drm/i915: Use vblank evade mechanism in mmio_flip
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                            struct drm_framebuffer *fb,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_device *dev = fb->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204         u32 alignment;
2205         int ret;
2206
2207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209         switch (obj->tiling_mode) {
2210         case I915_TILING_NONE:
2211                 if (INTEL_INFO(dev)->gen >= 9)
2212                         alignment = 256 * 1024;
2213                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                         alignment = 128 * 1024;
2215                 else if (INTEL_INFO(dev)->gen >= 4)
2216                         alignment = 4 * 1024;
2217                 else
2218                         alignment = 64 * 1024;
2219                 break;
2220         case I915_TILING_X:
2221                 if (INTEL_INFO(dev)->gen >= 9)
2222                         alignment = 256 * 1024;
2223                 else {
2224                         /* pin() will align the object as required by fence */
2225                         alignment = 0;
2226                 }
2227                 break;
2228         case I915_TILING_Y:
2229                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                 return -EINVAL;
2231         default:
2232                 BUG();
2233         }
2234
2235         /* Note that the w/a also requires 64 PTE of padding following the
2236          * bo. We currently fill all unused PTE with the shadow page and so
2237          * we should always have valid PTE following the scanout preventing
2238          * the VT-d warning.
2239          */
2240         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                 alignment = 256 * 1024;
2242
2243         /*
2244          * Global gtt pte registers are special registers which actually forward
2245          * writes to a chunk of system memory. Which means that there is no risk
2246          * that the register values disappear as soon as we call
2247          * intel_runtime_pm_put(), so it is correct to wrap only the
2248          * pin/unpin/fence and not more.
2249          */
2250         intel_runtime_pm_get(dev_priv);
2251
2252         dev_priv->mm.interruptible = false;
2253         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254         if (ret)
2255                 goto err_interruptible;
2256
2257         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258          * fence, whereas 965+ only requires a fence if using
2259          * framebuffer compression.  For simplicity, we always install
2260          * a fence as the cost is not that onerous.
2261          */
2262         ret = i915_gem_object_get_fence(obj);
2263         if (ret)
2264                 goto err_unpin;
2265
2266         i915_gem_object_pin_fence(obj);
2267
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return 0;
2271
2272 err_unpin:
2273         i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275         dev_priv->mm.interruptible = true;
2276         intel_runtime_pm_put(dev_priv);
2277         return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284         i915_gem_object_unpin_fence(obj);
2285         i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289  * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                              unsigned int tiling_mode,
2292                                              unsigned int cpp,
2293                                              unsigned int pitch)
2294 {
2295         if (tiling_mode != I915_TILING_NONE) {
2296                 unsigned int tile_rows, tiles;
2297
2298                 tile_rows = *y / 8;
2299                 *y %= 8;
2300
2301                 tiles = *x / (512/cpp);
2302                 *x %= 512/cpp;
2303
2304                 return tile_rows * pitch * 8 + tiles * 4096;
2305         } else {
2306                 unsigned int offset;
2307
2308                 offset = *y * pitch + *x * cpp;
2309                 *y = 0;
2310                 *x = (offset & 4095) / cpp;
2311                 return offset & -4096;
2312         }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317         switch (format) {
2318         case DISPPLANE_8BPP:
2319                 return DRM_FORMAT_C8;
2320         case DISPPLANE_BGRX555:
2321                 return DRM_FORMAT_XRGB1555;
2322         case DISPPLANE_BGRX565:
2323                 return DRM_FORMAT_RGB565;
2324         default:
2325         case DISPPLANE_BGRX888:
2326                 return DRM_FORMAT_XRGB8888;
2327         case DISPPLANE_RGBX888:
2328                 return DRM_FORMAT_XBGR8888;
2329         case DISPPLANE_BGRX101010:
2330                 return DRM_FORMAT_XRGB2101010;
2331         case DISPPLANE_RGBX101010:
2332                 return DRM_FORMAT_XBGR2101010;
2333         }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                   struct intel_plane_config *plane_config)
2338 {
2339         struct drm_device *dev = crtc->base.dev;
2340         struct drm_i915_gem_object *obj = NULL;
2341         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342         u32 base = plane_config->base;
2343
2344         if (plane_config->size == 0)
2345                 return false;
2346
2347         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                              plane_config->size);
2349         if (!obj)
2350                 return false;
2351
2352         if (plane_config->tiled) {
2353                 obj->tiling_mode = I915_TILING_X;
2354                 obj->stride = crtc->base.primary->fb->pitches[0];
2355         }
2356
2357         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358         mode_cmd.width = crtc->base.primary->fb->width;
2359         mode_cmd.height = crtc->base.primary->fb->height;
2360         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362         mutex_lock(&dev->struct_mutex);
2363
2364         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                    &mode_cmd, obj)) {
2366                 DRM_DEBUG_KMS("intel fb init failed\n");
2367                 goto out_unref_obj;
2368         }
2369
2370         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371         mutex_unlock(&dev->struct_mutex);
2372
2373         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374         return true;
2375
2376 out_unref_obj:
2377         drm_gem_object_unreference(&obj->base);
2378         mutex_unlock(&dev->struct_mutex);
2379         return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                  struct intel_plane_config *plane_config)
2384 {
2385         struct drm_device *dev = intel_crtc->base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct drm_crtc *c;
2388         struct intel_crtc *i;
2389         struct drm_i915_gem_object *obj;
2390
2391         if (!intel_crtc->base.primary->fb)
2392                 return;
2393
2394         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                 return;
2396
2397         kfree(intel_crtc->base.primary->fb);
2398         intel_crtc->base.primary->fb = NULL;
2399
2400         /*
2401          * Failed to alloc the obj, check to see if we should share
2402          * an fb with another CRTC instead
2403          */
2404         for_each_crtc(dev, c) {
2405                 i = to_intel_crtc(c);
2406
2407                 if (c == &intel_crtc->base)
2408                         continue;
2409
2410                 if (!i->active)
2411                         continue;
2412
2413                 obj = intel_fb_obj(c->primary->fb);
2414                 if (obj == NULL)
2415                         continue;
2416
2417                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                         if (obj->tiling_mode != I915_TILING_NONE)
2419                                 dev_priv->preserve_bios_swizzle = true;
2420
2421                         drm_framebuffer_reference(c->primary->fb);
2422                         intel_crtc->base.primary->fb = c->primary->fb;
2423                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                         break;
2425                 }
2426         }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                       struct drm_framebuffer *fb,
2431                                       int x, int y)
2432 {
2433         struct drm_device *dev = crtc->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436         struct drm_i915_gem_object *obj;
2437         int plane = intel_crtc->plane;
2438         unsigned long linear_offset;
2439         u32 dspcntr;
2440         u32 reg = DSPCNTR(plane);
2441         int pixel_size;
2442
2443         if (!intel_crtc->primary_enabled) {
2444                 I915_WRITE(reg, 0);
2445                 if (INTEL_INFO(dev)->gen >= 4)
2446                         I915_WRITE(DSPSURF(plane), 0);
2447                 else
2448                         I915_WRITE(DSPADDR(plane), 0);
2449                 POSTING_READ(reg);
2450                 return;
2451         }
2452
2453         obj = intel_fb_obj(fb);
2454         if (WARN_ON(obj == NULL))
2455                 return;
2456
2457         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459         dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461         dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463         if (INTEL_INFO(dev)->gen < 4) {
2464                 if (intel_crtc->pipe == PIPE_B)
2465                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                 /* pipesrc and dspsize control the size that is scaled from,
2468                  * which should always be the user's requested size.
2469                  */
2470                 I915_WRITE(DSPSIZE(plane),
2471                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                            (intel_crtc->config.pipe_src_w - 1));
2473                 I915_WRITE(DSPPOS(plane), 0);
2474         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                 I915_WRITE(PRIMSIZE(plane),
2476                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                            (intel_crtc->config.pipe_src_w - 1));
2478                 I915_WRITE(PRIMPOS(plane), 0);
2479                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480         }
2481
2482         switch (fb->pixel_format) {
2483         case DRM_FORMAT_C8:
2484                 dspcntr |= DISPPLANE_8BPP;
2485                 break;
2486         case DRM_FORMAT_XRGB1555:
2487         case DRM_FORMAT_ARGB1555:
2488                 dspcntr |= DISPPLANE_BGRX555;
2489                 break;
2490         case DRM_FORMAT_RGB565:
2491                 dspcntr |= DISPPLANE_BGRX565;
2492                 break;
2493         case DRM_FORMAT_XRGB8888:
2494         case DRM_FORMAT_ARGB8888:
2495                 dspcntr |= DISPPLANE_BGRX888;
2496                 break;
2497         case DRM_FORMAT_XBGR8888:
2498         case DRM_FORMAT_ABGR8888:
2499                 dspcntr |= DISPPLANE_RGBX888;
2500                 break;
2501         case DRM_FORMAT_XRGB2101010:
2502         case DRM_FORMAT_ARGB2101010:
2503                 dspcntr |= DISPPLANE_BGRX101010;
2504                 break;
2505         case DRM_FORMAT_XBGR2101010:
2506         case DRM_FORMAT_ABGR2101010:
2507                 dspcntr |= DISPPLANE_RGBX101010;
2508                 break;
2509         default:
2510                 BUG();
2511         }
2512
2513         if (INTEL_INFO(dev)->gen >= 4 &&
2514             obj->tiling_mode != I915_TILING_NONE)
2515                 dspcntr |= DISPPLANE_TILED;
2516
2517         if (IS_G4X(dev))
2518                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520         linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522         if (INTEL_INFO(dev)->gen >= 4) {
2523                 intel_crtc->dspaddr_offset =
2524                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                        pixel_size,
2526                                                        fb->pitches[0]);
2527                 linear_offset -= intel_crtc->dspaddr_offset;
2528         } else {
2529                 intel_crtc->dspaddr_offset = linear_offset;
2530         }
2531
2532         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                 x += (intel_crtc->config.pipe_src_w - 1);
2536                 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                 /* Finding the last pixel of the last line of the display
2539                 data and adding to linear_offset*/
2540                 linear_offset +=
2541                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543         }
2544
2545         I915_WRITE(reg, dspcntr);
2546
2547         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                       fb->pitches[0]);
2550         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551         if (INTEL_INFO(dev)->gen >= 4) {
2552                 I915_WRITE(DSPSURF(plane),
2553                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556         } else
2557                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558         POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                           struct drm_framebuffer *fb,
2563                                           int x, int y)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         struct drm_i915_gem_object *obj;
2569         int plane = intel_crtc->plane;
2570         unsigned long linear_offset;
2571         u32 dspcntr;
2572         u32 reg = DSPCNTR(plane);
2573         int pixel_size;
2574
2575         if (!intel_crtc->primary_enabled) {
2576                 I915_WRITE(reg, 0);
2577                 I915_WRITE(DSPSURF(plane), 0);
2578                 POSTING_READ(reg);
2579                 return;
2580         }
2581
2582         obj = intel_fb_obj(fb);
2583         if (WARN_ON(obj == NULL))
2584                 return;
2585
2586         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588         dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590         dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595         switch (fb->pixel_format) {
2596         case DRM_FORMAT_C8:
2597                 dspcntr |= DISPPLANE_8BPP;
2598                 break;
2599         case DRM_FORMAT_RGB565:
2600                 dspcntr |= DISPPLANE_BGRX565;
2601                 break;
2602         case DRM_FORMAT_XRGB8888:
2603         case DRM_FORMAT_ARGB8888:
2604                 dspcntr |= DISPPLANE_BGRX888;
2605                 break;
2606         case DRM_FORMAT_XBGR8888:
2607         case DRM_FORMAT_ABGR8888:
2608                 dspcntr |= DISPPLANE_RGBX888;
2609                 break;
2610         case DRM_FORMAT_XRGB2101010:
2611         case DRM_FORMAT_ARGB2101010:
2612                 dspcntr |= DISPPLANE_BGRX101010;
2613                 break;
2614         case DRM_FORMAT_XBGR2101010:
2615         case DRM_FORMAT_ABGR2101010:
2616                 dspcntr |= DISPPLANE_RGBX101010;
2617                 break;
2618         default:
2619                 BUG();
2620         }
2621
2622         if (obj->tiling_mode != I915_TILING_NONE)
2623                 dspcntr |= DISPPLANE_TILED;
2624
2625         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628         linear_offset = y * fb->pitches[0] + x * pixel_size;
2629         intel_crtc->dspaddr_offset =
2630                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                                pixel_size,
2632                                                fb->pitches[0]);
2633         linear_offset -= intel_crtc->dspaddr_offset;
2634         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                         x += (intel_crtc->config.pipe_src_w - 1);
2639                         y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                         /* Finding the last pixel of the last line of the display
2642                         data and adding to linear_offset*/
2643                         linear_offset +=
2644                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                 }
2647         }
2648
2649         I915_WRITE(reg, dspcntr);
2650
2651         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                       fb->pitches[0]);
2654         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655         I915_WRITE(DSPSURF(plane),
2656                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659         } else {
2660                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662         }
2663         POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                          struct drm_framebuffer *fb,
2668                                          int x, int y)
2669 {
2670         struct drm_device *dev = crtc->dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673         struct intel_framebuffer *intel_fb;
2674         struct drm_i915_gem_object *obj;
2675         int pipe = intel_crtc->pipe;
2676         u32 plane_ctl, stride;
2677
2678         if (!intel_crtc->primary_enabled) {
2679                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                 POSTING_READ(PLANE_CTL(pipe, 0));
2682                 return;
2683         }
2684
2685         plane_ctl = PLANE_CTL_ENABLE |
2686                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                     PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689         switch (fb->pixel_format) {
2690         case DRM_FORMAT_RGB565:
2691                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                 break;
2693         case DRM_FORMAT_XRGB8888:
2694                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                 break;
2696         case DRM_FORMAT_XBGR8888:
2697                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                 break;
2700         case DRM_FORMAT_XRGB2101010:
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                 break;
2703         case DRM_FORMAT_XBGR2101010:
2704                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                 break;
2707         default:
2708                 BUG();
2709         }
2710
2711         intel_fb = to_intel_framebuffer(fb);
2712         obj = intel_fb->obj;
2713
2714         /*
2715          * The stride is either expressed as a multiple of 64 bytes chunks for
2716          * linear buffers or in number of tiles for tiled buffers.
2717          */
2718         switch (obj->tiling_mode) {
2719         case I915_TILING_NONE:
2720                 stride = fb->pitches[0] >> 6;
2721                 break;
2722         case I915_TILING_X:
2723                 plane_ctl |= PLANE_CTL_TILED_X;
2724                 stride = fb->pitches[0] >> 9;
2725                 break;
2726         default:
2727                 BUG();
2728         }
2729
2730         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                       i915_gem_obj_ggtt_offset(obj),
2738                       x, y, fb->width, fb->height,
2739                       fb->pitches[0]);
2740
2741         I915_WRITE(PLANE_POS(pipe, 0), 0);
2742         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743         I915_WRITE(PLANE_SIZE(pipe, 0),
2744                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                    (intel_crtc->config.pipe_src_w - 1));
2746         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749         POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                            int x, int y, enum mode_set_atomic state)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->display.disable_fbc)
2761                 dev_priv->display.disable_fbc(dev);
2762
2763         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765         return 0;
2766 }
2767
2768 void intel_display_handle_reset(struct drm_device *dev)
2769 {
2770         struct drm_i915_private *dev_priv = dev->dev_private;
2771         struct drm_crtc *crtc;
2772
2773         /*
2774          * Flips in the rings have been nuked by the reset,
2775          * so complete all pending flips so that user space
2776          * will get its events and not get stuck.
2777          *
2778          * Also update the base address of all primary
2779          * planes to the the last fb to make sure we're
2780          * showing the correct fb after a reset.
2781          *
2782          * Need to make two loops over the crtcs so that we
2783          * don't try to grab a crtc mutex before the
2784          * pending_flip_queue really got woken up.
2785          */
2786
2787         for_each_crtc(dev, crtc) {
2788                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789                 enum plane plane = intel_crtc->plane;
2790
2791                 intel_prepare_page_flip(dev, plane);
2792                 intel_finish_page_flip_plane(dev, plane);
2793         }
2794
2795         for_each_crtc(dev, crtc) {
2796                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797
2798                 drm_modeset_lock(&crtc->mutex, NULL);
2799                 /*
2800                  * FIXME: Once we have proper support for primary planes (and
2801                  * disabling them without disabling the entire crtc) allow again
2802                  * a NULL crtc->primary->fb.
2803                  */
2804                 if (intel_crtc->active && crtc->primary->fb)
2805                         dev_priv->display.update_primary_plane(crtc,
2806                                                                crtc->primary->fb,
2807                                                                crtc->x,
2808                                                                crtc->y);
2809                 drm_modeset_unlock(&crtc->mutex);
2810         }
2811 }
2812
2813 static int
2814 intel_finish_fb(struct drm_framebuffer *old_fb)
2815 {
2816         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2817         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2818         bool was_interruptible = dev_priv->mm.interruptible;
2819         int ret;
2820
2821         /* Big Hammer, we also need to ensure that any pending
2822          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2823          * current scanout is retired before unpinning the old
2824          * framebuffer.
2825          *
2826          * This should only fail upon a hung GPU, in which case we
2827          * can safely continue.
2828          */
2829         dev_priv->mm.interruptible = false;
2830         ret = i915_gem_object_finish_gpu(obj);
2831         dev_priv->mm.interruptible = was_interruptible;
2832
2833         return ret;
2834 }
2835
2836 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2837 {
2838         struct drm_device *dev = crtc->dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2841         bool pending;
2842
2843         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2844             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2845                 return false;
2846
2847         spin_lock_irq(&dev->event_lock);
2848         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2849         spin_unlock_irq(&dev->event_lock);
2850
2851         return pending;
2852 }
2853
2854 static void intel_update_pipe_size(struct intel_crtc *crtc)
2855 {
2856         struct drm_device *dev = crtc->base.dev;
2857         struct drm_i915_private *dev_priv = dev->dev_private;
2858         const struct drm_display_mode *adjusted_mode;
2859
2860         if (!i915.fastboot)
2861                 return;
2862
2863         /*
2864          * Update pipe size and adjust fitter if needed: the reason for this is
2865          * that in compute_mode_changes we check the native mode (not the pfit
2866          * mode) to see if we can flip rather than do a full mode set. In the
2867          * fastboot case, we'll flip, but if we don't update the pipesrc and
2868          * pfit state, we'll end up with a big fb scanned out into the wrong
2869          * sized surface.
2870          *
2871          * To fix this properly, we need to hoist the checks up into
2872          * compute_mode_changes (or above), check the actual pfit state and
2873          * whether the platform allows pfit disable with pipe active, and only
2874          * then update the pipesrc and pfit state, even on the flip path.
2875          */
2876
2877         adjusted_mode = &crtc->config.adjusted_mode;
2878
2879         I915_WRITE(PIPESRC(crtc->pipe),
2880                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2881                    (adjusted_mode->crtc_vdisplay - 1));
2882         if (!crtc->config.pch_pfit.enabled &&
2883             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2884              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2885                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2886                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2887                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2888         }
2889         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2890         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2891 }
2892
2893 static int
2894 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2895                     struct drm_framebuffer *fb)
2896 {
2897         struct drm_device *dev = crtc->dev;
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900         enum pipe pipe = intel_crtc->pipe;
2901         struct drm_framebuffer *old_fb = crtc->primary->fb;
2902         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2903         int ret;
2904
2905         if (intel_crtc_has_pending_flip(crtc)) {
2906                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2907                 return -EBUSY;
2908         }
2909
2910         /* no fb bound */
2911         if (!fb) {
2912                 DRM_ERROR("No FB bound\n");
2913                 return 0;
2914         }
2915
2916         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2917                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2918                           plane_name(intel_crtc->plane),
2919                           INTEL_INFO(dev)->num_pipes);
2920                 return -EINVAL;
2921         }
2922
2923         mutex_lock(&dev->struct_mutex);
2924         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2925         if (ret == 0)
2926                 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2927                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2928         mutex_unlock(&dev->struct_mutex);
2929         if (ret != 0) {
2930                 DRM_ERROR("pin & fence failed\n");
2931                 return ret;
2932         }
2933
2934         intel_update_pipe_size(intel_crtc);
2935
2936         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2937
2938         if (intel_crtc->active)
2939                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2940
2941         crtc->primary->fb = fb;
2942         crtc->x = x;
2943         crtc->y = y;
2944
2945         if (old_fb) {
2946                 if (intel_crtc->active && old_fb != fb)
2947                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2948                 mutex_lock(&dev->struct_mutex);
2949                 intel_unpin_fb_obj(old_obj);
2950                 mutex_unlock(&dev->struct_mutex);
2951         }
2952
2953         mutex_lock(&dev->struct_mutex);
2954         intel_update_fbc(dev);
2955         mutex_unlock(&dev->struct_mutex);
2956
2957         return 0;
2958 }
2959
2960 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2961 {
2962         struct drm_device *dev = crtc->dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965         int pipe = intel_crtc->pipe;
2966         u32 reg, temp;
2967
2968         /* enable normal train */
2969         reg = FDI_TX_CTL(pipe);
2970         temp = I915_READ(reg);
2971         if (IS_IVYBRIDGE(dev)) {
2972                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2973                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2974         } else {
2975                 temp &= ~FDI_LINK_TRAIN_NONE;
2976                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2977         }
2978         I915_WRITE(reg, temp);
2979
2980         reg = FDI_RX_CTL(pipe);
2981         temp = I915_READ(reg);
2982         if (HAS_PCH_CPT(dev)) {
2983                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2985         } else {
2986                 temp &= ~FDI_LINK_TRAIN_NONE;
2987                 temp |= FDI_LINK_TRAIN_NONE;
2988         }
2989         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2990
2991         /* wait one idle pattern time */
2992         POSTING_READ(reg);
2993         udelay(1000);
2994
2995         /* IVB wants error correction enabled */
2996         if (IS_IVYBRIDGE(dev))
2997                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2998                            FDI_FE_ERRC_ENABLE);
2999 }
3000
3001 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3002 {
3003         return crtc->base.enabled && crtc->active &&
3004                 crtc->config.has_pch_encoder;
3005 }
3006
3007 static void ivb_modeset_global_resources(struct drm_device *dev)
3008 {
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         struct intel_crtc *pipe_B_crtc =
3011                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3012         struct intel_crtc *pipe_C_crtc =
3013                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3014         uint32_t temp;
3015
3016         /*
3017          * When everything is off disable fdi C so that we could enable fdi B
3018          * with all lanes. Note that we don't care about enabled pipes without
3019          * an enabled pch encoder.
3020          */
3021         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3022             !pipe_has_enabled_pch(pipe_C_crtc)) {
3023                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3024                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3025
3026                 temp = I915_READ(SOUTH_CHICKEN1);
3027                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3028                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3029                 I915_WRITE(SOUTH_CHICKEN1, temp);
3030         }
3031 }
3032
3033 /* The FDI link training functions for ILK/Ibexpeak. */
3034 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3035 {
3036         struct drm_device *dev = crtc->dev;
3037         struct drm_i915_private *dev_priv = dev->dev_private;
3038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039         int pipe = intel_crtc->pipe;
3040         u32 reg, temp, tries;
3041
3042         /* FDI needs bits from pipe first */
3043         assert_pipe_enabled(dev_priv, pipe);
3044
3045         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3046            for train result */
3047         reg = FDI_RX_IMR(pipe);
3048         temp = I915_READ(reg);
3049         temp &= ~FDI_RX_SYMBOL_LOCK;
3050         temp &= ~FDI_RX_BIT_LOCK;
3051         I915_WRITE(reg, temp);
3052         I915_READ(reg);
3053         udelay(150);
3054
3055         /* enable CPU FDI TX and PCH FDI RX */
3056         reg = FDI_TX_CTL(pipe);
3057         temp = I915_READ(reg);
3058         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3059         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3060         temp &= ~FDI_LINK_TRAIN_NONE;
3061         temp |= FDI_LINK_TRAIN_PATTERN_1;
3062         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3063
3064         reg = FDI_RX_CTL(pipe);
3065         temp = I915_READ(reg);
3066         temp &= ~FDI_LINK_TRAIN_NONE;
3067         temp |= FDI_LINK_TRAIN_PATTERN_1;
3068         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3069
3070         POSTING_READ(reg);
3071         udelay(150);
3072
3073         /* Ironlake workaround, enable clock pointer after FDI enable*/
3074         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3075         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3076                    FDI_RX_PHASE_SYNC_POINTER_EN);
3077
3078         reg = FDI_RX_IIR(pipe);
3079         for (tries = 0; tries < 5; tries++) {
3080                 temp = I915_READ(reg);
3081                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3082
3083                 if ((temp & FDI_RX_BIT_LOCK)) {
3084                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3085                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3086                         break;
3087                 }
3088         }
3089         if (tries == 5)
3090                 DRM_ERROR("FDI train 1 fail!\n");
3091
3092         /* Train 2 */
3093         reg = FDI_TX_CTL(pipe);
3094         temp = I915_READ(reg);
3095         temp &= ~FDI_LINK_TRAIN_NONE;
3096         temp |= FDI_LINK_TRAIN_PATTERN_2;
3097         I915_WRITE(reg, temp);
3098
3099         reg = FDI_RX_CTL(pipe);
3100         temp = I915_READ(reg);
3101         temp &= ~FDI_LINK_TRAIN_NONE;
3102         temp |= FDI_LINK_TRAIN_PATTERN_2;
3103         I915_WRITE(reg, temp);
3104
3105         POSTING_READ(reg);
3106         udelay(150);
3107
3108         reg = FDI_RX_IIR(pipe);
3109         for (tries = 0; tries < 5; tries++) {
3110                 temp = I915_READ(reg);
3111                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112
3113                 if (temp & FDI_RX_SYMBOL_LOCK) {
3114                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3115                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3116                         break;
3117                 }
3118         }
3119         if (tries == 5)
3120                 DRM_ERROR("FDI train 2 fail!\n");
3121
3122         DRM_DEBUG_KMS("FDI train done\n");
3123
3124 }
3125
3126 static const int snb_b_fdi_train_param[] = {
3127         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3128         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3129         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3130         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3131 };
3132
3133 /* The FDI link training functions for SNB/Cougarpoint. */
3134 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3135 {
3136         struct drm_device *dev = crtc->dev;
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139         int pipe = intel_crtc->pipe;
3140         u32 reg, temp, i, retry;
3141
3142         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3143            for train result */
3144         reg = FDI_RX_IMR(pipe);
3145         temp = I915_READ(reg);
3146         temp &= ~FDI_RX_SYMBOL_LOCK;
3147         temp &= ~FDI_RX_BIT_LOCK;
3148         I915_WRITE(reg, temp);
3149
3150         POSTING_READ(reg);
3151         udelay(150);
3152
3153         /* enable CPU FDI TX and PCH FDI RX */
3154         reg = FDI_TX_CTL(pipe);
3155         temp = I915_READ(reg);
3156         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3157         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3158         temp &= ~FDI_LINK_TRAIN_NONE;
3159         temp |= FDI_LINK_TRAIN_PATTERN_1;
3160         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3161         /* SNB-B */
3162         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3163         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3164
3165         I915_WRITE(FDI_RX_MISC(pipe),
3166                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3167
3168         reg = FDI_RX_CTL(pipe);
3169         temp = I915_READ(reg);
3170         if (HAS_PCH_CPT(dev)) {
3171                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3172                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3173         } else {
3174                 temp &= ~FDI_LINK_TRAIN_NONE;
3175                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3176         }
3177         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3178
3179         POSTING_READ(reg);
3180         udelay(150);
3181
3182         for (i = 0; i < 4; i++) {
3183                 reg = FDI_TX_CTL(pipe);
3184                 temp = I915_READ(reg);
3185                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3186                 temp |= snb_b_fdi_train_param[i];
3187                 I915_WRITE(reg, temp);
3188
3189                 POSTING_READ(reg);
3190                 udelay(500);
3191
3192                 for (retry = 0; retry < 5; retry++) {
3193                         reg = FDI_RX_IIR(pipe);
3194                         temp = I915_READ(reg);
3195                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3196                         if (temp & FDI_RX_BIT_LOCK) {
3197                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3198                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3199                                 break;
3200                         }
3201                         udelay(50);
3202                 }
3203                 if (retry < 5)
3204                         break;
3205         }
3206         if (i == 4)
3207                 DRM_ERROR("FDI train 1 fail!\n");
3208
3209         /* Train 2 */
3210         reg = FDI_TX_CTL(pipe);
3211         temp = I915_READ(reg);
3212         temp &= ~FDI_LINK_TRAIN_NONE;
3213         temp |= FDI_LINK_TRAIN_PATTERN_2;
3214         if (IS_GEN6(dev)) {
3215                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3216                 /* SNB-B */
3217                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3218         }
3219         I915_WRITE(reg, temp);
3220
3221         reg = FDI_RX_CTL(pipe);
3222         temp = I915_READ(reg);
3223         if (HAS_PCH_CPT(dev)) {
3224                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3225                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3226         } else {
3227                 temp &= ~FDI_LINK_TRAIN_NONE;
3228                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3229         }
3230         I915_WRITE(reg, temp);
3231
3232         POSTING_READ(reg);
3233         udelay(150);
3234
3235         for (i = 0; i < 4; i++) {
3236                 reg = FDI_TX_CTL(pipe);
3237                 temp = I915_READ(reg);
3238                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3239                 temp |= snb_b_fdi_train_param[i];
3240                 I915_WRITE(reg, temp);
3241
3242                 POSTING_READ(reg);
3243                 udelay(500);
3244
3245                 for (retry = 0; retry < 5; retry++) {
3246                         reg = FDI_RX_IIR(pipe);
3247                         temp = I915_READ(reg);
3248                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3249                         if (temp & FDI_RX_SYMBOL_LOCK) {
3250                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3251                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3252                                 break;
3253                         }
3254                         udelay(50);
3255                 }
3256                 if (retry < 5)
3257                         break;
3258         }
3259         if (i == 4)
3260                 DRM_ERROR("FDI train 2 fail!\n");
3261
3262         DRM_DEBUG_KMS("FDI train done.\n");
3263 }
3264
3265 /* Manual link training for Ivy Bridge A0 parts */
3266 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3267 {
3268         struct drm_device *dev = crtc->dev;
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271         int pipe = intel_crtc->pipe;
3272         u32 reg, temp, i, j;
3273
3274         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3275            for train result */
3276         reg = FDI_RX_IMR(pipe);
3277         temp = I915_READ(reg);
3278         temp &= ~FDI_RX_SYMBOL_LOCK;
3279         temp &= ~FDI_RX_BIT_LOCK;
3280         I915_WRITE(reg, temp);
3281
3282         POSTING_READ(reg);
3283         udelay(150);
3284
3285         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3286                       I915_READ(FDI_RX_IIR(pipe)));
3287
3288         /* Try each vswing and preemphasis setting twice before moving on */
3289         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3290                 /* disable first in case we need to retry */
3291                 reg = FDI_TX_CTL(pipe);
3292                 temp = I915_READ(reg);
3293                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3294                 temp &= ~FDI_TX_ENABLE;
3295                 I915_WRITE(reg, temp);
3296
3297                 reg = FDI_RX_CTL(pipe);
3298                 temp = I915_READ(reg);
3299                 temp &= ~FDI_LINK_TRAIN_AUTO;
3300                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3301                 temp &= ~FDI_RX_ENABLE;
3302                 I915_WRITE(reg, temp);
3303
3304                 /* enable CPU FDI TX and PCH FDI RX */
3305                 reg = FDI_TX_CTL(pipe);
3306                 temp = I915_READ(reg);
3307                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3308                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3309                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3310                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3311                 temp |= snb_b_fdi_train_param[j/2];
3312                 temp |= FDI_COMPOSITE_SYNC;
3313                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3314
3315                 I915_WRITE(FDI_RX_MISC(pipe),
3316                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3317
3318                 reg = FDI_RX_CTL(pipe);
3319                 temp = I915_READ(reg);
3320                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321                 temp |= FDI_COMPOSITE_SYNC;
3322                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3323
3324                 POSTING_READ(reg);
3325                 udelay(1); /* should be 0.5us */
3326
3327                 for (i = 0; i < 4; i++) {
3328                         reg = FDI_RX_IIR(pipe);
3329                         temp = I915_READ(reg);
3330                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3331
3332                         if (temp & FDI_RX_BIT_LOCK ||
3333                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3334                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3335                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3336                                               i);
3337                                 break;
3338                         }
3339                         udelay(1); /* should be 0.5us */
3340                 }
3341                 if (i == 4) {
3342                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3343                         continue;
3344                 }
3345
3346                 /* Train 2 */
3347                 reg = FDI_TX_CTL(pipe);
3348                 temp = I915_READ(reg);
3349                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3350                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3351                 I915_WRITE(reg, temp);
3352
3353                 reg = FDI_RX_CTL(pipe);
3354                 temp = I915_READ(reg);
3355                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3356                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3357                 I915_WRITE(reg, temp);
3358
3359                 POSTING_READ(reg);
3360                 udelay(2); /* should be 1.5us */
3361
3362                 for (i = 0; i < 4; i++) {
3363                         reg = FDI_RX_IIR(pipe);
3364                         temp = I915_READ(reg);
3365                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3366
3367                         if (temp & FDI_RX_SYMBOL_LOCK ||
3368                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3369                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3370                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3371                                               i);
3372                                 goto train_done;
3373                         }
3374                         udelay(2); /* should be 1.5us */
3375                 }
3376                 if (i == 4)
3377                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3378         }
3379
3380 train_done:
3381         DRM_DEBUG_KMS("FDI train done.\n");
3382 }
3383
3384 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3385 {
3386         struct drm_device *dev = intel_crtc->base.dev;
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         int pipe = intel_crtc->pipe;
3389         u32 reg, temp;
3390
3391
3392         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3393         reg = FDI_RX_CTL(pipe);
3394         temp = I915_READ(reg);
3395         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3396         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3397         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3398         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3399
3400         POSTING_READ(reg);
3401         udelay(200);
3402
3403         /* Switch from Rawclk to PCDclk */
3404         temp = I915_READ(reg);
3405         I915_WRITE(reg, temp | FDI_PCDCLK);
3406
3407         POSTING_READ(reg);
3408         udelay(200);
3409
3410         /* Enable CPU FDI TX PLL, always on for Ironlake */
3411         reg = FDI_TX_CTL(pipe);
3412         temp = I915_READ(reg);
3413         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3414                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3415
3416                 POSTING_READ(reg);
3417                 udelay(100);
3418         }
3419 }
3420
3421 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3422 {
3423         struct drm_device *dev = intel_crtc->base.dev;
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         int pipe = intel_crtc->pipe;
3426         u32 reg, temp;
3427
3428         /* Switch from PCDclk to Rawclk */
3429         reg = FDI_RX_CTL(pipe);
3430         temp = I915_READ(reg);
3431         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3432
3433         /* Disable CPU FDI TX PLL */
3434         reg = FDI_TX_CTL(pipe);
3435         temp = I915_READ(reg);
3436         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3437
3438         POSTING_READ(reg);
3439         udelay(100);
3440
3441         reg = FDI_RX_CTL(pipe);
3442         temp = I915_READ(reg);
3443         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3444
3445         /* Wait for the clocks to turn off. */
3446         POSTING_READ(reg);
3447         udelay(100);
3448 }
3449
3450 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3451 {
3452         struct drm_device *dev = crtc->dev;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3455         int pipe = intel_crtc->pipe;
3456         u32 reg, temp;
3457
3458         /* disable CPU FDI tx and PCH FDI rx */
3459         reg = FDI_TX_CTL(pipe);
3460         temp = I915_READ(reg);
3461         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3462         POSTING_READ(reg);
3463
3464         reg = FDI_RX_CTL(pipe);
3465         temp = I915_READ(reg);
3466         temp &= ~(0x7 << 16);
3467         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3468         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3469
3470         POSTING_READ(reg);
3471         udelay(100);
3472
3473         /* Ironlake workaround, disable clock pointer after downing FDI */
3474         if (HAS_PCH_IBX(dev))
3475                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3476
3477         /* still set train pattern 1 */
3478         reg = FDI_TX_CTL(pipe);
3479         temp = I915_READ(reg);
3480         temp &= ~FDI_LINK_TRAIN_NONE;
3481         temp |= FDI_LINK_TRAIN_PATTERN_1;
3482         I915_WRITE(reg, temp);
3483
3484         reg = FDI_RX_CTL(pipe);
3485         temp = I915_READ(reg);
3486         if (HAS_PCH_CPT(dev)) {
3487                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3488                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3489         } else {
3490                 temp &= ~FDI_LINK_TRAIN_NONE;
3491                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3492         }
3493         /* BPC in FDI rx is consistent with that in PIPECONF */
3494         temp &= ~(0x07 << 16);
3495         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3496         I915_WRITE(reg, temp);
3497
3498         POSTING_READ(reg);
3499         udelay(100);
3500 }
3501
3502 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3503 {
3504         struct intel_crtc *crtc;
3505
3506         /* Note that we don't need to be called with mode_config.lock here
3507          * as our list of CRTC objects is static for the lifetime of the
3508          * device and so cannot disappear as we iterate. Similarly, we can
3509          * happily treat the predicates as racy, atomic checks as userspace
3510          * cannot claim and pin a new fb without at least acquring the
3511          * struct_mutex and so serialising with us.
3512          */
3513         for_each_intel_crtc(dev, crtc) {
3514                 if (atomic_read(&crtc->unpin_work_count) == 0)
3515                         continue;
3516
3517                 if (crtc->unpin_work)
3518                         intel_wait_for_vblank(dev, crtc->pipe);
3519
3520                 return true;
3521         }
3522
3523         return false;
3524 }
3525
3526 static void page_flip_completed(struct intel_crtc *intel_crtc)
3527 {
3528         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3529         struct intel_unpin_work *work = intel_crtc->unpin_work;
3530
3531         /* ensure that the unpin work is consistent wrt ->pending. */
3532         smp_rmb();
3533         intel_crtc->unpin_work = NULL;
3534
3535         if (work->event)
3536                 drm_send_vblank_event(intel_crtc->base.dev,
3537                                       intel_crtc->pipe,
3538                                       work->event);
3539
3540         drm_crtc_vblank_put(&intel_crtc->base);
3541
3542         wake_up_all(&dev_priv->pending_flip_queue);
3543         queue_work(dev_priv->wq, &work->work);
3544
3545         trace_i915_flip_complete(intel_crtc->plane,
3546                                  work->pending_flip_obj);
3547 }
3548
3549 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3555         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3556                                        !intel_crtc_has_pending_flip(crtc),
3557                                        60*HZ) == 0)) {
3558                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559
3560                 spin_lock_irq(&dev->event_lock);
3561                 if (intel_crtc->unpin_work) {
3562                         WARN_ONCE(1, "Removing stuck page flip\n");
3563                         page_flip_completed(intel_crtc);
3564                 }
3565                 spin_unlock_irq(&dev->event_lock);
3566         }
3567
3568         if (crtc->primary->fb) {
3569                 mutex_lock(&dev->struct_mutex);
3570                 intel_finish_fb(crtc->primary->fb);
3571                 mutex_unlock(&dev->struct_mutex);
3572         }
3573 }
3574
3575 /* Program iCLKIP clock to the desired frequency */
3576 static void lpt_program_iclkip(struct drm_crtc *crtc)
3577 {
3578         struct drm_device *dev = crtc->dev;
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3581         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3582         u32 temp;
3583
3584         mutex_lock(&dev_priv->dpio_lock);
3585
3586         /* It is necessary to ungate the pixclk gate prior to programming
3587          * the divisors, and gate it back when it is done.
3588          */
3589         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3590
3591         /* Disable SSCCTL */
3592         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3593                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3594                                 SBI_SSCCTL_DISABLE,
3595                         SBI_ICLK);
3596
3597         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3598         if (clock == 20000) {
3599                 auxdiv = 1;
3600                 divsel = 0x41;
3601                 phaseinc = 0x20;
3602         } else {
3603                 /* The iCLK virtual clock root frequency is in MHz,
3604                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3605                  * divisors, it is necessary to divide one by another, so we
3606                  * convert the virtual clock precision to KHz here for higher
3607                  * precision.
3608                  */
3609                 u32 iclk_virtual_root_freq = 172800 * 1000;
3610                 u32 iclk_pi_range = 64;
3611                 u32 desired_divisor, msb_divisor_value, pi_value;
3612
3613                 desired_divisor = (iclk_virtual_root_freq / clock);
3614                 msb_divisor_value = desired_divisor / iclk_pi_range;
3615                 pi_value = desired_divisor % iclk_pi_range;
3616
3617                 auxdiv = 0;
3618                 divsel = msb_divisor_value - 2;
3619                 phaseinc = pi_value;
3620         }
3621
3622         /* This should not happen with any sane values */
3623         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3624                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3625         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3626                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3627
3628         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3629                         clock,
3630                         auxdiv,
3631                         divsel,
3632                         phasedir,
3633                         phaseinc);
3634
3635         /* Program SSCDIVINTPHASE6 */
3636         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3637         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3638         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3639         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3640         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3641         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3642         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3643         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3644
3645         /* Program SSCAUXDIV */
3646         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3647         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3648         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3649         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3650
3651         /* Enable modulator and associated divider */
3652         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3653         temp &= ~SBI_SSCCTL_DISABLE;
3654         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3655
3656         /* Wait for initialization time */
3657         udelay(24);
3658
3659         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3660
3661         mutex_unlock(&dev_priv->dpio_lock);
3662 }
3663
3664 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3665                                                 enum pipe pch_transcoder)
3666 {
3667         struct drm_device *dev = crtc->base.dev;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3670
3671         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3672                    I915_READ(HTOTAL(cpu_transcoder)));
3673         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3674                    I915_READ(HBLANK(cpu_transcoder)));
3675         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3676                    I915_READ(HSYNC(cpu_transcoder)));
3677
3678         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3679                    I915_READ(VTOTAL(cpu_transcoder)));
3680         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3681                    I915_READ(VBLANK(cpu_transcoder)));
3682         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3683                    I915_READ(VSYNC(cpu_transcoder)));
3684         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3685                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3686 }
3687
3688 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3689 {
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         uint32_t temp;
3692
3693         temp = I915_READ(SOUTH_CHICKEN1);
3694         if (temp & FDI_BC_BIFURCATION_SELECT)
3695                 return;
3696
3697         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3698         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3699
3700         temp |= FDI_BC_BIFURCATION_SELECT;
3701         DRM_DEBUG_KMS("enabling fdi C rx\n");
3702         I915_WRITE(SOUTH_CHICKEN1, temp);
3703         POSTING_READ(SOUTH_CHICKEN1);
3704 }
3705
3706 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3707 {
3708         struct drm_device *dev = intel_crtc->base.dev;
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711         switch (intel_crtc->pipe) {
3712         case PIPE_A:
3713                 break;
3714         case PIPE_B:
3715                 if (intel_crtc->config.fdi_lanes > 2)
3716                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3717                 else
3718                         cpt_enable_fdi_bc_bifurcation(dev);
3719
3720                 break;
3721         case PIPE_C:
3722                 cpt_enable_fdi_bc_bifurcation(dev);
3723
3724                 break;
3725         default:
3726                 BUG();
3727         }
3728 }
3729
3730 /*
3731  * Enable PCH resources required for PCH ports:
3732  *   - PCH PLLs
3733  *   - FDI training & RX/TX
3734  *   - update transcoder timings
3735  *   - DP transcoding bits
3736  *   - transcoder
3737  */
3738 static void ironlake_pch_enable(struct drm_crtc *crtc)
3739 {
3740         struct drm_device *dev = crtc->dev;
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743         int pipe = intel_crtc->pipe;
3744         u32 reg, temp;
3745
3746         assert_pch_transcoder_disabled(dev_priv, pipe);
3747
3748         if (IS_IVYBRIDGE(dev))
3749                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3750
3751         /* Write the TU size bits before fdi link training, so that error
3752          * detection works. */
3753         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3754                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3755
3756         /* For PCH output, training FDI link */
3757         dev_priv->display.fdi_link_train(crtc);
3758
3759         /* We need to program the right clock selection before writing the pixel
3760          * mutliplier into the DPLL. */
3761         if (HAS_PCH_CPT(dev)) {
3762                 u32 sel;
3763
3764                 temp = I915_READ(PCH_DPLL_SEL);
3765                 temp |= TRANS_DPLL_ENABLE(pipe);
3766                 sel = TRANS_DPLLB_SEL(pipe);
3767                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3768                         temp |= sel;
3769                 else
3770                         temp &= ~sel;
3771                 I915_WRITE(PCH_DPLL_SEL, temp);
3772         }
3773
3774         /* XXX: pch pll's can be enabled any time before we enable the PCH
3775          * transcoder, and we actually should do this to not upset any PCH
3776          * transcoder that already use the clock when we share it.
3777          *
3778          * Note that enable_shared_dpll tries to do the right thing, but
3779          * get_shared_dpll unconditionally resets the pll - we need that to have
3780          * the right LVDS enable sequence. */
3781         intel_enable_shared_dpll(intel_crtc);
3782
3783         /* set transcoder timing, panel must allow it */
3784         assert_panel_unlocked(dev_priv, pipe);
3785         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3786
3787         intel_fdi_normal_train(crtc);
3788
3789         /* For PCH DP, enable TRANS_DP_CTL */
3790         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3791                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3792                 reg = TRANS_DP_CTL(pipe);
3793                 temp = I915_READ(reg);
3794                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3795                           TRANS_DP_SYNC_MASK |
3796                           TRANS_DP_BPC_MASK);
3797                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3798                          TRANS_DP_ENH_FRAMING);
3799                 temp |= bpc << 9; /* same format but at 11:9 */
3800
3801                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3802                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3803                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3804                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3805
3806                 switch (intel_trans_dp_port_sel(crtc)) {
3807                 case PCH_DP_B:
3808                         temp |= TRANS_DP_PORT_SEL_B;
3809                         break;
3810                 case PCH_DP_C:
3811                         temp |= TRANS_DP_PORT_SEL_C;
3812                         break;
3813                 case PCH_DP_D:
3814                         temp |= TRANS_DP_PORT_SEL_D;
3815                         break;
3816                 default:
3817                         BUG();
3818                 }
3819
3820                 I915_WRITE(reg, temp);
3821         }
3822
3823         ironlake_enable_pch_transcoder(dev_priv, pipe);
3824 }
3825
3826 static void lpt_pch_enable(struct drm_crtc *crtc)
3827 {
3828         struct drm_device *dev = crtc->dev;
3829         struct drm_i915_private *dev_priv = dev->dev_private;
3830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3831         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3832
3833         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3834
3835         lpt_program_iclkip(crtc);
3836
3837         /* Set transcoder timing. */
3838         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3839
3840         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3841 }
3842
3843 void intel_put_shared_dpll(struct intel_crtc *crtc)
3844 {
3845         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3846
3847         if (pll == NULL)
3848                 return;
3849
3850         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3851                 WARN(1, "bad %s crtc mask\n", pll->name);
3852                 return;
3853         }
3854
3855         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3856         if (pll->config.crtc_mask == 0) {
3857                 WARN_ON(pll->on);
3858                 WARN_ON(pll->active);
3859         }
3860
3861         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3862 }
3863
3864 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3865 {
3866         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3867         struct intel_shared_dpll *pll;
3868         enum intel_dpll_id i;
3869
3870         if (HAS_PCH_IBX(dev_priv->dev)) {
3871                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3872                 i = (enum intel_dpll_id) crtc->pipe;
3873                 pll = &dev_priv->shared_dplls[i];
3874
3875                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3876                               crtc->base.base.id, pll->name);
3877
3878                 WARN_ON(pll->new_config->crtc_mask);
3879
3880                 goto found;
3881         }
3882
3883         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3884                 pll = &dev_priv->shared_dplls[i];
3885
3886                 /* Only want to check enabled timings first */
3887                 if (pll->new_config->crtc_mask == 0)
3888                         continue;
3889
3890                 if (memcmp(&crtc->new_config->dpll_hw_state,
3891                            &pll->new_config->hw_state,
3892                            sizeof(pll->new_config->hw_state)) == 0) {
3893                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3894                                       crtc->base.base.id, pll->name,
3895                                       pll->new_config->crtc_mask,
3896                                       pll->active);
3897                         goto found;
3898                 }
3899         }
3900
3901         /* Ok no matching timings, maybe there's a free one? */
3902         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3903                 pll = &dev_priv->shared_dplls[i];
3904                 if (pll->new_config->crtc_mask == 0) {
3905                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3906                                       crtc->base.base.id, pll->name);
3907                         goto found;
3908                 }
3909         }
3910
3911         return NULL;
3912
3913 found:
3914         if (pll->new_config->crtc_mask == 0)
3915                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3916
3917         crtc->new_config->shared_dpll = i;
3918         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3919                          pipe_name(crtc->pipe));
3920
3921         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3922
3923         return pll;
3924 }
3925
3926 /**
3927  * intel_shared_dpll_start_config - start a new PLL staged config
3928  * @dev_priv: DRM device
3929  * @clear_pipes: mask of pipes that will have their PLLs freed
3930  *
3931  * Starts a new PLL staged config, copying the current config but
3932  * releasing the references of pipes specified in clear_pipes.
3933  */
3934 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3935                                           unsigned clear_pipes)
3936 {
3937         struct intel_shared_dpll *pll;
3938         enum intel_dpll_id i;
3939
3940         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3941                 pll = &dev_priv->shared_dplls[i];
3942
3943                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3944                                           GFP_KERNEL);
3945                 if (!pll->new_config)
3946                         goto cleanup;
3947
3948                 pll->new_config->crtc_mask &= ~clear_pipes;
3949         }
3950
3951         return 0;
3952
3953 cleanup:
3954         while (--i >= 0) {
3955                 pll = &dev_priv->shared_dplls[i];
3956                 pll->new_config = NULL;
3957         }
3958
3959         return -ENOMEM;
3960 }
3961
3962 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3963 {
3964         struct intel_shared_dpll *pll;
3965         enum intel_dpll_id i;
3966
3967         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3968                 pll = &dev_priv->shared_dplls[i];
3969
3970                 WARN_ON(pll->new_config == &pll->config);
3971
3972                 pll->config = *pll->new_config;
3973                 kfree(pll->new_config);
3974                 pll->new_config = NULL;
3975         }
3976 }
3977
3978 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3979 {
3980         struct intel_shared_dpll *pll;
3981         enum intel_dpll_id i;
3982
3983         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3984                 pll = &dev_priv->shared_dplls[i];
3985
3986                 WARN_ON(pll->new_config == &pll->config);
3987
3988                 kfree(pll->new_config);
3989                 pll->new_config = NULL;
3990         }
3991 }
3992
3993 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3994 {
3995         struct drm_i915_private *dev_priv = dev->dev_private;
3996         int dslreg = PIPEDSL(pipe);
3997         u32 temp;
3998
3999         temp = I915_READ(dslreg);
4000         udelay(500);
4001         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4002                 if (wait_for(I915_READ(dslreg) != temp, 5))
4003                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4004         }
4005 }
4006
4007 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4008 {
4009         struct drm_device *dev = crtc->base.dev;
4010         struct drm_i915_private *dev_priv = dev->dev_private;
4011         int pipe = crtc->pipe;
4012
4013         if (crtc->config.pch_pfit.enabled) {
4014                 /* Force use of hard-coded filter coefficients
4015                  * as some pre-programmed values are broken,
4016                  * e.g. x201.
4017                  */
4018                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4019                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4020                                                  PF_PIPE_SEL_IVB(pipe));
4021                 else
4022                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4023                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4024                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4025         }
4026 }
4027
4028 static void intel_enable_planes(struct drm_crtc *crtc)
4029 {
4030         struct drm_device *dev = crtc->dev;
4031         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4032         struct drm_plane *plane;
4033         struct intel_plane *intel_plane;
4034
4035         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4036                 intel_plane = to_intel_plane(plane);
4037                 if (intel_plane->pipe == pipe)
4038                         intel_plane_restore(&intel_plane->base);
4039         }
4040 }
4041
4042 static void intel_disable_planes(struct drm_crtc *crtc)
4043 {
4044         struct drm_device *dev = crtc->dev;
4045         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4046         struct drm_plane *plane;
4047         struct intel_plane *intel_plane;
4048
4049         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4050                 intel_plane = to_intel_plane(plane);
4051                 if (intel_plane->pipe == pipe)
4052                         intel_plane_disable(&intel_plane->base);
4053         }
4054 }
4055
4056 void hsw_enable_ips(struct intel_crtc *crtc)
4057 {
4058         struct drm_device *dev = crtc->base.dev;
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060
4061         if (!crtc->config.ips_enabled)
4062                 return;
4063
4064         /* We can only enable IPS after we enable a plane and wait for a vblank */
4065         intel_wait_for_vblank(dev, crtc->pipe);
4066
4067         assert_plane_enabled(dev_priv, crtc->plane);
4068         if (IS_BROADWELL(dev)) {
4069                 mutex_lock(&dev_priv->rps.hw_lock);
4070                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4071                 mutex_unlock(&dev_priv->rps.hw_lock);
4072                 /* Quoting Art Runyan: "its not safe to expect any particular
4073                  * value in IPS_CTL bit 31 after enabling IPS through the
4074                  * mailbox." Moreover, the mailbox may return a bogus state,
4075                  * so we need to just enable it and continue on.
4076                  */
4077         } else {
4078                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4079                 /* The bit only becomes 1 in the next vblank, so this wait here
4080                  * is essentially intel_wait_for_vblank. If we don't have this
4081                  * and don't wait for vblanks until the end of crtc_enable, then
4082                  * the HW state readout code will complain that the expected
4083                  * IPS_CTL value is not the one we read. */
4084                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4085                         DRM_ERROR("Timed out waiting for IPS enable\n");
4086         }
4087 }
4088
4089 void hsw_disable_ips(struct intel_crtc *crtc)
4090 {
4091         struct drm_device *dev = crtc->base.dev;
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093
4094         if (!crtc->config.ips_enabled)
4095                 return;
4096
4097         assert_plane_enabled(dev_priv, crtc->plane);
4098         if (IS_BROADWELL(dev)) {
4099                 mutex_lock(&dev_priv->rps.hw_lock);
4100                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4101                 mutex_unlock(&dev_priv->rps.hw_lock);
4102                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4103                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4104                         DRM_ERROR("Timed out waiting for IPS disable\n");
4105         } else {
4106                 I915_WRITE(IPS_CTL, 0);
4107                 POSTING_READ(IPS_CTL);
4108         }
4109
4110         /* We need to wait for a vblank before we can disable the plane. */
4111         intel_wait_for_vblank(dev, crtc->pipe);
4112 }
4113
4114 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4115 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4116 {
4117         struct drm_device *dev = crtc->dev;
4118         struct drm_i915_private *dev_priv = dev->dev_private;
4119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4120         enum pipe pipe = intel_crtc->pipe;
4121         int palreg = PALETTE(pipe);
4122         int i;
4123         bool reenable_ips = false;
4124
4125         /* The clocks have to be on to load the palette. */
4126         if (!crtc->enabled || !intel_crtc->active)
4127                 return;
4128
4129         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4130                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4131                         assert_dsi_pll_enabled(dev_priv);
4132                 else
4133                         assert_pll_enabled(dev_priv, pipe);
4134         }
4135
4136         /* use legacy palette for Ironlake */
4137         if (!HAS_GMCH_DISPLAY(dev))
4138                 palreg = LGC_PALETTE(pipe);
4139
4140         /* Workaround : Do not read or write the pipe palette/gamma data while
4141          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4142          */
4143         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4144             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4145              GAMMA_MODE_MODE_SPLIT)) {
4146                 hsw_disable_ips(intel_crtc);
4147                 reenable_ips = true;
4148         }
4149
4150         for (i = 0; i < 256; i++) {
4151                 I915_WRITE(palreg + 4 * i,
4152                            (intel_crtc->lut_r[i] << 16) |
4153                            (intel_crtc->lut_g[i] << 8) |
4154                            intel_crtc->lut_b[i]);
4155         }
4156
4157         if (reenable_ips)
4158                 hsw_enable_ips(intel_crtc);
4159 }
4160
4161 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4162 {
4163         if (!enable && intel_crtc->overlay) {
4164                 struct drm_device *dev = intel_crtc->base.dev;
4165                 struct drm_i915_private *dev_priv = dev->dev_private;
4166
4167                 mutex_lock(&dev->struct_mutex);
4168                 dev_priv->mm.interruptible = false;
4169                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4170                 dev_priv->mm.interruptible = true;
4171                 mutex_unlock(&dev->struct_mutex);
4172         }
4173
4174         /* Let userspace switch the overlay on again. In most cases userspace
4175          * has to recompute where to put it anyway.
4176          */
4177 }
4178
4179 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4180 {
4181         struct drm_device *dev = crtc->dev;
4182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183         int pipe = intel_crtc->pipe;
4184
4185         intel_enable_primary_hw_plane(crtc->primary, crtc);
4186         intel_enable_planes(crtc);
4187         intel_crtc_update_cursor(crtc, true);
4188         intel_crtc_dpms_overlay(intel_crtc, true);
4189
4190         hsw_enable_ips(intel_crtc);
4191
4192         mutex_lock(&dev->struct_mutex);
4193         intel_update_fbc(dev);
4194         mutex_unlock(&dev->struct_mutex);
4195
4196         /*
4197          * FIXME: Once we grow proper nuclear flip support out of this we need
4198          * to compute the mask of flip planes precisely. For the time being
4199          * consider this a flip from a NULL plane.
4200          */
4201         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4202 }
4203
4204 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4205 {
4206         struct drm_device *dev = crtc->dev;
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209         int pipe = intel_crtc->pipe;
4210         int plane = intel_crtc->plane;
4211
4212         intel_crtc_wait_for_pending_flips(crtc);
4213
4214         if (dev_priv->fbc.plane == plane)
4215                 intel_disable_fbc(dev);
4216
4217         hsw_disable_ips(intel_crtc);
4218
4219         intel_crtc_dpms_overlay(intel_crtc, false);
4220         intel_crtc_update_cursor(crtc, false);
4221         intel_disable_planes(crtc);
4222         intel_disable_primary_hw_plane(crtc->primary, crtc);
4223
4224         /*
4225          * FIXME: Once we grow proper nuclear flip support out of this we need
4226          * to compute the mask of flip planes precisely. For the time being
4227          * consider this a flip to a NULL plane.
4228          */
4229         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4230 }
4231
4232 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4233 {
4234         struct drm_device *dev = crtc->dev;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4237         struct intel_encoder *encoder;
4238         int pipe = intel_crtc->pipe;
4239
4240         WARN_ON(!crtc->enabled);
4241
4242         if (intel_crtc->active)
4243                 return;
4244
4245         if (intel_crtc->config.has_pch_encoder)
4246                 intel_prepare_shared_dpll(intel_crtc);
4247
4248         if (intel_crtc->config.has_dp_encoder)
4249                 intel_dp_set_m_n(intel_crtc);
4250
4251         intel_set_pipe_timings(intel_crtc);
4252
4253         if (intel_crtc->config.has_pch_encoder) {
4254                 intel_cpu_transcoder_set_m_n(intel_crtc,
4255                                      &intel_crtc->config.fdi_m_n, NULL);
4256         }
4257
4258         ironlake_set_pipeconf(crtc);
4259
4260         intel_crtc->active = true;
4261
4262         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4263         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4264
4265         for_each_encoder_on_crtc(dev, crtc, encoder)
4266                 if (encoder->pre_enable)
4267                         encoder->pre_enable(encoder);
4268
4269         if (intel_crtc->config.has_pch_encoder) {
4270                 /* Note: FDI PLL enabling _must_ be done before we enable the
4271                  * cpu pipes, hence this is separate from all the other fdi/pch
4272                  * enabling. */
4273                 ironlake_fdi_pll_enable(intel_crtc);
4274         } else {
4275                 assert_fdi_tx_disabled(dev_priv, pipe);
4276                 assert_fdi_rx_disabled(dev_priv, pipe);
4277         }
4278
4279         ironlake_pfit_enable(intel_crtc);
4280
4281         /*
4282          * On ILK+ LUT must be loaded before the pipe is running but with
4283          * clocks enabled
4284          */
4285         intel_crtc_load_lut(crtc);
4286
4287         intel_update_watermarks(crtc);
4288         intel_enable_pipe(intel_crtc);
4289
4290         if (intel_crtc->config.has_pch_encoder)
4291                 ironlake_pch_enable(crtc);
4292
4293         for_each_encoder_on_crtc(dev, crtc, encoder)
4294                 encoder->enable(encoder);
4295
4296         if (HAS_PCH_CPT(dev))
4297                 cpt_verify_modeset(dev, intel_crtc->pipe);
4298
4299         assert_vblank_disabled(crtc);
4300         drm_crtc_vblank_on(crtc);
4301
4302         intel_crtc_enable_planes(crtc);
4303 }
4304
4305 /* IPS only exists on ULT machines and is tied to pipe A. */
4306 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4307 {
4308         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4309 }
4310
4311 /*
4312  * This implements the workaround described in the "notes" section of the mode
4313  * set sequence documentation. When going from no pipes or single pipe to
4314  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4315  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4316  */
4317 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4318 {
4319         struct drm_device *dev = crtc->base.dev;
4320         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4321
4322         /* We want to get the other_active_crtc only if there's only 1 other
4323          * active crtc. */
4324         for_each_intel_crtc(dev, crtc_it) {
4325                 if (!crtc_it->active || crtc_it == crtc)
4326                         continue;
4327
4328                 if (other_active_crtc)
4329                         return;
4330
4331                 other_active_crtc = crtc_it;
4332         }
4333         if (!other_active_crtc)
4334                 return;
4335
4336         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4338 }
4339
4340 static void haswell_crtc_enable(struct drm_crtc *crtc)
4341 {
4342         struct drm_device *dev = crtc->dev;
4343         struct drm_i915_private *dev_priv = dev->dev_private;
4344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4345         struct intel_encoder *encoder;
4346         int pipe = intel_crtc->pipe;
4347
4348         WARN_ON(!crtc->enabled);
4349
4350         if (intel_crtc->active)
4351                 return;
4352
4353         if (intel_crtc_to_shared_dpll(intel_crtc))
4354                 intel_enable_shared_dpll(intel_crtc);
4355
4356         if (intel_crtc->config.has_dp_encoder)
4357                 intel_dp_set_m_n(intel_crtc);
4358
4359         intel_set_pipe_timings(intel_crtc);
4360
4361         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4362                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4363                            intel_crtc->config.pixel_multiplier - 1);
4364         }
4365
4366         if (intel_crtc->config.has_pch_encoder) {
4367                 intel_cpu_transcoder_set_m_n(intel_crtc,
4368                                      &intel_crtc->config.fdi_m_n, NULL);
4369         }
4370
4371         haswell_set_pipeconf(crtc);
4372
4373         intel_set_pipe_csc(crtc);
4374
4375         intel_crtc->active = true;
4376
4377         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4378         for_each_encoder_on_crtc(dev, crtc, encoder)
4379                 if (encoder->pre_enable)
4380                         encoder->pre_enable(encoder);
4381
4382         if (intel_crtc->config.has_pch_encoder) {
4383                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4384                                                       true);
4385                 dev_priv->display.fdi_link_train(crtc);
4386         }
4387
4388         intel_ddi_enable_pipe_clock(intel_crtc);
4389
4390         ironlake_pfit_enable(intel_crtc);
4391
4392         /*
4393          * On ILK+ LUT must be loaded before the pipe is running but with
4394          * clocks enabled
4395          */
4396         intel_crtc_load_lut(crtc);
4397
4398         intel_ddi_set_pipe_settings(crtc);
4399         intel_ddi_enable_transcoder_func(crtc);
4400
4401         intel_update_watermarks(crtc);
4402         intel_enable_pipe(intel_crtc);
4403
4404         if (intel_crtc->config.has_pch_encoder)
4405                 lpt_pch_enable(crtc);
4406
4407         if (intel_crtc->config.dp_encoder_is_mst)
4408                 intel_ddi_set_vc_payload_alloc(crtc, true);
4409
4410         for_each_encoder_on_crtc(dev, crtc, encoder) {
4411                 encoder->enable(encoder);
4412                 intel_opregion_notify_encoder(encoder, true);
4413         }
4414
4415         assert_vblank_disabled(crtc);
4416         drm_crtc_vblank_on(crtc);
4417
4418         /* If we change the relative order between pipe/planes enabling, we need
4419          * to change the workaround. */
4420         haswell_mode_set_planes_workaround(intel_crtc);
4421         intel_crtc_enable_planes(crtc);
4422 }
4423
4424 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4425 {
4426         struct drm_device *dev = crtc->base.dev;
4427         struct drm_i915_private *dev_priv = dev->dev_private;
4428         int pipe = crtc->pipe;
4429
4430         /* To avoid upsetting the power well on haswell only disable the pfit if
4431          * it's in use. The hw state code will make sure we get this right. */
4432         if (crtc->config.pch_pfit.enabled) {
4433                 I915_WRITE(PF_CTL(pipe), 0);
4434                 I915_WRITE(PF_WIN_POS(pipe), 0);
4435                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4436         }
4437 }
4438
4439 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4440 {
4441         struct drm_device *dev = crtc->dev;
4442         struct drm_i915_private *dev_priv = dev->dev_private;
4443         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4444         struct intel_encoder *encoder;
4445         int pipe = intel_crtc->pipe;
4446         u32 reg, temp;
4447
4448         if (!intel_crtc->active)
4449                 return;
4450
4451         intel_crtc_disable_planes(crtc);
4452
4453         drm_crtc_vblank_off(crtc);
4454         assert_vblank_disabled(crtc);
4455
4456         for_each_encoder_on_crtc(dev, crtc, encoder)
4457                 encoder->disable(encoder);
4458
4459         if (intel_crtc->config.has_pch_encoder)
4460                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4461
4462         intel_disable_pipe(intel_crtc);
4463
4464         ironlake_pfit_disable(intel_crtc);
4465
4466         for_each_encoder_on_crtc(dev, crtc, encoder)
4467                 if (encoder->post_disable)
4468                         encoder->post_disable(encoder);
4469
4470         if (intel_crtc->config.has_pch_encoder) {
4471                 ironlake_fdi_disable(crtc);
4472
4473                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4474                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4475
4476                 if (HAS_PCH_CPT(dev)) {
4477                         /* disable TRANS_DP_CTL */
4478                         reg = TRANS_DP_CTL(pipe);
4479                         temp = I915_READ(reg);
4480                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4481                                   TRANS_DP_PORT_SEL_MASK);
4482                         temp |= TRANS_DP_PORT_SEL_NONE;
4483                         I915_WRITE(reg, temp);
4484
4485                         /* disable DPLL_SEL */
4486                         temp = I915_READ(PCH_DPLL_SEL);
4487                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4488                         I915_WRITE(PCH_DPLL_SEL, temp);
4489                 }
4490
4491                 /* disable PCH DPLL */
4492                 intel_disable_shared_dpll(intel_crtc);
4493
4494                 ironlake_fdi_pll_disable(intel_crtc);
4495         }
4496
4497         intel_crtc->active = false;
4498         intel_update_watermarks(crtc);
4499
4500         mutex_lock(&dev->struct_mutex);
4501         intel_update_fbc(dev);
4502         mutex_unlock(&dev->struct_mutex);
4503 }
4504
4505 static void haswell_crtc_disable(struct drm_crtc *crtc)
4506 {
4507         struct drm_device *dev = crtc->dev;
4508         struct drm_i915_private *dev_priv = dev->dev_private;
4509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4510         struct intel_encoder *encoder;
4511         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4512
4513         if (!intel_crtc->active)
4514                 return;
4515
4516         intel_crtc_disable_planes(crtc);
4517
4518         drm_crtc_vblank_off(crtc);
4519         assert_vblank_disabled(crtc);
4520
4521         for_each_encoder_on_crtc(dev, crtc, encoder) {
4522                 intel_opregion_notify_encoder(encoder, false);
4523                 encoder->disable(encoder);
4524         }
4525
4526         if (intel_crtc->config.has_pch_encoder)
4527                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4528                                                       false);
4529         intel_disable_pipe(intel_crtc);
4530
4531         if (intel_crtc->config.dp_encoder_is_mst)
4532                 intel_ddi_set_vc_payload_alloc(crtc, false);
4533
4534         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4535
4536         ironlake_pfit_disable(intel_crtc);
4537
4538         intel_ddi_disable_pipe_clock(intel_crtc);
4539
4540         if (intel_crtc->config.has_pch_encoder) {
4541                 lpt_disable_pch_transcoder(dev_priv);
4542                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4543                                                       true);
4544                 intel_ddi_fdi_disable(crtc);
4545         }
4546
4547         for_each_encoder_on_crtc(dev, crtc, encoder)
4548                 if (encoder->post_disable)
4549                         encoder->post_disable(encoder);
4550
4551         intel_crtc->active = false;
4552         intel_update_watermarks(crtc);
4553
4554         mutex_lock(&dev->struct_mutex);
4555         intel_update_fbc(dev);
4556         mutex_unlock(&dev->struct_mutex);
4557
4558         if (intel_crtc_to_shared_dpll(intel_crtc))
4559                 intel_disable_shared_dpll(intel_crtc);
4560 }
4561
4562 static void ironlake_crtc_off(struct drm_crtc *crtc)
4563 {
4564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4565         intel_put_shared_dpll(intel_crtc);
4566 }
4567
4568
4569 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4570 {
4571         struct drm_device *dev = crtc->base.dev;
4572         struct drm_i915_private *dev_priv = dev->dev_private;
4573         struct intel_crtc_config *pipe_config = &crtc->config;
4574
4575         if (!crtc->config.gmch_pfit.control)
4576                 return;
4577
4578         /*
4579          * The panel fitter should only be adjusted whilst the pipe is disabled,
4580          * according to register description and PRM.
4581          */
4582         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4583         assert_pipe_disabled(dev_priv, crtc->pipe);
4584
4585         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4586         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4587
4588         /* Border color in case we don't scale up to the full screen. Black by
4589          * default, change to something else for debugging. */
4590         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4591 }
4592
4593 static enum intel_display_power_domain port_to_power_domain(enum port port)
4594 {
4595         switch (port) {
4596         case PORT_A:
4597                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4598         case PORT_B:
4599                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4600         case PORT_C:
4601                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4602         case PORT_D:
4603                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4604         default:
4605                 WARN_ON_ONCE(1);
4606                 return POWER_DOMAIN_PORT_OTHER;
4607         }
4608 }
4609
4610 #define for_each_power_domain(domain, mask)                             \
4611         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4612                 if ((1 << (domain)) & (mask))
4613
4614 enum intel_display_power_domain
4615 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4616 {
4617         struct drm_device *dev = intel_encoder->base.dev;
4618         struct intel_digital_port *intel_dig_port;
4619
4620         switch (intel_encoder->type) {
4621         case INTEL_OUTPUT_UNKNOWN:
4622                 /* Only DDI platforms should ever use this output type */
4623                 WARN_ON_ONCE(!HAS_DDI(dev));
4624         case INTEL_OUTPUT_DISPLAYPORT:
4625         case INTEL_OUTPUT_HDMI:
4626         case INTEL_OUTPUT_EDP:
4627                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4628                 return port_to_power_domain(intel_dig_port->port);
4629         case INTEL_OUTPUT_DP_MST:
4630                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4631                 return port_to_power_domain(intel_dig_port->port);
4632         case INTEL_OUTPUT_ANALOG:
4633                 return POWER_DOMAIN_PORT_CRT;
4634         case INTEL_OUTPUT_DSI:
4635                 return POWER_DOMAIN_PORT_DSI;
4636         default:
4637                 return POWER_DOMAIN_PORT_OTHER;
4638         }
4639 }
4640
4641 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4642 {
4643         struct drm_device *dev = crtc->dev;
4644         struct intel_encoder *intel_encoder;
4645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4646         enum pipe pipe = intel_crtc->pipe;
4647         unsigned long mask;
4648         enum transcoder transcoder;
4649
4650         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4651
4652         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4653         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4654         if (intel_crtc->config.pch_pfit.enabled ||
4655             intel_crtc->config.pch_pfit.force_thru)
4656                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4657
4658         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4659                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4660
4661         return mask;
4662 }
4663
4664 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4665 {
4666         struct drm_i915_private *dev_priv = dev->dev_private;
4667         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4668         struct intel_crtc *crtc;
4669
4670         /*
4671          * First get all needed power domains, then put all unneeded, to avoid
4672          * any unnecessary toggling of the power wells.
4673          */
4674         for_each_intel_crtc(dev, crtc) {
4675                 enum intel_display_power_domain domain;
4676
4677                 if (!crtc->base.enabled)
4678                         continue;
4679
4680                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4681
4682                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4683                         intel_display_power_get(dev_priv, domain);
4684         }
4685
4686         for_each_intel_crtc(dev, crtc) {
4687                 enum intel_display_power_domain domain;
4688
4689                 for_each_power_domain(domain, crtc->enabled_power_domains)
4690                         intel_display_power_put(dev_priv, domain);
4691
4692                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4693         }
4694
4695         intel_display_set_init_power(dev_priv, false);
4696 }
4697
4698 /* returns HPLL frequency in kHz */
4699 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4700 {
4701         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4702
4703         /* Obtain SKU information */
4704         mutex_lock(&dev_priv->dpio_lock);
4705         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4706                 CCK_FUSE_HPLL_FREQ_MASK;
4707         mutex_unlock(&dev_priv->dpio_lock);
4708
4709         return vco_freq[hpll_freq] * 1000;
4710 }
4711
4712 static void vlv_update_cdclk(struct drm_device *dev)
4713 {
4714         struct drm_i915_private *dev_priv = dev->dev_private;
4715
4716         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4717         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4718                          dev_priv->vlv_cdclk_freq);
4719
4720         /*
4721          * Program the gmbus_freq based on the cdclk frequency.
4722          * BSpec erroneously claims we should aim for 4MHz, but
4723          * in fact 1MHz is the correct frequency.
4724          */
4725         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4726 }
4727
4728 /* Adjust CDclk dividers to allow high res or save power if possible */
4729 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4730 {
4731         struct drm_i915_private *dev_priv = dev->dev_private;
4732         u32 val, cmd;
4733
4734         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4735
4736         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4737                 cmd = 2;
4738         else if (cdclk == 266667)
4739                 cmd = 1;
4740         else
4741                 cmd = 0;
4742
4743         mutex_lock(&dev_priv->rps.hw_lock);
4744         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4745         val &= ~DSPFREQGUAR_MASK;
4746         val |= (cmd << DSPFREQGUAR_SHIFT);
4747         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4748         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4749                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4750                      50)) {
4751                 DRM_ERROR("timed out waiting for CDclk change\n");
4752         }
4753         mutex_unlock(&dev_priv->rps.hw_lock);
4754
4755         if (cdclk == 400000) {
4756                 u32 divider, vco;
4757
4758                 vco = valleyview_get_vco(dev_priv);
4759                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4760
4761                 mutex_lock(&dev_priv->dpio_lock);
4762                 /* adjust cdclk divider */
4763                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4764                 val &= ~DISPLAY_FREQUENCY_VALUES;
4765                 val |= divider;
4766                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4767
4768                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4769                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4770                              50))
4771                         DRM_ERROR("timed out waiting for CDclk change\n");
4772                 mutex_unlock(&dev_priv->dpio_lock);
4773         }
4774
4775         mutex_lock(&dev_priv->dpio_lock);
4776         /* adjust self-refresh exit latency value */
4777         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4778         val &= ~0x7f;
4779
4780         /*
4781          * For high bandwidth configs, we set a higher latency in the bunit
4782          * so that the core display fetch happens in time to avoid underruns.
4783          */
4784         if (cdclk == 400000)
4785                 val |= 4500 / 250; /* 4.5 usec */
4786         else
4787                 val |= 3000 / 250; /* 3.0 usec */
4788         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4789         mutex_unlock(&dev_priv->dpio_lock);
4790
4791         vlv_update_cdclk(dev);
4792 }
4793
4794 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4795 {
4796         struct drm_i915_private *dev_priv = dev->dev_private;
4797         u32 val, cmd;
4798
4799         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4800
4801         switch (cdclk) {
4802         case 400000:
4803                 cmd = 3;
4804                 break;
4805         case 333333:
4806         case 320000:
4807                 cmd = 2;
4808                 break;
4809         case 266667:
4810                 cmd = 1;
4811                 break;
4812         case 200000:
4813                 cmd = 0;
4814                 break;
4815         default:
4816                 WARN_ON(1);
4817                 return;
4818         }
4819
4820         mutex_lock(&dev_priv->rps.hw_lock);
4821         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4822         val &= ~DSPFREQGUAR_MASK_CHV;
4823         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4824         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4825         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4826                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4827                      50)) {
4828                 DRM_ERROR("timed out waiting for CDclk change\n");
4829         }
4830         mutex_unlock(&dev_priv->rps.hw_lock);
4831
4832         vlv_update_cdclk(dev);
4833 }
4834
4835 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4836                                  int max_pixclk)
4837 {
4838         int vco = valleyview_get_vco(dev_priv);
4839         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4840
4841         /* FIXME: Punit isn't quite ready yet */
4842         if (IS_CHERRYVIEW(dev_priv->dev))
4843                 return 400000;
4844
4845         /*
4846          * Really only a few cases to deal with, as only 4 CDclks are supported:
4847          *   200MHz
4848          *   267MHz
4849          *   320/333MHz (depends on HPLL freq)
4850          *   400MHz
4851          * So we check to see whether we're above 90% of the lower bin and
4852          * adjust if needed.
4853          *
4854          * We seem to get an unstable or solid color picture at 200MHz.
4855          * Not sure what's wrong. For now use 200MHz only when all pipes
4856          * are off.
4857          */
4858         if (max_pixclk > freq_320*9/10)
4859                 return 400000;
4860         else if (max_pixclk > 266667*9/10)
4861                 return freq_320;
4862         else if (max_pixclk > 0)
4863                 return 266667;
4864         else
4865                 return 200000;
4866 }
4867
4868 /* compute the max pixel clock for new configuration */
4869 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4870 {
4871         struct drm_device *dev = dev_priv->dev;
4872         struct intel_crtc *intel_crtc;
4873         int max_pixclk = 0;
4874
4875         for_each_intel_crtc(dev, intel_crtc) {
4876                 if (intel_crtc->new_enabled)
4877                         max_pixclk = max(max_pixclk,
4878                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4879         }
4880
4881         return max_pixclk;
4882 }
4883
4884 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4885                                             unsigned *prepare_pipes)
4886 {
4887         struct drm_i915_private *dev_priv = dev->dev_private;
4888         struct intel_crtc *intel_crtc;
4889         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4890
4891         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4892             dev_priv->vlv_cdclk_freq)
4893                 return;
4894
4895         /* disable/enable all currently active pipes while we change cdclk */
4896         for_each_intel_crtc(dev, intel_crtc)
4897                 if (intel_crtc->base.enabled)
4898                         *prepare_pipes |= (1 << intel_crtc->pipe);
4899 }
4900
4901 static void valleyview_modeset_global_resources(struct drm_device *dev)
4902 {
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4905         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4906
4907         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4908                 if (IS_CHERRYVIEW(dev))
4909                         cherryview_set_cdclk(dev, req_cdclk);
4910                 else
4911                         valleyview_set_cdclk(dev, req_cdclk);
4912         }
4913
4914         modeset_update_crtc_power_domains(dev);
4915 }
4916
4917 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4918 {
4919         struct drm_device *dev = crtc->dev;
4920         struct drm_i915_private *dev_priv = to_i915(dev);
4921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4922         struct intel_encoder *encoder;
4923         int pipe = intel_crtc->pipe;
4924         bool is_dsi;
4925
4926         WARN_ON(!crtc->enabled);
4927
4928         if (intel_crtc->active)
4929                 return;
4930
4931         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4932
4933         if (!is_dsi) {
4934                 if (IS_CHERRYVIEW(dev))
4935                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4936                 else
4937                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4938         }
4939
4940         if (intel_crtc->config.has_dp_encoder)
4941                 intel_dp_set_m_n(intel_crtc);
4942
4943         intel_set_pipe_timings(intel_crtc);
4944
4945         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4946                 struct drm_i915_private *dev_priv = dev->dev_private;
4947
4948                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4949                 I915_WRITE(CHV_CANVAS(pipe), 0);
4950         }
4951
4952         i9xx_set_pipeconf(intel_crtc);
4953
4954         intel_crtc->active = true;
4955
4956         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4957
4958         for_each_encoder_on_crtc(dev, crtc, encoder)
4959                 if (encoder->pre_pll_enable)
4960                         encoder->pre_pll_enable(encoder);
4961
4962         if (!is_dsi) {
4963                 if (IS_CHERRYVIEW(dev))
4964                         chv_enable_pll(intel_crtc, &intel_crtc->config);
4965                 else
4966                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
4967         }
4968
4969         for_each_encoder_on_crtc(dev, crtc, encoder)
4970                 if (encoder->pre_enable)
4971                         encoder->pre_enable(encoder);
4972
4973         i9xx_pfit_enable(intel_crtc);
4974
4975         intel_crtc_load_lut(crtc);
4976
4977         intel_update_watermarks(crtc);
4978         intel_enable_pipe(intel_crtc);
4979
4980         for_each_encoder_on_crtc(dev, crtc, encoder)
4981                 encoder->enable(encoder);
4982
4983         assert_vblank_disabled(crtc);
4984         drm_crtc_vblank_on(crtc);
4985
4986         intel_crtc_enable_planes(crtc);
4987
4988         /* Underruns don't raise interrupts, so check manually. */
4989         i9xx_check_fifo_underruns(dev_priv);
4990 }
4991
4992 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4993 {
4994         struct drm_device *dev = crtc->base.dev;
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996
4997         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4998         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4999 }
5000
5001 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5002 {
5003         struct drm_device *dev = crtc->dev;
5004         struct drm_i915_private *dev_priv = to_i915(dev);
5005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5006         struct intel_encoder *encoder;
5007         int pipe = intel_crtc->pipe;
5008
5009         WARN_ON(!crtc->enabled);
5010
5011         if (intel_crtc->active)
5012                 return;
5013
5014         i9xx_set_pll_dividers(intel_crtc);
5015
5016         if (intel_crtc->config.has_dp_encoder)
5017                 intel_dp_set_m_n(intel_crtc);
5018
5019         intel_set_pipe_timings(intel_crtc);
5020
5021         i9xx_set_pipeconf(intel_crtc);
5022
5023         intel_crtc->active = true;
5024
5025         if (!IS_GEN2(dev))
5026                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5027
5028         for_each_encoder_on_crtc(dev, crtc, encoder)
5029                 if (encoder->pre_enable)
5030                         encoder->pre_enable(encoder);
5031
5032         i9xx_enable_pll(intel_crtc);
5033
5034         i9xx_pfit_enable(intel_crtc);
5035
5036         intel_crtc_load_lut(crtc);
5037
5038         intel_update_watermarks(crtc);
5039         intel_enable_pipe(intel_crtc);
5040
5041         for_each_encoder_on_crtc(dev, crtc, encoder)
5042                 encoder->enable(encoder);
5043
5044         assert_vblank_disabled(crtc);
5045         drm_crtc_vblank_on(crtc);
5046
5047         intel_crtc_enable_planes(crtc);
5048
5049         /*
5050          * Gen2 reports pipe underruns whenever all planes are disabled.
5051          * So don't enable underrun reporting before at least some planes
5052          * are enabled.
5053          * FIXME: Need to fix the logic to work when we turn off all planes
5054          * but leave the pipe running.
5055          */
5056         if (IS_GEN2(dev))
5057                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5058
5059         /* Underruns don't raise interrupts, so check manually. */
5060         i9xx_check_fifo_underruns(dev_priv);
5061 }
5062
5063 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5064 {
5065         struct drm_device *dev = crtc->base.dev;
5066         struct drm_i915_private *dev_priv = dev->dev_private;
5067
5068         if (!crtc->config.gmch_pfit.control)
5069                 return;
5070
5071         assert_pipe_disabled(dev_priv, crtc->pipe);
5072
5073         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5074                          I915_READ(PFIT_CONTROL));
5075         I915_WRITE(PFIT_CONTROL, 0);
5076 }
5077
5078 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5079 {
5080         struct drm_device *dev = crtc->dev;
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083         struct intel_encoder *encoder;
5084         int pipe = intel_crtc->pipe;
5085
5086         if (!intel_crtc->active)
5087                 return;
5088
5089         /*
5090          * Gen2 reports pipe underruns whenever all planes are disabled.
5091          * So diasble underrun reporting before all the planes get disabled.
5092          * FIXME: Need to fix the logic to work when we turn off all planes
5093          * but leave the pipe running.
5094          */
5095         if (IS_GEN2(dev))
5096                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5097
5098         /*
5099          * Vblank time updates from the shadow to live plane control register
5100          * are blocked if the memory self-refresh mode is active at that
5101          * moment. So to make sure the plane gets truly disabled, disable
5102          * first the self-refresh mode. The self-refresh enable bit in turn
5103          * will be checked/applied by the HW only at the next frame start
5104          * event which is after the vblank start event, so we need to have a
5105          * wait-for-vblank between disabling the plane and the pipe.
5106          */
5107         intel_set_memory_cxsr(dev_priv, false);
5108         intel_crtc_disable_planes(crtc);
5109
5110         /*
5111          * On gen2 planes are double buffered but the pipe isn't, so we must
5112          * wait for planes to fully turn off before disabling the pipe.
5113          * We also need to wait on all gmch platforms because of the
5114          * self-refresh mode constraint explained above.
5115          */
5116         intel_wait_for_vblank(dev, pipe);
5117
5118         drm_crtc_vblank_off(crtc);
5119         assert_vblank_disabled(crtc);
5120
5121         for_each_encoder_on_crtc(dev, crtc, encoder)
5122                 encoder->disable(encoder);
5123
5124         intel_disable_pipe(intel_crtc);
5125
5126         i9xx_pfit_disable(intel_crtc);
5127
5128         for_each_encoder_on_crtc(dev, crtc, encoder)
5129                 if (encoder->post_disable)
5130                         encoder->post_disable(encoder);
5131
5132         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5133                 if (IS_CHERRYVIEW(dev))
5134                         chv_disable_pll(dev_priv, pipe);
5135                 else if (IS_VALLEYVIEW(dev))
5136                         vlv_disable_pll(dev_priv, pipe);
5137                 else
5138                         i9xx_disable_pll(intel_crtc);
5139         }
5140
5141         if (!IS_GEN2(dev))
5142                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5143
5144         intel_crtc->active = false;
5145         intel_update_watermarks(crtc);
5146
5147         mutex_lock(&dev->struct_mutex);
5148         intel_update_fbc(dev);
5149         mutex_unlock(&dev->struct_mutex);
5150 }
5151
5152 static void i9xx_crtc_off(struct drm_crtc *crtc)
5153 {
5154 }
5155
5156 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5157                                     bool enabled)
5158 {
5159         struct drm_device *dev = crtc->dev;
5160         struct drm_i915_master_private *master_priv;
5161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5162         int pipe = intel_crtc->pipe;
5163
5164         if (!dev->primary->master)
5165                 return;
5166
5167         master_priv = dev->primary->master->driver_priv;
5168         if (!master_priv->sarea_priv)
5169                 return;
5170
5171         switch (pipe) {
5172         case 0:
5173                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5174                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5175                 break;
5176         case 1:
5177                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5178                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5179                 break;
5180         default:
5181                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5182                 break;
5183         }
5184 }
5185
5186 /* Master function to enable/disable CRTC and corresponding power wells */
5187 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5188 {
5189         struct drm_device *dev = crtc->dev;
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5192         enum intel_display_power_domain domain;
5193         unsigned long domains;
5194
5195         if (enable) {
5196                 if (!intel_crtc->active) {
5197                         domains = get_crtc_power_domains(crtc);
5198                         for_each_power_domain(domain, domains)
5199                                 intel_display_power_get(dev_priv, domain);
5200                         intel_crtc->enabled_power_domains = domains;
5201
5202                         dev_priv->display.crtc_enable(crtc);
5203                 }
5204         } else {
5205                 if (intel_crtc->active) {
5206                         dev_priv->display.crtc_disable(crtc);
5207
5208                         domains = intel_crtc->enabled_power_domains;
5209                         for_each_power_domain(domain, domains)
5210                                 intel_display_power_put(dev_priv, domain);
5211                         intel_crtc->enabled_power_domains = 0;
5212                 }
5213         }
5214 }
5215
5216 /**
5217  * Sets the power management mode of the pipe and plane.
5218  */
5219 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5220 {
5221         struct drm_device *dev = crtc->dev;
5222         struct intel_encoder *intel_encoder;
5223         bool enable = false;
5224
5225         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5226                 enable |= intel_encoder->connectors_active;
5227
5228         intel_crtc_control(crtc, enable);
5229
5230         intel_crtc_update_sarea(crtc, enable);
5231 }
5232
5233 static void intel_crtc_disable(struct drm_crtc *crtc)
5234 {
5235         struct drm_device *dev = crtc->dev;
5236         struct drm_connector *connector;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5239         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5240
5241         /* crtc should still be enabled when we disable it. */
5242         WARN_ON(!crtc->enabled);
5243
5244         dev_priv->display.crtc_disable(crtc);
5245         intel_crtc_update_sarea(crtc, false);
5246         dev_priv->display.off(crtc);
5247
5248         if (crtc->primary->fb) {
5249                 mutex_lock(&dev->struct_mutex);
5250                 intel_unpin_fb_obj(old_obj);
5251                 i915_gem_track_fb(old_obj, NULL,
5252                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5253                 mutex_unlock(&dev->struct_mutex);
5254                 crtc->primary->fb = NULL;
5255         }
5256
5257         /* Update computed state. */
5258         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5259                 if (!connector->encoder || !connector->encoder->crtc)
5260                         continue;
5261
5262                 if (connector->encoder->crtc != crtc)
5263                         continue;
5264
5265                 connector->dpms = DRM_MODE_DPMS_OFF;
5266                 to_intel_encoder(connector->encoder)->connectors_active = false;
5267         }
5268 }
5269
5270 void intel_encoder_destroy(struct drm_encoder *encoder)
5271 {
5272         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5273
5274         drm_encoder_cleanup(encoder);
5275         kfree(intel_encoder);
5276 }
5277
5278 /* Simple dpms helper for encoders with just one connector, no cloning and only
5279  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5280  * state of the entire output pipe. */
5281 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5282 {
5283         if (mode == DRM_MODE_DPMS_ON) {
5284                 encoder->connectors_active = true;
5285
5286                 intel_crtc_update_dpms(encoder->base.crtc);
5287         } else {
5288                 encoder->connectors_active = false;
5289
5290                 intel_crtc_update_dpms(encoder->base.crtc);
5291         }
5292 }
5293
5294 /* Cross check the actual hw state with our own modeset state tracking (and it's
5295  * internal consistency). */
5296 static void intel_connector_check_state(struct intel_connector *connector)
5297 {
5298         if (connector->get_hw_state(connector)) {
5299                 struct intel_encoder *encoder = connector->encoder;
5300                 struct drm_crtc *crtc;
5301                 bool encoder_enabled;
5302                 enum pipe pipe;
5303
5304                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5305                               connector->base.base.id,
5306                               connector->base.name);
5307
5308                 /* there is no real hw state for MST connectors */
5309                 if (connector->mst_port)
5310                         return;
5311
5312                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5313                      "wrong connector dpms state\n");
5314                 WARN(connector->base.encoder != &encoder->base,
5315                      "active connector not linked to encoder\n");
5316
5317                 if (encoder) {
5318                         WARN(!encoder->connectors_active,
5319                              "encoder->connectors_active not set\n");
5320
5321                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5322                         WARN(!encoder_enabled, "encoder not enabled\n");
5323                         if (WARN_ON(!encoder->base.crtc))
5324                                 return;
5325
5326                         crtc = encoder->base.crtc;
5327
5328                         WARN(!crtc->enabled, "crtc not enabled\n");
5329                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5330                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5331                              "encoder active on the wrong pipe\n");
5332                 }
5333         }
5334 }
5335
5336 /* Even simpler default implementation, if there's really no special case to
5337  * consider. */
5338 void intel_connector_dpms(struct drm_connector *connector, int mode)
5339 {
5340         /* All the simple cases only support two dpms states. */
5341         if (mode != DRM_MODE_DPMS_ON)
5342                 mode = DRM_MODE_DPMS_OFF;
5343
5344         if (mode == connector->dpms)
5345                 return;
5346
5347         connector->dpms = mode;
5348
5349         /* Only need to change hw state when actually enabled */
5350         if (connector->encoder)
5351                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5352
5353         intel_modeset_check_state(connector->dev);
5354 }
5355
5356 /* Simple connector->get_hw_state implementation for encoders that support only
5357  * one connector and no cloning and hence the encoder state determines the state
5358  * of the connector. */
5359 bool intel_connector_get_hw_state(struct intel_connector *connector)
5360 {
5361         enum pipe pipe = 0;
5362         struct intel_encoder *encoder = connector->encoder;
5363
5364         return encoder->get_hw_state(encoder, &pipe);
5365 }
5366
5367 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5368                                      struct intel_crtc_config *pipe_config)
5369 {
5370         struct drm_i915_private *dev_priv = dev->dev_private;
5371         struct intel_crtc *pipe_B_crtc =
5372                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5373
5374         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5375                       pipe_name(pipe), pipe_config->fdi_lanes);
5376         if (pipe_config->fdi_lanes > 4) {
5377                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5378                               pipe_name(pipe), pipe_config->fdi_lanes);
5379                 return false;
5380         }
5381
5382         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5383                 if (pipe_config->fdi_lanes > 2) {
5384                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5385                                       pipe_config->fdi_lanes);
5386                         return false;
5387                 } else {
5388                         return true;
5389                 }
5390         }
5391
5392         if (INTEL_INFO(dev)->num_pipes == 2)
5393                 return true;
5394
5395         /* Ivybridge 3 pipe is really complicated */
5396         switch (pipe) {
5397         case PIPE_A:
5398                 return true;
5399         case PIPE_B:
5400                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5401                     pipe_config->fdi_lanes > 2) {
5402                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5403                                       pipe_name(pipe), pipe_config->fdi_lanes);
5404                         return false;
5405                 }
5406                 return true;
5407         case PIPE_C:
5408                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5409                     pipe_B_crtc->config.fdi_lanes <= 2) {
5410                         if (pipe_config->fdi_lanes > 2) {
5411                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5412                                               pipe_name(pipe), pipe_config->fdi_lanes);
5413                                 return false;
5414                         }
5415                 } else {
5416                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5417                         return false;
5418                 }
5419                 return true;
5420         default:
5421                 BUG();
5422         }
5423 }
5424
5425 #define RETRY 1
5426 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5427                                        struct intel_crtc_config *pipe_config)
5428 {
5429         struct drm_device *dev = intel_crtc->base.dev;
5430         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5431         int lane, link_bw, fdi_dotclock;
5432         bool setup_ok, needs_recompute = false;
5433
5434 retry:
5435         /* FDI is a binary signal running at ~2.7GHz, encoding
5436          * each output octet as 10 bits. The actual frequency
5437          * is stored as a divider into a 100MHz clock, and the
5438          * mode pixel clock is stored in units of 1KHz.
5439          * Hence the bw of each lane in terms of the mode signal
5440          * is:
5441          */
5442         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5443
5444         fdi_dotclock = adjusted_mode->crtc_clock;
5445
5446         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5447                                            pipe_config->pipe_bpp);
5448
5449         pipe_config->fdi_lanes = lane;
5450
5451         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5452                                link_bw, &pipe_config->fdi_m_n);
5453
5454         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5455                                             intel_crtc->pipe, pipe_config);
5456         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5457                 pipe_config->pipe_bpp -= 2*3;
5458                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5459                               pipe_config->pipe_bpp);
5460                 needs_recompute = true;
5461                 pipe_config->bw_constrained = true;
5462
5463                 goto retry;
5464         }
5465
5466         if (needs_recompute)
5467                 return RETRY;
5468
5469         return setup_ok ? 0 : -EINVAL;
5470 }
5471
5472 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5473                                    struct intel_crtc_config *pipe_config)
5474 {
5475         pipe_config->ips_enabled = i915.enable_ips &&
5476                                    hsw_crtc_supports_ips(crtc) &&
5477                                    pipe_config->pipe_bpp <= 24;
5478 }
5479
5480 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5481                                      struct intel_crtc_config *pipe_config)
5482 {
5483         struct drm_device *dev = crtc->base.dev;
5484         struct drm_i915_private *dev_priv = dev->dev_private;
5485         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5486
5487         /* FIXME should check pixel clock limits on all platforms */
5488         if (INTEL_INFO(dev)->gen < 4) {
5489                 int clock_limit =
5490                         dev_priv->display.get_display_clock_speed(dev);
5491
5492                 /*
5493                  * Enable pixel doubling when the dot clock
5494                  * is > 90% of the (display) core speed.
5495                  *
5496                  * GDG double wide on either pipe,
5497                  * otherwise pipe A only.
5498                  */
5499                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5500                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5501                         clock_limit *= 2;
5502                         pipe_config->double_wide = true;
5503                 }
5504
5505                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5506                         return -EINVAL;
5507         }
5508
5509         /*
5510          * Pipe horizontal size must be even in:
5511          * - DVO ganged mode
5512          * - LVDS dual channel mode
5513          * - Double wide pipe
5514          */
5515         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5516              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5517                 pipe_config->pipe_src_w &= ~1;
5518
5519         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5520          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5521          */
5522         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5523                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5524                 return -EINVAL;
5525
5526         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5527                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5528         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5529                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5530                  * for lvds. */
5531                 pipe_config->pipe_bpp = 8*3;
5532         }
5533
5534         if (HAS_IPS(dev))
5535                 hsw_compute_ips_config(crtc, pipe_config);
5536
5537         if (pipe_config->has_pch_encoder)
5538                 return ironlake_fdi_compute_config(crtc, pipe_config);
5539
5540         return 0;
5541 }
5542
5543 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5544 {
5545         struct drm_i915_private *dev_priv = dev->dev_private;
5546         int vco = valleyview_get_vco(dev_priv);
5547         u32 val;
5548         int divider;
5549
5550         /* FIXME: Punit isn't quite ready yet */
5551         if (IS_CHERRYVIEW(dev))
5552                 return 400000;
5553
5554         mutex_lock(&dev_priv->dpio_lock);
5555         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5556         mutex_unlock(&dev_priv->dpio_lock);
5557
5558         divider = val & DISPLAY_FREQUENCY_VALUES;
5559
5560         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5561              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5562              "cdclk change in progress\n");
5563
5564         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5565 }
5566
5567 static int i945_get_display_clock_speed(struct drm_device *dev)
5568 {
5569         return 400000;
5570 }
5571
5572 static int i915_get_display_clock_speed(struct drm_device *dev)
5573 {
5574         return 333000;
5575 }
5576
5577 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5578 {
5579         return 200000;
5580 }
5581
5582 static int pnv_get_display_clock_speed(struct drm_device *dev)
5583 {
5584         u16 gcfgc = 0;
5585
5586         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5587
5588         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5589         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5590                 return 267000;
5591         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5592                 return 333000;
5593         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5594                 return 444000;
5595         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5596                 return 200000;
5597         default:
5598                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5599         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5600                 return 133000;
5601         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5602                 return 167000;
5603         }
5604 }
5605
5606 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5607 {
5608         u16 gcfgc = 0;
5609
5610         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5611
5612         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5613                 return 133000;
5614         else {
5615                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5616                 case GC_DISPLAY_CLOCK_333_MHZ:
5617                         return 333000;
5618                 default:
5619                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5620                         return 190000;
5621                 }
5622         }
5623 }
5624
5625 static int i865_get_display_clock_speed(struct drm_device *dev)
5626 {
5627         return 266000;
5628 }
5629
5630 static int i855_get_display_clock_speed(struct drm_device *dev)
5631 {
5632         u16 hpllcc = 0;
5633         /* Assume that the hardware is in the high speed state.  This
5634          * should be the default.
5635          */
5636         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5637         case GC_CLOCK_133_200:
5638         case GC_CLOCK_100_200:
5639                 return 200000;
5640         case GC_CLOCK_166_250:
5641                 return 250000;
5642         case GC_CLOCK_100_133:
5643                 return 133000;
5644         }
5645
5646         /* Shouldn't happen */
5647         return 0;
5648 }
5649
5650 static int i830_get_display_clock_speed(struct drm_device *dev)
5651 {
5652         return 133000;
5653 }
5654
5655 static void
5656 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5657 {
5658         while (*num > DATA_LINK_M_N_MASK ||
5659                *den > DATA_LINK_M_N_MASK) {
5660                 *num >>= 1;
5661                 *den >>= 1;
5662         }
5663 }
5664
5665 static void compute_m_n(unsigned int m, unsigned int n,
5666                         uint32_t *ret_m, uint32_t *ret_n)
5667 {
5668         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5669         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5670         intel_reduce_m_n_ratio(ret_m, ret_n);
5671 }
5672
5673 void
5674 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5675                        int pixel_clock, int link_clock,
5676                        struct intel_link_m_n *m_n)
5677 {
5678         m_n->tu = 64;
5679
5680         compute_m_n(bits_per_pixel * pixel_clock,
5681                     link_clock * nlanes * 8,
5682                     &m_n->gmch_m, &m_n->gmch_n);
5683
5684         compute_m_n(pixel_clock, link_clock,
5685                     &m_n->link_m, &m_n->link_n);
5686 }
5687
5688 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5689 {
5690         if (i915.panel_use_ssc >= 0)
5691                 return i915.panel_use_ssc != 0;
5692         return dev_priv->vbt.lvds_use_ssc
5693                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5694 }
5695
5696 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5697 {
5698         struct drm_device *dev = crtc->base.dev;
5699         struct drm_i915_private *dev_priv = dev->dev_private;
5700         int refclk;
5701
5702         if (IS_VALLEYVIEW(dev)) {
5703                 refclk = 100000;
5704         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5705             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5706                 refclk = dev_priv->vbt.lvds_ssc_freq;
5707                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5708         } else if (!IS_GEN2(dev)) {
5709                 refclk = 96000;
5710         } else {
5711                 refclk = 48000;
5712         }
5713
5714         return refclk;
5715 }
5716
5717 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5718 {
5719         return (1 << dpll->n) << 16 | dpll->m2;
5720 }
5721
5722 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5723 {
5724         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5725 }
5726
5727 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5728                                      intel_clock_t *reduced_clock)
5729 {
5730         struct drm_device *dev = crtc->base.dev;
5731         u32 fp, fp2 = 0;
5732
5733         if (IS_PINEVIEW(dev)) {
5734                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5735                 if (reduced_clock)
5736                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5737         } else {
5738                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5739                 if (reduced_clock)
5740                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5741         }
5742
5743         crtc->config.dpll_hw_state.fp0 = fp;
5744
5745         crtc->lowfreq_avail = false;
5746         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5747             reduced_clock && i915.powersave) {
5748                 crtc->config.dpll_hw_state.fp1 = fp2;
5749                 crtc->lowfreq_avail = true;
5750         } else {
5751                 crtc->config.dpll_hw_state.fp1 = fp;
5752         }
5753 }
5754
5755 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5756                 pipe)
5757 {
5758         u32 reg_val;
5759
5760         /*
5761          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5762          * and set it to a reasonable value instead.
5763          */
5764         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5765         reg_val &= 0xffffff00;
5766         reg_val |= 0x00000030;
5767         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5768
5769         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5770         reg_val &= 0x8cffffff;
5771         reg_val = 0x8c000000;
5772         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5773
5774         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5775         reg_val &= 0xffffff00;
5776         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5777
5778         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5779         reg_val &= 0x00ffffff;
5780         reg_val |= 0xb0000000;
5781         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5782 }
5783
5784 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5785                                          struct intel_link_m_n *m_n)
5786 {
5787         struct drm_device *dev = crtc->base.dev;
5788         struct drm_i915_private *dev_priv = dev->dev_private;
5789         int pipe = crtc->pipe;
5790
5791         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5792         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5793         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5794         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5795 }
5796
5797 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5798                                          struct intel_link_m_n *m_n,
5799                                          struct intel_link_m_n *m2_n2)
5800 {
5801         struct drm_device *dev = crtc->base.dev;
5802         struct drm_i915_private *dev_priv = dev->dev_private;
5803         int pipe = crtc->pipe;
5804         enum transcoder transcoder = crtc->config.cpu_transcoder;
5805
5806         if (INTEL_INFO(dev)->gen >= 5) {
5807                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5808                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5809                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5810                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5811                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5812                  * for gen < 8) and if DRRS is supported (to make sure the
5813                  * registers are not unnecessarily accessed).
5814                  */
5815                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5816                         crtc->config.has_drrs) {
5817                         I915_WRITE(PIPE_DATA_M2(transcoder),
5818                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5819                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5820                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5821                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5822                 }
5823         } else {
5824                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5825                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5826                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5827                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5828         }
5829 }
5830
5831 void intel_dp_set_m_n(struct intel_crtc *crtc)
5832 {
5833         if (crtc->config.has_pch_encoder)
5834                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5835         else
5836                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5837                                                    &crtc->config.dp_m2_n2);
5838 }
5839
5840 static void vlv_update_pll(struct intel_crtc *crtc,
5841                            struct intel_crtc_config *pipe_config)
5842 {
5843         u32 dpll, dpll_md;
5844
5845         /*
5846          * Enable DPIO clock input. We should never disable the reference
5847          * clock for pipe B, since VGA hotplug / manual detection depends
5848          * on it.
5849          */
5850         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5851                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5852         /* We should never disable this, set it here for state tracking */
5853         if (crtc->pipe == PIPE_B)
5854                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5855         dpll |= DPLL_VCO_ENABLE;
5856         pipe_config->dpll_hw_state.dpll = dpll;
5857
5858         dpll_md = (pipe_config->pixel_multiplier - 1)
5859                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5860         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5861 }
5862
5863 static void vlv_prepare_pll(struct intel_crtc *crtc,
5864                             const struct intel_crtc_config *pipe_config)
5865 {
5866         struct drm_device *dev = crtc->base.dev;
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         int pipe = crtc->pipe;
5869         u32 mdiv;
5870         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5871         u32 coreclk, reg_val;
5872
5873         mutex_lock(&dev_priv->dpio_lock);
5874
5875         bestn = pipe_config->dpll.n;
5876         bestm1 = pipe_config->dpll.m1;
5877         bestm2 = pipe_config->dpll.m2;
5878         bestp1 = pipe_config->dpll.p1;
5879         bestp2 = pipe_config->dpll.p2;
5880
5881         /* See eDP HDMI DPIO driver vbios notes doc */
5882
5883         /* PLL B needs special handling */
5884         if (pipe == PIPE_B)
5885                 vlv_pllb_recal_opamp(dev_priv, pipe);
5886
5887         /* Set up Tx target for periodic Rcomp update */
5888         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5889
5890         /* Disable target IRef on PLL */
5891         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5892         reg_val &= 0x00ffffff;
5893         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5894
5895         /* Disable fast lock */
5896         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5897
5898         /* Set idtafcrecal before PLL is enabled */
5899         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5900         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5901         mdiv |= ((bestn << DPIO_N_SHIFT));
5902         mdiv |= (1 << DPIO_K_SHIFT);
5903
5904         /*
5905          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5906          * but we don't support that).
5907          * Note: don't use the DAC post divider as it seems unstable.
5908          */
5909         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5910         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5911
5912         mdiv |= DPIO_ENABLE_CALIBRATION;
5913         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5914
5915         /* Set HBR and RBR LPF coefficients */
5916         if (pipe_config->port_clock == 162000 ||
5917             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5918             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5919                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5920                                  0x009f0003);
5921         else
5922                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5923                                  0x00d0000f);
5924
5925         if (crtc->config.has_dp_encoder) {
5926                 /* Use SSC source */
5927                 if (pipe == PIPE_A)
5928                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5929                                          0x0df40000);
5930                 else
5931                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5932                                          0x0df70000);
5933         } else { /* HDMI or VGA */
5934                 /* Use bend source */
5935                 if (pipe == PIPE_A)
5936                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5937                                          0x0df70000);
5938                 else
5939                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5940                                          0x0df40000);
5941         }
5942
5943         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5944         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5945         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5946             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5947                 coreclk |= 0x01000000;
5948         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5949
5950         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5951         mutex_unlock(&dev_priv->dpio_lock);
5952 }
5953
5954 static void chv_update_pll(struct intel_crtc *crtc,
5955                            struct intel_crtc_config *pipe_config)
5956 {
5957         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5958                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5959                 DPLL_VCO_ENABLE;
5960         if (crtc->pipe != PIPE_A)
5961                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5962
5963         pipe_config->dpll_hw_state.dpll_md =
5964                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5965 }
5966
5967 static void chv_prepare_pll(struct intel_crtc *crtc,
5968                             const struct intel_crtc_config *pipe_config)
5969 {
5970         struct drm_device *dev = crtc->base.dev;
5971         struct drm_i915_private *dev_priv = dev->dev_private;
5972         int pipe = crtc->pipe;
5973         int dpll_reg = DPLL(crtc->pipe);
5974         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5975         u32 loopfilter, intcoeff;
5976         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5977         int refclk;
5978
5979         bestn = pipe_config->dpll.n;
5980         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5981         bestm1 = pipe_config->dpll.m1;
5982         bestm2 = pipe_config->dpll.m2 >> 22;
5983         bestp1 = pipe_config->dpll.p1;
5984         bestp2 = pipe_config->dpll.p2;
5985
5986         /*
5987          * Enable Refclk and SSC
5988          */
5989         I915_WRITE(dpll_reg,
5990                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5991
5992         mutex_lock(&dev_priv->dpio_lock);
5993
5994         /* p1 and p2 divider */
5995         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5996                         5 << DPIO_CHV_S1_DIV_SHIFT |
5997                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5998                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5999                         1 << DPIO_CHV_K_DIV_SHIFT);
6000
6001         /* Feedback post-divider - m2 */
6002         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6003
6004         /* Feedback refclk divider - n and m1 */
6005         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6006                         DPIO_CHV_M1_DIV_BY_2 |
6007                         1 << DPIO_CHV_N_DIV_SHIFT);
6008
6009         /* M2 fraction division */
6010         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6011
6012         /* M2 fraction division enable */
6013         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6014                        DPIO_CHV_FRAC_DIV_EN |
6015                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6016
6017         /* Loop filter */
6018         refclk = i9xx_get_refclk(crtc, 0);
6019         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6020                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6021         if (refclk == 100000)
6022                 intcoeff = 11;
6023         else if (refclk == 38400)
6024                 intcoeff = 10;
6025         else
6026                 intcoeff = 9;
6027         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6028         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6029
6030         /* AFC Recal */
6031         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6032                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6033                         DPIO_AFC_RECAL);
6034
6035         mutex_unlock(&dev_priv->dpio_lock);
6036 }
6037
6038 /**
6039  * vlv_force_pll_on - forcibly enable just the PLL
6040  * @dev_priv: i915 private structure
6041  * @pipe: pipe PLL to enable
6042  * @dpll: PLL configuration
6043  *
6044  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6045  * in cases where we need the PLL enabled even when @pipe is not going to
6046  * be enabled.
6047  */
6048 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6049                       const struct dpll *dpll)
6050 {
6051         struct intel_crtc *crtc =
6052                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6053         struct intel_crtc_config pipe_config = {
6054                 .pixel_multiplier = 1,
6055                 .dpll = *dpll,
6056         };
6057
6058         if (IS_CHERRYVIEW(dev)) {
6059                 chv_update_pll(crtc, &pipe_config);
6060                 chv_prepare_pll(crtc, &pipe_config);
6061                 chv_enable_pll(crtc, &pipe_config);
6062         } else {
6063                 vlv_update_pll(crtc, &pipe_config);
6064                 vlv_prepare_pll(crtc, &pipe_config);
6065                 vlv_enable_pll(crtc, &pipe_config);
6066         }
6067 }
6068
6069 /**
6070  * vlv_force_pll_off - forcibly disable just the PLL
6071  * @dev_priv: i915 private structure
6072  * @pipe: pipe PLL to disable
6073  *
6074  * Disable the PLL for @pipe. To be used in cases where we need
6075  * the PLL enabled even when @pipe is not going to be enabled.
6076  */
6077 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6078 {
6079         if (IS_CHERRYVIEW(dev))
6080                 chv_disable_pll(to_i915(dev), pipe);
6081         else
6082                 vlv_disable_pll(to_i915(dev), pipe);
6083 }
6084
6085 static void i9xx_update_pll(struct intel_crtc *crtc,
6086                             intel_clock_t *reduced_clock,
6087                             int num_connectors)
6088 {
6089         struct drm_device *dev = crtc->base.dev;
6090         struct drm_i915_private *dev_priv = dev->dev_private;
6091         u32 dpll;
6092         bool is_sdvo;
6093         struct dpll *clock = &crtc->new_config->dpll;
6094
6095         i9xx_update_pll_dividers(crtc, reduced_clock);
6096
6097         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6098                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6099
6100         dpll = DPLL_VGA_MODE_DIS;
6101
6102         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6103                 dpll |= DPLLB_MODE_LVDS;
6104         else
6105                 dpll |= DPLLB_MODE_DAC_SERIAL;
6106
6107         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6108                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6109                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6110         }
6111
6112         if (is_sdvo)
6113                 dpll |= DPLL_SDVO_HIGH_SPEED;
6114
6115         if (crtc->new_config->has_dp_encoder)
6116                 dpll |= DPLL_SDVO_HIGH_SPEED;
6117
6118         /* compute bitmask from p1 value */
6119         if (IS_PINEVIEW(dev))
6120                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6121         else {
6122                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6123                 if (IS_G4X(dev) && reduced_clock)
6124                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6125         }
6126         switch (clock->p2) {
6127         case 5:
6128                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6129                 break;
6130         case 7:
6131                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6132                 break;
6133         case 10:
6134                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6135                 break;
6136         case 14:
6137                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6138                 break;
6139         }
6140         if (INTEL_INFO(dev)->gen >= 4)
6141                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6142
6143         if (crtc->new_config->sdvo_tv_clock)
6144                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6145         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6146                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6147                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6148         else
6149                 dpll |= PLL_REF_INPUT_DREFCLK;
6150
6151         dpll |= DPLL_VCO_ENABLE;
6152         crtc->new_config->dpll_hw_state.dpll = dpll;
6153
6154         if (INTEL_INFO(dev)->gen >= 4) {
6155                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6156                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6157                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6158         }
6159 }
6160
6161 static void i8xx_update_pll(struct intel_crtc *crtc,
6162                             intel_clock_t *reduced_clock,
6163                             int num_connectors)
6164 {
6165         struct drm_device *dev = crtc->base.dev;
6166         struct drm_i915_private *dev_priv = dev->dev_private;
6167         u32 dpll;
6168         struct dpll *clock = &crtc->new_config->dpll;
6169
6170         i9xx_update_pll_dividers(crtc, reduced_clock);
6171
6172         dpll = DPLL_VGA_MODE_DIS;
6173
6174         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6175                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6176         } else {
6177                 if (clock->p1 == 2)
6178                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6179                 else
6180                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6181                 if (clock->p2 == 4)
6182                         dpll |= PLL_P2_DIVIDE_BY_4;
6183         }
6184
6185         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6186                 dpll |= DPLL_DVO_2X_MODE;
6187
6188         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6189                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6190                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6191         else
6192                 dpll |= PLL_REF_INPUT_DREFCLK;
6193
6194         dpll |= DPLL_VCO_ENABLE;
6195         crtc->new_config->dpll_hw_state.dpll = dpll;
6196 }
6197
6198 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6199 {
6200         struct drm_device *dev = intel_crtc->base.dev;
6201         struct drm_i915_private *dev_priv = dev->dev_private;
6202         enum pipe pipe = intel_crtc->pipe;
6203         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6204         struct drm_display_mode *adjusted_mode =
6205                 &intel_crtc->config.adjusted_mode;
6206         uint32_t crtc_vtotal, crtc_vblank_end;
6207         int vsyncshift = 0;
6208
6209         /* We need to be careful not to changed the adjusted mode, for otherwise
6210          * the hw state checker will get angry at the mismatch. */
6211         crtc_vtotal = adjusted_mode->crtc_vtotal;
6212         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6213
6214         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6215                 /* the chip adds 2 halflines automatically */
6216                 crtc_vtotal -= 1;
6217                 crtc_vblank_end -= 1;
6218
6219                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6220                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6221                 else
6222                         vsyncshift = adjusted_mode->crtc_hsync_start -
6223                                 adjusted_mode->crtc_htotal / 2;
6224                 if (vsyncshift < 0)
6225                         vsyncshift += adjusted_mode->crtc_htotal;
6226         }
6227
6228         if (INTEL_INFO(dev)->gen > 3)
6229                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6230
6231         I915_WRITE(HTOTAL(cpu_transcoder),
6232                    (adjusted_mode->crtc_hdisplay - 1) |
6233                    ((adjusted_mode->crtc_htotal - 1) << 16));
6234         I915_WRITE(HBLANK(cpu_transcoder),
6235                    (adjusted_mode->crtc_hblank_start - 1) |
6236                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6237         I915_WRITE(HSYNC(cpu_transcoder),
6238                    (adjusted_mode->crtc_hsync_start - 1) |
6239                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6240
6241         I915_WRITE(VTOTAL(cpu_transcoder),
6242                    (adjusted_mode->crtc_vdisplay - 1) |
6243                    ((crtc_vtotal - 1) << 16));
6244         I915_WRITE(VBLANK(cpu_transcoder),
6245                    (adjusted_mode->crtc_vblank_start - 1) |
6246                    ((crtc_vblank_end - 1) << 16));
6247         I915_WRITE(VSYNC(cpu_transcoder),
6248                    (adjusted_mode->crtc_vsync_start - 1) |
6249                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6250
6251         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6252          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6253          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6254          * bits. */
6255         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6256             (pipe == PIPE_B || pipe == PIPE_C))
6257                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6258
6259         /* pipesrc controls the size that is scaled from, which should
6260          * always be the user's requested size.
6261          */
6262         I915_WRITE(PIPESRC(pipe),
6263                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6264                    (intel_crtc->config.pipe_src_h - 1));
6265 }
6266
6267 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6268                                    struct intel_crtc_config *pipe_config)
6269 {
6270         struct drm_device *dev = crtc->base.dev;
6271         struct drm_i915_private *dev_priv = dev->dev_private;
6272         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6273         uint32_t tmp;
6274
6275         tmp = I915_READ(HTOTAL(cpu_transcoder));
6276         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6277         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6278         tmp = I915_READ(HBLANK(cpu_transcoder));
6279         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6280         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6281         tmp = I915_READ(HSYNC(cpu_transcoder));
6282         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6283         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6284
6285         tmp = I915_READ(VTOTAL(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6288         tmp = I915_READ(VBLANK(cpu_transcoder));
6289         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6290         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6291         tmp = I915_READ(VSYNC(cpu_transcoder));
6292         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6293         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6294
6295         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6296                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6297                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6298                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6299         }
6300
6301         tmp = I915_READ(PIPESRC(crtc->pipe));
6302         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6303         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6304
6305         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6306         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6307 }
6308
6309 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6310                                  struct intel_crtc_config *pipe_config)
6311 {
6312         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6313         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6314         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6315         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6316
6317         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6318         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6319         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6320         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6321
6322         mode->flags = pipe_config->adjusted_mode.flags;
6323
6324         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6325         mode->flags |= pipe_config->adjusted_mode.flags;
6326 }
6327
6328 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6329 {
6330         struct drm_device *dev = intel_crtc->base.dev;
6331         struct drm_i915_private *dev_priv = dev->dev_private;
6332         uint32_t pipeconf;
6333
6334         pipeconf = 0;
6335
6336         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6337             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6338                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6339
6340         if (intel_crtc->config.double_wide)
6341                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6342
6343         /* only g4x and later have fancy bpc/dither controls */
6344         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6345                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6346                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6347                         pipeconf |= PIPECONF_DITHER_EN |
6348                                     PIPECONF_DITHER_TYPE_SP;
6349
6350                 switch (intel_crtc->config.pipe_bpp) {
6351                 case 18:
6352                         pipeconf |= PIPECONF_6BPC;
6353                         break;
6354                 case 24:
6355                         pipeconf |= PIPECONF_8BPC;
6356                         break;
6357                 case 30:
6358                         pipeconf |= PIPECONF_10BPC;
6359                         break;
6360                 default:
6361                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6362                         BUG();
6363                 }
6364         }
6365
6366         if (HAS_PIPE_CXSR(dev)) {
6367                 if (intel_crtc->lowfreq_avail) {
6368                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6369                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6370                 } else {
6371                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6372                 }
6373         }
6374
6375         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6376                 if (INTEL_INFO(dev)->gen < 4 ||
6377                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6378                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6379                 else
6380                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6381         } else
6382                 pipeconf |= PIPECONF_PROGRESSIVE;
6383
6384         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6385                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6386
6387         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6388         POSTING_READ(PIPECONF(intel_crtc->pipe));
6389 }
6390
6391 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6392 {
6393         struct drm_device *dev = crtc->base.dev;
6394         struct drm_i915_private *dev_priv = dev->dev_private;
6395         int refclk, num_connectors = 0;
6396         intel_clock_t clock, reduced_clock;
6397         bool ok, has_reduced_clock = false;
6398         bool is_lvds = false, is_dsi = false;
6399         struct intel_encoder *encoder;
6400         const intel_limit_t *limit;
6401
6402         for_each_intel_encoder(dev, encoder) {
6403                 if (encoder->new_crtc != crtc)
6404                         continue;
6405
6406                 switch (encoder->type) {
6407                 case INTEL_OUTPUT_LVDS:
6408                         is_lvds = true;
6409                         break;
6410                 case INTEL_OUTPUT_DSI:
6411                         is_dsi = true;
6412                         break;
6413                 default:
6414                         break;
6415                 }
6416
6417                 num_connectors++;
6418         }
6419
6420         if (is_dsi)
6421                 return 0;
6422
6423         if (!crtc->new_config->clock_set) {
6424                 refclk = i9xx_get_refclk(crtc, num_connectors);
6425
6426                 /*
6427                  * Returns a set of divisors for the desired target clock with
6428                  * the given refclk, or FALSE.  The returned values represent
6429                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6430                  * 2) / p1 / p2.
6431                  */
6432                 limit = intel_limit(crtc, refclk);
6433                 ok = dev_priv->display.find_dpll(limit, crtc,
6434                                                  crtc->new_config->port_clock,
6435                                                  refclk, NULL, &clock);
6436                 if (!ok) {
6437                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6438                         return -EINVAL;
6439                 }
6440
6441                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6442                         /*
6443                          * Ensure we match the reduced clock's P to the target
6444                          * clock.  If the clocks don't match, we can't switch
6445                          * the display clock by using the FP0/FP1. In such case
6446                          * we will disable the LVDS downclock feature.
6447                          */
6448                         has_reduced_clock =
6449                                 dev_priv->display.find_dpll(limit, crtc,
6450                                                             dev_priv->lvds_downclock,
6451                                                             refclk, &clock,
6452                                                             &reduced_clock);
6453                 }
6454                 /* Compat-code for transition, will disappear. */
6455                 crtc->new_config->dpll.n = clock.n;
6456                 crtc->new_config->dpll.m1 = clock.m1;
6457                 crtc->new_config->dpll.m2 = clock.m2;
6458                 crtc->new_config->dpll.p1 = clock.p1;
6459                 crtc->new_config->dpll.p2 = clock.p2;
6460         }
6461
6462         if (IS_GEN2(dev)) {
6463                 i8xx_update_pll(crtc,
6464                                 has_reduced_clock ? &reduced_clock : NULL,
6465                                 num_connectors);
6466         } else if (IS_CHERRYVIEW(dev)) {
6467                 chv_update_pll(crtc, crtc->new_config);
6468         } else if (IS_VALLEYVIEW(dev)) {
6469                 vlv_update_pll(crtc, crtc->new_config);
6470         } else {
6471                 i9xx_update_pll(crtc,
6472                                 has_reduced_clock ? &reduced_clock : NULL,
6473                                 num_connectors);
6474         }
6475
6476         return 0;
6477 }
6478
6479 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6480                                  struct intel_crtc_config *pipe_config)
6481 {
6482         struct drm_device *dev = crtc->base.dev;
6483         struct drm_i915_private *dev_priv = dev->dev_private;
6484         uint32_t tmp;
6485
6486         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6487                 return;
6488
6489         tmp = I915_READ(PFIT_CONTROL);
6490         if (!(tmp & PFIT_ENABLE))
6491                 return;
6492
6493         /* Check whether the pfit is attached to our pipe. */
6494         if (INTEL_INFO(dev)->gen < 4) {
6495                 if (crtc->pipe != PIPE_B)
6496                         return;
6497         } else {
6498                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6499                         return;
6500         }
6501
6502         pipe_config->gmch_pfit.control = tmp;
6503         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6504         if (INTEL_INFO(dev)->gen < 5)
6505                 pipe_config->gmch_pfit.lvds_border_bits =
6506                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6507 }
6508
6509 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6510                                struct intel_crtc_config *pipe_config)
6511 {
6512         struct drm_device *dev = crtc->base.dev;
6513         struct drm_i915_private *dev_priv = dev->dev_private;
6514         int pipe = pipe_config->cpu_transcoder;
6515         intel_clock_t clock;
6516         u32 mdiv;
6517         int refclk = 100000;
6518
6519         /* In case of MIPI DPLL will not even be used */
6520         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6521                 return;
6522
6523         mutex_lock(&dev_priv->dpio_lock);
6524         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6525         mutex_unlock(&dev_priv->dpio_lock);
6526
6527         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6528         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6529         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6530         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6531         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6532
6533         vlv_clock(refclk, &clock);
6534
6535         /* clock.dot is the fast clock */
6536         pipe_config->port_clock = clock.dot / 5;
6537 }
6538
6539 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6540                                   struct intel_plane_config *plane_config)
6541 {
6542         struct drm_device *dev = crtc->base.dev;
6543         struct drm_i915_private *dev_priv = dev->dev_private;
6544         u32 val, base, offset;
6545         int pipe = crtc->pipe, plane = crtc->plane;
6546         int fourcc, pixel_format;
6547         int aligned_height;
6548
6549         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6550         if (!crtc->base.primary->fb) {
6551                 DRM_DEBUG_KMS("failed to alloc fb\n");
6552                 return;
6553         }
6554
6555         val = I915_READ(DSPCNTR(plane));
6556
6557         if (INTEL_INFO(dev)->gen >= 4)
6558                 if (val & DISPPLANE_TILED)
6559                         plane_config->tiled = true;
6560
6561         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6562         fourcc = intel_format_to_fourcc(pixel_format);
6563         crtc->base.primary->fb->pixel_format = fourcc;
6564         crtc->base.primary->fb->bits_per_pixel =
6565                 drm_format_plane_cpp(fourcc, 0) * 8;
6566
6567         if (INTEL_INFO(dev)->gen >= 4) {
6568                 if (plane_config->tiled)
6569                         offset = I915_READ(DSPTILEOFF(plane));
6570                 else
6571                         offset = I915_READ(DSPLINOFF(plane));
6572                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6573         } else {
6574                 base = I915_READ(DSPADDR(plane));
6575         }
6576         plane_config->base = base;
6577
6578         val = I915_READ(PIPESRC(pipe));
6579         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6580         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6581
6582         val = I915_READ(DSPSTRIDE(pipe));
6583         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6584
6585         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6586                                             plane_config->tiled);
6587
6588         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6589                                         aligned_height);
6590
6591         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6592                       pipe, plane, crtc->base.primary->fb->width,
6593                       crtc->base.primary->fb->height,
6594                       crtc->base.primary->fb->bits_per_pixel, base,
6595                       crtc->base.primary->fb->pitches[0],
6596                       plane_config->size);
6597
6598 }
6599
6600 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6601                                struct intel_crtc_config *pipe_config)
6602 {
6603         struct drm_device *dev = crtc->base.dev;
6604         struct drm_i915_private *dev_priv = dev->dev_private;
6605         int pipe = pipe_config->cpu_transcoder;
6606         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6607         intel_clock_t clock;
6608         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6609         int refclk = 100000;
6610
6611         mutex_lock(&dev_priv->dpio_lock);
6612         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6613         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6614         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6615         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6616         mutex_unlock(&dev_priv->dpio_lock);
6617
6618         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6619         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6620         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6621         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6622         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6623
6624         chv_clock(refclk, &clock);
6625
6626         /* clock.dot is the fast clock */
6627         pipe_config->port_clock = clock.dot / 5;
6628 }
6629
6630 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6631                                  struct intel_crtc_config *pipe_config)
6632 {
6633         struct drm_device *dev = crtc->base.dev;
6634         struct drm_i915_private *dev_priv = dev->dev_private;
6635         uint32_t tmp;
6636
6637         if (!intel_display_power_is_enabled(dev_priv,
6638                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6639                 return false;
6640
6641         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6642         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6643
6644         tmp = I915_READ(PIPECONF(crtc->pipe));
6645         if (!(tmp & PIPECONF_ENABLE))
6646                 return false;
6647
6648         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6649                 switch (tmp & PIPECONF_BPC_MASK) {
6650                 case PIPECONF_6BPC:
6651                         pipe_config->pipe_bpp = 18;
6652                         break;
6653                 case PIPECONF_8BPC:
6654                         pipe_config->pipe_bpp = 24;
6655                         break;
6656                 case PIPECONF_10BPC:
6657                         pipe_config->pipe_bpp = 30;
6658                         break;
6659                 default:
6660                         break;
6661                 }
6662         }
6663
6664         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6665                 pipe_config->limited_color_range = true;
6666
6667         if (INTEL_INFO(dev)->gen < 4)
6668                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6669
6670         intel_get_pipe_timings(crtc, pipe_config);
6671
6672         i9xx_get_pfit_config(crtc, pipe_config);
6673
6674         if (INTEL_INFO(dev)->gen >= 4) {
6675                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6676                 pipe_config->pixel_multiplier =
6677                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6678                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6679                 pipe_config->dpll_hw_state.dpll_md = tmp;
6680         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6681                 tmp = I915_READ(DPLL(crtc->pipe));
6682                 pipe_config->pixel_multiplier =
6683                         ((tmp & SDVO_MULTIPLIER_MASK)
6684                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6685         } else {
6686                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6687                  * port and will be fixed up in the encoder->get_config
6688                  * function. */
6689                 pipe_config->pixel_multiplier = 1;
6690         }
6691         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6692         if (!IS_VALLEYVIEW(dev)) {
6693                 /*
6694                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6695                  * on 830. Filter it out here so that we don't
6696                  * report errors due to that.
6697                  */
6698                 if (IS_I830(dev))
6699                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6700
6701                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6702                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6703         } else {
6704                 /* Mask out read-only status bits. */
6705                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6706                                                      DPLL_PORTC_READY_MASK |
6707                                                      DPLL_PORTB_READY_MASK);
6708         }
6709
6710         if (IS_CHERRYVIEW(dev))
6711                 chv_crtc_clock_get(crtc, pipe_config);
6712         else if (IS_VALLEYVIEW(dev))
6713                 vlv_crtc_clock_get(crtc, pipe_config);
6714         else
6715                 i9xx_crtc_clock_get(crtc, pipe_config);
6716
6717         return true;
6718 }
6719
6720 static void ironlake_init_pch_refclk(struct drm_device *dev)
6721 {
6722         struct drm_i915_private *dev_priv = dev->dev_private;
6723         struct intel_encoder *encoder;
6724         u32 val, final;
6725         bool has_lvds = false;
6726         bool has_cpu_edp = false;
6727         bool has_panel = false;
6728         bool has_ck505 = false;
6729         bool can_ssc = false;
6730
6731         /* We need to take the global config into account */
6732         for_each_intel_encoder(dev, encoder) {
6733                 switch (encoder->type) {
6734                 case INTEL_OUTPUT_LVDS:
6735                         has_panel = true;
6736                         has_lvds = true;
6737                         break;
6738                 case INTEL_OUTPUT_EDP:
6739                         has_panel = true;
6740                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6741                                 has_cpu_edp = true;
6742                         break;
6743                 default:
6744                         break;
6745                 }
6746         }
6747
6748         if (HAS_PCH_IBX(dev)) {
6749                 has_ck505 = dev_priv->vbt.display_clock_mode;
6750                 can_ssc = has_ck505;
6751         } else {
6752                 has_ck505 = false;
6753                 can_ssc = true;
6754         }
6755
6756         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6757                       has_panel, has_lvds, has_ck505);
6758
6759         /* Ironlake: try to setup display ref clock before DPLL
6760          * enabling. This is only under driver's control after
6761          * PCH B stepping, previous chipset stepping should be
6762          * ignoring this setting.
6763          */
6764         val = I915_READ(PCH_DREF_CONTROL);
6765
6766         /* As we must carefully and slowly disable/enable each source in turn,
6767          * compute the final state we want first and check if we need to
6768          * make any changes at all.
6769          */
6770         final = val;
6771         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6772         if (has_ck505)
6773                 final |= DREF_NONSPREAD_CK505_ENABLE;
6774         else
6775                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6776
6777         final &= ~DREF_SSC_SOURCE_MASK;
6778         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6779         final &= ~DREF_SSC1_ENABLE;
6780
6781         if (has_panel) {
6782                 final |= DREF_SSC_SOURCE_ENABLE;
6783
6784                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6785                         final |= DREF_SSC1_ENABLE;
6786
6787                 if (has_cpu_edp) {
6788                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6789                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6790                         else
6791                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6792                 } else
6793                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6794         } else {
6795                 final |= DREF_SSC_SOURCE_DISABLE;
6796                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6797         }
6798
6799         if (final == val)
6800                 return;
6801
6802         /* Always enable nonspread source */
6803         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6804
6805         if (has_ck505)
6806                 val |= DREF_NONSPREAD_CK505_ENABLE;
6807         else
6808                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6809
6810         if (has_panel) {
6811                 val &= ~DREF_SSC_SOURCE_MASK;
6812                 val |= DREF_SSC_SOURCE_ENABLE;
6813
6814                 /* SSC must be turned on before enabling the CPU output  */
6815                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6816                         DRM_DEBUG_KMS("Using SSC on panel\n");
6817                         val |= DREF_SSC1_ENABLE;
6818                 } else
6819                         val &= ~DREF_SSC1_ENABLE;
6820
6821                 /* Get SSC going before enabling the outputs */
6822                 I915_WRITE(PCH_DREF_CONTROL, val);
6823                 POSTING_READ(PCH_DREF_CONTROL);
6824                 udelay(200);
6825
6826                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6827
6828                 /* Enable CPU source on CPU attached eDP */
6829                 if (has_cpu_edp) {
6830                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6831                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6832                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6833                         } else
6834                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6835                 } else
6836                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6837
6838                 I915_WRITE(PCH_DREF_CONTROL, val);
6839                 POSTING_READ(PCH_DREF_CONTROL);
6840                 udelay(200);
6841         } else {
6842                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6843
6844                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6845
6846                 /* Turn off CPU output */
6847                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6848
6849                 I915_WRITE(PCH_DREF_CONTROL, val);
6850                 POSTING_READ(PCH_DREF_CONTROL);
6851                 udelay(200);
6852
6853                 /* Turn off the SSC source */
6854                 val &= ~DREF_SSC_SOURCE_MASK;
6855                 val |= DREF_SSC_SOURCE_DISABLE;
6856
6857                 /* Turn off SSC1 */
6858                 val &= ~DREF_SSC1_ENABLE;
6859
6860                 I915_WRITE(PCH_DREF_CONTROL, val);
6861                 POSTING_READ(PCH_DREF_CONTROL);
6862                 udelay(200);
6863         }
6864
6865         BUG_ON(val != final);
6866 }
6867
6868 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6869 {
6870         uint32_t tmp;
6871
6872         tmp = I915_READ(SOUTH_CHICKEN2);
6873         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6874         I915_WRITE(SOUTH_CHICKEN2, tmp);
6875
6876         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6877                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6878                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6879
6880         tmp = I915_READ(SOUTH_CHICKEN2);
6881         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6882         I915_WRITE(SOUTH_CHICKEN2, tmp);
6883
6884         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6885                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6886                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6887 }
6888
6889 /* WaMPhyProgramming:hsw */
6890 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6891 {
6892         uint32_t tmp;
6893
6894         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6895         tmp &= ~(0xFF << 24);
6896         tmp |= (0x12 << 24);
6897         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6898
6899         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6900         tmp |= (1 << 11);
6901         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6902
6903         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6904         tmp |= (1 << 11);
6905         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6906
6907         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6908         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6909         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6910
6911         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6912         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6913         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6914
6915         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6916         tmp &= ~(7 << 13);
6917         tmp |= (5 << 13);
6918         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6919
6920         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6921         tmp &= ~(7 << 13);
6922         tmp |= (5 << 13);
6923         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6924
6925         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6926         tmp &= ~0xFF;
6927         tmp |= 0x1C;
6928         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6929
6930         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6931         tmp &= ~0xFF;
6932         tmp |= 0x1C;
6933         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6934
6935         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6936         tmp &= ~(0xFF << 16);
6937         tmp |= (0x1C << 16);
6938         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6939
6940         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6941         tmp &= ~(0xFF << 16);
6942         tmp |= (0x1C << 16);
6943         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6944
6945         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6946         tmp |= (1 << 27);
6947         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6950         tmp |= (1 << 27);
6951         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6952
6953         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6954         tmp &= ~(0xF << 28);
6955         tmp |= (4 << 28);
6956         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6957
6958         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6959         tmp &= ~(0xF << 28);
6960         tmp |= (4 << 28);
6961         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6962 }
6963
6964 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6965  * Programming" based on the parameters passed:
6966  * - Sequence to enable CLKOUT_DP
6967  * - Sequence to enable CLKOUT_DP without spread
6968  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6969  */
6970 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6971                                  bool with_fdi)
6972 {
6973         struct drm_i915_private *dev_priv = dev->dev_private;
6974         uint32_t reg, tmp;
6975
6976         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6977                 with_spread = true;
6978         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6979                  with_fdi, "LP PCH doesn't have FDI\n"))
6980                 with_fdi = false;
6981
6982         mutex_lock(&dev_priv->dpio_lock);
6983
6984         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6985         tmp &= ~SBI_SSCCTL_DISABLE;
6986         tmp |= SBI_SSCCTL_PATHALT;
6987         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6988
6989         udelay(24);
6990
6991         if (with_spread) {
6992                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6993                 tmp &= ~SBI_SSCCTL_PATHALT;
6994                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6995
6996                 if (with_fdi) {
6997                         lpt_reset_fdi_mphy(dev_priv);
6998                         lpt_program_fdi_mphy(dev_priv);
6999                 }
7000         }
7001
7002         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7003                SBI_GEN0 : SBI_DBUFF0;
7004         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7005         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7006         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7007
7008         mutex_unlock(&dev_priv->dpio_lock);
7009 }
7010
7011 /* Sequence to disable CLKOUT_DP */
7012 static void lpt_disable_clkout_dp(struct drm_device *dev)
7013 {
7014         struct drm_i915_private *dev_priv = dev->dev_private;
7015         uint32_t reg, tmp;
7016
7017         mutex_lock(&dev_priv->dpio_lock);
7018
7019         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7020                SBI_GEN0 : SBI_DBUFF0;
7021         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7022         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7023         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7024
7025         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7026         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7027                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7028                         tmp |= SBI_SSCCTL_PATHALT;
7029                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7030                         udelay(32);
7031                 }
7032                 tmp |= SBI_SSCCTL_DISABLE;
7033                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7034         }
7035
7036         mutex_unlock(&dev_priv->dpio_lock);
7037 }
7038
7039 static void lpt_init_pch_refclk(struct drm_device *dev)
7040 {
7041         struct intel_encoder *encoder;
7042         bool has_vga = false;
7043
7044         for_each_intel_encoder(dev, encoder) {
7045                 switch (encoder->type) {
7046                 case INTEL_OUTPUT_ANALOG:
7047                         has_vga = true;
7048                         break;
7049                 default:
7050                         break;
7051                 }
7052         }
7053
7054         if (has_vga)
7055                 lpt_enable_clkout_dp(dev, true, true);
7056         else
7057                 lpt_disable_clkout_dp(dev);
7058 }
7059
7060 /*
7061  * Initialize reference clocks when the driver loads
7062  */
7063 void intel_init_pch_refclk(struct drm_device *dev)
7064 {
7065         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7066                 ironlake_init_pch_refclk(dev);
7067         else if (HAS_PCH_LPT(dev))
7068                 lpt_init_pch_refclk(dev);
7069 }
7070
7071 static int ironlake_get_refclk(struct drm_crtc *crtc)
7072 {
7073         struct drm_device *dev = crtc->dev;
7074         struct drm_i915_private *dev_priv = dev->dev_private;
7075         struct intel_encoder *encoder;
7076         int num_connectors = 0;
7077         bool is_lvds = false;
7078
7079         for_each_intel_encoder(dev, encoder) {
7080                 if (encoder->new_crtc != to_intel_crtc(crtc))
7081                         continue;
7082
7083                 switch (encoder->type) {
7084                 case INTEL_OUTPUT_LVDS:
7085                         is_lvds = true;
7086                         break;
7087                 default:
7088                         break;
7089                 }
7090                 num_connectors++;
7091         }
7092
7093         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7094                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7095                               dev_priv->vbt.lvds_ssc_freq);
7096                 return dev_priv->vbt.lvds_ssc_freq;
7097         }
7098
7099         return 120000;
7100 }
7101
7102 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7103 {
7104         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7105         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7106         int pipe = intel_crtc->pipe;
7107         uint32_t val;
7108
7109         val = 0;
7110
7111         switch (intel_crtc->config.pipe_bpp) {
7112         case 18:
7113                 val |= PIPECONF_6BPC;
7114                 break;
7115         case 24:
7116                 val |= PIPECONF_8BPC;
7117                 break;
7118         case 30:
7119                 val |= PIPECONF_10BPC;
7120                 break;
7121         case 36:
7122                 val |= PIPECONF_12BPC;
7123                 break;
7124         default:
7125                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7126                 BUG();
7127         }
7128
7129         if (intel_crtc->config.dither)
7130                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7131
7132         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7133                 val |= PIPECONF_INTERLACED_ILK;
7134         else
7135                 val |= PIPECONF_PROGRESSIVE;
7136
7137         if (intel_crtc->config.limited_color_range)
7138                 val |= PIPECONF_COLOR_RANGE_SELECT;
7139
7140         I915_WRITE(PIPECONF(pipe), val);
7141         POSTING_READ(PIPECONF(pipe));
7142 }
7143
7144 /*
7145  * Set up the pipe CSC unit.
7146  *
7147  * Currently only full range RGB to limited range RGB conversion
7148  * is supported, but eventually this should handle various
7149  * RGB<->YCbCr scenarios as well.
7150  */
7151 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7152 {
7153         struct drm_device *dev = crtc->dev;
7154         struct drm_i915_private *dev_priv = dev->dev_private;
7155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7156         int pipe = intel_crtc->pipe;
7157         uint16_t coeff = 0x7800; /* 1.0 */
7158
7159         /*
7160          * TODO: Check what kind of values actually come out of the pipe
7161          * with these coeff/postoff values and adjust to get the best
7162          * accuracy. Perhaps we even need to take the bpc value into
7163          * consideration.
7164          */
7165
7166         if (intel_crtc->config.limited_color_range)
7167                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7168
7169         /*
7170          * GY/GU and RY/RU should be the other way around according
7171          * to BSpec, but reality doesn't agree. Just set them up in
7172          * a way that results in the correct picture.
7173          */
7174         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7175         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7176
7177         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7178         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7179
7180         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7181         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7182
7183         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7184         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7185         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7186
7187         if (INTEL_INFO(dev)->gen > 6) {
7188                 uint16_t postoff = 0;
7189
7190                 if (intel_crtc->config.limited_color_range)
7191                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7192
7193                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7194                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7195                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7196
7197                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7198         } else {
7199                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7200
7201                 if (intel_crtc->config.limited_color_range)
7202                         mode |= CSC_BLACK_SCREEN_OFFSET;
7203
7204                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7205         }
7206 }
7207
7208 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7209 {
7210         struct drm_device *dev = crtc->dev;
7211         struct drm_i915_private *dev_priv = dev->dev_private;
7212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213         enum pipe pipe = intel_crtc->pipe;
7214         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7215         uint32_t val;
7216
7217         val = 0;
7218
7219         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7220                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7221
7222         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7223                 val |= PIPECONF_INTERLACED_ILK;
7224         else
7225                 val |= PIPECONF_PROGRESSIVE;
7226
7227         I915_WRITE(PIPECONF(cpu_transcoder), val);
7228         POSTING_READ(PIPECONF(cpu_transcoder));
7229
7230         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7231         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7232
7233         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7234                 val = 0;
7235
7236                 switch (intel_crtc->config.pipe_bpp) {
7237                 case 18:
7238                         val |= PIPEMISC_DITHER_6_BPC;
7239                         break;
7240                 case 24:
7241                         val |= PIPEMISC_DITHER_8_BPC;
7242                         break;
7243                 case 30:
7244                         val |= PIPEMISC_DITHER_10_BPC;
7245                         break;
7246                 case 36:
7247                         val |= PIPEMISC_DITHER_12_BPC;
7248                         break;
7249                 default:
7250                         /* Case prevented by pipe_config_set_bpp. */
7251                         BUG();
7252                 }
7253
7254                 if (intel_crtc->config.dither)
7255                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7256
7257                 I915_WRITE(PIPEMISC(pipe), val);
7258         }
7259 }
7260
7261 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7262                                     intel_clock_t *clock,
7263                                     bool *has_reduced_clock,
7264                                     intel_clock_t *reduced_clock)
7265 {
7266         struct drm_device *dev = crtc->dev;
7267         struct drm_i915_private *dev_priv = dev->dev_private;
7268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7269         int refclk;
7270         const intel_limit_t *limit;
7271         bool ret, is_lvds = false;
7272
7273         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7274
7275         refclk = ironlake_get_refclk(crtc);
7276
7277         /*
7278          * Returns a set of divisors for the desired target clock with the given
7279          * refclk, or FALSE.  The returned values represent the clock equation:
7280          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7281          */
7282         limit = intel_limit(intel_crtc, refclk);
7283         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7284                                           intel_crtc->new_config->port_clock,
7285                                           refclk, NULL, clock);
7286         if (!ret)
7287                 return false;
7288
7289         if (is_lvds && dev_priv->lvds_downclock_avail) {
7290                 /*
7291                  * Ensure we match the reduced clock's P to the target clock.
7292                  * If the clocks don't match, we can't switch the display clock
7293                  * by using the FP0/FP1. In such case we will disable the LVDS
7294                  * downclock feature.
7295                 */
7296                 *has_reduced_clock =
7297                         dev_priv->display.find_dpll(limit, intel_crtc,
7298                                                     dev_priv->lvds_downclock,
7299                                                     refclk, clock,
7300                                                     reduced_clock);
7301         }
7302
7303         return true;
7304 }
7305
7306 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7307 {
7308         /*
7309          * Account for spread spectrum to avoid
7310          * oversubscribing the link. Max center spread
7311          * is 2.5%; use 5% for safety's sake.
7312          */
7313         u32 bps = target_clock * bpp * 21 / 20;
7314         return DIV_ROUND_UP(bps, link_bw * 8);
7315 }
7316
7317 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7318 {
7319         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7320 }
7321
7322 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7323                                       u32 *fp,
7324                                       intel_clock_t *reduced_clock, u32 *fp2)
7325 {
7326         struct drm_crtc *crtc = &intel_crtc->base;
7327         struct drm_device *dev = crtc->dev;
7328         struct drm_i915_private *dev_priv = dev->dev_private;
7329         struct intel_encoder *intel_encoder;
7330         uint32_t dpll;
7331         int factor, num_connectors = 0;
7332         bool is_lvds = false, is_sdvo = false;
7333
7334         for_each_intel_encoder(dev, intel_encoder) {
7335                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7336                         continue;
7337
7338                 switch (intel_encoder->type) {
7339                 case INTEL_OUTPUT_LVDS:
7340                         is_lvds = true;
7341                         break;
7342                 case INTEL_OUTPUT_SDVO:
7343                 case INTEL_OUTPUT_HDMI:
7344                         is_sdvo = true;
7345                         break;
7346                 default:
7347                         break;
7348                 }
7349
7350                 num_connectors++;
7351         }
7352
7353         /* Enable autotuning of the PLL clock (if permissible) */
7354         factor = 21;
7355         if (is_lvds) {
7356                 if ((intel_panel_use_ssc(dev_priv) &&
7357                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7358                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7359                         factor = 25;
7360         } else if (intel_crtc->new_config->sdvo_tv_clock)
7361                 factor = 20;
7362
7363         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7364                 *fp |= FP_CB_TUNE;
7365
7366         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7367                 *fp2 |= FP_CB_TUNE;
7368
7369         dpll = 0;
7370
7371         if (is_lvds)
7372                 dpll |= DPLLB_MODE_LVDS;
7373         else
7374                 dpll |= DPLLB_MODE_DAC_SERIAL;
7375
7376         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7377                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7378
7379         if (is_sdvo)
7380                 dpll |= DPLL_SDVO_HIGH_SPEED;
7381         if (intel_crtc->new_config->has_dp_encoder)
7382                 dpll |= DPLL_SDVO_HIGH_SPEED;
7383
7384         /* compute bitmask from p1 value */
7385         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386         /* also FPA1 */
7387         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388
7389         switch (intel_crtc->new_config->dpll.p2) {
7390         case 5:
7391                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392                 break;
7393         case 7:
7394                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395                 break;
7396         case 10:
7397                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398                 break;
7399         case 14:
7400                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401                 break;
7402         }
7403
7404         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7405                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7406         else
7407                 dpll |= PLL_REF_INPUT_DREFCLK;
7408
7409         return dpll | DPLL_VCO_ENABLE;
7410 }
7411
7412 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7413 {
7414         struct drm_device *dev = crtc->base.dev;
7415         intel_clock_t clock, reduced_clock;
7416         u32 dpll = 0, fp = 0, fp2 = 0;
7417         bool ok, has_reduced_clock = false;
7418         bool is_lvds = false;
7419         struct intel_shared_dpll *pll;
7420
7421         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7422
7423         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7424              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7425
7426         ok = ironlake_compute_clocks(&crtc->base, &clock,
7427                                      &has_reduced_clock, &reduced_clock);
7428         if (!ok && !crtc->new_config->clock_set) {
7429                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7430                 return -EINVAL;
7431         }
7432         /* Compat-code for transition, will disappear. */
7433         if (!crtc->new_config->clock_set) {
7434                 crtc->new_config->dpll.n = clock.n;
7435                 crtc->new_config->dpll.m1 = clock.m1;
7436                 crtc->new_config->dpll.m2 = clock.m2;
7437                 crtc->new_config->dpll.p1 = clock.p1;
7438                 crtc->new_config->dpll.p2 = clock.p2;
7439         }
7440
7441         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7442         if (crtc->new_config->has_pch_encoder) {
7443                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7444                 if (has_reduced_clock)
7445                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7446
7447                 dpll = ironlake_compute_dpll(crtc,
7448                                              &fp, &reduced_clock,
7449                                              has_reduced_clock ? &fp2 : NULL);
7450
7451                 crtc->new_config->dpll_hw_state.dpll = dpll;
7452                 crtc->new_config->dpll_hw_state.fp0 = fp;
7453                 if (has_reduced_clock)
7454                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7455                 else
7456                         crtc->new_config->dpll_hw_state.fp1 = fp;
7457
7458                 pll = intel_get_shared_dpll(crtc);
7459                 if (pll == NULL) {
7460                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7461                                          pipe_name(crtc->pipe));
7462                         return -EINVAL;
7463                 }
7464         }
7465
7466         if (is_lvds && has_reduced_clock && i915.powersave)
7467                 crtc->lowfreq_avail = true;
7468         else
7469                 crtc->lowfreq_avail = false;
7470
7471         return 0;
7472 }
7473
7474 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7475                                          struct intel_link_m_n *m_n)
7476 {
7477         struct drm_device *dev = crtc->base.dev;
7478         struct drm_i915_private *dev_priv = dev->dev_private;
7479         enum pipe pipe = crtc->pipe;
7480
7481         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7482         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7483         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7484                 & ~TU_SIZE_MASK;
7485         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7486         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7487                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7488 }
7489
7490 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7491                                          enum transcoder transcoder,
7492                                          struct intel_link_m_n *m_n,
7493                                          struct intel_link_m_n *m2_n2)
7494 {
7495         struct drm_device *dev = crtc->base.dev;
7496         struct drm_i915_private *dev_priv = dev->dev_private;
7497         enum pipe pipe = crtc->pipe;
7498
7499         if (INTEL_INFO(dev)->gen >= 5) {
7500                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7501                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7502                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7503                         & ~TU_SIZE_MASK;
7504                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7505                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7506                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7507                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7508                  * gen < 8) and if DRRS is supported (to make sure the
7509                  * registers are not unnecessarily read).
7510                  */
7511                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7512                         crtc->config.has_drrs) {
7513                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7514                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7515                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7516                                         & ~TU_SIZE_MASK;
7517                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7518                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7519                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7520                 }
7521         } else {
7522                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7523                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7524                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7525                         & ~TU_SIZE_MASK;
7526                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7527                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7528                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7529         }
7530 }
7531
7532 void intel_dp_get_m_n(struct intel_crtc *crtc,
7533                       struct intel_crtc_config *pipe_config)
7534 {
7535         if (crtc->config.has_pch_encoder)
7536                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7537         else
7538                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7539                                              &pipe_config->dp_m_n,
7540                                              &pipe_config->dp_m2_n2);
7541 }
7542
7543 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7544                                         struct intel_crtc_config *pipe_config)
7545 {
7546         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7547                                      &pipe_config->fdi_m_n, NULL);
7548 }
7549
7550 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7551                                      struct intel_crtc_config *pipe_config)
7552 {
7553         struct drm_device *dev = crtc->base.dev;
7554         struct drm_i915_private *dev_priv = dev->dev_private;
7555         uint32_t tmp;
7556
7557         tmp = I915_READ(PF_CTL(crtc->pipe));
7558
7559         if (tmp & PF_ENABLE) {
7560                 pipe_config->pch_pfit.enabled = true;
7561                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7562                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7563
7564                 /* We currently do not free assignements of panel fitters on
7565                  * ivb/hsw (since we don't use the higher upscaling modes which
7566                  * differentiates them) so just WARN about this case for now. */
7567                 if (IS_GEN7(dev)) {
7568                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7569                                 PF_PIPE_SEL_IVB(crtc->pipe));
7570                 }
7571         }
7572 }
7573
7574 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7575                                       struct intel_plane_config *plane_config)
7576 {
7577         struct drm_device *dev = crtc->base.dev;
7578         struct drm_i915_private *dev_priv = dev->dev_private;
7579         u32 val, base, offset;
7580         int pipe = crtc->pipe, plane = crtc->plane;
7581         int fourcc, pixel_format;
7582         int aligned_height;
7583
7584         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7585         if (!crtc->base.primary->fb) {
7586                 DRM_DEBUG_KMS("failed to alloc fb\n");
7587                 return;
7588         }
7589
7590         val = I915_READ(DSPCNTR(plane));
7591
7592         if (INTEL_INFO(dev)->gen >= 4)
7593                 if (val & DISPPLANE_TILED)
7594                         plane_config->tiled = true;
7595
7596         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7597         fourcc = intel_format_to_fourcc(pixel_format);
7598         crtc->base.primary->fb->pixel_format = fourcc;
7599         crtc->base.primary->fb->bits_per_pixel =
7600                 drm_format_plane_cpp(fourcc, 0) * 8;
7601
7602         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7603         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7604                 offset = I915_READ(DSPOFFSET(plane));
7605         } else {
7606                 if (plane_config->tiled)
7607                         offset = I915_READ(DSPTILEOFF(plane));
7608                 else
7609                         offset = I915_READ(DSPLINOFF(plane));
7610         }
7611         plane_config->base = base;
7612
7613         val = I915_READ(PIPESRC(pipe));
7614         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7615         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7616
7617         val = I915_READ(DSPSTRIDE(pipe));
7618         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7619
7620         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7621                                             plane_config->tiled);
7622
7623         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7624                                         aligned_height);
7625
7626         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7627                       pipe, plane, crtc->base.primary->fb->width,
7628                       crtc->base.primary->fb->height,
7629                       crtc->base.primary->fb->bits_per_pixel, base,
7630                       crtc->base.primary->fb->pitches[0],
7631                       plane_config->size);
7632 }
7633
7634 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7635                                      struct intel_crtc_config *pipe_config)
7636 {
7637         struct drm_device *dev = crtc->base.dev;
7638         struct drm_i915_private *dev_priv = dev->dev_private;
7639         uint32_t tmp;
7640
7641         if (!intel_display_power_is_enabled(dev_priv,
7642                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7643                 return false;
7644
7645         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7646         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7647
7648         tmp = I915_READ(PIPECONF(crtc->pipe));
7649         if (!(tmp & PIPECONF_ENABLE))
7650                 return false;
7651
7652         switch (tmp & PIPECONF_BPC_MASK) {
7653         case PIPECONF_6BPC:
7654                 pipe_config->pipe_bpp = 18;
7655                 break;
7656         case PIPECONF_8BPC:
7657                 pipe_config->pipe_bpp = 24;
7658                 break;
7659         case PIPECONF_10BPC:
7660                 pipe_config->pipe_bpp = 30;
7661                 break;
7662         case PIPECONF_12BPC:
7663                 pipe_config->pipe_bpp = 36;
7664                 break;
7665         default:
7666                 break;
7667         }
7668
7669         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7670                 pipe_config->limited_color_range = true;
7671
7672         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7673                 struct intel_shared_dpll *pll;
7674
7675                 pipe_config->has_pch_encoder = true;
7676
7677                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7678                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7679                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7680
7681                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7682
7683                 if (HAS_PCH_IBX(dev_priv->dev)) {
7684                         pipe_config->shared_dpll =
7685                                 (enum intel_dpll_id) crtc->pipe;
7686                 } else {
7687                         tmp = I915_READ(PCH_DPLL_SEL);
7688                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7689                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7690                         else
7691                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7692                 }
7693
7694                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7695
7696                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7697                                            &pipe_config->dpll_hw_state));
7698
7699                 tmp = pipe_config->dpll_hw_state.dpll;
7700                 pipe_config->pixel_multiplier =
7701                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7702                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7703
7704                 ironlake_pch_clock_get(crtc, pipe_config);
7705         } else {
7706                 pipe_config->pixel_multiplier = 1;
7707         }
7708
7709         intel_get_pipe_timings(crtc, pipe_config);
7710
7711         ironlake_get_pfit_config(crtc, pipe_config);
7712
7713         return true;
7714 }
7715
7716 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7717 {
7718         struct drm_device *dev = dev_priv->dev;
7719         struct intel_crtc *crtc;
7720
7721         for_each_intel_crtc(dev, crtc)
7722                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7723                      pipe_name(crtc->pipe));
7724
7725         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7726         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7727         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7728         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7729         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7730         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7731              "CPU PWM1 enabled\n");
7732         if (IS_HASWELL(dev))
7733                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7734                      "CPU PWM2 enabled\n");
7735         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7736              "PCH PWM1 enabled\n");
7737         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7738              "Utility pin enabled\n");
7739         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7740
7741         /*
7742          * In theory we can still leave IRQs enabled, as long as only the HPD
7743          * interrupts remain enabled. We used to check for that, but since it's
7744          * gen-specific and since we only disable LCPLL after we fully disable
7745          * the interrupts, the check below should be enough.
7746          */
7747         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7748 }
7749
7750 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7751 {
7752         struct drm_device *dev = dev_priv->dev;
7753
7754         if (IS_HASWELL(dev))
7755                 return I915_READ(D_COMP_HSW);
7756         else
7757                 return I915_READ(D_COMP_BDW);
7758 }
7759
7760 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7761 {
7762         struct drm_device *dev = dev_priv->dev;
7763
7764         if (IS_HASWELL(dev)) {
7765                 mutex_lock(&dev_priv->rps.hw_lock);
7766                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7767                                             val))
7768                         DRM_ERROR("Failed to write to D_COMP\n");
7769                 mutex_unlock(&dev_priv->rps.hw_lock);
7770         } else {
7771                 I915_WRITE(D_COMP_BDW, val);
7772                 POSTING_READ(D_COMP_BDW);
7773         }
7774 }
7775
7776 /*
7777  * This function implements pieces of two sequences from BSpec:
7778  * - Sequence for display software to disable LCPLL
7779  * - Sequence for display software to allow package C8+
7780  * The steps implemented here are just the steps that actually touch the LCPLL
7781  * register. Callers should take care of disabling all the display engine
7782  * functions, doing the mode unset, fixing interrupts, etc.
7783  */
7784 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7785                               bool switch_to_fclk, bool allow_power_down)
7786 {
7787         uint32_t val;
7788
7789         assert_can_disable_lcpll(dev_priv);
7790
7791         val = I915_READ(LCPLL_CTL);
7792
7793         if (switch_to_fclk) {
7794                 val |= LCPLL_CD_SOURCE_FCLK;
7795                 I915_WRITE(LCPLL_CTL, val);
7796
7797                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7798                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7799                         DRM_ERROR("Switching to FCLK failed\n");
7800
7801                 val = I915_READ(LCPLL_CTL);
7802         }
7803
7804         val |= LCPLL_PLL_DISABLE;
7805         I915_WRITE(LCPLL_CTL, val);
7806         POSTING_READ(LCPLL_CTL);
7807
7808         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7809                 DRM_ERROR("LCPLL still locked\n");
7810
7811         val = hsw_read_dcomp(dev_priv);
7812         val |= D_COMP_COMP_DISABLE;
7813         hsw_write_dcomp(dev_priv, val);
7814         ndelay(100);
7815
7816         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7817                      1))
7818                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7819
7820         if (allow_power_down) {
7821                 val = I915_READ(LCPLL_CTL);
7822                 val |= LCPLL_POWER_DOWN_ALLOW;
7823                 I915_WRITE(LCPLL_CTL, val);
7824                 POSTING_READ(LCPLL_CTL);
7825         }
7826 }
7827
7828 /*
7829  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7830  * source.
7831  */
7832 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7833 {
7834         uint32_t val;
7835
7836         val = I915_READ(LCPLL_CTL);
7837
7838         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7839                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7840                 return;
7841
7842         /*
7843          * Make sure we're not on PC8 state before disabling PC8, otherwise
7844          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7845          *
7846          * The other problem is that hsw_restore_lcpll() is called as part of
7847          * the runtime PM resume sequence, so we can't just call
7848          * gen6_gt_force_wake_get() because that function calls
7849          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7850          * while we are on the resume sequence. So to solve this problem we have
7851          * to call special forcewake code that doesn't touch runtime PM and
7852          * doesn't enable the forcewake delayed work.
7853          */
7854         spin_lock_irq(&dev_priv->uncore.lock);
7855         if (dev_priv->uncore.forcewake_count++ == 0)
7856                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7857         spin_unlock_irq(&dev_priv->uncore.lock);
7858
7859         if (val & LCPLL_POWER_DOWN_ALLOW) {
7860                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7861                 I915_WRITE(LCPLL_CTL, val);
7862                 POSTING_READ(LCPLL_CTL);
7863         }
7864
7865         val = hsw_read_dcomp(dev_priv);
7866         val |= D_COMP_COMP_FORCE;
7867         val &= ~D_COMP_COMP_DISABLE;
7868         hsw_write_dcomp(dev_priv, val);
7869
7870         val = I915_READ(LCPLL_CTL);
7871         val &= ~LCPLL_PLL_DISABLE;
7872         I915_WRITE(LCPLL_CTL, val);
7873
7874         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7875                 DRM_ERROR("LCPLL not locked yet\n");
7876
7877         if (val & LCPLL_CD_SOURCE_FCLK) {
7878                 val = I915_READ(LCPLL_CTL);
7879                 val &= ~LCPLL_CD_SOURCE_FCLK;
7880                 I915_WRITE(LCPLL_CTL, val);
7881
7882                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7883                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7884                         DRM_ERROR("Switching back to LCPLL failed\n");
7885         }
7886
7887         /* See the big comment above. */
7888         spin_lock_irq(&dev_priv->uncore.lock);
7889         if (--dev_priv->uncore.forcewake_count == 0)
7890                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7891         spin_unlock_irq(&dev_priv->uncore.lock);
7892 }
7893
7894 /*
7895  * Package states C8 and deeper are really deep PC states that can only be
7896  * reached when all the devices on the system allow it, so even if the graphics
7897  * device allows PC8+, it doesn't mean the system will actually get to these
7898  * states. Our driver only allows PC8+ when going into runtime PM.
7899  *
7900  * The requirements for PC8+ are that all the outputs are disabled, the power
7901  * well is disabled and most interrupts are disabled, and these are also
7902  * requirements for runtime PM. When these conditions are met, we manually do
7903  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7904  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7905  * hang the machine.
7906  *
7907  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7908  * the state of some registers, so when we come back from PC8+ we need to
7909  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7910  * need to take care of the registers kept by RC6. Notice that this happens even
7911  * if we don't put the device in PCI D3 state (which is what currently happens
7912  * because of the runtime PM support).
7913  *
7914  * For more, read "Display Sequences for Package C8" on the hardware
7915  * documentation.
7916  */
7917 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7918 {
7919         struct drm_device *dev = dev_priv->dev;
7920         uint32_t val;
7921
7922         DRM_DEBUG_KMS("Enabling package C8+\n");
7923
7924         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7925                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7926                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7927                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7928         }
7929
7930         lpt_disable_clkout_dp(dev);
7931         hsw_disable_lcpll(dev_priv, true, true);
7932 }
7933
7934 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7935 {
7936         struct drm_device *dev = dev_priv->dev;
7937         uint32_t val;
7938
7939         DRM_DEBUG_KMS("Disabling package C8+\n");
7940
7941         hsw_restore_lcpll(dev_priv);
7942         lpt_init_pch_refclk(dev);
7943
7944         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7945                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7946                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7947                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7948         }
7949
7950         intel_prepare_ddi(dev);
7951 }
7952
7953 static void snb_modeset_global_resources(struct drm_device *dev)
7954 {
7955         modeset_update_crtc_power_domains(dev);
7956 }
7957
7958 static void haswell_modeset_global_resources(struct drm_device *dev)
7959 {
7960         modeset_update_crtc_power_domains(dev);
7961 }
7962
7963 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7964 {
7965         if (!intel_ddi_pll_select(crtc))
7966                 return -EINVAL;
7967
7968         crtc->lowfreq_avail = false;
7969
7970         return 0;
7971 }
7972
7973 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7974                                 enum port port,
7975                                 struct intel_crtc_config *pipe_config)
7976 {
7977         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7978
7979         switch (pipe_config->ddi_pll_sel) {
7980         case PORT_CLK_SEL_WRPLL1:
7981                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7982                 break;
7983         case PORT_CLK_SEL_WRPLL2:
7984                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7985                 break;
7986         }
7987 }
7988
7989 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7990                                        struct intel_crtc_config *pipe_config)
7991 {
7992         struct drm_device *dev = crtc->base.dev;
7993         struct drm_i915_private *dev_priv = dev->dev_private;
7994         struct intel_shared_dpll *pll;
7995         enum port port;
7996         uint32_t tmp;
7997
7998         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7999
8000         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8001
8002         haswell_get_ddi_pll(dev_priv, port, pipe_config);
8003
8004         if (pipe_config->shared_dpll >= 0) {
8005                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8006
8007                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8008                                            &pipe_config->dpll_hw_state));
8009         }
8010
8011         /*
8012          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8013          * DDI E. So just check whether this pipe is wired to DDI E and whether
8014          * the PCH transcoder is on.
8015          */
8016         if (INTEL_INFO(dev)->gen < 9 &&
8017             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8018                 pipe_config->has_pch_encoder = true;
8019
8020                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8021                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8022                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8023
8024                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8025         }
8026 }
8027
8028 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8029                                     struct intel_crtc_config *pipe_config)
8030 {
8031         struct drm_device *dev = crtc->base.dev;
8032         struct drm_i915_private *dev_priv = dev->dev_private;
8033         enum intel_display_power_domain pfit_domain;
8034         uint32_t tmp;
8035
8036         if (!intel_display_power_is_enabled(dev_priv,
8037                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8038                 return false;
8039
8040         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8041         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8042
8043         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8044         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8045                 enum pipe trans_edp_pipe;
8046                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8047                 default:
8048                         WARN(1, "unknown pipe linked to edp transcoder\n");
8049                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8050                 case TRANS_DDI_EDP_INPUT_A_ON:
8051                         trans_edp_pipe = PIPE_A;
8052                         break;
8053                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8054                         trans_edp_pipe = PIPE_B;
8055                         break;
8056                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8057                         trans_edp_pipe = PIPE_C;
8058                         break;
8059                 }
8060
8061                 if (trans_edp_pipe == crtc->pipe)
8062                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8063         }
8064
8065         if (!intel_display_power_is_enabled(dev_priv,
8066                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8067                 return false;
8068
8069         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8070         if (!(tmp & PIPECONF_ENABLE))
8071                 return false;
8072
8073         haswell_get_ddi_port_state(crtc, pipe_config);
8074
8075         intel_get_pipe_timings(crtc, pipe_config);
8076
8077         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8078         if (intel_display_power_is_enabled(dev_priv, pfit_domain))
8079                 ironlake_get_pfit_config(crtc, pipe_config);
8080
8081         if (IS_HASWELL(dev))
8082                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8083                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8084
8085         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8086                 pipe_config->pixel_multiplier =
8087                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8088         } else {
8089                 pipe_config->pixel_multiplier = 1;
8090         }
8091
8092         return true;
8093 }
8094
8095 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8096 {
8097         struct drm_device *dev = crtc->dev;
8098         struct drm_i915_private *dev_priv = dev->dev_private;
8099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8100         uint32_t cntl = 0, size = 0;
8101
8102         if (base) {
8103                 unsigned int width = intel_crtc->cursor_width;
8104                 unsigned int height = intel_crtc->cursor_height;
8105                 unsigned int stride = roundup_pow_of_two(width) * 4;
8106
8107                 switch (stride) {
8108                 default:
8109                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8110                                   width, stride);
8111                         stride = 256;
8112                         /* fallthrough */
8113                 case 256:
8114                 case 512:
8115                 case 1024:
8116                 case 2048:
8117                         break;
8118                 }
8119
8120                 cntl |= CURSOR_ENABLE |
8121                         CURSOR_GAMMA_ENABLE |
8122                         CURSOR_FORMAT_ARGB |
8123                         CURSOR_STRIDE(stride);
8124
8125                 size = (height << 12) | width;
8126         }
8127
8128         if (intel_crtc->cursor_cntl != 0 &&
8129             (intel_crtc->cursor_base != base ||
8130              intel_crtc->cursor_size != size ||
8131              intel_crtc->cursor_cntl != cntl)) {
8132                 /* On these chipsets we can only modify the base/size/stride
8133                  * whilst the cursor is disabled.
8134                  */
8135                 I915_WRITE(_CURACNTR, 0);
8136                 POSTING_READ(_CURACNTR);
8137                 intel_crtc->cursor_cntl = 0;
8138         }
8139
8140         if (intel_crtc->cursor_base != base) {
8141                 I915_WRITE(_CURABASE, base);
8142                 intel_crtc->cursor_base = base;
8143         }
8144
8145         if (intel_crtc->cursor_size != size) {
8146                 I915_WRITE(CURSIZE, size);
8147                 intel_crtc->cursor_size = size;
8148         }
8149
8150         if (intel_crtc->cursor_cntl != cntl) {
8151                 I915_WRITE(_CURACNTR, cntl);
8152                 POSTING_READ(_CURACNTR);
8153                 intel_crtc->cursor_cntl = cntl;
8154         }
8155 }
8156
8157 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8158 {
8159         struct drm_device *dev = crtc->dev;
8160         struct drm_i915_private *dev_priv = dev->dev_private;
8161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8162         int pipe = intel_crtc->pipe;
8163         uint32_t cntl;
8164
8165         cntl = 0;
8166         if (base) {
8167                 cntl = MCURSOR_GAMMA_ENABLE;
8168                 switch (intel_crtc->cursor_width) {
8169                         case 64:
8170                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8171                                 break;
8172                         case 128:
8173                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8174                                 break;
8175                         case 256:
8176                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8177                                 break;
8178                         default:
8179                                 WARN_ON(1);
8180                                 return;
8181                 }
8182                 cntl |= pipe << 28; /* Connect to correct pipe */
8183
8184                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8185                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8186         }
8187
8188         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8189                 cntl |= CURSOR_ROTATE_180;
8190
8191         if (intel_crtc->cursor_cntl != cntl) {
8192                 I915_WRITE(CURCNTR(pipe), cntl);
8193                 POSTING_READ(CURCNTR(pipe));
8194                 intel_crtc->cursor_cntl = cntl;
8195         }
8196
8197         /* and commit changes on next vblank */
8198         I915_WRITE(CURBASE(pipe), base);
8199         POSTING_READ(CURBASE(pipe));
8200
8201         intel_crtc->cursor_base = base;
8202 }
8203
8204 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8205 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8206                                      bool on)
8207 {
8208         struct drm_device *dev = crtc->dev;
8209         struct drm_i915_private *dev_priv = dev->dev_private;
8210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8211         int pipe = intel_crtc->pipe;
8212         int x = crtc->cursor_x;
8213         int y = crtc->cursor_y;
8214         u32 base = 0, pos = 0;
8215
8216         if (on)
8217                 base = intel_crtc->cursor_addr;
8218
8219         if (x >= intel_crtc->config.pipe_src_w)
8220                 base = 0;
8221
8222         if (y >= intel_crtc->config.pipe_src_h)
8223                 base = 0;
8224
8225         if (x < 0) {
8226                 if (x + intel_crtc->cursor_width <= 0)
8227                         base = 0;
8228
8229                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8230                 x = -x;
8231         }
8232         pos |= x << CURSOR_X_SHIFT;
8233
8234         if (y < 0) {
8235                 if (y + intel_crtc->cursor_height <= 0)
8236                         base = 0;
8237
8238                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8239                 y = -y;
8240         }
8241         pos |= y << CURSOR_Y_SHIFT;
8242
8243         if (base == 0 && intel_crtc->cursor_base == 0)
8244                 return;
8245
8246         I915_WRITE(CURPOS(pipe), pos);
8247
8248         /* ILK+ do this automagically */
8249         if (HAS_GMCH_DISPLAY(dev) &&
8250                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8251                 base += (intel_crtc->cursor_height *
8252                         intel_crtc->cursor_width - 1) * 4;
8253         }
8254
8255         if (IS_845G(dev) || IS_I865G(dev))
8256                 i845_update_cursor(crtc, base);
8257         else
8258                 i9xx_update_cursor(crtc, base);
8259 }
8260
8261 static bool cursor_size_ok(struct drm_device *dev,
8262                            uint32_t width, uint32_t height)
8263 {
8264         if (width == 0 || height == 0)
8265                 return false;
8266
8267         /*
8268          * 845g/865g are special in that they are only limited by
8269          * the width of their cursors, the height is arbitrary up to
8270          * the precision of the register. Everything else requires
8271          * square cursors, limited to a few power-of-two sizes.
8272          */
8273         if (IS_845G(dev) || IS_I865G(dev)) {
8274                 if ((width & 63) != 0)
8275                         return false;
8276
8277                 if (width > (IS_845G(dev) ? 64 : 512))
8278                         return false;
8279
8280                 if (height > 1023)
8281                         return false;
8282         } else {
8283                 switch (width | height) {
8284                 case 256:
8285                 case 128:
8286                         if (IS_GEN2(dev))
8287                                 return false;
8288                 case 64:
8289                         break;
8290                 default:
8291                         return false;
8292                 }
8293         }
8294
8295         return true;
8296 }
8297
8298 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8299                                      struct drm_i915_gem_object *obj,
8300                                      uint32_t width, uint32_t height)
8301 {
8302         struct drm_device *dev = crtc->dev;
8303         struct drm_i915_private *dev_priv = dev->dev_private;
8304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8305         enum pipe pipe = intel_crtc->pipe;
8306         unsigned old_width;
8307         uint32_t addr;
8308         int ret;
8309
8310         /* if we want to turn off the cursor ignore width and height */
8311         if (!obj) {
8312                 DRM_DEBUG_KMS("cursor off\n");
8313                 addr = 0;
8314                 mutex_lock(&dev->struct_mutex);
8315                 goto finish;
8316         }
8317
8318         /* we only need to pin inside GTT if cursor is non-phy */
8319         mutex_lock(&dev->struct_mutex);
8320         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8321                 unsigned alignment;
8322
8323                 /*
8324                  * Global gtt pte registers are special registers which actually
8325                  * forward writes to a chunk of system memory. Which means that
8326                  * there is no risk that the register values disappear as soon
8327                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8328                  * only the pin/unpin/fence and not more.
8329                  */
8330                 intel_runtime_pm_get(dev_priv);
8331
8332                 /* Note that the w/a also requires 2 PTE of padding following
8333                  * the bo. We currently fill all unused PTE with the shadow
8334                  * page and so we should always have valid PTE following the
8335                  * cursor preventing the VT-d warning.
8336                  */
8337                 alignment = 0;
8338                 if (need_vtd_wa(dev))
8339                         alignment = 64*1024;
8340
8341                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8342                 if (ret) {
8343                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8344                         intel_runtime_pm_put(dev_priv);
8345                         goto fail_locked;
8346                 }
8347
8348                 ret = i915_gem_object_put_fence(obj);
8349                 if (ret) {
8350                         DRM_DEBUG_KMS("failed to release fence for cursor");
8351                         intel_runtime_pm_put(dev_priv);
8352                         goto fail_unpin;
8353                 }
8354
8355                 addr = i915_gem_obj_ggtt_offset(obj);
8356
8357                 intel_runtime_pm_put(dev_priv);
8358         } else {
8359                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8360                 ret = i915_gem_object_attach_phys(obj, align);
8361                 if (ret) {
8362                         DRM_DEBUG_KMS("failed to attach phys object\n");
8363                         goto fail_locked;
8364                 }
8365                 addr = obj->phys_handle->busaddr;
8366         }
8367
8368  finish:
8369         if (intel_crtc->cursor_bo) {
8370                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8371                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8372         }
8373
8374         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8375                           INTEL_FRONTBUFFER_CURSOR(pipe));
8376         mutex_unlock(&dev->struct_mutex);
8377
8378         old_width = intel_crtc->cursor_width;
8379
8380         intel_crtc->cursor_addr = addr;
8381         intel_crtc->cursor_bo = obj;
8382         intel_crtc->cursor_width = width;
8383         intel_crtc->cursor_height = height;
8384
8385         if (intel_crtc->active) {
8386                 if (old_width != width)
8387                         intel_update_watermarks(crtc);
8388                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8389
8390                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8391         }
8392
8393         return 0;
8394 fail_unpin:
8395         i915_gem_object_unpin_from_display_plane(obj);
8396 fail_locked:
8397         mutex_unlock(&dev->struct_mutex);
8398         return ret;
8399 }
8400
8401 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8402                                  u16 *blue, uint32_t start, uint32_t size)
8403 {
8404         int end = (start + size > 256) ? 256 : start + size, i;
8405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8406
8407         for (i = start; i < end; i++) {
8408                 intel_crtc->lut_r[i] = red[i] >> 8;
8409                 intel_crtc->lut_g[i] = green[i] >> 8;
8410                 intel_crtc->lut_b[i] = blue[i] >> 8;
8411         }
8412
8413         intel_crtc_load_lut(crtc);
8414 }
8415
8416 /* VESA 640x480x72Hz mode to set on the pipe */
8417 static struct drm_display_mode load_detect_mode = {
8418         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8419                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8420 };
8421
8422 struct drm_framebuffer *
8423 __intel_framebuffer_create(struct drm_device *dev,
8424                            struct drm_mode_fb_cmd2 *mode_cmd,
8425                            struct drm_i915_gem_object *obj)
8426 {
8427         struct intel_framebuffer *intel_fb;
8428         int ret;
8429
8430         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8431         if (!intel_fb) {
8432                 drm_gem_object_unreference_unlocked(&obj->base);
8433                 return ERR_PTR(-ENOMEM);
8434         }
8435
8436         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8437         if (ret)
8438                 goto err;
8439
8440         return &intel_fb->base;
8441 err:
8442         drm_gem_object_unreference_unlocked(&obj->base);
8443         kfree(intel_fb);
8444
8445         return ERR_PTR(ret);
8446 }
8447
8448 static struct drm_framebuffer *
8449 intel_framebuffer_create(struct drm_device *dev,
8450                          struct drm_mode_fb_cmd2 *mode_cmd,
8451                          struct drm_i915_gem_object *obj)
8452 {
8453         struct drm_framebuffer *fb;
8454         int ret;
8455
8456         ret = i915_mutex_lock_interruptible(dev);
8457         if (ret)
8458                 return ERR_PTR(ret);
8459         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8460         mutex_unlock(&dev->struct_mutex);
8461
8462         return fb;
8463 }
8464
8465 static u32
8466 intel_framebuffer_pitch_for_width(int width, int bpp)
8467 {
8468         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8469         return ALIGN(pitch, 64);
8470 }
8471
8472 static u32
8473 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8474 {
8475         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8476         return PAGE_ALIGN(pitch * mode->vdisplay);
8477 }
8478
8479 static struct drm_framebuffer *
8480 intel_framebuffer_create_for_mode(struct drm_device *dev,
8481                                   struct drm_display_mode *mode,
8482                                   int depth, int bpp)
8483 {
8484         struct drm_i915_gem_object *obj;
8485         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8486
8487         obj = i915_gem_alloc_object(dev,
8488                                     intel_framebuffer_size_for_mode(mode, bpp));
8489         if (obj == NULL)
8490                 return ERR_PTR(-ENOMEM);
8491
8492         mode_cmd.width = mode->hdisplay;
8493         mode_cmd.height = mode->vdisplay;
8494         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8495                                                                 bpp);
8496         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8497
8498         return intel_framebuffer_create(dev, &mode_cmd, obj);
8499 }
8500
8501 static struct drm_framebuffer *
8502 mode_fits_in_fbdev(struct drm_device *dev,
8503                    struct drm_display_mode *mode)
8504 {
8505 #ifdef CONFIG_DRM_I915_FBDEV
8506         struct drm_i915_private *dev_priv = dev->dev_private;
8507         struct drm_i915_gem_object *obj;
8508         struct drm_framebuffer *fb;
8509
8510         if (!dev_priv->fbdev)
8511                 return NULL;
8512
8513         if (!dev_priv->fbdev->fb)
8514                 return NULL;
8515
8516         obj = dev_priv->fbdev->fb->obj;
8517         BUG_ON(!obj);
8518
8519         fb = &dev_priv->fbdev->fb->base;
8520         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8521                                                                fb->bits_per_pixel))
8522                 return NULL;
8523
8524         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8525                 return NULL;
8526
8527         return fb;
8528 #else
8529         return NULL;
8530 #endif
8531 }
8532
8533 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8534                                 struct drm_display_mode *mode,
8535                                 struct intel_load_detect_pipe *old,
8536                                 struct drm_modeset_acquire_ctx *ctx)
8537 {
8538         struct intel_crtc *intel_crtc;
8539         struct intel_encoder *intel_encoder =
8540                 intel_attached_encoder(connector);
8541         struct drm_crtc *possible_crtc;
8542         struct drm_encoder *encoder = &intel_encoder->base;
8543         struct drm_crtc *crtc = NULL;
8544         struct drm_device *dev = encoder->dev;
8545         struct drm_framebuffer *fb;
8546         struct drm_mode_config *config = &dev->mode_config;
8547         int ret, i = -1;
8548
8549         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8550                       connector->base.id, connector->name,
8551                       encoder->base.id, encoder->name);
8552
8553 retry:
8554         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8555         if (ret)
8556                 goto fail_unlock;
8557
8558         /*
8559          * Algorithm gets a little messy:
8560          *
8561          *   - if the connector already has an assigned crtc, use it (but make
8562          *     sure it's on first)
8563          *
8564          *   - try to find the first unused crtc that can drive this connector,
8565          *     and use that if we find one
8566          */
8567
8568         /* See if we already have a CRTC for this connector */
8569         if (encoder->crtc) {
8570                 crtc = encoder->crtc;
8571
8572                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8573                 if (ret)
8574                         goto fail_unlock;
8575
8576                 old->dpms_mode = connector->dpms;
8577                 old->load_detect_temp = false;
8578
8579                 /* Make sure the crtc and connector are running */
8580                 if (connector->dpms != DRM_MODE_DPMS_ON)
8581                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8582
8583                 return true;
8584         }
8585
8586         /* Find an unused one (if possible) */
8587         for_each_crtc(dev, possible_crtc) {
8588                 i++;
8589                 if (!(encoder->possible_crtcs & (1 << i)))
8590                         continue;
8591                 if (possible_crtc->enabled)
8592                         continue;
8593                 /* This can occur when applying the pipe A quirk on resume. */
8594                 if (to_intel_crtc(possible_crtc)->new_enabled)
8595                         continue;
8596
8597                 crtc = possible_crtc;
8598                 break;
8599         }
8600
8601         /*
8602          * If we didn't find an unused CRTC, don't use any.
8603          */
8604         if (!crtc) {
8605                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8606                 goto fail_unlock;
8607         }
8608
8609         ret = drm_modeset_lock(&crtc->mutex, ctx);
8610         if (ret)
8611                 goto fail_unlock;
8612         intel_encoder->new_crtc = to_intel_crtc(crtc);
8613         to_intel_connector(connector)->new_encoder = intel_encoder;
8614
8615         intel_crtc = to_intel_crtc(crtc);
8616         intel_crtc->new_enabled = true;
8617         intel_crtc->new_config = &intel_crtc->config;
8618         old->dpms_mode = connector->dpms;
8619         old->load_detect_temp = true;
8620         old->release_fb = NULL;
8621
8622         if (!mode)
8623                 mode = &load_detect_mode;
8624
8625         /* We need a framebuffer large enough to accommodate all accesses
8626          * that the plane may generate whilst we perform load detection.
8627          * We can not rely on the fbcon either being present (we get called
8628          * during its initialisation to detect all boot displays, or it may
8629          * not even exist) or that it is large enough to satisfy the
8630          * requested mode.
8631          */
8632         fb = mode_fits_in_fbdev(dev, mode);
8633         if (fb == NULL) {
8634                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8635                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8636                 old->release_fb = fb;
8637         } else
8638                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8639         if (IS_ERR(fb)) {
8640                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8641                 goto fail;
8642         }
8643
8644         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8645                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8646                 if (old->release_fb)
8647                         old->release_fb->funcs->destroy(old->release_fb);
8648                 goto fail;
8649         }
8650
8651         /* let the connector get through one full cycle before testing */
8652         intel_wait_for_vblank(dev, intel_crtc->pipe);
8653         return true;
8654
8655  fail:
8656         intel_crtc->new_enabled = crtc->enabled;
8657         if (intel_crtc->new_enabled)
8658                 intel_crtc->new_config = &intel_crtc->config;
8659         else
8660                 intel_crtc->new_config = NULL;
8661 fail_unlock:
8662         if (ret == -EDEADLK) {
8663                 drm_modeset_backoff(ctx);
8664                 goto retry;
8665         }
8666
8667         return false;
8668 }
8669
8670 void intel_release_load_detect_pipe(struct drm_connector *connector,
8671                                     struct intel_load_detect_pipe *old)
8672 {
8673         struct intel_encoder *intel_encoder =
8674                 intel_attached_encoder(connector);
8675         struct drm_encoder *encoder = &intel_encoder->base;
8676         struct drm_crtc *crtc = encoder->crtc;
8677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678
8679         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8680                       connector->base.id, connector->name,
8681                       encoder->base.id, encoder->name);
8682
8683         if (old->load_detect_temp) {
8684                 to_intel_connector(connector)->new_encoder = NULL;
8685                 intel_encoder->new_crtc = NULL;
8686                 intel_crtc->new_enabled = false;
8687                 intel_crtc->new_config = NULL;
8688                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8689
8690                 if (old->release_fb) {
8691                         drm_framebuffer_unregister_private(old->release_fb);
8692                         drm_framebuffer_unreference(old->release_fb);
8693                 }
8694
8695                 return;
8696         }
8697
8698         /* Switch crtc and encoder back off if necessary */
8699         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8700                 connector->funcs->dpms(connector, old->dpms_mode);
8701 }
8702
8703 static int i9xx_pll_refclk(struct drm_device *dev,
8704                            const struct intel_crtc_config *pipe_config)
8705 {
8706         struct drm_i915_private *dev_priv = dev->dev_private;
8707         u32 dpll = pipe_config->dpll_hw_state.dpll;
8708
8709         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8710                 return dev_priv->vbt.lvds_ssc_freq;
8711         else if (HAS_PCH_SPLIT(dev))
8712                 return 120000;
8713         else if (!IS_GEN2(dev))
8714                 return 96000;
8715         else
8716                 return 48000;
8717 }
8718
8719 /* Returns the clock of the currently programmed mode of the given pipe. */
8720 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8721                                 struct intel_crtc_config *pipe_config)
8722 {
8723         struct drm_device *dev = crtc->base.dev;
8724         struct drm_i915_private *dev_priv = dev->dev_private;
8725         int pipe = pipe_config->cpu_transcoder;
8726         u32 dpll = pipe_config->dpll_hw_state.dpll;
8727         u32 fp;
8728         intel_clock_t clock;
8729         int refclk = i9xx_pll_refclk(dev, pipe_config);
8730
8731         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8732                 fp = pipe_config->dpll_hw_state.fp0;
8733         else
8734                 fp = pipe_config->dpll_hw_state.fp1;
8735
8736         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8737         if (IS_PINEVIEW(dev)) {
8738                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8739                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8740         } else {
8741                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8742                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8743         }
8744
8745         if (!IS_GEN2(dev)) {
8746                 if (IS_PINEVIEW(dev))
8747                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8748                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8749                 else
8750                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8751                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8752
8753                 switch (dpll & DPLL_MODE_MASK) {
8754                 case DPLLB_MODE_DAC_SERIAL:
8755                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8756                                 5 : 10;
8757                         break;
8758                 case DPLLB_MODE_LVDS:
8759                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8760                                 7 : 14;
8761                         break;
8762                 default:
8763                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8764                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8765                         return;
8766                 }
8767
8768                 if (IS_PINEVIEW(dev))
8769                         pineview_clock(refclk, &clock);
8770                 else
8771                         i9xx_clock(refclk, &clock);
8772         } else {
8773                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8774                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8775
8776                 if (is_lvds) {
8777                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8778                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8779
8780                         if (lvds & LVDS_CLKB_POWER_UP)
8781                                 clock.p2 = 7;
8782                         else
8783                                 clock.p2 = 14;
8784                 } else {
8785                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8786                                 clock.p1 = 2;
8787                         else {
8788                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8789                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8790                         }
8791                         if (dpll & PLL_P2_DIVIDE_BY_4)
8792                                 clock.p2 = 4;
8793                         else
8794                                 clock.p2 = 2;
8795                 }
8796
8797                 i9xx_clock(refclk, &clock);
8798         }
8799
8800         /*
8801          * This value includes pixel_multiplier. We will use
8802          * port_clock to compute adjusted_mode.crtc_clock in the
8803          * encoder's get_config() function.
8804          */
8805         pipe_config->port_clock = clock.dot;
8806 }
8807
8808 int intel_dotclock_calculate(int link_freq,
8809                              const struct intel_link_m_n *m_n)
8810 {
8811         /*
8812          * The calculation for the data clock is:
8813          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8814          * But we want to avoid losing precison if possible, so:
8815          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8816          *
8817          * and the link clock is simpler:
8818          * link_clock = (m * link_clock) / n
8819          */
8820
8821         if (!m_n->link_n)
8822                 return 0;
8823
8824         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8825 }
8826
8827 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8828                                    struct intel_crtc_config *pipe_config)
8829 {
8830         struct drm_device *dev = crtc->base.dev;
8831
8832         /* read out port_clock from the DPLL */
8833         i9xx_crtc_clock_get(crtc, pipe_config);
8834
8835         /*
8836          * This value does not include pixel_multiplier.
8837          * We will check that port_clock and adjusted_mode.crtc_clock
8838          * agree once we know their relationship in the encoder's
8839          * get_config() function.
8840          */
8841         pipe_config->adjusted_mode.crtc_clock =
8842                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8843                                          &pipe_config->fdi_m_n);
8844 }
8845
8846 /** Returns the currently programmed mode of the given pipe. */
8847 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8848                                              struct drm_crtc *crtc)
8849 {
8850         struct drm_i915_private *dev_priv = dev->dev_private;
8851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8852         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8853         struct drm_display_mode *mode;
8854         struct intel_crtc_config pipe_config;
8855         int htot = I915_READ(HTOTAL(cpu_transcoder));
8856         int hsync = I915_READ(HSYNC(cpu_transcoder));
8857         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8858         int vsync = I915_READ(VSYNC(cpu_transcoder));
8859         enum pipe pipe = intel_crtc->pipe;
8860
8861         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8862         if (!mode)
8863                 return NULL;
8864
8865         /*
8866          * Construct a pipe_config sufficient for getting the clock info
8867          * back out of crtc_clock_get.
8868          *
8869          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8870          * to use a real value here instead.
8871          */
8872         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8873         pipe_config.pixel_multiplier = 1;
8874         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8875         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8876         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8877         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8878
8879         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8880         mode->hdisplay = (htot & 0xffff) + 1;
8881         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8882         mode->hsync_start = (hsync & 0xffff) + 1;
8883         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8884         mode->vdisplay = (vtot & 0xffff) + 1;
8885         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8886         mode->vsync_start = (vsync & 0xffff) + 1;
8887         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8888
8889         drm_mode_set_name(mode);
8890
8891         return mode;
8892 }
8893
8894 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8895 {
8896         struct drm_device *dev = crtc->dev;
8897         struct drm_i915_private *dev_priv = dev->dev_private;
8898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8899
8900         if (!HAS_GMCH_DISPLAY(dev))
8901                 return;
8902
8903         if (!dev_priv->lvds_downclock_avail)
8904                 return;
8905
8906         /*
8907          * Since this is called by a timer, we should never get here in
8908          * the manual case.
8909          */
8910         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8911                 int pipe = intel_crtc->pipe;
8912                 int dpll_reg = DPLL(pipe);
8913                 int dpll;
8914
8915                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8916
8917                 assert_panel_unlocked(dev_priv, pipe);
8918
8919                 dpll = I915_READ(dpll_reg);
8920                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8921                 I915_WRITE(dpll_reg, dpll);
8922                 intel_wait_for_vblank(dev, pipe);
8923                 dpll = I915_READ(dpll_reg);
8924                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8925                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8926         }
8927
8928 }
8929
8930 void intel_mark_busy(struct drm_device *dev)
8931 {
8932         struct drm_i915_private *dev_priv = dev->dev_private;
8933
8934         if (dev_priv->mm.busy)
8935                 return;
8936
8937         intel_runtime_pm_get(dev_priv);
8938         i915_update_gfx_val(dev_priv);
8939         dev_priv->mm.busy = true;
8940 }
8941
8942 void intel_mark_idle(struct drm_device *dev)
8943 {
8944         struct drm_i915_private *dev_priv = dev->dev_private;
8945         struct drm_crtc *crtc;
8946
8947         if (!dev_priv->mm.busy)
8948                 return;
8949
8950         dev_priv->mm.busy = false;
8951
8952         if (!i915.powersave)
8953                 goto out;
8954
8955         for_each_crtc(dev, crtc) {
8956                 if (!crtc->primary->fb)
8957                         continue;
8958
8959                 intel_decrease_pllclock(crtc);
8960         }
8961
8962         if (INTEL_INFO(dev)->gen >= 6)
8963                 gen6_rps_idle(dev->dev_private);
8964
8965 out:
8966         intel_runtime_pm_put(dev_priv);
8967 }
8968
8969 static void intel_crtc_destroy(struct drm_crtc *crtc)
8970 {
8971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8972         struct drm_device *dev = crtc->dev;
8973         struct intel_unpin_work *work;
8974
8975         spin_lock_irq(&dev->event_lock);
8976         work = intel_crtc->unpin_work;
8977         intel_crtc->unpin_work = NULL;
8978         spin_unlock_irq(&dev->event_lock);
8979
8980         if (work) {
8981                 cancel_work_sync(&work->work);
8982                 kfree(work);
8983         }
8984
8985         drm_crtc_cleanup(crtc);
8986
8987         kfree(intel_crtc);
8988 }
8989
8990 static void intel_unpin_work_fn(struct work_struct *__work)
8991 {
8992         struct intel_unpin_work *work =
8993                 container_of(__work, struct intel_unpin_work, work);
8994         struct drm_device *dev = work->crtc->dev;
8995         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8996
8997         mutex_lock(&dev->struct_mutex);
8998         intel_unpin_fb_obj(work->old_fb_obj);
8999         drm_gem_object_unreference(&work->pending_flip_obj->base);
9000         drm_gem_object_unreference(&work->old_fb_obj->base);
9001
9002         intel_update_fbc(dev);
9003         mutex_unlock(&dev->struct_mutex);
9004
9005         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9006
9007         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9008         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9009
9010         kfree(work);
9011 }
9012
9013 static void do_intel_finish_page_flip(struct drm_device *dev,
9014                                       struct drm_crtc *crtc)
9015 {
9016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9017         struct intel_unpin_work *work;
9018         unsigned long flags;
9019
9020         /* Ignore early vblank irqs */
9021         if (intel_crtc == NULL)
9022                 return;
9023
9024         /*
9025          * This is called both by irq handlers and the reset code (to complete
9026          * lost pageflips) so needs the full irqsave spinlocks.
9027          */
9028         spin_lock_irqsave(&dev->event_lock, flags);
9029         work = intel_crtc->unpin_work;
9030
9031         /* Ensure we don't miss a work->pending update ... */
9032         smp_rmb();
9033
9034         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9035                 spin_unlock_irqrestore(&dev->event_lock, flags);
9036                 return;
9037         }
9038
9039         page_flip_completed(intel_crtc);
9040
9041         spin_unlock_irqrestore(&dev->event_lock, flags);
9042 }
9043
9044 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9045 {
9046         struct drm_i915_private *dev_priv = dev->dev_private;
9047         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9048
9049         do_intel_finish_page_flip(dev, crtc);
9050 }
9051
9052 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9053 {
9054         struct drm_i915_private *dev_priv = dev->dev_private;
9055         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9056
9057         do_intel_finish_page_flip(dev, crtc);
9058 }
9059
9060 /* Is 'a' after or equal to 'b'? */
9061 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9062 {
9063         return !((a - b) & 0x80000000);
9064 }
9065
9066 static bool page_flip_finished(struct intel_crtc *crtc)
9067 {
9068         struct drm_device *dev = crtc->base.dev;
9069         struct drm_i915_private *dev_priv = dev->dev_private;
9070
9071         /*
9072          * The relevant registers doen't exist on pre-ctg.
9073          * As the flip done interrupt doesn't trigger for mmio
9074          * flips on gmch platforms, a flip count check isn't
9075          * really needed there. But since ctg has the registers,
9076          * include it in the check anyway.
9077          */
9078         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9079                 return true;
9080
9081         /*
9082          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9083          * used the same base address. In that case the mmio flip might
9084          * have completed, but the CS hasn't even executed the flip yet.
9085          *
9086          * A flip count check isn't enough as the CS might have updated
9087          * the base address just after start of vblank, but before we
9088          * managed to process the interrupt. This means we'd complete the
9089          * CS flip too soon.
9090          *
9091          * Combining both checks should get us a good enough result. It may
9092          * still happen that the CS flip has been executed, but has not
9093          * yet actually completed. But in case the base address is the same
9094          * anyway, we don't really care.
9095          */
9096         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9097                 crtc->unpin_work->gtt_offset &&
9098                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9099                                     crtc->unpin_work->flip_count);
9100 }
9101
9102 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9103 {
9104         struct drm_i915_private *dev_priv = dev->dev_private;
9105         struct intel_crtc *intel_crtc =
9106                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9107         unsigned long flags;
9108
9109
9110         /*
9111          * This is called both by irq handlers and the reset code (to complete
9112          * lost pageflips) so needs the full irqsave spinlocks.
9113          *
9114          * NB: An MMIO update of the plane base pointer will also
9115          * generate a page-flip completion irq, i.e. every modeset
9116          * is also accompanied by a spurious intel_prepare_page_flip().
9117          */
9118         spin_lock_irqsave(&dev->event_lock, flags);
9119         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9120                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9121         spin_unlock_irqrestore(&dev->event_lock, flags);
9122 }
9123
9124 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9125 {
9126         /* Ensure that the work item is consistent when activating it ... */
9127         smp_wmb();
9128         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9129         /* and that it is marked active as soon as the irq could fire. */
9130         smp_wmb();
9131 }
9132
9133 static int intel_gen2_queue_flip(struct drm_device *dev,
9134                                  struct drm_crtc *crtc,
9135                                  struct drm_framebuffer *fb,
9136                                  struct drm_i915_gem_object *obj,
9137                                  struct intel_engine_cs *ring,
9138                                  uint32_t flags)
9139 {
9140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9141         u32 flip_mask;
9142         int ret;
9143
9144         ret = intel_ring_begin(ring, 6);
9145         if (ret)
9146                 return ret;
9147
9148         /* Can't queue multiple flips, so wait for the previous
9149          * one to finish before executing the next.
9150          */
9151         if (intel_crtc->plane)
9152                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9153         else
9154                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9155         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9156         intel_ring_emit(ring, MI_NOOP);
9157         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9158                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9159         intel_ring_emit(ring, fb->pitches[0]);
9160         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9161         intel_ring_emit(ring, 0); /* aux display base address, unused */
9162
9163         intel_mark_page_flip_active(intel_crtc);
9164         __intel_ring_advance(ring);
9165         return 0;
9166 }
9167
9168 static int intel_gen3_queue_flip(struct drm_device *dev,
9169                                  struct drm_crtc *crtc,
9170                                  struct drm_framebuffer *fb,
9171                                  struct drm_i915_gem_object *obj,
9172                                  struct intel_engine_cs *ring,
9173                                  uint32_t flags)
9174 {
9175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9176         u32 flip_mask;
9177         int ret;
9178
9179         ret = intel_ring_begin(ring, 6);
9180         if (ret)
9181                 return ret;
9182
9183         if (intel_crtc->plane)
9184                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9185         else
9186                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9187         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9188         intel_ring_emit(ring, MI_NOOP);
9189         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9190                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9191         intel_ring_emit(ring, fb->pitches[0]);
9192         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9193         intel_ring_emit(ring, MI_NOOP);
9194
9195         intel_mark_page_flip_active(intel_crtc);
9196         __intel_ring_advance(ring);
9197         return 0;
9198 }
9199
9200 static int intel_gen4_queue_flip(struct drm_device *dev,
9201                                  struct drm_crtc *crtc,
9202                                  struct drm_framebuffer *fb,
9203                                  struct drm_i915_gem_object *obj,
9204                                  struct intel_engine_cs *ring,
9205                                  uint32_t flags)
9206 {
9207         struct drm_i915_private *dev_priv = dev->dev_private;
9208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9209         uint32_t pf, pipesrc;
9210         int ret;
9211
9212         ret = intel_ring_begin(ring, 4);
9213         if (ret)
9214                 return ret;
9215
9216         /* i965+ uses the linear or tiled offsets from the
9217          * Display Registers (which do not change across a page-flip)
9218          * so we need only reprogram the base address.
9219          */
9220         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9221                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9222         intel_ring_emit(ring, fb->pitches[0]);
9223         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9224                         obj->tiling_mode);
9225
9226         /* XXX Enabling the panel-fitter across page-flip is so far
9227          * untested on non-native modes, so ignore it for now.
9228          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9229          */
9230         pf = 0;
9231         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9232         intel_ring_emit(ring, pf | pipesrc);
9233
9234         intel_mark_page_flip_active(intel_crtc);
9235         __intel_ring_advance(ring);
9236         return 0;
9237 }
9238
9239 static int intel_gen6_queue_flip(struct drm_device *dev,
9240                                  struct drm_crtc *crtc,
9241                                  struct drm_framebuffer *fb,
9242                                  struct drm_i915_gem_object *obj,
9243                                  struct intel_engine_cs *ring,
9244                                  uint32_t flags)
9245 {
9246         struct drm_i915_private *dev_priv = dev->dev_private;
9247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9248         uint32_t pf, pipesrc;
9249         int ret;
9250
9251         ret = intel_ring_begin(ring, 4);
9252         if (ret)
9253                 return ret;
9254
9255         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9256                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9257         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9258         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9259
9260         /* Contrary to the suggestions in the documentation,
9261          * "Enable Panel Fitter" does not seem to be required when page
9262          * flipping with a non-native mode, and worse causes a normal
9263          * modeset to fail.
9264          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9265          */
9266         pf = 0;
9267         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9268         intel_ring_emit(ring, pf | pipesrc);
9269
9270         intel_mark_page_flip_active(intel_crtc);
9271         __intel_ring_advance(ring);
9272         return 0;
9273 }
9274
9275 static int intel_gen7_queue_flip(struct drm_device *dev,
9276                                  struct drm_crtc *crtc,
9277                                  struct drm_framebuffer *fb,
9278                                  struct drm_i915_gem_object *obj,
9279                                  struct intel_engine_cs *ring,
9280                                  uint32_t flags)
9281 {
9282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9283         uint32_t plane_bit = 0;
9284         int len, ret;
9285
9286         switch (intel_crtc->plane) {
9287         case PLANE_A:
9288                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9289                 break;
9290         case PLANE_B:
9291                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9292                 break;
9293         case PLANE_C:
9294                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9295                 break;
9296         default:
9297                 WARN_ONCE(1, "unknown plane in flip command\n");
9298                 return -ENODEV;
9299         }
9300
9301         len = 4;
9302         if (ring->id == RCS) {
9303                 len += 6;
9304                 /*
9305                  * On Gen 8, SRM is now taking an extra dword to accommodate
9306                  * 48bits addresses, and we need a NOOP for the batch size to
9307                  * stay even.
9308                  */
9309                 if (IS_GEN8(dev))
9310                         len += 2;
9311         }
9312
9313         /*
9314          * BSpec MI_DISPLAY_FLIP for IVB:
9315          * "The full packet must be contained within the same cache line."
9316          *
9317          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9318          * cacheline, if we ever start emitting more commands before
9319          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9320          * then do the cacheline alignment, and finally emit the
9321          * MI_DISPLAY_FLIP.
9322          */
9323         ret = intel_ring_cacheline_align(ring);
9324         if (ret)
9325                 return ret;
9326
9327         ret = intel_ring_begin(ring, len);
9328         if (ret)
9329                 return ret;
9330
9331         /* Unmask the flip-done completion message. Note that the bspec says that
9332          * we should do this for both the BCS and RCS, and that we must not unmask
9333          * more than one flip event at any time (or ensure that one flip message
9334          * can be sent by waiting for flip-done prior to queueing new flips).
9335          * Experimentation says that BCS works despite DERRMR masking all
9336          * flip-done completion events and that unmasking all planes at once
9337          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9338          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9339          */
9340         if (ring->id == RCS) {
9341                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9342                 intel_ring_emit(ring, DERRMR);
9343                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9344                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9345                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9346                 if (IS_GEN8(dev))
9347                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9348                                               MI_SRM_LRM_GLOBAL_GTT);
9349                 else
9350                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9351                                               MI_SRM_LRM_GLOBAL_GTT);
9352                 intel_ring_emit(ring, DERRMR);
9353                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9354                 if (IS_GEN8(dev)) {
9355                         intel_ring_emit(ring, 0);
9356                         intel_ring_emit(ring, MI_NOOP);
9357                 }
9358         }
9359
9360         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9361         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9362         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9363         intel_ring_emit(ring, (MI_NOOP));
9364
9365         intel_mark_page_flip_active(intel_crtc);
9366         __intel_ring_advance(ring);
9367         return 0;
9368 }
9369
9370 static bool use_mmio_flip(struct intel_engine_cs *ring,
9371                           struct drm_i915_gem_object *obj)
9372 {
9373         /*
9374          * This is not being used for older platforms, because
9375          * non-availability of flip done interrupt forces us to use
9376          * CS flips. Older platforms derive flip done using some clever
9377          * tricks involving the flip_pending status bits and vblank irqs.
9378          * So using MMIO flips there would disrupt this mechanism.
9379          */
9380
9381         if (ring == NULL)
9382                 return true;
9383
9384         if (INTEL_INFO(ring->dev)->gen < 5)
9385                 return false;
9386
9387         if (i915.use_mmio_flip < 0)
9388                 return false;
9389         else if (i915.use_mmio_flip > 0)
9390                 return true;
9391         else if (i915.enable_execlists)
9392                 return true;
9393         else
9394                 return ring != obj->ring;
9395 }
9396
9397 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9398 {
9399         struct drm_device *dev = intel_crtc->base.dev;
9400         struct drm_i915_private *dev_priv = dev->dev_private;
9401         struct intel_framebuffer *intel_fb =
9402                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9403         struct drm_i915_gem_object *obj = intel_fb->obj;
9404         bool atomic_update;
9405         u32 start_vbl_count;
9406         u32 dspcntr;
9407         u32 reg;
9408
9409         intel_mark_page_flip_active(intel_crtc);
9410
9411         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9412
9413         reg = DSPCNTR(intel_crtc->plane);
9414         dspcntr = I915_READ(reg);
9415
9416         if (obj->tiling_mode != I915_TILING_NONE)
9417                 dspcntr |= DISPPLANE_TILED;
9418         else
9419                 dspcntr &= ~DISPPLANE_TILED;
9420
9421         I915_WRITE(reg, dspcntr);
9422
9423         I915_WRITE(DSPSURF(intel_crtc->plane),
9424                    intel_crtc->unpin_work->gtt_offset);
9425         POSTING_READ(DSPSURF(intel_crtc->plane));
9426
9427         if (atomic_update)
9428                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9429
9430         spin_lock_irq(&dev_priv->mmio_flip_lock);
9431         intel_crtc->mmio_flip.status = INTEL_MMIO_FLIP_IDLE;
9432         spin_unlock_irq(&dev_priv->mmio_flip_lock);
9433 }
9434
9435 static void intel_mmio_flip_work_func(struct work_struct *work)
9436 {
9437         struct intel_crtc *intel_crtc =
9438                 container_of(work, struct intel_crtc, mmio_flip.work);
9439
9440         intel_do_mmio_flip(intel_crtc);
9441 }
9442
9443 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9444 {
9445         struct intel_engine_cs *ring;
9446         int ret;
9447
9448         lockdep_assert_held(&obj->base.dev->struct_mutex);
9449
9450         if (!obj->last_write_seqno)
9451                 return 0;
9452
9453         ring = obj->ring;
9454
9455         if (i915_seqno_passed(ring->get_seqno(ring, true),
9456                               obj->last_write_seqno))
9457                 return 0;
9458
9459         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9460         if (ret)
9461                 return ret;
9462
9463         if (WARN_ON(!ring->irq_get(ring)))
9464                 return 0;
9465
9466         return 1;
9467 }
9468
9469 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9470 {
9471         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9472         struct intel_crtc *intel_crtc;
9473         unsigned long irq_flags;
9474         u32 seqno;
9475
9476         seqno = ring->get_seqno(ring, false);
9477
9478         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9479         for_each_intel_crtc(ring->dev, intel_crtc) {
9480                 struct intel_mmio_flip *mmio_flip;
9481
9482                 mmio_flip = &intel_crtc->mmio_flip;
9483                 if (mmio_flip->status != INTEL_MMIO_FLIP_WAIT_RING)
9484                         continue;
9485
9486                 if (ring->id != mmio_flip->ring_id)
9487                         continue;
9488
9489                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9490                         schedule_work(&intel_crtc->mmio_flip.work);
9491                         mmio_flip->status = INTEL_MMIO_FLIP_WORK_SCHEDULED;
9492                         ring->irq_put(ring);
9493                 }
9494         }
9495         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9496 }
9497
9498 static int intel_queue_mmio_flip(struct drm_device *dev,
9499                                  struct drm_crtc *crtc,
9500                                  struct drm_framebuffer *fb,
9501                                  struct drm_i915_gem_object *obj,
9502                                  struct intel_engine_cs *ring,
9503                                  uint32_t flags)
9504 {
9505         struct drm_i915_private *dev_priv = dev->dev_private;
9506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9507         int ret;
9508
9509         if (WARN_ON(intel_crtc->mmio_flip.status != INTEL_MMIO_FLIP_IDLE))
9510                 return -EBUSY;
9511
9512         ret = intel_postpone_flip(obj);
9513         if (ret < 0)
9514                 return ret;
9515         if (ret == 0) {
9516                 intel_do_mmio_flip(intel_crtc);
9517                 return 0;
9518         }
9519
9520         spin_lock_irq(&dev_priv->mmio_flip_lock);
9521         intel_crtc->mmio_flip.status = INTEL_MMIO_FLIP_WAIT_RING;
9522         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9523         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9524         spin_unlock_irq(&dev_priv->mmio_flip_lock);
9525
9526         /*
9527          * Double check to catch cases where irq fired before
9528          * mmio flip data was ready
9529          */
9530         intel_notify_mmio_flip(obj->ring);
9531         return 0;
9532 }
9533
9534 static int intel_default_queue_flip(struct drm_device *dev,
9535                                     struct drm_crtc *crtc,
9536                                     struct drm_framebuffer *fb,
9537                                     struct drm_i915_gem_object *obj,
9538                                     struct intel_engine_cs *ring,
9539                                     uint32_t flags)
9540 {
9541         return -ENODEV;
9542 }
9543
9544 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9545                                          struct drm_crtc *crtc)
9546 {
9547         struct drm_i915_private *dev_priv = dev->dev_private;
9548         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9549         struct intel_unpin_work *work = intel_crtc->unpin_work;
9550         u32 addr;
9551
9552         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9553                 return true;
9554
9555         if (!work->enable_stall_check)
9556                 return false;
9557
9558         if (work->flip_ready_vblank == 0) {
9559                 if (work->flip_queued_ring &&
9560                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9561                                        work->flip_queued_seqno))
9562                         return false;
9563
9564                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9565         }
9566
9567         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9568                 return false;
9569
9570         /* Potential stall - if we see that the flip has happened,
9571          * assume a missed interrupt. */
9572         if (INTEL_INFO(dev)->gen >= 4)
9573                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9574         else
9575                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9576
9577         /* There is a potential issue here with a false positive after a flip
9578          * to the same address. We could address this by checking for a
9579          * non-incrementing frame counter.
9580          */
9581         return addr == work->gtt_offset;
9582 }
9583
9584 void intel_check_page_flip(struct drm_device *dev, int pipe)
9585 {
9586         struct drm_i915_private *dev_priv = dev->dev_private;
9587         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9589
9590         WARN_ON(!in_irq());
9591
9592         if (crtc == NULL)
9593                 return;
9594
9595         spin_lock(&dev->event_lock);
9596         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9597                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9598                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9599                 page_flip_completed(intel_crtc);
9600         }
9601         spin_unlock(&dev->event_lock);
9602 }
9603
9604 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9605                                 struct drm_framebuffer *fb,
9606                                 struct drm_pending_vblank_event *event,
9607                                 uint32_t page_flip_flags)
9608 {
9609         struct drm_device *dev = crtc->dev;
9610         struct drm_i915_private *dev_priv = dev->dev_private;
9611         struct drm_framebuffer *old_fb = crtc->primary->fb;
9612         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9613         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9614         enum pipe pipe = intel_crtc->pipe;
9615         struct intel_unpin_work *work;
9616         struct intel_engine_cs *ring;
9617         int ret;
9618
9619         /*
9620          * drm_mode_page_flip_ioctl() should already catch this, but double
9621          * check to be safe.  In the future we may enable pageflipping from
9622          * a disabled primary plane.
9623          */
9624         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9625                 return -EBUSY;
9626
9627         /* Can't change pixel format via MI display flips. */
9628         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9629                 return -EINVAL;
9630
9631         /*
9632          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9633          * Note that pitch changes could also affect these register.
9634          */
9635         if (INTEL_INFO(dev)->gen > 3 &&
9636             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9637              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9638                 return -EINVAL;
9639
9640         if (i915_terminally_wedged(&dev_priv->gpu_error))
9641                 goto out_hang;
9642
9643         work = kzalloc(sizeof(*work), GFP_KERNEL);
9644         if (work == NULL)
9645                 return -ENOMEM;
9646
9647         work->event = event;
9648         work->crtc = crtc;
9649         work->old_fb_obj = intel_fb_obj(old_fb);
9650         INIT_WORK(&work->work, intel_unpin_work_fn);
9651
9652         ret = drm_crtc_vblank_get(crtc);
9653         if (ret)
9654                 goto free_work;
9655
9656         /* We borrow the event spin lock for protecting unpin_work */
9657         spin_lock_irq(&dev->event_lock);
9658         if (intel_crtc->unpin_work) {
9659                 /* Before declaring the flip queue wedged, check if
9660                  * the hardware completed the operation behind our backs.
9661                  */
9662                 if (__intel_pageflip_stall_check(dev, crtc)) {
9663                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9664                         page_flip_completed(intel_crtc);
9665                 } else {
9666                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9667                         spin_unlock_irq(&dev->event_lock);
9668
9669                         drm_crtc_vblank_put(crtc);
9670                         kfree(work);
9671                         return -EBUSY;
9672                 }
9673         }
9674         intel_crtc->unpin_work = work;
9675         spin_unlock_irq(&dev->event_lock);
9676
9677         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9678                 flush_workqueue(dev_priv->wq);
9679
9680         ret = i915_mutex_lock_interruptible(dev);
9681         if (ret)
9682                 goto cleanup;
9683
9684         /* Reference the objects for the scheduled work. */
9685         drm_gem_object_reference(&work->old_fb_obj->base);
9686         drm_gem_object_reference(&obj->base);
9687
9688         crtc->primary->fb = fb;
9689
9690         work->pending_flip_obj = obj;
9691
9692         atomic_inc(&intel_crtc->unpin_work_count);
9693         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9694
9695         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9696                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9697
9698         if (IS_VALLEYVIEW(dev)) {
9699                 ring = &dev_priv->ring[BCS];
9700                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9701                         /* vlv: DISPLAY_FLIP fails to change tiling */
9702                         ring = NULL;
9703         } else if (IS_IVYBRIDGE(dev)) {
9704                 ring = &dev_priv->ring[BCS];
9705         } else if (INTEL_INFO(dev)->gen >= 7) {
9706                 ring = obj->ring;
9707                 if (ring == NULL || ring->id != RCS)
9708                         ring = &dev_priv->ring[BCS];
9709         } else {
9710                 ring = &dev_priv->ring[RCS];
9711         }
9712
9713         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9714         if (ret)
9715                 goto cleanup_pending;
9716
9717         work->gtt_offset =
9718                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9719
9720         if (use_mmio_flip(ring, obj)) {
9721                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9722                                             page_flip_flags);
9723                 if (ret)
9724                         goto cleanup_unpin;
9725
9726                 work->flip_queued_seqno = obj->last_write_seqno;
9727                 work->flip_queued_ring = obj->ring;
9728         } else {
9729                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9730                                                    page_flip_flags);
9731                 if (ret)
9732                         goto cleanup_unpin;
9733
9734                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9735                 work->flip_queued_ring = ring;
9736         }
9737
9738         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9739         work->enable_stall_check = true;
9740
9741         i915_gem_track_fb(work->old_fb_obj, obj,
9742                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9743
9744         intel_disable_fbc(dev);
9745         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9746         mutex_unlock(&dev->struct_mutex);
9747
9748         trace_i915_flip_request(intel_crtc->plane, obj);
9749
9750         return 0;
9751
9752 cleanup_unpin:
9753         intel_unpin_fb_obj(obj);
9754 cleanup_pending:
9755         atomic_dec(&intel_crtc->unpin_work_count);
9756         crtc->primary->fb = old_fb;
9757         drm_gem_object_unreference(&work->old_fb_obj->base);
9758         drm_gem_object_unreference(&obj->base);
9759         mutex_unlock(&dev->struct_mutex);
9760
9761 cleanup:
9762         spin_lock_irq(&dev->event_lock);
9763         intel_crtc->unpin_work = NULL;
9764         spin_unlock_irq(&dev->event_lock);
9765
9766         drm_crtc_vblank_put(crtc);
9767 free_work:
9768         kfree(work);
9769
9770         if (ret == -EIO) {
9771 out_hang:
9772                 intel_crtc_wait_for_pending_flips(crtc);
9773                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9774                 if (ret == 0 && event) {
9775                         spin_lock_irq(&dev->event_lock);
9776                         drm_send_vblank_event(dev, pipe, event);
9777                         spin_unlock_irq(&dev->event_lock);
9778                 }
9779         }
9780         return ret;
9781 }
9782
9783 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9784         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9785         .load_lut = intel_crtc_load_lut,
9786 };
9787
9788 /**
9789  * intel_modeset_update_staged_output_state
9790  *
9791  * Updates the staged output configuration state, e.g. after we've read out the
9792  * current hw state.
9793  */
9794 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9795 {
9796         struct intel_crtc *crtc;
9797         struct intel_encoder *encoder;
9798         struct intel_connector *connector;
9799
9800         list_for_each_entry(connector, &dev->mode_config.connector_list,
9801                             base.head) {
9802                 connector->new_encoder =
9803                         to_intel_encoder(connector->base.encoder);
9804         }
9805
9806         for_each_intel_encoder(dev, encoder) {
9807                 encoder->new_crtc =
9808                         to_intel_crtc(encoder->base.crtc);
9809         }
9810
9811         for_each_intel_crtc(dev, crtc) {
9812                 crtc->new_enabled = crtc->base.enabled;
9813
9814                 if (crtc->new_enabled)
9815                         crtc->new_config = &crtc->config;
9816                 else
9817                         crtc->new_config = NULL;
9818         }
9819 }
9820
9821 /**
9822  * intel_modeset_commit_output_state
9823  *
9824  * This function copies the stage display pipe configuration to the real one.
9825  */
9826 static void intel_modeset_commit_output_state(struct drm_device *dev)
9827 {
9828         struct intel_crtc *crtc;
9829         struct intel_encoder *encoder;
9830         struct intel_connector *connector;
9831
9832         list_for_each_entry(connector, &dev->mode_config.connector_list,
9833                             base.head) {
9834                 connector->base.encoder = &connector->new_encoder->base;
9835         }
9836
9837         for_each_intel_encoder(dev, encoder) {
9838                 encoder->base.crtc = &encoder->new_crtc->base;
9839         }
9840
9841         for_each_intel_crtc(dev, crtc) {
9842                 crtc->base.enabled = crtc->new_enabled;
9843         }
9844 }
9845
9846 static void
9847 connected_sink_compute_bpp(struct intel_connector *connector,
9848                            struct intel_crtc_config *pipe_config)
9849 {
9850         int bpp = pipe_config->pipe_bpp;
9851
9852         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9853                 connector->base.base.id,
9854                 connector->base.name);
9855
9856         /* Don't use an invalid EDID bpc value */
9857         if (connector->base.display_info.bpc &&
9858             connector->base.display_info.bpc * 3 < bpp) {
9859                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9860                               bpp, connector->base.display_info.bpc*3);
9861                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9862         }
9863
9864         /* Clamp bpp to 8 on screens without EDID 1.4 */
9865         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9866                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9867                               bpp);
9868                 pipe_config->pipe_bpp = 24;
9869         }
9870 }
9871
9872 static int
9873 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9874                           struct drm_framebuffer *fb,
9875                           struct intel_crtc_config *pipe_config)
9876 {
9877         struct drm_device *dev = crtc->base.dev;
9878         struct intel_connector *connector;
9879         int bpp;
9880
9881         switch (fb->pixel_format) {
9882         case DRM_FORMAT_C8:
9883                 bpp = 8*3; /* since we go through a colormap */
9884                 break;
9885         case DRM_FORMAT_XRGB1555:
9886         case DRM_FORMAT_ARGB1555:
9887                 /* checked in intel_framebuffer_init already */
9888                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9889                         return -EINVAL;
9890         case DRM_FORMAT_RGB565:
9891                 bpp = 6*3; /* min is 18bpp */
9892                 break;
9893         case DRM_FORMAT_XBGR8888:
9894         case DRM_FORMAT_ABGR8888:
9895                 /* checked in intel_framebuffer_init already */
9896                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9897                         return -EINVAL;
9898         case DRM_FORMAT_XRGB8888:
9899         case DRM_FORMAT_ARGB8888:
9900                 bpp = 8*3;
9901                 break;
9902         case DRM_FORMAT_XRGB2101010:
9903         case DRM_FORMAT_ARGB2101010:
9904         case DRM_FORMAT_XBGR2101010:
9905         case DRM_FORMAT_ABGR2101010:
9906                 /* checked in intel_framebuffer_init already */
9907                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9908                         return -EINVAL;
9909                 bpp = 10*3;
9910                 break;
9911         /* TODO: gen4+ supports 16 bpc floating point, too. */
9912         default:
9913                 DRM_DEBUG_KMS("unsupported depth\n");
9914                 return -EINVAL;
9915         }
9916
9917         pipe_config->pipe_bpp = bpp;
9918
9919         /* Clamp display bpp to EDID value */
9920         list_for_each_entry(connector, &dev->mode_config.connector_list,
9921                             base.head) {
9922                 if (!connector->new_encoder ||
9923                     connector->new_encoder->new_crtc != crtc)
9924                         continue;
9925
9926                 connected_sink_compute_bpp(connector, pipe_config);
9927         }
9928
9929         return bpp;
9930 }
9931
9932 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9933 {
9934         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9935                         "type: 0x%x flags: 0x%x\n",
9936                 mode->crtc_clock,
9937                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9938                 mode->crtc_hsync_end, mode->crtc_htotal,
9939                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9940                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9941 }
9942
9943 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9944                                    struct intel_crtc_config *pipe_config,
9945                                    const char *context)
9946 {
9947         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9948                       context, pipe_name(crtc->pipe));
9949
9950         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9951         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9952                       pipe_config->pipe_bpp, pipe_config->dither);
9953         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9954                       pipe_config->has_pch_encoder,
9955                       pipe_config->fdi_lanes,
9956                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9957                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9958                       pipe_config->fdi_m_n.tu);
9959         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9960                       pipe_config->has_dp_encoder,
9961                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9962                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9963                       pipe_config->dp_m_n.tu);
9964
9965         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9966                       pipe_config->has_dp_encoder,
9967                       pipe_config->dp_m2_n2.gmch_m,
9968                       pipe_config->dp_m2_n2.gmch_n,
9969                       pipe_config->dp_m2_n2.link_m,
9970                       pipe_config->dp_m2_n2.link_n,
9971                       pipe_config->dp_m2_n2.tu);
9972
9973         DRM_DEBUG_KMS("requested mode:\n");
9974         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9975         DRM_DEBUG_KMS("adjusted mode:\n");
9976         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9977         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9978         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9979         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9980                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9981         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9982                       pipe_config->gmch_pfit.control,
9983                       pipe_config->gmch_pfit.pgm_ratios,
9984                       pipe_config->gmch_pfit.lvds_border_bits);
9985         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9986                       pipe_config->pch_pfit.pos,
9987                       pipe_config->pch_pfit.size,
9988                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9989         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9990         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9991 }
9992
9993 static bool encoders_cloneable(const struct intel_encoder *a,
9994                                const struct intel_encoder *b)
9995 {
9996         /* masks could be asymmetric, so check both ways */
9997         return a == b || (a->cloneable & (1 << b->type) &&
9998                           b->cloneable & (1 << a->type));
9999 }
10000
10001 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10002                                          struct intel_encoder *encoder)
10003 {
10004         struct drm_device *dev = crtc->base.dev;
10005         struct intel_encoder *source_encoder;
10006
10007         for_each_intel_encoder(dev, source_encoder) {
10008                 if (source_encoder->new_crtc != crtc)
10009                         continue;
10010
10011                 if (!encoders_cloneable(encoder, source_encoder))
10012                         return false;
10013         }
10014
10015         return true;
10016 }
10017
10018 static bool check_encoder_cloning(struct intel_crtc *crtc)
10019 {
10020         struct drm_device *dev = crtc->base.dev;
10021         struct intel_encoder *encoder;
10022
10023         for_each_intel_encoder(dev, encoder) {
10024                 if (encoder->new_crtc != crtc)
10025                         continue;
10026
10027                 if (!check_single_encoder_cloning(crtc, encoder))
10028                         return false;
10029         }
10030
10031         return true;
10032 }
10033
10034 static struct intel_crtc_config *
10035 intel_modeset_pipe_config(struct drm_crtc *crtc,
10036                           struct drm_framebuffer *fb,
10037                           struct drm_display_mode *mode)
10038 {
10039         struct drm_device *dev = crtc->dev;
10040         struct intel_encoder *encoder;
10041         struct intel_crtc_config *pipe_config;
10042         int plane_bpp, ret = -EINVAL;
10043         bool retry = true;
10044
10045         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10046                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10047                 return ERR_PTR(-EINVAL);
10048         }
10049
10050         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10051         if (!pipe_config)
10052                 return ERR_PTR(-ENOMEM);
10053
10054         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10055         drm_mode_copy(&pipe_config->requested_mode, mode);
10056
10057         pipe_config->cpu_transcoder =
10058                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10059         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10060
10061         /*
10062          * Sanitize sync polarity flags based on requested ones. If neither
10063          * positive or negative polarity is requested, treat this as meaning
10064          * negative polarity.
10065          */
10066         if (!(pipe_config->adjusted_mode.flags &
10067               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10068                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10069
10070         if (!(pipe_config->adjusted_mode.flags &
10071               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10072                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10073
10074         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10075          * plane pixel format and any sink constraints into account. Returns the
10076          * source plane bpp so that dithering can be selected on mismatches
10077          * after encoders and crtc also have had their say. */
10078         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10079                                               fb, pipe_config);
10080         if (plane_bpp < 0)
10081                 goto fail;
10082
10083         /*
10084          * Determine the real pipe dimensions. Note that stereo modes can
10085          * increase the actual pipe size due to the frame doubling and
10086          * insertion of additional space for blanks between the frame. This
10087          * is stored in the crtc timings. We use the requested mode to do this
10088          * computation to clearly distinguish it from the adjusted mode, which
10089          * can be changed by the connectors in the below retry loop.
10090          */
10091         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10092         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10093         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10094
10095 encoder_retry:
10096         /* Ensure the port clock defaults are reset when retrying. */
10097         pipe_config->port_clock = 0;
10098         pipe_config->pixel_multiplier = 1;
10099
10100         /* Fill in default crtc timings, allow encoders to overwrite them. */
10101         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10102
10103         /* Pass our mode to the connectors and the CRTC to give them a chance to
10104          * adjust it according to limitations or connector properties, and also
10105          * a chance to reject the mode entirely.
10106          */
10107         for_each_intel_encoder(dev, encoder) {
10108
10109                 if (&encoder->new_crtc->base != crtc)
10110                         continue;
10111
10112                 if (!(encoder->compute_config(encoder, pipe_config))) {
10113                         DRM_DEBUG_KMS("Encoder config failure\n");
10114                         goto fail;
10115                 }
10116         }
10117
10118         /* Set default port clock if not overwritten by the encoder. Needs to be
10119          * done afterwards in case the encoder adjusts the mode. */
10120         if (!pipe_config->port_clock)
10121                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10122                         * pipe_config->pixel_multiplier;
10123
10124         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10125         if (ret < 0) {
10126                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10127                 goto fail;
10128         }
10129
10130         if (ret == RETRY) {
10131                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10132                         ret = -EINVAL;
10133                         goto fail;
10134                 }
10135
10136                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10137                 retry = false;
10138                 goto encoder_retry;
10139         }
10140
10141         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10142         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10143                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10144
10145         return pipe_config;
10146 fail:
10147         kfree(pipe_config);
10148         return ERR_PTR(ret);
10149 }
10150
10151 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10152  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10153 static void
10154 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10155                              unsigned *prepare_pipes, unsigned *disable_pipes)
10156 {
10157         struct intel_crtc *intel_crtc;
10158         struct drm_device *dev = crtc->dev;
10159         struct intel_encoder *encoder;
10160         struct intel_connector *connector;
10161         struct drm_crtc *tmp_crtc;
10162
10163         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10164
10165         /* Check which crtcs have changed outputs connected to them, these need
10166          * to be part of the prepare_pipes mask. We don't (yet) support global
10167          * modeset across multiple crtcs, so modeset_pipes will only have one
10168          * bit set at most. */
10169         list_for_each_entry(connector, &dev->mode_config.connector_list,
10170                             base.head) {
10171                 if (connector->base.encoder == &connector->new_encoder->base)
10172                         continue;
10173
10174                 if (connector->base.encoder) {
10175                         tmp_crtc = connector->base.encoder->crtc;
10176
10177                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10178                 }
10179
10180                 if (connector->new_encoder)
10181                         *prepare_pipes |=
10182                                 1 << connector->new_encoder->new_crtc->pipe;
10183         }
10184
10185         for_each_intel_encoder(dev, encoder) {
10186                 if (encoder->base.crtc == &encoder->new_crtc->base)
10187                         continue;
10188
10189                 if (encoder->base.crtc) {
10190                         tmp_crtc = encoder->base.crtc;
10191
10192                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10193                 }
10194
10195                 if (encoder->new_crtc)
10196                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10197         }
10198
10199         /* Check for pipes that will be enabled/disabled ... */
10200         for_each_intel_crtc(dev, intel_crtc) {
10201                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10202                         continue;
10203
10204                 if (!intel_crtc->new_enabled)
10205                         *disable_pipes |= 1 << intel_crtc->pipe;
10206                 else
10207                         *prepare_pipes |= 1 << intel_crtc->pipe;
10208         }
10209
10210
10211         /* set_mode is also used to update properties on life display pipes. */
10212         intel_crtc = to_intel_crtc(crtc);
10213         if (intel_crtc->new_enabled)
10214                 *prepare_pipes |= 1 << intel_crtc->pipe;
10215
10216         /*
10217          * For simplicity do a full modeset on any pipe where the output routing
10218          * changed. We could be more clever, but that would require us to be
10219          * more careful with calling the relevant encoder->mode_set functions.
10220          */
10221         if (*prepare_pipes)
10222                 *modeset_pipes = *prepare_pipes;
10223
10224         /* ... and mask these out. */
10225         *modeset_pipes &= ~(*disable_pipes);
10226         *prepare_pipes &= ~(*disable_pipes);
10227
10228         /*
10229          * HACK: We don't (yet) fully support global modesets. intel_set_config
10230          * obies this rule, but the modeset restore mode of
10231          * intel_modeset_setup_hw_state does not.
10232          */
10233         *modeset_pipes &= 1 << intel_crtc->pipe;
10234         *prepare_pipes &= 1 << intel_crtc->pipe;
10235
10236         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10237                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10238 }
10239
10240 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10241 {
10242         struct drm_encoder *encoder;
10243         struct drm_device *dev = crtc->dev;
10244
10245         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10246                 if (encoder->crtc == crtc)
10247                         return true;
10248
10249         return false;
10250 }
10251
10252 static void
10253 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10254 {
10255         struct drm_i915_private *dev_priv = dev->dev_private;
10256         struct intel_encoder *intel_encoder;
10257         struct intel_crtc *intel_crtc;
10258         struct drm_connector *connector;
10259
10260         intel_shared_dpll_commit(dev_priv);
10261
10262         for_each_intel_encoder(dev, intel_encoder) {
10263                 if (!intel_encoder->base.crtc)
10264                         continue;
10265
10266                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10267
10268                 if (prepare_pipes & (1 << intel_crtc->pipe))
10269                         intel_encoder->connectors_active = false;
10270         }
10271
10272         intel_modeset_commit_output_state(dev);
10273
10274         /* Double check state. */
10275         for_each_intel_crtc(dev, intel_crtc) {
10276                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10277                 WARN_ON(intel_crtc->new_config &&
10278                         intel_crtc->new_config != &intel_crtc->config);
10279                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10280         }
10281
10282         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10283                 if (!connector->encoder || !connector->encoder->crtc)
10284                         continue;
10285
10286                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10287
10288                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10289                         struct drm_property *dpms_property =
10290                                 dev->mode_config.dpms_property;
10291
10292                         connector->dpms = DRM_MODE_DPMS_ON;
10293                         drm_object_property_set_value(&connector->base,
10294                                                          dpms_property,
10295                                                          DRM_MODE_DPMS_ON);
10296
10297                         intel_encoder = to_intel_encoder(connector->encoder);
10298                         intel_encoder->connectors_active = true;
10299                 }
10300         }
10301
10302 }
10303
10304 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10305 {
10306         int diff;
10307
10308         if (clock1 == clock2)
10309                 return true;
10310
10311         if (!clock1 || !clock2)
10312                 return false;
10313
10314         diff = abs(clock1 - clock2);
10315
10316         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10317                 return true;
10318
10319         return false;
10320 }
10321
10322 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10323         list_for_each_entry((intel_crtc), \
10324                             &(dev)->mode_config.crtc_list, \
10325                             base.head) \
10326                 if (mask & (1 <<(intel_crtc)->pipe))
10327
10328 static bool
10329 intel_pipe_config_compare(struct drm_device *dev,
10330                           struct intel_crtc_config *current_config,
10331                           struct intel_crtc_config *pipe_config)
10332 {
10333 #define PIPE_CONF_CHECK_X(name) \
10334         if (current_config->name != pipe_config->name) { \
10335                 DRM_ERROR("mismatch in " #name " " \
10336                           "(expected 0x%08x, found 0x%08x)\n", \
10337                           current_config->name, \
10338                           pipe_config->name); \
10339                 return false; \
10340         }
10341
10342 #define PIPE_CONF_CHECK_I(name) \
10343         if (current_config->name != pipe_config->name) { \
10344                 DRM_ERROR("mismatch in " #name " " \
10345                           "(expected %i, found %i)\n", \
10346                           current_config->name, \
10347                           pipe_config->name); \
10348                 return false; \
10349         }
10350
10351 /* This is required for BDW+ where there is only one set of registers for
10352  * switching between high and low RR.
10353  * This macro can be used whenever a comparison has to be made between one
10354  * hw state and multiple sw state variables.
10355  */
10356 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10357         if ((current_config->name != pipe_config->name) && \
10358                 (current_config->alt_name != pipe_config->name)) { \
10359                         DRM_ERROR("mismatch in " #name " " \
10360                                   "(expected %i or %i, found %i)\n", \
10361                                   current_config->name, \
10362                                   current_config->alt_name, \
10363                                   pipe_config->name); \
10364                         return false; \
10365         }
10366
10367 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10368         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10369                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10370                           "(expected %i, found %i)\n", \
10371                           current_config->name & (mask), \
10372                           pipe_config->name & (mask)); \
10373                 return false; \
10374         }
10375
10376 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10377         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10378                 DRM_ERROR("mismatch in " #name " " \
10379                           "(expected %i, found %i)\n", \
10380                           current_config->name, \
10381                           pipe_config->name); \
10382                 return false; \
10383         }
10384
10385 #define PIPE_CONF_QUIRK(quirk)  \
10386         ((current_config->quirks | pipe_config->quirks) & (quirk))
10387
10388         PIPE_CONF_CHECK_I(cpu_transcoder);
10389
10390         PIPE_CONF_CHECK_I(has_pch_encoder);
10391         PIPE_CONF_CHECK_I(fdi_lanes);
10392         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10393         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10394         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10395         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10396         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10397
10398         PIPE_CONF_CHECK_I(has_dp_encoder);
10399
10400         if (INTEL_INFO(dev)->gen < 8) {
10401                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10402                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10403                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10404                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10405                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10406
10407                 if (current_config->has_drrs) {
10408                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10409                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10410                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10411                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10412                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10413                 }
10414         } else {
10415                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10416                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10417                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10418                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10419                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10420         }
10421
10422         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10423         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10424         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10425         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10426         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10427         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10428
10429         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10430         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10431         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10432         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10433         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10434         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10435
10436         PIPE_CONF_CHECK_I(pixel_multiplier);
10437         PIPE_CONF_CHECK_I(has_hdmi_sink);
10438         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10439             IS_VALLEYVIEW(dev))
10440                 PIPE_CONF_CHECK_I(limited_color_range);
10441
10442         PIPE_CONF_CHECK_I(has_audio);
10443
10444         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10445                               DRM_MODE_FLAG_INTERLACE);
10446
10447         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10448                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10449                                       DRM_MODE_FLAG_PHSYNC);
10450                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10451                                       DRM_MODE_FLAG_NHSYNC);
10452                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10453                                       DRM_MODE_FLAG_PVSYNC);
10454                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10455                                       DRM_MODE_FLAG_NVSYNC);
10456         }
10457
10458         PIPE_CONF_CHECK_I(pipe_src_w);
10459         PIPE_CONF_CHECK_I(pipe_src_h);
10460
10461         /*
10462          * FIXME: BIOS likes to set up a cloned config with lvds+external
10463          * screen. Since we don't yet re-compute the pipe config when moving
10464          * just the lvds port away to another pipe the sw tracking won't match.
10465          *
10466          * Proper atomic modesets with recomputed global state will fix this.
10467          * Until then just don't check gmch state for inherited modes.
10468          */
10469         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10470                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10471                 /* pfit ratios are autocomputed by the hw on gen4+ */
10472                 if (INTEL_INFO(dev)->gen < 4)
10473                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10474                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10475         }
10476
10477         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10478         if (current_config->pch_pfit.enabled) {
10479                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10480                 PIPE_CONF_CHECK_I(pch_pfit.size);
10481         }
10482
10483         /* BDW+ don't expose a synchronous way to read the state */
10484         if (IS_HASWELL(dev))
10485                 PIPE_CONF_CHECK_I(ips_enabled);
10486
10487         PIPE_CONF_CHECK_I(double_wide);
10488
10489         PIPE_CONF_CHECK_X(ddi_pll_sel);
10490
10491         PIPE_CONF_CHECK_I(shared_dpll);
10492         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10493         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10494         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10495         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10496         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10497
10498         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10499                 PIPE_CONF_CHECK_I(pipe_bpp);
10500
10501         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10502         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10503
10504 #undef PIPE_CONF_CHECK_X
10505 #undef PIPE_CONF_CHECK_I
10506 #undef PIPE_CONF_CHECK_I_ALT
10507 #undef PIPE_CONF_CHECK_FLAGS
10508 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10509 #undef PIPE_CONF_QUIRK
10510
10511         return true;
10512 }
10513
10514 static void
10515 check_connector_state(struct drm_device *dev)
10516 {
10517         struct intel_connector *connector;
10518
10519         list_for_each_entry(connector, &dev->mode_config.connector_list,
10520                             base.head) {
10521                 /* This also checks the encoder/connector hw state with the
10522                  * ->get_hw_state callbacks. */
10523                 intel_connector_check_state(connector);
10524
10525                 WARN(&connector->new_encoder->base != connector->base.encoder,
10526                      "connector's staged encoder doesn't match current encoder\n");
10527         }
10528 }
10529
10530 static void
10531 check_encoder_state(struct drm_device *dev)
10532 {
10533         struct intel_encoder *encoder;
10534         struct intel_connector *connector;
10535
10536         for_each_intel_encoder(dev, encoder) {
10537                 bool enabled = false;
10538                 bool active = false;
10539                 enum pipe pipe, tracked_pipe;
10540
10541                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10542                               encoder->base.base.id,
10543                               encoder->base.name);
10544
10545                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10546                      "encoder's stage crtc doesn't match current crtc\n");
10547                 WARN(encoder->connectors_active && !encoder->base.crtc,
10548                      "encoder's active_connectors set, but no crtc\n");
10549
10550                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10551                                     base.head) {
10552                         if (connector->base.encoder != &encoder->base)
10553                                 continue;
10554                         enabled = true;
10555                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10556                                 active = true;
10557                 }
10558                 /*
10559                  * for MST connectors if we unplug the connector is gone
10560                  * away but the encoder is still connected to a crtc
10561                  * until a modeset happens in response to the hotplug.
10562                  */
10563                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10564                         continue;
10565
10566                 WARN(!!encoder->base.crtc != enabled,
10567                      "encoder's enabled state mismatch "
10568                      "(expected %i, found %i)\n",
10569                      !!encoder->base.crtc, enabled);
10570                 WARN(active && !encoder->base.crtc,
10571                      "active encoder with no crtc\n");
10572
10573                 WARN(encoder->connectors_active != active,
10574                      "encoder's computed active state doesn't match tracked active state "
10575                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10576
10577                 active = encoder->get_hw_state(encoder, &pipe);
10578                 WARN(active != encoder->connectors_active,
10579                      "encoder's hw state doesn't match sw tracking "
10580                      "(expected %i, found %i)\n",
10581                      encoder->connectors_active, active);
10582
10583                 if (!encoder->base.crtc)
10584                         continue;
10585
10586                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10587                 WARN(active && pipe != tracked_pipe,
10588                      "active encoder's pipe doesn't match"
10589                      "(expected %i, found %i)\n",
10590                      tracked_pipe, pipe);
10591
10592         }
10593 }
10594
10595 static void
10596 check_crtc_state(struct drm_device *dev)
10597 {
10598         struct drm_i915_private *dev_priv = dev->dev_private;
10599         struct intel_crtc *crtc;
10600         struct intel_encoder *encoder;
10601         struct intel_crtc_config pipe_config;
10602
10603         for_each_intel_crtc(dev, crtc) {
10604                 bool enabled = false;
10605                 bool active = false;
10606
10607                 memset(&pipe_config, 0, sizeof(pipe_config));
10608
10609                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10610                               crtc->base.base.id);
10611
10612                 WARN(crtc->active && !crtc->base.enabled,
10613                      "active crtc, but not enabled in sw tracking\n");
10614
10615                 for_each_intel_encoder(dev, encoder) {
10616                         if (encoder->base.crtc != &crtc->base)
10617                                 continue;
10618                         enabled = true;
10619                         if (encoder->connectors_active)
10620                                 active = true;
10621                 }
10622
10623                 WARN(active != crtc->active,
10624                      "crtc's computed active state doesn't match tracked active state "
10625                      "(expected %i, found %i)\n", active, crtc->active);
10626                 WARN(enabled != crtc->base.enabled,
10627                      "crtc's computed enabled state doesn't match tracked enabled state "
10628                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10629
10630                 active = dev_priv->display.get_pipe_config(crtc,
10631                                                            &pipe_config);
10632
10633                 /* hw state is inconsistent with the pipe quirk */
10634                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10635                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10636                         active = crtc->active;
10637
10638                 for_each_intel_encoder(dev, encoder) {
10639                         enum pipe pipe;
10640                         if (encoder->base.crtc != &crtc->base)
10641                                 continue;
10642                         if (encoder->get_hw_state(encoder, &pipe))
10643                                 encoder->get_config(encoder, &pipe_config);
10644                 }
10645
10646                 WARN(crtc->active != active,
10647                      "crtc active state doesn't match with hw state "
10648                      "(expected %i, found %i)\n", crtc->active, active);
10649
10650                 if (active &&
10651                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10652                         WARN(1, "pipe state doesn't match!\n");
10653                         intel_dump_pipe_config(crtc, &pipe_config,
10654                                                "[hw state]");
10655                         intel_dump_pipe_config(crtc, &crtc->config,
10656                                                "[sw state]");
10657                 }
10658         }
10659 }
10660
10661 static void
10662 check_shared_dpll_state(struct drm_device *dev)
10663 {
10664         struct drm_i915_private *dev_priv = dev->dev_private;
10665         struct intel_crtc *crtc;
10666         struct intel_dpll_hw_state dpll_hw_state;
10667         int i;
10668
10669         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10670                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10671                 int enabled_crtcs = 0, active_crtcs = 0;
10672                 bool active;
10673
10674                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10675
10676                 DRM_DEBUG_KMS("%s\n", pll->name);
10677
10678                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10679
10680                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10681                      "more active pll users than references: %i vs %i\n",
10682                      pll->active, hweight32(pll->config.crtc_mask));
10683                 WARN(pll->active && !pll->on,
10684                      "pll in active use but not on in sw tracking\n");
10685                 WARN(pll->on && !pll->active,
10686                      "pll in on but not on in use in sw tracking\n");
10687                 WARN(pll->on != active,
10688                      "pll on state mismatch (expected %i, found %i)\n",
10689                      pll->on, active);
10690
10691                 for_each_intel_crtc(dev, crtc) {
10692                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10693                                 enabled_crtcs++;
10694                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10695                                 active_crtcs++;
10696                 }
10697                 WARN(pll->active != active_crtcs,
10698                      "pll active crtcs mismatch (expected %i, found %i)\n",
10699                      pll->active, active_crtcs);
10700                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10701                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10702                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10703
10704                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10705                                        sizeof(dpll_hw_state)),
10706                      "pll hw state mismatch\n");
10707         }
10708 }
10709
10710 void
10711 intel_modeset_check_state(struct drm_device *dev)
10712 {
10713         check_connector_state(dev);
10714         check_encoder_state(dev);
10715         check_crtc_state(dev);
10716         check_shared_dpll_state(dev);
10717 }
10718
10719 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10720                                      int dotclock)
10721 {
10722         /*
10723          * FDI already provided one idea for the dotclock.
10724          * Yell if the encoder disagrees.
10725          */
10726         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10727              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10728              pipe_config->adjusted_mode.crtc_clock, dotclock);
10729 }
10730
10731 static void update_scanline_offset(struct intel_crtc *crtc)
10732 {
10733         struct drm_device *dev = crtc->base.dev;
10734
10735         /*
10736          * The scanline counter increments at the leading edge of hsync.
10737          *
10738          * On most platforms it starts counting from vtotal-1 on the
10739          * first active line. That means the scanline counter value is
10740          * always one less than what we would expect. Ie. just after
10741          * start of vblank, which also occurs at start of hsync (on the
10742          * last active line), the scanline counter will read vblank_start-1.
10743          *
10744          * On gen2 the scanline counter starts counting from 1 instead
10745          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10746          * to keep the value positive), instead of adding one.
10747          *
10748          * On HSW+ the behaviour of the scanline counter depends on the output
10749          * type. For DP ports it behaves like most other platforms, but on HDMI
10750          * there's an extra 1 line difference. So we need to add two instead of
10751          * one to the value.
10752          */
10753         if (IS_GEN2(dev)) {
10754                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10755                 int vtotal;
10756
10757                 vtotal = mode->crtc_vtotal;
10758                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10759                         vtotal /= 2;
10760
10761                 crtc->scanline_offset = vtotal - 1;
10762         } else if (HAS_DDI(dev) &&
10763                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10764                 crtc->scanline_offset = 2;
10765         } else
10766                 crtc->scanline_offset = 1;
10767 }
10768
10769 static int __intel_set_mode(struct drm_crtc *crtc,
10770                             struct drm_display_mode *mode,
10771                             int x, int y, struct drm_framebuffer *fb)
10772 {
10773         struct drm_device *dev = crtc->dev;
10774         struct drm_i915_private *dev_priv = dev->dev_private;
10775         struct drm_display_mode *saved_mode;
10776         struct intel_crtc_config *pipe_config = NULL;
10777         struct intel_crtc *intel_crtc;
10778         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10779         int ret = 0;
10780
10781         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10782         if (!saved_mode)
10783                 return -ENOMEM;
10784
10785         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10786                                      &prepare_pipes, &disable_pipes);
10787
10788         *saved_mode = crtc->mode;
10789
10790         /* Hack: Because we don't (yet) support global modeset on multiple
10791          * crtcs, we don't keep track of the new mode for more than one crtc.
10792          * Hence simply check whether any bit is set in modeset_pipes in all the
10793          * pieces of code that are not yet converted to deal with mutliple crtcs
10794          * changing their mode at the same time. */
10795         if (modeset_pipes) {
10796                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10797                 if (IS_ERR(pipe_config)) {
10798                         ret = PTR_ERR(pipe_config);
10799                         pipe_config = NULL;
10800
10801                         goto out;
10802                 }
10803                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10804                                        "[modeset]");
10805                 to_intel_crtc(crtc)->new_config = pipe_config;
10806         }
10807
10808         /*
10809          * See if the config requires any additional preparation, e.g.
10810          * to adjust global state with pipes off.  We need to do this
10811          * here so we can get the modeset_pipe updated config for the new
10812          * mode set on this crtc.  For other crtcs we need to use the
10813          * adjusted_mode bits in the crtc directly.
10814          */
10815         if (IS_VALLEYVIEW(dev)) {
10816                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10817
10818                 /* may have added more to prepare_pipes than we should */
10819                 prepare_pipes &= ~disable_pipes;
10820         }
10821
10822         if (dev_priv->display.crtc_compute_clock) {
10823                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10824
10825                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10826                 if (ret)
10827                         goto done;
10828
10829                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10830                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10831                         if (ret) {
10832                                 intel_shared_dpll_abort_config(dev_priv);
10833                                 goto done;
10834                         }
10835                 }
10836         }
10837
10838         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10839                 intel_crtc_disable(&intel_crtc->base);
10840
10841         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10842                 if (intel_crtc->base.enabled)
10843                         dev_priv->display.crtc_disable(&intel_crtc->base);
10844         }
10845
10846         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10847          * to set it here already despite that we pass it down the callchain.
10848          */
10849         if (modeset_pipes) {
10850                 crtc->mode = *mode;
10851                 /* mode_set/enable/disable functions rely on a correct pipe
10852                  * config. */
10853                 to_intel_crtc(crtc)->config = *pipe_config;
10854                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10855
10856                 /*
10857                  * Calculate and store various constants which
10858                  * are later needed by vblank and swap-completion
10859                  * timestamping. They are derived from true hwmode.
10860                  */
10861                 drm_calc_timestamping_constants(crtc,
10862                                                 &pipe_config->adjusted_mode);
10863         }
10864
10865         /* Only after disabling all output pipelines that will be changed can we
10866          * update the the output configuration. */
10867         intel_modeset_update_state(dev, prepare_pipes);
10868
10869         if (dev_priv->display.modeset_global_resources)
10870                 dev_priv->display.modeset_global_resources(dev);
10871
10872         /* Set up the DPLL and any encoders state that needs to adjust or depend
10873          * on the DPLL.
10874          */
10875         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10876                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10877                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10878                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10879
10880                 mutex_lock(&dev->struct_mutex);
10881                 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
10882                 if (ret != 0) {
10883                         DRM_ERROR("pin & fence failed\n");
10884                         mutex_unlock(&dev->struct_mutex);
10885                         goto done;
10886                 }
10887                 if (old_fb)
10888                         intel_unpin_fb_obj(old_obj);
10889                 i915_gem_track_fb(old_obj, obj,
10890                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10891                 mutex_unlock(&dev->struct_mutex);
10892
10893                 crtc->primary->fb = fb;
10894                 crtc->x = x;
10895                 crtc->y = y;
10896         }
10897
10898         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10899         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10900                 update_scanline_offset(intel_crtc);
10901
10902                 dev_priv->display.crtc_enable(&intel_crtc->base);
10903         }
10904
10905         /* FIXME: add subpixel order */
10906 done:
10907         if (ret && crtc->enabled)
10908                 crtc->mode = *saved_mode;
10909
10910 out:
10911         kfree(pipe_config);
10912         kfree(saved_mode);
10913         return ret;
10914 }
10915
10916 static int intel_set_mode(struct drm_crtc *crtc,
10917                           struct drm_display_mode *mode,
10918                           int x, int y, struct drm_framebuffer *fb)
10919 {
10920         int ret;
10921
10922         ret = __intel_set_mode(crtc, mode, x, y, fb);
10923
10924         if (ret == 0)
10925                 intel_modeset_check_state(crtc->dev);
10926
10927         return ret;
10928 }
10929
10930 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10931 {
10932         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10933 }
10934
10935 #undef for_each_intel_crtc_masked
10936
10937 static void intel_set_config_free(struct intel_set_config *config)
10938 {
10939         if (!config)
10940                 return;
10941
10942         kfree(config->save_connector_encoders);
10943         kfree(config->save_encoder_crtcs);
10944         kfree(config->save_crtc_enabled);
10945         kfree(config);
10946 }
10947
10948 static int intel_set_config_save_state(struct drm_device *dev,
10949                                        struct intel_set_config *config)
10950 {
10951         struct drm_crtc *crtc;
10952         struct drm_encoder *encoder;
10953         struct drm_connector *connector;
10954         int count;
10955
10956         config->save_crtc_enabled =
10957                 kcalloc(dev->mode_config.num_crtc,
10958                         sizeof(bool), GFP_KERNEL);
10959         if (!config->save_crtc_enabled)
10960                 return -ENOMEM;
10961
10962         config->save_encoder_crtcs =
10963                 kcalloc(dev->mode_config.num_encoder,
10964                         sizeof(struct drm_crtc *), GFP_KERNEL);
10965         if (!config->save_encoder_crtcs)
10966                 return -ENOMEM;
10967
10968         config->save_connector_encoders =
10969                 kcalloc(dev->mode_config.num_connector,
10970                         sizeof(struct drm_encoder *), GFP_KERNEL);
10971         if (!config->save_connector_encoders)
10972                 return -ENOMEM;
10973
10974         /* Copy data. Note that driver private data is not affected.
10975          * Should anything bad happen only the expected state is
10976          * restored, not the drivers personal bookkeeping.
10977          */
10978         count = 0;
10979         for_each_crtc(dev, crtc) {
10980                 config->save_crtc_enabled[count++] = crtc->enabled;
10981         }
10982
10983         count = 0;
10984         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10985                 config->save_encoder_crtcs[count++] = encoder->crtc;
10986         }
10987
10988         count = 0;
10989         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10990                 config->save_connector_encoders[count++] = connector->encoder;
10991         }
10992
10993         return 0;
10994 }
10995
10996 static void intel_set_config_restore_state(struct drm_device *dev,
10997                                            struct intel_set_config *config)
10998 {
10999         struct intel_crtc *crtc;
11000         struct intel_encoder *encoder;
11001         struct intel_connector *connector;
11002         int count;
11003
11004         count = 0;
11005         for_each_intel_crtc(dev, crtc) {
11006                 crtc->new_enabled = config->save_crtc_enabled[count++];
11007
11008                 if (crtc->new_enabled)
11009                         crtc->new_config = &crtc->config;
11010                 else
11011                         crtc->new_config = NULL;
11012         }
11013
11014         count = 0;
11015         for_each_intel_encoder(dev, encoder) {
11016                 encoder->new_crtc =
11017                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11018         }
11019
11020         count = 0;
11021         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11022                 connector->new_encoder =
11023                         to_intel_encoder(config->save_connector_encoders[count++]);
11024         }
11025 }
11026
11027 static bool
11028 is_crtc_connector_off(struct drm_mode_set *set)
11029 {
11030         int i;
11031
11032         if (set->num_connectors == 0)
11033                 return false;
11034
11035         if (WARN_ON(set->connectors == NULL))
11036                 return false;
11037
11038         for (i = 0; i < set->num_connectors; i++)
11039                 if (set->connectors[i]->encoder &&
11040                     set->connectors[i]->encoder->crtc == set->crtc &&
11041                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11042                         return true;
11043
11044         return false;
11045 }
11046
11047 static void
11048 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11049                                       struct intel_set_config *config)
11050 {
11051
11052         /* We should be able to check here if the fb has the same properties
11053          * and then just flip_or_move it */
11054         if (is_crtc_connector_off(set)) {
11055                 config->mode_changed = true;
11056         } else if (set->crtc->primary->fb != set->fb) {
11057                 /*
11058                  * If we have no fb, we can only flip as long as the crtc is
11059                  * active, otherwise we need a full mode set.  The crtc may
11060                  * be active if we've only disabled the primary plane, or
11061                  * in fastboot situations.
11062                  */
11063                 if (set->crtc->primary->fb == NULL) {
11064                         struct intel_crtc *intel_crtc =
11065                                 to_intel_crtc(set->crtc);
11066
11067                         if (intel_crtc->active) {
11068                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11069                                 config->fb_changed = true;
11070                         } else {
11071                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11072                                 config->mode_changed = true;
11073                         }
11074                 } else if (set->fb == NULL) {
11075                         config->mode_changed = true;
11076                 } else if (set->fb->pixel_format !=
11077                            set->crtc->primary->fb->pixel_format) {
11078                         config->mode_changed = true;
11079                 } else {
11080                         config->fb_changed = true;
11081                 }
11082         }
11083
11084         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11085                 config->fb_changed = true;
11086
11087         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11088                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11089                 drm_mode_debug_printmodeline(&set->crtc->mode);
11090                 drm_mode_debug_printmodeline(set->mode);
11091                 config->mode_changed = true;
11092         }
11093
11094         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11095                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11096 }
11097
11098 static int
11099 intel_modeset_stage_output_state(struct drm_device *dev,
11100                                  struct drm_mode_set *set,
11101                                  struct intel_set_config *config)
11102 {
11103         struct intel_connector *connector;
11104         struct intel_encoder *encoder;
11105         struct intel_crtc *crtc;
11106         int ro;
11107
11108         /* The upper layers ensure that we either disable a crtc or have a list
11109          * of connectors. For paranoia, double-check this. */
11110         WARN_ON(!set->fb && (set->num_connectors != 0));
11111         WARN_ON(set->fb && (set->num_connectors == 0));
11112
11113         list_for_each_entry(connector, &dev->mode_config.connector_list,
11114                             base.head) {
11115                 /* Otherwise traverse passed in connector list and get encoders
11116                  * for them. */
11117                 for (ro = 0; ro < set->num_connectors; ro++) {
11118                         if (set->connectors[ro] == &connector->base) {
11119                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11120                                 break;
11121                         }
11122                 }
11123
11124                 /* If we disable the crtc, disable all its connectors. Also, if
11125                  * the connector is on the changing crtc but not on the new
11126                  * connector list, disable it. */
11127                 if ((!set->fb || ro == set->num_connectors) &&
11128                     connector->base.encoder &&
11129                     connector->base.encoder->crtc == set->crtc) {
11130                         connector->new_encoder = NULL;
11131
11132                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11133                                 connector->base.base.id,
11134                                 connector->base.name);
11135                 }
11136
11137
11138                 if (&connector->new_encoder->base != connector->base.encoder) {
11139                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11140                         config->mode_changed = true;
11141                 }
11142         }
11143         /* connector->new_encoder is now updated for all connectors. */
11144
11145         /* Update crtc of enabled connectors. */
11146         list_for_each_entry(connector, &dev->mode_config.connector_list,
11147                             base.head) {
11148                 struct drm_crtc *new_crtc;
11149
11150                 if (!connector->new_encoder)
11151                         continue;
11152
11153                 new_crtc = connector->new_encoder->base.crtc;
11154
11155                 for (ro = 0; ro < set->num_connectors; ro++) {
11156                         if (set->connectors[ro] == &connector->base)
11157                                 new_crtc = set->crtc;
11158                 }
11159
11160                 /* Make sure the new CRTC will work with the encoder */
11161                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11162                                          new_crtc)) {
11163                         return -EINVAL;
11164                 }
11165                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11166
11167                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11168                         connector->base.base.id,
11169                         connector->base.name,
11170                         new_crtc->base.id);
11171         }
11172
11173         /* Check for any encoders that needs to be disabled. */
11174         for_each_intel_encoder(dev, encoder) {
11175                 int num_connectors = 0;
11176                 list_for_each_entry(connector,
11177                                     &dev->mode_config.connector_list,
11178                                     base.head) {
11179                         if (connector->new_encoder == encoder) {
11180                                 WARN_ON(!connector->new_encoder->new_crtc);
11181                                 num_connectors++;
11182                         }
11183                 }
11184
11185                 if (num_connectors == 0)
11186                         encoder->new_crtc = NULL;
11187                 else if (num_connectors > 1)
11188                         return -EINVAL;
11189
11190                 /* Only now check for crtc changes so we don't miss encoders
11191                  * that will be disabled. */
11192                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11193                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11194                         config->mode_changed = true;
11195                 }
11196         }
11197         /* Now we've also updated encoder->new_crtc for all encoders. */
11198         list_for_each_entry(connector, &dev->mode_config.connector_list,
11199                             base.head) {
11200                 if (connector->new_encoder)
11201                         if (connector->new_encoder != connector->encoder)
11202                                 connector->encoder = connector->new_encoder;
11203         }
11204         for_each_intel_crtc(dev, crtc) {
11205                 crtc->new_enabled = false;
11206
11207                 for_each_intel_encoder(dev, encoder) {
11208                         if (encoder->new_crtc == crtc) {
11209                                 crtc->new_enabled = true;
11210                                 break;
11211                         }
11212                 }
11213
11214                 if (crtc->new_enabled != crtc->base.enabled) {
11215                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11216                                       crtc->new_enabled ? "en" : "dis");
11217                         config->mode_changed = true;
11218                 }
11219
11220                 if (crtc->new_enabled)
11221                         crtc->new_config = &crtc->config;
11222                 else
11223                         crtc->new_config = NULL;
11224         }
11225
11226         return 0;
11227 }
11228
11229 static void disable_crtc_nofb(struct intel_crtc *crtc)
11230 {
11231         struct drm_device *dev = crtc->base.dev;
11232         struct intel_encoder *encoder;
11233         struct intel_connector *connector;
11234
11235         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11236                       pipe_name(crtc->pipe));
11237
11238         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11239                 if (connector->new_encoder &&
11240                     connector->new_encoder->new_crtc == crtc)
11241                         connector->new_encoder = NULL;
11242         }
11243
11244         for_each_intel_encoder(dev, encoder) {
11245                 if (encoder->new_crtc == crtc)
11246                         encoder->new_crtc = NULL;
11247         }
11248
11249         crtc->new_enabled = false;
11250         crtc->new_config = NULL;
11251 }
11252
11253 static int intel_crtc_set_config(struct drm_mode_set *set)
11254 {
11255         struct drm_device *dev;
11256         struct drm_mode_set save_set;
11257         struct intel_set_config *config;
11258         int ret;
11259
11260         BUG_ON(!set);
11261         BUG_ON(!set->crtc);
11262         BUG_ON(!set->crtc->helper_private);
11263
11264         /* Enforce sane interface api - has been abused by the fb helper. */
11265         BUG_ON(!set->mode && set->fb);
11266         BUG_ON(set->fb && set->num_connectors == 0);
11267
11268         if (set->fb) {
11269                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11270                                 set->crtc->base.id, set->fb->base.id,
11271                                 (int)set->num_connectors, set->x, set->y);
11272         } else {
11273                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11274         }
11275
11276         dev = set->crtc->dev;
11277
11278         ret = -ENOMEM;
11279         config = kzalloc(sizeof(*config), GFP_KERNEL);
11280         if (!config)
11281                 goto out_config;
11282
11283         ret = intel_set_config_save_state(dev, config);
11284         if (ret)
11285                 goto out_config;
11286
11287         save_set.crtc = set->crtc;
11288         save_set.mode = &set->crtc->mode;
11289         save_set.x = set->crtc->x;
11290         save_set.y = set->crtc->y;
11291         save_set.fb = set->crtc->primary->fb;
11292
11293         /* Compute whether we need a full modeset, only an fb base update or no
11294          * change at all. In the future we might also check whether only the
11295          * mode changed, e.g. for LVDS where we only change the panel fitter in
11296          * such cases. */
11297         intel_set_config_compute_mode_changes(set, config);
11298
11299         ret = intel_modeset_stage_output_state(dev, set, config);
11300         if (ret)
11301                 goto fail;
11302
11303         if (config->mode_changed) {
11304                 ret = intel_set_mode(set->crtc, set->mode,
11305                                      set->x, set->y, set->fb);
11306         } else if (config->fb_changed) {
11307                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11308
11309                 intel_crtc_wait_for_pending_flips(set->crtc);
11310
11311                 ret = intel_pipe_set_base(set->crtc,
11312                                           set->x, set->y, set->fb);
11313
11314                 /*
11315                  * We need to make sure the primary plane is re-enabled if it
11316                  * has previously been turned off.
11317                  */
11318                 if (!intel_crtc->primary_enabled && ret == 0) {
11319                         WARN_ON(!intel_crtc->active);
11320                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11321                 }
11322
11323                 /*
11324                  * In the fastboot case this may be our only check of the
11325                  * state after boot.  It would be better to only do it on
11326                  * the first update, but we don't have a nice way of doing that
11327                  * (and really, set_config isn't used much for high freq page
11328                  * flipping, so increasing its cost here shouldn't be a big
11329                  * deal).
11330                  */
11331                 if (i915.fastboot && ret == 0)
11332                         intel_modeset_check_state(set->crtc->dev);
11333         }
11334
11335         if (ret) {
11336                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11337                               set->crtc->base.id, ret);
11338 fail:
11339                 intel_set_config_restore_state(dev, config);
11340
11341                 /*
11342                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11343                  * force the pipe off to avoid oopsing in the modeset code
11344                  * due to fb==NULL. This should only happen during boot since
11345                  * we don't yet reconstruct the FB from the hardware state.
11346                  */
11347                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11348                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11349
11350                 /* Try to restore the config */
11351                 if (config->mode_changed &&
11352                     intel_set_mode(save_set.crtc, save_set.mode,
11353                                    save_set.x, save_set.y, save_set.fb))
11354                         DRM_ERROR("failed to restore config after modeset failure\n");
11355         }
11356
11357 out_config:
11358         intel_set_config_free(config);
11359         return ret;
11360 }
11361
11362 static const struct drm_crtc_funcs intel_crtc_funcs = {
11363         .gamma_set = intel_crtc_gamma_set,
11364         .set_config = intel_crtc_set_config,
11365         .destroy = intel_crtc_destroy,
11366         .page_flip = intel_crtc_page_flip,
11367 };
11368
11369 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11370                                       struct intel_shared_dpll *pll,
11371                                       struct intel_dpll_hw_state *hw_state)
11372 {
11373         uint32_t val;
11374
11375         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11376                 return false;
11377
11378         val = I915_READ(PCH_DPLL(pll->id));
11379         hw_state->dpll = val;
11380         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11381         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11382
11383         return val & DPLL_VCO_ENABLE;
11384 }
11385
11386 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11387                                   struct intel_shared_dpll *pll)
11388 {
11389         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11390         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11391 }
11392
11393 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11394                                 struct intel_shared_dpll *pll)
11395 {
11396         /* PCH refclock must be enabled first */
11397         ibx_assert_pch_refclk_enabled(dev_priv);
11398
11399         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11400
11401         /* Wait for the clocks to stabilize. */
11402         POSTING_READ(PCH_DPLL(pll->id));
11403         udelay(150);
11404
11405         /* The pixel multiplier can only be updated once the
11406          * DPLL is enabled and the clocks are stable.
11407          *
11408          * So write it again.
11409          */
11410         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11411         POSTING_READ(PCH_DPLL(pll->id));
11412         udelay(200);
11413 }
11414
11415 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11416                                  struct intel_shared_dpll *pll)
11417 {
11418         struct drm_device *dev = dev_priv->dev;
11419         struct intel_crtc *crtc;
11420
11421         /* Make sure no transcoder isn't still depending on us. */
11422         for_each_intel_crtc(dev, crtc) {
11423                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11424                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11425         }
11426
11427         I915_WRITE(PCH_DPLL(pll->id), 0);
11428         POSTING_READ(PCH_DPLL(pll->id));
11429         udelay(200);
11430 }
11431
11432 static char *ibx_pch_dpll_names[] = {
11433         "PCH DPLL A",
11434         "PCH DPLL B",
11435 };
11436
11437 static void ibx_pch_dpll_init(struct drm_device *dev)
11438 {
11439         struct drm_i915_private *dev_priv = dev->dev_private;
11440         int i;
11441
11442         dev_priv->num_shared_dpll = 2;
11443
11444         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11445                 dev_priv->shared_dplls[i].id = i;
11446                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11447                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11448                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11449                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11450                 dev_priv->shared_dplls[i].get_hw_state =
11451                         ibx_pch_dpll_get_hw_state;
11452         }
11453 }
11454
11455 static void intel_shared_dpll_init(struct drm_device *dev)
11456 {
11457         struct drm_i915_private *dev_priv = dev->dev_private;
11458
11459         if (HAS_DDI(dev))
11460                 intel_ddi_pll_init(dev);
11461         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11462                 ibx_pch_dpll_init(dev);
11463         else
11464                 dev_priv->num_shared_dpll = 0;
11465
11466         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11467 }
11468
11469 static int
11470 intel_primary_plane_disable(struct drm_plane *plane)
11471 {
11472         struct drm_device *dev = plane->dev;
11473         struct intel_crtc *intel_crtc;
11474
11475         if (!plane->fb)
11476                 return 0;
11477
11478         BUG_ON(!plane->crtc);
11479
11480         intel_crtc = to_intel_crtc(plane->crtc);
11481
11482         /*
11483          * Even though we checked plane->fb above, it's still possible that
11484          * the primary plane has been implicitly disabled because the crtc
11485          * coordinates given weren't visible, or because we detected
11486          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11487          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11488          * In either case, we need to unpin the FB and let the fb pointer get
11489          * updated, but otherwise we don't need to touch the hardware.
11490          */
11491         if (!intel_crtc->primary_enabled)
11492                 goto disable_unpin;
11493
11494         intel_crtc_wait_for_pending_flips(plane->crtc);
11495         intel_disable_primary_hw_plane(plane, plane->crtc);
11496
11497 disable_unpin:
11498         mutex_lock(&dev->struct_mutex);
11499         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11500                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11501         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11502         mutex_unlock(&dev->struct_mutex);
11503         plane->fb = NULL;
11504
11505         return 0;
11506 }
11507
11508 static int
11509 intel_check_primary_plane(struct drm_plane *plane,
11510                           struct intel_plane_state *state)
11511 {
11512         struct drm_crtc *crtc = state->crtc;
11513         struct drm_framebuffer *fb = state->fb;
11514         struct drm_rect *dest = &state->dst;
11515         struct drm_rect *src = &state->src;
11516         const struct drm_rect *clip = &state->clip;
11517
11518         return drm_plane_helper_check_update(plane, crtc, fb,
11519                                              src, dest, clip,
11520                                              DRM_PLANE_HELPER_NO_SCALING,
11521                                              DRM_PLANE_HELPER_NO_SCALING,
11522                                              false, true, &state->visible);
11523 }
11524
11525 static int
11526 intel_prepare_primary_plane(struct drm_plane *plane,
11527                             struct intel_plane_state *state)
11528 {
11529         struct drm_crtc *crtc = state->crtc;
11530         struct drm_framebuffer *fb = state->fb;
11531         struct drm_device *dev = crtc->dev;
11532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11533         enum pipe pipe = intel_crtc->pipe;
11534         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11535         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11536         int ret;
11537
11538         intel_crtc_wait_for_pending_flips(crtc);
11539
11540         if (intel_crtc_has_pending_flip(crtc)) {
11541                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11542                 return -EBUSY;
11543         }
11544
11545         if (old_obj != obj) {
11546                 mutex_lock(&dev->struct_mutex);
11547                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11548                 if (ret == 0)
11549                         i915_gem_track_fb(old_obj, obj,
11550                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11551                 mutex_unlock(&dev->struct_mutex);
11552                 if (ret != 0) {
11553                         DRM_DEBUG_KMS("pin & fence failed\n");
11554                         return ret;
11555                 }
11556         }
11557
11558         return 0;
11559 }
11560
11561 static void
11562 intel_commit_primary_plane(struct drm_plane *plane,
11563                            struct intel_plane_state *state)
11564 {
11565         struct drm_crtc *crtc = state->crtc;
11566         struct drm_framebuffer *fb = state->fb;
11567         struct drm_device *dev = crtc->dev;
11568         struct drm_i915_private *dev_priv = dev->dev_private;
11569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11570         enum pipe pipe = intel_crtc->pipe;
11571         struct drm_framebuffer *old_fb = plane->fb;
11572         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11573         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11574         struct intel_plane *intel_plane = to_intel_plane(plane);
11575         struct drm_rect *src = &state->src;
11576
11577         crtc->primary->fb = fb;
11578         crtc->x = src->x1;
11579         crtc->y = src->y1;
11580
11581         intel_plane->crtc_x = state->orig_dst.x1;
11582         intel_plane->crtc_y = state->orig_dst.y1;
11583         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11584         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11585         intel_plane->src_x = state->orig_src.x1;
11586         intel_plane->src_y = state->orig_src.y1;
11587         intel_plane->src_w = drm_rect_width(&state->orig_src);
11588         intel_plane->src_h = drm_rect_height(&state->orig_src);
11589         intel_plane->obj = obj;
11590
11591         if (intel_crtc->active) {
11592                 /*
11593                  * FBC does not work on some platforms for rotated
11594                  * planes, so disable it when rotation is not 0 and
11595                  * update it when rotation is set back to 0.
11596                  *
11597                  * FIXME: This is redundant with the fbc update done in
11598                  * the primary plane enable function except that that
11599                  * one is done too late. We eventually need to unify
11600                  * this.
11601                  */
11602                 if (intel_crtc->primary_enabled &&
11603                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11604                     dev_priv->fbc.plane == intel_crtc->plane &&
11605                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11606                         intel_disable_fbc(dev);
11607                 }
11608
11609                 if (state->visible) {
11610                         bool was_enabled = intel_crtc->primary_enabled;
11611
11612                         /* FIXME: kill this fastboot hack */
11613                         intel_update_pipe_size(intel_crtc);
11614
11615                         intel_crtc->primary_enabled = true;
11616
11617                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11618                                         crtc->x, crtc->y);
11619
11620                         /*
11621                          * BDW signals flip done immediately if the plane
11622                          * is disabled, even if the plane enable is already
11623                          * armed to occur at the next vblank :(
11624                          */
11625                         if (IS_BROADWELL(dev) && !was_enabled)
11626                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11627                 } else {
11628                         /*
11629                          * If clipping results in a non-visible primary plane,
11630                          * we'll disable the primary plane.  Note that this is
11631                          * a bit different than what happens if userspace
11632                          * explicitly disables the plane by passing fb=0
11633                          * because plane->fb still gets set and pinned.
11634                          */
11635                         intel_disable_primary_hw_plane(plane, crtc);
11636                 }
11637
11638                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11639
11640                 mutex_lock(&dev->struct_mutex);
11641                 intel_update_fbc(dev);
11642                 mutex_unlock(&dev->struct_mutex);
11643         }
11644
11645         if (old_fb && old_fb != fb) {
11646                 if (intel_crtc->active)
11647                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11648
11649                 mutex_lock(&dev->struct_mutex);
11650                 intel_unpin_fb_obj(old_obj);
11651                 mutex_unlock(&dev->struct_mutex);
11652         }
11653 }
11654
11655 static int
11656 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11657                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11658                              unsigned int crtc_w, unsigned int crtc_h,
11659                              uint32_t src_x, uint32_t src_y,
11660                              uint32_t src_w, uint32_t src_h)
11661 {
11662         struct intel_plane_state state;
11663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11664         int ret;
11665
11666         state.crtc = crtc;
11667         state.fb = fb;
11668
11669         /* sample coordinates in 16.16 fixed point */
11670         state.src.x1 = src_x;
11671         state.src.x2 = src_x + src_w;
11672         state.src.y1 = src_y;
11673         state.src.y2 = src_y + src_h;
11674
11675         /* integer pixels */
11676         state.dst.x1 = crtc_x;
11677         state.dst.x2 = crtc_x + crtc_w;
11678         state.dst.y1 = crtc_y;
11679         state.dst.y2 = crtc_y + crtc_h;
11680
11681         state.clip.x1 = 0;
11682         state.clip.y1 = 0;
11683         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11684         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11685
11686         state.orig_src = state.src;
11687         state.orig_dst = state.dst;
11688
11689         ret = intel_check_primary_plane(plane, &state);
11690         if (ret)
11691                 return ret;
11692
11693         ret = intel_prepare_primary_plane(plane, &state);
11694         if (ret)
11695                 return ret;
11696
11697         intel_commit_primary_plane(plane, &state);
11698
11699         return 0;
11700 }
11701
11702 /* Common destruction function for both primary and cursor planes */
11703 static void intel_plane_destroy(struct drm_plane *plane)
11704 {
11705         struct intel_plane *intel_plane = to_intel_plane(plane);
11706         drm_plane_cleanup(plane);
11707         kfree(intel_plane);
11708 }
11709
11710 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11711         .update_plane = intel_primary_plane_setplane,
11712         .disable_plane = intel_primary_plane_disable,
11713         .destroy = intel_plane_destroy,
11714         .set_property = intel_plane_set_property
11715 };
11716
11717 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11718                                                     int pipe)
11719 {
11720         struct intel_plane *primary;
11721         const uint32_t *intel_primary_formats;
11722         int num_formats;
11723
11724         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11725         if (primary == NULL)
11726                 return NULL;
11727
11728         primary->can_scale = false;
11729         primary->max_downscale = 1;
11730         primary->pipe = pipe;
11731         primary->plane = pipe;
11732         primary->rotation = BIT(DRM_ROTATE_0);
11733         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11734                 primary->plane = !pipe;
11735
11736         if (INTEL_INFO(dev)->gen <= 3) {
11737                 intel_primary_formats = intel_primary_formats_gen2;
11738                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11739         } else {
11740                 intel_primary_formats = intel_primary_formats_gen4;
11741                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11742         }
11743
11744         drm_universal_plane_init(dev, &primary->base, 0,
11745                                  &intel_primary_plane_funcs,
11746                                  intel_primary_formats, num_formats,
11747                                  DRM_PLANE_TYPE_PRIMARY);
11748
11749         if (INTEL_INFO(dev)->gen >= 4) {
11750                 if (!dev->mode_config.rotation_property)
11751                         dev->mode_config.rotation_property =
11752                                 drm_mode_create_rotation_property(dev,
11753                                                         BIT(DRM_ROTATE_0) |
11754                                                         BIT(DRM_ROTATE_180));
11755                 if (dev->mode_config.rotation_property)
11756                         drm_object_attach_property(&primary->base.base,
11757                                 dev->mode_config.rotation_property,
11758                                 primary->rotation);
11759         }
11760
11761         return &primary->base;
11762 }
11763
11764 static int
11765 intel_cursor_plane_disable(struct drm_plane *plane)
11766 {
11767         if (!plane->fb)
11768                 return 0;
11769
11770         BUG_ON(!plane->crtc);
11771
11772         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11773 }
11774
11775 static int
11776 intel_check_cursor_plane(struct drm_plane *plane,
11777                          struct intel_plane_state *state)
11778 {
11779         struct drm_crtc *crtc = state->crtc;
11780         struct drm_device *dev = crtc->dev;
11781         struct drm_framebuffer *fb = state->fb;
11782         struct drm_rect *dest = &state->dst;
11783         struct drm_rect *src = &state->src;
11784         const struct drm_rect *clip = &state->clip;
11785         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11786         int crtc_w, crtc_h;
11787         unsigned stride;
11788         int ret;
11789
11790         ret = drm_plane_helper_check_update(plane, crtc, fb,
11791                                             src, dest, clip,
11792                                             DRM_PLANE_HELPER_NO_SCALING,
11793                                             DRM_PLANE_HELPER_NO_SCALING,
11794                                             true, true, &state->visible);
11795         if (ret)
11796                 return ret;
11797
11798
11799         /* if we want to turn off the cursor ignore width and height */
11800         if (!obj)
11801                 return 0;
11802
11803         /* Check for which cursor types we support */
11804         crtc_w = drm_rect_width(&state->orig_dst);
11805         crtc_h = drm_rect_height(&state->orig_dst);
11806         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11807                 DRM_DEBUG("Cursor dimension not supported\n");
11808                 return -EINVAL;
11809         }
11810
11811         stride = roundup_pow_of_two(crtc_w) * 4;
11812         if (obj->base.size < stride * crtc_h) {
11813                 DRM_DEBUG_KMS("buffer is too small\n");
11814                 return -ENOMEM;
11815         }
11816
11817         if (fb == crtc->cursor->fb)
11818                 return 0;
11819
11820         /* we only need to pin inside GTT if cursor is non-phy */
11821         mutex_lock(&dev->struct_mutex);
11822         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11823                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11824                 ret = -EINVAL;
11825         }
11826         mutex_unlock(&dev->struct_mutex);
11827
11828         return ret;
11829 }
11830
11831 static int
11832 intel_commit_cursor_plane(struct drm_plane *plane,
11833                           struct intel_plane_state *state)
11834 {
11835         struct drm_crtc *crtc = state->crtc;
11836         struct drm_framebuffer *fb = state->fb;
11837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11838         struct intel_plane *intel_plane = to_intel_plane(plane);
11839         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11840         struct drm_i915_gem_object *obj = intel_fb->obj;
11841         int crtc_w, crtc_h;
11842
11843         crtc->cursor_x = state->orig_dst.x1;
11844         crtc->cursor_y = state->orig_dst.y1;
11845
11846         intel_plane->crtc_x = state->orig_dst.x1;
11847         intel_plane->crtc_y = state->orig_dst.y1;
11848         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11849         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11850         intel_plane->src_x = state->orig_src.x1;
11851         intel_plane->src_y = state->orig_src.y1;
11852         intel_plane->src_w = drm_rect_width(&state->orig_src);
11853         intel_plane->src_h = drm_rect_height(&state->orig_src);
11854         intel_plane->obj = obj;
11855
11856         if (fb != crtc->cursor->fb) {
11857                 crtc_w = drm_rect_width(&state->orig_dst);
11858                 crtc_h = drm_rect_height(&state->orig_dst);
11859                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11860         } else {
11861                 intel_crtc_update_cursor(crtc, state->visible);
11862
11863                 intel_frontbuffer_flip(crtc->dev,
11864                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11865
11866                 return 0;
11867         }
11868 }
11869
11870 static int
11871 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11872                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11873                           unsigned int crtc_w, unsigned int crtc_h,
11874                           uint32_t src_x, uint32_t src_y,
11875                           uint32_t src_w, uint32_t src_h)
11876 {
11877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11878         struct intel_plane_state state;
11879         int ret;
11880
11881         state.crtc = crtc;
11882         state.fb = fb;
11883
11884         /* sample coordinates in 16.16 fixed point */
11885         state.src.x1 = src_x;
11886         state.src.x2 = src_x + src_w;
11887         state.src.y1 = src_y;
11888         state.src.y2 = src_y + src_h;
11889
11890         /* integer pixels */
11891         state.dst.x1 = crtc_x;
11892         state.dst.x2 = crtc_x + crtc_w;
11893         state.dst.y1 = crtc_y;
11894         state.dst.y2 = crtc_y + crtc_h;
11895
11896         state.clip.x1 = 0;
11897         state.clip.y1 = 0;
11898         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11899         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11900
11901         state.orig_src = state.src;
11902         state.orig_dst = state.dst;
11903
11904         ret = intel_check_cursor_plane(plane, &state);
11905         if (ret)
11906                 return ret;
11907
11908         return intel_commit_cursor_plane(plane, &state);
11909 }
11910
11911 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11912         .update_plane = intel_cursor_plane_update,
11913         .disable_plane = intel_cursor_plane_disable,
11914         .destroy = intel_plane_destroy,
11915         .set_property = intel_plane_set_property,
11916 };
11917
11918 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11919                                                    int pipe)
11920 {
11921         struct intel_plane *cursor;
11922
11923         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11924         if (cursor == NULL)
11925                 return NULL;
11926
11927         cursor->can_scale = false;
11928         cursor->max_downscale = 1;
11929         cursor->pipe = pipe;
11930         cursor->plane = pipe;
11931         cursor->rotation = BIT(DRM_ROTATE_0);
11932
11933         drm_universal_plane_init(dev, &cursor->base, 0,
11934                                  &intel_cursor_plane_funcs,
11935                                  intel_cursor_formats,
11936                                  ARRAY_SIZE(intel_cursor_formats),
11937                                  DRM_PLANE_TYPE_CURSOR);
11938
11939         if (INTEL_INFO(dev)->gen >= 4) {
11940                 if (!dev->mode_config.rotation_property)
11941                         dev->mode_config.rotation_property =
11942                                 drm_mode_create_rotation_property(dev,
11943                                                         BIT(DRM_ROTATE_0) |
11944                                                         BIT(DRM_ROTATE_180));
11945                 if (dev->mode_config.rotation_property)
11946                         drm_object_attach_property(&cursor->base.base,
11947                                 dev->mode_config.rotation_property,
11948                                 cursor->rotation);
11949         }
11950
11951         return &cursor->base;
11952 }
11953
11954 static void intel_crtc_init(struct drm_device *dev, int pipe)
11955 {
11956         struct drm_i915_private *dev_priv = dev->dev_private;
11957         struct intel_crtc *intel_crtc;
11958         struct drm_plane *primary = NULL;
11959         struct drm_plane *cursor = NULL;
11960         int i, ret;
11961
11962         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11963         if (intel_crtc == NULL)
11964                 return;
11965
11966         primary = intel_primary_plane_create(dev, pipe);
11967         if (!primary)
11968                 goto fail;
11969
11970         cursor = intel_cursor_plane_create(dev, pipe);
11971         if (!cursor)
11972                 goto fail;
11973
11974         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11975                                         cursor, &intel_crtc_funcs);
11976         if (ret)
11977                 goto fail;
11978
11979         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11980         for (i = 0; i < 256; i++) {
11981                 intel_crtc->lut_r[i] = i;
11982                 intel_crtc->lut_g[i] = i;
11983                 intel_crtc->lut_b[i] = i;
11984         }
11985
11986         /*
11987          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11988          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11989          */
11990         intel_crtc->pipe = pipe;
11991         intel_crtc->plane = pipe;
11992         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11993                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11994                 intel_crtc->plane = !pipe;
11995         }
11996
11997         intel_crtc->cursor_base = ~0;
11998         intel_crtc->cursor_cntl = ~0;
11999         intel_crtc->cursor_size = ~0;
12000
12001         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12002                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12003         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12004         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12005
12006         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12007
12008         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12009
12010         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12011         return;
12012
12013 fail:
12014         if (primary)
12015                 drm_plane_cleanup(primary);
12016         if (cursor)
12017                 drm_plane_cleanup(cursor);
12018         kfree(intel_crtc);
12019 }
12020
12021 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12022 {
12023         struct drm_encoder *encoder = connector->base.encoder;
12024         struct drm_device *dev = connector->base.dev;
12025
12026         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12027
12028         if (!encoder)
12029                 return INVALID_PIPE;
12030
12031         return to_intel_crtc(encoder->crtc)->pipe;
12032 }
12033
12034 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12035                                 struct drm_file *file)
12036 {
12037         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12038         struct drm_crtc *drmmode_crtc;
12039         struct intel_crtc *crtc;
12040
12041         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12042                 return -ENODEV;
12043
12044         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12045
12046         if (!drmmode_crtc) {
12047                 DRM_ERROR("no such CRTC id\n");
12048                 return -ENOENT;
12049         }
12050
12051         crtc = to_intel_crtc(drmmode_crtc);
12052         pipe_from_crtc_id->pipe = crtc->pipe;
12053
12054         return 0;
12055 }
12056
12057 static int intel_encoder_clones(struct intel_encoder *encoder)
12058 {
12059         struct drm_device *dev = encoder->base.dev;
12060         struct intel_encoder *source_encoder;
12061         int index_mask = 0;
12062         int entry = 0;
12063
12064         for_each_intel_encoder(dev, source_encoder) {
12065                 if (encoders_cloneable(encoder, source_encoder))
12066                         index_mask |= (1 << entry);
12067
12068                 entry++;
12069         }
12070
12071         return index_mask;
12072 }
12073
12074 static bool has_edp_a(struct drm_device *dev)
12075 {
12076         struct drm_i915_private *dev_priv = dev->dev_private;
12077
12078         if (!IS_MOBILE(dev))
12079                 return false;
12080
12081         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12082                 return false;
12083
12084         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12085                 return false;
12086
12087         return true;
12088 }
12089
12090 const char *intel_output_name(int output)
12091 {
12092         static const char *names[] = {
12093                 [INTEL_OUTPUT_UNUSED] = "Unused",
12094                 [INTEL_OUTPUT_ANALOG] = "Analog",
12095                 [INTEL_OUTPUT_DVO] = "DVO",
12096                 [INTEL_OUTPUT_SDVO] = "SDVO",
12097                 [INTEL_OUTPUT_LVDS] = "LVDS",
12098                 [INTEL_OUTPUT_TVOUT] = "TV",
12099                 [INTEL_OUTPUT_HDMI] = "HDMI",
12100                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12101                 [INTEL_OUTPUT_EDP] = "eDP",
12102                 [INTEL_OUTPUT_DSI] = "DSI",
12103                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12104         };
12105
12106         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12107                 return "Invalid";
12108
12109         return names[output];
12110 }
12111
12112 static bool intel_crt_present(struct drm_device *dev)
12113 {
12114         struct drm_i915_private *dev_priv = dev->dev_private;
12115
12116         if (INTEL_INFO(dev)->gen >= 9)
12117                 return false;
12118
12119         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12120                 return false;
12121
12122         if (IS_CHERRYVIEW(dev))
12123                 return false;
12124
12125         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12126                 return false;
12127
12128         return true;
12129 }
12130
12131 static void intel_setup_outputs(struct drm_device *dev)
12132 {
12133         struct drm_i915_private *dev_priv = dev->dev_private;
12134         struct intel_encoder *encoder;
12135         bool dpd_is_edp = false;
12136
12137         intel_lvds_init(dev);
12138
12139         if (intel_crt_present(dev))
12140                 intel_crt_init(dev);
12141
12142         if (HAS_DDI(dev)) {
12143                 int found;
12144
12145                 /* Haswell uses DDI functions to detect digital outputs */
12146                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12147                 /* DDI A only supports eDP */
12148                 if (found)
12149                         intel_ddi_init(dev, PORT_A);
12150
12151                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12152                  * register */
12153                 found = I915_READ(SFUSE_STRAP);
12154
12155                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12156                         intel_ddi_init(dev, PORT_B);
12157                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12158                         intel_ddi_init(dev, PORT_C);
12159                 if (found & SFUSE_STRAP_DDID_DETECTED)
12160                         intel_ddi_init(dev, PORT_D);
12161         } else if (HAS_PCH_SPLIT(dev)) {
12162                 int found;
12163                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12164
12165                 if (has_edp_a(dev))
12166                         intel_dp_init(dev, DP_A, PORT_A);
12167
12168                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12169                         /* PCH SDVOB multiplex with HDMIB */
12170                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12171                         if (!found)
12172                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12173                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12174                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12175                 }
12176
12177                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12178                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12179
12180                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12181                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12182
12183                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12184                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12185
12186                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12187                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12188         } else if (IS_VALLEYVIEW(dev)) {
12189                 /*
12190                  * The DP_DETECTED bit is the latched state of the DDC
12191                  * SDA pin at boot. However since eDP doesn't require DDC
12192                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12193                  * eDP ports may have been muxed to an alternate function.
12194                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12195                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12196                  * detect eDP ports.
12197                  */
12198                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12199                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12200                                         PORT_B);
12201                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12202                     intel_dp_is_edp(dev, PORT_B))
12203                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12204
12205                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12206                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12207                                         PORT_C);
12208                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12209                     intel_dp_is_edp(dev, PORT_C))
12210                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12211
12212                 if (IS_CHERRYVIEW(dev)) {
12213                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12214                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12215                                                 PORT_D);
12216                         /* eDP not supported on port D, so don't check VBT */
12217                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12218                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12219                 }
12220
12221                 intel_dsi_init(dev);
12222         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12223                 bool found = false;
12224
12225                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12226                         DRM_DEBUG_KMS("probing SDVOB\n");
12227                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12228                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12229                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12230                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12231                         }
12232
12233                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12234                                 intel_dp_init(dev, DP_B, PORT_B);
12235                 }
12236
12237                 /* Before G4X SDVOC doesn't have its own detect register */
12238
12239                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12240                         DRM_DEBUG_KMS("probing SDVOC\n");
12241                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12242                 }
12243
12244                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12245
12246                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12247                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12248                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12249                         }
12250                         if (SUPPORTS_INTEGRATED_DP(dev))
12251                                 intel_dp_init(dev, DP_C, PORT_C);
12252                 }
12253
12254                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12255                     (I915_READ(DP_D) & DP_DETECTED))
12256                         intel_dp_init(dev, DP_D, PORT_D);
12257         } else if (IS_GEN2(dev))
12258                 intel_dvo_init(dev);
12259
12260         if (SUPPORTS_TV(dev))
12261                 intel_tv_init(dev);
12262
12263         intel_edp_psr_init(dev);
12264
12265         for_each_intel_encoder(dev, encoder) {
12266                 encoder->base.possible_crtcs = encoder->crtc_mask;
12267                 encoder->base.possible_clones =
12268                         intel_encoder_clones(encoder);
12269         }
12270
12271         intel_init_pch_refclk(dev);
12272
12273         drm_helper_move_panel_connectors_to_head(dev);
12274 }
12275
12276 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12277 {
12278         struct drm_device *dev = fb->dev;
12279         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12280
12281         drm_framebuffer_cleanup(fb);
12282         mutex_lock(&dev->struct_mutex);
12283         WARN_ON(!intel_fb->obj->framebuffer_references--);
12284         drm_gem_object_unreference(&intel_fb->obj->base);
12285         mutex_unlock(&dev->struct_mutex);
12286         kfree(intel_fb);
12287 }
12288
12289 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12290                                                 struct drm_file *file,
12291                                                 unsigned int *handle)
12292 {
12293         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12294         struct drm_i915_gem_object *obj = intel_fb->obj;
12295
12296         return drm_gem_handle_create(file, &obj->base, handle);
12297 }
12298
12299 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12300         .destroy = intel_user_framebuffer_destroy,
12301         .create_handle = intel_user_framebuffer_create_handle,
12302 };
12303
12304 static int intel_framebuffer_init(struct drm_device *dev,
12305                                   struct intel_framebuffer *intel_fb,
12306                                   struct drm_mode_fb_cmd2 *mode_cmd,
12307                                   struct drm_i915_gem_object *obj)
12308 {
12309         int aligned_height;
12310         int pitch_limit;
12311         int ret;
12312
12313         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12314
12315         if (obj->tiling_mode == I915_TILING_Y) {
12316                 DRM_DEBUG("hardware does not support tiling Y\n");
12317                 return -EINVAL;
12318         }
12319
12320         if (mode_cmd->pitches[0] & 63) {
12321                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12322                           mode_cmd->pitches[0]);
12323                 return -EINVAL;
12324         }
12325
12326         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12327                 pitch_limit = 32*1024;
12328         } else if (INTEL_INFO(dev)->gen >= 4) {
12329                 if (obj->tiling_mode)
12330                         pitch_limit = 16*1024;
12331                 else
12332                         pitch_limit = 32*1024;
12333         } else if (INTEL_INFO(dev)->gen >= 3) {
12334                 if (obj->tiling_mode)
12335                         pitch_limit = 8*1024;
12336                 else
12337                         pitch_limit = 16*1024;
12338         } else
12339                 /* XXX DSPC is limited to 4k tiled */
12340                 pitch_limit = 8*1024;
12341
12342         if (mode_cmd->pitches[0] > pitch_limit) {
12343                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12344                           obj->tiling_mode ? "tiled" : "linear",
12345                           mode_cmd->pitches[0], pitch_limit);
12346                 return -EINVAL;
12347         }
12348
12349         if (obj->tiling_mode != I915_TILING_NONE &&
12350             mode_cmd->pitches[0] != obj->stride) {
12351                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12352                           mode_cmd->pitches[0], obj->stride);
12353                 return -EINVAL;
12354         }
12355
12356         /* Reject formats not supported by any plane early. */
12357         switch (mode_cmd->pixel_format) {
12358         case DRM_FORMAT_C8:
12359         case DRM_FORMAT_RGB565:
12360         case DRM_FORMAT_XRGB8888:
12361         case DRM_FORMAT_ARGB8888:
12362                 break;
12363         case DRM_FORMAT_XRGB1555:
12364         case DRM_FORMAT_ARGB1555:
12365                 if (INTEL_INFO(dev)->gen > 3) {
12366                         DRM_DEBUG("unsupported pixel format: %s\n",
12367                                   drm_get_format_name(mode_cmd->pixel_format));
12368                         return -EINVAL;
12369                 }
12370                 break;
12371         case DRM_FORMAT_XBGR8888:
12372         case DRM_FORMAT_ABGR8888:
12373         case DRM_FORMAT_XRGB2101010:
12374         case DRM_FORMAT_ARGB2101010:
12375         case DRM_FORMAT_XBGR2101010:
12376         case DRM_FORMAT_ABGR2101010:
12377                 if (INTEL_INFO(dev)->gen < 4) {
12378                         DRM_DEBUG("unsupported pixel format: %s\n",
12379                                   drm_get_format_name(mode_cmd->pixel_format));
12380                         return -EINVAL;
12381                 }
12382                 break;
12383         case DRM_FORMAT_YUYV:
12384         case DRM_FORMAT_UYVY:
12385         case DRM_FORMAT_YVYU:
12386         case DRM_FORMAT_VYUY:
12387                 if (INTEL_INFO(dev)->gen < 5) {
12388                         DRM_DEBUG("unsupported pixel format: %s\n",
12389                                   drm_get_format_name(mode_cmd->pixel_format));
12390                         return -EINVAL;
12391                 }
12392                 break;
12393         default:
12394                 DRM_DEBUG("unsupported pixel format: %s\n",
12395                           drm_get_format_name(mode_cmd->pixel_format));
12396                 return -EINVAL;
12397         }
12398
12399         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12400         if (mode_cmd->offsets[0] != 0)
12401                 return -EINVAL;
12402
12403         aligned_height = intel_align_height(dev, mode_cmd->height,
12404                                             obj->tiling_mode);
12405         /* FIXME drm helper for size checks (especially planar formats)? */
12406         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12407                 return -EINVAL;
12408
12409         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12410         intel_fb->obj = obj;
12411         intel_fb->obj->framebuffer_references++;
12412
12413         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12414         if (ret) {
12415                 DRM_ERROR("framebuffer init failed %d\n", ret);
12416                 return ret;
12417         }
12418
12419         return 0;
12420 }
12421
12422 static struct drm_framebuffer *
12423 intel_user_framebuffer_create(struct drm_device *dev,
12424                               struct drm_file *filp,
12425                               struct drm_mode_fb_cmd2 *mode_cmd)
12426 {
12427         struct drm_i915_gem_object *obj;
12428
12429         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12430                                                 mode_cmd->handles[0]));
12431         if (&obj->base == NULL)
12432                 return ERR_PTR(-ENOENT);
12433
12434         return intel_framebuffer_create(dev, mode_cmd, obj);
12435 }
12436
12437 #ifndef CONFIG_DRM_I915_FBDEV
12438 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12439 {
12440 }
12441 #endif
12442
12443 static const struct drm_mode_config_funcs intel_mode_funcs = {
12444         .fb_create = intel_user_framebuffer_create,
12445         .output_poll_changed = intel_fbdev_output_poll_changed,
12446 };
12447
12448 /* Set up chip specific display functions */
12449 static void intel_init_display(struct drm_device *dev)
12450 {
12451         struct drm_i915_private *dev_priv = dev->dev_private;
12452
12453         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12454                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12455         else if (IS_CHERRYVIEW(dev))
12456                 dev_priv->display.find_dpll = chv_find_best_dpll;
12457         else if (IS_VALLEYVIEW(dev))
12458                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12459         else if (IS_PINEVIEW(dev))
12460                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12461         else
12462                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12463
12464         if (HAS_DDI(dev)) {
12465                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12466                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12467                 dev_priv->display.crtc_compute_clock =
12468                         haswell_crtc_compute_clock;
12469                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12470                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12471                 dev_priv->display.off = ironlake_crtc_off;
12472                 if (INTEL_INFO(dev)->gen >= 9)
12473                         dev_priv->display.update_primary_plane =
12474                                 skylake_update_primary_plane;
12475                 else
12476                         dev_priv->display.update_primary_plane =
12477                                 ironlake_update_primary_plane;
12478         } else if (HAS_PCH_SPLIT(dev)) {
12479                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12480                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12481                 dev_priv->display.crtc_compute_clock =
12482                         ironlake_crtc_compute_clock;
12483                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12484                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12485                 dev_priv->display.off = ironlake_crtc_off;
12486                 dev_priv->display.update_primary_plane =
12487                         ironlake_update_primary_plane;
12488         } else if (IS_VALLEYVIEW(dev)) {
12489                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12490                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12491                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12492                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12493                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12494                 dev_priv->display.off = i9xx_crtc_off;
12495                 dev_priv->display.update_primary_plane =
12496                         i9xx_update_primary_plane;
12497         } else {
12498                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12499                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12500                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12501                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12502                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12503                 dev_priv->display.off = i9xx_crtc_off;
12504                 dev_priv->display.update_primary_plane =
12505                         i9xx_update_primary_plane;
12506         }
12507
12508         /* Returns the core display clock speed */
12509         if (IS_VALLEYVIEW(dev))
12510                 dev_priv->display.get_display_clock_speed =
12511                         valleyview_get_display_clock_speed;
12512         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12513                 dev_priv->display.get_display_clock_speed =
12514                         i945_get_display_clock_speed;
12515         else if (IS_I915G(dev))
12516                 dev_priv->display.get_display_clock_speed =
12517                         i915_get_display_clock_speed;
12518         else if (IS_I945GM(dev) || IS_845G(dev))
12519                 dev_priv->display.get_display_clock_speed =
12520                         i9xx_misc_get_display_clock_speed;
12521         else if (IS_PINEVIEW(dev))
12522                 dev_priv->display.get_display_clock_speed =
12523                         pnv_get_display_clock_speed;
12524         else if (IS_I915GM(dev))
12525                 dev_priv->display.get_display_clock_speed =
12526                         i915gm_get_display_clock_speed;
12527         else if (IS_I865G(dev))
12528                 dev_priv->display.get_display_clock_speed =
12529                         i865_get_display_clock_speed;
12530         else if (IS_I85X(dev))
12531                 dev_priv->display.get_display_clock_speed =
12532                         i855_get_display_clock_speed;
12533         else /* 852, 830 */
12534                 dev_priv->display.get_display_clock_speed =
12535                         i830_get_display_clock_speed;
12536
12537         if (IS_GEN5(dev)) {
12538                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12539         } else if (IS_GEN6(dev)) {
12540                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12541                 dev_priv->display.modeset_global_resources =
12542                         snb_modeset_global_resources;
12543         } else if (IS_IVYBRIDGE(dev)) {
12544                 /* FIXME: detect B0+ stepping and use auto training */
12545                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12546                 dev_priv->display.modeset_global_resources =
12547                         ivb_modeset_global_resources;
12548         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12549                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12550                 dev_priv->display.modeset_global_resources =
12551                         haswell_modeset_global_resources;
12552         } else if (IS_VALLEYVIEW(dev)) {
12553                 dev_priv->display.modeset_global_resources =
12554                         valleyview_modeset_global_resources;
12555         } else if (INTEL_INFO(dev)->gen >= 9) {
12556                 dev_priv->display.modeset_global_resources =
12557                         haswell_modeset_global_resources;
12558         }
12559
12560         /* Default just returns -ENODEV to indicate unsupported */
12561         dev_priv->display.queue_flip = intel_default_queue_flip;
12562
12563         switch (INTEL_INFO(dev)->gen) {
12564         case 2:
12565                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12566                 break;
12567
12568         case 3:
12569                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12570                 break;
12571
12572         case 4:
12573         case 5:
12574                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12575                 break;
12576
12577         case 6:
12578                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12579                 break;
12580         case 7:
12581         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12582                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12583                 break;
12584         }
12585
12586         intel_panel_init_backlight_funcs(dev);
12587
12588         mutex_init(&dev_priv->pps_mutex);
12589 }
12590
12591 /*
12592  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12593  * resume, or other times.  This quirk makes sure that's the case for
12594  * affected systems.
12595  */
12596 static void quirk_pipea_force(struct drm_device *dev)
12597 {
12598         struct drm_i915_private *dev_priv = dev->dev_private;
12599
12600         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12601         DRM_INFO("applying pipe a force quirk\n");
12602 }
12603
12604 static void quirk_pipeb_force(struct drm_device *dev)
12605 {
12606         struct drm_i915_private *dev_priv = dev->dev_private;
12607
12608         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12609         DRM_INFO("applying pipe b force quirk\n");
12610 }
12611
12612 /*
12613  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12614  */
12615 static void quirk_ssc_force_disable(struct drm_device *dev)
12616 {
12617         struct drm_i915_private *dev_priv = dev->dev_private;
12618         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12619         DRM_INFO("applying lvds SSC disable quirk\n");
12620 }
12621
12622 /*
12623  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12624  * brightness value
12625  */
12626 static void quirk_invert_brightness(struct drm_device *dev)
12627 {
12628         struct drm_i915_private *dev_priv = dev->dev_private;
12629         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12630         DRM_INFO("applying inverted panel brightness quirk\n");
12631 }
12632
12633 /* Some VBT's incorrectly indicate no backlight is present */
12634 static void quirk_backlight_present(struct drm_device *dev)
12635 {
12636         struct drm_i915_private *dev_priv = dev->dev_private;
12637         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12638         DRM_INFO("applying backlight present quirk\n");
12639 }
12640
12641 struct intel_quirk {
12642         int device;
12643         int subsystem_vendor;
12644         int subsystem_device;
12645         void (*hook)(struct drm_device *dev);
12646 };
12647
12648 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12649 struct intel_dmi_quirk {
12650         void (*hook)(struct drm_device *dev);
12651         const struct dmi_system_id (*dmi_id_list)[];
12652 };
12653
12654 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12655 {
12656         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12657         return 1;
12658 }
12659
12660 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12661         {
12662                 .dmi_id_list = &(const struct dmi_system_id[]) {
12663                         {
12664                                 .callback = intel_dmi_reverse_brightness,
12665                                 .ident = "NCR Corporation",
12666                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12667                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12668                                 },
12669                         },
12670                         { }  /* terminating entry */
12671                 },
12672                 .hook = quirk_invert_brightness,
12673         },
12674 };
12675
12676 static struct intel_quirk intel_quirks[] = {
12677         /* HP Mini needs pipe A force quirk (LP: #322104) */
12678         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12679
12680         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12681         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12682
12683         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12684         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12685
12686         /* 830 needs to leave pipe A & dpll A up */
12687         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12688
12689         /* 830 needs to leave pipe B & dpll B up */
12690         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12691
12692         /* Lenovo U160 cannot use SSC on LVDS */
12693         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12694
12695         /* Sony Vaio Y cannot use SSC on LVDS */
12696         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12697
12698         /* Acer Aspire 5734Z must invert backlight brightness */
12699         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12700
12701         /* Acer/eMachines G725 */
12702         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12703
12704         /* Acer/eMachines e725 */
12705         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12706
12707         /* Acer/Packard Bell NCL20 */
12708         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12709
12710         /* Acer Aspire 4736Z */
12711         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12712
12713         /* Acer Aspire 5336 */
12714         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12715
12716         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12717         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12718
12719         /* Acer C720 Chromebook (Core i3 4005U) */
12720         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12721
12722         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12723         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12724
12725         /* HP Chromebook 14 (Celeron 2955U) */
12726         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12727 };
12728
12729 static void intel_init_quirks(struct drm_device *dev)
12730 {
12731         struct pci_dev *d = dev->pdev;
12732         int i;
12733
12734         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12735                 struct intel_quirk *q = &intel_quirks[i];
12736
12737                 if (d->device == q->device &&
12738                     (d->subsystem_vendor == q->subsystem_vendor ||
12739                      q->subsystem_vendor == PCI_ANY_ID) &&
12740                     (d->subsystem_device == q->subsystem_device ||
12741                      q->subsystem_device == PCI_ANY_ID))
12742                         q->hook(dev);
12743         }
12744         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12745                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12746                         intel_dmi_quirks[i].hook(dev);
12747         }
12748 }
12749
12750 /* Disable the VGA plane that we never use */
12751 static void i915_disable_vga(struct drm_device *dev)
12752 {
12753         struct drm_i915_private *dev_priv = dev->dev_private;
12754         u8 sr1;
12755         u32 vga_reg = i915_vgacntrl_reg(dev);
12756
12757         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12758         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12759         outb(SR01, VGA_SR_INDEX);
12760         sr1 = inb(VGA_SR_DATA);
12761         outb(sr1 | 1<<5, VGA_SR_DATA);
12762         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12763         udelay(300);
12764
12765         /*
12766          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12767          * from S3 without preserving (some of?) the other bits.
12768          */
12769         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12770         POSTING_READ(vga_reg);
12771 }
12772
12773 void intel_modeset_init_hw(struct drm_device *dev)
12774 {
12775         intel_prepare_ddi(dev);
12776
12777         if (IS_VALLEYVIEW(dev))
12778                 vlv_update_cdclk(dev);
12779
12780         intel_init_clock_gating(dev);
12781
12782         intel_enable_gt_powersave(dev);
12783 }
12784
12785 void intel_modeset_init(struct drm_device *dev)
12786 {
12787         struct drm_i915_private *dev_priv = dev->dev_private;
12788         int sprite, ret;
12789         enum pipe pipe;
12790         struct intel_crtc *crtc;
12791
12792         drm_mode_config_init(dev);
12793
12794         dev->mode_config.min_width = 0;
12795         dev->mode_config.min_height = 0;
12796
12797         dev->mode_config.preferred_depth = 24;
12798         dev->mode_config.prefer_shadow = 1;
12799
12800         dev->mode_config.funcs = &intel_mode_funcs;
12801
12802         intel_init_quirks(dev);
12803
12804         intel_init_pm(dev);
12805
12806         if (INTEL_INFO(dev)->num_pipes == 0)
12807                 return;
12808
12809         intel_init_display(dev);
12810         intel_init_audio(dev);
12811
12812         if (IS_GEN2(dev)) {
12813                 dev->mode_config.max_width = 2048;
12814                 dev->mode_config.max_height = 2048;
12815         } else if (IS_GEN3(dev)) {
12816                 dev->mode_config.max_width = 4096;
12817                 dev->mode_config.max_height = 4096;
12818         } else {
12819                 dev->mode_config.max_width = 8192;
12820                 dev->mode_config.max_height = 8192;
12821         }
12822
12823         if (IS_845G(dev) || IS_I865G(dev)) {
12824                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12825                 dev->mode_config.cursor_height = 1023;
12826         } else if (IS_GEN2(dev)) {
12827                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12828                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12829         } else {
12830                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12831                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12832         }
12833
12834         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12835
12836         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12837                       INTEL_INFO(dev)->num_pipes,
12838                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12839
12840         for_each_pipe(dev_priv, pipe) {
12841                 intel_crtc_init(dev, pipe);
12842                 for_each_sprite(pipe, sprite) {
12843                         ret = intel_plane_init(dev, pipe, sprite);
12844                         if (ret)
12845                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12846                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12847                 }
12848         }
12849
12850         intel_init_dpio(dev);
12851
12852         intel_shared_dpll_init(dev);
12853
12854         /* save the BIOS value before clobbering it */
12855         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12856         /* Just disable it once at startup */
12857         i915_disable_vga(dev);
12858         intel_setup_outputs(dev);
12859
12860         /* Just in case the BIOS is doing something questionable. */
12861         intel_disable_fbc(dev);
12862
12863         drm_modeset_lock_all(dev);
12864         intel_modeset_setup_hw_state(dev, false);
12865         drm_modeset_unlock_all(dev);
12866
12867         for_each_intel_crtc(dev, crtc) {
12868                 if (!crtc->active)
12869                         continue;
12870
12871                 /*
12872                  * Note that reserving the BIOS fb up front prevents us
12873                  * from stuffing other stolen allocations like the ring
12874                  * on top.  This prevents some ugliness at boot time, and
12875                  * can even allow for smooth boot transitions if the BIOS
12876                  * fb is large enough for the active pipe configuration.
12877                  */
12878                 if (dev_priv->display.get_plane_config) {
12879                         dev_priv->display.get_plane_config(crtc,
12880                                                            &crtc->plane_config);
12881                         /*
12882                          * If the fb is shared between multiple heads, we'll
12883                          * just get the first one.
12884                          */
12885                         intel_find_plane_obj(crtc, &crtc->plane_config);
12886                 }
12887         }
12888 }
12889
12890 static void intel_enable_pipe_a(struct drm_device *dev)
12891 {
12892         struct intel_connector *connector;
12893         struct drm_connector *crt = NULL;
12894         struct intel_load_detect_pipe load_detect_temp;
12895         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12896
12897         /* We can't just switch on the pipe A, we need to set things up with a
12898          * proper mode and output configuration. As a gross hack, enable pipe A
12899          * by enabling the load detect pipe once. */
12900         list_for_each_entry(connector,
12901                             &dev->mode_config.connector_list,
12902                             base.head) {
12903                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12904                         crt = &connector->base;
12905                         break;
12906                 }
12907         }
12908
12909         if (!crt)
12910                 return;
12911
12912         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12913                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12914 }
12915
12916 static bool
12917 intel_check_plane_mapping(struct intel_crtc *crtc)
12918 {
12919         struct drm_device *dev = crtc->base.dev;
12920         struct drm_i915_private *dev_priv = dev->dev_private;
12921         u32 reg, val;
12922
12923         if (INTEL_INFO(dev)->num_pipes == 1)
12924                 return true;
12925
12926         reg = DSPCNTR(!crtc->plane);
12927         val = I915_READ(reg);
12928
12929         if ((val & DISPLAY_PLANE_ENABLE) &&
12930             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12931                 return false;
12932
12933         return true;
12934 }
12935
12936 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12937 {
12938         struct drm_device *dev = crtc->base.dev;
12939         struct drm_i915_private *dev_priv = dev->dev_private;
12940         u32 reg;
12941
12942         /* Clear any frame start delays used for debugging left by the BIOS */
12943         reg = PIPECONF(crtc->config.cpu_transcoder);
12944         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12945
12946         /* restore vblank interrupts to correct state */
12947         if (crtc->active) {
12948                 update_scanline_offset(crtc);
12949                 drm_vblank_on(dev, crtc->pipe);
12950         } else
12951                 drm_vblank_off(dev, crtc->pipe);
12952
12953         /* We need to sanitize the plane -> pipe mapping first because this will
12954          * disable the crtc (and hence change the state) if it is wrong. Note
12955          * that gen4+ has a fixed plane -> pipe mapping.  */
12956         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12957                 struct intel_connector *connector;
12958                 bool plane;
12959
12960                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12961                               crtc->base.base.id);
12962
12963                 /* Pipe has the wrong plane attached and the plane is active.
12964                  * Temporarily change the plane mapping and disable everything
12965                  * ...  */
12966                 plane = crtc->plane;
12967                 crtc->plane = !plane;
12968                 crtc->primary_enabled = true;
12969                 dev_priv->display.crtc_disable(&crtc->base);
12970                 crtc->plane = plane;
12971
12972                 /* ... and break all links. */
12973                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12974                                     base.head) {
12975                         if (connector->encoder->base.crtc != &crtc->base)
12976                                 continue;
12977
12978                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12979                         connector->base.encoder = NULL;
12980                 }
12981                 /* multiple connectors may have the same encoder:
12982                  *  handle them and break crtc link separately */
12983                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12984                                     base.head)
12985                         if (connector->encoder->base.crtc == &crtc->base) {
12986                                 connector->encoder->base.crtc = NULL;
12987                                 connector->encoder->connectors_active = false;
12988                         }
12989
12990                 WARN_ON(crtc->active);
12991                 crtc->base.enabled = false;
12992         }
12993
12994         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12995             crtc->pipe == PIPE_A && !crtc->active) {
12996                 /* BIOS forgot to enable pipe A, this mostly happens after
12997                  * resume. Force-enable the pipe to fix this, the update_dpms
12998                  * call below we restore the pipe to the right state, but leave
12999                  * the required bits on. */
13000                 intel_enable_pipe_a(dev);
13001         }
13002
13003         /* Adjust the state of the output pipe according to whether we
13004          * have active connectors/encoders. */
13005         intel_crtc_update_dpms(&crtc->base);
13006
13007         if (crtc->active != crtc->base.enabled) {
13008                 struct intel_encoder *encoder;
13009
13010                 /* This can happen either due to bugs in the get_hw_state
13011                  * functions or because the pipe is force-enabled due to the
13012                  * pipe A quirk. */
13013                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13014                               crtc->base.base.id,
13015                               crtc->base.enabled ? "enabled" : "disabled",
13016                               crtc->active ? "enabled" : "disabled");
13017
13018                 crtc->base.enabled = crtc->active;
13019
13020                 /* Because we only establish the connector -> encoder ->
13021                  * crtc links if something is active, this means the
13022                  * crtc is now deactivated. Break the links. connector
13023                  * -> encoder links are only establish when things are
13024                  *  actually up, hence no need to break them. */
13025                 WARN_ON(crtc->active);
13026
13027                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13028                         WARN_ON(encoder->connectors_active);
13029                         encoder->base.crtc = NULL;
13030                 }
13031         }
13032
13033         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13034                 /*
13035                  * We start out with underrun reporting disabled to avoid races.
13036                  * For correct bookkeeping mark this on active crtcs.
13037                  *
13038                  * Also on gmch platforms we dont have any hardware bits to
13039                  * disable the underrun reporting. Which means we need to start
13040                  * out with underrun reporting disabled also on inactive pipes,
13041                  * since otherwise we'll complain about the garbage we read when
13042                  * e.g. coming up after runtime pm.
13043                  *
13044                  * No protection against concurrent access is required - at
13045                  * worst a fifo underrun happens which also sets this to false.
13046                  */
13047                 crtc->cpu_fifo_underrun_disabled = true;
13048                 crtc->pch_fifo_underrun_disabled = true;
13049         }
13050 }
13051
13052 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13053 {
13054         struct intel_connector *connector;
13055         struct drm_device *dev = encoder->base.dev;
13056
13057         /* We need to check both for a crtc link (meaning that the
13058          * encoder is active and trying to read from a pipe) and the
13059          * pipe itself being active. */
13060         bool has_active_crtc = encoder->base.crtc &&
13061                 to_intel_crtc(encoder->base.crtc)->active;
13062
13063         if (encoder->connectors_active && !has_active_crtc) {
13064                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13065                               encoder->base.base.id,
13066                               encoder->base.name);
13067
13068                 /* Connector is active, but has no active pipe. This is
13069                  * fallout from our resume register restoring. Disable
13070                  * the encoder manually again. */
13071                 if (encoder->base.crtc) {
13072                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13073                                       encoder->base.base.id,
13074                                       encoder->base.name);
13075                         encoder->disable(encoder);
13076                         if (encoder->post_disable)
13077                                 encoder->post_disable(encoder);
13078                 }
13079                 encoder->base.crtc = NULL;
13080                 encoder->connectors_active = false;
13081
13082                 /* Inconsistent output/port/pipe state happens presumably due to
13083                  * a bug in one of the get_hw_state functions. Or someplace else
13084                  * in our code, like the register restore mess on resume. Clamp
13085                  * things to off as a safer default. */
13086                 list_for_each_entry(connector,
13087                                     &dev->mode_config.connector_list,
13088                                     base.head) {
13089                         if (connector->encoder != encoder)
13090                                 continue;
13091                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13092                         connector->base.encoder = NULL;
13093                 }
13094         }
13095         /* Enabled encoders without active connectors will be fixed in
13096          * the crtc fixup. */
13097 }
13098
13099 void i915_redisable_vga_power_on(struct drm_device *dev)
13100 {
13101         struct drm_i915_private *dev_priv = dev->dev_private;
13102         u32 vga_reg = i915_vgacntrl_reg(dev);
13103
13104         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13105                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13106                 i915_disable_vga(dev);
13107         }
13108 }
13109
13110 void i915_redisable_vga(struct drm_device *dev)
13111 {
13112         struct drm_i915_private *dev_priv = dev->dev_private;
13113
13114         /* This function can be called both from intel_modeset_setup_hw_state or
13115          * at a very early point in our resume sequence, where the power well
13116          * structures are not yet restored. Since this function is at a very
13117          * paranoid "someone might have enabled VGA while we were not looking"
13118          * level, just check if the power well is enabled instead of trying to
13119          * follow the "don't touch the power well if we don't need it" policy
13120          * the rest of the driver uses. */
13121         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13122                 return;
13123
13124         i915_redisable_vga_power_on(dev);
13125 }
13126
13127 static bool primary_get_hw_state(struct intel_crtc *crtc)
13128 {
13129         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13130
13131         if (!crtc->active)
13132                 return false;
13133
13134         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13135 }
13136
13137 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13138 {
13139         struct drm_i915_private *dev_priv = dev->dev_private;
13140         enum pipe pipe;
13141         struct intel_crtc *crtc;
13142         struct intel_encoder *encoder;
13143         struct intel_connector *connector;
13144         int i;
13145
13146         for_each_intel_crtc(dev, crtc) {
13147                 memset(&crtc->config, 0, sizeof(crtc->config));
13148
13149                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13150
13151                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13152                                                                  &crtc->config);
13153
13154                 crtc->base.enabled = crtc->active;
13155                 crtc->primary_enabled = primary_get_hw_state(crtc);
13156
13157                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13158                               crtc->base.base.id,
13159                               crtc->active ? "enabled" : "disabled");
13160         }
13161
13162         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13163                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13164
13165                 pll->on = pll->get_hw_state(dev_priv, pll,
13166                                             &pll->config.hw_state);
13167                 pll->active = 0;
13168                 pll->config.crtc_mask = 0;
13169                 for_each_intel_crtc(dev, crtc) {
13170                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13171                                 pll->active++;
13172                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13173                         }
13174                 }
13175
13176                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13177                               pll->name, pll->config.crtc_mask, pll->on);
13178
13179                 if (pll->config.crtc_mask)
13180                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13181         }
13182
13183         for_each_intel_encoder(dev, encoder) {
13184                 pipe = 0;
13185
13186                 if (encoder->get_hw_state(encoder, &pipe)) {
13187                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13188                         encoder->base.crtc = &crtc->base;
13189                         encoder->get_config(encoder, &crtc->config);
13190                 } else {
13191                         encoder->base.crtc = NULL;
13192                 }
13193
13194                 encoder->connectors_active = false;
13195                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13196                               encoder->base.base.id,
13197                               encoder->base.name,
13198                               encoder->base.crtc ? "enabled" : "disabled",
13199                               pipe_name(pipe));
13200         }
13201
13202         list_for_each_entry(connector, &dev->mode_config.connector_list,
13203                             base.head) {
13204                 if (connector->get_hw_state(connector)) {
13205                         connector->base.dpms = DRM_MODE_DPMS_ON;
13206                         connector->encoder->connectors_active = true;
13207                         connector->base.encoder = &connector->encoder->base;
13208                 } else {
13209                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13210                         connector->base.encoder = NULL;
13211                 }
13212                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13213                               connector->base.base.id,
13214                               connector->base.name,
13215                               connector->base.encoder ? "enabled" : "disabled");
13216         }
13217 }
13218
13219 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13220  * and i915 state tracking structures. */
13221 void intel_modeset_setup_hw_state(struct drm_device *dev,
13222                                   bool force_restore)
13223 {
13224         struct drm_i915_private *dev_priv = dev->dev_private;
13225         enum pipe pipe;
13226         struct intel_crtc *crtc;
13227         struct intel_encoder *encoder;
13228         int i;
13229
13230         intel_modeset_readout_hw_state(dev);
13231
13232         /*
13233          * Now that we have the config, copy it to each CRTC struct
13234          * Note that this could go away if we move to using crtc_config
13235          * checking everywhere.
13236          */
13237         for_each_intel_crtc(dev, crtc) {
13238                 if (crtc->active && i915.fastboot) {
13239                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13240                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13241                                       crtc->base.base.id);
13242                         drm_mode_debug_printmodeline(&crtc->base.mode);
13243                 }
13244         }
13245
13246         /* HW state is read out, now we need to sanitize this mess. */
13247         for_each_intel_encoder(dev, encoder) {
13248                 intel_sanitize_encoder(encoder);
13249         }
13250
13251         for_each_pipe(dev_priv, pipe) {
13252                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13253                 intel_sanitize_crtc(crtc);
13254                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13255         }
13256
13257         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13258                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13259
13260                 if (!pll->on || pll->active)
13261                         continue;
13262
13263                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13264
13265                 pll->disable(dev_priv, pll);
13266                 pll->on = false;
13267         }
13268
13269         if (HAS_PCH_SPLIT(dev))
13270                 ilk_wm_get_hw_state(dev);
13271
13272         if (force_restore) {
13273                 i915_redisable_vga(dev);
13274
13275                 /*
13276                  * We need to use raw interfaces for restoring state to avoid
13277                  * checking (bogus) intermediate states.
13278                  */
13279                 for_each_pipe(dev_priv, pipe) {
13280                         struct drm_crtc *crtc =
13281                                 dev_priv->pipe_to_crtc_mapping[pipe];
13282
13283                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13284                                          crtc->primary->fb);
13285                 }
13286         } else {
13287                 intel_modeset_update_staged_output_state(dev);
13288         }
13289
13290         intel_modeset_check_state(dev);
13291 }
13292
13293 void intel_modeset_gem_init(struct drm_device *dev)
13294 {
13295         struct drm_crtc *c;
13296         struct drm_i915_gem_object *obj;
13297
13298         mutex_lock(&dev->struct_mutex);
13299         intel_init_gt_powersave(dev);
13300         mutex_unlock(&dev->struct_mutex);
13301
13302         intel_modeset_init_hw(dev);
13303
13304         intel_setup_overlay(dev);
13305
13306         /*
13307          * Make sure any fbs we allocated at startup are properly
13308          * pinned & fenced.  When we do the allocation it's too early
13309          * for this.
13310          */
13311         mutex_lock(&dev->struct_mutex);
13312         for_each_crtc(dev, c) {
13313                 obj = intel_fb_obj(c->primary->fb);
13314                 if (obj == NULL)
13315                         continue;
13316
13317                 if (intel_pin_and_fence_fb_obj(c->primary,
13318                                                c->primary->fb,
13319                                                NULL)) {
13320                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13321                                   to_intel_crtc(c)->pipe);
13322                         drm_framebuffer_unreference(c->primary->fb);
13323                         c->primary->fb = NULL;
13324                 }
13325         }
13326         mutex_unlock(&dev->struct_mutex);
13327 }
13328
13329 void intel_connector_unregister(struct intel_connector *intel_connector)
13330 {
13331         struct drm_connector *connector = &intel_connector->base;
13332
13333         intel_panel_destroy_backlight(connector);
13334         drm_connector_unregister(connector);
13335 }
13336
13337 void intel_modeset_cleanup(struct drm_device *dev)
13338 {
13339         struct drm_i915_private *dev_priv = dev->dev_private;
13340         struct drm_connector *connector;
13341
13342         /*
13343          * Interrupts and polling as the first thing to avoid creating havoc.
13344          * Too much stuff here (turning of rps, connectors, ...) would
13345          * experience fancy races otherwise.
13346          */
13347         intel_irq_uninstall(dev_priv);
13348
13349         /*
13350          * Due to the hpd irq storm handling the hotplug work can re-arm the
13351          * poll handlers. Hence disable polling after hpd handling is shut down.
13352          */
13353         drm_kms_helper_poll_fini(dev);
13354
13355         mutex_lock(&dev->struct_mutex);
13356
13357         intel_unregister_dsm_handler();
13358
13359         intel_disable_fbc(dev);
13360
13361         intel_disable_gt_powersave(dev);
13362
13363         ironlake_teardown_rc6(dev);
13364
13365         mutex_unlock(&dev->struct_mutex);
13366
13367         /* flush any delayed tasks or pending work */
13368         flush_scheduled_work();
13369
13370         /* destroy the backlight and sysfs files before encoders/connectors */
13371         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13372                 struct intel_connector *intel_connector;
13373
13374                 intel_connector = to_intel_connector(connector);
13375                 intel_connector->unregister(intel_connector);
13376         }
13377
13378         drm_mode_config_cleanup(dev);
13379
13380         intel_cleanup_overlay(dev);
13381
13382         mutex_lock(&dev->struct_mutex);
13383         intel_cleanup_gt_powersave(dev);
13384         mutex_unlock(&dev->struct_mutex);
13385 }
13386
13387 /*
13388  * Return which encoder is currently attached for connector.
13389  */
13390 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13391 {
13392         return &intel_attached_encoder(connector)->base;
13393 }
13394
13395 void intel_connector_attach_encoder(struct intel_connector *connector,
13396                                     struct intel_encoder *encoder)
13397 {
13398         connector->encoder = encoder;
13399         drm_mode_connector_attach_encoder(&connector->base,
13400                                           &encoder->base);
13401 }
13402
13403 /*
13404  * set vga decode state - true == enable VGA decode
13405  */
13406 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13407 {
13408         struct drm_i915_private *dev_priv = dev->dev_private;
13409         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13410         u16 gmch_ctrl;
13411
13412         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13413                 DRM_ERROR("failed to read control word\n");
13414                 return -EIO;
13415         }
13416
13417         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13418                 return 0;
13419
13420         if (state)
13421                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13422         else
13423                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13424
13425         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13426                 DRM_ERROR("failed to write control word\n");
13427                 return -EIO;
13428         }
13429
13430         return 0;
13431 }
13432
13433 struct intel_display_error_state {
13434
13435         u32 power_well_driver;
13436
13437         int num_transcoders;
13438
13439         struct intel_cursor_error_state {
13440                 u32 control;
13441                 u32 position;
13442                 u32 base;
13443                 u32 size;
13444         } cursor[I915_MAX_PIPES];
13445
13446         struct intel_pipe_error_state {
13447                 bool power_domain_on;
13448                 u32 source;
13449                 u32 stat;
13450         } pipe[I915_MAX_PIPES];
13451
13452         struct intel_plane_error_state {
13453                 u32 control;
13454                 u32 stride;
13455                 u32 size;
13456                 u32 pos;
13457                 u32 addr;
13458                 u32 surface;
13459                 u32 tile_offset;
13460         } plane[I915_MAX_PIPES];
13461
13462         struct intel_transcoder_error_state {
13463                 bool power_domain_on;
13464                 enum transcoder cpu_transcoder;
13465
13466                 u32 conf;
13467
13468                 u32 htotal;
13469                 u32 hblank;
13470                 u32 hsync;
13471                 u32 vtotal;
13472                 u32 vblank;
13473                 u32 vsync;
13474         } transcoder[4];
13475 };
13476
13477 struct intel_display_error_state *
13478 intel_display_capture_error_state(struct drm_device *dev)
13479 {
13480         struct drm_i915_private *dev_priv = dev->dev_private;
13481         struct intel_display_error_state *error;
13482         int transcoders[] = {
13483                 TRANSCODER_A,
13484                 TRANSCODER_B,
13485                 TRANSCODER_C,
13486                 TRANSCODER_EDP,
13487         };
13488         int i;
13489
13490         if (INTEL_INFO(dev)->num_pipes == 0)
13491                 return NULL;
13492
13493         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13494         if (error == NULL)
13495                 return NULL;
13496
13497         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13498                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13499
13500         for_each_pipe(dev_priv, i) {
13501                 error->pipe[i].power_domain_on =
13502                         __intel_display_power_is_enabled(dev_priv,
13503                                                          POWER_DOMAIN_PIPE(i));
13504                 if (!error->pipe[i].power_domain_on)
13505                         continue;
13506
13507                 error->cursor[i].control = I915_READ(CURCNTR(i));
13508                 error->cursor[i].position = I915_READ(CURPOS(i));
13509                 error->cursor[i].base = I915_READ(CURBASE(i));
13510
13511                 error->plane[i].control = I915_READ(DSPCNTR(i));
13512                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13513                 if (INTEL_INFO(dev)->gen <= 3) {
13514                         error->plane[i].size = I915_READ(DSPSIZE(i));
13515                         error->plane[i].pos = I915_READ(DSPPOS(i));
13516                 }
13517                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13518                         error->plane[i].addr = I915_READ(DSPADDR(i));
13519                 if (INTEL_INFO(dev)->gen >= 4) {
13520                         error->plane[i].surface = I915_READ(DSPSURF(i));
13521                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13522                 }
13523
13524                 error->pipe[i].source = I915_READ(PIPESRC(i));
13525
13526                 if (HAS_GMCH_DISPLAY(dev))
13527                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13528         }
13529
13530         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13531         if (HAS_DDI(dev_priv->dev))
13532                 error->num_transcoders++; /* Account for eDP. */
13533
13534         for (i = 0; i < error->num_transcoders; i++) {
13535                 enum transcoder cpu_transcoder = transcoders[i];
13536
13537                 error->transcoder[i].power_domain_on =
13538                         __intel_display_power_is_enabled(dev_priv,
13539                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13540                 if (!error->transcoder[i].power_domain_on)
13541                         continue;
13542
13543                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13544
13545                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13546                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13547                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13548                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13549                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13550                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13551                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13552         }
13553
13554         return error;
13555 }
13556
13557 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13558
13559 void
13560 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13561                                 struct drm_device *dev,
13562                                 struct intel_display_error_state *error)
13563 {
13564         struct drm_i915_private *dev_priv = dev->dev_private;
13565         int i;
13566
13567         if (!error)
13568                 return;
13569
13570         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13571         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13572                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13573                            error->power_well_driver);
13574         for_each_pipe(dev_priv, i) {
13575                 err_printf(m, "Pipe [%d]:\n", i);
13576                 err_printf(m, "  Power: %s\n",
13577                            error->pipe[i].power_domain_on ? "on" : "off");
13578                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13579                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13580
13581                 err_printf(m, "Plane [%d]:\n", i);
13582                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13583                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13584                 if (INTEL_INFO(dev)->gen <= 3) {
13585                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13586                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13587                 }
13588                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13589                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13590                 if (INTEL_INFO(dev)->gen >= 4) {
13591                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13592                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13593                 }
13594
13595                 err_printf(m, "Cursor [%d]:\n", i);
13596                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13597                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13598                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13599         }
13600
13601         for (i = 0; i < error->num_transcoders; i++) {
13602                 err_printf(m, "CPU transcoder: %c\n",
13603                            transcoder_name(error->transcoder[i].cpu_transcoder));
13604                 err_printf(m, "  Power: %s\n",
13605                            error->transcoder[i].power_domain_on ? "on" : "off");
13606                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13607                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13608                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13609                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13610                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13611                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13612                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13613         }
13614 }
13615
13616 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13617 {
13618         struct intel_crtc *crtc;
13619
13620         for_each_intel_crtc(dev, crtc) {
13621                 struct intel_unpin_work *work;
13622
13623                 spin_lock_irq(&dev->event_lock);
13624
13625                 work = crtc->unpin_work;
13626
13627                 if (work && work->event &&
13628                     work->event->base.file_priv == file) {
13629                         kfree(work->event);
13630                         work->event = NULL;
13631                 }
13632
13633                 spin_unlock_irq(&dev->event_lock);
13634         }
13635 }