
8765         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8766         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8767         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8768         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8769         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8770         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8771
8772         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8773         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8774         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8775         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8776         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8777         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8778
8779         PIPE_CONF_CHECK_I(pixel_multiplier);
8780
8781         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8782                               DRM_MODE_FLAG_INTERLACE);
8783
8784         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8785                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8786                                       DRM_MODE_FLAG_PHSYNC);
8787                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8788                                       DRM_MODE_FLAG_NHSYNC);
8789                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8790                                       DRM_MODE_FLAG_PVSYNC);
8791                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8792                                       DRM_MODE_FLAG_NVSYNC);
8793         }
8794
8795         PIPE_CONF_CHECK_I(pipe_src_w);
8796         PIPE_CONF_CHECK_I(pipe_src_h);
8797
8798         PIPE_CONF_CHECK_I(gmch_pfit.control);
8799         /* pfit ratios are autocomputed by the hw on gen4+ */
8800         if (INTEL_INFO(dev)->gen < 4)
8801                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8802         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8803         PIPE_CONF_CHECK_I(pch_pfit.enabled);
8804         if (current_config->pch_pfit.enabled) {
8805                 PIPE_CONF_CHECK_I(pch_pfit.pos);
8806                 PIPE_CONF_CHECK_I(pch_pfit.size);
8807         }
8808
8809         PIPE_CONF_CHECK_I(ips_enabled);
8810
8811         PIPE_CONF_CHECK_I(double_wide);
8812
8813         PIPE_CONF_CHECK_I(shared_dpll);
8814         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8815         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8816         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8817         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8818
8819         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8820                 PIPE_CONF_CHECK_I(pipe_bpp);
8821
8822         if (!IS_HASWELL(dev)) {
8823                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8824                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8825         }
8826
8827 #undef PIPE_CONF_CHECK_X
8828 #undef PIPE_CONF_CHECK_I
8829 #undef PIPE_CONF_CHECK_FLAGS
8830 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8831 #undef PIPE_CONF_QUIRK
8832
8833         return true;
8834 }
8835
8836 static void
8837 check_connector_state(struct drm_device *dev)
8838 {
8839         struct intel_connector *connector;
8840
8841         list_for_each_entry(connector, &dev->mode_config.connector_list,
8842                             base.head) {
8843                 /* This also checks the encoder/connector hw state with the
8844                  * ->get_hw_state callbacks. */
8845                 intel_connector_check_state(connector);
8846
8847                 WARN(&connector->new_encoder->base != connector->base.encoder,
8848                      "connector's staged encoder doesn't match current encoder\n");
8849         }
8850 }
8851
8852 static void
8853 check_encoder_state(struct drm_device *dev)
8854 {
8855         struct intel_encoder *encoder;
8856         struct intel_connector *connector;
8857
8858         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8859                             base.head) {
8860                 bool enabled = false;
8861                 bool active = false;
8862                 enum pipe pipe, tracked_pipe;
8863
8864                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8865                               encoder->base.base.id,
8866                               drm_get_encoder_name(&encoder->base));
8867
8868                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8869                      "encoder's stage crtc doesn't match current crtc\n");
8870                 WARN(encoder->connectors_active && !encoder->base.crtc,
8871                      "encoder's active_connectors set, but no crtc\n");
8872
8873                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8874                                     base.head) {
8875                         if (connector->base.encoder != &encoder->base)
8876                                 continue;
8877                         enabled = true;
8878                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8879                                 active = true;
8880                 }
8881                 WARN(!!encoder->base.crtc != enabled,
8882                      "encoder's enabled state mismatch "
8883                      "(expected %i, found %i)\n",
8884                      !!encoder->base.crtc, enabled);
8885                 WARN(active && !encoder->base.crtc,
8886                      "active encoder with no crtc\n");
8887
8888                 WARN(encoder->connectors_active != active,
8889                      "encoder's computed active state doesn't match tracked active state "
8890                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8891
8892                 active = encoder->get_hw_state(encoder, &pipe);
8893                 WARN(active != encoder->connectors_active,
8894                      "encoder's hw state doesn't match sw tracking "
8895                      "(expected %i, found %i)\n",
8896                      encoder->connectors_active, active);
8897
8898                 if (!encoder->base.crtc)
8899                         continue;
8900
8901                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8902                 WARN(active && pipe != tracked_pipe,
8903                      "active encoder's pipe doesn't match"
8904                      "(expected %i, found %i)\n",
8905                      tracked_pipe, pipe);
8906
8907         }
8908 }
8909
8910 static void
8911 check_crtc_state(struct drm_device *dev)
8912 {
8913         drm_i915_private_t *dev_priv = dev->dev_private;
8914         struct intel_crtc *crtc;
8915         struct intel_encoder *encoder;
8916         struct intel_crtc_config pipe_config;
8917
8918         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8919                             base.head) {
8920                 bool enabled = false;
8921                 bool active = false;
8922
8923                 memset(&pipe_config, 0, sizeof(pipe_config));
8924
8925                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8926                               crtc->base.base.id);
8927
8928                 WARN(crtc->active && !crtc->base.enabled,
8929                      "active crtc, but not enabled in sw tracking\n");
8930
8931                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8932                                     base.head) {
8933                         if (encoder->base.crtc != &crtc->base)
8934                                 continue;
8935                         enabled = true;
8936                         if (encoder->connectors_active)
8937                                 active = true;
8938                 }
8939
8940                 WARN(active != crtc->active,
8941                      "crtc's computed active state doesn't match tracked active state "
8942                      "(expected %i, found %i)\n", active, crtc->active);
8943                 WARN(enabled != crtc->base.enabled,
8944                      "crtc's computed enabled state doesn't match tracked enabled state "
8945                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8946
8947                 active = dev_priv->display.get_pipe_config(crtc,
8948                                                            &pipe_config);
8949
8950                 /* hw state is inconsistent with the pipe A quirk */
8951                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8952                         active = crtc->active;
8953
8954                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8955                                     base.head) {
8956                         enum pipe pipe;
8957                         if (encoder->base.crtc != &crtc->base)
8958                                 continue;
8959                         if (encoder->get_config &&
8960                             encoder->get_hw_state(encoder, &pipe))
8961                                 encoder->get_config(encoder, &pipe_config);
8962                 }
8963
8964                 WARN(crtc->active != active,
8965                      "crtc active state doesn't match with hw state "
8966                      "(expected %i, found %i)\n", crtc->active, active);
8967
8968                 if (active &&
8969                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8970                         WARN(1, "pipe state doesn't match!\n");
8971                         intel_dump_pipe_config(crtc, &pipe_config,
8972                                                "[hw state]");
8973                         intel_dump_pipe_config(crtc, &crtc->config,
8974                                                "[sw state]");
8975                 }
8976         }
8977 }
8978
8979 static void
8980 check_shared_dpll_state(struct drm_device *dev)
8981 {
8982         drm_i915_private_t *dev_priv = dev->dev_private;
8983         struct intel_crtc *crtc;
8984         struct intel_dpll_hw_state dpll_hw_state;
8985         int i;
8986
8987         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8988                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8989                 int enabled_crtcs = 0, active_crtcs = 0;
8990                 bool active;
8991
8992                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8993
8994                 DRM_DEBUG_KMS("%s\n", pll->name);
8995
8996                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8997
8998                 WARN(pll->active > pll->refcount,
8999                      "more active pll users than references: %i vs %i\n",
9000                      pll->active, pll->refcount);
9001                 WARN(pll->active && !pll->on,
9002                      "pll in active use but not on in sw tracking\n");
9003                 WARN(pll->on && !pll->active,
9004                      "pll in on but not on in use in sw tracking\n");
9005                 WARN(pll->on != active,
9006                      "pll on state mismatch (expected %i, found %i)\n",
9007                      pll->on, active);
9008
9009                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9010                                     base.head) {
9011                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9012                                 enabled_crtcs++;
9013                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9014                                 active_crtcs++;
9015                 }
9016                 WARN(pll->active != active_crtcs,
9017                      "pll active crtcs mismatch (expected %i, found %i)\n",
9018                      pll->active, active_crtcs);
9019                 WARN(pll->refcount != enabled_crtcs,
9020                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9021                      pll->refcount, enabled_crtcs);
9022
9023                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9024                                        sizeof(dpll_hw_state)),
9025                      "pll hw state mismatch\n");
9026         }
9027 }
9028
9029 void
9030 intel_modeset_check_state(struct drm_device *dev)
9031 {
9032         check_connector_state(dev);
9033         check_encoder_state(dev);
9034         check_crtc_state(dev);
9035         check_shared_dpll_state(dev);
9036 }
9037
9038 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9039                                      int dotclock)
9040 {
9041         /*
9042          * FDI already provided one idea for the dotclock.
9043          * Yell if the encoder disagrees.
9044          */
9045         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9046              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9047              pipe_config->adjusted_mode.clock, dotclock);
9048 }
9049
9050 static int __intel_set_mode(struct drm_crtc *crtc,
9051                             struct drm_display_mode *mode,
9052                             int x, int y, struct drm_framebuffer *fb)
9053 {
9054         struct drm_device *dev = crtc->dev;
9055         drm_i915_private_t *dev_priv = dev->dev_private;
9056         struct drm_display_mode *saved_mode, *saved_hwmode;
9057         struct intel_crtc_config *pipe_config = NULL;
9058         struct intel_crtc *intel_crtc;
9059         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9060         int ret = 0;
9061
9062         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9063         if (!saved_mode)
9064                 return -ENOMEM;
9065         saved_hwmode = saved_mode + 1;
9066
9067         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9068                                      &prepare_pipes, &disable_pipes);
9069
9070         *saved_hwmode = crtc->hwmode;
9071         *saved_mode = crtc->mode;
9072
9073         /* Hack: Because we don't (yet) support global modeset on multiple
9074          * crtcs, we don't keep track of the new mode for more than one crtc.
9075          * Hence simply check whether any bit is set in modeset_pipes in all the
9076          * pieces of code that are not yet converted to deal with mutliple crtcs
9077          * changing their mode at the same time. */
9078         if (modeset_pipes) {
9079                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9080                 if (IS_ERR(pipe_config)) {
9081                         ret = PTR_ERR(pipe_config);
9082                         pipe_config = NULL;
9083
9084                         goto out;
9085                 }
9086                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9087                                        "[modeset]");
9088         }
9089
9090         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9091                 intel_crtc_disable(&intel_crtc->base);
9092
9093         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9094                 if (intel_crtc->base.enabled)
9095                         dev_priv->display.crtc_disable(&intel_crtc->base);
9096         }
9097
9098         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9099          * to set it here already despite that we pass it down the callchain.
9100          */
9101         if (modeset_pipes) {
9102                 crtc->mode = *mode;
9103                 /* mode_set/enable/disable functions rely on a correct pipe
9104                  * config. */
9105                 to_intel_crtc(crtc)->config = *pipe_config;
9106         }
9107
9108         /* Only after disabling all output pipelines that will be changed can we
9109          * update the the output configuration. */
9110         intel_modeset_update_state(dev, prepare_pipes);
9111
9112         if (dev_priv->display.modeset_global_resources)
9113                 dev_priv->display.modeset_global_resources(dev);
9114
9115         /* Set up the DPLL and any encoders state that needs to adjust or depend
9116          * on the DPLL.
9117          */
9118         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9119                 ret = intel_crtc_mode_set(&intel_crtc->base,
9120                                           x, y, fb);
9121                 if (ret)
9122                         goto done;
9123         }
9124
9125         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9126         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9127                 dev_priv->display.crtc_enable(&intel_crtc->base);
9128
9129         if (modeset_pipes) {
9130                 /* Store real post-adjustment hardware mode. */
9131                 crtc->hwmode = pipe_config->adjusted_mode;
9132
9133                 /* Calculate and store various constants which
9134                  * are later needed by vblank and swap-completion
9135                  * timestamping. They are derived from true hwmode.
9136                  */
9137                 drm_calc_timestamping_constants(crtc);
9138         }
9139
9140         /* FIXME: add subpixel order */
9141 done:
9142         if (ret && crtc->enabled) {
9143                 crtc->hwmode = *saved_hwmode;
9144                 crtc->mode = *saved_mode;
9145         }
9146
9147 out:
9148         kfree(pipe_config);
9149         kfree(saved_mode);
9150         return ret;
9151 }
9152
9153 static int intel_set_mode(struct drm_crtc *crtc,
9154                           struct drm_display_mode *mode,
9155                           int x, int y, struct drm_framebuffer *fb)
9156 {
9157         int ret;
9158
9159         ret = __intel_set_mode(crtc, mode, x, y, fb);
9160
9161         if (ret == 0)
9162                 intel_modeset_check_state(crtc->dev);
9163
9164         return ret;
9165 }
9166
9167 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9168 {
9169         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9170 }
9171
9172 #undef for_each_intel_crtc_masked
9173
9174 static void intel_set_config_free(struct intel_set_config *config)
9175 {
9176         if (!config)
9177                 return;
9178
9179         kfree(config->save_connector_encoders);
9180         kfree(config->save_encoder_crtcs);
9181         kfree(config);
9182 }
9183
9184 static int intel_set_config_save_state(struct drm_device *dev,
9185                                        struct intel_set_config *config)
9186 {
9187         struct drm_encoder *encoder;
9188         struct drm_connector *connector;
9189         int count;
9190
9191         config->save_encoder_crtcs =
9192                 kcalloc(dev->mode_config.num_encoder,
9193                         sizeof(struct drm_crtc *), GFP_KERNEL);
9194         if (!config->save_encoder_crtcs)
9195                 return -ENOMEM;
9196
9197         config->save_connector_encoders =
9198                 kcalloc(dev->mode_config.num_connector,
9199                         sizeof(struct drm_encoder *), GFP_KERNEL);
9200         if (!config->save_connector_encoders)
9201                 return -ENOMEM;
9202
9203         /* Copy data. Note that driver private data is not affected.
9204          * Should anything bad happen only the expected state is
9205          * restored, not the drivers personal bookkeeping.
9206          */
9207         count = 0;
9208         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9209                 config->save_encoder_crtcs[count++] = encoder->crtc;
9210         }
9211
9212         count = 0;
9213         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9214                 config->save_connector_encoders[count++] = connector->encoder;
9215         }
9216
9217         return 0;
9218 }
9219
9220 static void intel_set_config_restore_state(struct drm_device *dev,
9221                                            struct intel_set_config *config)
9222 {
9223         struct intel_encoder *encoder;
9224         struct intel_connector *connector;
9225         int count;
9226
9227         count = 0;
9228         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9229                 encoder->new_crtc =
9230                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9231         }
9232
9233         count = 0;
9234         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9235                 connector->new_encoder =
9236                         to_intel_encoder(config->save_connector_encoders[count++]);
9237         }
9238 }
9239
9240 static bool
9241 is_crtc_connector_off(struct drm_mode_set *set)
9242 {
9243         int i;
9244
9245         if (set->num_connectors == 0)
9246                 return false;
9247
9248         if (WARN_ON(set->connectors == NULL))
9249                 return false;
9250
9251         for (i = 0; i < set->num_connectors; i++)
9252                 if (set->connectors[i]->encoder &&
9253                     set->connectors[i]->encoder->crtc == set->crtc &&
9254                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9255                         return true;
9256
9257         return false;
9258 }
9259
9260 static void
9261 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9262                                       struct intel_set_config *config)
9263 {
9264
9265         /* We should be able to check here if the fb has the same properties
9266          * and then just flip_or_move it */
9267         if (is_crtc_connector_off(set)) {
9268                 config->mode_changed = true;
9269         } else if (set->crtc->fb != set->fb) {
9270                 /* If we have no fb then treat it as a full mode set */
9271                 if (set->crtc->fb == NULL) {
9272                         struct intel_crtc *intel_crtc =
9273                                 to_intel_crtc(set->crtc);
9274
9275                         if (intel_crtc->active && i915_fastboot) {
9276                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9277                                 config->fb_changed = true;
9278                         } else {
9279                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9280                                 config->mode_changed = true;
9281                         }
9282                 } else if (set->fb == NULL) {
9283                         config->mode_changed = true;
9284                 } else if (set->fb->pixel_format !=
9285                            set->crtc->fb->pixel_format) {
9286                         config->mode_changed = true;
9287                 } else {
9288                         config->fb_changed = true;
9289                 }
9290         }
9291
9292         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9293                 config->fb_changed = true;
9294
9295         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9296                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9297                 drm_mode_debug_printmodeline(&set->crtc->mode);
9298                 drm_mode_debug_printmodeline(set->mode);
9299                 config->mode_changed = true;
9300         }
9301
9302         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9303                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9304 }
9305
9306 static int
9307 intel_modeset_stage_output_state(struct drm_device *dev,
9308                                  struct drm_mode_set *set,
9309                                  struct intel_set_config *config)
9310 {
9311         struct drm_crtc *new_crtc;
9312         struct intel_connector *connector;
9313         struct intel_encoder *encoder;
9314         int ro;
9315
9316         /* The upper layers ensure that we either disable a crtc or have a list
9317          * of connectors. For paranoia, double-check this. */
9318         WARN_ON(!set->fb && (set->num_connectors != 0));
9319         WARN_ON(set->fb && (set->num_connectors == 0));
9320
9321         list_for_each_entry(connector, &dev->mode_config.connector_list,
9322                             base.head) {
9323                 /* Otherwise traverse passed in connector list and get encoders
9324                  * for them. */
9325                 for (ro = 0; ro < set->num_connectors; ro++) {
9326                         if (set->connectors[ro] == &connector->base) {
9327                                 connector->new_encoder = connector->encoder;
9328                                 break;
9329                         }
9330                 }
9331
9332                 /* If we disable the crtc, disable all its connectors. Also, if
9333                  * the connector is on the changing crtc but not on the new
9334                  * connector list, disable it. */
9335                 if ((!set->fb || ro == set->num_connectors) &&
9336                     connector->base.encoder &&
9337                     connector->base.encoder->crtc == set->crtc) {
9338                         connector->new_encoder = NULL;
9339
9340                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9341                                 connector->base.base.id,
9342                                 drm_get_connector_name(&connector->base));
9343                 }
9344
9345
9346                 if (&connector->new_encoder->base != connector->base.encoder) {
9347                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9348                         config->mode_changed = true;
9349                 }
9350         }
9351         /* connector->new_encoder is now updated for all connectors. */
9352
9353         /* Update crtc of enabled connectors. */
9354         list_for_each_entry(connector, &dev->mode_config.connector_list,
9355                             base.head) {
9356                 if (!connector->new_encoder)
9357                         continue;
9358
9359                 new_crtc = connector->new_encoder->base.crtc;
9360
9361                 for (ro = 0; ro < set->num_connectors; ro++) {
9362                         if (set->connectors[ro] == &connector->base)
9363                                 new_crtc = set->crtc;
9364                 }
9365
9366                 /* Make sure the new CRTC will work with the encoder */
9367                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9368                                            new_crtc)) {
9369                         return -EINVAL;
9370                 }
9371                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9372
9373                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9374                         connector->base.base.id,
9375                         drm_get_connector_name(&connector->base),
9376                         new_crtc->base.id);
9377         }
9378
9379         /* Check for any encoders that needs to be disabled. */
9380         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9381                             base.head) {
9382                 list_for_each_entry(connector,
9383                                     &dev->mode_config.connector_list,
9384                                     base.head) {
9385                         if (connector->new_encoder == encoder) {
9386                                 WARN_ON(!connector->new_encoder->new_crtc);
9387
9388                                 goto next_encoder;
9389                         }
9390                 }
9391                 encoder->new_crtc = NULL;
9392 next_encoder:
9393                 /* Only now check for crtc changes so we don't miss encoders
9394                  * that will be disabled. */
9395                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9396                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9397                         config->mode_changed = true;
9398                 }
9399         }
9400         /* Now we've also updated encoder->new_crtc for all encoders. */
9401
9402         return 0;
9403 }
9404
9405 static int intel_crtc_set_config(struct drm_mode_set *set)
9406 {
9407         struct drm_device *dev;
9408         struct drm_mode_set save_set;
9409         struct intel_set_config *config;
9410         int ret;
9411
9412         BUG_ON(!set);
9413         BUG_ON(!set->crtc);
9414         BUG_ON(!set->crtc->helper_private);
9415
9416         /* Enforce sane interface api - has been abused by the fb helper. */
9417         BUG_ON(!set->mode && set->fb);
9418         BUG_ON(set->fb && set->num_connectors == 0);
9419
9420         if (set->fb) {
9421                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9422                                 set->crtc->base.id, set->fb->base.id,
9423                                 (int)set->num_connectors, set->x, set->y);
9424         } else {
9425                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9426         }
9427
9428         dev = set->crtc->dev;
9429
9430         ret = -ENOMEM;
9431         config = kzalloc(sizeof(*config), GFP_KERNEL);
9432         if (!config)
9433                 goto out_config;
9434
9435         ret = intel_set_config_save_state(dev, config);
9436         if (ret)
9437                 goto out_config;
9438
9439         save_set.crtc = set->crtc;
9440         save_set.mode = &set->crtc->mode;
9441         save_set.x = set->crtc->x;
9442         save_set.y = set->crtc->y;
9443         save_set.fb = set->crtc->fb;
9444
9445         /* Compute whether we need a full modeset, only an fb base update or no
9446          * change at all. In the future we might also check whether only the
9447          * mode changed, e.g. for LVDS where we only change the panel fitter in
9448          * such cases. */
9449         intel_set_config_compute_mode_changes(set, config);
9450
9451         ret = intel_modeset_stage_output_state(dev, set, config);
9452         if (ret)
9453                 goto fail;
9454
9455         if (config->mode_changed) {
9456                 ret = intel_set_mode(set->crtc, set->mode,
9457                                      set->x, set->y, set->fb);
9458         } else if (config->fb_changed) {
9459                 intel_crtc_wait_for_pending_flips(set->crtc);
9460
9461                 ret = intel_pipe_set_base(set->crtc,
9462                                           set->x, set->y, set->fb);
9463         }
9464
9465         if (ret) {
9466                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9467                               set->crtc->base.id, ret);
9468 fail:
9469                 intel_set_config_restore_state(dev, config);
9470
9471                 /* Try to restore the config */
9472                 if (config->mode_changed &&
9473                     intel_set_mode(save_set.crtc, save_set.mode,
9474                                    save_set.x, save_set.y, save_set.fb))
9475                         DRM_ERROR("failed to restore config after modeset failure\n");
9476         }
9477
9478 out_config:
9479         intel_set_config_free(config);
9480         return ret;
9481 }
9482
9483 static const struct drm_crtc_funcs intel_crtc_funcs = {
9484         .cursor_set = intel_crtc_cursor_set,
9485         .cursor_move = intel_crtc_cursor_move,
9486         .gamma_set = intel_crtc_gamma_set,
9487         .set_config = intel_crtc_set_config,
9488         .destroy = intel_crtc_destroy,
9489         .page_flip = intel_crtc_page_flip,
9490 };
9491
9492 static void intel_cpu_pll_init(struct drm_device *dev)
9493 {
9494         if (HAS_DDI(dev))
9495                 intel_ddi_pll_init(dev);
9496 }
9497
9498 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9499                                       struct intel_shared_dpll *pll,
9500                                       struct intel_dpll_hw_state *hw_state)
9501 {
9502         uint32_t val;
9503
9504         val = I915_READ(PCH_DPLL(pll->id));
9505         hw_state->dpll = val;
9506         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9507         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9508
9509         return val & DPLL_VCO_ENABLE;
9510 }
9511
9512 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9513                                   struct intel_shared_dpll *pll)
9514 {
9515         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9516         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9517 }
9518
9519 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9520                                 struct intel_shared_dpll *pll)
9521 {
9522         /* PCH refclock must be enabled first */
9523         assert_pch_refclk_enabled(dev_priv);
9524
9525         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9526
9527         /* Wait for the clocks to stabilize. */
9528         POSTING_READ(PCH_DPLL(pll->id));
9529         udelay(150);
9530
9531         /* The pixel multiplier can only be updated once the
9532          * DPLL is enabled and the clocks are stable.
9533          *
9534          * So write it again.
9535          */
9536         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9537         POSTING_READ(PCH_DPLL(pll->id));
9538         udelay(200);
9539 }
9540
9541 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9542                                  struct intel_shared_dpll *pll)
9543 {
9544         struct drm_device *dev = dev_priv->dev;
9545         struct intel_crtc *crtc;
9546
9547         /* Make sure no transcoder isn't still depending on us. */
9548         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9549                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9550                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9551         }
9552
9553         I915_WRITE(PCH_DPLL(pll->id), 0);
9554         POSTING_READ(PCH_DPLL(pll->id));
9555         udelay(200);
9556 }
9557
9558 static char *ibx_pch_dpll_names[] = {
9559         "PCH DPLL A",
9560         "PCH DPLL B",
9561 };
9562
9563 static void ibx_pch_dpll_init(struct drm_device *dev)
9564 {
9565         struct drm_i915_private *dev_priv = dev->dev_private;
9566         int i;
9567
9568         dev_priv->num_shared_dpll = 2;
9569
9570         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9571                 dev_priv->shared_dplls[i].id = i;
9572                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9573                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9574                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9575                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9576                 dev_priv->shared_dplls[i].get_hw_state =
9577                         ibx_pch_dpll_get_hw_state;
9578         }
9579 }
9580
9581 static void intel_shared_dpll_init(struct drm_device *dev)
9582 {
9583         struct drm_i915_private *dev_priv = dev->dev_private;
9584
9585         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9586                 ibx_pch_dpll_init(dev);
9587         else
9588                 dev_priv->num_shared_dpll = 0;
9589
9590         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9591         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9592                       dev_priv->num_shared_dpll);
9593 }
9594
9595 static void intel_crtc_init(struct drm_device *dev, int pipe)
9596 {
9597         drm_i915_private_t *dev_priv = dev->dev_private;
9598         struct intel_crtc *intel_crtc;
9599         int i;
9600
9601         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9602         if (intel_crtc == NULL)
9603                 return;
9604
9605         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9606
9607         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9608         for (i = 0; i < 256; i++) {
9609                 intel_crtc->lut_r[i] = i;
9610                 intel_crtc->lut_g[i] = i;
9611                 intel_crtc->lut_b[i] = i;
9612         }
9613
9614         /* Swap pipes & planes for FBC on pre-965 */
9615         intel_crtc->pipe = pipe;
9616         intel_crtc->plane = pipe;
9617         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9618                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9619                 intel_crtc->plane = !pipe;
9620         }
9621
9622         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9623                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9624         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9625         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9626
9627         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9628 }
9629
9630 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9631                                 struct drm_file *file)
9632 {
9633         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9634         struct drm_mode_object *drmmode_obj;
9635         struct intel_crtc *crtc;
9636
9637         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9638                 return -ENODEV;
9639
9640         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9641                         DRM_MODE_OBJECT_CRTC);
9642
9643         if (!drmmode_obj) {
9644                 DRM_ERROR("no such CRTC id\n");
9645                 return -EINVAL;
9646         }
9647
9648         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9649         pipe_from_crtc_id->pipe = crtc->pipe;
9650
9651         return 0;
9652 }
9653
9654 static int intel_encoder_clones(struct intel_encoder *encoder)
9655 {
9656         struct drm_device *dev = encoder->base.dev;
9657         struct intel_encoder *source_encoder;
9658         int index_mask = 0;
9659         int entry = 0;
9660
9661         list_for_each_entry(source_encoder,
9662                             &dev->mode_config.encoder_list, base.head) {
9663
9664                 if (encoder == source_encoder)
9665                         index_mask |= (1 << entry);
9666
9667                 /* Intel hw has only one MUX where enocoders could be cloned. */
9668                 if (encoder->cloneable && source_encoder->cloneable)
9669                         index_mask |= (1 << entry);
9670
9671                 entry++;
9672         }
9673
9674         return index_mask;
9675 }
9676
9677 static bool has_edp_a(struct drm_device *dev)
9678 {
9679         struct drm_i915_private *dev_priv = dev->dev_private;
9680
9681         if (!IS_MOBILE(dev))
9682                 return false;
9683
9684         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9685                 return false;
9686
9687         if (IS_GEN5(dev) &&
9688             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9689                 return false;
9690
9691         return true;
9692 }
9693
9694 static void intel_setup_outputs(struct drm_device *dev)
9695 {
9696         struct drm_i915_private *dev_priv = dev->dev_private;
9697         struct intel_encoder *encoder;
9698         bool dpd_is_edp = false;
9699
9700         intel_lvds_init(dev);
9701
9702         if (!IS_ULT(dev))
9703                 intel_crt_init(dev);
9704
9705         if (HAS_DDI(dev)) {
9706                 int found;
9707
9708                 /* Haswell uses DDI functions to detect digital outputs */
9709                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9710                 /* DDI A only supports eDP */
9711                 if (found)
9712                         intel_ddi_init(dev, PORT_A);
9713
9714                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9715                  * register */
9716                 found = I915_READ(SFUSE_STRAP);
9717
9718                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9719                         intel_ddi_init(dev, PORT_B);
9720                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9721                         intel_ddi_init(dev, PORT_C);
9722                 if (found & SFUSE_STRAP_DDID_DETECTED)
9723                         intel_ddi_init(dev, PORT_D);
9724         } else if (HAS_PCH_SPLIT(dev)) {
9725                 int found;
9726                 dpd_is_edp = intel_dpd_is_edp(dev);
9727
9728                 if (has_edp_a(dev))
9729                         intel_dp_init(dev, DP_A, PORT_A);
9730
9731                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9732                         /* PCH SDVOB multiplex with HDMIB */
9733                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9734                         if (!found)
9735                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9736                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9737                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9738                 }
9739
9740                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9741                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9742
9743                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9744                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9745
9746                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9747                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9748
9749                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9750                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9751         } else if (IS_VALLEYVIEW(dev)) {
9752                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9753                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9754                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9755                                         PORT_C);
9756                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9757                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9758                                               PORT_C);
9759                 }
9760
9761                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9762                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9763                                         PORT_B);
9764                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9765                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9766                 }
9767
9768                 intel_dsi_init(dev);
9769         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9770                 bool found = false;
9771
9772                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9773                         DRM_DEBUG_KMS("probing SDVOB\n");
9774                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9775                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9776                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9777                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9778                         }
9779
9780                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9781                                 intel_dp_init(dev, DP_B, PORT_B);
9782                 }
9783
9784                 /* Before G4X SDVOC doesn't have its own detect register */
9785
9786                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9787                         DRM_DEBUG_KMS("probing SDVOC\n");
9788                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9789                 }
9790
9791                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9792
9793                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9794                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9795                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9796                         }
9797                         if (SUPPORTS_INTEGRATED_DP(dev))
9798                                 intel_dp_init(dev, DP_C, PORT_C);
9799                 }
9800
9801                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9802                     (I915_READ(DP_D) & DP_DETECTED))
9803                         intel_dp_init(dev, DP_D, PORT_D);
9804         } else if (IS_GEN2(dev))
9805                 intel_dvo_init(dev);
9806
9807         if (SUPPORTS_TV(dev))
9808                 intel_tv_init(dev);
9809
9810         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9811                 encoder->base.possible_crtcs = encoder->crtc_mask;
9812                 encoder->base.possible_clones =
9813                         intel_encoder_clones(encoder);
9814         }
9815
9816         intel_init_pch_refclk(dev);
9817
9818         drm_helper_move_panel_connectors_to_head(dev);
9819 }
9820
9821 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9822 {
9823         drm_framebuffer_cleanup(&fb->base);
9824         drm_gem_object_unreference_unlocked(&fb->obj->base);
9825 }
9826
9827 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9828 {
9829         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9830
9831         intel_framebuffer_fini(intel_fb);
9832         kfree(intel_fb);
9833 }
9834
9835 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9836                                                 struct drm_file *file,
9837                                                 unsigned int *handle)
9838 {
9839         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9840         struct drm_i915_gem_object *obj = intel_fb->obj;
9841
9842         return drm_gem_handle_create(file, &obj->base, handle);
9843 }
9844
9845 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9846         .destroy = intel_user_framebuffer_destroy,
9847         .create_handle = intel_user_framebuffer_create_handle,
9848 };
9849
9850 int intel_framebuffer_init(struct drm_device *dev,
9851                            struct intel_framebuffer *intel_fb,
9852                            struct drm_mode_fb_cmd2 *mode_cmd,
9853                            struct drm_i915_gem_object *obj)
9854 {
9855         int pitch_limit;
9856         int ret;
9857
9858         if (obj->tiling_mode == I915_TILING_Y) {
9859                 DRM_DEBUG("hardware does not support tiling Y\n");
9860                 return -EINVAL;
9861         }
9862
9863         if (mode_cmd->pitches[0] & 63) {
9864                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9865                           mode_cmd->pitches[0]);
9866                 return -EINVAL;
9867         }
9868
9869         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9870                 pitch_limit = 32*1024;
9871         } else if (INTEL_INFO(dev)->gen >= 4) {
9872                 if (obj->tiling_mode)
9873                         pitch_limit = 16*1024;
9874                 else
9875                         pitch_limit = 32*1024;
9876         } else if (INTEL_INFO(dev)->gen >= 3) {
9877                 if (obj->tiling_mode)
9878                         pitch_limit = 8*1024;
9879                 else
9880                         pitch_limit = 16*1024;
9881         } else
9882                 /* XXX DSPC is limited to 4k tiled */
9883                 pitch_limit = 8*1024;
9884
9885         if (mode_cmd->pitches[0] > pitch_limit) {
9886                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9887                           obj->tiling_mode ? "tiled" : "linear",
9888                           mode_cmd->pitches[0], pitch_limit);
9889                 return -EINVAL;
9890         }
9891
9892         if (obj->tiling_mode != I915_TILING_NONE &&
9893             mode_cmd->pitches[0] != obj->stride) {
9894                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9895                           mode_cmd->pitches[0], obj->stride);
9896                 return -EINVAL;
9897         }
9898
9899         /* Reject formats not supported by any plane early. */
9900         switch (mode_cmd->pixel_format) {
9901         case DRM_FORMAT_C8:
9902         case DRM_FORMAT_RGB565:
9903         case DRM_FORMAT_XRGB8888:
9904         case DRM_FORMAT_ARGB8888:
9905                 break;
9906         case DRM_FORMAT_XRGB1555:
9907         case DRM_FORMAT_ARGB1555:
9908                 if (INTEL_INFO(dev)->gen > 3) {
9909                         DRM_DEBUG("unsupported pixel format: %s\n",
9910                                   drm_get_format_name(mode_cmd->pixel_format));
9911                         return -EINVAL;
9912                 }
9913                 break;
9914         case DRM_FORMAT_XBGR8888:
9915         case DRM_FORMAT_ABGR8888:
9916         case DRM_FORMAT_XRGB2101010:
9917         case DRM_FORMAT_ARGB2101010:
9918         case DRM_FORMAT_XBGR2101010:
9919         case DRM_FORMAT_ABGR2101010:
9920                 if (INTEL_INFO(dev)->gen < 4) {
9921                         DRM_DEBUG("unsupported pixel format: %s\n",
9922                                   drm_get_format_name(mode_cmd->pixel_format));
9923                         return -EINVAL;
9924                 }
9925                 break;
9926         case DRM_FORMAT_YUYV:
9927         case DRM_FORMAT_UYVY:
9928         case DRM_FORMAT_YVYU:
9929         case DRM_FORMAT_VYUY:
9930                 if (INTEL_INFO(dev)->gen < 5) {
9931                         DRM_DEBUG("unsupported pixel format: %s\n",
9932                                   drm_get_format_name(mode_cmd->pixel_format));
9933                         return -EINVAL;
9934                 }
9935                 break;
9936         default:
9937                 DRM_DEBUG("unsupported pixel format: %s\n",
9938                           drm_get_format_name(mode_cmd->pixel_format));
9939                 return -EINVAL;
9940         }
9941
9942         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9943         if (mode_cmd->offsets[0] != 0)
9944                 return -EINVAL;
9945
9946         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9947         intel_fb->obj = obj;
9948
9949         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9950         if (ret) {
9951                 DRM_ERROR("framebuffer init failed %d\n", ret);
9952                 return ret;
9953         }
9954
9955         return 0;
9956 }
9957
9958 static struct drm_framebuffer *
9959 intel_user_framebuffer_create(struct drm_device *dev,
9960                               struct drm_file *filp,
9961                               struct drm_mode_fb_cmd2 *mode_cmd)
9962 {
9963         struct drm_i915_gem_object *obj;
9964
9965         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9966                                                 mode_cmd->handles[0]));
9967         if (&obj->base == NULL)
9968                 return ERR_PTR(-ENOENT);
9969
9970         return intel_framebuffer_create(dev, mode_cmd, obj);
9971 }
9972
9973 static const struct drm_mode_config_funcs intel_mode_funcs = {
9974         .fb_create = intel_user_framebuffer_create,
9975         .output_poll_changed = intel_fb_output_poll_changed,
9976 };
9977
9978 /* Set up chip specific display functions */
9979 static void intel_init_display(struct drm_device *dev)
9980 {
9981         struct drm_i915_private *dev_priv = dev->dev_private;
9982
9983         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9984                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9985         else if (IS_VALLEYVIEW(dev))
9986                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9987         else if (IS_PINEVIEW(dev))
9988                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9989         else
9990                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9991
9992         if (HAS_DDI(dev)) {
9993                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9994                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9995                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9996                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9997                 dev_priv->display.off = haswell_crtc_off;
9998                 dev_priv->display.update_plane = ironlake_update_plane;
9999         } else if (HAS_PCH_SPLIT(dev)) {
10000                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10001                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10002                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10003                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10004                 dev_priv->display.off = ironlake_crtc_off;
10005                 dev_priv->display.update_plane = ironlake_update_plane;
10006         } else if (IS_VALLEYVIEW(dev)) {
10007                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10008                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10009                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10010                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10011                 dev_priv->display.off = i9xx_crtc_off;
10012                 dev_priv->display.update_plane = i9xx_update_plane;
10013         } else {
10014                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10015                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10016                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10017                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10018                 dev_priv->display.off = i9xx_crtc_off;
10019                 dev_priv->display.update_plane = i9xx_update_plane;
10020         }
10021
10022         /* Returns the core display clock speed */
10023         if (IS_VALLEYVIEW(dev))
10024                 dev_priv->display.get_display_clock_speed =
10025                         valleyview_get_display_clock_speed;
10026         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10027                 dev_priv->display.get_display_clock_speed =
10028                         i945_get_display_clock_speed;
10029         else if (IS_I915G(dev))
10030                 dev_priv->display.get_display_clock_speed =
10031                         i915_get_display_clock_speed;
10032         else if (IS_I945GM(dev) || IS_845G(dev))
10033                 dev_priv->display.get_display_clock_speed =
10034                         i9xx_misc_get_display_clock_speed;
10035         else if (IS_PINEVIEW(dev))
10036                 dev_priv->display.get_display_clock_speed =
10037                         pnv_get_display_clock_speed;
10038         else if (IS_I915GM(dev))
10039                 dev_priv->display.get_display_clock_speed =
10040                         i915gm_get_display_clock_speed;
10041         else if (IS_I865G(dev))
10042                 dev_priv->display.get_display_clock_speed =
10043                         i865_get_display_clock_speed;
10044         else if (IS_I85X(dev))
10045                 dev_priv->display.get_display_clock_speed =
10046                         i855_get_display_clock_speed;
10047         else /* 852, 830 */
10048                 dev_priv->display.get_display_clock_speed =
10049                         i830_get_display_clock_speed;
10050
10051         if (HAS_PCH_SPLIT(dev)) {
10052                 if (IS_GEN5(dev)) {
10053                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10054                         dev_priv->display.write_eld = ironlake_write_eld;
10055                 } else if (IS_GEN6(dev)) {
10056                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10057                         dev_priv->display.write_eld = ironlake_write_eld;
10058                 } else if (IS_IVYBRIDGE(dev)) {
10059                         /* FIXME: detect B0+ stepping and use auto training */
10060                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10061                         dev_priv->display.write_eld = ironlake_write_eld;
10062                         dev_priv->display.modeset_global_resources =
10063                                 ivb_modeset_global_resources;
10064                 } else if (IS_HASWELL(dev)) {
10065                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10066                         dev_priv->display.write_eld = haswell_write_eld;
10067                         dev_priv->display.modeset_global_resources =
10068                                 haswell_modeset_global_resources;
10069                 }
10070         } else if (IS_G4X(dev)) {
10071                 dev_priv->display.write_eld = g4x_write_eld;
10072         }
10073
10074         /* Default just returns -ENODEV to indicate unsupported */
10075         dev_priv->display.queue_flip = intel_default_queue_flip;
10076
10077         switch (INTEL_INFO(dev)->gen) {
10078         case 2:
10079                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10080                 break;
10081
10082         case 3:
10083                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10084                 break;
10085
10086         case 4:
10087         case 5:
10088                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10089                 break;
10090
10091         case 6:
10092                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10093                 break;
10094         case 7:
10095                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10096                 break;
10097         }
10098 }
10099
10100 /*
10101  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10102  * resume, or other times.  This quirk makes sure that's the case for
10103  * affected systems.
10104  */
10105 static void quirk_pipea_force(struct drm_device *dev)
10106 {
10107         struct drm_i915_private *dev_priv = dev->dev_private;
10108
10109         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10110         DRM_INFO("applying pipe a force quirk\n");
10111 }
10112
10113 /*
10114  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10115  */
10116 static void quirk_ssc_force_disable(struct drm_device *dev)
10117 {
10118         struct drm_i915_private *dev_priv = dev->dev_private;
10119         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10120         DRM_INFO("applying lvds SSC disable quirk\n");
10121 }
10122
10123 /*
10124  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10125  * brightness value
10126  */
10127 static void quirk_invert_brightness(struct drm_device *dev)
10128 {
10129         struct drm_i915_private *dev_priv = dev->dev_private;
10130         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10131         DRM_INFO("applying inverted panel brightness quirk\n");
10132 }
10133
10134 /*
10135  * Some machines (Dell XPS13) suffer broken backlight controls if
10136  * BLM_PCH_PWM_ENABLE is set.
10137  */
10138 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10139 {
10140         struct drm_i915_private *dev_priv = dev->dev_private;
10141         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10142         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10143 }
10144
10145 struct intel_quirk {
10146         int device;
10147         int subsystem_vendor;
10148         int subsystem_device;
10149         void (*hook)(struct drm_device *dev);
10150 };
10151
10152 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10153 struct intel_dmi_quirk {
10154         void (*hook)(struct drm_device *dev);
10155         const struct dmi_system_id (*dmi_id_list)[];
10156 };
10157
10158 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10159 {
10160         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10161         return 1;
10162 }
10163
10164 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10165         {
10166                 .dmi_id_list = &(const struct dmi_system_id[]) {
10167                         {
10168                                 .callback = intel_dmi_reverse_brightness,
10169                                 .ident = "NCR Corporation",
10170                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10171                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10172                                 },
10173                         },
10174                         { }  /* terminating entry */
10175                 },
10176                 .hook = quirk_invert_brightness,
10177         },
10178 };
10179
10180 static struct intel_quirk intel_quirks[] = {
10181         /* HP Mini needs pipe A force quirk (LP: #322104) */
10182         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10183
10184         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10185         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10186
10187         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10188         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10189
10190         /* 830/845 need to leave pipe A & dpll A up */
10191         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10192         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10193
10194         /* Lenovo U160 cannot use SSC on LVDS */
10195         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10196
10197         /* Sony Vaio Y cannot use SSC on LVDS */
10198         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10199
10200         /*
10201          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10202          * seem to use inverted backlight PWM.
10203          */
10204         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10205
10206         /* Dell XPS13 HD Sandy Bridge */
10207         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10208         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10209         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10210 };
10211
10212 static void intel_init_quirks(struct drm_device *dev)
10213 {
10214         struct pci_dev *d = dev->pdev;
10215         int i;
10216
10217         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10218                 struct intel_quirk *q = &intel_quirks[i];
10219
10220                 if (d->device == q->device &&
10221                     (d->subsystem_vendor == q->subsystem_vendor ||
10222                      q->subsystem_vendor == PCI_ANY_ID) &&
10223                     (d->subsystem_device == q->subsystem_device ||
10224                      q->subsystem_device == PCI_ANY_ID))
10225                         q->hook(dev);
10226         }
10227         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10228                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10229                         intel_dmi_quirks[i].hook(dev);
10230         }
10231 }
10232
10233 /* Disable the VGA plane that we never use */
10234 static void i915_disable_vga(struct drm_device *dev)
10235 {
10236         struct drm_i915_private *dev_priv = dev->dev_private;
10237         u8 sr1;
10238         u32 vga_reg = i915_vgacntrl_reg(dev);
10239
10240         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10241         outb(SR01, VGA_SR_INDEX);
10242         sr1 = inb(VGA_SR_DATA);
10243         outb(sr1 | 1<<5, VGA_SR_DATA);
10244         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10245         udelay(300);
10246
10247         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10248         POSTING_READ(vga_reg);
10249 }
10250
10251 static void i915_enable_vga_mem(struct drm_device *dev)
10252 {
10253         /* Enable VGA memory on Intel HD */
10254         if (HAS_PCH_SPLIT(dev)) {
10255                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10256                 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10257                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10258                                                    VGA_RSRC_LEGACY_MEM |
10259                                                    VGA_RSRC_NORMAL_IO |
10260                                                    VGA_RSRC_NORMAL_MEM);
10261                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10262         }
10263 }
10264
10265 void i915_disable_vga_mem(struct drm_device *dev)
10266 {
10267         /* Disable VGA memory on Intel HD */
10268         if (HAS_PCH_SPLIT(dev)) {
10269                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10270                 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10271                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10272                                                    VGA_RSRC_NORMAL_IO |
10273                                                    VGA_RSRC_NORMAL_MEM);
10274                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10275         }
10276 }
10277
10278 void intel_modeset_init_hw(struct drm_device *dev)
10279 {
10280         intel_prepare_ddi(dev);
10281
10282         intel_init_clock_gating(dev);
10283
10284         mutex_lock(&dev->struct_mutex);
10285         intel_enable_gt_powersave(dev);
10286         mutex_unlock(&dev->struct_mutex);
10287 }
10288
10289 void intel_modeset_suspend_hw(struct drm_device *dev)
10290 {
10291         intel_suspend_hw(dev);
10292 }
10293
10294 void intel_modeset_init(struct drm_device *dev)
10295 {
10296         struct drm_i915_private *dev_priv = dev->dev_private;
10297         int i, j, ret;
10298
10299         drm_mode_config_init(dev);
10300
10301         dev->mode_config.min_width = 0;
10302         dev->mode_config.min_height = 0;
10303
10304         dev->mode_config.preferred_depth = 24;
10305         dev->mode_config.prefer_shadow = 1;
10306
10307         dev->mode_config.funcs = &intel_mode_funcs;
10308
10309         intel_init_quirks(dev);
10310
10311         intel_init_pm(dev);
10312
10313         if (INTEL_INFO(dev)->num_pipes == 0)
10314                 return;
10315
10316         intel_init_display(dev);
10317
10318         if (IS_GEN2(dev)) {
10319                 dev->mode_config.max_width = 2048;
10320                 dev->mode_config.max_height = 2048;
10321         } else if (IS_GEN3(dev)) {
10322                 dev->mode_config.max_width = 4096;
10323                 dev->mode_config.max_height = 4096;
10324         } else {
10325                 dev->mode_config.max_width = 8192;
10326                 dev->mode_config.max_height = 8192;
10327         }
10328         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10329
10330         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10331                       INTEL_INFO(dev)->num_pipes,
10332                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10333
10334         for_each_pipe(i) {
10335                 intel_crtc_init(dev, i);
10336                 for (j = 0; j < dev_priv->num_plane; j++) {
10337                         ret = intel_plane_init(dev, i, j);
10338                         if (ret)
10339                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10340                                               pipe_name(i), sprite_name(i, j), ret);
10341                 }
10342         }
10343
10344         intel_cpu_pll_init(dev);
10345         intel_shared_dpll_init(dev);
10346
10347         /* Just disable it once at startup */
10348         i915_disable_vga(dev);
10349         intel_setup_outputs(dev);
10350
10351         /* Just in case the BIOS is doing something questionable. */
10352         intel_disable_fbc(dev);
10353 }
10354
10355 static void
10356 intel_connector_break_all_links(struct intel_connector *connector)
10357 {
10358         connector->base.dpms = DRM_MODE_DPMS_OFF;
10359         connector->base.encoder = NULL;
10360         connector->encoder->connectors_active = false;
10361         connector->encoder->base.crtc = NULL;
10362 }
10363
10364 static void intel_enable_pipe_a(struct drm_device *dev)
10365 {
10366         struct intel_connector *connector;
10367         struct drm_connector *crt = NULL;
10368         struct intel_load_detect_pipe load_detect_temp;
10369
10370         /* We can't just switch on the pipe A, we need to set things up with a
10371          * proper mode and output configuration. As a gross hack, enable pipe A
10372          * by enabling the load detect pipe once. */
10373         list_for_each_entry(connector,
10374                             &dev->mode_config.connector_list,
10375                             base.head) {
10376                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10377                         crt = &connector->base;
10378                         break;
10379                 }
10380         }
10381
10382         if (!crt)
10383                 return;
10384
10385         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10386                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10387
10388
10389 }
10390
10391 static bool
10392 intel_check_plane_mapping(struct intel_crtc *crtc)
10393 {
10394         struct drm_device *dev = crtc->base.dev;
10395         struct drm_i915_private *dev_priv = dev->dev_private;
10396         u32 reg, val;
10397
10398         if (INTEL_INFO(dev)->num_pipes == 1)
10399                 return true;
10400
10401         reg = DSPCNTR(!crtc->plane);
10402         val = I915_READ(reg);
10403
10404         if ((val & DISPLAY_PLANE_ENABLE) &&
10405             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10406                 return false;
10407
10408         return true;
10409 }
10410
10411 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10412 {
10413         struct drm_device *dev = crtc->base.dev;
10414         struct drm_i915_private *dev_priv = dev->dev_private;
10415         u32 reg;
10416
10417         /* Clear any frame start delays used for debugging left by the BIOS */
10418         reg = PIPECONF(crtc->config.cpu_transcoder);
10419         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10420
10421         /* We need to sanitize the plane -> pipe mapping first because this will
10422          * disable the crtc (and hence change the state) if it is wrong. Note
10423          * that gen4+ has a fixed plane -> pipe mapping.  */
10424         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10425                 struct intel_connector *connector;
10426                 bool plane;
10427
10428                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10429                               crtc->base.base.id);
10430
10431                 /* Pipe has the wrong plane attached and the plane is active.
10432                  * Temporarily change the plane mapping and disable everything
10433                  * ...  */
10434                 plane = crtc->plane;
10435                 crtc->plane = !plane;
10436                 dev_priv->display.crtc_disable(&crtc->base);
10437                 crtc->plane = plane;
10438
10439                 /* ... and break all links. */
10440                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10441                                     base.head) {
10442                         if (connector->encoder->base.crtc != &crtc->base)
10443                                 continue;
10444
10445                         intel_connector_break_all_links(connector);
10446                 }
10447
10448                 WARN_ON(crtc->active);
10449                 crtc->base.enabled = false;
10450         }
10451
10452         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10453             crtc->pipe == PIPE_A && !crtc->active) {
10454                 /* BIOS forgot to enable pipe A, this mostly happens after
10455                  * resume. Force-enable the pipe to fix this, the update_dpms
10456                  * call below we restore the pipe to the right state, but leave
10457                  * the required bits on. */
10458                 intel_enable_pipe_a(dev);
10459         }
10460
10461         /* Adjust the state of the output pipe according to whether we
10462          * have active connectors/encoders. */
10463         intel_crtc_update_dpms(&crtc->base);
10464
10465         if (crtc->active != crtc->base.enabled) {
10466                 struct intel_encoder *encoder;
10467
10468                 /* This can happen either due to bugs in the get_hw_state
10469                  * functions or because the pipe is force-enabled due to the
10470                  * pipe A quirk. */
10471                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10472                               crtc->base.base.id,
10473                               crtc->base.enabled ? "enabled" : "disabled",
10474                               crtc->active ? "enabled" : "disabled");
10475
10476                 crtc->base.enabled = crtc->active;
10477
10478                 /* Because we only establish the connector -> encoder ->
10479                  * crtc links if something is active, this means the
10480                  * crtc is now deactivated. Break the links. connector
10481                  * -> encoder links are only establish when things are
10482                  *  actually up, hence no need to break them. */
10483                 WARN_ON(crtc->active);
10484
10485                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10486                         WARN_ON(encoder->connectors_active);
10487                         encoder->base.crtc = NULL;
10488                 }
10489         }
10490 }
10491
10492 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10493 {
10494         struct intel_connector *connector;
10495         struct drm_device *dev = encoder->base.dev;
10496
10497         /* We need to check both for a crtc link (meaning that the
10498          * encoder is active and trying to read from a pipe) and the
10499          * pipe itself being active. */
10500         bool has_active_crtc = encoder->base.crtc &&
10501                 to_intel_crtc(encoder->base.crtc)->active;
10502
10503         if (encoder->connectors_active && !has_active_crtc) {
10504                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10505                               encoder->base.base.id,
10506                               drm_get_encoder_name(&encoder->base));
10507
10508                 /* Connector is active, but has no active pipe. This is
10509                  * fallout from our resume register restoring. Disable
10510                  * the encoder manually again. */
10511                 if (encoder->base.crtc) {
10512                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10513                                       encoder->base.base.id,
10514                                       drm_get_encoder_name(&encoder->base));
10515                         encoder->disable(encoder);
10516                 }
10517
10518                 /* Inconsistent output/port/pipe state happens presumably due to
10519                  * a bug in one of the get_hw_state functions. Or someplace else
10520                  * in our code, like the register restore mess on resume. Clamp
10521                  * things to off as a safer default. */
10522                 list_for_each_entry(connector,
10523                                     &dev->mode_config.connector_list,
10524                                     base.head) {
10525                         if (connector->encoder != encoder)
10526                                 continue;
10527
10528                         intel_connector_break_all_links(connector);
10529                 }
10530         }
10531         /* Enabled encoders without active connectors will be fixed in
10532          * the crtc fixup. */
10533 }
10534
10535 void i915_redisable_vga(struct drm_device *dev)
10536 {
10537         struct drm_i915_private *dev_priv = dev->dev_private;
10538         u32 vga_reg = i915_vgacntrl_reg(dev);
10539
10540         /* This function can be called both from intel_modeset_setup_hw_state or
10541          * at a very early point in our resume sequence, where the power well
10542          * structures are not yet restored. Since this function is at a very
10543          * paranoid "someone might have enabled VGA while we were not looking"
10544          * level, just check if the power well is enabled instead of trying to
10545          * follow the "don't touch the power well if we don't need it" policy
10546          * the rest of the driver uses. */
10547         if (HAS_POWER_WELL(dev) &&
10548             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10549                 return;
10550
10551         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10552                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10553                 i915_disable_vga(dev);
10554                 i915_disable_vga_mem(dev);
10555         }
10556 }
10557
10558 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10559 {
10560         struct drm_i915_private *dev_priv = dev->dev_private;
10561         enum pipe pipe;
10562         struct intel_crtc *crtc;
10563         struct intel_encoder *encoder;
10564         struct intel_connector *connector;
10565         int i;
10566
10567         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10568                             base.head) {
10569                 memset(&crtc->config, 0, sizeof(crtc->config));
10570
10571                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10572                                                                  &crtc->config);
10573
10574                 crtc->base.enabled = crtc->active;
10575
10576                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10577                               crtc->base.base.id,
10578                               crtc->active ? "enabled" : "disabled");
10579         }
10580
10581         /* FIXME: Smash this into the new shared dpll infrastructure. */
10582         if (HAS_DDI(dev))
10583                 intel_ddi_setup_hw_pll_state(dev);
10584
10585         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10586                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10587
10588                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10589                 pll->active = 0;
10590                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10591                                     base.head) {
10592                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10593                                 pll->active++;
10594                 }
10595                 pll->refcount = pll->active;
10596
10597                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10598                               pll->name, pll->refcount, pll->on);
10599         }
10600
10601         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10602                             base.head) {
10603                 pipe = 0;
10604
10605                 if (encoder->get_hw_state(encoder, &pipe)) {
10606                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10607                         encoder->base.crtc = &crtc->base;
10608                         if (encoder->get_config)
10609                                 encoder->get_config(encoder, &crtc->config);
10610                 } else {
10611                         encoder->base.crtc = NULL;
10612                 }
10613
10614                 encoder->connectors_active = false;
10615                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10616                               encoder->base.base.id,
10617                               drm_get_encoder_name(&encoder->base),
10618                               encoder->base.crtc ? "enabled" : "disabled",
10619                               pipe);
10620         }
10621
10622         list_for_each_entry(connector, &dev->mode_config.connector_list,
10623                             base.head) {
10624                 if (connector->get_hw_state(connector)) {
10625                         connector->base.dpms = DRM_MODE_DPMS_ON;
10626                         connector->encoder->connectors_active = true;
10627                         connector->base.encoder = &connector->encoder->base;
10628                 } else {
10629                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10630                         connector->base.encoder = NULL;
10631                 }
10632                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10633                               connector->base.base.id,
10634                               drm_get_connector_name(&connector->base),
10635                               connector->base.encoder ? "enabled" : "disabled");
10636         }
10637 }
10638
10639 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10640  * and i915 state tracking structures. */
10641 void intel_modeset_setup_hw_state(struct drm_device *dev,
10642                                   bool force_restore)
10643 {
10644         struct drm_i915_private *dev_priv = dev->dev_private;
10645         enum pipe pipe;
10646         struct intel_crtc *crtc;
10647         struct intel_encoder *encoder;
10648         int i;
10649
10650         intel_modeset_readout_hw_state(dev);
10651
10652         /*
10653          * Now that we have the config, copy it to each CRTC struct
10654          * Note that this could go away if we move to using crtc_config
10655          * checking everywhere.
10656          */
10657         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10658                             base.head) {
10659                 if (crtc->active && i915_fastboot) {
10660                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10661
10662                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10663                                       crtc->base.base.id);
10664                         drm_mode_debug_printmodeline(&crtc->base.mode);
10665                 }
10666         }
10667
10668         /* HW state is read out, now we need to sanitize this mess. */
10669         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10670                             base.head) {
10671                 intel_sanitize_encoder(encoder);
10672         }
10673
10674         for_each_pipe(pipe) {
10675                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10676                 intel_sanitize_crtc(crtc);
10677                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10678         }
10679
10680         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10681                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10682
10683                 if (!pll->on || pll->active)
10684                         continue;
10685
10686                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10687
10688                 pll->disable(dev_priv, pll);
10689                 pll->on = false;
10690         }
10691
10692         if (force_restore) {
10693                 i915_redisable_vga(dev);
10694
10695                 /*
10696                  * We need to use raw interfaces for restoring state to avoid
10697                  * checking (bogus) intermediate states.
10698                  */
10699                 for_each_pipe(pipe) {
10700                         struct drm_crtc *crtc =
10701                                 dev_priv->pipe_to_crtc_mapping[pipe];
10702
10703                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10704                                          crtc->fb);
10705                 }
10706         } else {
10707                 intel_modeset_update_staged_output_state(dev);
10708         }
10709
10710         intel_modeset_check_state(dev);
10711
10712         drm_mode_config_reset(dev);
10713 }
10714
10715 void intel_modeset_gem_init(struct drm_device *dev)
10716 {
10717         intel_modeset_init_hw(dev);
10718
10719         intel_setup_overlay(dev);
10720
10721         intel_modeset_setup_hw_state(dev, false);
10722 }
10723
10724 void intel_modeset_cleanup(struct drm_device *dev)
10725 {
10726         struct drm_i915_private *dev_priv = dev->dev_private;
10727         struct drm_crtc *crtc;
10728
10729         /*
10730          * Interrupts and polling as the first thing to avoid creating havoc.
10731          * Too much stuff here (turning of rps, connectors, ...) would
10732          * experience fancy races otherwise.
10733          */
10734         drm_irq_uninstall(dev);
10735         cancel_work_sync(&dev_priv->hotplug_work);
10736         /*
10737          * Due to the hpd irq storm handling the hotplug work can re-arm the
10738          * poll handlers. Hence disable polling after hpd handling is shut down.
10739          */
10740         drm_kms_helper_poll_fini(dev);
10741
10742         mutex_lock(&dev->struct_mutex);
10743
10744         intel_unregister_dsm_handler();
10745
10746         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10747                 /* Skip inactive CRTCs */
10748                 if (!crtc->fb)
10749                         continue;
10750
10751                 intel_increase_pllclock(crtc);
10752         }
10753
10754         intel_disable_fbc(dev);
10755
10756         i915_enable_vga_mem(dev);
10757
10758         intel_disable_gt_powersave(dev);
10759
10760         ironlake_teardown_rc6(dev);
10761
10762         mutex_unlock(&dev->struct_mutex);
10763
10764         /* flush any delayed tasks or pending work */
10765         flush_scheduled_work();
10766
10767         /* destroy backlight, if any, before the connectors */
10768         intel_panel_destroy_backlight(dev);
10769
10770         drm_mode_config_cleanup(dev);
10771
10772         intel_cleanup_overlay(dev);
10773 }
10774
10775 /*
10776  * Return which encoder is currently attached for connector.
10777  */
10778 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10779 {
10780         return &intel_attached_encoder(connector)->base;
10781 }
10782
10783 void intel_connector_attach_encoder(struct intel_connector *connector,
10784                                     struct intel_encoder *encoder)
10785 {
10786         connector->encoder = encoder;
10787         drm_mode_connector_attach_encoder(&connector->base,
10788                                           &encoder->base);
10789 }
10790
10791 /*
10792  * set vga decode state - true == enable VGA decode
10793  */
10794 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10795 {
10796         struct drm_i915_private *dev_priv = dev->dev_private;
10797         u16 gmch_ctrl;
10798
10799         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10800         if (state)
10801                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10802         else
10803                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10804         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10805         return 0;
10806 }
10807
10808 struct intel_display_error_state {
10809
10810         u32 power_well_driver;
10811
10812         int num_transcoders;
10813
10814         struct intel_cursor_error_state {
10815                 u32 control;
10816                 u32 position;
10817                 u32 base;
10818                 u32 size;
10819         } cursor[I915_MAX_PIPES];
10820
10821         struct intel_pipe_error_state {
10822                 u32 source;
10823         } pipe[I915_MAX_PIPES];
10824
10825         struct intel_plane_error_state {
10826                 u32 control;
10827                 u32 stride;
10828                 u32 size;
10829                 u32 pos;
10830                 u32 addr;
10831                 u32 surface;
10832                 u32 tile_offset;
10833         } plane[I915_MAX_PIPES];
10834
10835         struct intel_transcoder_error_state {
10836                 enum transcoder cpu_transcoder;
10837
10838                 u32 conf;
10839
10840                 u32 htotal;
10841                 u32 hblank;
10842                 u32 hsync;
10843                 u32 vtotal;
10844                 u32 vblank;
10845                 u32 vsync;
10846         } transcoder[4];
10847 };
10848
10849 struct intel_display_error_state *
10850 intel_display_capture_error_state(struct drm_device *dev)
10851 {
10852         drm_i915_private_t *dev_priv = dev->dev_private;
10853         struct intel_display_error_state *error;
10854         int transcoders[] = {
10855                 TRANSCODER_A,
10856                 TRANSCODER_B,
10857                 TRANSCODER_C,
10858                 TRANSCODER_EDP,
10859         };
10860         int i;
10861
10862         if (INTEL_INFO(dev)->num_pipes == 0)
10863                 return NULL;
10864
10865         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10866         if (error == NULL)
10867                 return NULL;
10868
10869         if (HAS_POWER_WELL(dev))
10870                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10871
10872         for_each_pipe(i) {
10873                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10874                         error->cursor[i].control = I915_READ(CURCNTR(i));
10875                         error->cursor[i].position = I915_READ(CURPOS(i));
10876                         error->cursor[i].base = I915_READ(CURBASE(i));
10877                 } else {
10878                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10879                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10880                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10881                 }
10882
10883                 error->plane[i].control = I915_READ(DSPCNTR(i));
10884                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10885                 if (INTEL_INFO(dev)->gen <= 3) {
10886                         error->plane[i].size = I915_READ(DSPSIZE(i));
10887                         error->plane[i].pos = I915_READ(DSPPOS(i));
10888                 }
10889                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10890                         error->plane[i].addr = I915_READ(DSPADDR(i));
10891                 if (INTEL_INFO(dev)->gen >= 4) {
10892                         error->plane[i].surface = I915_READ(DSPSURF(i));
10893                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10894                 }
10895
10896                 error->pipe[i].source = I915_READ(PIPESRC(i));
10897         }
10898
10899         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10900         if (HAS_DDI(dev_priv->dev))
10901                 error->num_transcoders++; /* Account for eDP. */
10902
10903         for (i = 0; i < error->num_transcoders; i++) {
10904                 enum transcoder cpu_transcoder = transcoders[i];
10905
10906                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10907
10908                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10909                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10910                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10911                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10912                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10913                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10914                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10915         }
10916
10917         /* In the code above we read the registers without checking if the power
10918          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10919          * prevent the next I915_WRITE from detecting it and printing an error
10920          * message. */
10921         intel_uncore_clear_errors(dev);
10922
10923         return error;
10924 }
10925
10926 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10927
10928 void
10929 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10930                                 struct drm_device *dev,
10931                                 struct intel_display_error_state *error)
10932 {
10933         int i;
10934
10935         if (!error)
10936                 return;
10937
10938         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10939         if (HAS_POWER_WELL(dev))
10940                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10941                            error->power_well_driver);
10942         for_each_pipe(i) {
10943                 err_printf(m, "Pipe [%d]:\n", i);
10944                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10945
10946                 err_printf(m, "Plane [%d]:\n", i);
10947                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10948                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10949                 if (INTEL_INFO(dev)->gen <= 3) {
10950                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10951                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10952                 }
10953                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10954                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10955                 if (INTEL_INFO(dev)->gen >= 4) {
10956                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10957                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10958                 }
10959
10960                 err_printf(m, "Cursor [%d]:\n", i);
10961                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10962                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10963                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10964         }
10965
10966         for (i = 0; i < error->num_transcoders; i++) {
10967                 err_printf(m, "  CPU transcoder: %c\n",
10968                            transcoder_name(error->transcoder[i].cpu_transcoder));
10969                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10970                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10971                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10972                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10973                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10974                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10975                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10976         }
10977 }