drm/i915: Set PIPECONF color range bit on Valleyview
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* No really, not for ILK+ */
1478         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480         /* PLL is protected by panel, make sure we can write it */
1481         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482                 assert_panel_unlocked(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val |= DPLL_VCO_ENABLE;
1487
1488         /* We do this three times for luck */
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491         udelay(150); /* wait for warmup */
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494         udelay(150); /* wait for warmup */
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497         udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501  * intel_disable_pll - disable a PLL
1502  * @dev_priv: i915 private structure
1503  * @pipe: pipe PLL to disable
1504  *
1505  * Disable the PLL for @pipe, making sure the pipe is off first.
1506  *
1507  * Note!  This is for pre-ILK only.
1508  */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         /* Don't disable pipe A or pipe A PLLs if needed */
1515         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516                 return;
1517
1518         /* Make sure the pipe isn't still relying on us */
1519         assert_pipe_disabled(dev_priv, pipe);
1520
1521         reg = DPLL(pipe);
1522         val = I915_READ(reg);
1523         val &= ~DPLL_VCO_ENABLE;
1524         I915_WRITE(reg, val);
1525         POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531                 enum intel_sbi_destination destination)
1532 {
1533         u32 tmp;
1534
1535         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 return;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544         I915_WRITE(SBI_DATA, value);
1545
1546         if (destination == SBI_ICLK)
1547                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548         else
1549                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553                                 100)) {
1554                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555                 return;
1556         }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561                enum intel_sbi_destination destination)
1562 {
1563         u32 value = 0;
1564         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569                 return 0;
1570         }
1571
1572         I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574         if (destination == SBI_ICLK)
1575                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576         else
1577                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581                                 100)) {
1582                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583                 return 0;
1584         }
1585
1586         return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590  * ironlake_enable_pch_pll - enable PCH PLL
1591  * @dev_priv: i915 private structure
1592  * @pipe: pipe PLL to enable
1593  *
1594  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595  * drives the transcoder clock.
1596  */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600         struct intel_pch_pll *pll;
1601         int reg;
1602         u32 val;
1603
1604         /* PCH PLLs only available on ILK, SNB and IVB */
1605         BUG_ON(dev_priv->info->gen < 5);
1606         pll = intel_crtc->pch_pll;
1607         if (pll == NULL)
1608                 return;
1609
1610         if (WARN_ON(pll->refcount == 0))
1611                 return;
1612
1613         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614                       pll->pll_reg, pll->active, pll->on,
1615                       intel_crtc->base.base.id);
1616
1617         /* PCH refclock must be enabled first */
1618         assert_pch_refclk_enabled(dev_priv);
1619
1620         if (pll->active++ && pll->on) {
1621                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627         reg = pll->pll_reg;
1628         val = I915_READ(reg);
1629         val |= DPLL_VCO_ENABLE;
1630         I915_WRITE(reg, val);
1631         POSTING_READ(reg);
1632         udelay(200);
1633
1634         pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641         int reg;
1642         u32 val;
1643
1644         /* PCH only available on ILK+ */
1645         BUG_ON(dev_priv->info->gen < 5);
1646         if (pll == NULL)
1647                return;
1648
1649         if (WARN_ON(pll->refcount == 0))
1650                 return;
1651
1652         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653                       pll->pll_reg, pll->active, pll->on,
1654                       intel_crtc->base.base.id);
1655
1656         if (WARN_ON(pll->active == 0)) {
1657                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658                 return;
1659         }
1660
1661         if (--pll->active) {
1662                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663                 return;
1664         }
1665
1666         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668         /* Make sure transcoder isn't still depending on us */
1669         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671         reg = pll->pll_reg;
1672         val = I915_READ(reg);
1673         val &= ~DPLL_VCO_ENABLE;
1674         I915_WRITE(reg, val);
1675         POSTING_READ(reg);
1676         udelay(200);
1677
1678         pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct drm_device *dev = dev_priv->dev;
1685         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686         uint32_t reg, val, pipeconf_val;
1687
1688         /* PCH only available on ILK+ */
1689         BUG_ON(dev_priv->info->gen < 5);
1690
1691         /* Make sure PCH DPLL is enabled */
1692         assert_pch_pll_enabled(dev_priv,
1693                                to_intel_crtc(crtc)->pch_pll,
1694                                to_intel_crtc(crtc));
1695
1696         /* FDI must be feeding us bits for PCH ports */
1697         assert_fdi_tx_enabled(dev_priv, pipe);
1698         assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700         if (HAS_PCH_CPT(dev)) {
1701                 /* Workaround: Set the timing override bit before enabling the
1702                  * pch transcoder. */
1703                 reg = TRANS_CHICKEN2(pipe);
1704                 val = I915_READ(reg);
1705                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706                 I915_WRITE(reg, val);
1707         }
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713         if (HAS_PCH_IBX(dev_priv->dev)) {
1714                 /*
1715                  * make the BPC in transcoder be consistent with
1716                  * that in pipeconf reg.
1717                  */
1718                 val &= ~PIPECONF_BPC_MASK;
1719                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv->dev) &&
1725                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738                                       enum transcoder cpu_transcoder)
1739 {
1740         u32 val, pipeconf_val;
1741
1742         /* PCH only available on ILK+ */
1743         BUG_ON(dev_priv->info->gen < 5);
1744
1745         /* FDI must be feeding us bits for PCH ports */
1746         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749         /* Workaround: set timing override bit. */
1750         val = I915_READ(_TRANSA_CHICKEN2);
1751         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752         I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754         val = TRANS_ENABLE;
1755         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758             PIPECONF_INTERLACED_ILK)
1759                 val |= TRANS_INTERLACED;
1760         else
1761                 val |= TRANS_PROGRESSIVE;
1762
1763         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765                 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769                                             enum pipe pipe)
1770 {
1771         struct drm_device *dev = dev_priv->dev;
1772         uint32_t reg, val;
1773
1774         /* FDI relies on the transcoder */
1775         assert_fdi_tx_disabled(dev_priv, pipe);
1776         assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778         /* Ports must be off as well */
1779         assert_pch_ports_disabled(dev_priv, pipe);
1780
1781         reg = TRANSCONF(pipe);
1782         val = I915_READ(reg);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(reg, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789         if (!HAS_PCH_IBX(dev)) {
1790                 /* Workaround: Clear the timing override chicken bit again. */
1791                 reg = TRANS_CHICKEN2(pipe);
1792                 val = I915_READ(reg);
1793                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794                 I915_WRITE(reg, val);
1795         }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800         u32 val;
1801
1802         val = I915_READ(_TRANSACONF);
1803         val &= ~TRANS_ENABLE;
1804         I915_WRITE(_TRANSACONF, val);
1805         /* wait for PCH transcoder off, transcoder state */
1806         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807                 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809         /* Workaround: clear timing override bit. */
1810         val = I915_READ(_TRANSA_CHICKEN2);
1811         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812         I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816  * intel_enable_pipe - enable a pipe, asserting requirements
1817  * @dev_priv: i915 private structure
1818  * @pipe: pipe to enable
1819  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820  *
1821  * Enable @pipe, making sure that various hardware specific requirements
1822  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823  *
1824  * @pipe should be %PIPE_A or %PIPE_B.
1825  *
1826  * Will wait until the pipe is actually running (i.e. first vblank) before
1827  * returning.
1828  */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830                               bool pch_port)
1831 {
1832         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833                                                                       pipe);
1834         enum pipe pch_transcoder;
1835         int reg;
1836         u32 val;
1837
1838         if (HAS_PCH_LPT(dev_priv->dev))
1839                 pch_transcoder = TRANSCODER_A;
1840         else
1841                 pch_transcoder = pipe;
1842
1843         /*
1844          * A pipe without a PLL won't actually be able to drive bits from
1845          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1846          * need the check.
1847          */
1848         if (!HAS_PCH_SPLIT(dev_priv->dev))
1849                 assert_pll_enabled(dev_priv, pipe);
1850         else {
1851                 if (pch_port) {
1852                         /* if driving the PCH, we need FDI enabled */
1853                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854                         assert_fdi_tx_pll_enabled(dev_priv,
1855                                                   (enum pipe) cpu_transcoder);
1856                 }
1857                 /* FIXME: assert CPU port conditions for SNB+ */
1858         }
1859
1860         reg = PIPECONF(cpu_transcoder);
1861         val = I915_READ(reg);
1862         if (val & PIPECONF_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | PIPECONF_ENABLE);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870  * intel_disable_pipe - disable a pipe, asserting requirements
1871  * @dev_priv: i915 private structure
1872  * @pipe: pipe to disable
1873  *
1874  * Disable @pipe, making sure that various hardware specific requirements
1875  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876  *
1877  * @pipe should be %PIPE_A or %PIPE_B.
1878  *
1879  * Will wait until the pipe has shut down before returning.
1880  */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882                                enum pipe pipe)
1883 {
1884         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885                                                                       pipe);
1886         int reg;
1887         u32 val;
1888
1889         /*
1890          * Make sure planes won't keep trying to pump pixels to us,
1891          * or we might hang the display.
1892          */
1893         assert_planes_disabled(dev_priv, pipe);
1894         assert_sprites_disabled(dev_priv, pipe);
1895
1896         /* Don't disable pipe A or pipe A PLLs if needed */
1897         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898                 return;
1899
1900         reg = PIPECONF(cpu_transcoder);
1901         val = I915_READ(reg);
1902         if ((val & PIPECONF_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910  * Plane regs are double buffered, going from enabled->disabled needs a
1911  * trigger in order to latch.  The display address reg provides this.
1912  */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914                                       enum plane plane)
1915 {
1916         if (dev_priv->info->gen >= 4)
1917                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918         else
1919                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923  * intel_enable_plane - enable a display plane on a given pipe
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to enable
1926  * @pipe: pipe being fed
1927  *
1928  * Enable @plane on @pipe, making sure that @pipe is running first.
1929  */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931                                enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937         assert_pipe_enabled(dev_priv, pipe);
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if (val & DISPLAY_PLANE_ENABLE)
1942                 return;
1943
1944         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950  * intel_disable_plane - disable a display plane
1951  * @dev_priv: i915 private structure
1952  * @plane: plane to disable
1953  * @pipe: pipe consuming the data
1954  *
1955  * Disable @plane; should be an independent operation.
1956  */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958                                 enum plane plane, enum pipe pipe)
1959 {
1960         int reg;
1961         u32 val;
1962
1963         reg = DSPCNTR(plane);
1964         val = I915_READ(reg);
1965         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966                 return;
1967
1968         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969         intel_flush_display_plane(dev_priv, plane);
1970         intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977                 return true;
1978 #endif
1979         return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984                            struct drm_i915_gem_object *obj,
1985                            struct intel_ring_buffer *pipelined)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 alignment;
1989         int ret;
1990
1991         switch (obj->tiling_mode) {
1992         case I915_TILING_NONE:
1993                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994                         alignment = 128 * 1024;
1995                 else if (INTEL_INFO(dev)->gen >= 4)
1996                         alignment = 4 * 1024;
1997                 else
1998                         alignment = 64 * 1024;
1999                 break;
2000         case I915_TILING_X:
2001                 /* pin() will align the object as required by fence */
2002                 alignment = 0;
2003                 break;
2004         case I915_TILING_Y:
2005                 /* FIXME: Is this true? */
2006                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2007                 return -EINVAL;
2008         default:
2009                 BUG();
2010         }
2011
2012         /* Note that the w/a also requires 64 PTE of padding following the
2013          * bo. We currently fill all unused PTE with the shadow page and so
2014          * we should always have valid PTE following the scanout preventing
2015          * the VT-d warning.
2016          */
2017         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2018                 alignment = 256 * 1024;
2019
2020         dev_priv->mm.interruptible = false;
2021         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2022         if (ret)
2023                 goto err_interruptible;
2024
2025         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2026          * fence, whereas 965+ only requires a fence if using
2027          * framebuffer compression.  For simplicity, we always install
2028          * a fence as the cost is not that onerous.
2029          */
2030         ret = i915_gem_object_get_fence(obj);
2031         if (ret)
2032                 goto err_unpin;
2033
2034         i915_gem_object_pin_fence(obj);
2035
2036         dev_priv->mm.interruptible = true;
2037         return 0;
2038
2039 err_unpin:
2040         i915_gem_object_unpin(obj);
2041 err_interruptible:
2042         dev_priv->mm.interruptible = true;
2043         return ret;
2044 }
2045
2046 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2047 {
2048         i915_gem_object_unpin_fence(obj);
2049         i915_gem_object_unpin(obj);
2050 }
2051
2052 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2053  * is assumed to be a power-of-two. */
2054 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2055                                              unsigned int tiling_mode,
2056                                              unsigned int cpp,
2057                                              unsigned int pitch)
2058 {
2059         if (tiling_mode != I915_TILING_NONE) {
2060                 unsigned int tile_rows, tiles;
2061
2062                 tile_rows = *y / 8;
2063                 *y %= 8;
2064
2065                 tiles = *x / (512/cpp);
2066                 *x %= 512/cpp;
2067
2068                 return tile_rows * pitch * 8 + tiles * 4096;
2069         } else {
2070                 unsigned int offset;
2071
2072                 offset = *y * pitch + *x * cpp;
2073                 *y = 0;
2074                 *x = (offset & 4095) / cpp;
2075                 return offset & -4096;
2076         }
2077 }
2078
2079 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2080                              int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095                 break;
2096         default:
2097                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2098                 return -EINVAL;
2099         }
2100
2101         intel_fb = to_intel_framebuffer(fb);
2102         obj = intel_fb->obj;
2103
2104         reg = DSPCNTR(plane);
2105         dspcntr = I915_READ(reg);
2106         /* Mask out pixel format bits in case we change it */
2107         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2108         switch (fb->pixel_format) {
2109         case DRM_FORMAT_C8:
2110                 dspcntr |= DISPPLANE_8BPP;
2111                 break;
2112         case DRM_FORMAT_XRGB1555:
2113         case DRM_FORMAT_ARGB1555:
2114                 dspcntr |= DISPPLANE_BGRX555;
2115                 break;
2116         case DRM_FORMAT_RGB565:
2117                 dspcntr |= DISPPLANE_BGRX565;
2118                 break;
2119         case DRM_FORMAT_XRGB8888:
2120         case DRM_FORMAT_ARGB8888:
2121                 dspcntr |= DISPPLANE_BGRX888;
2122                 break;
2123         case DRM_FORMAT_XBGR8888:
2124         case DRM_FORMAT_ABGR8888:
2125                 dspcntr |= DISPPLANE_RGBX888;
2126                 break;
2127         case DRM_FORMAT_XRGB2101010:
2128         case DRM_FORMAT_ARGB2101010:
2129                 dspcntr |= DISPPLANE_BGRX101010;
2130                 break;
2131         case DRM_FORMAT_XBGR2101010:
2132         case DRM_FORMAT_ABGR2101010:
2133                 dspcntr |= DISPPLANE_RGBX101010;
2134                 break;
2135         default:
2136                 BUG();
2137         }
2138
2139         if (INTEL_INFO(dev)->gen >= 4) {
2140                 if (obj->tiling_mode != I915_TILING_NONE)
2141                         dspcntr |= DISPPLANE_TILED;
2142                 else
2143                         dspcntr &= ~DISPPLANE_TILED;
2144         }
2145
2146         I915_WRITE(reg, dspcntr);
2147
2148         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2149
2150         if (INTEL_INFO(dev)->gen >= 4) {
2151                 intel_crtc->dspaddr_offset =
2152                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2153                                                        fb->bits_per_pixel / 8,
2154                                                        fb->pitches[0]);
2155                 linear_offset -= intel_crtc->dspaddr_offset;
2156         } else {
2157                 intel_crtc->dspaddr_offset = linear_offset;
2158         }
2159
2160         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2161                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2162         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2163         if (INTEL_INFO(dev)->gen >= 4) {
2164                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2165                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2166                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2167                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2168         } else
2169                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2170         POSTING_READ(reg);
2171
2172         return 0;
2173 }
2174
2175 static int ironlake_update_plane(struct drm_crtc *crtc,
2176                                  struct drm_framebuffer *fb, int x, int y)
2177 {
2178         struct drm_device *dev = crtc->dev;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181         struct intel_framebuffer *intel_fb;
2182         struct drm_i915_gem_object *obj;
2183         int plane = intel_crtc->plane;
2184         unsigned long linear_offset;
2185         u32 dspcntr;
2186         u32 reg;
2187
2188         switch (plane) {
2189         case 0:
2190         case 1:
2191         case 2:
2192                 break;
2193         default:
2194                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2195                 return -EINVAL;
2196         }
2197
2198         intel_fb = to_intel_framebuffer(fb);
2199         obj = intel_fb->obj;
2200
2201         reg = DSPCNTR(plane);
2202         dspcntr = I915_READ(reg);
2203         /* Mask out pixel format bits in case we change it */
2204         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2205         switch (fb->pixel_format) {
2206         case DRM_FORMAT_C8:
2207                 dspcntr |= DISPPLANE_8BPP;
2208                 break;
2209         case DRM_FORMAT_RGB565:
2210                 dspcntr |= DISPPLANE_BGRX565;
2211                 break;
2212         case DRM_FORMAT_XRGB8888:
2213         case DRM_FORMAT_ARGB8888:
2214                 dspcntr |= DISPPLANE_BGRX888;
2215                 break;
2216         case DRM_FORMAT_XBGR8888:
2217         case DRM_FORMAT_ABGR8888:
2218                 dspcntr |= DISPPLANE_RGBX888;
2219                 break;
2220         case DRM_FORMAT_XRGB2101010:
2221         case DRM_FORMAT_ARGB2101010:
2222                 dspcntr |= DISPPLANE_BGRX101010;
2223                 break;
2224         case DRM_FORMAT_XBGR2101010:
2225         case DRM_FORMAT_ABGR2101010:
2226                 dspcntr |= DISPPLANE_RGBX101010;
2227                 break;
2228         default:
2229                 BUG();
2230         }
2231
2232         if (obj->tiling_mode != I915_TILING_NONE)
2233                 dspcntr |= DISPPLANE_TILED;
2234         else
2235                 dspcntr &= ~DISPPLANE_TILED;
2236
2237         /* must disable */
2238         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2239
2240         I915_WRITE(reg, dspcntr);
2241
2242         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2243         intel_crtc->dspaddr_offset =
2244                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2245                                                fb->bits_per_pixel / 8,
2246                                                fb->pitches[0]);
2247         linear_offset -= intel_crtc->dspaddr_offset;
2248
2249         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2250                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2251         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2252         I915_MODIFY_DISPBASE(DSPSURF(plane),
2253                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2254         if (IS_HASWELL(dev)) {
2255                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2256         } else {
2257                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2258                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2259         }
2260         POSTING_READ(reg);
2261
2262         return 0;
2263 }
2264
2265 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2266 static int
2267 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2268                            int x, int y, enum mode_set_atomic state)
2269 {
2270         struct drm_device *dev = crtc->dev;
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272
2273         if (dev_priv->display.disable_fbc)
2274                 dev_priv->display.disable_fbc(dev);
2275         intel_increase_pllclock(crtc);
2276
2277         return dev_priv->display.update_plane(crtc, fb, x, y);
2278 }
2279
2280 void intel_display_handle_reset(struct drm_device *dev)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct drm_crtc *crtc;
2284
2285         /*
2286          * Flips in the rings have been nuked by the reset,
2287          * so complete all pending flips so that user space
2288          * will get its events and not get stuck.
2289          *
2290          * Also update the base address of all primary
2291          * planes to the the last fb to make sure we're
2292          * showing the correct fb after a reset.
2293          *
2294          * Need to make two loops over the crtcs so that we
2295          * don't try to grab a crtc mutex before the
2296          * pending_flip_queue really got woken up.
2297          */
2298
2299         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2300                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2301                 enum plane plane = intel_crtc->plane;
2302
2303                 intel_prepare_page_flip(dev, plane);
2304                 intel_finish_page_flip_plane(dev, plane);
2305         }
2306
2307         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2308                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2309
2310                 mutex_lock(&crtc->mutex);
2311                 if (intel_crtc->active)
2312                         dev_priv->display.update_plane(crtc, crtc->fb,
2313                                                        crtc->x, crtc->y);
2314                 mutex_unlock(&crtc->mutex);
2315         }
2316 }
2317
2318 static int
2319 intel_finish_fb(struct drm_framebuffer *old_fb)
2320 {
2321         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2322         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2323         bool was_interruptible = dev_priv->mm.interruptible;
2324         int ret;
2325
2326         /* Big Hammer, we also need to ensure that any pending
2327          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2328          * current scanout is retired before unpinning the old
2329          * framebuffer.
2330          *
2331          * This should only fail upon a hung GPU, in which case we
2332          * can safely continue.
2333          */
2334         dev_priv->mm.interruptible = false;
2335         ret = i915_gem_object_finish_gpu(obj);
2336         dev_priv->mm.interruptible = was_interruptible;
2337
2338         return ret;
2339 }
2340
2341 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2342 {
2343         struct drm_device *dev = crtc->dev;
2344         struct drm_i915_master_private *master_priv;
2345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2346
2347         if (!dev->primary->master)
2348                 return;
2349
2350         master_priv = dev->primary->master->driver_priv;
2351         if (!master_priv->sarea_priv)
2352                 return;
2353
2354         switch (intel_crtc->pipe) {
2355         case 0:
2356                 master_priv->sarea_priv->pipeA_x = x;
2357                 master_priv->sarea_priv->pipeA_y = y;
2358                 break;
2359         case 1:
2360                 master_priv->sarea_priv->pipeB_x = x;
2361                 master_priv->sarea_priv->pipeB_y = y;
2362                 break;
2363         default:
2364                 break;
2365         }
2366 }
2367
2368 static int
2369 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2370                     struct drm_framebuffer *fb)
2371 {
2372         struct drm_device *dev = crtc->dev;
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2375         struct drm_framebuffer *old_fb;
2376         int ret;
2377
2378         /* no fb bound */
2379         if (!fb) {
2380                 DRM_ERROR("No FB bound\n");
2381                 return 0;
2382         }
2383
2384         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2385                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2386                                 intel_crtc->plane,
2387                                 INTEL_INFO(dev)->num_pipes);
2388                 return -EINVAL;
2389         }
2390
2391         mutex_lock(&dev->struct_mutex);
2392         ret = intel_pin_and_fence_fb_obj(dev,
2393                                          to_intel_framebuffer(fb)->obj,
2394                                          NULL);
2395         if (ret != 0) {
2396                 mutex_unlock(&dev->struct_mutex);
2397                 DRM_ERROR("pin & fence failed\n");
2398                 return ret;
2399         }
2400
2401         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2402         if (ret) {
2403                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2404                 mutex_unlock(&dev->struct_mutex);
2405                 DRM_ERROR("failed to update base address\n");
2406                 return ret;
2407         }
2408
2409         old_fb = crtc->fb;
2410         crtc->fb = fb;
2411         crtc->x = x;
2412         crtc->y = y;
2413
2414         if (old_fb) {
2415                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2416                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2417         }
2418
2419         intel_update_fbc(dev);
2420         mutex_unlock(&dev->struct_mutex);
2421
2422         intel_crtc_update_sarea_pos(crtc, x, y);
2423
2424         return 0;
2425 }
2426
2427 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2428 {
2429         struct drm_device *dev = crtc->dev;
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2432         int pipe = intel_crtc->pipe;
2433         u32 reg, temp;
2434
2435         /* enable normal train */
2436         reg = FDI_TX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         if (IS_IVYBRIDGE(dev)) {
2439                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2440                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2441         } else {
2442                 temp &= ~FDI_LINK_TRAIN_NONE;
2443                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2444         }
2445         I915_WRITE(reg, temp);
2446
2447         reg = FDI_RX_CTL(pipe);
2448         temp = I915_READ(reg);
2449         if (HAS_PCH_CPT(dev)) {
2450                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2451                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2452         } else {
2453                 temp &= ~FDI_LINK_TRAIN_NONE;
2454                 temp |= FDI_LINK_TRAIN_NONE;
2455         }
2456         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2457
2458         /* wait one idle pattern time */
2459         POSTING_READ(reg);
2460         udelay(1000);
2461
2462         /* IVB wants error correction enabled */
2463         if (IS_IVYBRIDGE(dev))
2464                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2465                            FDI_FE_ERRC_ENABLE);
2466 }
2467
2468 static void ivb_modeset_global_resources(struct drm_device *dev)
2469 {
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         struct intel_crtc *pipe_B_crtc =
2472                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2473         struct intel_crtc *pipe_C_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2475         uint32_t temp;
2476
2477         /* When everything is off disable fdi C so that we could enable fdi B
2478          * with all lanes. XXX: This misses the case where a pipe is not using
2479          * any pch resources and so doesn't need any fdi lanes. */
2480         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2481                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2482                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2483
2484                 temp = I915_READ(SOUTH_CHICKEN1);
2485                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2486                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2487                 I915_WRITE(SOUTH_CHICKEN1, temp);
2488         }
2489 }
2490
2491 /* The FDI link training functions for ILK/Ibexpeak. */
2492 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2493 {
2494         struct drm_device *dev = crtc->dev;
2495         struct drm_i915_private *dev_priv = dev->dev_private;
2496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2497         int pipe = intel_crtc->pipe;
2498         int plane = intel_crtc->plane;
2499         u32 reg, temp, tries;
2500
2501         /* FDI needs bits from pipe & plane first */
2502         assert_pipe_enabled(dev_priv, pipe);
2503         assert_plane_enabled(dev_priv, plane);
2504
2505         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2506            for train result */
2507         reg = FDI_RX_IMR(pipe);
2508         temp = I915_READ(reg);
2509         temp &= ~FDI_RX_SYMBOL_LOCK;
2510         temp &= ~FDI_RX_BIT_LOCK;
2511         I915_WRITE(reg, temp);
2512         I915_READ(reg);
2513         udelay(150);
2514
2515         /* enable CPU FDI TX and PCH FDI RX */
2516         reg = FDI_TX_CTL(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~(7 << 19);
2519         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_1;
2522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_1;
2528         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         /* Ironlake workaround, enable clock pointer after FDI enable*/
2534         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2535         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2536                    FDI_RX_PHASE_SYNC_POINTER_EN);
2537
2538         reg = FDI_RX_IIR(pipe);
2539         for (tries = 0; tries < 5; tries++) {
2540                 temp = I915_READ(reg);
2541                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2542
2543                 if ((temp & FDI_RX_BIT_LOCK)) {
2544                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2545                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2546                         break;
2547                 }
2548         }
2549         if (tries == 5)
2550                 DRM_ERROR("FDI train 1 fail!\n");
2551
2552         /* Train 2 */
2553         reg = FDI_TX_CTL(pipe);
2554         temp = I915_READ(reg);
2555         temp &= ~FDI_LINK_TRAIN_NONE;
2556         temp |= FDI_LINK_TRAIN_PATTERN_2;
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         temp &= ~FDI_LINK_TRAIN_NONE;
2562         temp |= FDI_LINK_TRAIN_PATTERN_2;
2563         I915_WRITE(reg, temp);
2564
2565         POSTING_READ(reg);
2566         udelay(150);
2567
2568         reg = FDI_RX_IIR(pipe);
2569         for (tries = 0; tries < 5; tries++) {
2570                 temp = I915_READ(reg);
2571                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2572
2573                 if (temp & FDI_RX_SYMBOL_LOCK) {
2574                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2575                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2576                         break;
2577                 }
2578         }
2579         if (tries == 5)
2580                 DRM_ERROR("FDI train 2 fail!\n");
2581
2582         DRM_DEBUG_KMS("FDI train done\n");
2583
2584 }
2585
2586 static const int snb_b_fdi_train_param[] = {
2587         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2588         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2589         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2590         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2591 };
2592
2593 /* The FDI link training functions for SNB/Cougarpoint. */
2594 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2595 {
2596         struct drm_device *dev = crtc->dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2599         int pipe = intel_crtc->pipe;
2600         u32 reg, temp, i, retry;
2601
2602         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2603            for train result */
2604         reg = FDI_RX_IMR(pipe);
2605         temp = I915_READ(reg);
2606         temp &= ~FDI_RX_SYMBOL_LOCK;
2607         temp &= ~FDI_RX_BIT_LOCK;
2608         I915_WRITE(reg, temp);
2609
2610         POSTING_READ(reg);
2611         udelay(150);
2612
2613         /* enable CPU FDI TX and PCH FDI RX */
2614         reg = FDI_TX_CTL(pipe);
2615         temp = I915_READ(reg);
2616         temp &= ~(7 << 19);
2617         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2618         temp &= ~FDI_LINK_TRAIN_NONE;
2619         temp |= FDI_LINK_TRAIN_PATTERN_1;
2620         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2621         /* SNB-B */
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2624
2625         I915_WRITE(FDI_RX_MISC(pipe),
2626                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2627
2628         reg = FDI_RX_CTL(pipe);
2629         temp = I915_READ(reg);
2630         if (HAS_PCH_CPT(dev)) {
2631                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2633         } else {
2634                 temp &= ~FDI_LINK_TRAIN_NONE;
2635                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2636         }
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         for (i = 0; i < 4; i++) {
2643                 reg = FDI_TX_CTL(pipe);
2644                 temp = I915_READ(reg);
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 temp |= snb_b_fdi_train_param[i];
2647                 I915_WRITE(reg, temp);
2648
2649                 POSTING_READ(reg);
2650                 udelay(500);
2651
2652                 for (retry = 0; retry < 5; retry++) {
2653                         reg = FDI_RX_IIR(pipe);
2654                         temp = I915_READ(reg);
2655                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656                         if (temp & FDI_RX_BIT_LOCK) {
2657                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2658                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2659                                 break;
2660                         }
2661                         udelay(50);
2662                 }
2663                 if (retry < 5)
2664                         break;
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2;
2674         if (IS_GEN6(dev)) {
2675                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676                 /* SNB-B */
2677                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2678         }
2679         I915_WRITE(reg, temp);
2680
2681         reg = FDI_RX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         if (HAS_PCH_CPT(dev)) {
2684                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2685                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2686         } else {
2687                 temp &= ~FDI_LINK_TRAIN_NONE;
2688                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2689         }
2690         I915_WRITE(reg, temp);
2691
2692         POSTING_READ(reg);
2693         udelay(150);
2694
2695         for (i = 0; i < 4; i++) {
2696                 reg = FDI_TX_CTL(pipe);
2697                 temp = I915_READ(reg);
2698                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699                 temp |= snb_b_fdi_train_param[i];
2700                 I915_WRITE(reg, temp);
2701
2702                 POSTING_READ(reg);
2703                 udelay(500);
2704
2705                 for (retry = 0; retry < 5; retry++) {
2706                         reg = FDI_RX_IIR(pipe);
2707                         temp = I915_READ(reg);
2708                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709                         if (temp & FDI_RX_SYMBOL_LOCK) {
2710                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2712                                 break;
2713                         }
2714                         udelay(50);
2715                 }
2716                 if (retry < 5)
2717                         break;
2718         }
2719         if (i == 4)
2720                 DRM_ERROR("FDI train 2 fail!\n");
2721
2722         DRM_DEBUG_KMS("FDI train done.\n");
2723 }
2724
2725 /* Manual link training for Ivy Bridge A0 parts */
2726 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2727 {
2728         struct drm_device *dev = crtc->dev;
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731         int pipe = intel_crtc->pipe;
2732         u32 reg, temp, i;
2733
2734         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2735            for train result */
2736         reg = FDI_RX_IMR(pipe);
2737         temp = I915_READ(reg);
2738         temp &= ~FDI_RX_SYMBOL_LOCK;
2739         temp &= ~FDI_RX_BIT_LOCK;
2740         I915_WRITE(reg, temp);
2741
2742         POSTING_READ(reg);
2743         udelay(150);
2744
2745         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2746                       I915_READ(FDI_RX_IIR(pipe)));
2747
2748         /* enable CPU FDI TX and PCH FDI RX */
2749         reg = FDI_TX_CTL(pipe);
2750         temp = I915_READ(reg);
2751         temp &= ~(7 << 19);
2752         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2753         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2754         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2755         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2757         temp |= FDI_COMPOSITE_SYNC;
2758         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2759
2760         I915_WRITE(FDI_RX_MISC(pipe),
2761                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2762
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~FDI_LINK_TRAIN_AUTO;
2766         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2767         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2768         temp |= FDI_COMPOSITE_SYNC;
2769         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(150);
2773
2774         for (i = 0; i < 4; i++) {
2775                 reg = FDI_TX_CTL(pipe);
2776                 temp = I915_READ(reg);
2777                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2778                 temp |= snb_b_fdi_train_param[i];
2779                 I915_WRITE(reg, temp);
2780
2781                 POSTING_READ(reg);
2782                 udelay(500);
2783
2784                 reg = FDI_RX_IIR(pipe);
2785                 temp = I915_READ(reg);
2786                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2787
2788                 if (temp & FDI_RX_BIT_LOCK ||
2789                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2790                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2792                         break;
2793                 }
2794         }
2795         if (i == 4)
2796                 DRM_ERROR("FDI train 1 fail!\n");
2797
2798         /* Train 2 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2802         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2803         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2804         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2805         I915_WRITE(reg, temp);
2806
2807         reg = FDI_RX_CTL(pipe);
2808         temp = I915_READ(reg);
2809         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2810         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2811         I915_WRITE(reg, temp);
2812
2813         POSTING_READ(reg);
2814         udelay(150);
2815
2816         for (i = 0; i < 4; i++) {
2817                 reg = FDI_TX_CTL(pipe);
2818                 temp = I915_READ(reg);
2819                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2820                 temp |= snb_b_fdi_train_param[i];
2821                 I915_WRITE(reg, temp);
2822
2823                 POSTING_READ(reg);
2824                 udelay(500);
2825
2826                 reg = FDI_RX_IIR(pipe);
2827                 temp = I915_READ(reg);
2828                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2829
2830                 if (temp & FDI_RX_SYMBOL_LOCK) {
2831                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2832                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2833                         break;
2834                 }
2835         }
2836         if (i == 4)
2837                 DRM_ERROR("FDI train 2 fail!\n");
2838
2839         DRM_DEBUG_KMS("FDI train done.\n");
2840 }
2841
2842 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2843 {
2844         struct drm_device *dev = intel_crtc->base.dev;
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         int pipe = intel_crtc->pipe;
2847         u32 reg, temp;
2848
2849
2850         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2851         reg = FDI_RX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         temp &= ~((0x7 << 19) | (0x7 << 16));
2854         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2855         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2856         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2857
2858         POSTING_READ(reg);
2859         udelay(200);
2860
2861         /* Switch from Rawclk to PCDclk */
2862         temp = I915_READ(reg);
2863         I915_WRITE(reg, temp | FDI_PCDCLK);
2864
2865         POSTING_READ(reg);
2866         udelay(200);
2867
2868         /* Enable CPU FDI TX PLL, always on for Ironlake */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2872                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2873
2874                 POSTING_READ(reg);
2875                 udelay(100);
2876         }
2877 }
2878
2879 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2880 {
2881         struct drm_device *dev = intel_crtc->base.dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         int pipe = intel_crtc->pipe;
2884         u32 reg, temp;
2885
2886         /* Switch from PCDclk to Rawclk */
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2890
2891         /* Disable CPU FDI TX PLL */
2892         reg = FDI_TX_CTL(pipe);
2893         temp = I915_READ(reg);
2894         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2895
2896         POSTING_READ(reg);
2897         udelay(100);
2898
2899         reg = FDI_RX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2902
2903         /* Wait for the clocks to turn off. */
2904         POSTING_READ(reg);
2905         udelay(100);
2906 }
2907
2908 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2909 {
2910         struct drm_device *dev = crtc->dev;
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2913         int pipe = intel_crtc->pipe;
2914         u32 reg, temp;
2915
2916         /* disable CPU FDI tx and PCH FDI rx */
2917         reg = FDI_TX_CTL(pipe);
2918         temp = I915_READ(reg);
2919         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2920         POSTING_READ(reg);
2921
2922         reg = FDI_RX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         temp &= ~(0x7 << 16);
2925         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2926         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2927
2928         POSTING_READ(reg);
2929         udelay(100);
2930
2931         /* Ironlake workaround, disable clock pointer after downing FDI */
2932         if (HAS_PCH_IBX(dev)) {
2933                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2934         }
2935
2936         /* still set train pattern 1 */
2937         reg = FDI_TX_CTL(pipe);
2938         temp = I915_READ(reg);
2939         temp &= ~FDI_LINK_TRAIN_NONE;
2940         temp |= FDI_LINK_TRAIN_PATTERN_1;
2941         I915_WRITE(reg, temp);
2942
2943         reg = FDI_RX_CTL(pipe);
2944         temp = I915_READ(reg);
2945         if (HAS_PCH_CPT(dev)) {
2946                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2947                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2948         } else {
2949                 temp &= ~FDI_LINK_TRAIN_NONE;
2950                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2951         }
2952         /* BPC in FDI rx is consistent with that in PIPECONF */
2953         temp &= ~(0x07 << 16);
2954         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2955         I915_WRITE(reg, temp);
2956
2957         POSTING_READ(reg);
2958         udelay(100);
2959 }
2960
2961 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2966         unsigned long flags;
2967         bool pending;
2968
2969         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2970             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2971                 return false;
2972
2973         spin_lock_irqsave(&dev->event_lock, flags);
2974         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2975         spin_unlock_irqrestore(&dev->event_lock, flags);
2976
2977         return pending;
2978 }
2979
2980 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2981 {
2982         struct drm_device *dev = crtc->dev;
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984
2985         if (crtc->fb == NULL)
2986                 return;
2987
2988         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2989
2990         wait_event(dev_priv->pending_flip_queue,
2991                    !intel_crtc_has_pending_flip(crtc));
2992
2993         mutex_lock(&dev->struct_mutex);
2994         intel_finish_fb(crtc->fb);
2995         mutex_unlock(&dev->struct_mutex);
2996 }
2997
2998 /* Program iCLKIP clock to the desired frequency */
2999 static void lpt_program_iclkip(struct drm_crtc *crtc)
3000 {
3001         struct drm_device *dev = crtc->dev;
3002         struct drm_i915_private *dev_priv = dev->dev_private;
3003         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3004         u32 temp;
3005
3006         mutex_lock(&dev_priv->dpio_lock);
3007
3008         /* It is necessary to ungate the pixclk gate prior to programming
3009          * the divisors, and gate it back when it is done.
3010          */
3011         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3012
3013         /* Disable SSCCTL */
3014         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3015                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3016                                 SBI_SSCCTL_DISABLE,
3017                         SBI_ICLK);
3018
3019         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3020         if (crtc->mode.clock == 20000) {
3021                 auxdiv = 1;
3022                 divsel = 0x41;
3023                 phaseinc = 0x20;
3024         } else {
3025                 /* The iCLK virtual clock root frequency is in MHz,
3026                  * but the crtc->mode.clock in in KHz. To get the divisors,
3027                  * it is necessary to divide one by another, so we
3028                  * convert the virtual clock precision to KHz here for higher
3029                  * precision.
3030                  */
3031                 u32 iclk_virtual_root_freq = 172800 * 1000;
3032                 u32 iclk_pi_range = 64;
3033                 u32 desired_divisor, msb_divisor_value, pi_value;
3034
3035                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3036                 msb_divisor_value = desired_divisor / iclk_pi_range;
3037                 pi_value = desired_divisor % iclk_pi_range;
3038
3039                 auxdiv = 0;
3040                 divsel = msb_divisor_value - 2;
3041                 phaseinc = pi_value;
3042         }
3043
3044         /* This should not happen with any sane values */
3045         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3046                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3047         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3048                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3049
3050         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3051                         crtc->mode.clock,
3052                         auxdiv,
3053                         divsel,
3054                         phasedir,
3055                         phaseinc);
3056
3057         /* Program SSCDIVINTPHASE6 */
3058         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3059         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3060         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3061         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3062         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3063         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3064         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3065         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3066
3067         /* Program SSCAUXDIV */
3068         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3069         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3070         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3071         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3072
3073         /* Enable modulator and associated divider */
3074         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3075         temp &= ~SBI_SSCCTL_DISABLE;
3076         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3077
3078         /* Wait for initialization time */
3079         udelay(24);
3080
3081         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3082
3083         mutex_unlock(&dev_priv->dpio_lock);
3084 }
3085
3086 /*
3087  * Enable PCH resources required for PCH ports:
3088  *   - PCH PLLs
3089  *   - FDI training & RX/TX
3090  *   - update transcoder timings
3091  *   - DP transcoding bits
3092  *   - transcoder
3093  */
3094 static void ironlake_pch_enable(struct drm_crtc *crtc)
3095 {
3096         struct drm_device *dev = crtc->dev;
3097         struct drm_i915_private *dev_priv = dev->dev_private;
3098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099         int pipe = intel_crtc->pipe;
3100         u32 reg, temp;
3101
3102         assert_transcoder_disabled(dev_priv, pipe);
3103
3104         /* Write the TU size bits before fdi link training, so that error
3105          * detection works. */
3106         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3107                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3108
3109         /* For PCH output, training FDI link */
3110         dev_priv->display.fdi_link_train(crtc);
3111
3112         /* XXX: pch pll's can be enabled any time before we enable the PCH
3113          * transcoder, and we actually should do this to not upset any PCH
3114          * transcoder that already use the clock when we share it.
3115          *
3116          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3117          * unconditionally resets the pll - we need that to have the right LVDS
3118          * enable sequence. */
3119         ironlake_enable_pch_pll(intel_crtc);
3120
3121         if (HAS_PCH_CPT(dev)) {
3122                 u32 sel;
3123
3124                 temp = I915_READ(PCH_DPLL_SEL);
3125                 switch (pipe) {
3126                 default:
3127                 case 0:
3128                         temp |= TRANSA_DPLL_ENABLE;
3129                         sel = TRANSA_DPLLB_SEL;
3130                         break;
3131                 case 1:
3132                         temp |= TRANSB_DPLL_ENABLE;
3133                         sel = TRANSB_DPLLB_SEL;
3134                         break;
3135                 case 2:
3136                         temp |= TRANSC_DPLL_ENABLE;
3137                         sel = TRANSC_DPLLB_SEL;
3138                         break;
3139                 }
3140                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3141                         temp |= sel;
3142                 else
3143                         temp &= ~sel;
3144                 I915_WRITE(PCH_DPLL_SEL, temp);
3145         }
3146
3147         /* set transcoder timing, panel must allow it */
3148         assert_panel_unlocked(dev_priv, pipe);
3149         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3150         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3151         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3152
3153         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3154         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3155         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3156         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3157
3158         intel_fdi_normal_train(crtc);
3159
3160         /* For PCH DP, enable TRANS_DP_CTL */
3161         if (HAS_PCH_CPT(dev) &&
3162             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3163              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3164                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3165                 reg = TRANS_DP_CTL(pipe);
3166                 temp = I915_READ(reg);
3167                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3168                           TRANS_DP_SYNC_MASK |
3169                           TRANS_DP_BPC_MASK);
3170                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3171                          TRANS_DP_ENH_FRAMING);
3172                 temp |= bpc << 9; /* same format but at 11:9 */
3173
3174                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3175                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3176                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3177                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3178
3179                 switch (intel_trans_dp_port_sel(crtc)) {
3180                 case PCH_DP_B:
3181                         temp |= TRANS_DP_PORT_SEL_B;
3182                         break;
3183                 case PCH_DP_C:
3184                         temp |= TRANS_DP_PORT_SEL_C;
3185                         break;
3186                 case PCH_DP_D:
3187                         temp |= TRANS_DP_PORT_SEL_D;
3188                         break;
3189                 default:
3190                         BUG();
3191                 }
3192
3193                 I915_WRITE(reg, temp);
3194         }
3195
3196         ironlake_enable_pch_transcoder(dev_priv, pipe);
3197 }
3198
3199 static void lpt_pch_enable(struct drm_crtc *crtc)
3200 {
3201         struct drm_device *dev = crtc->dev;
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3204         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3205
3206         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3207
3208         lpt_program_iclkip(crtc);
3209
3210         /* Set transcoder timing. */
3211         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3212         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3213         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3214
3215         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3216         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3217         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3218         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3219
3220         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3221 }
3222
3223 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3224 {
3225         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3226
3227         if (pll == NULL)
3228                 return;
3229
3230         if (pll->refcount == 0) {
3231                 WARN(1, "bad PCH PLL refcount\n");
3232                 return;
3233         }
3234
3235         --pll->refcount;
3236         intel_crtc->pch_pll = NULL;
3237 }
3238
3239 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3240 {
3241         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3242         struct intel_pch_pll *pll;
3243         int i;
3244
3245         pll = intel_crtc->pch_pll;
3246         if (pll) {
3247                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3248                               intel_crtc->base.base.id, pll->pll_reg);
3249                 goto prepare;
3250         }
3251
3252         if (HAS_PCH_IBX(dev_priv->dev)) {
3253                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3254                 i = intel_crtc->pipe;
3255                 pll = &dev_priv->pch_plls[i];
3256
3257                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3258                               intel_crtc->base.base.id, pll->pll_reg);
3259
3260                 goto found;
3261         }
3262
3263         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3264                 pll = &dev_priv->pch_plls[i];
3265
3266                 /* Only want to check enabled timings first */
3267                 if (pll->refcount == 0)
3268                         continue;
3269
3270                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3271                     fp == I915_READ(pll->fp0_reg)) {
3272                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3273                                       intel_crtc->base.base.id,
3274                                       pll->pll_reg, pll->refcount, pll->active);
3275
3276                         goto found;
3277                 }
3278         }
3279
3280         /* Ok no matching timings, maybe there's a free one? */
3281         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3282                 pll = &dev_priv->pch_plls[i];
3283                 if (pll->refcount == 0) {
3284                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3285                                       intel_crtc->base.base.id, pll->pll_reg);
3286                         goto found;
3287                 }
3288         }
3289
3290         return NULL;
3291
3292 found:
3293         intel_crtc->pch_pll = pll;
3294         pll->refcount++;
3295         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3296 prepare: /* separate function? */
3297         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3298
3299         /* Wait for the clocks to stabilize before rewriting the regs */
3300         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3301         POSTING_READ(pll->pll_reg);
3302         udelay(150);
3303
3304         I915_WRITE(pll->fp0_reg, fp);
3305         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3306         pll->on = false;
3307         return pll;
3308 }
3309
3310 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3311 {
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         int dslreg = PIPEDSL(pipe);
3314         u32 temp;
3315
3316         temp = I915_READ(dslreg);
3317         udelay(500);
3318         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3319                 if (wait_for(I915_READ(dslreg) != temp, 5))
3320                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3321         }
3322 }
3323
3324 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3325 {
3326         struct drm_device *dev = crtc->dev;
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329         struct intel_encoder *encoder;
3330         int pipe = intel_crtc->pipe;
3331         int plane = intel_crtc->plane;
3332         u32 temp;
3333
3334         WARN_ON(!crtc->enabled);
3335
3336         if (intel_crtc->active)
3337                 return;
3338
3339         intel_crtc->active = true;
3340         intel_update_watermarks(dev);
3341
3342         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3343                 temp = I915_READ(PCH_LVDS);
3344                 if ((temp & LVDS_PORT_EN) == 0)
3345                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3346         }
3347
3348
3349         if (intel_crtc->config.has_pch_encoder) {
3350                 /* Note: FDI PLL enabling _must_ be done before we enable the
3351                  * cpu pipes, hence this is separate from all the other fdi/pch
3352                  * enabling. */
3353                 ironlake_fdi_pll_enable(intel_crtc);
3354         } else {
3355                 assert_fdi_tx_disabled(dev_priv, pipe);
3356                 assert_fdi_rx_disabled(dev_priv, pipe);
3357         }
3358
3359         for_each_encoder_on_crtc(dev, crtc, encoder)
3360                 if (encoder->pre_enable)
3361                         encoder->pre_enable(encoder);
3362
3363         /* Enable panel fitting for LVDS */
3364         if (dev_priv->pch_pf_size &&
3365             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3366              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3367                 /* Force use of hard-coded filter coefficients
3368                  * as some pre-programmed values are broken,
3369                  * e.g. x201.
3370                  */
3371                 if (IS_IVYBRIDGE(dev))
3372                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3373                                                  PF_PIPE_SEL_IVB(pipe));
3374                 else
3375                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3376                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3377                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3378         }
3379
3380         /*
3381          * On ILK+ LUT must be loaded before the pipe is running but with
3382          * clocks enabled
3383          */
3384         intel_crtc_load_lut(crtc);
3385
3386         intel_enable_pipe(dev_priv, pipe,
3387                           intel_crtc->config.has_pch_encoder);
3388         intel_enable_plane(dev_priv, plane, pipe);
3389
3390         if (intel_crtc->config.has_pch_encoder)
3391                 ironlake_pch_enable(crtc);
3392
3393         mutex_lock(&dev->struct_mutex);
3394         intel_update_fbc(dev);
3395         mutex_unlock(&dev->struct_mutex);
3396
3397         intel_crtc_update_cursor(crtc, true);
3398
3399         for_each_encoder_on_crtc(dev, crtc, encoder)
3400                 encoder->enable(encoder);
3401
3402         if (HAS_PCH_CPT(dev))
3403                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3404
3405         /*
3406          * There seems to be a race in PCH platform hw (at least on some
3407          * outputs) where an enabled pipe still completes any pageflip right
3408          * away (as if the pipe is off) instead of waiting for vblank. As soon
3409          * as the first vblank happend, everything works as expected. Hence just
3410          * wait for one vblank before returning to avoid strange things
3411          * happening.
3412          */
3413         intel_wait_for_vblank(dev, intel_crtc->pipe);
3414 }
3415
3416 static void haswell_crtc_enable(struct drm_crtc *crtc)
3417 {
3418         struct drm_device *dev = crtc->dev;
3419         struct drm_i915_private *dev_priv = dev->dev_private;
3420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3421         struct intel_encoder *encoder;
3422         int pipe = intel_crtc->pipe;
3423         int plane = intel_crtc->plane;
3424
3425         WARN_ON(!crtc->enabled);
3426
3427         if (intel_crtc->active)
3428                 return;
3429
3430         intel_crtc->active = true;
3431         intel_update_watermarks(dev);
3432
3433         if (intel_crtc->config.has_pch_encoder)
3434                 dev_priv->display.fdi_link_train(crtc);
3435
3436         for_each_encoder_on_crtc(dev, crtc, encoder)
3437                 if (encoder->pre_enable)
3438                         encoder->pre_enable(encoder);
3439
3440         intel_ddi_enable_pipe_clock(intel_crtc);
3441
3442         /* Enable panel fitting for eDP */
3443         if (dev_priv->pch_pf_size &&
3444             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3445                 /* Force use of hard-coded filter coefficients
3446                  * as some pre-programmed values are broken,
3447                  * e.g. x201.
3448                  */
3449                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3450                                          PF_PIPE_SEL_IVB(pipe));
3451                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3452                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3453         }
3454
3455         /*
3456          * On ILK+ LUT must be loaded before the pipe is running but with
3457          * clocks enabled
3458          */
3459         intel_crtc_load_lut(crtc);
3460
3461         intel_ddi_set_pipe_settings(crtc);
3462         intel_ddi_enable_transcoder_func(crtc);
3463
3464         intel_enable_pipe(dev_priv, pipe,
3465                           intel_crtc->config.has_pch_encoder);
3466         intel_enable_plane(dev_priv, plane, pipe);
3467
3468         if (intel_crtc->config.has_pch_encoder)
3469                 lpt_pch_enable(crtc);
3470
3471         mutex_lock(&dev->struct_mutex);
3472         intel_update_fbc(dev);
3473         mutex_unlock(&dev->struct_mutex);
3474
3475         intel_crtc_update_cursor(crtc, true);
3476
3477         for_each_encoder_on_crtc(dev, crtc, encoder)
3478                 encoder->enable(encoder);
3479
3480         /*
3481          * There seems to be a race in PCH platform hw (at least on some
3482          * outputs) where an enabled pipe still completes any pageflip right
3483          * away (as if the pipe is off) instead of waiting for vblank. As soon
3484          * as the first vblank happend, everything works as expected. Hence just
3485          * wait for one vblank before returning to avoid strange things
3486          * happening.
3487          */
3488         intel_wait_for_vblank(dev, intel_crtc->pipe);
3489 }
3490
3491 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3492 {
3493         struct drm_device *dev = crtc->dev;
3494         struct drm_i915_private *dev_priv = dev->dev_private;
3495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496         struct intel_encoder *encoder;
3497         int pipe = intel_crtc->pipe;
3498         int plane = intel_crtc->plane;
3499         u32 reg, temp;
3500
3501
3502         if (!intel_crtc->active)
3503                 return;
3504
3505         for_each_encoder_on_crtc(dev, crtc, encoder)
3506                 encoder->disable(encoder);
3507
3508         intel_crtc_wait_for_pending_flips(crtc);
3509         drm_vblank_off(dev, pipe);
3510         intel_crtc_update_cursor(crtc, false);
3511
3512         intel_disable_plane(dev_priv, plane, pipe);
3513
3514         if (dev_priv->cfb_plane == plane)
3515                 intel_disable_fbc(dev);
3516
3517         intel_disable_pipe(dev_priv, pipe);
3518
3519         /* Disable PF */
3520         I915_WRITE(PF_CTL(pipe), 0);
3521         I915_WRITE(PF_WIN_SZ(pipe), 0);
3522
3523         for_each_encoder_on_crtc(dev, crtc, encoder)
3524                 if (encoder->post_disable)
3525                         encoder->post_disable(encoder);
3526
3527         ironlake_fdi_disable(crtc);
3528
3529         ironlake_disable_pch_transcoder(dev_priv, pipe);
3530
3531         if (HAS_PCH_CPT(dev)) {
3532                 /* disable TRANS_DP_CTL */
3533                 reg = TRANS_DP_CTL(pipe);
3534                 temp = I915_READ(reg);
3535                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3536                 temp |= TRANS_DP_PORT_SEL_NONE;
3537                 I915_WRITE(reg, temp);
3538
3539                 /* disable DPLL_SEL */
3540                 temp = I915_READ(PCH_DPLL_SEL);
3541                 switch (pipe) {
3542                 case 0:
3543                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3544                         break;
3545                 case 1:
3546                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3547                         break;
3548                 case 2:
3549                         /* C shares PLL A or B */
3550                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3551                         break;
3552                 default:
3553                         BUG(); /* wtf */
3554                 }
3555                 I915_WRITE(PCH_DPLL_SEL, temp);
3556         }
3557
3558         /* disable PCH DPLL */
3559         intel_disable_pch_pll(intel_crtc);
3560
3561         ironlake_fdi_pll_disable(intel_crtc);
3562
3563         intel_crtc->active = false;
3564         intel_update_watermarks(dev);
3565
3566         mutex_lock(&dev->struct_mutex);
3567         intel_update_fbc(dev);
3568         mutex_unlock(&dev->struct_mutex);
3569 }
3570
3571 static void haswell_crtc_disable(struct drm_crtc *crtc)
3572 {
3573         struct drm_device *dev = crtc->dev;
3574         struct drm_i915_private *dev_priv = dev->dev_private;
3575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3576         struct intel_encoder *encoder;
3577         int pipe = intel_crtc->pipe;
3578         int plane = intel_crtc->plane;
3579         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3580
3581         if (!intel_crtc->active)
3582                 return;
3583
3584         for_each_encoder_on_crtc(dev, crtc, encoder)
3585                 encoder->disable(encoder);
3586
3587         intel_crtc_wait_for_pending_flips(crtc);
3588         drm_vblank_off(dev, pipe);
3589         intel_crtc_update_cursor(crtc, false);
3590
3591         intel_disable_plane(dev_priv, plane, pipe);
3592
3593         if (dev_priv->cfb_plane == plane)
3594                 intel_disable_fbc(dev);
3595
3596         intel_disable_pipe(dev_priv, pipe);
3597
3598         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3599
3600         /* Disable PF */
3601         I915_WRITE(PF_CTL(pipe), 0);
3602         I915_WRITE(PF_WIN_SZ(pipe), 0);
3603
3604         intel_ddi_disable_pipe_clock(intel_crtc);
3605
3606         for_each_encoder_on_crtc(dev, crtc, encoder)
3607                 if (encoder->post_disable)
3608                         encoder->post_disable(encoder);
3609
3610         if (intel_crtc->config.has_pch_encoder) {
3611                 lpt_disable_pch_transcoder(dev_priv);
3612                 intel_ddi_fdi_disable(crtc);
3613         }
3614
3615         intel_crtc->active = false;
3616         intel_update_watermarks(dev);
3617
3618         mutex_lock(&dev->struct_mutex);
3619         intel_update_fbc(dev);
3620         mutex_unlock(&dev->struct_mutex);
3621 }
3622
3623 static void ironlake_crtc_off(struct drm_crtc *crtc)
3624 {
3625         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3626         intel_put_pch_pll(intel_crtc);
3627 }
3628
3629 static void haswell_crtc_off(struct drm_crtc *crtc)
3630 {
3631         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632
3633         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3634          * start using it. */
3635         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3636
3637         intel_ddi_put_crtc_pll(crtc);
3638 }
3639
3640 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3641 {
3642         if (!enable && intel_crtc->overlay) {
3643                 struct drm_device *dev = intel_crtc->base.dev;
3644                 struct drm_i915_private *dev_priv = dev->dev_private;
3645
3646                 mutex_lock(&dev->struct_mutex);
3647                 dev_priv->mm.interruptible = false;
3648                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3649                 dev_priv->mm.interruptible = true;
3650                 mutex_unlock(&dev->struct_mutex);
3651         }
3652
3653         /* Let userspace switch the overlay on again. In most cases userspace
3654          * has to recompute where to put it anyway.
3655          */
3656 }
3657
3658 /**
3659  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3660  * cursor plane briefly if not already running after enabling the display
3661  * plane.
3662  * This workaround avoids occasional blank screens when self refresh is
3663  * enabled.
3664  */
3665 static void
3666 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3667 {
3668         u32 cntl = I915_READ(CURCNTR(pipe));
3669
3670         if ((cntl & CURSOR_MODE) == 0) {
3671                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3672
3673                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3674                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3675                 intel_wait_for_vblank(dev_priv->dev, pipe);
3676                 I915_WRITE(CURCNTR(pipe), cntl);
3677                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3678                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3679         }
3680 }
3681
3682 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3683 {
3684         struct drm_device *dev = crtc->dev;
3685         struct drm_i915_private *dev_priv = dev->dev_private;
3686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3687         struct intel_encoder *encoder;
3688         int pipe = intel_crtc->pipe;
3689         int plane = intel_crtc->plane;
3690
3691         WARN_ON(!crtc->enabled);
3692
3693         if (intel_crtc->active)
3694                 return;
3695
3696         intel_crtc->active = true;
3697         intel_update_watermarks(dev);
3698
3699         intel_enable_pll(dev_priv, pipe);
3700
3701         for_each_encoder_on_crtc(dev, crtc, encoder)
3702                 if (encoder->pre_enable)
3703                         encoder->pre_enable(encoder);
3704
3705         intel_enable_pipe(dev_priv, pipe, false);
3706         intel_enable_plane(dev_priv, plane, pipe);
3707         if (IS_G4X(dev))
3708                 g4x_fixup_plane(dev_priv, pipe);
3709
3710         intel_crtc_load_lut(crtc);
3711         intel_update_fbc(dev);
3712
3713         /* Give the overlay scaler a chance to enable if it's on this pipe */
3714         intel_crtc_dpms_overlay(intel_crtc, true);
3715         intel_crtc_update_cursor(crtc, true);
3716
3717         for_each_encoder_on_crtc(dev, crtc, encoder)
3718                 encoder->enable(encoder);
3719 }
3720
3721 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3722 {
3723         struct drm_device *dev = crtc->dev;
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3726         struct intel_encoder *encoder;
3727         int pipe = intel_crtc->pipe;
3728         int plane = intel_crtc->plane;
3729         u32 pctl;
3730
3731
3732         if (!intel_crtc->active)
3733                 return;
3734
3735         for_each_encoder_on_crtc(dev, crtc, encoder)
3736                 encoder->disable(encoder);
3737
3738         /* Give the overlay scaler a chance to disable if it's on this pipe */
3739         intel_crtc_wait_for_pending_flips(crtc);
3740         drm_vblank_off(dev, pipe);
3741         intel_crtc_dpms_overlay(intel_crtc, false);
3742         intel_crtc_update_cursor(crtc, false);
3743
3744         if (dev_priv->cfb_plane == plane)
3745                 intel_disable_fbc(dev);
3746
3747         intel_disable_plane(dev_priv, plane, pipe);
3748         intel_disable_pipe(dev_priv, pipe);
3749
3750         /* Disable pannel fitter if it is on this pipe. */
3751         pctl = I915_READ(PFIT_CONTROL);
3752         if ((pctl & PFIT_ENABLE) &&
3753             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3754                 I915_WRITE(PFIT_CONTROL, 0);
3755
3756         intel_disable_pll(dev_priv, pipe);
3757
3758         intel_crtc->active = false;
3759         intel_update_fbc(dev);
3760         intel_update_watermarks(dev);
3761 }
3762
3763 static void i9xx_crtc_off(struct drm_crtc *crtc)
3764 {
3765 }
3766
3767 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3768                                     bool enabled)
3769 {
3770         struct drm_device *dev = crtc->dev;
3771         struct drm_i915_master_private *master_priv;
3772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3773         int pipe = intel_crtc->pipe;
3774
3775         if (!dev->primary->master)
3776                 return;
3777
3778         master_priv = dev->primary->master->driver_priv;
3779         if (!master_priv->sarea_priv)
3780                 return;
3781
3782         switch (pipe) {
3783         case 0:
3784                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3785                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3786                 break;
3787         case 1:
3788                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3789                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3790                 break;
3791         default:
3792                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3793                 break;
3794         }
3795 }
3796
3797 /**
3798  * Sets the power management mode of the pipe and plane.
3799  */
3800 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3801 {
3802         struct drm_device *dev = crtc->dev;
3803         struct drm_i915_private *dev_priv = dev->dev_private;
3804         struct intel_encoder *intel_encoder;
3805         bool enable = false;
3806
3807         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3808                 enable |= intel_encoder->connectors_active;
3809
3810         if (enable)
3811                 dev_priv->display.crtc_enable(crtc);
3812         else
3813                 dev_priv->display.crtc_disable(crtc);
3814
3815         intel_crtc_update_sarea(crtc, enable);
3816 }
3817
3818 static void intel_crtc_disable(struct drm_crtc *crtc)
3819 {
3820         struct drm_device *dev = crtc->dev;
3821         struct drm_connector *connector;
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3824
3825         /* crtc should still be enabled when we disable it. */
3826         WARN_ON(!crtc->enabled);
3827
3828         intel_crtc->eld_vld = false;
3829         dev_priv->display.crtc_disable(crtc);
3830         intel_crtc_update_sarea(crtc, false);
3831         dev_priv->display.off(crtc);
3832
3833         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3834         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3835
3836         if (crtc->fb) {
3837                 mutex_lock(&dev->struct_mutex);
3838                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3839                 mutex_unlock(&dev->struct_mutex);
3840                 crtc->fb = NULL;
3841         }
3842
3843         /* Update computed state. */
3844         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3845                 if (!connector->encoder || !connector->encoder->crtc)
3846                         continue;
3847
3848                 if (connector->encoder->crtc != crtc)
3849                         continue;
3850
3851                 connector->dpms = DRM_MODE_DPMS_OFF;
3852                 to_intel_encoder(connector->encoder)->connectors_active = false;
3853         }
3854 }
3855
3856 void intel_modeset_disable(struct drm_device *dev)
3857 {
3858         struct drm_crtc *crtc;
3859
3860         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3861                 if (crtc->enabled)
3862                         intel_crtc_disable(crtc);
3863         }
3864 }
3865
3866 void intel_encoder_destroy(struct drm_encoder *encoder)
3867 {
3868         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3869
3870         drm_encoder_cleanup(encoder);
3871         kfree(intel_encoder);
3872 }
3873
3874 /* Simple dpms helper for encodres with just one connector, no cloning and only
3875  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3876  * state of the entire output pipe. */
3877 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3878 {
3879         if (mode == DRM_MODE_DPMS_ON) {
3880                 encoder->connectors_active = true;
3881
3882                 intel_crtc_update_dpms(encoder->base.crtc);
3883         } else {
3884                 encoder->connectors_active = false;
3885
3886                 intel_crtc_update_dpms(encoder->base.crtc);
3887         }
3888 }
3889
3890 /* Cross check the actual hw state with our own modeset state tracking (and it's
3891  * internal consistency). */
3892 static void intel_connector_check_state(struct intel_connector *connector)
3893 {
3894         if (connector->get_hw_state(connector)) {
3895                 struct intel_encoder *encoder = connector->encoder;
3896                 struct drm_crtc *crtc;
3897                 bool encoder_enabled;
3898                 enum pipe pipe;
3899
3900                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3901                               connector->base.base.id,
3902                               drm_get_connector_name(&connector->base));
3903
3904                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3905                      "wrong connector dpms state\n");
3906                 WARN(connector->base.encoder != &encoder->base,
3907                      "active connector not linked to encoder\n");
3908                 WARN(!encoder->connectors_active,
3909                      "encoder->connectors_active not set\n");
3910
3911                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3912                 WARN(!encoder_enabled, "encoder not enabled\n");
3913                 if (WARN_ON(!encoder->base.crtc))
3914                         return;
3915
3916                 crtc = encoder->base.crtc;
3917
3918                 WARN(!crtc->enabled, "crtc not enabled\n");
3919                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3920                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3921                      "encoder active on the wrong pipe\n");
3922         }
3923 }
3924
3925 /* Even simpler default implementation, if there's really no special case to
3926  * consider. */
3927 void intel_connector_dpms(struct drm_connector *connector, int mode)
3928 {
3929         struct intel_encoder *encoder = intel_attached_encoder(connector);
3930
3931         /* All the simple cases only support two dpms states. */
3932         if (mode != DRM_MODE_DPMS_ON)
3933                 mode = DRM_MODE_DPMS_OFF;
3934
3935         if (mode == connector->dpms)
3936                 return;
3937
3938         connector->dpms = mode;
3939
3940         /* Only need to change hw state when actually enabled */
3941         if (encoder->base.crtc)
3942                 intel_encoder_dpms(encoder, mode);
3943         else
3944                 WARN_ON(encoder->connectors_active != false);
3945
3946         intel_modeset_check_state(connector->dev);
3947 }
3948
3949 /* Simple connector->get_hw_state implementation for encoders that support only
3950  * one connector and no cloning and hence the encoder state determines the state
3951  * of the connector. */
3952 bool intel_connector_get_hw_state(struct intel_connector *connector)
3953 {
3954         enum pipe pipe = 0;
3955         struct intel_encoder *encoder = connector->encoder;
3956
3957         return encoder->get_hw_state(encoder, &pipe);
3958 }
3959
3960 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3961                                       struct intel_crtc_config *pipe_config)
3962 {
3963         struct drm_device *dev = crtc->dev;
3964         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3965
3966         if (HAS_PCH_SPLIT(dev)) {
3967                 /* FDI link clock is fixed at 2.7G */
3968                 if (pipe_config->requested_mode.clock * 3
3969                     > IRONLAKE_FDI_FREQ * 4)
3970                         return false;
3971         }
3972
3973         /* All interlaced capable intel hw wants timings in frames. Note though
3974          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3975          * timings, so we need to be careful not to clobber these.*/
3976         if (!pipe_config->timings_set)
3977                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3978
3979         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3980          * with a hsync front porch of 0.
3981          */
3982         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3983                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3984                 return false;
3985
3986         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3987                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3988         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3989                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3990                  * for lvds. */
3991                 pipe_config->pipe_bpp = 8*3;
3992         }
3993
3994         return true;
3995 }
3996
3997 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3998 {
3999         return 400000; /* FIXME */
4000 }
4001
4002 static int i945_get_display_clock_speed(struct drm_device *dev)
4003 {
4004         return 400000;
4005 }
4006
4007 static int i915_get_display_clock_speed(struct drm_device *dev)
4008 {
4009         return 333000;
4010 }
4011
4012 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4013 {
4014         return 200000;
4015 }
4016
4017 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4018 {
4019         u16 gcfgc = 0;
4020
4021         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4022
4023         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4024                 return 133000;
4025         else {
4026                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4027                 case GC_DISPLAY_CLOCK_333_MHZ:
4028                         return 333000;
4029                 default:
4030                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4031                         return 190000;
4032                 }
4033         }
4034 }
4035
4036 static int i865_get_display_clock_speed(struct drm_device *dev)
4037 {
4038         return 266000;
4039 }
4040
4041 static int i855_get_display_clock_speed(struct drm_device *dev)
4042 {
4043         u16 hpllcc = 0;
4044         /* Assume that the hardware is in the high speed state.  This
4045          * should be the default.
4046          */
4047         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4048         case GC_CLOCK_133_200:
4049         case GC_CLOCK_100_200:
4050                 return 200000;
4051         case GC_CLOCK_166_250:
4052                 return 250000;
4053         case GC_CLOCK_100_133:
4054                 return 133000;
4055         }
4056
4057         /* Shouldn't happen */
4058         return 0;
4059 }
4060
4061 static int i830_get_display_clock_speed(struct drm_device *dev)
4062 {
4063         return 133000;
4064 }
4065
4066 static void
4067 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4068 {
4069         while (*num > 0xffffff || *den > 0xffffff) {
4070                 *num >>= 1;
4071                 *den >>= 1;
4072         }
4073 }
4074
4075 void
4076 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4077                        int pixel_clock, int link_clock,
4078                        struct intel_link_m_n *m_n)
4079 {
4080         m_n->tu = 64;
4081         m_n->gmch_m = bits_per_pixel * pixel_clock;
4082         m_n->gmch_n = link_clock * nlanes * 8;
4083         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4084         m_n->link_m = pixel_clock;
4085         m_n->link_n = link_clock;
4086         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4087 }
4088
4089 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4090 {
4091         if (i915_panel_use_ssc >= 0)
4092                 return i915_panel_use_ssc != 0;
4093         return dev_priv->lvds_use_ssc
4094                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4095 }
4096
4097 static int vlv_get_refclk(struct drm_crtc *crtc)
4098 {
4099         struct drm_device *dev = crtc->dev;
4100         struct drm_i915_private *dev_priv = dev->dev_private;
4101         int refclk = 27000; /* for DP & HDMI */
4102
4103         return 100000; /* only one validated so far */
4104
4105         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4106                 refclk = 96000;
4107         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4108                 if (intel_panel_use_ssc(dev_priv))
4109                         refclk = 100000;
4110                 else
4111                         refclk = 96000;
4112         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4113                 refclk = 100000;
4114         }
4115
4116         return refclk;
4117 }
4118
4119 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4120 {
4121         struct drm_device *dev = crtc->dev;
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         int refclk;
4124
4125         if (IS_VALLEYVIEW(dev)) {
4126                 refclk = vlv_get_refclk(crtc);
4127         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4128             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4129                 refclk = dev_priv->lvds_ssc_freq * 1000;
4130                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4131                               refclk / 1000);
4132         } else if (!IS_GEN2(dev)) {
4133                 refclk = 96000;
4134         } else {
4135                 refclk = 48000;
4136         }
4137
4138         return refclk;
4139 }
4140
4141 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4142 {
4143         unsigned dotclock = crtc->config.adjusted_mode.clock;
4144         struct dpll *clock = &crtc->config.dpll;
4145
4146         /* SDVO TV has fixed PLL values depend on its clock range,
4147            this mirrors vbios setting. */
4148         if (dotclock >= 100000 && dotclock < 140500) {
4149                 clock->p1 = 2;
4150                 clock->p2 = 10;
4151                 clock->n = 3;
4152                 clock->m1 = 16;
4153                 clock->m2 = 8;
4154         } else if (dotclock >= 140500 && dotclock <= 200000) {
4155                 clock->p1 = 1;
4156                 clock->p2 = 10;
4157                 clock->n = 6;
4158                 clock->m1 = 12;
4159                 clock->m2 = 8;
4160         }
4161
4162         crtc->config.clock_set = true;
4163 }
4164
4165 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4166                                      intel_clock_t *reduced_clock)
4167 {
4168         struct drm_device *dev = crtc->base.dev;
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         int pipe = crtc->pipe;
4171         u32 fp, fp2 = 0;
4172         struct dpll *clock = &crtc->config.dpll;
4173
4174         if (IS_PINEVIEW(dev)) {
4175                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4176                 if (reduced_clock)
4177                         fp2 = (1 << reduced_clock->n) << 16 |
4178                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4179         } else {
4180                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4181                 if (reduced_clock)
4182                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4183                                 reduced_clock->m2;
4184         }
4185
4186         I915_WRITE(FP0(pipe), fp);
4187
4188         crtc->lowfreq_avail = false;
4189         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4190             reduced_clock && i915_powersave) {
4191                 I915_WRITE(FP1(pipe), fp2);
4192                 crtc->lowfreq_avail = true;
4193         } else {
4194                 I915_WRITE(FP1(pipe), fp);
4195         }
4196 }
4197
4198 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4199 {
4200         if (crtc->config.has_pch_encoder)
4201                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4202         else
4203                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4204 }
4205
4206 static void vlv_update_pll(struct intel_crtc *crtc)
4207 {
4208         struct drm_device *dev = crtc->base.dev;
4209         struct drm_i915_private *dev_priv = dev->dev_private;
4210         int pipe = crtc->pipe;
4211         u32 dpll, mdiv, pdiv;
4212         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4213         bool is_sdvo;
4214         u32 temp;
4215
4216         mutex_lock(&dev_priv->dpio_lock);
4217
4218         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4219                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4220
4221         dpll = DPLL_VGA_MODE_DIS;
4222         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4223         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4224         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4225
4226         I915_WRITE(DPLL(pipe), dpll);
4227         POSTING_READ(DPLL(pipe));
4228
4229         bestn = crtc->config.dpll.n;
4230         bestm1 = crtc->config.dpll.m1;
4231         bestm2 = crtc->config.dpll.m2;
4232         bestp1 = crtc->config.dpll.p1;
4233         bestp2 = crtc->config.dpll.p2;
4234
4235         /*
4236          * In Valleyview PLL and program lane counter registers are exposed
4237          * through DPIO interface
4238          */
4239         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4240         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4241         mdiv |= ((bestn << DPIO_N_SHIFT));
4242         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4243         mdiv |= (1 << DPIO_K_SHIFT);
4244         mdiv |= DPIO_ENABLE_CALIBRATION;
4245         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4246
4247         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4248
4249         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4250                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4251                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4252                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4253         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4254
4255         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4256
4257         dpll |= DPLL_VCO_ENABLE;
4258         I915_WRITE(DPLL(pipe), dpll);
4259         POSTING_READ(DPLL(pipe));
4260         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4261                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4262
4263         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4264
4265         if (crtc->config.has_dp_encoder)
4266                 intel_dp_set_m_n(crtc);
4267
4268         I915_WRITE(DPLL(pipe), dpll);
4269
4270         /* Wait for the clocks to stabilize. */
4271         POSTING_READ(DPLL(pipe));
4272         udelay(150);
4273
4274         temp = 0;
4275         if (is_sdvo) {
4276                 temp = 0;
4277                 if (crtc->config.pixel_multiplier > 1) {
4278                         temp = (crtc->config.pixel_multiplier - 1)
4279                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4280                 }
4281         }
4282         I915_WRITE(DPLL_MD(pipe), temp);
4283         POSTING_READ(DPLL_MD(pipe));
4284
4285         /* Now program lane control registers */
4286         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4287            || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4288                 temp = 0x1000C4;
4289                 if(pipe == 1)
4290                         temp |= (1 << 21);
4291                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4292         }
4293
4294         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4295                 temp = 0x1000C4;
4296                 if(pipe == 1)
4297                         temp |= (1 << 21);
4298                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4299         }
4300
4301         mutex_unlock(&dev_priv->dpio_lock);
4302 }
4303
4304 static void i9xx_update_pll(struct intel_crtc *crtc,
4305                             intel_clock_t *reduced_clock,
4306                             int num_connectors)
4307 {
4308         struct drm_device *dev = crtc->base.dev;
4309         struct drm_i915_private *dev_priv = dev->dev_private;
4310         struct intel_encoder *encoder;
4311         int pipe = crtc->pipe;
4312         u32 dpll;
4313         bool is_sdvo;
4314         struct dpll *clock = &crtc->config.dpll;
4315
4316         i9xx_update_pll_dividers(crtc, reduced_clock);
4317
4318         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4319                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4320
4321         dpll = DPLL_VGA_MODE_DIS;
4322
4323         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4324                 dpll |= DPLLB_MODE_LVDS;
4325         else
4326                 dpll |= DPLLB_MODE_DAC_SERIAL;
4327
4328         if (is_sdvo) {
4329                 if ((crtc->config.pixel_multiplier > 1) &&
4330                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4331                         dpll |= (crtc->config.pixel_multiplier - 1)
4332                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4333                 }
4334                 dpll |= DPLL_DVO_HIGH_SPEED;
4335         }
4336         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4337                 dpll |= DPLL_DVO_HIGH_SPEED;
4338
4339         /* compute bitmask from p1 value */
4340         if (IS_PINEVIEW(dev))
4341                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4342         else {
4343                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4344                 if (IS_G4X(dev) && reduced_clock)
4345                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4346         }
4347         switch (clock->p2) {
4348         case 5:
4349                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4350                 break;
4351         case 7:
4352                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4353                 break;
4354         case 10:
4355                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4356                 break;
4357         case 14:
4358                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4359                 break;
4360         }
4361         if (INTEL_INFO(dev)->gen >= 4)
4362                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4363
4364         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4365                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4366         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4367                 /* XXX: just matching BIOS for now */
4368                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4369                 dpll |= 3;
4370         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4371                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4372                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4373         else
4374                 dpll |= PLL_REF_INPUT_DREFCLK;
4375
4376         dpll |= DPLL_VCO_ENABLE;
4377         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4378         POSTING_READ(DPLL(pipe));
4379         udelay(150);
4380
4381         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4382                 if (encoder->pre_pll_enable)
4383                         encoder->pre_pll_enable(encoder);
4384
4385         if (crtc->config.has_dp_encoder)
4386                 intel_dp_set_m_n(crtc);
4387
4388         I915_WRITE(DPLL(pipe), dpll);
4389
4390         /* Wait for the clocks to stabilize. */
4391         POSTING_READ(DPLL(pipe));
4392         udelay(150);
4393
4394         if (INTEL_INFO(dev)->gen >= 4) {
4395                 u32 temp = 0;
4396                 if (is_sdvo) {
4397                         temp = 0;
4398                         if (crtc->config.pixel_multiplier > 1) {
4399                                 temp = (crtc->config.pixel_multiplier - 1)
4400                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4401                         }
4402                 }
4403                 I915_WRITE(DPLL_MD(pipe), temp);
4404         } else {
4405                 /* The pixel multiplier can only be updated once the
4406                  * DPLL is enabled and the clocks are stable.
4407                  *
4408                  * So write it again.
4409                  */
4410                 I915_WRITE(DPLL(pipe), dpll);
4411         }
4412 }
4413
4414 static void i8xx_update_pll(struct intel_crtc *crtc,
4415                             struct drm_display_mode *adjusted_mode,
4416                             intel_clock_t *reduced_clock,
4417                             int num_connectors)
4418 {
4419         struct drm_device *dev = crtc->base.dev;
4420         struct drm_i915_private *dev_priv = dev->dev_private;
4421         struct intel_encoder *encoder;
4422         int pipe = crtc->pipe;
4423         u32 dpll;
4424         struct dpll *clock = &crtc->config.dpll;
4425
4426         i9xx_update_pll_dividers(crtc, reduced_clock);
4427
4428         dpll = DPLL_VGA_MODE_DIS;
4429
4430         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4431                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4432         } else {
4433                 if (clock->p1 == 2)
4434                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4435                 else
4436                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4437                 if (clock->p2 == 4)
4438                         dpll |= PLL_P2_DIVIDE_BY_4;
4439         }
4440
4441         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4442                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4443                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4444         else
4445                 dpll |= PLL_REF_INPUT_DREFCLK;
4446
4447         dpll |= DPLL_VCO_ENABLE;
4448         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4449         POSTING_READ(DPLL(pipe));
4450         udelay(150);
4451
4452         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4453                 if (encoder->pre_pll_enable)
4454                         encoder->pre_pll_enable(encoder);
4455
4456         I915_WRITE(DPLL(pipe), dpll);
4457
4458         /* Wait for the clocks to stabilize. */
4459         POSTING_READ(DPLL(pipe));
4460         udelay(150);
4461
4462         /* The pixel multiplier can only be updated once the
4463          * DPLL is enabled and the clocks are stable.
4464          *
4465          * So write it again.
4466          */
4467         I915_WRITE(DPLL(pipe), dpll);
4468 }
4469
4470 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4471                                    struct drm_display_mode *mode,
4472                                    struct drm_display_mode *adjusted_mode)
4473 {
4474         struct drm_device *dev = intel_crtc->base.dev;
4475         struct drm_i915_private *dev_priv = dev->dev_private;
4476         enum pipe pipe = intel_crtc->pipe;
4477         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4478         uint32_t vsyncshift;
4479
4480         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4481                 /* the chip adds 2 halflines automatically */
4482                 adjusted_mode->crtc_vtotal -= 1;
4483                 adjusted_mode->crtc_vblank_end -= 1;
4484                 vsyncshift = adjusted_mode->crtc_hsync_start
4485                              - adjusted_mode->crtc_htotal / 2;
4486         } else {
4487                 vsyncshift = 0;
4488         }
4489
4490         if (INTEL_INFO(dev)->gen > 3)
4491                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4492
4493         I915_WRITE(HTOTAL(cpu_transcoder),
4494                    (adjusted_mode->crtc_hdisplay - 1) |
4495                    ((adjusted_mode->crtc_htotal - 1) << 16));
4496         I915_WRITE(HBLANK(cpu_transcoder),
4497                    (adjusted_mode->crtc_hblank_start - 1) |
4498                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4499         I915_WRITE(HSYNC(cpu_transcoder),
4500                    (adjusted_mode->crtc_hsync_start - 1) |
4501                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4502
4503         I915_WRITE(VTOTAL(cpu_transcoder),
4504                    (adjusted_mode->crtc_vdisplay - 1) |
4505                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4506         I915_WRITE(VBLANK(cpu_transcoder),
4507                    (adjusted_mode->crtc_vblank_start - 1) |
4508                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4509         I915_WRITE(VSYNC(cpu_transcoder),
4510                    (adjusted_mode->crtc_vsync_start - 1) |
4511                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4512
4513         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4514          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4515          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4516          * bits. */
4517         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4518             (pipe == PIPE_B || pipe == PIPE_C))
4519                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4520
4521         /* pipesrc controls the size that is scaled from, which should
4522          * always be the user's requested size.
4523          */
4524         I915_WRITE(PIPESRC(pipe),
4525                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4526 }
4527
4528 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4529 {
4530         struct drm_device *dev = intel_crtc->base.dev;
4531         struct drm_i915_private *dev_priv = dev->dev_private;
4532         uint32_t pipeconf;
4533
4534         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4535
4536         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4537                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4538                  * core speed.
4539                  *
4540                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4541                  * pipe == 0 check?
4542                  */
4543                 if (intel_crtc->config.requested_mode.clock >
4544                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4545                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4546                 else
4547                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4548         }
4549
4550         /* default to 8bpc */
4551         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4552         if (intel_crtc->config.has_dp_encoder) {
4553                 if (intel_crtc->config.dither) {
4554                         pipeconf |= PIPECONF_6BPC |
4555                                     PIPECONF_DITHER_EN |
4556                                     PIPECONF_DITHER_TYPE_SP;
4557                 }
4558         }
4559
4560         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4561                                                       INTEL_OUTPUT_EDP)) {
4562                 if (intel_crtc->config.dither) {
4563                         pipeconf |= PIPECONF_6BPC |
4564                                         PIPECONF_ENABLE |
4565                                         I965_PIPECONF_ACTIVE;
4566                 }
4567         }
4568
4569         if (HAS_PIPE_CXSR(dev)) {
4570                 if (intel_crtc->lowfreq_avail) {
4571                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4572                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4573                 } else {
4574                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4575                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4576                 }
4577         }
4578
4579         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4580         if (!IS_GEN2(dev) &&
4581             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4582                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4583         else
4584                 pipeconf |= PIPECONF_PROGRESSIVE;
4585
4586         if (IS_VALLEYVIEW(dev)) {
4587                 if (intel_crtc->config.limited_color_range)
4588                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4589                 else
4590                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4591         }
4592
4593         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4594         POSTING_READ(PIPECONF(intel_crtc->pipe));
4595 }
4596
4597 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4598                               int x, int y,
4599                               struct drm_framebuffer *fb)
4600 {
4601         struct drm_device *dev = crtc->dev;
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604         struct drm_display_mode *adjusted_mode =
4605                 &intel_crtc->config.adjusted_mode;
4606         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4607         int pipe = intel_crtc->pipe;
4608         int plane = intel_crtc->plane;
4609         int refclk, num_connectors = 0;
4610         intel_clock_t clock, reduced_clock;
4611         u32 dspcntr;
4612         bool ok, has_reduced_clock = false, is_sdvo = false;
4613         bool is_lvds = false, is_tv = false;
4614         struct intel_encoder *encoder;
4615         const intel_limit_t *limit;
4616         int ret;
4617
4618         for_each_encoder_on_crtc(dev, crtc, encoder) {
4619                 switch (encoder->type) {
4620                 case INTEL_OUTPUT_LVDS:
4621                         is_lvds = true;
4622                         break;
4623                 case INTEL_OUTPUT_SDVO:
4624                 case INTEL_OUTPUT_HDMI:
4625                         is_sdvo = true;
4626                         if (encoder->needs_tv_clock)
4627                                 is_tv = true;
4628                         break;
4629                 case INTEL_OUTPUT_TVOUT:
4630                         is_tv = true;
4631                         break;
4632                 }
4633
4634                 num_connectors++;
4635         }
4636
4637         refclk = i9xx_get_refclk(crtc, num_connectors);
4638
4639         /*
4640          * Returns a set of divisors for the desired target clock with the given
4641          * refclk, or FALSE.  The returned values represent the clock equation:
4642          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4643          */
4644         limit = intel_limit(crtc, refclk);
4645         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4646                              &clock);
4647         if (!ok) {
4648                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4649                 return -EINVAL;
4650         }
4651
4652         /* Ensure that the cursor is valid for the new mode before changing... */
4653         intel_crtc_update_cursor(crtc, true);
4654
4655         if (is_lvds && dev_priv->lvds_downclock_avail) {
4656                 /*
4657                  * Ensure we match the reduced clock's P to the target clock.
4658                  * If the clocks don't match, we can't switch the display clock
4659                  * by using the FP0/FP1. In such case we will disable the LVDS
4660                  * downclock feature.
4661                 */
4662                 has_reduced_clock = limit->find_pll(limit, crtc,
4663                                                     dev_priv->lvds_downclock,
4664                                                     refclk,
4665                                                     &clock,
4666                                                     &reduced_clock);
4667         }
4668         /* Compat-code for transition, will disappear. */
4669         if (!intel_crtc->config.clock_set) {
4670                 intel_crtc->config.dpll.n = clock.n;
4671                 intel_crtc->config.dpll.m1 = clock.m1;
4672                 intel_crtc->config.dpll.m2 = clock.m2;
4673                 intel_crtc->config.dpll.p1 = clock.p1;
4674                 intel_crtc->config.dpll.p2 = clock.p2;
4675         }
4676
4677         if (is_sdvo && is_tv)
4678                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4679
4680         if (IS_GEN2(dev))
4681                 i8xx_update_pll(intel_crtc, adjusted_mode,
4682                                 has_reduced_clock ? &reduced_clock : NULL,
4683                                 num_connectors);
4684         else if (IS_VALLEYVIEW(dev))
4685                 vlv_update_pll(intel_crtc);
4686         else
4687                 i9xx_update_pll(intel_crtc,
4688                                 has_reduced_clock ? &reduced_clock : NULL,
4689                                 num_connectors);
4690
4691         /* Set up the display plane register */
4692         dspcntr = DISPPLANE_GAMMA_ENABLE;
4693
4694         if (!IS_VALLEYVIEW(dev)) {
4695                 if (pipe == 0)
4696                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4697                 else
4698                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4699         }
4700
4701         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4702         drm_mode_debug_printmodeline(mode);
4703
4704         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4705
4706         /* pipesrc and dspsize control the size that is scaled from,
4707          * which should always be the user's requested size.
4708          */
4709         I915_WRITE(DSPSIZE(plane),
4710                    ((mode->vdisplay - 1) << 16) |
4711                    (mode->hdisplay - 1));
4712         I915_WRITE(DSPPOS(plane), 0);
4713
4714         i9xx_set_pipeconf(intel_crtc);
4715
4716         intel_enable_pipe(dev_priv, pipe, false);
4717
4718         intel_wait_for_vblank(dev, pipe);
4719
4720         I915_WRITE(DSPCNTR(plane), dspcntr);
4721         POSTING_READ(DSPCNTR(plane));
4722
4723         ret = intel_pipe_set_base(crtc, x, y, fb);
4724
4725         intel_update_watermarks(dev);
4726
4727         return ret;
4728 }
4729
4730 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4731                                  struct intel_crtc_config *pipe_config)
4732 {
4733         struct drm_device *dev = crtc->base.dev;
4734         struct drm_i915_private *dev_priv = dev->dev_private;
4735         uint32_t tmp;
4736
4737         tmp = I915_READ(PIPECONF(crtc->pipe));
4738         if (!(tmp & PIPECONF_ENABLE))
4739                 return false;
4740
4741         return true;
4742 }
4743
4744 static void ironlake_init_pch_refclk(struct drm_device *dev)
4745 {
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         struct drm_mode_config *mode_config = &dev->mode_config;
4748         struct intel_encoder *encoder;
4749         u32 val, final;
4750         bool has_lvds = false;
4751         bool has_cpu_edp = false;
4752         bool has_pch_edp = false;
4753         bool has_panel = false;
4754         bool has_ck505 = false;
4755         bool can_ssc = false;
4756
4757         /* We need to take the global config into account */
4758         list_for_each_entry(encoder, &mode_config->encoder_list,
4759                             base.head) {
4760                 switch (encoder->type) {
4761                 case INTEL_OUTPUT_LVDS:
4762                         has_panel = true;
4763                         has_lvds = true;
4764                         break;
4765                 case INTEL_OUTPUT_EDP:
4766                         has_panel = true;
4767                         if (intel_encoder_is_pch_edp(&encoder->base))
4768                                 has_pch_edp = true;
4769                         else
4770                                 has_cpu_edp = true;
4771                         break;
4772                 }
4773         }
4774
4775         if (HAS_PCH_IBX(dev)) {
4776                 has_ck505 = dev_priv->display_clock_mode;
4777                 can_ssc = has_ck505;
4778         } else {
4779                 has_ck505 = false;
4780                 can_ssc = true;
4781         }
4782
4783         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4784                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4785                       has_ck505);
4786
4787         /* Ironlake: try to setup display ref clock before DPLL
4788          * enabling. This is only under driver's control after
4789          * PCH B stepping, previous chipset stepping should be
4790          * ignoring this setting.
4791          */
4792         val = I915_READ(PCH_DREF_CONTROL);
4793
4794         /* As we must carefully and slowly disable/enable each source in turn,
4795          * compute the final state we want first and check if we need to
4796          * make any changes at all.
4797          */
4798         final = val;
4799         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4800         if (has_ck505)
4801                 final |= DREF_NONSPREAD_CK505_ENABLE;
4802         else
4803                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4804
4805         final &= ~DREF_SSC_SOURCE_MASK;
4806         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4807         final &= ~DREF_SSC1_ENABLE;
4808
4809         if (has_panel) {
4810                 final |= DREF_SSC_SOURCE_ENABLE;
4811
4812                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4813                         final |= DREF_SSC1_ENABLE;
4814
4815                 if (has_cpu_edp) {
4816                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4817                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4818                         else
4819                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4820                 } else
4821                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4822         } else {
4823                 final |= DREF_SSC_SOURCE_DISABLE;
4824                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4825         }
4826
4827         if (final == val)
4828                 return;
4829
4830         /* Always enable nonspread source */
4831         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4832
4833         if (has_ck505)
4834                 val |= DREF_NONSPREAD_CK505_ENABLE;
4835         else
4836                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4837
4838         if (has_panel) {
4839                 val &= ~DREF_SSC_SOURCE_MASK;
4840                 val |= DREF_SSC_SOURCE_ENABLE;
4841
4842                 /* SSC must be turned on before enabling the CPU output  */
4843                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4844                         DRM_DEBUG_KMS("Using SSC on panel\n");
4845                         val |= DREF_SSC1_ENABLE;
4846                 } else
4847                         val &= ~DREF_SSC1_ENABLE;
4848
4849                 /* Get SSC going before enabling the outputs */
4850                 I915_WRITE(PCH_DREF_CONTROL, val);
4851                 POSTING_READ(PCH_DREF_CONTROL);
4852                 udelay(200);
4853
4854                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4855
4856                 /* Enable CPU source on CPU attached eDP */
4857                 if (has_cpu_edp) {
4858                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4859                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4860                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4861                         }
4862                         else
4863                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4864                 } else
4865                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4866
4867                 I915_WRITE(PCH_DREF_CONTROL, val);
4868                 POSTING_READ(PCH_DREF_CONTROL);
4869                 udelay(200);
4870         } else {
4871                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4872
4873                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4874
4875                 /* Turn off CPU output */
4876                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4877
4878                 I915_WRITE(PCH_DREF_CONTROL, val);
4879                 POSTING_READ(PCH_DREF_CONTROL);
4880                 udelay(200);
4881
4882                 /* Turn off the SSC source */
4883                 val &= ~DREF_SSC_SOURCE_MASK;
4884                 val |= DREF_SSC_SOURCE_DISABLE;
4885
4886                 /* Turn off SSC1 */
4887                 val &= ~DREF_SSC1_ENABLE;
4888
4889                 I915_WRITE(PCH_DREF_CONTROL, val);
4890                 POSTING_READ(PCH_DREF_CONTROL);
4891                 udelay(200);
4892         }
4893
4894         BUG_ON(val != final);
4895 }
4896
4897 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4898 static void lpt_init_pch_refclk(struct drm_device *dev)
4899 {
4900         struct drm_i915_private *dev_priv = dev->dev_private;
4901         struct drm_mode_config *mode_config = &dev->mode_config;
4902         struct intel_encoder *encoder;
4903         bool has_vga = false;
4904         bool is_sdv = false;
4905         u32 tmp;
4906
4907         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4908                 switch (encoder->type) {
4909                 case INTEL_OUTPUT_ANALOG:
4910                         has_vga = true;
4911                         break;
4912                 }
4913         }
4914
4915         if (!has_vga)
4916                 return;
4917
4918         mutex_lock(&dev_priv->dpio_lock);
4919
4920         /* XXX: Rip out SDV support once Haswell ships for real. */
4921         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4922                 is_sdv = true;
4923
4924         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4925         tmp &= ~SBI_SSCCTL_DISABLE;
4926         tmp |= SBI_SSCCTL_PATHALT;
4927         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4928
4929         udelay(24);
4930
4931         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4932         tmp &= ~SBI_SSCCTL_PATHALT;
4933         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4934
4935         if (!is_sdv) {
4936                 tmp = I915_READ(SOUTH_CHICKEN2);
4937                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4938                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4939
4940                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4941                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4942                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4943
4944                 tmp = I915_READ(SOUTH_CHICKEN2);
4945                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4946                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4947
4948                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4949                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4950                                        100))
4951                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4952         }
4953
4954         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4955         tmp &= ~(0xFF << 24);
4956         tmp |= (0x12 << 24);
4957         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4958
4959         if (!is_sdv) {
4960                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4961                 tmp &= ~(0x3 << 6);
4962                 tmp |= (1 << 6) | (1 << 0);
4963                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4964         }
4965
4966         if (is_sdv) {
4967                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4968                 tmp |= 0x7FFF;
4969                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4970         }
4971
4972         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4973         tmp |= (1 << 11);
4974         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4975
4976         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4977         tmp |= (1 << 11);
4978         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4979
4980         if (is_sdv) {
4981                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4982                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4983                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4984
4985                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4986                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4987                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4988
4989                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4990                 tmp |= (0x3F << 8);
4991                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4992
4993                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4994                 tmp |= (0x3F << 8);
4995                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4996         }
4997
4998         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4999         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5000         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5001
5002         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5003         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5004         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5005
5006         if (!is_sdv) {
5007                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5008                 tmp &= ~(7 << 13);
5009                 tmp |= (5 << 13);
5010                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5011
5012                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5013                 tmp &= ~(7 << 13);
5014                 tmp |= (5 << 13);
5015                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5016         }
5017
5018         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5019         tmp &= ~0xFF;
5020         tmp |= 0x1C;
5021         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5022
5023         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5024         tmp &= ~0xFF;
5025         tmp |= 0x1C;
5026         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5027
5028         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5029         tmp &= ~(0xFF << 16);
5030         tmp |= (0x1C << 16);
5031         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5032
5033         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5034         tmp &= ~(0xFF << 16);
5035         tmp |= (0x1C << 16);
5036         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5037
5038         if (!is_sdv) {
5039                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5040                 tmp |= (1 << 27);
5041                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5042
5043                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5044                 tmp |= (1 << 27);
5045                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5046
5047                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5048                 tmp &= ~(0xF << 28);
5049                 tmp |= (4 << 28);
5050                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5051
5052                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5053                 tmp &= ~(0xF << 28);
5054                 tmp |= (4 << 28);
5055                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5056         }
5057
5058         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5059         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5060         tmp |= SBI_DBUFF0_ENABLE;
5061         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5062
5063         mutex_unlock(&dev_priv->dpio_lock);
5064 }
5065
5066 /*
5067  * Initialize reference clocks when the driver loads
5068  */
5069 void intel_init_pch_refclk(struct drm_device *dev)
5070 {
5071         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5072                 ironlake_init_pch_refclk(dev);
5073         else if (HAS_PCH_LPT(dev))
5074                 lpt_init_pch_refclk(dev);
5075 }
5076
5077 static int ironlake_get_refclk(struct drm_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_encoder *encoder;
5082         struct intel_encoder *edp_encoder = NULL;
5083         int num_connectors = 0;
5084         bool is_lvds = false;
5085
5086         for_each_encoder_on_crtc(dev, crtc, encoder) {
5087                 switch (encoder->type) {
5088                 case INTEL_OUTPUT_LVDS:
5089                         is_lvds = true;
5090                         break;
5091                 case INTEL_OUTPUT_EDP:
5092                         edp_encoder = encoder;
5093                         break;
5094                 }
5095                 num_connectors++;
5096         }
5097
5098         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5099                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5100                               dev_priv->lvds_ssc_freq);
5101                 return dev_priv->lvds_ssc_freq * 1000;
5102         }
5103
5104         return 120000;
5105 }
5106
5107 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5108                                   struct drm_display_mode *adjusted_mode,
5109                                   bool dither)
5110 {
5111         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5113         int pipe = intel_crtc->pipe;
5114         uint32_t val;
5115
5116         val = I915_READ(PIPECONF(pipe));
5117
5118         val &= ~PIPECONF_BPC_MASK;
5119         switch (intel_crtc->config.pipe_bpp) {
5120         case 18:
5121                 val |= PIPECONF_6BPC;
5122                 break;
5123         case 24:
5124                 val |= PIPECONF_8BPC;
5125                 break;
5126         case 30:
5127                 val |= PIPECONF_10BPC;
5128                 break;
5129         case 36:
5130                 val |= PIPECONF_12BPC;
5131                 break;
5132         default:
5133                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5134                 BUG();
5135         }
5136
5137         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5138         if (dither)
5139                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5140
5141         val &= ~PIPECONF_INTERLACE_MASK;
5142         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5143                 val |= PIPECONF_INTERLACED_ILK;
5144         else
5145                 val |= PIPECONF_PROGRESSIVE;
5146
5147         if (intel_crtc->config.limited_color_range)
5148                 val |= PIPECONF_COLOR_RANGE_SELECT;
5149         else
5150                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5151
5152         I915_WRITE(PIPECONF(pipe), val);
5153         POSTING_READ(PIPECONF(pipe));
5154 }
5155
5156 /*
5157  * Set up the pipe CSC unit.
5158  *
5159  * Currently only full range RGB to limited range RGB conversion
5160  * is supported, but eventually this should handle various
5161  * RGB<->YCbCr scenarios as well.
5162  */
5163 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5164 {
5165         struct drm_device *dev = crtc->dev;
5166         struct drm_i915_private *dev_priv = dev->dev_private;
5167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5168         int pipe = intel_crtc->pipe;
5169         uint16_t coeff = 0x7800; /* 1.0 */
5170
5171         /*
5172          * TODO: Check what kind of values actually come out of the pipe
5173          * with these coeff/postoff values and adjust to get the best
5174          * accuracy. Perhaps we even need to take the bpc value into
5175          * consideration.
5176          */
5177
5178         if (intel_crtc->config.limited_color_range)
5179                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5180
5181         /*
5182          * GY/GU and RY/RU should be the other way around according
5183          * to BSpec, but reality doesn't agree. Just set them up in
5184          * a way that results in the correct picture.
5185          */
5186         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5187         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5188
5189         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5190         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5191
5192         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5193         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5194
5195         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5196         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5197         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5198
5199         if (INTEL_INFO(dev)->gen > 6) {
5200                 uint16_t postoff = 0;
5201
5202                 if (intel_crtc->config.limited_color_range)
5203                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5204
5205                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5206                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5207                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5208
5209                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5210         } else {
5211                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5212
5213                 if (intel_crtc->config.limited_color_range)
5214                         mode |= CSC_BLACK_SCREEN_OFFSET;
5215
5216                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5217         }
5218 }
5219
5220 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5221                                  struct drm_display_mode *adjusted_mode,
5222                                  bool dither)
5223 {
5224         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5226         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5227         uint32_t val;
5228
5229         val = I915_READ(PIPECONF(cpu_transcoder));
5230
5231         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5232         if (dither)
5233                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5234
5235         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5236         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5237                 val |= PIPECONF_INTERLACED_ILK;
5238         else
5239                 val |= PIPECONF_PROGRESSIVE;
5240
5241         I915_WRITE(PIPECONF(cpu_transcoder), val);
5242         POSTING_READ(PIPECONF(cpu_transcoder));
5243 }
5244
5245 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5246                                     struct drm_display_mode *adjusted_mode,
5247                                     intel_clock_t *clock,
5248                                     bool *has_reduced_clock,
5249                                     intel_clock_t *reduced_clock)
5250 {
5251         struct drm_device *dev = crtc->dev;
5252         struct drm_i915_private *dev_priv = dev->dev_private;
5253         struct intel_encoder *intel_encoder;
5254         int refclk;
5255         const intel_limit_t *limit;
5256         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5257
5258         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5259                 switch (intel_encoder->type) {
5260                 case INTEL_OUTPUT_LVDS:
5261                         is_lvds = true;
5262                         break;
5263                 case INTEL_OUTPUT_SDVO:
5264                 case INTEL_OUTPUT_HDMI:
5265                         is_sdvo = true;
5266                         if (intel_encoder->needs_tv_clock)
5267                                 is_tv = true;
5268                         break;
5269                 case INTEL_OUTPUT_TVOUT:
5270                         is_tv = true;
5271                         break;
5272                 }
5273         }
5274
5275         refclk = ironlake_get_refclk(crtc);
5276
5277         /*
5278          * Returns a set of divisors for the desired target clock with the given
5279          * refclk, or FALSE.  The returned values represent the clock equation:
5280          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5281          */
5282         limit = intel_limit(crtc, refclk);
5283         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5284                               clock);
5285         if (!ret)
5286                 return false;
5287
5288         if (is_lvds && dev_priv->lvds_downclock_avail) {
5289                 /*
5290                  * Ensure we match the reduced clock's P to the target clock.
5291                  * If the clocks don't match, we can't switch the display clock
5292                  * by using the FP0/FP1. In such case we will disable the LVDS
5293                  * downclock feature.
5294                 */
5295                 *has_reduced_clock = limit->find_pll(limit, crtc,
5296                                                      dev_priv->lvds_downclock,
5297                                                      refclk,
5298                                                      clock,
5299                                                      reduced_clock);
5300         }
5301
5302         if (is_sdvo && is_tv)
5303                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5304
5305         return true;
5306 }
5307
5308 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5309 {
5310         struct drm_i915_private *dev_priv = dev->dev_private;
5311         uint32_t temp;
5312
5313         temp = I915_READ(SOUTH_CHICKEN1);
5314         if (temp & FDI_BC_BIFURCATION_SELECT)
5315                 return;
5316
5317         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5318         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5319
5320         temp |= FDI_BC_BIFURCATION_SELECT;
5321         DRM_DEBUG_KMS("enabling fdi C rx\n");
5322         I915_WRITE(SOUTH_CHICKEN1, temp);
5323         POSTING_READ(SOUTH_CHICKEN1);
5324 }
5325
5326 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5327 {
5328         struct drm_device *dev = intel_crtc->base.dev;
5329         struct drm_i915_private *dev_priv = dev->dev_private;
5330         struct intel_crtc *pipe_B_crtc =
5331                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5332
5333         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5334                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5335         if (intel_crtc->fdi_lanes > 4) {
5336                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5337                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5338                 /* Clamp lanes to avoid programming the hw with bogus values. */
5339                 intel_crtc->fdi_lanes = 4;
5340
5341                 return false;
5342         }
5343
5344         if (INTEL_INFO(dev)->num_pipes == 2)
5345                 return true;
5346
5347         switch (intel_crtc->pipe) {
5348         case PIPE_A:
5349                 return true;
5350         case PIPE_B:
5351                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5352                     intel_crtc->fdi_lanes > 2) {
5353                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5354                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5355                         /* Clamp lanes to avoid programming the hw with bogus values. */
5356                         intel_crtc->fdi_lanes = 2;
5357
5358                         return false;
5359                 }
5360
5361                 if (intel_crtc->fdi_lanes > 2)
5362                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5363                 else
5364                         cpt_enable_fdi_bc_bifurcation(dev);
5365
5366                 return true;
5367         case PIPE_C:
5368                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5369                         if (intel_crtc->fdi_lanes > 2) {
5370                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5371                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5372                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5373                                 intel_crtc->fdi_lanes = 2;
5374
5375                                 return false;
5376                         }
5377                 } else {
5378                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5379                         return false;
5380                 }
5381
5382                 cpt_enable_fdi_bc_bifurcation(dev);
5383
5384                 return true;
5385         default:
5386                 BUG();
5387         }
5388 }
5389
5390 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5391 {
5392         /*
5393          * Account for spread spectrum to avoid
5394          * oversubscribing the link. Max center spread
5395          * is 2.5%; use 5% for safety's sake.
5396          */
5397         u32 bps = target_clock * bpp * 21 / 20;
5398         return bps / (link_bw * 8) + 1;
5399 }
5400
5401 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5402                                   struct intel_link_m_n *m_n)
5403 {
5404         struct drm_device *dev = crtc->base.dev;
5405         struct drm_i915_private *dev_priv = dev->dev_private;
5406         int pipe = crtc->pipe;
5407
5408         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5409         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5410         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5411         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5412 }
5413
5414 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5415                                   struct intel_link_m_n *m_n)
5416 {
5417         struct drm_device *dev = crtc->base.dev;
5418         struct drm_i915_private *dev_priv = dev->dev_private;
5419         int pipe = crtc->pipe;
5420         enum transcoder transcoder = crtc->cpu_transcoder;
5421
5422         if (INTEL_INFO(dev)->gen >= 5) {
5423                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5424                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5425                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5426                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5427         } else {
5428                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5429                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5430                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5431                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5432         }
5433 }
5434
5435 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5436 {
5437         struct drm_device *dev = crtc->dev;
5438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5439         struct drm_display_mode *adjusted_mode =
5440                 &intel_crtc->config.adjusted_mode;
5441         struct intel_link_m_n m_n = {0};
5442         int target_clock, lane, link_bw;
5443
5444         /* FDI is a binary signal running at ~2.7GHz, encoding
5445          * each output octet as 10 bits. The actual frequency
5446          * is stored as a divider into a 100MHz clock, and the
5447          * mode pixel clock is stored in units of 1KHz.
5448          * Hence the bw of each lane in terms of the mode signal
5449          * is:
5450          */
5451         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5452
5453         if (intel_crtc->config.pixel_target_clock)
5454                 target_clock = intel_crtc->config.pixel_target_clock;
5455         else
5456                 target_clock = adjusted_mode->clock;
5457
5458         lane = ironlake_get_lanes_required(target_clock, link_bw,
5459                                            intel_crtc->config.pipe_bpp);
5460
5461         intel_crtc->fdi_lanes = lane;
5462
5463         if (intel_crtc->config.pixel_multiplier > 1)
5464                 link_bw *= intel_crtc->config.pixel_multiplier;
5465         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5466                                link_bw, &m_n);
5467
5468         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5469 }
5470
5471 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5472                                       intel_clock_t *clock, u32 fp)
5473 {
5474         struct drm_crtc *crtc = &intel_crtc->base;
5475         struct drm_device *dev = crtc->dev;
5476         struct drm_i915_private *dev_priv = dev->dev_private;
5477         struct intel_encoder *intel_encoder;
5478         uint32_t dpll;
5479         int factor, num_connectors = 0;
5480         bool is_lvds = false, is_sdvo = false, is_tv = false;
5481
5482         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5483                 switch (intel_encoder->type) {
5484                 case INTEL_OUTPUT_LVDS:
5485                         is_lvds = true;
5486                         break;
5487                 case INTEL_OUTPUT_SDVO:
5488                 case INTEL_OUTPUT_HDMI:
5489                         is_sdvo = true;
5490                         if (intel_encoder->needs_tv_clock)
5491                                 is_tv = true;
5492                         break;
5493                 case INTEL_OUTPUT_TVOUT:
5494                         is_tv = true;
5495                         break;
5496                 }
5497
5498                 num_connectors++;
5499         }
5500
5501         /* Enable autotuning of the PLL clock (if permissible) */
5502         factor = 21;
5503         if (is_lvds) {
5504                 if ((intel_panel_use_ssc(dev_priv) &&
5505                      dev_priv->lvds_ssc_freq == 100) ||
5506                     intel_is_dual_link_lvds(dev))
5507                         factor = 25;
5508         } else if (is_sdvo && is_tv)
5509                 factor = 20;
5510
5511         if (clock->m < factor * clock->n)
5512                 fp |= FP_CB_TUNE;
5513
5514         dpll = 0;
5515
5516         if (is_lvds)
5517                 dpll |= DPLLB_MODE_LVDS;
5518         else
5519                 dpll |= DPLLB_MODE_DAC_SERIAL;
5520         if (is_sdvo) {
5521                 if (intel_crtc->config.pixel_multiplier > 1) {
5522                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5523                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5524                 }
5525                 dpll |= DPLL_DVO_HIGH_SPEED;
5526         }
5527         if (intel_crtc->config.has_dp_encoder &&
5528             intel_crtc->config.has_pch_encoder)
5529                 dpll |= DPLL_DVO_HIGH_SPEED;
5530
5531         /* compute bitmask from p1 value */
5532         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5533         /* also FPA1 */
5534         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5535
5536         switch (clock->p2) {
5537         case 5:
5538                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5539                 break;
5540         case 7:
5541                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5542                 break;
5543         case 10:
5544                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5545                 break;
5546         case 14:
5547                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5548                 break;
5549         }
5550
5551         if (is_sdvo && is_tv)
5552                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5553         else if (is_tv)
5554                 /* XXX: just matching BIOS for now */
5555                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5556                 dpll |= 3;
5557         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5558                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5559         else
5560                 dpll |= PLL_REF_INPUT_DREFCLK;
5561
5562         return dpll;
5563 }
5564
5565 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5566                                   int x, int y,
5567                                   struct drm_framebuffer *fb)
5568 {
5569         struct drm_device *dev = crtc->dev;
5570         struct drm_i915_private *dev_priv = dev->dev_private;
5571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5572         struct drm_display_mode *adjusted_mode =
5573                 &intel_crtc->config.adjusted_mode;
5574         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5575         int pipe = intel_crtc->pipe;
5576         int plane = intel_crtc->plane;
5577         int num_connectors = 0;
5578         intel_clock_t clock, reduced_clock;
5579         u32 dpll, fp = 0, fp2 = 0;
5580         bool ok, has_reduced_clock = false;
5581         bool is_lvds = false;
5582         struct intel_encoder *encoder;
5583         int ret;
5584         bool dither, fdi_config_ok;
5585
5586         for_each_encoder_on_crtc(dev, crtc, encoder) {
5587                 switch (encoder->type) {
5588                 case INTEL_OUTPUT_LVDS:
5589                         is_lvds = true;
5590                         break;
5591                 }
5592
5593                 num_connectors++;
5594         }
5595
5596         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5597              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5598
5599         intel_crtc->cpu_transcoder = pipe;
5600
5601         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5602                                      &has_reduced_clock, &reduced_clock);
5603         if (!ok) {
5604                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5605                 return -EINVAL;
5606         }
5607         /* Compat-code for transition, will disappear. */
5608         if (!intel_crtc->config.clock_set) {
5609                 intel_crtc->config.dpll.n = clock.n;
5610                 intel_crtc->config.dpll.m1 = clock.m1;
5611                 intel_crtc->config.dpll.m2 = clock.m2;
5612                 intel_crtc->config.dpll.p1 = clock.p1;
5613                 intel_crtc->config.dpll.p2 = clock.p2;
5614         }
5615
5616         /* Ensure that the cursor is valid for the new mode before changing... */
5617         intel_crtc_update_cursor(crtc, true);
5618
5619         /* determine panel color depth */
5620         dither = intel_crtc->config.dither;
5621         if (is_lvds && dev_priv->lvds_dither)
5622                 dither = true;
5623
5624         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5625         if (has_reduced_clock)
5626                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5627                         reduced_clock.m2;
5628
5629         dpll = ironlake_compute_dpll(intel_crtc, &clock, fp);
5630
5631         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5632         drm_mode_debug_printmodeline(mode);
5633
5634         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5635         if (intel_crtc->config.has_pch_encoder) {
5636                 struct intel_pch_pll *pll;
5637
5638                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5639                 if (pll == NULL) {
5640                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5641                                          pipe);
5642                         return -EINVAL;
5643                 }
5644         } else
5645                 intel_put_pch_pll(intel_crtc);
5646
5647         if (intel_crtc->config.has_dp_encoder)
5648                 intel_dp_set_m_n(intel_crtc);
5649
5650         for_each_encoder_on_crtc(dev, crtc, encoder)
5651                 if (encoder->pre_pll_enable)
5652                         encoder->pre_pll_enable(encoder);
5653
5654         if (intel_crtc->pch_pll) {
5655                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5656
5657                 /* Wait for the clocks to stabilize. */
5658                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5659                 udelay(150);
5660
5661                 /* The pixel multiplier can only be updated once the
5662                  * DPLL is enabled and the clocks are stable.
5663                  *
5664                  * So write it again.
5665                  */
5666                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5667         }
5668
5669         intel_crtc->lowfreq_avail = false;
5670         if (intel_crtc->pch_pll) {
5671                 if (is_lvds && has_reduced_clock && i915_powersave) {
5672                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5673                         intel_crtc->lowfreq_avail = true;
5674                 } else {
5675                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5676                 }
5677         }
5678
5679         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5680
5681         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5682          * ironlake_check_fdi_lanes. */
5683         intel_crtc->fdi_lanes = 0;
5684         if (intel_crtc->config.has_pch_encoder)
5685                 ironlake_fdi_set_m_n(crtc);
5686
5687         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5688
5689         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5690
5691         intel_wait_for_vblank(dev, pipe);
5692
5693         /* Set up the display plane register */
5694         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5695         POSTING_READ(DSPCNTR(plane));
5696
5697         ret = intel_pipe_set_base(crtc, x, y, fb);
5698
5699         intel_update_watermarks(dev);
5700
5701         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5702
5703         return fdi_config_ok ? ret : -EINVAL;
5704 }
5705
5706 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5707                                      struct intel_crtc_config *pipe_config)
5708 {
5709         struct drm_device *dev = crtc->base.dev;
5710         struct drm_i915_private *dev_priv = dev->dev_private;
5711         uint32_t tmp;
5712
5713         tmp = I915_READ(PIPECONF(crtc->pipe));
5714         if (!(tmp & PIPECONF_ENABLE))
5715                 return false;
5716
5717         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5718                 pipe_config->has_pch_encoder = true;
5719
5720         return true;
5721 }
5722
5723 static void haswell_modeset_global_resources(struct drm_device *dev)
5724 {
5725         struct drm_i915_private *dev_priv = dev->dev_private;
5726         bool enable = false;
5727         struct intel_crtc *crtc;
5728         struct intel_encoder *encoder;
5729
5730         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5731                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5732                         enable = true;
5733                 /* XXX: Should check for edp transcoder here, but thanks to init
5734                  * sequence that's not yet available. Just in case desktop eDP
5735                  * on PORT D is possible on haswell, too. */
5736         }
5737
5738         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5739                             base.head) {
5740                 if (encoder->type != INTEL_OUTPUT_EDP &&
5741                     encoder->connectors_active)
5742                         enable = true;
5743         }
5744
5745         /* Even the eDP panel fitter is outside the always-on well. */
5746         if (dev_priv->pch_pf_size)
5747                 enable = true;
5748
5749         intel_set_power_well(dev, enable);
5750 }
5751
5752 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5753                                  int x, int y,
5754                                  struct drm_framebuffer *fb)
5755 {
5756         struct drm_device *dev = crtc->dev;
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759         struct drm_display_mode *adjusted_mode =
5760                 &intel_crtc->config.adjusted_mode;
5761         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5762         int pipe = intel_crtc->pipe;
5763         int plane = intel_crtc->plane;
5764         int num_connectors = 0;
5765         bool is_cpu_edp = false;
5766         struct intel_encoder *encoder;
5767         int ret;
5768         bool dither;
5769
5770         for_each_encoder_on_crtc(dev, crtc, encoder) {
5771                 switch (encoder->type) {
5772                 case INTEL_OUTPUT_EDP:
5773                         if (!intel_encoder_is_pch_edp(&encoder->base))
5774                                 is_cpu_edp = true;
5775                         break;
5776                 }
5777
5778                 num_connectors++;
5779         }
5780
5781         if (is_cpu_edp)
5782                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5783         else
5784                 intel_crtc->cpu_transcoder = pipe;
5785
5786         /* We are not sure yet this won't happen. */
5787         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5788              INTEL_PCH_TYPE(dev));
5789
5790         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5791              num_connectors, pipe_name(pipe));
5792
5793         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5794                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5795
5796         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5797
5798         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5799                 return -EINVAL;
5800
5801         /* Ensure that the cursor is valid for the new mode before changing... */
5802         intel_crtc_update_cursor(crtc, true);
5803
5804         /* determine panel color depth */
5805         dither = intel_crtc->config.dither;
5806
5807         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5808         drm_mode_debug_printmodeline(mode);
5809
5810         if (intel_crtc->config.has_dp_encoder)
5811                 intel_dp_set_m_n(intel_crtc);
5812
5813         intel_crtc->lowfreq_avail = false;
5814
5815         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5816
5817         if (intel_crtc->config.has_pch_encoder)
5818                 ironlake_fdi_set_m_n(crtc);
5819
5820         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5821
5822         intel_set_pipe_csc(crtc);
5823
5824         /* Set up the display plane register */
5825         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5826         POSTING_READ(DSPCNTR(plane));
5827
5828         ret = intel_pipe_set_base(crtc, x, y, fb);
5829
5830         intel_update_watermarks(dev);
5831
5832         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5833
5834         return ret;
5835 }
5836
5837 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5838                                     struct intel_crtc_config *pipe_config)
5839 {
5840         struct drm_device *dev = crtc->base.dev;
5841         struct drm_i915_private *dev_priv = dev->dev_private;
5842         uint32_t tmp;
5843
5844         tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
5845         if (!(tmp & PIPECONF_ENABLE))
5846                 return false;
5847
5848         /*
5849          * aswell has only FDI/PCH transcoder A. It is which is connected to
5850          * DDI E. So just check whether this pipe is wired to DDI E and whether
5851          * the PCH transcoder is on.
5852          */
5853         tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5854         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5855             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5856                 pipe_config->has_pch_encoder = true;
5857
5858
5859         return true;
5860 }
5861
5862 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5863                                int x, int y,
5864                                struct drm_framebuffer *fb)
5865 {
5866         struct drm_device *dev = crtc->dev;
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         struct drm_encoder_helper_funcs *encoder_funcs;
5869         struct intel_encoder *encoder;
5870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5871         struct drm_display_mode *adjusted_mode =
5872                 &intel_crtc->config.adjusted_mode;
5873         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5874         int pipe = intel_crtc->pipe;
5875         int ret;
5876
5877         drm_vblank_pre_modeset(dev, pipe);
5878
5879         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5880
5881         drm_vblank_post_modeset(dev, pipe);
5882
5883         if (ret != 0)
5884                 return ret;
5885
5886         for_each_encoder_on_crtc(dev, crtc, encoder) {
5887                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5888                         encoder->base.base.id,
5889                         drm_get_encoder_name(&encoder->base),
5890                         mode->base.id, mode->name);
5891                 if (encoder->mode_set) {
5892                         encoder->mode_set(encoder);
5893                 } else {
5894                         encoder_funcs = encoder->base.helper_private;
5895                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5896                 }
5897         }
5898
5899         return 0;
5900 }
5901
5902 static bool intel_eld_uptodate(struct drm_connector *connector,
5903                                int reg_eldv, uint32_t bits_eldv,
5904                                int reg_elda, uint32_t bits_elda,
5905                                int reg_edid)
5906 {
5907         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5908         uint8_t *eld = connector->eld;
5909         uint32_t i;
5910
5911         i = I915_READ(reg_eldv);
5912         i &= bits_eldv;
5913
5914         if (!eld[0])
5915                 return !i;
5916
5917         if (!i)
5918                 return false;
5919
5920         i = I915_READ(reg_elda);
5921         i &= ~bits_elda;
5922         I915_WRITE(reg_elda, i);
5923
5924         for (i = 0; i < eld[2]; i++)
5925                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5926                         return false;
5927
5928         return true;
5929 }
5930
5931 static void g4x_write_eld(struct drm_connector *connector,
5932                           struct drm_crtc *crtc)
5933 {
5934         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5935         uint8_t *eld = connector->eld;
5936         uint32_t eldv;
5937         uint32_t len;
5938         uint32_t i;
5939
5940         i = I915_READ(G4X_AUD_VID_DID);
5941
5942         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5943                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5944         else
5945                 eldv = G4X_ELDV_DEVCTG;
5946
5947         if (intel_eld_uptodate(connector,
5948                                G4X_AUD_CNTL_ST, eldv,
5949                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5950                                G4X_HDMIW_HDMIEDID))
5951                 return;
5952
5953         i = I915_READ(G4X_AUD_CNTL_ST);
5954         i &= ~(eldv | G4X_ELD_ADDR);
5955         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5956         I915_WRITE(G4X_AUD_CNTL_ST, i);
5957
5958         if (!eld[0])
5959                 return;
5960
5961         len = min_t(uint8_t, eld[2], len);
5962         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5963         for (i = 0; i < len; i++)
5964                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5965
5966         i = I915_READ(G4X_AUD_CNTL_ST);
5967         i |= eldv;
5968         I915_WRITE(G4X_AUD_CNTL_ST, i);
5969 }
5970
5971 static void haswell_write_eld(struct drm_connector *connector,
5972                                      struct drm_crtc *crtc)
5973 {
5974         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5975         uint8_t *eld = connector->eld;
5976         struct drm_device *dev = crtc->dev;
5977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5978         uint32_t eldv;
5979         uint32_t i;
5980         int len;
5981         int pipe = to_intel_crtc(crtc)->pipe;
5982         int tmp;
5983
5984         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5985         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5986         int aud_config = HSW_AUD_CFG(pipe);
5987         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5988
5989
5990         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5991
5992         /* Audio output enable */
5993         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5994         tmp = I915_READ(aud_cntrl_st2);
5995         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5996         I915_WRITE(aud_cntrl_st2, tmp);
5997
5998         /* Wait for 1 vertical blank */
5999         intel_wait_for_vblank(dev, pipe);
6000
6001         /* Set ELD valid state */
6002         tmp = I915_READ(aud_cntrl_st2);
6003         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6004         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6005         I915_WRITE(aud_cntrl_st2, tmp);
6006         tmp = I915_READ(aud_cntrl_st2);
6007         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6008
6009         /* Enable HDMI mode */
6010         tmp = I915_READ(aud_config);
6011         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6012         /* clear N_programing_enable and N_value_index */
6013         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6014         I915_WRITE(aud_config, tmp);
6015
6016         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6017
6018         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6019         intel_crtc->eld_vld = true;
6020
6021         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6022                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6023                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6024                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6025         } else
6026                 I915_WRITE(aud_config, 0);
6027
6028         if (intel_eld_uptodate(connector,
6029                                aud_cntrl_st2, eldv,
6030                                aud_cntl_st, IBX_ELD_ADDRESS,
6031                                hdmiw_hdmiedid))
6032                 return;
6033
6034         i = I915_READ(aud_cntrl_st2);
6035         i &= ~eldv;
6036         I915_WRITE(aud_cntrl_st2, i);
6037
6038         if (!eld[0])
6039                 return;
6040
6041         i = I915_READ(aud_cntl_st);
6042         i &= ~IBX_ELD_ADDRESS;
6043         I915_WRITE(aud_cntl_st, i);
6044         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6045         DRM_DEBUG_DRIVER("port num:%d\n", i);
6046
6047         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6048         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6049         for (i = 0; i < len; i++)
6050                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6051
6052         i = I915_READ(aud_cntrl_st2);
6053         i |= eldv;
6054         I915_WRITE(aud_cntrl_st2, i);
6055
6056 }
6057
6058 static void ironlake_write_eld(struct drm_connector *connector,
6059                                      struct drm_crtc *crtc)
6060 {
6061         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6062         uint8_t *eld = connector->eld;
6063         uint32_t eldv;
6064         uint32_t i;
6065         int len;
6066         int hdmiw_hdmiedid;
6067         int aud_config;
6068         int aud_cntl_st;
6069         int aud_cntrl_st2;
6070         int pipe = to_intel_crtc(crtc)->pipe;
6071
6072         if (HAS_PCH_IBX(connector->dev)) {
6073                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6074                 aud_config = IBX_AUD_CFG(pipe);
6075                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6076                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6077         } else {
6078                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6079                 aud_config = CPT_AUD_CFG(pipe);
6080                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6081                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6082         }
6083
6084         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6085
6086         i = I915_READ(aud_cntl_st);
6087         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6088         if (!i) {
6089                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6090                 /* operate blindly on all ports */
6091                 eldv = IBX_ELD_VALIDB;
6092                 eldv |= IBX_ELD_VALIDB << 4;
6093                 eldv |= IBX_ELD_VALIDB << 8;
6094         } else {
6095                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6096                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6097         }
6098
6099         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6100                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6101                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6102                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6103         } else
6104                 I915_WRITE(aud_config, 0);
6105
6106         if (intel_eld_uptodate(connector,
6107                                aud_cntrl_st2, eldv,
6108                                aud_cntl_st, IBX_ELD_ADDRESS,
6109                                hdmiw_hdmiedid))
6110                 return;
6111
6112         i = I915_READ(aud_cntrl_st2);
6113         i &= ~eldv;
6114         I915_WRITE(aud_cntrl_st2, i);
6115
6116         if (!eld[0])
6117                 return;
6118
6119         i = I915_READ(aud_cntl_st);
6120         i &= ~IBX_ELD_ADDRESS;
6121         I915_WRITE(aud_cntl_st, i);
6122
6123         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6124         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6125         for (i = 0; i < len; i++)
6126                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6127
6128         i = I915_READ(aud_cntrl_st2);
6129         i |= eldv;
6130         I915_WRITE(aud_cntrl_st2, i);
6131 }
6132
6133 void intel_write_eld(struct drm_encoder *encoder,
6134                      struct drm_display_mode *mode)
6135 {
6136         struct drm_crtc *crtc = encoder->crtc;
6137         struct drm_connector *connector;
6138         struct drm_device *dev = encoder->dev;
6139         struct drm_i915_private *dev_priv = dev->dev_private;
6140
6141         connector = drm_select_eld(encoder, mode);
6142         if (!connector)
6143                 return;
6144
6145         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6146                          connector->base.id,
6147                          drm_get_connector_name(connector),
6148                          connector->encoder->base.id,
6149                          drm_get_encoder_name(connector->encoder));
6150
6151         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6152
6153         if (dev_priv->display.write_eld)
6154                 dev_priv->display.write_eld(connector, crtc);
6155 }
6156
6157 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6158 void intel_crtc_load_lut(struct drm_crtc *crtc)
6159 {
6160         struct drm_device *dev = crtc->dev;
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         int palreg = PALETTE(intel_crtc->pipe);
6164         int i;
6165
6166         /* The clocks have to be on to load the palette. */
6167         if (!crtc->enabled || !intel_crtc->active)
6168                 return;
6169
6170         /* use legacy palette for Ironlake */
6171         if (HAS_PCH_SPLIT(dev))
6172                 palreg = LGC_PALETTE(intel_crtc->pipe);
6173
6174         for (i = 0; i < 256; i++) {
6175                 I915_WRITE(palreg + 4 * i,
6176                            (intel_crtc->lut_r[i] << 16) |
6177                            (intel_crtc->lut_g[i] << 8) |
6178                            intel_crtc->lut_b[i]);
6179         }
6180 }
6181
6182 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6183 {
6184         struct drm_device *dev = crtc->dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6187         bool visible = base != 0;
6188         u32 cntl;
6189
6190         if (intel_crtc->cursor_visible == visible)
6191                 return;
6192
6193         cntl = I915_READ(_CURACNTR);
6194         if (visible) {
6195                 /* On these chipsets we can only modify the base whilst
6196                  * the cursor is disabled.
6197                  */
6198                 I915_WRITE(_CURABASE, base);
6199
6200                 cntl &= ~(CURSOR_FORMAT_MASK);
6201                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6202                 cntl |= CURSOR_ENABLE |
6203                         CURSOR_GAMMA_ENABLE |
6204                         CURSOR_FORMAT_ARGB;
6205         } else
6206                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6207         I915_WRITE(_CURACNTR, cntl);
6208
6209         intel_crtc->cursor_visible = visible;
6210 }
6211
6212 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6213 {
6214         struct drm_device *dev = crtc->dev;
6215         struct drm_i915_private *dev_priv = dev->dev_private;
6216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6217         int pipe = intel_crtc->pipe;
6218         bool visible = base != 0;
6219
6220         if (intel_crtc->cursor_visible != visible) {
6221                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6222                 if (base) {
6223                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6224                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6225                         cntl |= pipe << 28; /* Connect to correct pipe */
6226                 } else {
6227                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6228                         cntl |= CURSOR_MODE_DISABLE;
6229                 }
6230                 I915_WRITE(CURCNTR(pipe), cntl);
6231
6232                 intel_crtc->cursor_visible = visible;
6233         }
6234         /* and commit changes on next vblank */
6235         I915_WRITE(CURBASE(pipe), base);
6236 }
6237
6238 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6239 {
6240         struct drm_device *dev = crtc->dev;
6241         struct drm_i915_private *dev_priv = dev->dev_private;
6242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6243         int pipe = intel_crtc->pipe;
6244         bool visible = base != 0;
6245
6246         if (intel_crtc->cursor_visible != visible) {
6247                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6248                 if (base) {
6249                         cntl &= ~CURSOR_MODE;
6250                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6251                 } else {
6252                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6253                         cntl |= CURSOR_MODE_DISABLE;
6254                 }
6255                 if (IS_HASWELL(dev))
6256                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6257                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6258
6259                 intel_crtc->cursor_visible = visible;
6260         }
6261         /* and commit changes on next vblank */
6262         I915_WRITE(CURBASE_IVB(pipe), base);
6263 }
6264
6265 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6266 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6267                                      bool on)
6268 {
6269         struct drm_device *dev = crtc->dev;
6270         struct drm_i915_private *dev_priv = dev->dev_private;
6271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272         int pipe = intel_crtc->pipe;
6273         int x = intel_crtc->cursor_x;
6274         int y = intel_crtc->cursor_y;
6275         u32 base, pos;
6276         bool visible;
6277
6278         pos = 0;
6279
6280         if (on && crtc->enabled && crtc->fb) {
6281                 base = intel_crtc->cursor_addr;
6282                 if (x > (int) crtc->fb->width)
6283                         base = 0;
6284
6285                 if (y > (int) crtc->fb->height)
6286                         base = 0;
6287         } else
6288                 base = 0;
6289
6290         if (x < 0) {
6291                 if (x + intel_crtc->cursor_width < 0)
6292                         base = 0;
6293
6294                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6295                 x = -x;
6296         }
6297         pos |= x << CURSOR_X_SHIFT;
6298
6299         if (y < 0) {
6300                 if (y + intel_crtc->cursor_height < 0)
6301                         base = 0;
6302
6303                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6304                 y = -y;
6305         }
6306         pos |= y << CURSOR_Y_SHIFT;
6307
6308         visible = base != 0;
6309         if (!visible && !intel_crtc->cursor_visible)
6310                 return;
6311
6312         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6313                 I915_WRITE(CURPOS_IVB(pipe), pos);
6314                 ivb_update_cursor(crtc, base);
6315         } else {
6316                 I915_WRITE(CURPOS(pipe), pos);
6317                 if (IS_845G(dev) || IS_I865G(dev))
6318                         i845_update_cursor(crtc, base);
6319                 else
6320                         i9xx_update_cursor(crtc, base);
6321         }
6322 }
6323
6324 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6325                                  struct drm_file *file,
6326                                  uint32_t handle,
6327                                  uint32_t width, uint32_t height)
6328 {
6329         struct drm_device *dev = crtc->dev;
6330         struct drm_i915_private *dev_priv = dev->dev_private;
6331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6332         struct drm_i915_gem_object *obj;
6333         uint32_t addr;
6334         int ret;
6335
6336         /* if we want to turn off the cursor ignore width and height */
6337         if (!handle) {
6338                 DRM_DEBUG_KMS("cursor off\n");
6339                 addr = 0;
6340                 obj = NULL;
6341                 mutex_lock(&dev->struct_mutex);
6342                 goto finish;
6343         }
6344
6345         /* Currently we only support 64x64 cursors */
6346         if (width != 64 || height != 64) {
6347                 DRM_ERROR("we currently only support 64x64 cursors\n");
6348                 return -EINVAL;
6349         }
6350
6351         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6352         if (&obj->base == NULL)
6353                 return -ENOENT;
6354
6355         if (obj->base.size < width * height * 4) {
6356                 DRM_ERROR("buffer is to small\n");
6357                 ret = -ENOMEM;
6358                 goto fail;
6359         }
6360
6361         /* we only need to pin inside GTT if cursor is non-phy */
6362         mutex_lock(&dev->struct_mutex);
6363         if (!dev_priv->info->cursor_needs_physical) {
6364                 unsigned alignment;
6365
6366                 if (obj->tiling_mode) {
6367                         DRM_ERROR("cursor cannot be tiled\n");
6368                         ret = -EINVAL;
6369                         goto fail_locked;
6370                 }
6371
6372                 /* Note that the w/a also requires 2 PTE of padding following
6373                  * the bo. We currently fill all unused PTE with the shadow
6374                  * page and so we should always have valid PTE following the
6375                  * cursor preventing the VT-d warning.
6376                  */
6377                 alignment = 0;
6378                 if (need_vtd_wa(dev))
6379                         alignment = 64*1024;
6380
6381                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6382                 if (ret) {
6383                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6384                         goto fail_locked;
6385                 }
6386
6387                 ret = i915_gem_object_put_fence(obj);
6388                 if (ret) {
6389                         DRM_ERROR("failed to release fence for cursor");
6390                         goto fail_unpin;
6391                 }
6392
6393                 addr = obj->gtt_offset;
6394         } else {
6395                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6396                 ret = i915_gem_attach_phys_object(dev, obj,
6397                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6398                                                   align);
6399                 if (ret) {
6400                         DRM_ERROR("failed to attach phys object\n");
6401                         goto fail_locked;
6402                 }
6403                 addr = obj->phys_obj->handle->busaddr;
6404         }
6405
6406         if (IS_GEN2(dev))
6407                 I915_WRITE(CURSIZE, (height << 12) | width);
6408
6409  finish:
6410         if (intel_crtc->cursor_bo) {
6411                 if (dev_priv->info->cursor_needs_physical) {
6412                         if (intel_crtc->cursor_bo != obj)
6413                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6414                 } else
6415                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6416                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6417         }
6418
6419         mutex_unlock(&dev->struct_mutex);
6420
6421         intel_crtc->cursor_addr = addr;
6422         intel_crtc->cursor_bo = obj;
6423         intel_crtc->cursor_width = width;
6424         intel_crtc->cursor_height = height;
6425
6426         intel_crtc_update_cursor(crtc, true);
6427
6428         return 0;
6429 fail_unpin:
6430         i915_gem_object_unpin(obj);
6431 fail_locked:
6432         mutex_unlock(&dev->struct_mutex);
6433 fail:
6434         drm_gem_object_unreference_unlocked(&obj->base);
6435         return ret;
6436 }
6437
6438 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6439 {
6440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6441
6442         intel_crtc->cursor_x = x;
6443         intel_crtc->cursor_y = y;
6444
6445         intel_crtc_update_cursor(crtc, true);
6446
6447         return 0;
6448 }
6449
6450 /** Sets the color ramps on behalf of RandR */
6451 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6452                                  u16 blue, int regno)
6453 {
6454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6455
6456         intel_crtc->lut_r[regno] = red >> 8;
6457         intel_crtc->lut_g[regno] = green >> 8;
6458         intel_crtc->lut_b[regno] = blue >> 8;
6459 }
6460
6461 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6462                              u16 *blue, int regno)
6463 {
6464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6465
6466         *red = intel_crtc->lut_r[regno] << 8;
6467         *green = intel_crtc->lut_g[regno] << 8;
6468         *blue = intel_crtc->lut_b[regno] << 8;
6469 }
6470
6471 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6472                                  u16 *blue, uint32_t start, uint32_t size)
6473 {
6474         int end = (start + size > 256) ? 256 : start + size, i;
6475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6476
6477         for (i = start; i < end; i++) {
6478                 intel_crtc->lut_r[i] = red[i] >> 8;
6479                 intel_crtc->lut_g[i] = green[i] >> 8;
6480                 intel_crtc->lut_b[i] = blue[i] >> 8;
6481         }
6482
6483         intel_crtc_load_lut(crtc);
6484 }
6485
6486 /* VESA 640x480x72Hz mode to set on the pipe */
6487 static struct drm_display_mode load_detect_mode = {
6488         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6489                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6490 };
6491
6492 static struct drm_framebuffer *
6493 intel_framebuffer_create(struct drm_device *dev,
6494                          struct drm_mode_fb_cmd2 *mode_cmd,
6495                          struct drm_i915_gem_object *obj)
6496 {
6497         struct intel_framebuffer *intel_fb;
6498         int ret;
6499
6500         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6501         if (!intel_fb) {
6502                 drm_gem_object_unreference_unlocked(&obj->base);
6503                 return ERR_PTR(-ENOMEM);
6504         }
6505
6506         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6507         if (ret) {
6508                 drm_gem_object_unreference_unlocked(&obj->base);
6509                 kfree(intel_fb);
6510                 return ERR_PTR(ret);
6511         }
6512
6513         return &intel_fb->base;
6514 }
6515
6516 static u32
6517 intel_framebuffer_pitch_for_width(int width, int bpp)
6518 {
6519         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6520         return ALIGN(pitch, 64);
6521 }
6522
6523 static u32
6524 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6525 {
6526         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6527         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6528 }
6529
6530 static struct drm_framebuffer *
6531 intel_framebuffer_create_for_mode(struct drm_device *dev,
6532                                   struct drm_display_mode *mode,
6533                                   int depth, int bpp)
6534 {
6535         struct drm_i915_gem_object *obj;
6536         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6537
6538         obj = i915_gem_alloc_object(dev,
6539                                     intel_framebuffer_size_for_mode(mode, bpp));
6540         if (obj == NULL)
6541                 return ERR_PTR(-ENOMEM);
6542
6543         mode_cmd.width = mode->hdisplay;
6544         mode_cmd.height = mode->vdisplay;
6545         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6546                                                                 bpp);
6547         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6548
6549         return intel_framebuffer_create(dev, &mode_cmd, obj);
6550 }
6551
6552 static struct drm_framebuffer *
6553 mode_fits_in_fbdev(struct drm_device *dev,
6554                    struct drm_display_mode *mode)
6555 {
6556         struct drm_i915_private *dev_priv = dev->dev_private;
6557         struct drm_i915_gem_object *obj;
6558         struct drm_framebuffer *fb;
6559
6560         if (dev_priv->fbdev == NULL)
6561                 return NULL;
6562
6563         obj = dev_priv->fbdev->ifb.obj;
6564         if (obj == NULL)
6565                 return NULL;
6566
6567         fb = &dev_priv->fbdev->ifb.base;
6568         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6569                                                                fb->bits_per_pixel))
6570                 return NULL;
6571
6572         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6573                 return NULL;
6574
6575         return fb;
6576 }
6577
6578 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6579                                 struct drm_display_mode *mode,
6580                                 struct intel_load_detect_pipe *old)
6581 {
6582         struct intel_crtc *intel_crtc;
6583         struct intel_encoder *intel_encoder =
6584                 intel_attached_encoder(connector);
6585         struct drm_crtc *possible_crtc;
6586         struct drm_encoder *encoder = &intel_encoder->base;
6587         struct drm_crtc *crtc = NULL;
6588         struct drm_device *dev = encoder->dev;
6589         struct drm_framebuffer *fb;
6590         int i = -1;
6591
6592         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6593                       connector->base.id, drm_get_connector_name(connector),
6594                       encoder->base.id, drm_get_encoder_name(encoder));
6595
6596         /*
6597          * Algorithm gets a little messy:
6598          *
6599          *   - if the connector already has an assigned crtc, use it (but make
6600          *     sure it's on first)
6601          *
6602          *   - try to find the first unused crtc that can drive this connector,
6603          *     and use that if we find one
6604          */
6605
6606         /* See if we already have a CRTC for this connector */
6607         if (encoder->crtc) {
6608                 crtc = encoder->crtc;
6609
6610                 mutex_lock(&crtc->mutex);
6611
6612                 old->dpms_mode = connector->dpms;
6613                 old->load_detect_temp = false;
6614
6615                 /* Make sure the crtc and connector are running */
6616                 if (connector->dpms != DRM_MODE_DPMS_ON)
6617                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6618
6619                 return true;
6620         }
6621
6622         /* Find an unused one (if possible) */
6623         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6624                 i++;
6625                 if (!(encoder->possible_crtcs & (1 << i)))
6626                         continue;
6627                 if (!possible_crtc->enabled) {
6628                         crtc = possible_crtc;
6629                         break;
6630                 }
6631         }
6632
6633         /*
6634          * If we didn't find an unused CRTC, don't use any.
6635          */
6636         if (!crtc) {
6637                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6638                 return false;
6639         }
6640
6641         mutex_lock(&crtc->mutex);
6642         intel_encoder->new_crtc = to_intel_crtc(crtc);
6643         to_intel_connector(connector)->new_encoder = intel_encoder;
6644
6645         intel_crtc = to_intel_crtc(crtc);
6646         old->dpms_mode = connector->dpms;
6647         old->load_detect_temp = true;
6648         old->release_fb = NULL;
6649
6650         if (!mode)
6651                 mode = &load_detect_mode;
6652
6653         /* We need a framebuffer large enough to accommodate all accesses
6654          * that the plane may generate whilst we perform load detection.
6655          * We can not rely on the fbcon either being present (we get called
6656          * during its initialisation to detect all boot displays, or it may
6657          * not even exist) or that it is large enough to satisfy the
6658          * requested mode.
6659          */
6660         fb = mode_fits_in_fbdev(dev, mode);
6661         if (fb == NULL) {
6662                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6663                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6664                 old->release_fb = fb;
6665         } else
6666                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6667         if (IS_ERR(fb)) {
6668                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6669                 mutex_unlock(&crtc->mutex);
6670                 return false;
6671         }
6672
6673         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6674                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6675                 if (old->release_fb)
6676                         old->release_fb->funcs->destroy(old->release_fb);
6677                 mutex_unlock(&crtc->mutex);
6678                 return false;
6679         }
6680
6681         /* let the connector get through one full cycle before testing */
6682         intel_wait_for_vblank(dev, intel_crtc->pipe);
6683         return true;
6684 }
6685
6686 void intel_release_load_detect_pipe(struct drm_connector *connector,
6687                                     struct intel_load_detect_pipe *old)
6688 {
6689         struct intel_encoder *intel_encoder =
6690                 intel_attached_encoder(connector);
6691         struct drm_encoder *encoder = &intel_encoder->base;
6692         struct drm_crtc *crtc = encoder->crtc;
6693
6694         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6695                       connector->base.id, drm_get_connector_name(connector),
6696                       encoder->base.id, drm_get_encoder_name(encoder));
6697
6698         if (old->load_detect_temp) {
6699                 to_intel_connector(connector)->new_encoder = NULL;
6700                 intel_encoder->new_crtc = NULL;
6701                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6702
6703                 if (old->release_fb) {
6704                         drm_framebuffer_unregister_private(old->release_fb);
6705                         drm_framebuffer_unreference(old->release_fb);
6706                 }
6707
6708                 mutex_unlock(&crtc->mutex);
6709                 return;
6710         }
6711
6712         /* Switch crtc and encoder back off if necessary */
6713         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6714                 connector->funcs->dpms(connector, old->dpms_mode);
6715
6716         mutex_unlock(&crtc->mutex);
6717 }
6718
6719 /* Returns the clock of the currently programmed mode of the given pipe. */
6720 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6721 {
6722         struct drm_i915_private *dev_priv = dev->dev_private;
6723         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6724         int pipe = intel_crtc->pipe;
6725         u32 dpll = I915_READ(DPLL(pipe));
6726         u32 fp;
6727         intel_clock_t clock;
6728
6729         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6730                 fp = I915_READ(FP0(pipe));
6731         else
6732                 fp = I915_READ(FP1(pipe));
6733
6734         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6735         if (IS_PINEVIEW(dev)) {
6736                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6737                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6738         } else {
6739                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6740                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6741         }
6742
6743         if (!IS_GEN2(dev)) {
6744                 if (IS_PINEVIEW(dev))
6745                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6746                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6747                 else
6748                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6749                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6750
6751                 switch (dpll & DPLL_MODE_MASK) {
6752                 case DPLLB_MODE_DAC_SERIAL:
6753                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6754                                 5 : 10;
6755                         break;
6756                 case DPLLB_MODE_LVDS:
6757                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6758                                 7 : 14;
6759                         break;
6760                 default:
6761                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6762                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6763                         return 0;
6764                 }
6765
6766                 /* XXX: Handle the 100Mhz refclk */
6767                 intel_clock(dev, 96000, &clock);
6768         } else {
6769                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6770
6771                 if (is_lvds) {
6772                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6773                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6774                         clock.p2 = 14;
6775
6776                         if ((dpll & PLL_REF_INPUT_MASK) ==
6777                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6778                                 /* XXX: might not be 66MHz */
6779                                 intel_clock(dev, 66000, &clock);
6780                         } else
6781                                 intel_clock(dev, 48000, &clock);
6782                 } else {
6783                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6784                                 clock.p1 = 2;
6785                         else {
6786                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6787                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6788                         }
6789                         if (dpll & PLL_P2_DIVIDE_BY_4)
6790                                 clock.p2 = 4;
6791                         else
6792                                 clock.p2 = 2;
6793
6794                         intel_clock(dev, 48000, &clock);
6795                 }
6796         }
6797
6798         /* XXX: It would be nice to validate the clocks, but we can't reuse
6799          * i830PllIsValid() because it relies on the xf86_config connector
6800          * configuration being accurate, which it isn't necessarily.
6801          */
6802
6803         return clock.dot;
6804 }
6805
6806 /** Returns the currently programmed mode of the given pipe. */
6807 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6808                                              struct drm_crtc *crtc)
6809 {
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6812         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6813         struct drm_display_mode *mode;
6814         int htot = I915_READ(HTOTAL(cpu_transcoder));
6815         int hsync = I915_READ(HSYNC(cpu_transcoder));
6816         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6817         int vsync = I915_READ(VSYNC(cpu_transcoder));
6818
6819         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6820         if (!mode)
6821                 return NULL;
6822
6823         mode->clock = intel_crtc_clock_get(dev, crtc);
6824         mode->hdisplay = (htot & 0xffff) + 1;
6825         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6826         mode->hsync_start = (hsync & 0xffff) + 1;
6827         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6828         mode->vdisplay = (vtot & 0xffff) + 1;
6829         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6830         mode->vsync_start = (vsync & 0xffff) + 1;
6831         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6832
6833         drm_mode_set_name(mode);
6834
6835         return mode;
6836 }
6837
6838 static void intel_increase_pllclock(struct drm_crtc *crtc)
6839 {
6840         struct drm_device *dev = crtc->dev;
6841         drm_i915_private_t *dev_priv = dev->dev_private;
6842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6843         int pipe = intel_crtc->pipe;
6844         int dpll_reg = DPLL(pipe);
6845         int dpll;
6846
6847         if (HAS_PCH_SPLIT(dev))
6848                 return;
6849
6850         if (!dev_priv->lvds_downclock_avail)
6851                 return;
6852
6853         dpll = I915_READ(dpll_reg);
6854         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6855                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6856
6857                 assert_panel_unlocked(dev_priv, pipe);
6858
6859                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6860                 I915_WRITE(dpll_reg, dpll);
6861                 intel_wait_for_vblank(dev, pipe);
6862
6863                 dpll = I915_READ(dpll_reg);
6864                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6865                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6866         }
6867 }
6868
6869 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6870 {
6871         struct drm_device *dev = crtc->dev;
6872         drm_i915_private_t *dev_priv = dev->dev_private;
6873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6874
6875         if (HAS_PCH_SPLIT(dev))
6876                 return;
6877
6878         if (!dev_priv->lvds_downclock_avail)
6879                 return;
6880
6881         /*
6882          * Since this is called by a timer, we should never get here in
6883          * the manual case.
6884          */
6885         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6886                 int pipe = intel_crtc->pipe;
6887                 int dpll_reg = DPLL(pipe);
6888                 int dpll;
6889
6890                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6891
6892                 assert_panel_unlocked(dev_priv, pipe);
6893
6894                 dpll = I915_READ(dpll_reg);
6895                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6896                 I915_WRITE(dpll_reg, dpll);
6897                 intel_wait_for_vblank(dev, pipe);
6898                 dpll = I915_READ(dpll_reg);
6899                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6900                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6901         }
6902
6903 }
6904
6905 void intel_mark_busy(struct drm_device *dev)
6906 {
6907         i915_update_gfx_val(dev->dev_private);
6908 }
6909
6910 void intel_mark_idle(struct drm_device *dev)
6911 {
6912         struct drm_crtc *crtc;
6913
6914         if (!i915_powersave)
6915                 return;
6916
6917         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6918                 if (!crtc->fb)
6919                         continue;
6920
6921                 intel_decrease_pllclock(crtc);
6922         }
6923 }
6924
6925 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6926 {
6927         struct drm_device *dev = obj->base.dev;
6928         struct drm_crtc *crtc;
6929
6930         if (!i915_powersave)
6931                 return;
6932
6933         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6934                 if (!crtc->fb)
6935                         continue;
6936
6937                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6938                         intel_increase_pllclock(crtc);
6939         }
6940 }
6941
6942 static void intel_crtc_destroy(struct drm_crtc *crtc)
6943 {
6944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945         struct drm_device *dev = crtc->dev;
6946         struct intel_unpin_work *work;
6947         unsigned long flags;
6948
6949         spin_lock_irqsave(&dev->event_lock, flags);
6950         work = intel_crtc->unpin_work;
6951         intel_crtc->unpin_work = NULL;
6952         spin_unlock_irqrestore(&dev->event_lock, flags);
6953
6954         if (work) {
6955                 cancel_work_sync(&work->work);
6956                 kfree(work);
6957         }
6958
6959         drm_crtc_cleanup(crtc);
6960
6961         kfree(intel_crtc);
6962 }
6963
6964 static void intel_unpin_work_fn(struct work_struct *__work)
6965 {
6966         struct intel_unpin_work *work =
6967                 container_of(__work, struct intel_unpin_work, work);
6968         struct drm_device *dev = work->crtc->dev;
6969
6970         mutex_lock(&dev->struct_mutex);
6971         intel_unpin_fb_obj(work->old_fb_obj);
6972         drm_gem_object_unreference(&work->pending_flip_obj->base);
6973         drm_gem_object_unreference(&work->old_fb_obj->base);
6974
6975         intel_update_fbc(dev);
6976         mutex_unlock(&dev->struct_mutex);
6977
6978         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6979         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6980
6981         kfree(work);
6982 }
6983
6984 static void do_intel_finish_page_flip(struct drm_device *dev,
6985                                       struct drm_crtc *crtc)
6986 {
6987         drm_i915_private_t *dev_priv = dev->dev_private;
6988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6989         struct intel_unpin_work *work;
6990         unsigned long flags;
6991
6992         /* Ignore early vblank irqs */
6993         if (intel_crtc == NULL)
6994                 return;
6995
6996         spin_lock_irqsave(&dev->event_lock, flags);
6997         work = intel_crtc->unpin_work;
6998
6999         /* Ensure we don't miss a work->pending update ... */
7000         smp_rmb();
7001
7002         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7003                 spin_unlock_irqrestore(&dev->event_lock, flags);
7004                 return;
7005         }
7006
7007         /* and that the unpin work is consistent wrt ->pending. */
7008         smp_rmb();
7009
7010         intel_crtc->unpin_work = NULL;
7011
7012         if (work->event)
7013                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7014
7015         drm_vblank_put(dev, intel_crtc->pipe);
7016
7017         spin_unlock_irqrestore(&dev->event_lock, flags);
7018
7019         wake_up_all(&dev_priv->pending_flip_queue);
7020
7021         queue_work(dev_priv->wq, &work->work);
7022
7023         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7024 }
7025
7026 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7027 {
7028         drm_i915_private_t *dev_priv = dev->dev_private;
7029         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7030
7031         do_intel_finish_page_flip(dev, crtc);
7032 }
7033
7034 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7035 {
7036         drm_i915_private_t *dev_priv = dev->dev_private;
7037         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7038
7039         do_intel_finish_page_flip(dev, crtc);
7040 }
7041
7042 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7043 {
7044         drm_i915_private_t *dev_priv = dev->dev_private;
7045         struct intel_crtc *intel_crtc =
7046                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7047         unsigned long flags;
7048
7049         /* NB: An MMIO update of the plane base pointer will also
7050          * generate a page-flip completion irq, i.e. every modeset
7051          * is also accompanied by a spurious intel_prepare_page_flip().
7052          */
7053         spin_lock_irqsave(&dev->event_lock, flags);
7054         if (intel_crtc->unpin_work)
7055                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7056         spin_unlock_irqrestore(&dev->event_lock, flags);
7057 }
7058
7059 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7060 {
7061         /* Ensure that the work item is consistent when activating it ... */
7062         smp_wmb();
7063         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7064         /* and that it is marked active as soon as the irq could fire. */
7065         smp_wmb();
7066 }
7067
7068 static int intel_gen2_queue_flip(struct drm_device *dev,
7069                                  struct drm_crtc *crtc,
7070                                  struct drm_framebuffer *fb,
7071                                  struct drm_i915_gem_object *obj)
7072 {
7073         struct drm_i915_private *dev_priv = dev->dev_private;
7074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075         u32 flip_mask;
7076         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7077         int ret;
7078
7079         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7080         if (ret)
7081                 goto err;
7082
7083         ret = intel_ring_begin(ring, 6);
7084         if (ret)
7085                 goto err_unpin;
7086
7087         /* Can't queue multiple flips, so wait for the previous
7088          * one to finish before executing the next.
7089          */
7090         if (intel_crtc->plane)
7091                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7092         else
7093                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7094         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7095         intel_ring_emit(ring, MI_NOOP);
7096         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7097                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7098         intel_ring_emit(ring, fb->pitches[0]);
7099         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7100         intel_ring_emit(ring, 0); /* aux display base address, unused */
7101
7102         intel_mark_page_flip_active(intel_crtc);
7103         intel_ring_advance(ring);
7104         return 0;
7105
7106 err_unpin:
7107         intel_unpin_fb_obj(obj);
7108 err:
7109         return ret;
7110 }
7111
7112 static int intel_gen3_queue_flip(struct drm_device *dev,
7113                                  struct drm_crtc *crtc,
7114                                  struct drm_framebuffer *fb,
7115                                  struct drm_i915_gem_object *obj)
7116 {
7117         struct drm_i915_private *dev_priv = dev->dev_private;
7118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7119         u32 flip_mask;
7120         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7121         int ret;
7122
7123         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7124         if (ret)
7125                 goto err;
7126
7127         ret = intel_ring_begin(ring, 6);
7128         if (ret)
7129                 goto err_unpin;
7130
7131         if (intel_crtc->plane)
7132                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7133         else
7134                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7135         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7136         intel_ring_emit(ring, MI_NOOP);
7137         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7138                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7139         intel_ring_emit(ring, fb->pitches[0]);
7140         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7141         intel_ring_emit(ring, MI_NOOP);
7142
7143         intel_mark_page_flip_active(intel_crtc);
7144         intel_ring_advance(ring);
7145         return 0;
7146
7147 err_unpin:
7148         intel_unpin_fb_obj(obj);
7149 err:
7150         return ret;
7151 }
7152
7153 static int intel_gen4_queue_flip(struct drm_device *dev,
7154                                  struct drm_crtc *crtc,
7155                                  struct drm_framebuffer *fb,
7156                                  struct drm_i915_gem_object *obj)
7157 {
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7160         uint32_t pf, pipesrc;
7161         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7162         int ret;
7163
7164         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7165         if (ret)
7166                 goto err;
7167
7168         ret = intel_ring_begin(ring, 4);
7169         if (ret)
7170                 goto err_unpin;
7171
7172         /* i965+ uses the linear or tiled offsets from the
7173          * Display Registers (which do not change across a page-flip)
7174          * so we need only reprogram the base address.
7175          */
7176         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7177                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7178         intel_ring_emit(ring, fb->pitches[0]);
7179         intel_ring_emit(ring,
7180                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7181                         obj->tiling_mode);
7182
7183         /* XXX Enabling the panel-fitter across page-flip is so far
7184          * untested on non-native modes, so ignore it for now.
7185          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7186          */
7187         pf = 0;
7188         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7189         intel_ring_emit(ring, pf | pipesrc);
7190
7191         intel_mark_page_flip_active(intel_crtc);
7192         intel_ring_advance(ring);
7193         return 0;
7194
7195 err_unpin:
7196         intel_unpin_fb_obj(obj);
7197 err:
7198         return ret;
7199 }
7200
7201 static int intel_gen6_queue_flip(struct drm_device *dev,
7202                                  struct drm_crtc *crtc,
7203                                  struct drm_framebuffer *fb,
7204                                  struct drm_i915_gem_object *obj)
7205 {
7206         struct drm_i915_private *dev_priv = dev->dev_private;
7207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7208         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7209         uint32_t pf, pipesrc;
7210         int ret;
7211
7212         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7213         if (ret)
7214                 goto err;
7215
7216         ret = intel_ring_begin(ring, 4);
7217         if (ret)
7218                 goto err_unpin;
7219
7220         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7221                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7222         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7223         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7224
7225         /* Contrary to the suggestions in the documentation,
7226          * "Enable Panel Fitter" does not seem to be required when page
7227          * flipping with a non-native mode, and worse causes a normal
7228          * modeset to fail.
7229          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7230          */
7231         pf = 0;
7232         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7233         intel_ring_emit(ring, pf | pipesrc);
7234
7235         intel_mark_page_flip_active(intel_crtc);
7236         intel_ring_advance(ring);
7237         return 0;
7238
7239 err_unpin:
7240         intel_unpin_fb_obj(obj);
7241 err:
7242         return ret;
7243 }
7244
7245 /*
7246  * On gen7 we currently use the blit ring because (in early silicon at least)
7247  * the render ring doesn't give us interrpts for page flip completion, which
7248  * means clients will hang after the first flip is queued.  Fortunately the
7249  * blit ring generates interrupts properly, so use it instead.
7250  */
7251 static int intel_gen7_queue_flip(struct drm_device *dev,
7252                                  struct drm_crtc *crtc,
7253                                  struct drm_framebuffer *fb,
7254                                  struct drm_i915_gem_object *obj)
7255 {
7256         struct drm_i915_private *dev_priv = dev->dev_private;
7257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7258         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7259         uint32_t plane_bit = 0;
7260         int ret;
7261
7262         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7263         if (ret)
7264                 goto err;
7265
7266         switch(intel_crtc->plane) {
7267         case PLANE_A:
7268                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7269                 break;
7270         case PLANE_B:
7271                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7272                 break;
7273         case PLANE_C:
7274                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7275                 break;
7276         default:
7277                 WARN_ONCE(1, "unknown plane in flip command\n");
7278                 ret = -ENODEV;
7279                 goto err_unpin;
7280         }
7281
7282         ret = intel_ring_begin(ring, 4);
7283         if (ret)
7284                 goto err_unpin;
7285
7286         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7287         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7288         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7289         intel_ring_emit(ring, (MI_NOOP));
7290
7291         intel_mark_page_flip_active(intel_crtc);
7292         intel_ring_advance(ring);
7293         return 0;
7294
7295 err_unpin:
7296         intel_unpin_fb_obj(obj);
7297 err:
7298         return ret;
7299 }
7300
7301 static int intel_default_queue_flip(struct drm_device *dev,
7302                                     struct drm_crtc *crtc,
7303                                     struct drm_framebuffer *fb,
7304                                     struct drm_i915_gem_object *obj)
7305 {
7306         return -ENODEV;
7307 }
7308
7309 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7310                                 struct drm_framebuffer *fb,
7311                                 struct drm_pending_vblank_event *event)
7312 {
7313         struct drm_device *dev = crtc->dev;
7314         struct drm_i915_private *dev_priv = dev->dev_private;
7315         struct drm_framebuffer *old_fb = crtc->fb;
7316         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7318         struct intel_unpin_work *work;
7319         unsigned long flags;
7320         int ret;
7321
7322         /* Can't change pixel format via MI display flips. */
7323         if (fb->pixel_format != crtc->fb->pixel_format)
7324                 return -EINVAL;
7325
7326         /*
7327          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7328          * Note that pitch changes could also affect these register.
7329          */
7330         if (INTEL_INFO(dev)->gen > 3 &&
7331             (fb->offsets[0] != crtc->fb->offsets[0] ||
7332              fb->pitches[0] != crtc->fb->pitches[0]))
7333                 return -EINVAL;
7334
7335         work = kzalloc(sizeof *work, GFP_KERNEL);
7336         if (work == NULL)
7337                 return -ENOMEM;
7338
7339         work->event = event;
7340         work->crtc = crtc;
7341         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7342         INIT_WORK(&work->work, intel_unpin_work_fn);
7343
7344         ret = drm_vblank_get(dev, intel_crtc->pipe);
7345         if (ret)
7346                 goto free_work;
7347
7348         /* We borrow the event spin lock for protecting unpin_work */
7349         spin_lock_irqsave(&dev->event_lock, flags);
7350         if (intel_crtc->unpin_work) {
7351                 spin_unlock_irqrestore(&dev->event_lock, flags);
7352                 kfree(work);
7353                 drm_vblank_put(dev, intel_crtc->pipe);
7354
7355                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7356                 return -EBUSY;
7357         }
7358         intel_crtc->unpin_work = work;
7359         spin_unlock_irqrestore(&dev->event_lock, flags);
7360
7361         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7362                 flush_workqueue(dev_priv->wq);
7363
7364         ret = i915_mutex_lock_interruptible(dev);
7365         if (ret)
7366                 goto cleanup;
7367
7368         /* Reference the objects for the scheduled work. */
7369         drm_gem_object_reference(&work->old_fb_obj->base);
7370         drm_gem_object_reference(&obj->base);
7371
7372         crtc->fb = fb;
7373
7374         work->pending_flip_obj = obj;
7375
7376         work->enable_stall_check = true;
7377
7378         atomic_inc(&intel_crtc->unpin_work_count);
7379         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7380
7381         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7382         if (ret)
7383                 goto cleanup_pending;
7384
7385         intel_disable_fbc(dev);
7386         intel_mark_fb_busy(obj);
7387         mutex_unlock(&dev->struct_mutex);
7388
7389         trace_i915_flip_request(intel_crtc->plane, obj);
7390
7391         return 0;
7392
7393 cleanup_pending:
7394         atomic_dec(&intel_crtc->unpin_work_count);
7395         crtc->fb = old_fb;
7396         drm_gem_object_unreference(&work->old_fb_obj->base);
7397         drm_gem_object_unreference(&obj->base);
7398         mutex_unlock(&dev->struct_mutex);
7399
7400 cleanup:
7401         spin_lock_irqsave(&dev->event_lock, flags);
7402         intel_crtc->unpin_work = NULL;
7403         spin_unlock_irqrestore(&dev->event_lock, flags);
7404
7405         drm_vblank_put(dev, intel_crtc->pipe);
7406 free_work:
7407         kfree(work);
7408
7409         return ret;
7410 }
7411
7412 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7413         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7414         .load_lut = intel_crtc_load_lut,
7415 };
7416
7417 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7418 {
7419         struct intel_encoder *other_encoder;
7420         struct drm_crtc *crtc = &encoder->new_crtc->base;
7421
7422         if (WARN_ON(!crtc))
7423                 return false;
7424
7425         list_for_each_entry(other_encoder,
7426                             &crtc->dev->mode_config.encoder_list,
7427                             base.head) {
7428
7429                 if (&other_encoder->new_crtc->base != crtc ||
7430                     encoder == other_encoder)
7431                         continue;
7432                 else
7433                         return true;
7434         }
7435
7436         return false;
7437 }
7438
7439 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7440                                   struct drm_crtc *crtc)
7441 {
7442         struct drm_device *dev;
7443         struct drm_crtc *tmp;
7444         int crtc_mask = 1;
7445
7446         WARN(!crtc, "checking null crtc?\n");
7447
7448         dev = crtc->dev;
7449
7450         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7451                 if (tmp == crtc)
7452                         break;
7453                 crtc_mask <<= 1;
7454         }
7455
7456         if (encoder->possible_crtcs & crtc_mask)
7457                 return true;
7458         return false;
7459 }
7460
7461 /**
7462  * intel_modeset_update_staged_output_state
7463  *
7464  * Updates the staged output configuration state, e.g. after we've read out the
7465  * current hw state.
7466  */
7467 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7468 {
7469         struct intel_encoder *encoder;
7470         struct intel_connector *connector;
7471
7472         list_for_each_entry(connector, &dev->mode_config.connector_list,
7473                             base.head) {
7474                 connector->new_encoder =
7475                         to_intel_encoder(connector->base.encoder);
7476         }
7477
7478         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7479                             base.head) {
7480                 encoder->new_crtc =
7481                         to_intel_crtc(encoder->base.crtc);
7482         }
7483 }
7484
7485 /**
7486  * intel_modeset_commit_output_state
7487  *
7488  * This function copies the stage display pipe configuration to the real one.
7489  */
7490 static void intel_modeset_commit_output_state(struct drm_device *dev)
7491 {
7492         struct intel_encoder *encoder;
7493         struct intel_connector *connector;
7494
7495         list_for_each_entry(connector, &dev->mode_config.connector_list,
7496                             base.head) {
7497                 connector->base.encoder = &connector->new_encoder->base;
7498         }
7499
7500         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7501                             base.head) {
7502                 encoder->base.crtc = &encoder->new_crtc->base;
7503         }
7504 }
7505
7506 static int
7507 pipe_config_set_bpp(struct drm_crtc *crtc,
7508                     struct drm_framebuffer *fb,
7509                     struct intel_crtc_config *pipe_config)
7510 {
7511         struct drm_device *dev = crtc->dev;
7512         struct drm_connector *connector;
7513         int bpp;
7514
7515         switch (fb->pixel_format) {
7516         case DRM_FORMAT_C8:
7517                 bpp = 8*3; /* since we go through a colormap */
7518                 break;
7519         case DRM_FORMAT_XRGB1555:
7520         case DRM_FORMAT_ARGB1555:
7521                 /* checked in intel_framebuffer_init already */
7522                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7523                         return -EINVAL;
7524         case DRM_FORMAT_RGB565:
7525                 bpp = 6*3; /* min is 18bpp */
7526                 break;
7527         case DRM_FORMAT_XBGR8888:
7528         case DRM_FORMAT_ABGR8888:
7529                 /* checked in intel_framebuffer_init already */
7530                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7531                         return -EINVAL;
7532         case DRM_FORMAT_XRGB8888:
7533         case DRM_FORMAT_ARGB8888:
7534                 bpp = 8*3;
7535                 break;
7536         case DRM_FORMAT_XRGB2101010:
7537         case DRM_FORMAT_ARGB2101010:
7538         case DRM_FORMAT_XBGR2101010:
7539         case DRM_FORMAT_ABGR2101010:
7540                 /* checked in intel_framebuffer_init already */
7541                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7542                         return -EINVAL;
7543                 bpp = 10*3;
7544                 break;
7545         /* TODO: gen4+ supports 16 bpc floating point, too. */
7546         default:
7547                 DRM_DEBUG_KMS("unsupported depth\n");
7548                 return -EINVAL;
7549         }
7550
7551         pipe_config->pipe_bpp = bpp;
7552
7553         /* Clamp display bpp to EDID value */
7554         list_for_each_entry(connector, &dev->mode_config.connector_list,
7555                             head) {
7556                 if (connector->encoder && connector->encoder->crtc != crtc)
7557                         continue;
7558
7559                 /* Don't use an invalid EDID bpc value */
7560                 if (connector->display_info.bpc &&
7561                     connector->display_info.bpc * 3 < bpp) {
7562                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7563                                       bpp, connector->display_info.bpc*3);
7564                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7565                 }
7566         }
7567
7568         return bpp;
7569 }
7570
7571 static struct intel_crtc_config *
7572 intel_modeset_pipe_config(struct drm_crtc *crtc,
7573                           struct drm_framebuffer *fb,
7574                           struct drm_display_mode *mode)
7575 {
7576         struct drm_device *dev = crtc->dev;
7577         struct drm_encoder_helper_funcs *encoder_funcs;
7578         struct intel_encoder *encoder;
7579         struct intel_crtc_config *pipe_config;
7580         int plane_bpp;
7581
7582         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7583         if (!pipe_config)
7584                 return ERR_PTR(-ENOMEM);
7585
7586         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7587         drm_mode_copy(&pipe_config->requested_mode, mode);
7588
7589         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7590         if (plane_bpp < 0)
7591                 goto fail;
7592
7593         /* Pass our mode to the connectors and the CRTC to give them a chance to
7594          * adjust it according to limitations or connector properties, and also
7595          * a chance to reject the mode entirely.
7596          */
7597         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7598                             base.head) {
7599
7600                 if (&encoder->new_crtc->base != crtc)
7601                         continue;
7602
7603                 if (encoder->compute_config) {
7604                         if (!(encoder->compute_config(encoder, pipe_config))) {
7605                                 DRM_DEBUG_KMS("Encoder config failure\n");
7606                                 goto fail;
7607                         }
7608
7609                         continue;
7610                 }
7611
7612                 encoder_funcs = encoder->base.helper_private;
7613                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7614                                                 &pipe_config->requested_mode,
7615                                                 &pipe_config->adjusted_mode))) {
7616                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7617                         goto fail;
7618                 }
7619         }
7620
7621         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7622                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7623                 goto fail;
7624         }
7625         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7626
7627         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7628         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7629                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7630
7631         return pipe_config;
7632 fail:
7633         kfree(pipe_config);
7634         return ERR_PTR(-EINVAL);
7635 }
7636
7637 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7638  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7639 static void
7640 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7641                              unsigned *prepare_pipes, unsigned *disable_pipes)
7642 {
7643         struct intel_crtc *intel_crtc;
7644         struct drm_device *dev = crtc->dev;
7645         struct intel_encoder *encoder;
7646         struct intel_connector *connector;
7647         struct drm_crtc *tmp_crtc;
7648
7649         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7650
7651         /* Check which crtcs have changed outputs connected to them, these need
7652          * to be part of the prepare_pipes mask. We don't (yet) support global
7653          * modeset across multiple crtcs, so modeset_pipes will only have one
7654          * bit set at most. */
7655         list_for_each_entry(connector, &dev->mode_config.connector_list,
7656                             base.head) {
7657                 if (connector->base.encoder == &connector->new_encoder->base)
7658                         continue;
7659
7660                 if (connector->base.encoder) {
7661                         tmp_crtc = connector->base.encoder->crtc;
7662
7663                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7664                 }
7665
7666                 if (connector->new_encoder)
7667                         *prepare_pipes |=
7668                                 1 << connector->new_encoder->new_crtc->pipe;
7669         }
7670
7671         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7672                             base.head) {
7673                 if (encoder->base.crtc == &encoder->new_crtc->base)
7674                         continue;
7675
7676                 if (encoder->base.crtc) {
7677                         tmp_crtc = encoder->base.crtc;
7678
7679                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7680                 }
7681
7682                 if (encoder->new_crtc)
7683                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7684         }
7685
7686         /* Check for any pipes that will be fully disabled ... */
7687         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7688                             base.head) {
7689                 bool used = false;
7690
7691                 /* Don't try to disable disabled crtcs. */
7692                 if (!intel_crtc->base.enabled)
7693                         continue;
7694
7695                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7696                                     base.head) {
7697                         if (encoder->new_crtc == intel_crtc)
7698                                 used = true;
7699                 }
7700
7701                 if (!used)
7702                         *disable_pipes |= 1 << intel_crtc->pipe;
7703         }
7704
7705
7706         /* set_mode is also used to update properties on life display pipes. */
7707         intel_crtc = to_intel_crtc(crtc);
7708         if (crtc->enabled)
7709                 *prepare_pipes |= 1 << intel_crtc->pipe;
7710
7711         /* We only support modeset on one single crtc, hence we need to do that
7712          * only for the passed in crtc iff we change anything else than just
7713          * disable crtcs.
7714          *
7715          * This is actually not true, to be fully compatible with the old crtc
7716          * helper we automatically disable _any_ output (i.e. doesn't need to be
7717          * connected to the crtc we're modesetting on) if it's disconnected.
7718          * Which is a rather nutty api (since changed the output configuration
7719          * without userspace's explicit request can lead to confusion), but
7720          * alas. Hence we currently need to modeset on all pipes we prepare. */
7721         if (*prepare_pipes)
7722                 *modeset_pipes = *prepare_pipes;
7723
7724         /* ... and mask these out. */
7725         *modeset_pipes &= ~(*disable_pipes);
7726         *prepare_pipes &= ~(*disable_pipes);
7727 }
7728
7729 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7730 {
7731         struct drm_encoder *encoder;
7732         struct drm_device *dev = crtc->dev;
7733
7734         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7735                 if (encoder->crtc == crtc)
7736                         return true;
7737
7738         return false;
7739 }
7740
7741 static void
7742 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7743 {
7744         struct intel_encoder *intel_encoder;
7745         struct intel_crtc *intel_crtc;
7746         struct drm_connector *connector;
7747
7748         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7749                             base.head) {
7750                 if (!intel_encoder->base.crtc)
7751                         continue;
7752
7753                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7754
7755                 if (prepare_pipes & (1 << intel_crtc->pipe))
7756                         intel_encoder->connectors_active = false;
7757         }
7758
7759         intel_modeset_commit_output_state(dev);
7760
7761         /* Update computed state. */
7762         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7763                             base.head) {
7764                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7765         }
7766
7767         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7768                 if (!connector->encoder || !connector->encoder->crtc)
7769                         continue;
7770
7771                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7772
7773                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7774                         struct drm_property *dpms_property =
7775                                 dev->mode_config.dpms_property;
7776
7777                         connector->dpms = DRM_MODE_DPMS_ON;
7778                         drm_object_property_set_value(&connector->base,
7779                                                          dpms_property,
7780                                                          DRM_MODE_DPMS_ON);
7781
7782                         intel_encoder = to_intel_encoder(connector->encoder);
7783                         intel_encoder->connectors_active = true;
7784                 }
7785         }
7786
7787 }
7788
7789 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7790         list_for_each_entry((intel_crtc), \
7791                             &(dev)->mode_config.crtc_list, \
7792                             base.head) \
7793                 if (mask & (1 <<(intel_crtc)->pipe)) \
7794
7795 static bool
7796 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7797                           struct intel_crtc_config *pipe_config)
7798 {
7799         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7800                 DRM_ERROR("mismatch in has_pch_encoder "
7801                           "(expected %i, found %i)\n",
7802                           current_config->has_pch_encoder,
7803                           pipe_config->has_pch_encoder);
7804                 return false;
7805         }
7806
7807         return true;
7808 }
7809
7810 void
7811 intel_modeset_check_state(struct drm_device *dev)
7812 {
7813         drm_i915_private_t *dev_priv = dev->dev_private;
7814         struct intel_crtc *crtc;
7815         struct intel_encoder *encoder;
7816         struct intel_connector *connector;
7817         struct intel_crtc_config pipe_config;
7818
7819         list_for_each_entry(connector, &dev->mode_config.connector_list,
7820                             base.head) {
7821                 /* This also checks the encoder/connector hw state with the
7822                  * ->get_hw_state callbacks. */
7823                 intel_connector_check_state(connector);
7824
7825                 WARN(&connector->new_encoder->base != connector->base.encoder,
7826                      "connector's staged encoder doesn't match current encoder\n");
7827         }
7828
7829         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7830                             base.head) {
7831                 bool enabled = false;
7832                 bool active = false;
7833                 enum pipe pipe, tracked_pipe;
7834
7835                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7836                               encoder->base.base.id,
7837                               drm_get_encoder_name(&encoder->base));
7838
7839                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7840                      "encoder's stage crtc doesn't match current crtc\n");
7841                 WARN(encoder->connectors_active && !encoder->base.crtc,
7842                      "encoder's active_connectors set, but no crtc\n");
7843
7844                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7845                                     base.head) {
7846                         if (connector->base.encoder != &encoder->base)
7847                                 continue;
7848                         enabled = true;
7849                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7850                                 active = true;
7851                 }
7852                 WARN(!!encoder->base.crtc != enabled,
7853                      "encoder's enabled state mismatch "
7854                      "(expected %i, found %i)\n",
7855                      !!encoder->base.crtc, enabled);
7856                 WARN(active && !encoder->base.crtc,
7857                      "active encoder with no crtc\n");
7858
7859                 WARN(encoder->connectors_active != active,
7860                      "encoder's computed active state doesn't match tracked active state "
7861                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7862
7863                 active = encoder->get_hw_state(encoder, &pipe);
7864                 WARN(active != encoder->connectors_active,
7865                      "encoder's hw state doesn't match sw tracking "
7866                      "(expected %i, found %i)\n",
7867                      encoder->connectors_active, active);
7868
7869                 if (!encoder->base.crtc)
7870                         continue;
7871
7872                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7873                 WARN(active && pipe != tracked_pipe,
7874                      "active encoder's pipe doesn't match"
7875                      "(expected %i, found %i)\n",
7876                      tracked_pipe, pipe);
7877
7878         }
7879
7880         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7881                             base.head) {
7882                 bool enabled = false;
7883                 bool active = false;
7884
7885                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7886                               crtc->base.base.id);
7887
7888                 WARN(crtc->active && !crtc->base.enabled,
7889                      "active crtc, but not enabled in sw tracking\n");
7890
7891                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7892                                     base.head) {
7893                         if (encoder->base.crtc != &crtc->base)
7894                                 continue;
7895                         enabled = true;
7896                         if (encoder->connectors_active)
7897                                 active = true;
7898                 }
7899                 WARN(active != crtc->active,
7900                      "crtc's computed active state doesn't match tracked active state "
7901                      "(expected %i, found %i)\n", active, crtc->active);
7902                 WARN(enabled != crtc->base.enabled,
7903                      "crtc's computed enabled state doesn't match tracked enabled state "
7904                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7905
7906                 memset(&pipe_config, 0, sizeof(pipe_config));
7907                 active = dev_priv->display.get_pipe_config(crtc,
7908                                                            &pipe_config);
7909                 WARN(crtc->active != active,
7910                      "crtc active state doesn't match with hw state "
7911                      "(expected %i, found %i)\n", crtc->active, active);
7912
7913                 WARN(active &&
7914                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
7915                      "pipe state doesn't match!\n");
7916         }
7917 }
7918
7919 int intel_set_mode(struct drm_crtc *crtc,
7920                    struct drm_display_mode *mode,
7921                    int x, int y, struct drm_framebuffer *fb)
7922 {
7923         struct drm_device *dev = crtc->dev;
7924         drm_i915_private_t *dev_priv = dev->dev_private;
7925         struct drm_display_mode *saved_mode, *saved_hwmode;
7926         struct intel_crtc_config *pipe_config = NULL;
7927         struct intel_crtc *intel_crtc;
7928         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7929         int ret = 0;
7930
7931         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7932         if (!saved_mode)
7933                 return -ENOMEM;
7934         saved_hwmode = saved_mode + 1;
7935
7936         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7937                                      &prepare_pipes, &disable_pipes);
7938
7939         *saved_hwmode = crtc->hwmode;
7940         *saved_mode = crtc->mode;
7941
7942         /* Hack: Because we don't (yet) support global modeset on multiple
7943          * crtcs, we don't keep track of the new mode for more than one crtc.
7944          * Hence simply check whether any bit is set in modeset_pipes in all the
7945          * pieces of code that are not yet converted to deal with mutliple crtcs
7946          * changing their mode at the same time. */
7947         if (modeset_pipes) {
7948                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7949                 if (IS_ERR(pipe_config)) {
7950                         ret = PTR_ERR(pipe_config);
7951                         pipe_config = NULL;
7952
7953                         goto out;
7954                 }
7955         }
7956
7957         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7958                       modeset_pipes, prepare_pipes, disable_pipes);
7959
7960         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7961                 intel_crtc_disable(&intel_crtc->base);
7962
7963         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7964                 if (intel_crtc->base.enabled)
7965                         dev_priv->display.crtc_disable(&intel_crtc->base);
7966         }
7967
7968         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7969          * to set it here already despite that we pass it down the callchain.
7970          */
7971         if (modeset_pipes) {
7972                 crtc->mode = *mode;
7973                 /* mode_set/enable/disable functions rely on a correct pipe
7974                  * config. */
7975                 to_intel_crtc(crtc)->config = *pipe_config;
7976         }
7977
7978         /* Only after disabling all output pipelines that will be changed can we
7979          * update the the output configuration. */
7980         intel_modeset_update_state(dev, prepare_pipes);
7981
7982         if (dev_priv->display.modeset_global_resources)
7983                 dev_priv->display.modeset_global_resources(dev);
7984
7985         /* Set up the DPLL and any encoders state that needs to adjust or depend
7986          * on the DPLL.
7987          */
7988         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7989                 ret = intel_crtc_mode_set(&intel_crtc->base,
7990                                           x, y, fb);
7991                 if (ret)
7992                         goto done;
7993         }
7994
7995         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7996         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7997                 dev_priv->display.crtc_enable(&intel_crtc->base);
7998
7999         if (modeset_pipes) {
8000                 /* Store real post-adjustment hardware mode. */
8001                 crtc->hwmode = pipe_config->adjusted_mode;
8002
8003                 /* Calculate and store various constants which
8004                  * are later needed by vblank and swap-completion
8005                  * timestamping. They are derived from true hwmode.
8006                  */
8007                 drm_calc_timestamping_constants(crtc);
8008         }
8009
8010         /* FIXME: add subpixel order */
8011 done:
8012         if (ret && crtc->enabled) {
8013                 crtc->hwmode = *saved_hwmode;
8014                 crtc->mode = *saved_mode;
8015         } else {
8016                 intel_modeset_check_state(dev);
8017         }
8018
8019 out:
8020         kfree(pipe_config);
8021         kfree(saved_mode);
8022         return ret;
8023 }
8024
8025 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8026 {
8027         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8028 }
8029
8030 #undef for_each_intel_crtc_masked
8031
8032 static void intel_set_config_free(struct intel_set_config *config)
8033 {
8034         if (!config)
8035                 return;
8036
8037         kfree(config->save_connector_encoders);
8038         kfree(config->save_encoder_crtcs);
8039         kfree(config);
8040 }
8041
8042 static int intel_set_config_save_state(struct drm_device *dev,
8043                                        struct intel_set_config *config)
8044 {
8045         struct drm_encoder *encoder;
8046         struct drm_connector *connector;
8047         int count;
8048
8049         config->save_encoder_crtcs =
8050                 kcalloc(dev->mode_config.num_encoder,
8051                         sizeof(struct drm_crtc *), GFP_KERNEL);
8052         if (!config->save_encoder_crtcs)
8053                 return -ENOMEM;
8054
8055         config->save_connector_encoders =
8056                 kcalloc(dev->mode_config.num_connector,
8057                         sizeof(struct drm_encoder *), GFP_KERNEL);
8058         if (!config->save_connector_encoders)
8059                 return -ENOMEM;
8060
8061         /* Copy data. Note that driver private data is not affected.
8062          * Should anything bad happen only the expected state is
8063          * restored, not the drivers personal bookkeeping.
8064          */
8065         count = 0;
8066         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8067                 config->save_encoder_crtcs[count++] = encoder->crtc;
8068         }
8069
8070         count = 0;
8071         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8072                 config->save_connector_encoders[count++] = connector->encoder;
8073         }
8074
8075         return 0;
8076 }
8077
8078 static void intel_set_config_restore_state(struct drm_device *dev,
8079                                            struct intel_set_config *config)
8080 {
8081         struct intel_encoder *encoder;
8082         struct intel_connector *connector;
8083         int count;
8084
8085         count = 0;
8086         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8087                 encoder->new_crtc =
8088                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8089         }
8090
8091         count = 0;
8092         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8093                 connector->new_encoder =
8094                         to_intel_encoder(config->save_connector_encoders[count++]);
8095         }
8096 }
8097
8098 static void
8099 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8100                                       struct intel_set_config *config)
8101 {
8102
8103         /* We should be able to check here if the fb has the same properties
8104          * and then just flip_or_move it */
8105         if (set->crtc->fb != set->fb) {
8106                 /* If we have no fb then treat it as a full mode set */
8107                 if (set->crtc->fb == NULL) {
8108                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8109                         config->mode_changed = true;
8110                 } else if (set->fb == NULL) {
8111                         config->mode_changed = true;
8112                 } else if (set->fb->pixel_format !=
8113                            set->crtc->fb->pixel_format) {
8114                         config->mode_changed = true;
8115                 } else
8116                         config->fb_changed = true;
8117         }
8118
8119         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8120                 config->fb_changed = true;
8121
8122         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8123                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8124                 drm_mode_debug_printmodeline(&set->crtc->mode);
8125                 drm_mode_debug_printmodeline(set->mode);
8126                 config->mode_changed = true;
8127         }
8128 }
8129
8130 static int
8131 intel_modeset_stage_output_state(struct drm_device *dev,
8132                                  struct drm_mode_set *set,
8133                                  struct intel_set_config *config)
8134 {
8135         struct drm_crtc *new_crtc;
8136         struct intel_connector *connector;
8137         struct intel_encoder *encoder;
8138         int count, ro;
8139
8140         /* The upper layers ensure that we either disable a crtc or have a list
8141          * of connectors. For paranoia, double-check this. */
8142         WARN_ON(!set->fb && (set->num_connectors != 0));
8143         WARN_ON(set->fb && (set->num_connectors == 0));
8144
8145         count = 0;
8146         list_for_each_entry(connector, &dev->mode_config.connector_list,
8147                             base.head) {
8148                 /* Otherwise traverse passed in connector list and get encoders
8149                  * for them. */
8150                 for (ro = 0; ro < set->num_connectors; ro++) {
8151                         if (set->connectors[ro] == &connector->base) {
8152                                 connector->new_encoder = connector->encoder;
8153                                 break;
8154                         }
8155                 }
8156
8157                 /* If we disable the crtc, disable all its connectors. Also, if
8158                  * the connector is on the changing crtc but not on the new
8159                  * connector list, disable it. */
8160                 if ((!set->fb || ro == set->num_connectors) &&
8161                     connector->base.encoder &&
8162                     connector->base.encoder->crtc == set->crtc) {
8163                         connector->new_encoder = NULL;
8164
8165                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8166                                 connector->base.base.id,
8167                                 drm_get_connector_name(&connector->base));
8168                 }
8169
8170
8171                 if (&connector->new_encoder->base != connector->base.encoder) {
8172                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8173                         config->mode_changed = true;
8174                 }
8175         }
8176         /* connector->new_encoder is now updated for all connectors. */
8177
8178         /* Update crtc of enabled connectors. */
8179         count = 0;
8180         list_for_each_entry(connector, &dev->mode_config.connector_list,
8181                             base.head) {
8182                 if (!connector->new_encoder)
8183                         continue;
8184
8185                 new_crtc = connector->new_encoder->base.crtc;
8186
8187                 for (ro = 0; ro < set->num_connectors; ro++) {
8188                         if (set->connectors[ro] == &connector->base)
8189                                 new_crtc = set->crtc;
8190                 }
8191
8192                 /* Make sure the new CRTC will work with the encoder */
8193                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8194                                            new_crtc)) {
8195                         return -EINVAL;
8196                 }
8197                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8198
8199                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8200                         connector->base.base.id,
8201                         drm_get_connector_name(&connector->base),
8202                         new_crtc->base.id);
8203         }
8204
8205         /* Check for any encoders that needs to be disabled. */
8206         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8207                             base.head) {
8208                 list_for_each_entry(connector,
8209                                     &dev->mode_config.connector_list,
8210                                     base.head) {
8211                         if (connector->new_encoder == encoder) {
8212                                 WARN_ON(!connector->new_encoder->new_crtc);
8213
8214                                 goto next_encoder;
8215                         }
8216                 }
8217                 encoder->new_crtc = NULL;
8218 next_encoder:
8219                 /* Only now check for crtc changes so we don't miss encoders
8220                  * that will be disabled. */
8221                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8222                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8223                         config->mode_changed = true;
8224                 }
8225         }
8226         /* Now we've also updated encoder->new_crtc for all encoders. */
8227
8228         return 0;
8229 }
8230
8231 static int intel_crtc_set_config(struct drm_mode_set *set)
8232 {
8233         struct drm_device *dev;
8234         struct drm_mode_set save_set;
8235         struct intel_set_config *config;
8236         int ret;
8237
8238         BUG_ON(!set);
8239         BUG_ON(!set->crtc);
8240         BUG_ON(!set->crtc->helper_private);
8241
8242         /* Enforce sane interface api - has been abused by the fb helper. */
8243         BUG_ON(!set->mode && set->fb);
8244         BUG_ON(set->fb && set->num_connectors == 0);
8245
8246         if (set->fb) {
8247                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8248                                 set->crtc->base.id, set->fb->base.id,
8249                                 (int)set->num_connectors, set->x, set->y);
8250         } else {
8251                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8252         }
8253
8254         dev = set->crtc->dev;
8255
8256         ret = -ENOMEM;
8257         config = kzalloc(sizeof(*config), GFP_KERNEL);
8258         if (!config)
8259                 goto out_config;
8260
8261         ret = intel_set_config_save_state(dev, config);
8262         if (ret)
8263                 goto out_config;
8264
8265         save_set.crtc = set->crtc;
8266         save_set.mode = &set->crtc->mode;
8267         save_set.x = set->crtc->x;
8268         save_set.y = set->crtc->y;
8269         save_set.fb = set->crtc->fb;
8270
8271         /* Compute whether we need a full modeset, only an fb base update or no
8272          * change at all. In the future we might also check whether only the
8273          * mode changed, e.g. for LVDS where we only change the panel fitter in
8274          * such cases. */
8275         intel_set_config_compute_mode_changes(set, config);
8276
8277         ret = intel_modeset_stage_output_state(dev, set, config);
8278         if (ret)
8279                 goto fail;
8280
8281         if (config->mode_changed) {
8282                 if (set->mode) {
8283                         DRM_DEBUG_KMS("attempting to set mode from"
8284                                         " userspace\n");
8285                         drm_mode_debug_printmodeline(set->mode);
8286                 }
8287
8288                 ret = intel_set_mode(set->crtc, set->mode,
8289                                      set->x, set->y, set->fb);
8290                 if (ret) {
8291                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8292                                   set->crtc->base.id, ret);
8293                         goto fail;
8294                 }
8295         } else if (config->fb_changed) {
8296                 intel_crtc_wait_for_pending_flips(set->crtc);
8297
8298                 ret = intel_pipe_set_base(set->crtc,
8299                                           set->x, set->y, set->fb);
8300         }
8301
8302         intel_set_config_free(config);
8303
8304         return 0;
8305
8306 fail:
8307         intel_set_config_restore_state(dev, config);
8308
8309         /* Try to restore the config */
8310         if (config->mode_changed &&
8311             intel_set_mode(save_set.crtc, save_set.mode,
8312                            save_set.x, save_set.y, save_set.fb))
8313                 DRM_ERROR("failed to restore config after modeset failure\n");
8314
8315 out_config:
8316         intel_set_config_free(config);
8317         return ret;
8318 }
8319
8320 static const struct drm_crtc_funcs intel_crtc_funcs = {
8321         .cursor_set = intel_crtc_cursor_set,
8322         .cursor_move = intel_crtc_cursor_move,
8323         .gamma_set = intel_crtc_gamma_set,
8324         .set_config = intel_crtc_set_config,
8325         .destroy = intel_crtc_destroy,
8326         .page_flip = intel_crtc_page_flip,
8327 };
8328
8329 static void intel_cpu_pll_init(struct drm_device *dev)
8330 {
8331         if (HAS_DDI(dev))
8332                 intel_ddi_pll_init(dev);
8333 }
8334
8335 static void intel_pch_pll_init(struct drm_device *dev)
8336 {
8337         drm_i915_private_t *dev_priv = dev->dev_private;
8338         int i;
8339
8340         if (dev_priv->num_pch_pll == 0) {
8341                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8342                 return;
8343         }
8344
8345         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8346                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8347                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8348                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8349         }
8350 }
8351
8352 static void intel_crtc_init(struct drm_device *dev, int pipe)
8353 {
8354         drm_i915_private_t *dev_priv = dev->dev_private;
8355         struct intel_crtc *intel_crtc;
8356         int i;
8357
8358         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8359         if (intel_crtc == NULL)
8360                 return;
8361
8362         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8363
8364         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8365         for (i = 0; i < 256; i++) {
8366                 intel_crtc->lut_r[i] = i;
8367                 intel_crtc->lut_g[i] = i;
8368                 intel_crtc->lut_b[i] = i;
8369         }
8370
8371         /* Swap pipes & planes for FBC on pre-965 */
8372         intel_crtc->pipe = pipe;
8373         intel_crtc->plane = pipe;
8374         intel_crtc->cpu_transcoder = pipe;
8375         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8376                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8377                 intel_crtc->plane = !pipe;
8378         }
8379
8380         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8381                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8382         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8383         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8384
8385         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8386 }
8387
8388 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8389                                 struct drm_file *file)
8390 {
8391         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8392         struct drm_mode_object *drmmode_obj;
8393         struct intel_crtc *crtc;
8394
8395         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8396                 return -ENODEV;
8397
8398         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8399                         DRM_MODE_OBJECT_CRTC);
8400
8401         if (!drmmode_obj) {
8402                 DRM_ERROR("no such CRTC id\n");
8403                 return -EINVAL;
8404         }
8405
8406         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8407         pipe_from_crtc_id->pipe = crtc->pipe;
8408
8409         return 0;
8410 }
8411
8412 static int intel_encoder_clones(struct intel_encoder *encoder)
8413 {
8414         struct drm_device *dev = encoder->base.dev;
8415         struct intel_encoder *source_encoder;
8416         int index_mask = 0;
8417         int entry = 0;
8418
8419         list_for_each_entry(source_encoder,
8420                             &dev->mode_config.encoder_list, base.head) {
8421
8422                 if (encoder == source_encoder)
8423                         index_mask |= (1 << entry);
8424
8425                 /* Intel hw has only one MUX where enocoders could be cloned. */
8426                 if (encoder->cloneable && source_encoder->cloneable)
8427                         index_mask |= (1 << entry);
8428
8429                 entry++;
8430         }
8431
8432         return index_mask;
8433 }
8434
8435 static bool has_edp_a(struct drm_device *dev)
8436 {
8437         struct drm_i915_private *dev_priv = dev->dev_private;
8438
8439         if (!IS_MOBILE(dev))
8440                 return false;
8441
8442         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8443                 return false;
8444
8445         if (IS_GEN5(dev) &&
8446             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8447                 return false;
8448
8449         return true;
8450 }
8451
8452 static void intel_setup_outputs(struct drm_device *dev)
8453 {
8454         struct drm_i915_private *dev_priv = dev->dev_private;
8455         struct intel_encoder *encoder;
8456         bool dpd_is_edp = false;
8457         bool has_lvds;
8458
8459         has_lvds = intel_lvds_init(dev);
8460         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8461                 /* disable the panel fitter on everything but LVDS */
8462                 I915_WRITE(PFIT_CONTROL, 0);
8463         }
8464
8465         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8466                 intel_crt_init(dev);
8467
8468         if (HAS_DDI(dev)) {
8469                 int found;
8470
8471                 /* Haswell uses DDI functions to detect digital outputs */
8472                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8473                 /* DDI A only supports eDP */
8474                 if (found)
8475                         intel_ddi_init(dev, PORT_A);
8476
8477                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8478                  * register */
8479                 found = I915_READ(SFUSE_STRAP);
8480
8481                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8482                         intel_ddi_init(dev, PORT_B);
8483                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8484                         intel_ddi_init(dev, PORT_C);
8485                 if (found & SFUSE_STRAP_DDID_DETECTED)
8486                         intel_ddi_init(dev, PORT_D);
8487         } else if (HAS_PCH_SPLIT(dev)) {
8488                 int found;
8489                 dpd_is_edp = intel_dpd_is_edp(dev);
8490
8491                 if (has_edp_a(dev))
8492                         intel_dp_init(dev, DP_A, PORT_A);
8493
8494                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8495                         /* PCH SDVOB multiplex with HDMIB */
8496                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8497                         if (!found)
8498                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8499                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8500                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8501                 }
8502
8503                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8504                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8505
8506                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8507                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8508
8509                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8510                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8511
8512                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8513                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8514         } else if (IS_VALLEYVIEW(dev)) {
8515                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8516                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8517                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8518
8519                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8520                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8521                                         PORT_B);
8522                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8523                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8524                 }
8525         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8526                 bool found = false;
8527
8528                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8529                         DRM_DEBUG_KMS("probing SDVOB\n");
8530                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8531                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8532                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8533                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8534                         }
8535
8536                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8537                                 DRM_DEBUG_KMS("probing DP_B\n");
8538                                 intel_dp_init(dev, DP_B, PORT_B);
8539                         }
8540                 }
8541
8542                 /* Before G4X SDVOC doesn't have its own detect register */
8543
8544                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8545                         DRM_DEBUG_KMS("probing SDVOC\n");
8546                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8547                 }
8548
8549                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8550
8551                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8552                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8553                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8554                         }
8555                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8556                                 DRM_DEBUG_KMS("probing DP_C\n");
8557                                 intel_dp_init(dev, DP_C, PORT_C);
8558                         }
8559                 }
8560
8561                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8562                     (I915_READ(DP_D) & DP_DETECTED)) {
8563                         DRM_DEBUG_KMS("probing DP_D\n");
8564                         intel_dp_init(dev, DP_D, PORT_D);
8565                 }
8566         } else if (IS_GEN2(dev))
8567                 intel_dvo_init(dev);
8568
8569         if (SUPPORTS_TV(dev))
8570                 intel_tv_init(dev);
8571
8572         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8573                 encoder->base.possible_crtcs = encoder->crtc_mask;
8574                 encoder->base.possible_clones =
8575                         intel_encoder_clones(encoder);
8576         }
8577
8578         intel_init_pch_refclk(dev);
8579
8580         drm_helper_move_panel_connectors_to_head(dev);
8581 }
8582
8583 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8584 {
8585         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8586
8587         drm_framebuffer_cleanup(fb);
8588         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8589
8590         kfree(intel_fb);
8591 }
8592
8593 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8594                                                 struct drm_file *file,
8595                                                 unsigned int *handle)
8596 {
8597         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8598         struct drm_i915_gem_object *obj = intel_fb->obj;
8599
8600         return drm_gem_handle_create(file, &obj->base, handle);
8601 }
8602
8603 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8604         .destroy = intel_user_framebuffer_destroy,
8605         .create_handle = intel_user_framebuffer_create_handle,
8606 };
8607
8608 int intel_framebuffer_init(struct drm_device *dev,
8609                            struct intel_framebuffer *intel_fb,
8610                            struct drm_mode_fb_cmd2 *mode_cmd,
8611                            struct drm_i915_gem_object *obj)
8612 {
8613         int ret;
8614
8615         if (obj->tiling_mode == I915_TILING_Y) {
8616                 DRM_DEBUG("hardware does not support tiling Y\n");
8617                 return -EINVAL;
8618         }
8619
8620         if (mode_cmd->pitches[0] & 63) {
8621                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8622                           mode_cmd->pitches[0]);
8623                 return -EINVAL;
8624         }
8625
8626         /* FIXME <= Gen4 stride limits are bit unclear */
8627         if (mode_cmd->pitches[0] > 32768) {
8628                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8629                           mode_cmd->pitches[0]);
8630                 return -EINVAL;
8631         }
8632
8633         if (obj->tiling_mode != I915_TILING_NONE &&
8634             mode_cmd->pitches[0] != obj->stride) {
8635                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8636                           mode_cmd->pitches[0], obj->stride);
8637                 return -EINVAL;
8638         }
8639
8640         /* Reject formats not supported by any plane early. */
8641         switch (mode_cmd->pixel_format) {
8642         case DRM_FORMAT_C8:
8643         case DRM_FORMAT_RGB565:
8644         case DRM_FORMAT_XRGB8888:
8645         case DRM_FORMAT_ARGB8888:
8646                 break;
8647         case DRM_FORMAT_XRGB1555:
8648         case DRM_FORMAT_ARGB1555:
8649                 if (INTEL_INFO(dev)->gen > 3) {
8650                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8651                         return -EINVAL;
8652                 }
8653                 break;
8654         case DRM_FORMAT_XBGR8888:
8655         case DRM_FORMAT_ABGR8888:
8656         case DRM_FORMAT_XRGB2101010:
8657         case DRM_FORMAT_ARGB2101010:
8658         case DRM_FORMAT_XBGR2101010:
8659         case DRM_FORMAT_ABGR2101010:
8660                 if (INTEL_INFO(dev)->gen < 4) {
8661                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8662                         return -EINVAL;
8663                 }
8664                 break;
8665         case DRM_FORMAT_YUYV:
8666         case DRM_FORMAT_UYVY:
8667         case DRM_FORMAT_YVYU:
8668         case DRM_FORMAT_VYUY:
8669                 if (INTEL_INFO(dev)->gen < 5) {
8670                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8671                         return -EINVAL;
8672                 }
8673                 break;
8674         default:
8675                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8676                 return -EINVAL;
8677         }
8678
8679         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8680         if (mode_cmd->offsets[0] != 0)
8681                 return -EINVAL;
8682
8683         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8684         intel_fb->obj = obj;
8685
8686         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8687         if (ret) {
8688                 DRM_ERROR("framebuffer init failed %d\n", ret);
8689                 return ret;
8690         }
8691
8692         return 0;
8693 }
8694
8695 static struct drm_framebuffer *
8696 intel_user_framebuffer_create(struct drm_device *dev,
8697                               struct drm_file *filp,
8698                               struct drm_mode_fb_cmd2 *mode_cmd)
8699 {
8700         struct drm_i915_gem_object *obj;
8701
8702         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8703                                                 mode_cmd->handles[0]));
8704         if (&obj->base == NULL)
8705                 return ERR_PTR(-ENOENT);
8706
8707         return intel_framebuffer_create(dev, mode_cmd, obj);
8708 }
8709
8710 static const struct drm_mode_config_funcs intel_mode_funcs = {
8711         .fb_create = intel_user_framebuffer_create,
8712         .output_poll_changed = intel_fb_output_poll_changed,
8713 };
8714
8715 /* Set up chip specific display functions */
8716 static void intel_init_display(struct drm_device *dev)
8717 {
8718         struct drm_i915_private *dev_priv = dev->dev_private;
8719
8720         if (HAS_DDI(dev)) {
8721                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8722                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8723                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8724                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8725                 dev_priv->display.off = haswell_crtc_off;
8726                 dev_priv->display.update_plane = ironlake_update_plane;
8727         } else if (HAS_PCH_SPLIT(dev)) {
8728                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8729                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8730                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8731                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8732                 dev_priv->display.off = ironlake_crtc_off;
8733                 dev_priv->display.update_plane = ironlake_update_plane;
8734         } else {
8735                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8736                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8737                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8738                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8739                 dev_priv->display.off = i9xx_crtc_off;
8740                 dev_priv->display.update_plane = i9xx_update_plane;
8741         }
8742
8743         /* Returns the core display clock speed */
8744         if (IS_VALLEYVIEW(dev))
8745                 dev_priv->display.get_display_clock_speed =
8746                         valleyview_get_display_clock_speed;
8747         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8748                 dev_priv->display.get_display_clock_speed =
8749                         i945_get_display_clock_speed;
8750         else if (IS_I915G(dev))
8751                 dev_priv->display.get_display_clock_speed =
8752                         i915_get_display_clock_speed;
8753         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8754                 dev_priv->display.get_display_clock_speed =
8755                         i9xx_misc_get_display_clock_speed;
8756         else if (IS_I915GM(dev))
8757                 dev_priv->display.get_display_clock_speed =
8758                         i915gm_get_display_clock_speed;
8759         else if (IS_I865G(dev))
8760                 dev_priv->display.get_display_clock_speed =
8761                         i865_get_display_clock_speed;
8762         else if (IS_I85X(dev))
8763                 dev_priv->display.get_display_clock_speed =
8764                         i855_get_display_clock_speed;
8765         else /* 852, 830 */
8766                 dev_priv->display.get_display_clock_speed =
8767                         i830_get_display_clock_speed;
8768
8769         if (HAS_PCH_SPLIT(dev)) {
8770                 if (IS_GEN5(dev)) {
8771                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8772                         dev_priv->display.write_eld = ironlake_write_eld;
8773                 } else if (IS_GEN6(dev)) {
8774                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8775                         dev_priv->display.write_eld = ironlake_write_eld;
8776                 } else if (IS_IVYBRIDGE(dev)) {
8777                         /* FIXME: detect B0+ stepping and use auto training */
8778                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8779                         dev_priv->display.write_eld = ironlake_write_eld;
8780                         dev_priv->display.modeset_global_resources =
8781                                 ivb_modeset_global_resources;
8782                 } else if (IS_HASWELL(dev)) {
8783                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8784                         dev_priv->display.write_eld = haswell_write_eld;
8785                         dev_priv->display.modeset_global_resources =
8786                                 haswell_modeset_global_resources;
8787                 }
8788         } else if (IS_G4X(dev)) {
8789                 dev_priv->display.write_eld = g4x_write_eld;
8790         }
8791
8792         /* Default just returns -ENODEV to indicate unsupported */
8793         dev_priv->display.queue_flip = intel_default_queue_flip;
8794
8795         switch (INTEL_INFO(dev)->gen) {
8796         case 2:
8797                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8798                 break;
8799
8800         case 3:
8801                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8802                 break;
8803
8804         case 4:
8805         case 5:
8806                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8807                 break;
8808
8809         case 6:
8810                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8811                 break;
8812         case 7:
8813                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8814                 break;
8815         }
8816 }
8817
8818 /*
8819  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8820  * resume, or other times.  This quirk makes sure that's the case for
8821  * affected systems.
8822  */
8823 static void quirk_pipea_force(struct drm_device *dev)
8824 {
8825         struct drm_i915_private *dev_priv = dev->dev_private;
8826
8827         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8828         DRM_INFO("applying pipe a force quirk\n");
8829 }
8830
8831 /*
8832  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8833  */
8834 static void quirk_ssc_force_disable(struct drm_device *dev)
8835 {
8836         struct drm_i915_private *dev_priv = dev->dev_private;
8837         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8838         DRM_INFO("applying lvds SSC disable quirk\n");
8839 }
8840
8841 /*
8842  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8843  * brightness value
8844  */
8845 static void quirk_invert_brightness(struct drm_device *dev)
8846 {
8847         struct drm_i915_private *dev_priv = dev->dev_private;
8848         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8849         DRM_INFO("applying inverted panel brightness quirk\n");
8850 }
8851
8852 struct intel_quirk {
8853         int device;
8854         int subsystem_vendor;
8855         int subsystem_device;
8856         void (*hook)(struct drm_device *dev);
8857 };
8858
8859 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8860 struct intel_dmi_quirk {
8861         void (*hook)(struct drm_device *dev);
8862         const struct dmi_system_id (*dmi_id_list)[];
8863 };
8864
8865 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8866 {
8867         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8868         return 1;
8869 }
8870
8871 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8872         {
8873                 .dmi_id_list = &(const struct dmi_system_id[]) {
8874                         {
8875                                 .callback = intel_dmi_reverse_brightness,
8876                                 .ident = "NCR Corporation",
8877                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8878                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8879                                 },
8880                         },
8881                         { }  /* terminating entry */
8882                 },
8883                 .hook = quirk_invert_brightness,
8884         },
8885 };
8886
8887 static struct intel_quirk intel_quirks[] = {
8888         /* HP Mini needs pipe A force quirk (LP: #322104) */
8889         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8890
8891         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8892         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8893
8894         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8895         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8896
8897         /* 830/845 need to leave pipe A & dpll A up */
8898         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8899         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8900
8901         /* Lenovo U160 cannot use SSC on LVDS */
8902         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8903
8904         /* Sony Vaio Y cannot use SSC on LVDS */
8905         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8906
8907         /* Acer Aspire 5734Z must invert backlight brightness */
8908         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8909
8910         /* Acer/eMachines G725 */
8911         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8912
8913         /* Acer/eMachines e725 */
8914         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8915
8916         /* Acer/Packard Bell NCL20 */
8917         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8918
8919         /* Acer Aspire 4736Z */
8920         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8921 };
8922
8923 static void intel_init_quirks(struct drm_device *dev)
8924 {
8925         struct pci_dev *d = dev->pdev;
8926         int i;
8927
8928         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8929                 struct intel_quirk *q = &intel_quirks[i];
8930
8931                 if (d->device == q->device &&
8932                     (d->subsystem_vendor == q->subsystem_vendor ||
8933                      q->subsystem_vendor == PCI_ANY_ID) &&
8934                     (d->subsystem_device == q->subsystem_device ||
8935                      q->subsystem_device == PCI_ANY_ID))
8936                         q->hook(dev);
8937         }
8938         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8939                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8940                         intel_dmi_quirks[i].hook(dev);
8941         }
8942 }
8943
8944 /* Disable the VGA plane that we never use */
8945 static void i915_disable_vga(struct drm_device *dev)
8946 {
8947         struct drm_i915_private *dev_priv = dev->dev_private;
8948         u8 sr1;
8949         u32 vga_reg = i915_vgacntrl_reg(dev);
8950
8951         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8952         outb(SR01, VGA_SR_INDEX);
8953         sr1 = inb(VGA_SR_DATA);
8954         outb(sr1 | 1<<5, VGA_SR_DATA);
8955         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8956         udelay(300);
8957
8958         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8959         POSTING_READ(vga_reg);
8960 }
8961
8962 void intel_modeset_init_hw(struct drm_device *dev)
8963 {
8964         intel_init_power_well(dev);
8965
8966         intel_prepare_ddi(dev);
8967
8968         intel_init_clock_gating(dev);
8969
8970         mutex_lock(&dev->struct_mutex);
8971         intel_enable_gt_powersave(dev);
8972         mutex_unlock(&dev->struct_mutex);
8973 }
8974
8975 void intel_modeset_init(struct drm_device *dev)
8976 {
8977         struct drm_i915_private *dev_priv = dev->dev_private;
8978         int i, j, ret;
8979
8980         drm_mode_config_init(dev);
8981
8982         dev->mode_config.min_width = 0;
8983         dev->mode_config.min_height = 0;
8984
8985         dev->mode_config.preferred_depth = 24;
8986         dev->mode_config.prefer_shadow = 1;
8987
8988         dev->mode_config.funcs = &intel_mode_funcs;
8989
8990         intel_init_quirks(dev);
8991
8992         intel_init_pm(dev);
8993
8994         intel_init_display(dev);
8995
8996         if (IS_GEN2(dev)) {
8997                 dev->mode_config.max_width = 2048;
8998                 dev->mode_config.max_height = 2048;
8999         } else if (IS_GEN3(dev)) {
9000                 dev->mode_config.max_width = 4096;
9001                 dev->mode_config.max_height = 4096;
9002         } else {
9003                 dev->mode_config.max_width = 8192;
9004                 dev->mode_config.max_height = 8192;
9005         }
9006         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9007
9008         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9009                       INTEL_INFO(dev)->num_pipes,
9010                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9011
9012         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9013                 intel_crtc_init(dev, i);
9014                 for (j = 0; j < dev_priv->num_plane; j++) {
9015                         ret = intel_plane_init(dev, i, j);
9016                         if (ret)
9017                                 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
9018                                               i, j, ret);
9019                 }
9020         }
9021
9022         intel_cpu_pll_init(dev);
9023         intel_pch_pll_init(dev);
9024
9025         /* Just disable it once at startup */
9026         i915_disable_vga(dev);
9027         intel_setup_outputs(dev);
9028
9029         /* Just in case the BIOS is doing something questionable. */
9030         intel_disable_fbc(dev);
9031 }
9032
9033 static void
9034 intel_connector_break_all_links(struct intel_connector *connector)
9035 {
9036         connector->base.dpms = DRM_MODE_DPMS_OFF;
9037         connector->base.encoder = NULL;
9038         connector->encoder->connectors_active = false;
9039         connector->encoder->base.crtc = NULL;
9040 }
9041
9042 static void intel_enable_pipe_a(struct drm_device *dev)
9043 {
9044         struct intel_connector *connector;
9045         struct drm_connector *crt = NULL;
9046         struct intel_load_detect_pipe load_detect_temp;
9047
9048         /* We can't just switch on the pipe A, we need to set things up with a
9049          * proper mode and output configuration. As a gross hack, enable pipe A
9050          * by enabling the load detect pipe once. */
9051         list_for_each_entry(connector,
9052                             &dev->mode_config.connector_list,
9053                             base.head) {
9054                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9055                         crt = &connector->base;
9056                         break;
9057                 }
9058         }
9059
9060         if (!crt)
9061                 return;
9062
9063         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9064                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9065
9066
9067 }
9068
9069 static bool
9070 intel_check_plane_mapping(struct intel_crtc *crtc)
9071 {
9072         struct drm_device *dev = crtc->base.dev;
9073         struct drm_i915_private *dev_priv = dev->dev_private;
9074         u32 reg, val;
9075
9076         if (INTEL_INFO(dev)->num_pipes == 1)
9077                 return true;
9078
9079         reg = DSPCNTR(!crtc->plane);
9080         val = I915_READ(reg);
9081
9082         if ((val & DISPLAY_PLANE_ENABLE) &&
9083             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9084                 return false;
9085
9086         return true;
9087 }
9088
9089 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9090 {
9091         struct drm_device *dev = crtc->base.dev;
9092         struct drm_i915_private *dev_priv = dev->dev_private;
9093         u32 reg;
9094
9095         /* Clear any frame start delays used for debugging left by the BIOS */
9096         reg = PIPECONF(crtc->cpu_transcoder);
9097         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9098
9099         /* We need to sanitize the plane -> pipe mapping first because this will
9100          * disable the crtc (and hence change the state) if it is wrong. Note
9101          * that gen4+ has a fixed plane -> pipe mapping.  */
9102         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9103                 struct intel_connector *connector;
9104                 bool plane;
9105
9106                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9107                               crtc->base.base.id);
9108
9109                 /* Pipe has the wrong plane attached and the plane is active.
9110                  * Temporarily change the plane mapping and disable everything
9111                  * ...  */
9112                 plane = crtc->plane;
9113                 crtc->plane = !plane;
9114                 dev_priv->display.crtc_disable(&crtc->base);
9115                 crtc->plane = plane;
9116
9117                 /* ... and break all links. */
9118                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9119                                     base.head) {
9120                         if (connector->encoder->base.crtc != &crtc->base)
9121                                 continue;
9122
9123                         intel_connector_break_all_links(connector);
9124                 }
9125
9126                 WARN_ON(crtc->active);
9127                 crtc->base.enabled = false;
9128         }
9129
9130         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9131             crtc->pipe == PIPE_A && !crtc->active) {
9132                 /* BIOS forgot to enable pipe A, this mostly happens after
9133                  * resume. Force-enable the pipe to fix this, the update_dpms
9134                  * call below we restore the pipe to the right state, but leave
9135                  * the required bits on. */
9136                 intel_enable_pipe_a(dev);
9137         }
9138
9139         /* Adjust the state of the output pipe according to whether we
9140          * have active connectors/encoders. */
9141         intel_crtc_update_dpms(&crtc->base);
9142
9143         if (crtc->active != crtc->base.enabled) {
9144                 struct intel_encoder *encoder;
9145
9146                 /* This can happen either due to bugs in the get_hw_state
9147                  * functions or because the pipe is force-enabled due to the
9148                  * pipe A quirk. */
9149                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9150                               crtc->base.base.id,
9151                               crtc->base.enabled ? "enabled" : "disabled",
9152                               crtc->active ? "enabled" : "disabled");
9153
9154                 crtc->base.enabled = crtc->active;
9155
9156                 /* Because we only establish the connector -> encoder ->
9157                  * crtc links if something is active, this means the
9158                  * crtc is now deactivated. Break the links. connector
9159                  * -> encoder links are only establish when things are
9160                  *  actually up, hence no need to break them. */
9161                 WARN_ON(crtc->active);
9162
9163                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9164                         WARN_ON(encoder->connectors_active);
9165                         encoder->base.crtc = NULL;
9166                 }
9167         }
9168 }
9169
9170 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9171 {
9172         struct intel_connector *connector;
9173         struct drm_device *dev = encoder->base.dev;
9174
9175         /* We need to check both for a crtc link (meaning that the
9176          * encoder is active and trying to read from a pipe) and the
9177          * pipe itself being active. */
9178         bool has_active_crtc = encoder->base.crtc &&
9179                 to_intel_crtc(encoder->base.crtc)->active;
9180
9181         if (encoder->connectors_active && !has_active_crtc) {
9182                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9183                               encoder->base.base.id,
9184                               drm_get_encoder_name(&encoder->base));
9185
9186                 /* Connector is active, but has no active pipe. This is
9187                  * fallout from our resume register restoring. Disable
9188                  * the encoder manually again. */
9189                 if (encoder->base.crtc) {
9190                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9191                                       encoder->base.base.id,
9192                                       drm_get_encoder_name(&encoder->base));
9193                         encoder->disable(encoder);
9194                 }
9195
9196                 /* Inconsistent output/port/pipe state happens presumably due to
9197                  * a bug in one of the get_hw_state functions. Or someplace else
9198                  * in our code, like the register restore mess on resume. Clamp
9199                  * things to off as a safer default. */
9200                 list_for_each_entry(connector,
9201                                     &dev->mode_config.connector_list,
9202                                     base.head) {
9203                         if (connector->encoder != encoder)
9204                                 continue;
9205
9206                         intel_connector_break_all_links(connector);
9207                 }
9208         }
9209         /* Enabled encoders without active connectors will be fixed in
9210          * the crtc fixup. */
9211 }
9212
9213 void i915_redisable_vga(struct drm_device *dev)
9214 {
9215         struct drm_i915_private *dev_priv = dev->dev_private;
9216         u32 vga_reg = i915_vgacntrl_reg(dev);
9217
9218         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9219                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9220                 i915_disable_vga(dev);
9221         }
9222 }
9223
9224 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9225  * and i915 state tracking structures. */
9226 void intel_modeset_setup_hw_state(struct drm_device *dev,
9227                                   bool force_restore)
9228 {
9229         struct drm_i915_private *dev_priv = dev->dev_private;
9230         enum pipe pipe;
9231         u32 tmp;
9232         struct drm_plane *plane;
9233         struct intel_crtc *crtc;
9234         struct intel_encoder *encoder;
9235         struct intel_connector *connector;
9236
9237         if (HAS_DDI(dev)) {
9238                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9239
9240                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9241                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9242                         case TRANS_DDI_EDP_INPUT_A_ON:
9243                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9244                                 pipe = PIPE_A;
9245                                 break;
9246                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9247                                 pipe = PIPE_B;
9248                                 break;
9249                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9250                                 pipe = PIPE_C;
9251                                 break;
9252                         default:
9253                                 /* A bogus value has been programmed, disable
9254                                  * the transcoder */
9255                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9256                                 intel_ddi_disable_transcoder_func(dev_priv,
9257                                                 TRANSCODER_EDP);
9258                                 goto setup_pipes;
9259                         }
9260
9261                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9262                         crtc->cpu_transcoder = TRANSCODER_EDP;
9263
9264                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9265                                       pipe_name(pipe));
9266                 }
9267         }
9268
9269 setup_pipes:
9270         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9271                             base.head) {
9272                 memset(&crtc->config, 0, sizeof(crtc->config));
9273                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9274                                                                  &crtc->config);
9275
9276                 crtc->base.enabled = crtc->active;
9277
9278                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9279                               crtc->base.base.id,
9280                               crtc->active ? "enabled" : "disabled");
9281         }
9282
9283         if (HAS_DDI(dev))
9284                 intel_ddi_setup_hw_pll_state(dev);
9285
9286         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9287                             base.head) {
9288                 pipe = 0;
9289
9290                 if (encoder->get_hw_state(encoder, &pipe)) {
9291                         encoder->base.crtc =
9292                                 dev_priv->pipe_to_crtc_mapping[pipe];
9293                 } else {
9294                         encoder->base.crtc = NULL;
9295                 }
9296
9297                 encoder->connectors_active = false;
9298                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9299                               encoder->base.base.id,
9300                               drm_get_encoder_name(&encoder->base),
9301                               encoder->base.crtc ? "enabled" : "disabled",
9302                               pipe);
9303         }
9304
9305         list_for_each_entry(connector, &dev->mode_config.connector_list,
9306                             base.head) {
9307                 if (connector->get_hw_state(connector)) {
9308                         connector->base.dpms = DRM_MODE_DPMS_ON;
9309                         connector->encoder->connectors_active = true;
9310                         connector->base.encoder = &connector->encoder->base;
9311                 } else {
9312                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9313                         connector->base.encoder = NULL;
9314                 }
9315                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9316                               connector->base.base.id,
9317                               drm_get_connector_name(&connector->base),
9318                               connector->base.encoder ? "enabled" : "disabled");
9319         }
9320
9321         /* HW state is read out, now we need to sanitize this mess. */
9322         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9323                             base.head) {
9324                 intel_sanitize_encoder(encoder);
9325         }
9326
9327         for_each_pipe(pipe) {
9328                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9329                 intel_sanitize_crtc(crtc);
9330         }
9331
9332         if (force_restore) {
9333                 for_each_pipe(pipe) {
9334                         struct drm_crtc *crtc =
9335                                 dev_priv->pipe_to_crtc_mapping[pipe];
9336                         intel_crtc_restore_mode(crtc);
9337                 }
9338                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9339                         intel_plane_restore(plane);
9340
9341                 i915_redisable_vga(dev);
9342         } else {
9343                 intel_modeset_update_staged_output_state(dev);
9344         }
9345
9346         intel_modeset_check_state(dev);
9347
9348         drm_mode_config_reset(dev);
9349 }
9350
9351 void intel_modeset_gem_init(struct drm_device *dev)
9352 {
9353         intel_modeset_init_hw(dev);
9354
9355         intel_setup_overlay(dev);
9356
9357         intel_modeset_setup_hw_state(dev, false);
9358 }
9359
9360 void intel_modeset_cleanup(struct drm_device *dev)
9361 {
9362         struct drm_i915_private *dev_priv = dev->dev_private;
9363         struct drm_crtc *crtc;
9364         struct intel_crtc *intel_crtc;
9365
9366         drm_kms_helper_poll_fini(dev);
9367         mutex_lock(&dev->struct_mutex);
9368
9369         intel_unregister_dsm_handler();
9370
9371
9372         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9373                 /* Skip inactive CRTCs */
9374                 if (!crtc->fb)
9375                         continue;
9376
9377                 intel_crtc = to_intel_crtc(crtc);
9378                 intel_increase_pllclock(crtc);
9379         }
9380
9381         intel_disable_fbc(dev);
9382
9383         intel_disable_gt_powersave(dev);
9384
9385         ironlake_teardown_rc6(dev);
9386
9387         if (IS_VALLEYVIEW(dev))
9388                 vlv_init_dpio(dev);
9389
9390         mutex_unlock(&dev->struct_mutex);
9391
9392         /* Disable the irq before mode object teardown, for the irq might
9393          * enqueue unpin/hotplug work. */
9394         drm_irq_uninstall(dev);
9395         cancel_work_sync(&dev_priv->hotplug_work);
9396         cancel_work_sync(&dev_priv->rps.work);
9397
9398         /* flush any delayed tasks or pending work */
9399         flush_scheduled_work();
9400
9401         drm_mode_config_cleanup(dev);
9402
9403         intel_cleanup_overlay(dev);
9404 }
9405
9406 /*
9407  * Return which encoder is currently attached for connector.
9408  */
9409 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9410 {
9411         return &intel_attached_encoder(connector)->base;
9412 }
9413
9414 void intel_connector_attach_encoder(struct intel_connector *connector,
9415                                     struct intel_encoder *encoder)
9416 {
9417         connector->encoder = encoder;
9418         drm_mode_connector_attach_encoder(&connector->base,
9419                                           &encoder->base);
9420 }
9421
9422 /*
9423  * set vga decode state - true == enable VGA decode
9424  */
9425 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9426 {
9427         struct drm_i915_private *dev_priv = dev->dev_private;
9428         u16 gmch_ctrl;
9429
9430         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9431         if (state)
9432                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9433         else
9434                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9435         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9436         return 0;
9437 }
9438
9439 #ifdef CONFIG_DEBUG_FS
9440 #include <linux/seq_file.h>
9441
9442 struct intel_display_error_state {
9443         struct intel_cursor_error_state {
9444                 u32 control;
9445                 u32 position;
9446                 u32 base;
9447                 u32 size;
9448         } cursor[I915_MAX_PIPES];
9449
9450         struct intel_pipe_error_state {
9451                 u32 conf;
9452                 u32 source;
9453
9454                 u32 htotal;
9455                 u32 hblank;
9456                 u32 hsync;
9457                 u32 vtotal;
9458                 u32 vblank;
9459                 u32 vsync;
9460         } pipe[I915_MAX_PIPES];
9461
9462         struct intel_plane_error_state {
9463                 u32 control;
9464                 u32 stride;
9465                 u32 size;
9466                 u32 pos;
9467                 u32 addr;
9468                 u32 surface;
9469                 u32 tile_offset;
9470         } plane[I915_MAX_PIPES];
9471 };
9472
9473 struct intel_display_error_state *
9474 intel_display_capture_error_state(struct drm_device *dev)
9475 {
9476         drm_i915_private_t *dev_priv = dev->dev_private;
9477         struct intel_display_error_state *error;
9478         enum transcoder cpu_transcoder;
9479         int i;
9480
9481         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9482         if (error == NULL)
9483                 return NULL;
9484
9485         for_each_pipe(i) {
9486                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9487
9488                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9489                         error->cursor[i].control = I915_READ(CURCNTR(i));
9490                         error->cursor[i].position = I915_READ(CURPOS(i));
9491                         error->cursor[i].base = I915_READ(CURBASE(i));
9492                 } else {
9493                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9494                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9495                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9496                 }
9497
9498                 error->plane[i].control = I915_READ(DSPCNTR(i));
9499                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9500                 if (INTEL_INFO(dev)->gen <= 3) {
9501                         error->plane[i].size = I915_READ(DSPSIZE(i));
9502                         error->plane[i].pos = I915_READ(DSPPOS(i));
9503                 }
9504                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9505                         error->plane[i].addr = I915_READ(DSPADDR(i));
9506                 if (INTEL_INFO(dev)->gen >= 4) {
9507                         error->plane[i].surface = I915_READ(DSPSURF(i));
9508                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9509                 }
9510
9511                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9512                 error->pipe[i].source = I915_READ(PIPESRC(i));
9513                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9514                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9515                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9516                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9517                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9518                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9519         }
9520
9521         return error;
9522 }
9523
9524 void
9525 intel_display_print_error_state(struct seq_file *m,
9526                                 struct drm_device *dev,
9527                                 struct intel_display_error_state *error)
9528 {
9529         int i;
9530
9531         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9532         for_each_pipe(i) {
9533                 seq_printf(m, "Pipe [%d]:\n", i);
9534                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9535                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9536                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9537                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9538                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9539                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9540                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9541                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9542
9543                 seq_printf(m, "Plane [%d]:\n", i);
9544                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9545                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9546                 if (INTEL_INFO(dev)->gen <= 3) {
9547                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9548                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9549                 }
9550                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9551                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9552                 if (INTEL_INFO(dev)->gen >= 4) {
9553                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9554                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9555                 }
9556
9557                 seq_printf(m, "Cursor [%d]:\n", i);
9558                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9559                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9560                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9561         }
9562 }
9563 #endif