drm/i915: s/TRANSCONF/PCH_TRANSCONF/
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62         /**
63          * find_pll() - Find the best values for the PLL
64          * @limit: limits for the PLL
65          * @crtc: current CRTC
66          * @target: target frequency in kHz
67          * @refclk: reference clock frequency in kHz
68          * @match_clock: if provided, @best_clock P divider must
69          *               match the P divider from @match_clock
70          *               used for LVDS downclocking
71          * @best_clock: best PLL values found
72          *
73          * Returns true on success, false on failure.
74          */
75         bool (*find_pll)(const intel_limit_t *limit,
76                          struct drm_crtc *crtc,
77                          int target, int refclk,
78                          intel_clock_t *match_clock,
79                          intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89
90         WARN_ON(!HAS_PCH_SPLIT(dev));
91
92         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                     int target, int refclk, intel_clock_t *match_clock,
98                     intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101                         int target, int refclk, intel_clock_t *match_clock,
102                         intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106                         int target, int refclk, intel_clock_t *match_clock,
107                         intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112         if (IS_GEN5(dev)) {
113                 struct drm_i915_private *dev_priv = dev->dev_private;
114                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115         } else
116                 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 930000, .max = 1400000 },
122         .n = { .min = 3, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 2 },
130         .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134         .dot = { .min = 25000, .max = 350000 },
135         .vco = { .min = 930000, .max = 1400000 },
136         .n = { .min = 3, .max = 16 },
137         .m = { .min = 96, .max = 140 },
138         .m1 = { .min = 18, .max = 26 },
139         .m2 = { .min = 6, .max = 16 },
140         .p = { .min = 4, .max = 128 },
141         .p1 = { .min = 1, .max = 6 },
142         .p2 = { .dot_limit = 165000,
143                 .p2_slow = 14, .p2_fast = 7 },
144         .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 5, .max = 80 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 200000,
157                 .p2_slow = 10, .p2_fast = 5 },
158         .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162         .dot = { .min = 20000, .max = 400000 },
163         .vco = { .min = 1400000, .max = 2800000 },
164         .n = { .min = 1, .max = 6 },
165         .m = { .min = 70, .max = 120 },
166         .m1 = { .min = 8, .max = 18 },
167         .m2 = { .min = 3, .max = 7 },
168         .p = { .min = 7, .max = 98 },
169         .p1 = { .min = 1, .max = 8 },
170         .p2 = { .dot_limit = 112000,
171                 .p2_slow = 14, .p2_fast = 7 },
172         .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177         .dot = { .min = 25000, .max = 270000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 17, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 10, .max = 30 },
184         .p1 = { .min = 1, .max = 3},
185         .p2 = { .dot_limit = 270000,
186                 .p2_slow = 10,
187                 .p2_fast = 10
188         },
189         .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193         .dot = { .min = 22000, .max = 400000 },
194         .vco = { .min = 1750000, .max = 3500000},
195         .n = { .min = 1, .max = 4 },
196         .m = { .min = 104, .max = 138 },
197         .m1 = { .min = 16, .max = 23 },
198         .m2 = { .min = 5, .max = 11 },
199         .p = { .min = 5, .max = 80 },
200         .p1 = { .min = 1, .max = 8},
201         .p2 = { .dot_limit = 165000,
202                 .p2_slow = 10, .p2_fast = 5 },
203         .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207         .dot = { .min = 20000, .max = 115000 },
208         .vco = { .min = 1750000, .max = 3500000 },
209         .n = { .min = 1, .max = 3 },
210         .m = { .min = 104, .max = 138 },
211         .m1 = { .min = 17, .max = 23 },
212         .m2 = { .min = 5, .max = 11 },
213         .p = { .min = 28, .max = 112 },
214         .p1 = { .min = 2, .max = 8 },
215         .p2 = { .dot_limit = 0,
216                 .p2_slow = 14, .p2_fast = 14
217         },
218         .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222         .dot = { .min = 80000, .max = 224000 },
223         .vco = { .min = 1750000, .max = 3500000 },
224         .n = { .min = 1, .max = 3 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 14, .max = 42 },
229         .p1 = { .min = 2, .max = 6 },
230         .p2 = { .dot_limit = 0,
231                 .p2_slow = 7, .p2_fast = 7
232         },
233         .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237         .dot = { .min = 20000, .max = 400000},
238         .vco = { .min = 1700000, .max = 3500000 },
239         /* Pineview's Ncounter is a ring counter */
240         .n = { .min = 3, .max = 6 },
241         .m = { .min = 2, .max = 256 },
242         /* Pineview only has one combined m divider, which we treat as m2. */
243         .m1 = { .min = 0, .max = 0 },
244         .m2 = { .min = 0, .max = 254 },
245         .p = { .min = 5, .max = 80 },
246         .p1 = { .min = 1, .max = 8 },
247         .p2 = { .dot_limit = 200000,
248                 .p2_slow = 10, .p2_fast = 5 },
249         .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253         .dot = { .min = 20000, .max = 400000 },
254         .vco = { .min = 1700000, .max = 3500000 },
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         .m1 = { .min = 0, .max = 0 },
258         .m2 = { .min = 0, .max = 254 },
259         .p = { .min = 7, .max = 112 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 112000,
262                 .p2_slow = 14, .p2_fast = 14 },
263         .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267  *
268  * We calculate clock using (register_value + 2) for N/M1/M2, so here
269  * the range value for them is (actual_value - 2).
270  */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 1760000, .max = 3510000 },
274         .n = { .min = 1, .max = 5 },
275         .m = { .min = 79, .max = 127 },
276         .m1 = { .min = 12, .max = 22 },
277         .m2 = { .min = 5, .max = 9 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 225000,
281                 .p2_slow = 10, .p2_fast = 5 },
282         .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 1760000, .max = 3510000 },
288         .n = { .min = 1, .max = 3 },
289         .m = { .min = 79, .max = 118 },
290         .m1 = { .min = 12, .max = 22 },
291         .m2 = { .min = 5, .max = 9 },
292         .p = { .min = 28, .max = 112 },
293         .p1 = { .min = 2, .max = 8 },
294         .p2 = { .dot_limit = 225000,
295                 .p2_slow = 14, .p2_fast = 14 },
296         .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 127 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 56 },
307         .p1 = { .min = 2, .max = 8 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310         .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 2 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 28, .max = 112 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 14, .p2_fast = 14 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 126 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 42 },
336         .p1 = { .min = 2, .max = 6 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339         .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 }, /* guess */
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353         .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357         .dot = { .min = 25000, .max = 270000 },
358         .vco = { .min = 4000000, .max = 6000000 },
359         .n = { .min = 1, .max = 7 },
360         .m = { .min = 60, .max = 300 }, /* guess */
361         .m1 = { .min = 2, .max = 3 },
362         .m2 = { .min = 11, .max = 156 },
363         .p = { .min = 10, .max = 30 },
364         .p1 = { .min = 2, .max = 3 },
365         .p2 = { .dot_limit = 270000,
366                 .p2_slow = 2, .p2_fast = 20 },
367         .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371         .dot = { .min = 25000, .max = 270000 },
372         .vco = { .min = 4000000, .max = 6000000 },
373         .n = { .min = 1, .max = 7 },
374         .m = { .min = 22, .max = 450 },
375         .m1 = { .min = 2, .max = 3 },
376         .m2 = { .min = 11, .max = 156 },
377         .p = { .min = 10, .max = 30 },
378         .p1 = { .min = 1, .max = 3 },
379         .p2 = { .dot_limit = 270000,
380                 .p2_slow = 2, .p2_fast = 20 },
381         .find_pll = intel_vlv_find_best_pll,
382 };
383
384 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
385 {
386         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
387
388         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
389                 DRM_ERROR("DPIO idle wait timed out\n");
390                 return 0;
391         }
392
393         I915_WRITE(DPIO_REG, reg);
394         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
395                    DPIO_BYTE);
396         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
397                 DRM_ERROR("DPIO read wait timed out\n");
398                 return 0;
399         }
400
401         return I915_READ(DPIO_DATA);
402 }
403
404 void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
405 {
406         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
407
408         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
409                 DRM_ERROR("DPIO idle wait timed out\n");
410                 return;
411         }
412
413         I915_WRITE(DPIO_DATA, val);
414         I915_WRITE(DPIO_REG, reg);
415         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
416                    DPIO_BYTE);
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
418                 DRM_ERROR("DPIO write wait timed out\n");
419 }
420
421 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422                                                 int refclk)
423 {
424         struct drm_device *dev = crtc->dev;
425         const intel_limit_t *limit;
426
427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
428                 if (intel_is_dual_link_lvds(dev)) {
429                         if (refclk == 100000)
430                                 limit = &intel_limits_ironlake_dual_lvds_100m;
431                         else
432                                 limit = &intel_limits_ironlake_dual_lvds;
433                 } else {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_single_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_single_lvds;
438                 }
439         } else
440                 limit = &intel_limits_ironlake_dac;
441
442         return limit;
443 }
444
445 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446 {
447         struct drm_device *dev = crtc->dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev))
452                         limit = &intel_limits_g4x_dual_channel_lvds;
453                 else
454                         limit = &intel_limits_g4x_single_channel_lvds;
455         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
457                 limit = &intel_limits_g4x_hdmi;
458         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
459                 limit = &intel_limits_g4x_sdvo;
460         } else /* The option is for other outputs */
461                 limit = &intel_limits_i9xx_sdvo;
462
463         return limit;
464 }
465
466 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
467 {
468         struct drm_device *dev = crtc->dev;
469         const intel_limit_t *limit;
470
471         if (HAS_PCH_SPLIT(dev))
472                 limit = intel_ironlake_limit(crtc, refclk);
473         else if (IS_G4X(dev)) {
474                 limit = intel_g4x_limit(crtc);
475         } else if (IS_PINEVIEW(dev)) {
476                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
477                         limit = &intel_limits_pineview_lvds;
478                 else
479                         limit = &intel_limits_pineview_sdvo;
480         } else if (IS_VALLEYVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
482                         limit = &intel_limits_vlv_dac;
483                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
484                         limit = &intel_limits_vlv_hdmi;
485                 else
486                         limit = &intel_limits_vlv_dp;
487         } else if (!IS_GEN2(dev)) {
488                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
489                         limit = &intel_limits_i9xx_lvds;
490                 else
491                         limit = &intel_limits_i9xx_sdvo;
492         } else {
493                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
494                         limit = &intel_limits_i8xx_lvds;
495                 else
496                         limit = &intel_limits_i8xx_dvo;
497         }
498         return limit;
499 }
500
501 /* m1 is reserved as 0 in Pineview, n is a ring counter */
502 static void pineview_clock(int refclk, intel_clock_t *clock)
503 {
504         clock->m = clock->m2 + 2;
505         clock->p = clock->p1 * clock->p2;
506         clock->vco = refclk * clock->m / clock->n;
507         clock->dot = clock->vco / clock->p;
508 }
509
510 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
511 {
512         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
513 }
514
515 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
516 {
517         if (IS_PINEVIEW(dev)) {
518                 pineview_clock(refclk, clock);
519                 return;
520         }
521         clock->m = i9xx_dpll_compute_m(clock);
522         clock->p = clock->p1 * clock->p2;
523         clock->vco = refclk * clock->m / (clock->n + 2);
524         clock->dot = clock->vco / clock->p;
525 }
526
527 /**
528  * Returns whether any output on the specified pipe is of the specified type
529  */
530 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
531 {
532         struct drm_device *dev = crtc->dev;
533         struct intel_encoder *encoder;
534
535         for_each_encoder_on_crtc(dev, crtc, encoder)
536                 if (encoder->type == type)
537                         return true;
538
539         return false;
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
553                 INTELPllInvalid("p1 out of range\n");
554         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
555                 INTELPllInvalid("p out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
561                 INTELPllInvalid("m1 <= m2\n");
562         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
563                 INTELPllInvalid("m out of range\n");
564         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
565                 INTELPllInvalid("n out of range\n");
566         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
567                 INTELPllInvalid("vco out of range\n");
568         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
569          * connector, etc., rather than just a single range.
570          */
571         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
572                 INTELPllInvalid("dot out of range\n");
573
574         return true;
575 }
576
577 static bool
578 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                     int target, int refclk, intel_clock_t *match_clock,
580                     intel_clock_t *best_clock)
581
582 {
583         struct drm_device *dev = crtc->dev;
584         intel_clock_t clock;
585         int err = target;
586
587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         clock.p2 = limit->p2.p2_fast;
595                 else
596                         clock.p2 = limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         clock.p2 = limit->p2.p2_slow;
600                 else
601                         clock.p2 = limit->p2.p2_fast;
602         }
603
604         memset(best_clock, 0, sizeof(*best_clock));
605
606         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607              clock.m1++) {
608                 for (clock.m2 = limit->m2.min;
609                      clock.m2 <= limit->m2.max; clock.m2++) {
610                         /* m1 is always 0 in Pineview */
611                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
612                                 break;
613                         for (clock.n = limit->n.min;
614                              clock.n <= limit->n.max; clock.n++) {
615                                 for (clock.p1 = limit->p1.min;
616                                         clock.p1 <= limit->p1.max; clock.p1++) {
617                                         int this_err;
618
619                                         intel_clock(dev, refclk, &clock);
620                                         if (!intel_PLL_is_valid(dev, limit,
621                                                                 &clock))
622                                                 continue;
623                                         if (match_clock &&
624                                             clock.p != match_clock->p)
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err) {
629                                                 *best_clock = clock;
630                                                 err = this_err;
631                                         }
632                                 }
633                         }
634                 }
635         }
636
637         return (err != target);
638 }
639
640 static bool
641 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                         int target, int refclk, intel_clock_t *match_clock,
643                         intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647         int max_n;
648         bool found;
649         /* approximately equals target * 0.00585 */
650         int err_most = (target >> 8) + (target >> 9);
651         found = false;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 int lvds_reg;
655
656                 if (HAS_PCH_SPLIT(dev))
657                         lvds_reg = PCH_LVDS;
658                 else
659                         lvds_reg = LVDS;
660                 if (intel_is_dual_link_lvds(dev))
661                         clock.p2 = limit->p2.p2_fast;
662                 else
663                         clock.p2 = limit->p2.p2_slow;
664         } else {
665                 if (target < limit->p2.dot_limit)
666                         clock.p2 = limit->p2.p2_slow;
667                 else
668                         clock.p2 = limit->p2.p2_fast;
669         }
670
671         memset(best_clock, 0, sizeof(*best_clock));
672         max_n = limit->n.max;
673         /* based on hardware requirement, prefer smaller n to precision */
674         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
675                 /* based on hardware requirement, prefere larger m1,m2 */
676                 for (clock.m1 = limit->m1.max;
677                      clock.m1 >= limit->m1.min; clock.m1--) {
678                         for (clock.m2 = limit->m2.max;
679                              clock.m2 >= limit->m2.min; clock.m2--) {
680                                 for (clock.p1 = limit->p1.max;
681                                      clock.p1 >= limit->p1.min; clock.p1--) {
682                                         int this_err;
683
684                                         intel_clock(dev, refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err_most) {
691                                                 *best_clock = clock;
692                                                 err_most = this_err;
693                                                 max_n = clock.n;
694                                                 found = true;
695                                         }
696                                 }
697                         }
698                 }
699         }
700         return found;
701 }
702
703 static bool
704 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                         int target, int refclk, intel_clock_t *match_clock,
706                         intel_clock_t *best_clock)
707 {
708         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
709         u32 m, n, fastclk;
710         u32 updrate, minupdate, fracbits, p;
711         unsigned long bestppm, ppm, absppm;
712         int dotclk, flag;
713
714         flag = 0;
715         dotclk = target * 1000;
716         bestppm = 1000000;
717         ppm = absppm = 0;
718         fastclk = dotclk / (2*100);
719         updrate = 0;
720         minupdate = 19200;
721         fracbits = 1;
722         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
723         bestm1 = bestm2 = bestp1 = bestp2 = 0;
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
727                 updrate = refclk / n;
728                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
729                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
730                                 if (p2 > 10)
731                                         p2 = p2 - 1;
732                                 p = p1 * p2;
733                                 /* based on hardware requirement, prefer bigger m1,m2 values */
734                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
735                                         m2 = (((2*(fastclk * p * n / m1 )) +
736                                                refclk) / (2*refclk));
737                                         m = m1 * m2;
738                                         vco = updrate * m;
739                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
740                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
741                                                 absppm = (ppm > 0) ? ppm : (-ppm);
742                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
743                                                         bestppm = 0;
744                                                         flag = 1;
745                                                 }
746                                                 if (absppm < bestppm - 10) {
747                                                         bestppm = absppm;
748                                                         flag = 1;
749                                                 }
750                                                 if (flag) {
751                                                         bestn = n;
752                                                         bestm1 = m1;
753                                                         bestm2 = m2;
754                                                         bestp1 = p1;
755                                                         bestp2 = p2;
756                                                         flag = 0;
757                                                 }
758                                         }
759                                 }
760                         }
761                 }
762         }
763         best_clock->n = bestn;
764         best_clock->m1 = bestm1;
765         best_clock->m2 = bestm2;
766         best_clock->p1 = bestp1;
767         best_clock->p2 = bestp2;
768
769         return true;
770 }
771
772 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
773                                              enum pipe pipe)
774 {
775         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777
778         return intel_crtc->config.cpu_transcoder;
779 }
780
781 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         u32 frame, frame_reg = PIPEFRAME(pipe);
785
786         frame = I915_READ(frame_reg);
787
788         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
789                 DRM_DEBUG_KMS("vblank wait timed out\n");
790 }
791
792 /**
793  * intel_wait_for_vblank - wait for vblank on a given pipe
794  * @dev: drm device
795  * @pipe: pipe to wait for
796  *
797  * Wait for vblank to occur on a given pipe.  Needed for various bits of
798  * mode setting code.
799  */
800 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         int pipestat_reg = PIPESTAT(pipe);
804
805         if (INTEL_INFO(dev)->gen >= 5) {
806                 ironlake_wait_for_vblank(dev, pipe);
807                 return;
808         }
809
810         /* Clear existing vblank status. Note this will clear any other
811          * sticky status fields as well.
812          *
813          * This races with i915_driver_irq_handler() with the result
814          * that either function could miss a vblank event.  Here it is not
815          * fatal, as we will either wait upon the next vblank interrupt or
816          * timeout.  Generally speaking intel_wait_for_vblank() is only
817          * called during modeset at which time the GPU should be idle and
818          * should *not* be performing page flips and thus not waiting on
819          * vblanks...
820          * Currently, the result of us stealing a vblank from the irq
821          * handler is that a single frame will be skipped during swapbuffers.
822          */
823         I915_WRITE(pipestat_reg,
824                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
825
826         /* Wait for vblank interrupt bit to set */
827         if (wait_for(I915_READ(pipestat_reg) &
828                      PIPE_VBLANK_INTERRUPT_STATUS,
829                      50))
830                 DRM_DEBUG_KMS("vblank wait timed out\n");
831 }
832
833 /*
834  * intel_wait_for_pipe_off - wait for pipe to turn off
835  * @dev: drm device
836  * @pipe: pipe to wait for
837  *
838  * After disabling a pipe, we can't wait for vblank in the usual way,
839  * spinning on the vblank interrupt status bit, since we won't actually
840  * see an interrupt when the pipe is disabled.
841  *
842  * On Gen4 and above:
843  *   wait for the pipe register state bit to turn off
844  *
845  * Otherwise:
846  *   wait for the display line value to settle (it usually
847  *   ends up stopping at the start of the next frame).
848  *
849  */
850 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
854                                                                       pipe);
855
856         if (INTEL_INFO(dev)->gen >= 4) {
857                 int reg = PIPECONF(cpu_transcoder);
858
859                 /* Wait for the Pipe State to go off */
860                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
861                              100))
862                         WARN(1, "pipe_off wait timed out\n");
863         } else {
864                 u32 last_line, line_mask;
865                 int reg = PIPEDSL(pipe);
866                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
867
868                 if (IS_GEN2(dev))
869                         line_mask = DSL_LINEMASK_GEN2;
870                 else
871                         line_mask = DSL_LINEMASK_GEN3;
872
873                 /* Wait for the display line to settle */
874                 do {
875                         last_line = I915_READ(reg) & line_mask;
876                         mdelay(5);
877                 } while (((I915_READ(reg) & line_mask) != last_line) &&
878                          time_after(timeout, jiffies));
879                 if (time_after(jiffies, timeout))
880                         WARN(1, "pipe_off wait timed out\n");
881         }
882 }
883
884 /*
885  * ibx_digital_port_connected - is the specified port connected?
886  * @dev_priv: i915 private structure
887  * @port: the port to test
888  *
889  * Returns true if @port is connected, false otherwise.
890  */
891 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
892                                 struct intel_digital_port *port)
893 {
894         u32 bit;
895
896         if (HAS_PCH_IBX(dev_priv->dev)) {
897                 switch(port->port) {
898                 case PORT_B:
899                         bit = SDE_PORTB_HOTPLUG;
900                         break;
901                 case PORT_C:
902                         bit = SDE_PORTC_HOTPLUG;
903                         break;
904                 case PORT_D:
905                         bit = SDE_PORTD_HOTPLUG;
906                         break;
907                 default:
908                         return true;
909                 }
910         } else {
911                 switch(port->port) {
912                 case PORT_B:
913                         bit = SDE_PORTB_HOTPLUG_CPT;
914                         break;
915                 case PORT_C:
916                         bit = SDE_PORTC_HOTPLUG_CPT;
917                         break;
918                 case PORT_D:
919                         bit = SDE_PORTD_HOTPLUG_CPT;
920                         break;
921                 default:
922                         return true;
923                 }
924         }
925
926         return I915_READ(SDEISR) & bit;
927 }
928
929 static const char *state_string(bool enabled)
930 {
931         return enabled ? "on" : "off";
932 }
933
934 /* Only for pre-ILK configs */
935 static void assert_pll(struct drm_i915_private *dev_priv,
936                        enum pipe pipe, bool state)
937 {
938         int reg;
939         u32 val;
940         bool cur_state;
941
942         reg = DPLL(pipe);
943         val = I915_READ(reg);
944         cur_state = !!(val & DPLL_VCO_ENABLE);
945         WARN(cur_state != state,
946              "PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
950 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
951
952 /* For ILK+ */
953 static void assert_pch_pll(struct drm_i915_private *dev_priv,
954                            struct intel_pch_pll *pll,
955                            struct intel_crtc *crtc,
956                            bool state)
957 {
958         u32 val;
959         bool cur_state;
960
961         if (HAS_PCH_LPT(dev_priv->dev)) {
962                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
963                 return;
964         }
965
966         if (WARN (!pll,
967                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
968                 return;
969
970         val = I915_READ(pll->pll_reg);
971         cur_state = !!(val & DPLL_VCO_ENABLE);
972         WARN(cur_state != state,
973              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
974              pll->pll_reg, state_string(state), state_string(cur_state), val);
975
976         /* Make sure the selected PLL is correctly attached to the transcoder */
977         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
978                 u32 pch_dpll;
979
980                 pch_dpll = I915_READ(PCH_DPLL_SEL);
981                 cur_state = pll->pll_reg == _PCH_DPLL_B;
982                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
983                           "PLL[%d] not attached to this transcoder %c: %08x\n",
984                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
985                         cur_state = !!(val >> (4*crtc->pipe + 3));
986                         WARN(cur_state != state,
987                              "PLL[%d] not %s on this transcoder %c: %08x\n",
988                              pll->pll_reg == _PCH_DPLL_B,
989                              state_string(state),
990                              pipe_name(crtc->pipe),
991                              val);
992                 }
993         }
994 }
995 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
996 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
997
998 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
999                           enum pipe pipe, bool state)
1000 {
1001         int reg;
1002         u32 val;
1003         bool cur_state;
1004         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1005                                                                       pipe);
1006
1007         if (HAS_DDI(dev_priv->dev)) {
1008                 /* DDI does not have a specific FDI_TX register */
1009                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1010                 val = I915_READ(reg);
1011                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1012         } else {
1013                 reg = FDI_TX_CTL(pipe);
1014                 val = I915_READ(reg);
1015                 cur_state = !!(val & FDI_TX_ENABLE);
1016         }
1017         WARN(cur_state != state,
1018              "FDI TX state assertion failure (expected %s, current %s)\n",
1019              state_string(state), state_string(cur_state));
1020 }
1021 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1022 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1023
1024 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1025                           enum pipe pipe, bool state)
1026 {
1027         int reg;
1028         u32 val;
1029         bool cur_state;
1030
1031         reg = FDI_RX_CTL(pipe);
1032         val = I915_READ(reg);
1033         cur_state = !!(val & FDI_RX_ENABLE);
1034         WARN(cur_state != state,
1035              "FDI RX state assertion failure (expected %s, current %s)\n",
1036              state_string(state), state_string(cur_state));
1037 }
1038 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1039 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1040
1041 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1042                                       enum pipe pipe)
1043 {
1044         int reg;
1045         u32 val;
1046
1047         /* ILK FDI PLL is always enabled */
1048         if (dev_priv->info->gen == 5)
1049                 return;
1050
1051         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1052         if (HAS_DDI(dev_priv->dev))
1053                 return;
1054
1055         reg = FDI_TX_CTL(pipe);
1056         val = I915_READ(reg);
1057         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1058 }
1059
1060 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1061                                       enum pipe pipe)
1062 {
1063         int reg;
1064         u32 val;
1065
1066         reg = FDI_RX_CTL(pipe);
1067         val = I915_READ(reg);
1068         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1069 }
1070
1071 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1072                                   enum pipe pipe)
1073 {
1074         int pp_reg, lvds_reg;
1075         u32 val;
1076         enum pipe panel_pipe = PIPE_A;
1077         bool locked = true;
1078
1079         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080                 pp_reg = PCH_PP_CONTROL;
1081                 lvds_reg = PCH_LVDS;
1082         } else {
1083                 pp_reg = PP_CONTROL;
1084                 lvds_reg = LVDS;
1085         }
1086
1087         val = I915_READ(pp_reg);
1088         if (!(val & PANEL_POWER_ON) ||
1089             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1090                 locked = false;
1091
1092         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1093                 panel_pipe = PIPE_B;
1094
1095         WARN(panel_pipe == pipe && locked,
1096              "panel assertion failure, pipe %c regs locked\n",
1097              pipe_name(pipe));
1098 }
1099
1100 void assert_pipe(struct drm_i915_private *dev_priv,
1101                  enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1107                                                                       pipe);
1108
1109         /* if we need the pipe A quirk it must be always on */
1110         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1111                 state = true;
1112
1113         if (!intel_using_power_well(dev_priv->dev) &&
1114             cpu_transcoder != TRANSCODER_EDP) {
1115                 cur_state = false;
1116         } else {
1117                 reg = PIPECONF(cpu_transcoder);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & PIPECONF_ENABLE);
1120         }
1121
1122         WARN(cur_state != state,
1123              "pipe %c assertion failure (expected %s, current %s)\n",
1124              pipe_name(pipe), state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_plane(struct drm_i915_private *dev_priv,
1128                          enum plane plane, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DSPCNTR(plane);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1137         WARN(cur_state != state,
1138              "plane %c assertion failure (expected %s, current %s)\n",
1139              plane_name(plane), state_string(state), state_string(cur_state));
1140 }
1141
1142 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1143 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1144
1145 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1146                                    enum pipe pipe)
1147 {
1148         int reg, i;
1149         u32 val;
1150         int cur_pipe;
1151
1152         /* Planes are fixed to pipes on ILK+ */
1153         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1154                 reg = DSPCNTR(pipe);
1155                 val = I915_READ(reg);
1156                 WARN((val & DISPLAY_PLANE_ENABLE),
1157                      "plane %c assertion failure, should be disabled but not\n",
1158                      plane_name(pipe));
1159                 return;
1160         }
1161
1162         /* Need to check both planes against the pipe */
1163         for (i = 0; i < 2; i++) {
1164                 reg = DSPCNTR(i);
1165                 val = I915_READ(reg);
1166                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1167                         DISPPLANE_SEL_PIPE_SHIFT;
1168                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1169                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1170                      plane_name(i), pipe_name(pipe));
1171         }
1172 }
1173
1174 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1175                                     enum pipe pipe)
1176 {
1177         int reg, i;
1178         u32 val;
1179
1180         if (!IS_VALLEYVIEW(dev_priv->dev))
1181                 return;
1182
1183         /* Need to check both planes against the pipe */
1184         for (i = 0; i < dev_priv->num_plane; i++) {
1185                 reg = SPCNTR(pipe, i);
1186                 val = I915_READ(reg);
1187                 WARN((val & SP_ENABLE),
1188                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1189                      sprite_name(pipe, i), pipe_name(pipe));
1190         }
1191 }
1192
1193 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1194 {
1195         u32 val;
1196         bool enabled;
1197
1198         if (HAS_PCH_LPT(dev_priv->dev)) {
1199                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1200                 return;
1201         }
1202
1203         val = I915_READ(PCH_DREF_CONTROL);
1204         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1205                             DREF_SUPERSPREAD_SOURCE_MASK));
1206         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1207 }
1208
1209 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1210                                            enum pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214         bool enabled;
1215
1216         reg = PCH_TRANSCONF(pipe);
1217         val = I915_READ(reg);
1218         enabled = !!(val & TRANS_ENABLE);
1219         WARN(enabled,
1220              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1221              pipe_name(pipe));
1222 }
1223
1224 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1225                             enum pipe pipe, u32 port_sel, u32 val)
1226 {
1227         if ((val & DP_PORT_EN) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1232                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1233                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1234                         return false;
1235         } else {
1236                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & SDVO_ENABLE) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & LVDS_PORT_EN) == 0)
1262                 return false;
1263
1264         if (HAS_PCH_CPT(dev_priv->dev)) {
1265                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1266                         return false;
1267         } else {
1268                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1269                         return false;
1270         }
1271         return true;
1272 }
1273
1274 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1275                               enum pipe pipe, u32 val)
1276 {
1277         if ((val & ADPA_DAC_ENABLE) == 0)
1278                 return false;
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1290                                    enum pipe pipe, int reg, u32 port_sel)
1291 {
1292         u32 val = I915_READ(reg);
1293         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1294              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1295              reg, pipe_name(pipe));
1296
1297         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1298              && (val & DP_PIPEB_SELECT),
1299              "IBX PCH dp port still using transcoder B\n");
1300 }
1301
1302 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1303                                      enum pipe pipe, int reg)
1304 {
1305         u32 val = I915_READ(reg);
1306         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1307              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1308              reg, pipe_name(pipe));
1309
1310         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1311              && (val & SDVO_PIPE_B_SELECT),
1312              "IBX PCH hdmi port still using transcoder B\n");
1313 }
1314
1315 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1316                                       enum pipe pipe)
1317 {
1318         int reg;
1319         u32 val;
1320
1321         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1322         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1323         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1324
1325         reg = PCH_ADPA;
1326         val = I915_READ(reg);
1327         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1328              "PCH VGA enabled on transcoder %c, should be disabled\n",
1329              pipe_name(pipe));
1330
1331         reg = PCH_LVDS;
1332         val = I915_READ(reg);
1333         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1334              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1335              pipe_name(pipe));
1336
1337         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1338         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1339         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1340 }
1341
1342 /**
1343  * intel_enable_pll - enable a PLL
1344  * @dev_priv: i915 private structure
1345  * @pipe: pipe PLL to enable
1346  *
1347  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1348  * make sure the PLL reg is writable first though, since the panel write
1349  * protect mechanism may be enabled.
1350  *
1351  * Note!  This is for pre-ILK only.
1352  *
1353  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1354  */
1355 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1356 {
1357         int reg;
1358         u32 val;
1359
1360         assert_pipe_disabled(dev_priv, pipe);
1361
1362         /* No really, not for ILK+ */
1363         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1364
1365         /* PLL is protected by panel, make sure we can write it */
1366         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1367                 assert_panel_unlocked(dev_priv, pipe);
1368
1369         reg = DPLL(pipe);
1370         val = I915_READ(reg);
1371         val |= DPLL_VCO_ENABLE;
1372
1373         /* We do this three times for luck */
1374         I915_WRITE(reg, val);
1375         POSTING_READ(reg);
1376         udelay(150); /* wait for warmup */
1377         I915_WRITE(reg, val);
1378         POSTING_READ(reg);
1379         udelay(150); /* wait for warmup */
1380         I915_WRITE(reg, val);
1381         POSTING_READ(reg);
1382         udelay(150); /* wait for warmup */
1383 }
1384
1385 /**
1386  * intel_disable_pll - disable a PLL
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe PLL to disable
1389  *
1390  * Disable the PLL for @pipe, making sure the pipe is off first.
1391  *
1392  * Note!  This is for pre-ILK only.
1393  */
1394 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1395 {
1396         int reg;
1397         u32 val;
1398
1399         /* Don't disable pipe A or pipe A PLLs if needed */
1400         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1401                 return;
1402
1403         /* Make sure the pipe isn't still relying on us */
1404         assert_pipe_disabled(dev_priv, pipe);
1405
1406         reg = DPLL(pipe);
1407         val = I915_READ(reg);
1408         val &= ~DPLL_VCO_ENABLE;
1409         I915_WRITE(reg, val);
1410         POSTING_READ(reg);
1411 }
1412
1413 /* SBI access */
1414 static void
1415 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1416                 enum intel_sbi_destination destination)
1417 {
1418         u32 tmp;
1419
1420         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1421
1422         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1423                                 100)) {
1424                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1425                 return;
1426         }
1427
1428         I915_WRITE(SBI_ADDR, (reg << 16));
1429         I915_WRITE(SBI_DATA, value);
1430
1431         if (destination == SBI_ICLK)
1432                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1433         else
1434                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1435         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1436
1437         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1438                                 100)) {
1439                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1440                 return;
1441         }
1442 }
1443
1444 static u32
1445 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1446                enum intel_sbi_destination destination)
1447 {
1448         u32 value = 0;
1449         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1450
1451         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1452                                 100)) {
1453                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1454                 return 0;
1455         }
1456
1457         I915_WRITE(SBI_ADDR, (reg << 16));
1458
1459         if (destination == SBI_ICLK)
1460                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1461         else
1462                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1463         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1464
1465         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1466                                 100)) {
1467                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1468                 return 0;
1469         }
1470
1471         return I915_READ(SBI_DATA);
1472 }
1473
1474 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1475 {
1476         u32 port_mask;
1477
1478         if (!port)
1479                 port_mask = DPLL_PORTB_READY_MASK;
1480         else
1481                 port_mask = DPLL_PORTC_READY_MASK;
1482
1483         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1484                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1485                      'B' + port, I915_READ(DPLL(0)));
1486 }
1487
1488 /**
1489  * ironlake_enable_pch_pll - enable PCH PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to enable
1492  *
1493  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1494  * drives the transcoder clock.
1495  */
1496 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1497 {
1498         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1499         struct intel_pch_pll *pll;
1500         int reg;
1501         u32 val;
1502
1503         /* PCH PLLs only available on ILK, SNB and IVB */
1504         BUG_ON(dev_priv->info->gen < 5);
1505         pll = intel_crtc->pch_pll;
1506         if (pll == NULL)
1507                 return;
1508
1509         if (WARN_ON(pll->refcount == 0))
1510                 return;
1511
1512         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1513                       pll->pll_reg, pll->active, pll->on,
1514                       intel_crtc->base.base.id);
1515
1516         /* PCH refclock must be enabled first */
1517         assert_pch_refclk_enabled(dev_priv);
1518
1519         if (pll->active++ && pll->on) {
1520                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1521                 return;
1522         }
1523
1524         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1525
1526         reg = pll->pll_reg;
1527         val = I915_READ(reg);
1528         val |= DPLL_VCO_ENABLE;
1529         I915_WRITE(reg, val);
1530         POSTING_READ(reg);
1531         udelay(200);
1532
1533         pll->on = true;
1534 }
1535
1536 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1537 {
1538         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1539         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1540         int reg;
1541         u32 val;
1542
1543         /* PCH only available on ILK+ */
1544         BUG_ON(dev_priv->info->gen < 5);
1545         if (pll == NULL)
1546                return;
1547
1548         if (WARN_ON(pll->refcount == 0))
1549                 return;
1550
1551         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1552                       pll->pll_reg, pll->active, pll->on,
1553                       intel_crtc->base.base.id);
1554
1555         if (WARN_ON(pll->active == 0)) {
1556                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1557                 return;
1558         }
1559
1560         if (--pll->active) {
1561                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1562                 return;
1563         }
1564
1565         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1566
1567         /* Make sure transcoder isn't still depending on us */
1568         assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
1569
1570         reg = pll->pll_reg;
1571         val = I915_READ(reg);
1572         val &= ~DPLL_VCO_ENABLE;
1573         I915_WRITE(reg, val);
1574         POSTING_READ(reg);
1575         udelay(200);
1576
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         uint32_t reg, val, pipeconf_val;
1586
1587         /* PCH only available on ILK+ */
1588         BUG_ON(dev_priv->info->gen < 5);
1589
1590         /* Make sure PCH DPLL is enabled */
1591         assert_pch_pll_enabled(dev_priv,
1592                                to_intel_crtc(crtc)->pch_pll,
1593                                to_intel_crtc(crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = PCH_TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(LPT_TRANSCONF, val);
1663         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = PCH_TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(LPT_TRANSCONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(LPT_TRANSCONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_sprites_disabled(dev_priv, pipe);
1739
1740         if (HAS_PCH_LPT(dev_priv->dev))
1741                 pch_transcoder = TRANSCODER_A;
1742         else
1743                 pch_transcoder = pipe;
1744
1745         /*
1746          * A pipe without a PLL won't actually be able to drive bits from
1747          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1748          * need the check.
1749          */
1750         if (!HAS_PCH_SPLIT(dev_priv->dev))
1751                 assert_pll_enabled(dev_priv, pipe);
1752         else {
1753                 if (pch_port) {
1754                         /* if driving the PCH, we need FDI enabled */
1755                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1756                         assert_fdi_tx_pll_enabled(dev_priv,
1757                                                   (enum pipe) cpu_transcoder);
1758                 }
1759                 /* FIXME: assert CPU port conditions for SNB+ */
1760         }
1761
1762         reg = PIPECONF(cpu_transcoder);
1763         val = I915_READ(reg);
1764         if (val & PIPECONF_ENABLE)
1765                 return;
1766
1767         I915_WRITE(reg, val | PIPECONF_ENABLE);
1768         intel_wait_for_vblank(dev_priv->dev, pipe);
1769 }
1770
1771 /**
1772  * intel_disable_pipe - disable a pipe, asserting requirements
1773  * @dev_priv: i915 private structure
1774  * @pipe: pipe to disable
1775  *
1776  * Disable @pipe, making sure that various hardware specific requirements
1777  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1778  *
1779  * @pipe should be %PIPE_A or %PIPE_B.
1780  *
1781  * Will wait until the pipe has shut down before returning.
1782  */
1783 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1784                                enum pipe pipe)
1785 {
1786         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1787                                                                       pipe);
1788         int reg;
1789         u32 val;
1790
1791         /*
1792          * Make sure planes won't keep trying to pump pixels to us,
1793          * or we might hang the display.
1794          */
1795         assert_planes_disabled(dev_priv, pipe);
1796         assert_sprites_disabled(dev_priv, pipe);
1797
1798         /* Don't disable pipe A or pipe A PLLs if needed */
1799         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1800                 return;
1801
1802         reg = PIPECONF(cpu_transcoder);
1803         val = I915_READ(reg);
1804         if ((val & PIPECONF_ENABLE) == 0)
1805                 return;
1806
1807         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1808         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1809 }
1810
1811 /*
1812  * Plane regs are double buffered, going from enabled->disabled needs a
1813  * trigger in order to latch.  The display address reg provides this.
1814  */
1815 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1816                                       enum plane plane)
1817 {
1818         if (dev_priv->info->gen >= 4)
1819                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1820         else
1821                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1822 }
1823
1824 /**
1825  * intel_enable_plane - enable a display plane on a given pipe
1826  * @dev_priv: i915 private structure
1827  * @plane: plane to enable
1828  * @pipe: pipe being fed
1829  *
1830  * Enable @plane on @pipe, making sure that @pipe is running first.
1831  */
1832 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833                                enum plane plane, enum pipe pipe)
1834 {
1835         int reg;
1836         u32 val;
1837
1838         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839         assert_pipe_enabled(dev_priv, pipe);
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if (val & DISPLAY_PLANE_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 /**
1852  * intel_disable_plane - disable a display plane
1853  * @dev_priv: i915 private structure
1854  * @plane: plane to disable
1855  * @pipe: pipe consuming the data
1856  *
1857  * Disable @plane; should be an independent operation.
1858  */
1859 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860                                 enum plane plane, enum pipe pipe)
1861 {
1862         int reg;
1863         u32 val;
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868                 return;
1869
1870         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 static bool need_vtd_wa(struct drm_device *dev)
1876 {
1877 #ifdef CONFIG_INTEL_IOMMU
1878         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1879                 return true;
1880 #endif
1881         return false;
1882 }
1883
1884 int
1885 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1886                            struct drm_i915_gem_object *obj,
1887                            struct intel_ring_buffer *pipelined)
1888 {
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 alignment;
1891         int ret;
1892
1893         switch (obj->tiling_mode) {
1894         case I915_TILING_NONE:
1895                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1896                         alignment = 128 * 1024;
1897                 else if (INTEL_INFO(dev)->gen >= 4)
1898                         alignment = 4 * 1024;
1899                 else
1900                         alignment = 64 * 1024;
1901                 break;
1902         case I915_TILING_X:
1903                 /* pin() will align the object as required by fence */
1904                 alignment = 0;
1905                 break;
1906         case I915_TILING_Y:
1907                 /* Despite that we check this in framebuffer_init userspace can
1908                  * screw us over and change the tiling after the fact. Only
1909                  * pinned buffers can't change their tiling. */
1910                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1911                 return -EINVAL;
1912         default:
1913                 BUG();
1914         }
1915
1916         /* Note that the w/a also requires 64 PTE of padding following the
1917          * bo. We currently fill all unused PTE with the shadow page and so
1918          * we should always have valid PTE following the scanout preventing
1919          * the VT-d warning.
1920          */
1921         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1922                 alignment = 256 * 1024;
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1959                                              unsigned int tiling_mode,
1960                                              unsigned int cpp,
1961                                              unsigned int pitch)
1962 {
1963         if (tiling_mode != I915_TILING_NONE) {
1964                 unsigned int tile_rows, tiles;
1965
1966                 tile_rows = *y / 8;
1967                 *y %= 8;
1968
1969                 tiles = *x / (512/cpp);
1970                 *x %= 512/cpp;
1971
1972                 return tile_rows * pitch * 8 + tiles * 4096;
1973         } else {
1974                 unsigned int offset;
1975
1976                 offset = *y * pitch + *x * cpp;
1977                 *y = 0;
1978                 *x = (offset & 4095) / cpp;
1979                 return offset & -4096;
1980         }
1981 }
1982
1983 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1984                              int x, int y)
1985 {
1986         struct drm_device *dev = crtc->dev;
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1989         struct intel_framebuffer *intel_fb;
1990         struct drm_i915_gem_object *obj;
1991         int plane = intel_crtc->plane;
1992         unsigned long linear_offset;
1993         u32 dspcntr;
1994         u32 reg;
1995
1996         switch (plane) {
1997         case 0:
1998         case 1:
1999                 break;
2000         default:
2001                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2002                 return -EINVAL;
2003         }
2004
2005         intel_fb = to_intel_framebuffer(fb);
2006         obj = intel_fb->obj;
2007
2008         reg = DSPCNTR(plane);
2009         dspcntr = I915_READ(reg);
2010         /* Mask out pixel format bits in case we change it */
2011         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2012         switch (fb->pixel_format) {
2013         case DRM_FORMAT_C8:
2014                 dspcntr |= DISPPLANE_8BPP;
2015                 break;
2016         case DRM_FORMAT_XRGB1555:
2017         case DRM_FORMAT_ARGB1555:
2018                 dspcntr |= DISPPLANE_BGRX555;
2019                 break;
2020         case DRM_FORMAT_RGB565:
2021                 dspcntr |= DISPPLANE_BGRX565;
2022                 break;
2023         case DRM_FORMAT_XRGB8888:
2024         case DRM_FORMAT_ARGB8888:
2025                 dspcntr |= DISPPLANE_BGRX888;
2026                 break;
2027         case DRM_FORMAT_XBGR8888:
2028         case DRM_FORMAT_ABGR8888:
2029                 dspcntr |= DISPPLANE_RGBX888;
2030                 break;
2031         case DRM_FORMAT_XRGB2101010:
2032         case DRM_FORMAT_ARGB2101010:
2033                 dspcntr |= DISPPLANE_BGRX101010;
2034                 break;
2035         case DRM_FORMAT_XBGR2101010:
2036         case DRM_FORMAT_ABGR2101010:
2037                 dspcntr |= DISPPLANE_RGBX101010;
2038                 break;
2039         default:
2040                 BUG();
2041         }
2042
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 if (obj->tiling_mode != I915_TILING_NONE)
2045                         dspcntr |= DISPPLANE_TILED;
2046                 else
2047                         dspcntr &= ~DISPPLANE_TILED;
2048         }
2049
2050         I915_WRITE(reg, dspcntr);
2051
2052         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2053
2054         if (INTEL_INFO(dev)->gen >= 4) {
2055                 intel_crtc->dspaddr_offset =
2056                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2057                                                        fb->bits_per_pixel / 8,
2058                                                        fb->pitches[0]);
2059                 linear_offset -= intel_crtc->dspaddr_offset;
2060         } else {
2061                 intel_crtc->dspaddr_offset = linear_offset;
2062         }
2063
2064         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2065                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2066         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2067         if (INTEL_INFO(dev)->gen >= 4) {
2068                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2069                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2070                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2071                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2072         } else
2073                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2074         POSTING_READ(reg);
2075
2076         return 0;
2077 }
2078
2079 static int ironlake_update_plane(struct drm_crtc *crtc,
2080                                  struct drm_framebuffer *fb, int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095         case 2:
2096                 break;
2097         default:
2098                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2099                 return -EINVAL;
2100         }
2101
2102         intel_fb = to_intel_framebuffer(fb);
2103         obj = intel_fb->obj;
2104
2105         reg = DSPCNTR(plane);
2106         dspcntr = I915_READ(reg);
2107         /* Mask out pixel format bits in case we change it */
2108         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109         switch (fb->pixel_format) {
2110         case DRM_FORMAT_C8:
2111                 dspcntr |= DISPPLANE_8BPP;
2112                 break;
2113         case DRM_FORMAT_RGB565:
2114                 dspcntr |= DISPPLANE_BGRX565;
2115                 break;
2116         case DRM_FORMAT_XRGB8888:
2117         case DRM_FORMAT_ARGB8888:
2118                 dspcntr |= DISPPLANE_BGRX888;
2119                 break;
2120         case DRM_FORMAT_XBGR8888:
2121         case DRM_FORMAT_ABGR8888:
2122                 dspcntr |= DISPPLANE_RGBX888;
2123                 break;
2124         case DRM_FORMAT_XRGB2101010:
2125         case DRM_FORMAT_ARGB2101010:
2126                 dspcntr |= DISPPLANE_BGRX101010;
2127                 break;
2128         case DRM_FORMAT_XBGR2101010:
2129         case DRM_FORMAT_ABGR2101010:
2130                 dspcntr |= DISPPLANE_RGBX101010;
2131                 break;
2132         default:
2133                 BUG();
2134         }
2135
2136         if (obj->tiling_mode != I915_TILING_NONE)
2137                 dspcntr |= DISPPLANE_TILED;
2138         else
2139                 dspcntr &= ~DISPPLANE_TILED;
2140
2141         /* must disable */
2142         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2143
2144         I915_WRITE(reg, dspcntr);
2145
2146         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2147         intel_crtc->dspaddr_offset =
2148                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2149                                                fb->bits_per_pixel / 8,
2150                                                fb->pitches[0]);
2151         linear_offset -= intel_crtc->dspaddr_offset;
2152
2153         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2154                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2155         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2156         I915_MODIFY_DISPBASE(DSPSURF(plane),
2157                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2158         if (IS_HASWELL(dev)) {
2159                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2160         } else {
2161                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2162                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2163         }
2164         POSTING_READ(reg);
2165
2166         return 0;
2167 }
2168
2169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2170 static int
2171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2172                            int x, int y, enum mode_set_atomic state)
2173 {
2174         struct drm_device *dev = crtc->dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176
2177         if (dev_priv->display.disable_fbc)
2178                 dev_priv->display.disable_fbc(dev);
2179         intel_increase_pllclock(crtc);
2180
2181         return dev_priv->display.update_plane(crtc, fb, x, y);
2182 }
2183
2184 void intel_display_handle_reset(struct drm_device *dev)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct drm_crtc *crtc;
2188
2189         /*
2190          * Flips in the rings have been nuked by the reset,
2191          * so complete all pending flips so that user space
2192          * will get its events and not get stuck.
2193          *
2194          * Also update the base address of all primary
2195          * planes to the the last fb to make sure we're
2196          * showing the correct fb after a reset.
2197          *
2198          * Need to make two loops over the crtcs so that we
2199          * don't try to grab a crtc mutex before the
2200          * pending_flip_queue really got woken up.
2201          */
2202
2203         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2204                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2205                 enum plane plane = intel_crtc->plane;
2206
2207                 intel_prepare_page_flip(dev, plane);
2208                 intel_finish_page_flip_plane(dev, plane);
2209         }
2210
2211         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2212                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213
2214                 mutex_lock(&crtc->mutex);
2215                 if (intel_crtc->active)
2216                         dev_priv->display.update_plane(crtc, crtc->fb,
2217                                                        crtc->x, crtc->y);
2218                 mutex_unlock(&crtc->mutex);
2219         }
2220 }
2221
2222 static int
2223 intel_finish_fb(struct drm_framebuffer *old_fb)
2224 {
2225         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2226         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2227         bool was_interruptible = dev_priv->mm.interruptible;
2228         int ret;
2229
2230         /* Big Hammer, we also need to ensure that any pending
2231          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2232          * current scanout is retired before unpinning the old
2233          * framebuffer.
2234          *
2235          * This should only fail upon a hung GPU, in which case we
2236          * can safely continue.
2237          */
2238         dev_priv->mm.interruptible = false;
2239         ret = i915_gem_object_finish_gpu(obj);
2240         dev_priv->mm.interruptible = was_interruptible;
2241
2242         return ret;
2243 }
2244
2245 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2246 {
2247         struct drm_device *dev = crtc->dev;
2248         struct drm_i915_master_private *master_priv;
2249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251         if (!dev->primary->master)
2252                 return;
2253
2254         master_priv = dev->primary->master->driver_priv;
2255         if (!master_priv->sarea_priv)
2256                 return;
2257
2258         switch (intel_crtc->pipe) {
2259         case 0:
2260                 master_priv->sarea_priv->pipeA_x = x;
2261                 master_priv->sarea_priv->pipeA_y = y;
2262                 break;
2263         case 1:
2264                 master_priv->sarea_priv->pipeB_x = x;
2265                 master_priv->sarea_priv->pipeB_y = y;
2266                 break;
2267         default:
2268                 break;
2269         }
2270 }
2271
2272 static int
2273 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2274                     struct drm_framebuffer *fb)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279         struct drm_framebuffer *old_fb;
2280         int ret;
2281
2282         /* no fb bound */
2283         if (!fb) {
2284                 DRM_ERROR("No FB bound\n");
2285                 return 0;
2286         }
2287
2288         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2289                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2290                           plane_name(intel_crtc->plane),
2291                           INTEL_INFO(dev)->num_pipes);
2292                 return -EINVAL;
2293         }
2294
2295         mutex_lock(&dev->struct_mutex);
2296         ret = intel_pin_and_fence_fb_obj(dev,
2297                                          to_intel_framebuffer(fb)->obj,
2298                                          NULL);
2299         if (ret != 0) {
2300                 mutex_unlock(&dev->struct_mutex);
2301                 DRM_ERROR("pin & fence failed\n");
2302                 return ret;
2303         }
2304
2305         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2306         if (ret) {
2307                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2308                 mutex_unlock(&dev->struct_mutex);
2309                 DRM_ERROR("failed to update base address\n");
2310                 return ret;
2311         }
2312
2313         old_fb = crtc->fb;
2314         crtc->fb = fb;
2315         crtc->x = x;
2316         crtc->y = y;
2317
2318         if (old_fb) {
2319                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2320                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2321         }
2322
2323         intel_update_fbc(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         struct intel_crtc *pipe_B_crtc =
2381                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382         struct intel_crtc *pipe_C_crtc =
2383                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384         uint32_t temp;
2385
2386         /*
2387          * When everything is off disable fdi C so that we could enable fdi B
2388          * with all lanes. Note that we don't care about enabled pipes without
2389          * an enabled pch encoder.
2390          */
2391         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392             !pipe_has_enabled_pch(pipe_C_crtc)) {
2393                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396                 temp = I915_READ(SOUTH_CHICKEN1);
2397                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399                 I915_WRITE(SOUTH_CHICKEN1, temp);
2400         }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409         int pipe = intel_crtc->pipe;
2410         int plane = intel_crtc->plane;
2411         u32 reg, temp, tries;
2412
2413         /* FDI needs bits from pipe & plane first */
2414         assert_pipe_enabled(dev_priv, pipe);
2415         assert_plane_enabled(dev_priv, plane);
2416
2417         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418            for train result */
2419         reg = FDI_RX_IMR(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_RX_SYMBOL_LOCK;
2422         temp &= ~FDI_RX_BIT_LOCK;
2423         I915_WRITE(reg, temp);
2424         I915_READ(reg);
2425         udelay(150);
2426
2427         /* enable CPU FDI TX and PCH FDI RX */
2428         reg = FDI_TX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_1;
2434         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~FDI_LINK_TRAIN_NONE;
2439         temp |= FDI_LINK_TRAIN_PATTERN_1;
2440         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442         POSTING_READ(reg);
2443         udelay(150);
2444
2445         /* Ironlake workaround, enable clock pointer after FDI enable*/
2446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448                    FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if ((temp & FDI_RX_BIT_LOCK)) {
2456                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2457                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 1 fail!\n");
2463
2464         /* Train 2 */
2465         reg = FDI_TX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_2;
2469         I915_WRITE(reg, temp);
2470
2471         reg = FDI_RX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_LINK_TRAIN_NONE;
2474         temp |= FDI_LINK_TRAIN_PATTERN_2;
2475         I915_WRITE(reg, temp);
2476
2477         POSTING_READ(reg);
2478         udelay(150);
2479
2480         reg = FDI_RX_IIR(pipe);
2481         for (tries = 0; tries < 5; tries++) {
2482                 temp = I915_READ(reg);
2483                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485                 if (temp & FDI_RX_SYMBOL_LOCK) {
2486                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2488                         break;
2489                 }
2490         }
2491         if (tries == 5)
2492                 DRM_ERROR("FDI train 2 fail!\n");
2493
2494         DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508         struct drm_device *dev = crtc->dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511         int pipe = intel_crtc->pipe;
2512         u32 reg, temp, i, retry;
2513
2514         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515            for train result */
2516         reg = FDI_RX_IMR(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_RX_SYMBOL_LOCK;
2519         temp &= ~FDI_RX_BIT_LOCK;
2520         I915_WRITE(reg, temp);
2521
2522         POSTING_READ(reg);
2523         udelay(150);
2524
2525         /* enable CPU FDI TX and PCH FDI RX */
2526         reg = FDI_TX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530         temp &= ~FDI_LINK_TRAIN_NONE;
2531         temp |= FDI_LINK_TRAIN_PATTERN_1;
2532         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533         /* SNB-B */
2534         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537         I915_WRITE(FDI_RX_MISC(pipe),
2538                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         if (HAS_PCH_CPT(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545         } else {
2546                 temp &= ~FDI_LINK_TRAIN_NONE;
2547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548         }
2549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         for (i = 0; i < 4; i++) {
2555                 reg = FDI_TX_CTL(pipe);
2556                 temp = I915_READ(reg);
2557                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558                 temp |= snb_b_fdi_train_param[i];
2559                 I915_WRITE(reg, temp);
2560
2561                 POSTING_READ(reg);
2562                 udelay(500);
2563
2564                 for (retry = 0; retry < 5; retry++) {
2565                         reg = FDI_RX_IIR(pipe);
2566                         temp = I915_READ(reg);
2567                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568                         if (temp & FDI_RX_BIT_LOCK) {
2569                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571                                 break;
2572                         }
2573                         udelay(50);
2574                 }
2575                 if (retry < 5)
2576                         break;
2577         }
2578         if (i == 4)
2579                 DRM_ERROR("FDI train 1 fail!\n");
2580
2581         /* Train 2 */
2582         reg = FDI_TX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~FDI_LINK_TRAIN_NONE;
2585         temp |= FDI_LINK_TRAIN_PATTERN_2;
2586         if (IS_GEN6(dev)) {
2587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588                 /* SNB-B */
2589                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590         }
2591         I915_WRITE(reg, temp);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601         }
2602         I915_WRITE(reg, temp);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_SYMBOL_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 2 fail!\n");
2633
2634         DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         int pipe = intel_crtc->pipe;
2644         u32 reg, temp, i;
2645
2646         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647            for train result */
2648         reg = FDI_RX_IMR(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_RX_SYMBOL_LOCK;
2651         temp &= ~FDI_RX_BIT_LOCK;
2652         I915_WRITE(reg, temp);
2653
2654         POSTING_READ(reg);
2655         udelay(150);
2656
2657         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658                       I915_READ(FDI_RX_IIR(pipe)));
2659
2660         /* enable CPU FDI TX and PCH FDI RX */
2661         reg = FDI_TX_CTL(pipe);
2662         temp = I915_READ(reg);
2663         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2664         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2665         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2667         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2668         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2669         temp |= FDI_COMPOSITE_SYNC;
2670         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2671
2672         I915_WRITE(FDI_RX_MISC(pipe),
2673                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2674
2675         reg = FDI_RX_CTL(pipe);
2676         temp = I915_READ(reg);
2677         temp &= ~FDI_LINK_TRAIN_AUTO;
2678         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2679         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2680         temp |= FDI_COMPOSITE_SYNC;
2681         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2682
2683         POSTING_READ(reg);
2684         udelay(150);
2685
2686         for (i = 0; i < 4; i++) {
2687                 reg = FDI_TX_CTL(pipe);
2688                 temp = I915_READ(reg);
2689                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690                 temp |= snb_b_fdi_train_param[i];
2691                 I915_WRITE(reg, temp);
2692
2693                 POSTING_READ(reg);
2694                 udelay(500);
2695
2696                 reg = FDI_RX_IIR(pipe);
2697                 temp = I915_READ(reg);
2698                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2699
2700                 if (temp & FDI_RX_BIT_LOCK ||
2701                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2702                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2703                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2704                         break;
2705                 }
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 1 fail!\n");
2709
2710         /* Train 2 */
2711         reg = FDI_TX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2714         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2715         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2716         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2717         I915_WRITE(reg, temp);
2718
2719         reg = FDI_RX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2722         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2723         I915_WRITE(reg, temp);
2724
2725         POSTING_READ(reg);
2726         udelay(150);
2727
2728         for (i = 0; i < 4; i++) {
2729                 reg = FDI_TX_CTL(pipe);
2730                 temp = I915_READ(reg);
2731                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732                 temp |= snb_b_fdi_train_param[i];
2733                 I915_WRITE(reg, temp);
2734
2735                 POSTING_READ(reg);
2736                 udelay(500);
2737
2738                 reg = FDI_RX_IIR(pipe);
2739                 temp = I915_READ(reg);
2740                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2741
2742                 if (temp & FDI_RX_SYMBOL_LOCK) {
2743                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2744                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2745                         break;
2746                 }
2747         }
2748         if (i == 4)
2749                 DRM_ERROR("FDI train 2 fail!\n");
2750
2751         DRM_DEBUG_KMS("FDI train done.\n");
2752 }
2753
2754 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2755 {
2756         struct drm_device *dev = intel_crtc->base.dev;
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         int pipe = intel_crtc->pipe;
2759         u32 reg, temp;
2760
2761
2762         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2766         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2767         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2768         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2769
2770         POSTING_READ(reg);
2771         udelay(200);
2772
2773         /* Switch from Rawclk to PCDclk */
2774         temp = I915_READ(reg);
2775         I915_WRITE(reg, temp | FDI_PCDCLK);
2776
2777         POSTING_READ(reg);
2778         udelay(200);
2779
2780         /* Enable CPU FDI TX PLL, always on for Ironlake */
2781         reg = FDI_TX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2784                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2785
2786                 POSTING_READ(reg);
2787                 udelay(100);
2788         }
2789 }
2790
2791 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2792 {
2793         struct drm_device *dev = intel_crtc->base.dev;
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795         int pipe = intel_crtc->pipe;
2796         u32 reg, temp;
2797
2798         /* Switch from PCDclk to Rawclk */
2799         reg = FDI_RX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2802
2803         /* Disable CPU FDI TX PLL */
2804         reg = FDI_TX_CTL(pipe);
2805         temp = I915_READ(reg);
2806         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2807
2808         POSTING_READ(reg);
2809         udelay(100);
2810
2811         reg = FDI_RX_CTL(pipe);
2812         temp = I915_READ(reg);
2813         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2814
2815         /* Wait for the clocks to turn off. */
2816         POSTING_READ(reg);
2817         udelay(100);
2818 }
2819
2820 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2821 {
2822         struct drm_device *dev = crtc->dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2825         int pipe = intel_crtc->pipe;
2826         u32 reg, temp;
2827
2828         /* disable CPU FDI tx and PCH FDI rx */
2829         reg = FDI_TX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2832         POSTING_READ(reg);
2833
2834         reg = FDI_RX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         temp &= ~(0x7 << 16);
2837         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2838         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2839
2840         POSTING_READ(reg);
2841         udelay(100);
2842
2843         /* Ironlake workaround, disable clock pointer after downing FDI */
2844         if (HAS_PCH_IBX(dev)) {
2845                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2846         }
2847
2848         /* still set train pattern 1 */
2849         reg = FDI_TX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         temp &= ~FDI_LINK_TRAIN_NONE;
2852         temp |= FDI_LINK_TRAIN_PATTERN_1;
2853         I915_WRITE(reg, temp);
2854
2855         reg = FDI_RX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         if (HAS_PCH_CPT(dev)) {
2858                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2859                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2860         } else {
2861                 temp &= ~FDI_LINK_TRAIN_NONE;
2862                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2863         }
2864         /* BPC in FDI rx is consistent with that in PIPECONF */
2865         temp &= ~(0x07 << 16);
2866         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2867         I915_WRITE(reg, temp);
2868
2869         POSTING_READ(reg);
2870         udelay(100);
2871 }
2872
2873 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2874 {
2875         struct drm_device *dev = crtc->dev;
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2878         unsigned long flags;
2879         bool pending;
2880
2881         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2882             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2883                 return false;
2884
2885         spin_lock_irqsave(&dev->event_lock, flags);
2886         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2887         spin_unlock_irqrestore(&dev->event_lock, flags);
2888
2889         return pending;
2890 }
2891
2892 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2893 {
2894         struct drm_device *dev = crtc->dev;
2895         struct drm_i915_private *dev_priv = dev->dev_private;
2896
2897         if (crtc->fb == NULL)
2898                 return;
2899
2900         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2901
2902         wait_event(dev_priv->pending_flip_queue,
2903                    !intel_crtc_has_pending_flip(crtc));
2904
2905         mutex_lock(&dev->struct_mutex);
2906         intel_finish_fb(crtc->fb);
2907         mutex_unlock(&dev->struct_mutex);
2908 }
2909
2910 /* Program iCLKIP clock to the desired frequency */
2911 static void lpt_program_iclkip(struct drm_crtc *crtc)
2912 {
2913         struct drm_device *dev = crtc->dev;
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2916         u32 temp;
2917
2918         mutex_lock(&dev_priv->dpio_lock);
2919
2920         /* It is necessary to ungate the pixclk gate prior to programming
2921          * the divisors, and gate it back when it is done.
2922          */
2923         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2924
2925         /* Disable SSCCTL */
2926         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2927                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2928                                 SBI_SSCCTL_DISABLE,
2929                         SBI_ICLK);
2930
2931         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2932         if (crtc->mode.clock == 20000) {
2933                 auxdiv = 1;
2934                 divsel = 0x41;
2935                 phaseinc = 0x20;
2936         } else {
2937                 /* The iCLK virtual clock root frequency is in MHz,
2938                  * but the crtc->mode.clock in in KHz. To get the divisors,
2939                  * it is necessary to divide one by another, so we
2940                  * convert the virtual clock precision to KHz here for higher
2941                  * precision.
2942                  */
2943                 u32 iclk_virtual_root_freq = 172800 * 1000;
2944                 u32 iclk_pi_range = 64;
2945                 u32 desired_divisor, msb_divisor_value, pi_value;
2946
2947                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2948                 msb_divisor_value = desired_divisor / iclk_pi_range;
2949                 pi_value = desired_divisor % iclk_pi_range;
2950
2951                 auxdiv = 0;
2952                 divsel = msb_divisor_value - 2;
2953                 phaseinc = pi_value;
2954         }
2955
2956         /* This should not happen with any sane values */
2957         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2958                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2959         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2960                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2961
2962         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2963                         crtc->mode.clock,
2964                         auxdiv,
2965                         divsel,
2966                         phasedir,
2967                         phaseinc);
2968
2969         /* Program SSCDIVINTPHASE6 */
2970         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2971         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2972         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2973         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2974         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2975         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2976         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2977         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2978
2979         /* Program SSCAUXDIV */
2980         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2981         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2982         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2983         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2984
2985         /* Enable modulator and associated divider */
2986         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2987         temp &= ~SBI_SSCCTL_DISABLE;
2988         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2989
2990         /* Wait for initialization time */
2991         udelay(24);
2992
2993         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2994
2995         mutex_unlock(&dev_priv->dpio_lock);
2996 }
2997
2998 /*
2999  * Enable PCH resources required for PCH ports:
3000  *   - PCH PLLs
3001  *   - FDI training & RX/TX
3002  *   - update transcoder timings
3003  *   - DP transcoding bits
3004  *   - transcoder
3005  */
3006 static void ironlake_pch_enable(struct drm_crtc *crtc)
3007 {
3008         struct drm_device *dev = crtc->dev;
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3011         int pipe = intel_crtc->pipe;
3012         u32 reg, temp;
3013
3014         assert_pch_transcoder_disabled(dev_priv, pipe);
3015
3016         /* Write the TU size bits before fdi link training, so that error
3017          * detection works. */
3018         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3019                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3020
3021         /* For PCH output, training FDI link */
3022         dev_priv->display.fdi_link_train(crtc);
3023
3024         /* XXX: pch pll's can be enabled any time before we enable the PCH
3025          * transcoder, and we actually should do this to not upset any PCH
3026          * transcoder that already use the clock when we share it.
3027          *
3028          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3029          * unconditionally resets the pll - we need that to have the right LVDS
3030          * enable sequence. */
3031         ironlake_enable_pch_pll(intel_crtc);
3032
3033         if (HAS_PCH_CPT(dev)) {
3034                 u32 sel;
3035
3036                 temp = I915_READ(PCH_DPLL_SEL);
3037                 switch (pipe) {
3038                 default:
3039                 case 0:
3040                         temp |= TRANSA_DPLL_ENABLE;
3041                         sel = TRANSA_DPLLB_SEL;
3042                         break;
3043                 case 1:
3044                         temp |= TRANSB_DPLL_ENABLE;
3045                         sel = TRANSB_DPLLB_SEL;
3046                         break;
3047                 case 2:
3048                         temp |= TRANSC_DPLL_ENABLE;
3049                         sel = TRANSC_DPLLB_SEL;
3050                         break;
3051                 }
3052                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3053                         temp |= sel;
3054                 else
3055                         temp &= ~sel;
3056                 I915_WRITE(PCH_DPLL_SEL, temp);
3057         }
3058
3059         /* set transcoder timing, panel must allow it */
3060         assert_panel_unlocked(dev_priv, pipe);
3061         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3062         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3063         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3064
3065         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3066         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3067         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3068         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3069
3070         intel_fdi_normal_train(crtc);
3071
3072         /* For PCH DP, enable TRANS_DP_CTL */
3073         if (HAS_PCH_CPT(dev) &&
3074             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3075              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3076                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3077                 reg = TRANS_DP_CTL(pipe);
3078                 temp = I915_READ(reg);
3079                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3080                           TRANS_DP_SYNC_MASK |
3081                           TRANS_DP_BPC_MASK);
3082                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3083                          TRANS_DP_ENH_FRAMING);
3084                 temp |= bpc << 9; /* same format but at 11:9 */
3085
3086                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3087                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3088                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3089                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3090
3091                 switch (intel_trans_dp_port_sel(crtc)) {
3092                 case PCH_DP_B:
3093                         temp |= TRANS_DP_PORT_SEL_B;
3094                         break;
3095                 case PCH_DP_C:
3096                         temp |= TRANS_DP_PORT_SEL_C;
3097                         break;
3098                 case PCH_DP_D:
3099                         temp |= TRANS_DP_PORT_SEL_D;
3100                         break;
3101                 default:
3102                         BUG();
3103                 }
3104
3105                 I915_WRITE(reg, temp);
3106         }
3107
3108         ironlake_enable_pch_transcoder(dev_priv, pipe);
3109 }
3110
3111 static void lpt_pch_enable(struct drm_crtc *crtc)
3112 {
3113         struct drm_device *dev = crtc->dev;
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3117
3118         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3119
3120         lpt_program_iclkip(crtc);
3121
3122         /* Set transcoder timing. */
3123         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3124         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3125         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3126
3127         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3128         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3129         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3130         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3131
3132         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3133 }
3134
3135 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3136 {
3137         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3138
3139         if (pll == NULL)
3140                 return;
3141
3142         if (pll->refcount == 0) {
3143                 WARN(1, "bad PCH PLL refcount\n");
3144                 return;
3145         }
3146
3147         --pll->refcount;
3148         intel_crtc->pch_pll = NULL;
3149 }
3150
3151 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3152 {
3153         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3154         struct intel_pch_pll *pll;
3155         int i;
3156
3157         pll = intel_crtc->pch_pll;
3158         if (pll) {
3159                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3160                               intel_crtc->base.base.id, pll->pll_reg);
3161                 goto prepare;
3162         }
3163
3164         if (HAS_PCH_IBX(dev_priv->dev)) {
3165                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3166                 i = intel_crtc->pipe;
3167                 pll = &dev_priv->pch_plls[i];
3168
3169                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3170                               intel_crtc->base.base.id, pll->pll_reg);
3171
3172                 goto found;
3173         }
3174
3175         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3176                 pll = &dev_priv->pch_plls[i];
3177
3178                 /* Only want to check enabled timings first */
3179                 if (pll->refcount == 0)
3180                         continue;
3181
3182                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3183                     fp == I915_READ(pll->fp0_reg)) {
3184                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3185                                       intel_crtc->base.base.id,
3186                                       pll->pll_reg, pll->refcount, pll->active);
3187
3188                         goto found;
3189                 }
3190         }
3191
3192         /* Ok no matching timings, maybe there's a free one? */
3193         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3194                 pll = &dev_priv->pch_plls[i];
3195                 if (pll->refcount == 0) {
3196                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3197                                       intel_crtc->base.base.id, pll->pll_reg);
3198                         goto found;
3199                 }
3200         }
3201
3202         return NULL;
3203
3204 found:
3205         intel_crtc->pch_pll = pll;
3206         pll->refcount++;
3207         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3208 prepare: /* separate function? */
3209         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3210
3211         /* Wait for the clocks to stabilize before rewriting the regs */
3212         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3213         POSTING_READ(pll->pll_reg);
3214         udelay(150);
3215
3216         I915_WRITE(pll->fp0_reg, fp);
3217         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3218         pll->on = false;
3219         return pll;
3220 }
3221
3222 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3223 {
3224         struct drm_i915_private *dev_priv = dev->dev_private;
3225         int dslreg = PIPEDSL(pipe);
3226         u32 temp;
3227
3228         temp = I915_READ(dslreg);
3229         udelay(500);
3230         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3231                 if (wait_for(I915_READ(dslreg) != temp, 5))
3232                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3233         }
3234 }
3235
3236 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3237 {
3238         struct drm_device *dev = crtc->base.dev;
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240         int pipe = crtc->pipe;
3241
3242         if (crtc->config.pch_pfit.size &&
3243             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
3244                 /* Force use of hard-coded filter coefficients
3245                  * as some pre-programmed values are broken,
3246                  * e.g. x201.
3247                  */
3248                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3249                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3250                                                  PF_PIPE_SEL_IVB(pipe));
3251                 else
3252                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3253                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3254                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3255         }
3256 }
3257
3258 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3259 {
3260         struct drm_device *dev = crtc->dev;
3261         struct drm_i915_private *dev_priv = dev->dev_private;
3262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263         struct intel_encoder *encoder;
3264         int pipe = intel_crtc->pipe;
3265         int plane = intel_crtc->plane;
3266         u32 temp;
3267
3268         WARN_ON(!crtc->enabled);
3269
3270         if (intel_crtc->active)
3271                 return;
3272
3273         intel_crtc->active = true;
3274
3275         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3276         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3277
3278         intel_update_watermarks(dev);
3279
3280         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3281                 temp = I915_READ(PCH_LVDS);
3282                 if ((temp & LVDS_PORT_EN) == 0)
3283                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3284         }
3285
3286
3287         if (intel_crtc->config.has_pch_encoder) {
3288                 /* Note: FDI PLL enabling _must_ be done before we enable the
3289                  * cpu pipes, hence this is separate from all the other fdi/pch
3290                  * enabling. */
3291                 ironlake_fdi_pll_enable(intel_crtc);
3292         } else {
3293                 assert_fdi_tx_disabled(dev_priv, pipe);
3294                 assert_fdi_rx_disabled(dev_priv, pipe);
3295         }
3296
3297         for_each_encoder_on_crtc(dev, crtc, encoder)
3298                 if (encoder->pre_enable)
3299                         encoder->pre_enable(encoder);
3300
3301         /* Enable panel fitting for LVDS */
3302         ironlake_pfit_enable(intel_crtc);
3303
3304         /*
3305          * On ILK+ LUT must be loaded before the pipe is running but with
3306          * clocks enabled
3307          */
3308         intel_crtc_load_lut(crtc);
3309
3310         intel_enable_pipe(dev_priv, pipe,
3311                           intel_crtc->config.has_pch_encoder);
3312         intel_enable_plane(dev_priv, plane, pipe);
3313
3314         if (intel_crtc->config.has_pch_encoder)
3315                 ironlake_pch_enable(crtc);
3316
3317         mutex_lock(&dev->struct_mutex);
3318         intel_update_fbc(dev);
3319         mutex_unlock(&dev->struct_mutex);
3320
3321         intel_crtc_update_cursor(crtc, true);
3322
3323         for_each_encoder_on_crtc(dev, crtc, encoder)
3324                 encoder->enable(encoder);
3325
3326         if (HAS_PCH_CPT(dev))
3327                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3328
3329         /*
3330          * There seems to be a race in PCH platform hw (at least on some
3331          * outputs) where an enabled pipe still completes any pageflip right
3332          * away (as if the pipe is off) instead of waiting for vblank. As soon
3333          * as the first vblank happend, everything works as expected. Hence just
3334          * wait for one vblank before returning to avoid strange things
3335          * happening.
3336          */
3337         intel_wait_for_vblank(dev, intel_crtc->pipe);
3338 }
3339
3340 static void haswell_crtc_enable(struct drm_crtc *crtc)
3341 {
3342         struct drm_device *dev = crtc->dev;
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3345         struct intel_encoder *encoder;
3346         int pipe = intel_crtc->pipe;
3347         int plane = intel_crtc->plane;
3348
3349         WARN_ON(!crtc->enabled);
3350
3351         if (intel_crtc->active)
3352                 return;
3353
3354         intel_crtc->active = true;
3355
3356         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3357         if (intel_crtc->config.has_pch_encoder)
3358                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3359
3360         intel_update_watermarks(dev);
3361
3362         if (intel_crtc->config.has_pch_encoder)
3363                 dev_priv->display.fdi_link_train(crtc);
3364
3365         for_each_encoder_on_crtc(dev, crtc, encoder)
3366                 if (encoder->pre_enable)
3367                         encoder->pre_enable(encoder);
3368
3369         intel_ddi_enable_pipe_clock(intel_crtc);
3370
3371         /* Enable panel fitting for eDP */
3372         ironlake_pfit_enable(intel_crtc);
3373
3374         /*
3375          * On ILK+ LUT must be loaded before the pipe is running but with
3376          * clocks enabled
3377          */
3378         intel_crtc_load_lut(crtc);
3379
3380         intel_ddi_set_pipe_settings(crtc);
3381         intel_ddi_enable_transcoder_func(crtc);
3382
3383         intel_enable_pipe(dev_priv, pipe,
3384                           intel_crtc->config.has_pch_encoder);
3385         intel_enable_plane(dev_priv, plane, pipe);
3386
3387         if (intel_crtc->config.has_pch_encoder)
3388                 lpt_pch_enable(crtc);
3389
3390         mutex_lock(&dev->struct_mutex);
3391         intel_update_fbc(dev);
3392         mutex_unlock(&dev->struct_mutex);
3393
3394         intel_crtc_update_cursor(crtc, true);
3395
3396         for_each_encoder_on_crtc(dev, crtc, encoder)
3397                 encoder->enable(encoder);
3398
3399         /*
3400          * There seems to be a race in PCH platform hw (at least on some
3401          * outputs) where an enabled pipe still completes any pageflip right
3402          * away (as if the pipe is off) instead of waiting for vblank. As soon
3403          * as the first vblank happend, everything works as expected. Hence just
3404          * wait for one vblank before returning to avoid strange things
3405          * happening.
3406          */
3407         intel_wait_for_vblank(dev, intel_crtc->pipe);
3408 }
3409
3410 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3411 {
3412         struct drm_device *dev = crtc->dev;
3413         struct drm_i915_private *dev_priv = dev->dev_private;
3414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3415         struct intel_encoder *encoder;
3416         int pipe = intel_crtc->pipe;
3417         int plane = intel_crtc->plane;
3418         u32 reg, temp;
3419
3420
3421         if (!intel_crtc->active)
3422                 return;
3423
3424         for_each_encoder_on_crtc(dev, crtc, encoder)
3425                 encoder->disable(encoder);
3426
3427         intel_crtc_wait_for_pending_flips(crtc);
3428         drm_vblank_off(dev, pipe);
3429         intel_crtc_update_cursor(crtc, false);
3430
3431         intel_disable_plane(dev_priv, plane, pipe);
3432
3433         if (dev_priv->cfb_plane == plane)
3434                 intel_disable_fbc(dev);
3435
3436         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3437         intel_disable_pipe(dev_priv, pipe);
3438
3439         /* Disable PF */
3440         I915_WRITE(PF_CTL(pipe), 0);
3441         I915_WRITE(PF_WIN_SZ(pipe), 0);
3442
3443         for_each_encoder_on_crtc(dev, crtc, encoder)
3444                 if (encoder->post_disable)
3445                         encoder->post_disable(encoder);
3446
3447         ironlake_fdi_disable(crtc);
3448
3449         ironlake_disable_pch_transcoder(dev_priv, pipe);
3450         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3451
3452         if (HAS_PCH_CPT(dev)) {
3453                 /* disable TRANS_DP_CTL */
3454                 reg = TRANS_DP_CTL(pipe);
3455                 temp = I915_READ(reg);
3456                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3457                 temp |= TRANS_DP_PORT_SEL_NONE;
3458                 I915_WRITE(reg, temp);
3459
3460                 /* disable DPLL_SEL */
3461                 temp = I915_READ(PCH_DPLL_SEL);
3462                 switch (pipe) {
3463                 case 0:
3464                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3465                         break;
3466                 case 1:
3467                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3468                         break;
3469                 case 2:
3470                         /* C shares PLL A or B */
3471                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3472                         break;
3473                 default:
3474                         BUG(); /* wtf */
3475                 }
3476                 I915_WRITE(PCH_DPLL_SEL, temp);
3477         }
3478
3479         /* disable PCH DPLL */
3480         intel_disable_pch_pll(intel_crtc);
3481
3482         ironlake_fdi_pll_disable(intel_crtc);
3483
3484         intel_crtc->active = false;
3485         intel_update_watermarks(dev);
3486
3487         mutex_lock(&dev->struct_mutex);
3488         intel_update_fbc(dev);
3489         mutex_unlock(&dev->struct_mutex);
3490 }
3491
3492 static void haswell_crtc_disable(struct drm_crtc *crtc)
3493 {
3494         struct drm_device *dev = crtc->dev;
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497         struct intel_encoder *encoder;
3498         int pipe = intel_crtc->pipe;
3499         int plane = intel_crtc->plane;
3500         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3501
3502         if (!intel_crtc->active)
3503                 return;
3504
3505         for_each_encoder_on_crtc(dev, crtc, encoder)
3506                 encoder->disable(encoder);
3507
3508         intel_crtc_wait_for_pending_flips(crtc);
3509         drm_vblank_off(dev, pipe);
3510         intel_crtc_update_cursor(crtc, false);
3511
3512         intel_disable_plane(dev_priv, plane, pipe);
3513
3514         if (dev_priv->cfb_plane == plane)
3515                 intel_disable_fbc(dev);
3516
3517         if (intel_crtc->config.has_pch_encoder)
3518                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3519         intel_disable_pipe(dev_priv, pipe);
3520
3521         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3522
3523         /* XXX: Once we have proper panel fitter state tracking implemented with
3524          * hardware state read/check support we should switch to only disable
3525          * the panel fitter when we know it's used. */
3526         if (intel_using_power_well(dev)) {
3527                 I915_WRITE(PF_CTL(pipe), 0);
3528                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3529         }
3530
3531         intel_ddi_disable_pipe_clock(intel_crtc);
3532
3533         for_each_encoder_on_crtc(dev, crtc, encoder)
3534                 if (encoder->post_disable)
3535                         encoder->post_disable(encoder);
3536
3537         if (intel_crtc->config.has_pch_encoder) {
3538                 lpt_disable_pch_transcoder(dev_priv);
3539                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3540                 intel_ddi_fdi_disable(crtc);
3541         }
3542
3543         intel_crtc->active = false;
3544         intel_update_watermarks(dev);
3545
3546         mutex_lock(&dev->struct_mutex);
3547         intel_update_fbc(dev);
3548         mutex_unlock(&dev->struct_mutex);
3549 }
3550
3551 static void ironlake_crtc_off(struct drm_crtc *crtc)
3552 {
3553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554         intel_put_pch_pll(intel_crtc);
3555 }
3556
3557 static void haswell_crtc_off(struct drm_crtc *crtc)
3558 {
3559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3560
3561         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3562          * start using it. */
3563         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3564
3565         intel_ddi_put_crtc_pll(crtc);
3566 }
3567
3568 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3569 {
3570         if (!enable && intel_crtc->overlay) {
3571                 struct drm_device *dev = intel_crtc->base.dev;
3572                 struct drm_i915_private *dev_priv = dev->dev_private;
3573
3574                 mutex_lock(&dev->struct_mutex);
3575                 dev_priv->mm.interruptible = false;
3576                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3577                 dev_priv->mm.interruptible = true;
3578                 mutex_unlock(&dev->struct_mutex);
3579         }
3580
3581         /* Let userspace switch the overlay on again. In most cases userspace
3582          * has to recompute where to put it anyway.
3583          */
3584 }
3585
3586 /**
3587  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3588  * cursor plane briefly if not already running after enabling the display
3589  * plane.
3590  * This workaround avoids occasional blank screens when self refresh is
3591  * enabled.
3592  */
3593 static void
3594 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3595 {
3596         u32 cntl = I915_READ(CURCNTR(pipe));
3597
3598         if ((cntl & CURSOR_MODE) == 0) {
3599                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3600
3601                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3602                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3603                 intel_wait_for_vblank(dev_priv->dev, pipe);
3604                 I915_WRITE(CURCNTR(pipe), cntl);
3605                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3606                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3607         }
3608 }
3609
3610 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3611 {
3612         struct drm_device *dev = crtc->base.dev;
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_crtc_config *pipe_config = &crtc->config;
3615
3616         if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
3617               intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
3618                 return;
3619
3620         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3621         assert_pipe_disabled(dev_priv, crtc->pipe);
3622
3623         /*
3624          * Enable automatic panel scaling so that non-native modes
3625          * fill the screen.  The panel fitter should only be
3626          * adjusted whilst the pipe is disabled, according to
3627          * register description and PRM.
3628          */
3629         DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
3630                       pipe_config->gmch_pfit.control,
3631                       pipe_config->gmch_pfit.pgm_ratios);
3632
3633         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3634         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3635
3636         /* Border color in case we don't scale up to the full screen. Black by
3637          * default, change to something else for debugging. */
3638         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3639 }
3640
3641 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3642 {
3643         struct drm_device *dev = crtc->dev;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3646         struct intel_encoder *encoder;
3647         int pipe = intel_crtc->pipe;
3648         int plane = intel_crtc->plane;
3649
3650         WARN_ON(!crtc->enabled);
3651
3652         if (intel_crtc->active)
3653                 return;
3654
3655         intel_crtc->active = true;
3656         intel_update_watermarks(dev);
3657
3658         mutex_lock(&dev_priv->dpio_lock);
3659
3660         for_each_encoder_on_crtc(dev, crtc, encoder)
3661                 if (encoder->pre_pll_enable)
3662                         encoder->pre_pll_enable(encoder);
3663
3664         intel_enable_pll(dev_priv, pipe);
3665
3666         for_each_encoder_on_crtc(dev, crtc, encoder)
3667                 if (encoder->pre_enable)
3668                         encoder->pre_enable(encoder);
3669
3670         /* VLV wants encoder enabling _before_ the pipe is up. */
3671         for_each_encoder_on_crtc(dev, crtc, encoder)
3672                 encoder->enable(encoder);
3673
3674         /* Enable panel fitting for eDP */
3675         i9xx_pfit_enable(intel_crtc);
3676
3677         intel_enable_pipe(dev_priv, pipe, false);
3678         intel_enable_plane(dev_priv, plane, pipe);
3679
3680         intel_crtc_load_lut(crtc);
3681         intel_update_fbc(dev);
3682
3683         /* Give the overlay scaler a chance to enable if it's on this pipe */
3684         intel_crtc_dpms_overlay(intel_crtc, true);
3685         intel_crtc_update_cursor(crtc, true);
3686
3687         mutex_unlock(&dev_priv->dpio_lock);
3688 }
3689
3690 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3691 {
3692         struct drm_device *dev = crtc->dev;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695         struct intel_encoder *encoder;
3696         int pipe = intel_crtc->pipe;
3697         int plane = intel_crtc->plane;
3698
3699         WARN_ON(!crtc->enabled);
3700
3701         if (intel_crtc->active)
3702                 return;
3703
3704         intel_crtc->active = true;
3705         intel_update_watermarks(dev);
3706
3707         intel_enable_pll(dev_priv, pipe);
3708
3709         for_each_encoder_on_crtc(dev, crtc, encoder)
3710                 if (encoder->pre_enable)
3711                         encoder->pre_enable(encoder);
3712
3713         /* Enable panel fitting for LVDS */
3714         i9xx_pfit_enable(intel_crtc);
3715
3716         intel_enable_pipe(dev_priv, pipe, false);
3717         intel_enable_plane(dev_priv, plane, pipe);
3718         if (IS_G4X(dev))
3719                 g4x_fixup_plane(dev_priv, pipe);
3720
3721         intel_crtc_load_lut(crtc);
3722         intel_update_fbc(dev);
3723
3724         /* Give the overlay scaler a chance to enable if it's on this pipe */
3725         intel_crtc_dpms_overlay(intel_crtc, true);
3726         intel_crtc_update_cursor(crtc, true);
3727
3728         for_each_encoder_on_crtc(dev, crtc, encoder)
3729                 encoder->enable(encoder);
3730 }
3731
3732 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3733 {
3734         struct drm_device *dev = crtc->base.dev;
3735         struct drm_i915_private *dev_priv = dev->dev_private;
3736         enum pipe pipe;
3737         uint32_t pctl = I915_READ(PFIT_CONTROL);
3738
3739         assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741         if (INTEL_INFO(dev)->gen >= 4)
3742                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3743         else
3744                 pipe = PIPE_B;
3745
3746         if (pipe == crtc->pipe) {
3747                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3748                 I915_WRITE(PFIT_CONTROL, 0);
3749         }
3750 }
3751
3752 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3753 {
3754         struct drm_device *dev = crtc->dev;
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757         struct intel_encoder *encoder;
3758         int pipe = intel_crtc->pipe;
3759         int plane = intel_crtc->plane;
3760
3761         if (!intel_crtc->active)
3762                 return;
3763
3764         for_each_encoder_on_crtc(dev, crtc, encoder)
3765                 encoder->disable(encoder);
3766
3767         /* Give the overlay scaler a chance to disable if it's on this pipe */
3768         intel_crtc_wait_for_pending_flips(crtc);
3769         drm_vblank_off(dev, pipe);
3770         intel_crtc_dpms_overlay(intel_crtc, false);
3771         intel_crtc_update_cursor(crtc, false);
3772
3773         if (dev_priv->cfb_plane == plane)
3774                 intel_disable_fbc(dev);
3775
3776         intel_disable_plane(dev_priv, plane, pipe);
3777         intel_disable_pipe(dev_priv, pipe);
3778
3779         i9xx_pfit_disable(intel_crtc);
3780
3781         for_each_encoder_on_crtc(dev, crtc, encoder)
3782                 if (encoder->post_disable)
3783                         encoder->post_disable(encoder);
3784
3785         intel_disable_pll(dev_priv, pipe);
3786
3787         intel_crtc->active = false;
3788         intel_update_fbc(dev);
3789         intel_update_watermarks(dev);
3790 }
3791
3792 static void i9xx_crtc_off(struct drm_crtc *crtc)
3793 {
3794 }
3795
3796 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3797                                     bool enabled)
3798 {
3799         struct drm_device *dev = crtc->dev;
3800         struct drm_i915_master_private *master_priv;
3801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802         int pipe = intel_crtc->pipe;
3803
3804         if (!dev->primary->master)
3805                 return;
3806
3807         master_priv = dev->primary->master->driver_priv;
3808         if (!master_priv->sarea_priv)
3809                 return;
3810
3811         switch (pipe) {
3812         case 0:
3813                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3814                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3815                 break;
3816         case 1:
3817                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3818                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3819                 break;
3820         default:
3821                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3822                 break;
3823         }
3824 }
3825
3826 /**
3827  * Sets the power management mode of the pipe and plane.
3828  */
3829 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3830 {
3831         struct drm_device *dev = crtc->dev;
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         struct intel_encoder *intel_encoder;
3834         bool enable = false;
3835
3836         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3837                 enable |= intel_encoder->connectors_active;
3838
3839         if (enable)
3840                 dev_priv->display.crtc_enable(crtc);
3841         else
3842                 dev_priv->display.crtc_disable(crtc);
3843
3844         intel_crtc_update_sarea(crtc, enable);
3845 }
3846
3847 static void intel_crtc_disable(struct drm_crtc *crtc)
3848 {
3849         struct drm_device *dev = crtc->dev;
3850         struct drm_connector *connector;
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3853
3854         /* crtc should still be enabled when we disable it. */
3855         WARN_ON(!crtc->enabled);
3856
3857         intel_crtc->eld_vld = false;
3858         dev_priv->display.crtc_disable(crtc);
3859         intel_crtc_update_sarea(crtc, false);
3860         dev_priv->display.off(crtc);
3861
3862         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3863         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3864
3865         if (crtc->fb) {
3866                 mutex_lock(&dev->struct_mutex);
3867                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3868                 mutex_unlock(&dev->struct_mutex);
3869                 crtc->fb = NULL;
3870         }
3871
3872         /* Update computed state. */
3873         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3874                 if (!connector->encoder || !connector->encoder->crtc)
3875                         continue;
3876
3877                 if (connector->encoder->crtc != crtc)
3878                         continue;
3879
3880                 connector->dpms = DRM_MODE_DPMS_OFF;
3881                 to_intel_encoder(connector->encoder)->connectors_active = false;
3882         }
3883 }
3884
3885 void intel_modeset_disable(struct drm_device *dev)
3886 {
3887         struct drm_crtc *crtc;
3888
3889         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3890                 if (crtc->enabled)
3891                         intel_crtc_disable(crtc);
3892         }
3893 }
3894
3895 void intel_encoder_destroy(struct drm_encoder *encoder)
3896 {
3897         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3898
3899         drm_encoder_cleanup(encoder);
3900         kfree(intel_encoder);
3901 }
3902
3903 /* Simple dpms helper for encodres with just one connector, no cloning and only
3904  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3905  * state of the entire output pipe. */
3906 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3907 {
3908         if (mode == DRM_MODE_DPMS_ON) {
3909                 encoder->connectors_active = true;
3910
3911                 intel_crtc_update_dpms(encoder->base.crtc);
3912         } else {
3913                 encoder->connectors_active = false;
3914
3915                 intel_crtc_update_dpms(encoder->base.crtc);
3916         }
3917 }
3918
3919 /* Cross check the actual hw state with our own modeset state tracking (and it's
3920  * internal consistency). */
3921 static void intel_connector_check_state(struct intel_connector *connector)
3922 {
3923         if (connector->get_hw_state(connector)) {
3924                 struct intel_encoder *encoder = connector->encoder;
3925                 struct drm_crtc *crtc;
3926                 bool encoder_enabled;
3927                 enum pipe pipe;
3928
3929                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3930                               connector->base.base.id,
3931                               drm_get_connector_name(&connector->base));
3932
3933                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3934                      "wrong connector dpms state\n");
3935                 WARN(connector->base.encoder != &encoder->base,
3936                      "active connector not linked to encoder\n");
3937                 WARN(!encoder->connectors_active,
3938                      "encoder->connectors_active not set\n");
3939
3940                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3941                 WARN(!encoder_enabled, "encoder not enabled\n");
3942                 if (WARN_ON(!encoder->base.crtc))
3943                         return;
3944
3945                 crtc = encoder->base.crtc;
3946
3947                 WARN(!crtc->enabled, "crtc not enabled\n");
3948                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3949                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3950                      "encoder active on the wrong pipe\n");
3951         }
3952 }
3953
3954 /* Even simpler default implementation, if there's really no special case to
3955  * consider. */
3956 void intel_connector_dpms(struct drm_connector *connector, int mode)
3957 {
3958         struct intel_encoder *encoder = intel_attached_encoder(connector);
3959
3960         /* All the simple cases only support two dpms states. */
3961         if (mode != DRM_MODE_DPMS_ON)
3962                 mode = DRM_MODE_DPMS_OFF;
3963
3964         if (mode == connector->dpms)
3965                 return;
3966
3967         connector->dpms = mode;
3968
3969         /* Only need to change hw state when actually enabled */
3970         if (encoder->base.crtc)
3971                 intel_encoder_dpms(encoder, mode);
3972         else
3973                 WARN_ON(encoder->connectors_active != false);
3974
3975         intel_modeset_check_state(connector->dev);
3976 }
3977
3978 /* Simple connector->get_hw_state implementation for encoders that support only
3979  * one connector and no cloning and hence the encoder state determines the state
3980  * of the connector. */
3981 bool intel_connector_get_hw_state(struct intel_connector *connector)
3982 {
3983         enum pipe pipe = 0;
3984         struct intel_encoder *encoder = connector->encoder;
3985
3986         return encoder->get_hw_state(encoder, &pipe);
3987 }
3988
3989 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3990                                      struct intel_crtc_config *pipe_config)
3991 {
3992         struct drm_i915_private *dev_priv = dev->dev_private;
3993         struct intel_crtc *pipe_B_crtc =
3994                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3995
3996         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3997                       pipe_name(pipe), pipe_config->fdi_lanes);
3998         if (pipe_config->fdi_lanes > 4) {
3999                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4000                               pipe_name(pipe), pipe_config->fdi_lanes);
4001                 return false;
4002         }
4003
4004         if (IS_HASWELL(dev)) {
4005                 if (pipe_config->fdi_lanes > 2) {
4006                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4007                                       pipe_config->fdi_lanes);
4008                         return false;
4009                 } else {
4010                         return true;
4011                 }
4012         }
4013
4014         if (INTEL_INFO(dev)->num_pipes == 2)
4015                 return true;
4016
4017         /* Ivybridge 3 pipe is really complicated */
4018         switch (pipe) {
4019         case PIPE_A:
4020                 return true;
4021         case PIPE_B:
4022                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4023                     pipe_config->fdi_lanes > 2) {
4024                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4025                                       pipe_name(pipe), pipe_config->fdi_lanes);
4026                         return false;
4027                 }
4028                 return true;
4029         case PIPE_C:
4030                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4031                     pipe_B_crtc->config.fdi_lanes <= 2) {
4032                         if (pipe_config->fdi_lanes > 2) {
4033                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4034                                               pipe_name(pipe), pipe_config->fdi_lanes);
4035                                 return false;
4036                         }
4037                 } else {
4038                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4039                         return false;
4040                 }
4041                 return true;
4042         default:
4043                 BUG();
4044         }
4045 }
4046
4047 #define RETRY 1
4048 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4049                                        struct intel_crtc_config *pipe_config)
4050 {
4051         struct drm_device *dev = intel_crtc->base.dev;
4052         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4053         int target_clock, lane, link_bw;
4054         bool setup_ok, needs_recompute = false;
4055
4056 retry:
4057         /* FDI is a binary signal running at ~2.7GHz, encoding
4058          * each output octet as 10 bits. The actual frequency
4059          * is stored as a divider into a 100MHz clock, and the
4060          * mode pixel clock is stored in units of 1KHz.
4061          * Hence the bw of each lane in terms of the mode signal
4062          * is:
4063          */
4064         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4065
4066         if (pipe_config->pixel_target_clock)
4067                 target_clock = pipe_config->pixel_target_clock;
4068         else
4069                 target_clock = adjusted_mode->clock;
4070
4071         lane = ironlake_get_lanes_required(target_clock, link_bw,
4072                                            pipe_config->pipe_bpp);
4073
4074         pipe_config->fdi_lanes = lane;
4075
4076         if (pipe_config->pixel_multiplier > 1)
4077                 link_bw *= pipe_config->pixel_multiplier;
4078         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
4079                                link_bw, &pipe_config->fdi_m_n);
4080
4081         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4082                                             intel_crtc->pipe, pipe_config);
4083         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4084                 pipe_config->pipe_bpp -= 2*3;
4085                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4086                               pipe_config->pipe_bpp);
4087                 needs_recompute = true;
4088                 pipe_config->bw_constrained = true;
4089
4090                 goto retry;
4091         }
4092
4093         if (needs_recompute)
4094                 return RETRY;
4095
4096         return setup_ok ? 0 : -EINVAL;
4097 }
4098
4099 static int intel_crtc_compute_config(struct drm_crtc *crtc,
4100                                      struct intel_crtc_config *pipe_config)
4101 {
4102         struct drm_device *dev = crtc->dev;
4103         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4104
4105         if (HAS_PCH_SPLIT(dev)) {
4106                 /* FDI link clock is fixed at 2.7G */
4107                 if (pipe_config->requested_mode.clock * 3
4108                     > IRONLAKE_FDI_FREQ * 4)
4109                         return -EINVAL;
4110         }
4111
4112         /* All interlaced capable intel hw wants timings in frames. Note though
4113          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4114          * timings, so we need to be careful not to clobber these.*/
4115         if (!pipe_config->timings_set)
4116                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4117
4118         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4119          * with a hsync front porch of 0.
4120          */
4121         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4122                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4123                 return -EINVAL;
4124
4125         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4126                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4127         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4128                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4129                  * for lvds. */
4130                 pipe_config->pipe_bpp = 8*3;
4131         }
4132
4133         if (pipe_config->has_pch_encoder)
4134                 return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
4135
4136         return 0;
4137 }
4138
4139 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4140 {
4141         return 400000; /* FIXME */
4142 }
4143
4144 static int i945_get_display_clock_speed(struct drm_device *dev)
4145 {
4146         return 400000;
4147 }
4148
4149 static int i915_get_display_clock_speed(struct drm_device *dev)
4150 {
4151         return 333000;
4152 }
4153
4154 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4155 {
4156         return 200000;
4157 }
4158
4159 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4160 {
4161         u16 gcfgc = 0;
4162
4163         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4164
4165         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4166                 return 133000;
4167         else {
4168                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4169                 case GC_DISPLAY_CLOCK_333_MHZ:
4170                         return 333000;
4171                 default:
4172                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4173                         return 190000;
4174                 }
4175         }
4176 }
4177
4178 static int i865_get_display_clock_speed(struct drm_device *dev)
4179 {
4180         return 266000;
4181 }
4182
4183 static int i855_get_display_clock_speed(struct drm_device *dev)
4184 {
4185         u16 hpllcc = 0;
4186         /* Assume that the hardware is in the high speed state.  This
4187          * should be the default.
4188          */
4189         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4190         case GC_CLOCK_133_200:
4191         case GC_CLOCK_100_200:
4192                 return 200000;
4193         case GC_CLOCK_166_250:
4194                 return 250000;
4195         case GC_CLOCK_100_133:
4196                 return 133000;
4197         }
4198
4199         /* Shouldn't happen */
4200         return 0;
4201 }
4202
4203 static int i830_get_display_clock_speed(struct drm_device *dev)
4204 {
4205         return 133000;
4206 }
4207
4208 static void
4209 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4210 {
4211         while (*num > 0xffffff || *den > 0xffffff) {
4212                 *num >>= 1;
4213                 *den >>= 1;
4214         }
4215 }
4216
4217 void
4218 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4219                        int pixel_clock, int link_clock,
4220                        struct intel_link_m_n *m_n)
4221 {
4222         m_n->tu = 64;
4223         m_n->gmch_m = bits_per_pixel * pixel_clock;
4224         m_n->gmch_n = link_clock * nlanes * 8;
4225         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4226         m_n->link_m = pixel_clock;
4227         m_n->link_n = link_clock;
4228         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4229 }
4230
4231 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4232 {
4233         if (i915_panel_use_ssc >= 0)
4234                 return i915_panel_use_ssc != 0;
4235         return dev_priv->lvds_use_ssc
4236                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4237 }
4238
4239 static int vlv_get_refclk(struct drm_crtc *crtc)
4240 {
4241         struct drm_device *dev = crtc->dev;
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         int refclk = 27000; /* for DP & HDMI */
4244
4245         return 100000; /* only one validated so far */
4246
4247         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4248                 refclk = 96000;
4249         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4250                 if (intel_panel_use_ssc(dev_priv))
4251                         refclk = 100000;
4252                 else
4253                         refclk = 96000;
4254         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4255                 refclk = 100000;
4256         }
4257
4258         return refclk;
4259 }
4260
4261 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4262 {
4263         struct drm_device *dev = crtc->dev;
4264         struct drm_i915_private *dev_priv = dev->dev_private;
4265         int refclk;
4266
4267         if (IS_VALLEYVIEW(dev)) {
4268                 refclk = vlv_get_refclk(crtc);
4269         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4270             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4271                 refclk = dev_priv->lvds_ssc_freq * 1000;
4272                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4273                               refclk / 1000);
4274         } else if (!IS_GEN2(dev)) {
4275                 refclk = 96000;
4276         } else {
4277                 refclk = 48000;
4278         }
4279
4280         return refclk;
4281 }
4282
4283 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4284 {
4285         unsigned dotclock = crtc->config.adjusted_mode.clock;
4286         struct dpll *clock = &crtc->config.dpll;
4287
4288         /* SDVO TV has fixed PLL values depend on its clock range,
4289            this mirrors vbios setting. */
4290         if (dotclock >= 100000 && dotclock < 140500) {
4291                 clock->p1 = 2;
4292                 clock->p2 = 10;
4293                 clock->n = 3;
4294                 clock->m1 = 16;
4295                 clock->m2 = 8;
4296         } else if (dotclock >= 140500 && dotclock <= 200000) {
4297                 clock->p1 = 1;
4298                 clock->p2 = 10;
4299                 clock->n = 6;
4300                 clock->m1 = 12;
4301                 clock->m2 = 8;
4302         }
4303
4304         crtc->config.clock_set = true;
4305 }
4306
4307 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4308 {
4309         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4310 }
4311
4312 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4313 {
4314         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4315 }
4316
4317 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4318                                      intel_clock_t *reduced_clock)
4319 {
4320         struct drm_device *dev = crtc->base.dev;
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322         int pipe = crtc->pipe;
4323         u32 fp, fp2 = 0;
4324
4325         if (IS_PINEVIEW(dev)) {
4326                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4327                 if (reduced_clock)
4328                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4329         } else {
4330                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4331                 if (reduced_clock)
4332                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4333         }
4334
4335         I915_WRITE(FP0(pipe), fp);
4336
4337         crtc->lowfreq_avail = false;
4338         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4339             reduced_clock && i915_powersave) {
4340                 I915_WRITE(FP1(pipe), fp2);
4341                 crtc->lowfreq_avail = true;
4342         } else {
4343                 I915_WRITE(FP1(pipe), fp);
4344         }
4345 }
4346
4347 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4348 {
4349         u32 reg_val;
4350
4351         /*
4352          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4353          * and set it to a reasonable value instead.
4354          */
4355         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4356         reg_val &= 0xffffff00;
4357         reg_val |= 0x00000030;
4358         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4359
4360         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4361         reg_val &= 0x8cffffff;
4362         reg_val = 0x8c000000;
4363         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4364
4365         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4366         reg_val &= 0xffffff00;
4367         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4368
4369         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4370         reg_val &= 0x00ffffff;
4371         reg_val |= 0xb0000000;
4372         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4373 }
4374
4375 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4376 {
4377         if (crtc->config.has_pch_encoder)
4378                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4379         else
4380                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4381 }
4382
4383 static void vlv_update_pll(struct intel_crtc *crtc)
4384 {
4385         struct drm_device *dev = crtc->base.dev;
4386         struct drm_i915_private *dev_priv = dev->dev_private;
4387         struct drm_display_mode *adjusted_mode =
4388                 &crtc->config.adjusted_mode;
4389         struct intel_encoder *encoder;
4390         int pipe = crtc->pipe;
4391         u32 dpll, mdiv;
4392         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4393         bool is_hdmi;
4394         u32 coreclk, reg_val, dpll_md;
4395
4396         mutex_lock(&dev_priv->dpio_lock);
4397
4398         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4399
4400         bestn = crtc->config.dpll.n;
4401         bestm1 = crtc->config.dpll.m1;
4402         bestm2 = crtc->config.dpll.m2;
4403         bestp1 = crtc->config.dpll.p1;
4404         bestp2 = crtc->config.dpll.p2;
4405
4406         /* See eDP HDMI DPIO driver vbios notes doc */
4407
4408         /* PLL B needs special handling */
4409         if (pipe)
4410                 vlv_pllb_recal_opamp(dev_priv);
4411
4412         /* Set up Tx target for periodic Rcomp update */
4413         intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4414
4415         /* Disable target IRef on PLL */
4416         reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4417         reg_val &= 0x00ffffff;
4418         intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4419
4420         /* Disable fast lock */
4421         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4422
4423         /* Set idtafcrecal before PLL is enabled */
4424         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4425         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4426         mdiv |= ((bestn << DPIO_N_SHIFT));
4427         mdiv |= (1 << DPIO_K_SHIFT);
4428         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
4429             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4430             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4431                 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4432         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4433
4434         mdiv |= DPIO_ENABLE_CALIBRATION;
4435         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4436
4437         /* Set HBR and RBR LPF coefficients */
4438         if (adjusted_mode->clock == 162000 ||
4439             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4440                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4441                                  0x005f0021);
4442         else
4443                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4444                                  0x00d0000f);
4445
4446         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4447             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4448                 /* Use SSC source */
4449                 if (!pipe)
4450                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4451                                          0x0df40000);
4452                 else
4453                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4454                                          0x0df70000);
4455         } else { /* HDMI or VGA */
4456                 /* Use bend source */
4457                 if (!pipe)
4458                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4459                                          0x0df70000);
4460                 else
4461                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4462                                          0x0df40000);
4463         }
4464
4465         coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4466         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4467         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4468             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4469                 coreclk |= 0x01000000;
4470         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4471
4472         intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4473
4474         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4475                 if (encoder->pre_pll_enable)
4476                         encoder->pre_pll_enable(encoder);
4477
4478         /* Enable DPIO clock input */
4479         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4480                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4481         if (pipe)
4482                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4483
4484         dpll |= DPLL_VCO_ENABLE;
4485         I915_WRITE(DPLL(pipe), dpll);
4486         POSTING_READ(DPLL(pipe));
4487         udelay(150);
4488
4489         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4490                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4491
4492         dpll_md = 0;
4493         if (crtc->config.pixel_multiplier > 1) {
4494                 dpll_md = (crtc->config.pixel_multiplier - 1)
4495                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4496         }
4497         I915_WRITE(DPLL_MD(pipe), dpll_md);
4498         POSTING_READ(DPLL_MD(pipe));
4499
4500         if (crtc->config.has_dp_encoder)
4501                 intel_dp_set_m_n(crtc);
4502
4503         mutex_unlock(&dev_priv->dpio_lock);
4504 }
4505
4506 static void i9xx_update_pll(struct intel_crtc *crtc,
4507                             intel_clock_t *reduced_clock,
4508                             int num_connectors)
4509 {
4510         struct drm_device *dev = crtc->base.dev;
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         struct intel_encoder *encoder;
4513         int pipe = crtc->pipe;
4514         u32 dpll;
4515         bool is_sdvo;
4516         struct dpll *clock = &crtc->config.dpll;
4517
4518         i9xx_update_pll_dividers(crtc, reduced_clock);
4519
4520         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4521                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4522
4523         dpll = DPLL_VGA_MODE_DIS;
4524
4525         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4526                 dpll |= DPLLB_MODE_LVDS;
4527         else
4528                 dpll |= DPLLB_MODE_DAC_SERIAL;
4529
4530         if ((crtc->config.pixel_multiplier > 1) &&
4531             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4532                 dpll |= (crtc->config.pixel_multiplier - 1)
4533                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4534         }
4535
4536         if (is_sdvo)
4537                 dpll |= DPLL_DVO_HIGH_SPEED;
4538
4539         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4540                 dpll |= DPLL_DVO_HIGH_SPEED;
4541
4542         /* compute bitmask from p1 value */
4543         if (IS_PINEVIEW(dev))
4544                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4545         else {
4546                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4547                 if (IS_G4X(dev) && reduced_clock)
4548                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4549         }
4550         switch (clock->p2) {
4551         case 5:
4552                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4553                 break;
4554         case 7:
4555                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4556                 break;
4557         case 10:
4558                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4559                 break;
4560         case 14:
4561                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4562                 break;
4563         }
4564         if (INTEL_INFO(dev)->gen >= 4)
4565                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4566
4567         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4568                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4569         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4570                 /* XXX: just matching BIOS for now */
4571                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4572                 dpll |= 3;
4573         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4574                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4575                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4576         else
4577                 dpll |= PLL_REF_INPUT_DREFCLK;
4578
4579         dpll |= DPLL_VCO_ENABLE;
4580         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4581         POSTING_READ(DPLL(pipe));
4582         udelay(150);
4583
4584         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4585                 if (encoder->pre_pll_enable)
4586                         encoder->pre_pll_enable(encoder);
4587
4588         if (crtc->config.has_dp_encoder)
4589                 intel_dp_set_m_n(crtc);
4590
4591         I915_WRITE(DPLL(pipe), dpll);
4592
4593         /* Wait for the clocks to stabilize. */
4594         POSTING_READ(DPLL(pipe));
4595         udelay(150);
4596
4597         if (INTEL_INFO(dev)->gen >= 4) {
4598                 u32 dpll_md = 0;
4599                 if (crtc->config.pixel_multiplier > 1) {
4600                         dpll_md = (crtc->config.pixel_multiplier - 1)
4601                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4602                 }
4603                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4604         } else {
4605                 /* The pixel multiplier can only be updated once the
4606                  * DPLL is enabled and the clocks are stable.
4607                  *
4608                  * So write it again.
4609                  */
4610                 I915_WRITE(DPLL(pipe), dpll);
4611         }
4612 }
4613
4614 static void i8xx_update_pll(struct intel_crtc *crtc,
4615                             struct drm_display_mode *adjusted_mode,
4616                             intel_clock_t *reduced_clock,
4617                             int num_connectors)
4618 {
4619         struct drm_device *dev = crtc->base.dev;
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         struct intel_encoder *encoder;
4622         int pipe = crtc->pipe;
4623         u32 dpll;
4624         struct dpll *clock = &crtc->config.dpll;
4625
4626         i9xx_update_pll_dividers(crtc, reduced_clock);
4627
4628         dpll = DPLL_VGA_MODE_DIS;
4629
4630         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4631                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4632         } else {
4633                 if (clock->p1 == 2)
4634                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4635                 else
4636                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4637                 if (clock->p2 == 4)
4638                         dpll |= PLL_P2_DIVIDE_BY_4;
4639         }
4640
4641         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4642                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4643                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4644         else
4645                 dpll |= PLL_REF_INPUT_DREFCLK;
4646
4647         dpll |= DPLL_VCO_ENABLE;
4648         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4649         POSTING_READ(DPLL(pipe));
4650         udelay(150);
4651
4652         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4653                 if (encoder->pre_pll_enable)
4654                         encoder->pre_pll_enable(encoder);
4655
4656         I915_WRITE(DPLL(pipe), dpll);
4657
4658         /* Wait for the clocks to stabilize. */
4659         POSTING_READ(DPLL(pipe));
4660         udelay(150);
4661
4662         /* The pixel multiplier can only be updated once the
4663          * DPLL is enabled and the clocks are stable.
4664          *
4665          * So write it again.
4666          */
4667         I915_WRITE(DPLL(pipe), dpll);
4668 }
4669
4670 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4671                                    struct drm_display_mode *mode,
4672                                    struct drm_display_mode *adjusted_mode)
4673 {
4674         struct drm_device *dev = intel_crtc->base.dev;
4675         struct drm_i915_private *dev_priv = dev->dev_private;
4676         enum pipe pipe = intel_crtc->pipe;
4677         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4678         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4679
4680         /* We need to be careful not to changed the adjusted mode, for otherwise
4681          * the hw state checker will get angry at the mismatch. */
4682         crtc_vtotal = adjusted_mode->crtc_vtotal;
4683         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4684
4685         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4686                 /* the chip adds 2 halflines automatically */
4687                 crtc_vtotal -= 1;
4688                 crtc_vblank_end -= 1;
4689                 vsyncshift = adjusted_mode->crtc_hsync_start
4690                              - adjusted_mode->crtc_htotal / 2;
4691         } else {
4692                 vsyncshift = 0;
4693         }
4694
4695         if (INTEL_INFO(dev)->gen > 3)
4696                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4697
4698         I915_WRITE(HTOTAL(cpu_transcoder),
4699                    (adjusted_mode->crtc_hdisplay - 1) |
4700                    ((adjusted_mode->crtc_htotal - 1) << 16));
4701         I915_WRITE(HBLANK(cpu_transcoder),
4702                    (adjusted_mode->crtc_hblank_start - 1) |
4703                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4704         I915_WRITE(HSYNC(cpu_transcoder),
4705                    (adjusted_mode->crtc_hsync_start - 1) |
4706                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4707
4708         I915_WRITE(VTOTAL(cpu_transcoder),
4709                    (adjusted_mode->crtc_vdisplay - 1) |
4710                    ((crtc_vtotal - 1) << 16));
4711         I915_WRITE(VBLANK(cpu_transcoder),
4712                    (adjusted_mode->crtc_vblank_start - 1) |
4713                    ((crtc_vblank_end - 1) << 16));
4714         I915_WRITE(VSYNC(cpu_transcoder),
4715                    (adjusted_mode->crtc_vsync_start - 1) |
4716                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4717
4718         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4719          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4720          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4721          * bits. */
4722         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4723             (pipe == PIPE_B || pipe == PIPE_C))
4724                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4725
4726         /* pipesrc controls the size that is scaled from, which should
4727          * always be the user's requested size.
4728          */
4729         I915_WRITE(PIPESRC(pipe),
4730                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4731 }
4732
4733 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4734                                    struct intel_crtc_config *pipe_config)
4735 {
4736         struct drm_device *dev = crtc->base.dev;
4737         struct drm_i915_private *dev_priv = dev->dev_private;
4738         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4739         uint32_t tmp;
4740
4741         tmp = I915_READ(HTOTAL(cpu_transcoder));
4742         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4743         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4744         tmp = I915_READ(HBLANK(cpu_transcoder));
4745         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4746         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4747         tmp = I915_READ(HSYNC(cpu_transcoder));
4748         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4749         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4750
4751         tmp = I915_READ(VTOTAL(cpu_transcoder));
4752         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4753         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4754         tmp = I915_READ(VBLANK(cpu_transcoder));
4755         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4756         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4757         tmp = I915_READ(VSYNC(cpu_transcoder));
4758         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4759         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4760
4761         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4762                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4763                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4764                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4765         }
4766
4767         tmp = I915_READ(PIPESRC(crtc->pipe));
4768         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4769         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4770 }
4771
4772 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4773 {
4774         struct drm_device *dev = intel_crtc->base.dev;
4775         struct drm_i915_private *dev_priv = dev->dev_private;
4776         uint32_t pipeconf;
4777
4778         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4779
4780         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4781                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4782                  * core speed.
4783                  *
4784                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4785                  * pipe == 0 check?
4786                  */
4787                 if (intel_crtc->config.requested_mode.clock >
4788                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4789                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4790                 else
4791                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4792         }
4793
4794         /* only g4x and later have fancy bpc/dither controls */
4795         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4796                 pipeconf &= ~(PIPECONF_BPC_MASK |
4797                               PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4798
4799                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4800                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4801                         pipeconf |= PIPECONF_DITHER_EN |
4802                                     PIPECONF_DITHER_TYPE_SP;
4803
4804                 switch (intel_crtc->config.pipe_bpp) {
4805                 case 18:
4806                         pipeconf |= PIPECONF_6BPC;
4807                         break;
4808                 case 24:
4809                         pipeconf |= PIPECONF_8BPC;
4810                         break;
4811                 case 30:
4812                         pipeconf |= PIPECONF_10BPC;
4813                         break;
4814                 default:
4815                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4816                         BUG();
4817                 }
4818         }
4819
4820         if (HAS_PIPE_CXSR(dev)) {
4821                 if (intel_crtc->lowfreq_avail) {
4822                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4823                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4824                 } else {
4825                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4826                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4827                 }
4828         }
4829
4830         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4831         if (!IS_GEN2(dev) &&
4832             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4833                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4834         else
4835                 pipeconf |= PIPECONF_PROGRESSIVE;
4836
4837         if (IS_VALLEYVIEW(dev)) {
4838                 if (intel_crtc->config.limited_color_range)
4839                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4840                 else
4841                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4842         }
4843
4844         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4845         POSTING_READ(PIPECONF(intel_crtc->pipe));
4846 }
4847
4848 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4849                               int x, int y,
4850                               struct drm_framebuffer *fb)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct drm_i915_private *dev_priv = dev->dev_private;
4854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855         struct drm_display_mode *adjusted_mode =
4856                 &intel_crtc->config.adjusted_mode;
4857         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4858         int pipe = intel_crtc->pipe;
4859         int plane = intel_crtc->plane;
4860         int refclk, num_connectors = 0;
4861         intel_clock_t clock, reduced_clock;
4862         u32 dspcntr;
4863         bool ok, has_reduced_clock = false, is_sdvo = false;
4864         bool is_lvds = false, is_tv = false;
4865         struct intel_encoder *encoder;
4866         const intel_limit_t *limit;
4867         int ret;
4868
4869         for_each_encoder_on_crtc(dev, crtc, encoder) {
4870                 switch (encoder->type) {
4871                 case INTEL_OUTPUT_LVDS:
4872                         is_lvds = true;
4873                         break;
4874                 case INTEL_OUTPUT_SDVO:
4875                 case INTEL_OUTPUT_HDMI:
4876                         is_sdvo = true;
4877                         if (encoder->needs_tv_clock)
4878                                 is_tv = true;
4879                         break;
4880                 case INTEL_OUTPUT_TVOUT:
4881                         is_tv = true;
4882                         break;
4883                 }
4884
4885                 num_connectors++;
4886         }
4887
4888         refclk = i9xx_get_refclk(crtc, num_connectors);
4889
4890         /*
4891          * Returns a set of divisors for the desired target clock with the given
4892          * refclk, or FALSE.  The returned values represent the clock equation:
4893          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4894          */
4895         limit = intel_limit(crtc, refclk);
4896         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4897                              &clock);
4898         if (!ok) {
4899                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4900                 return -EINVAL;
4901         }
4902
4903         /* Ensure that the cursor is valid for the new mode before changing... */
4904         intel_crtc_update_cursor(crtc, true);
4905
4906         if (is_lvds && dev_priv->lvds_downclock_avail) {
4907                 /*
4908                  * Ensure we match the reduced clock's P to the target clock.
4909                  * If the clocks don't match, we can't switch the display clock
4910                  * by using the FP0/FP1. In such case we will disable the LVDS
4911                  * downclock feature.
4912                 */
4913                 has_reduced_clock = limit->find_pll(limit, crtc,
4914                                                     dev_priv->lvds_downclock,
4915                                                     refclk,
4916                                                     &clock,
4917                                                     &reduced_clock);
4918         }
4919         /* Compat-code for transition, will disappear. */
4920         if (!intel_crtc->config.clock_set) {
4921                 intel_crtc->config.dpll.n = clock.n;
4922                 intel_crtc->config.dpll.m1 = clock.m1;
4923                 intel_crtc->config.dpll.m2 = clock.m2;
4924                 intel_crtc->config.dpll.p1 = clock.p1;
4925                 intel_crtc->config.dpll.p2 = clock.p2;
4926         }
4927
4928         if (is_sdvo && is_tv)
4929                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4930
4931         if (IS_GEN2(dev))
4932                 i8xx_update_pll(intel_crtc, adjusted_mode,
4933                                 has_reduced_clock ? &reduced_clock : NULL,
4934                                 num_connectors);
4935         else if (IS_VALLEYVIEW(dev))
4936                 vlv_update_pll(intel_crtc);
4937         else
4938                 i9xx_update_pll(intel_crtc,
4939                                 has_reduced_clock ? &reduced_clock : NULL,
4940                                 num_connectors);
4941
4942         /* Set up the display plane register */
4943         dspcntr = DISPPLANE_GAMMA_ENABLE;
4944
4945         if (!IS_VALLEYVIEW(dev)) {
4946                 if (pipe == 0)
4947                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4948                 else
4949                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4950         }
4951
4952         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4953         drm_mode_debug_printmodeline(mode);
4954
4955         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4956
4957         /* pipesrc and dspsize control the size that is scaled from,
4958          * which should always be the user's requested size.
4959          */
4960         I915_WRITE(DSPSIZE(plane),
4961                    ((mode->vdisplay - 1) << 16) |
4962                    (mode->hdisplay - 1));
4963         I915_WRITE(DSPPOS(plane), 0);
4964
4965         i9xx_set_pipeconf(intel_crtc);
4966
4967         I915_WRITE(DSPCNTR(plane), dspcntr);
4968         POSTING_READ(DSPCNTR(plane));
4969
4970         ret = intel_pipe_set_base(crtc, x, y, fb);
4971
4972         intel_update_watermarks(dev);
4973
4974         return ret;
4975 }
4976
4977 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4978                                  struct intel_crtc_config *pipe_config)
4979 {
4980         struct drm_device *dev = crtc->base.dev;
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982         uint32_t tmp;
4983
4984         tmp = I915_READ(PIPECONF(crtc->pipe));
4985         if (!(tmp & PIPECONF_ENABLE))
4986                 return false;
4987
4988         intel_get_pipe_timings(crtc, pipe_config);
4989
4990         return true;
4991 }
4992
4993 static void ironlake_init_pch_refclk(struct drm_device *dev)
4994 {
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         struct drm_mode_config *mode_config = &dev->mode_config;
4997         struct intel_encoder *encoder;
4998         u32 val, final;
4999         bool has_lvds = false;
5000         bool has_cpu_edp = false;
5001         bool has_pch_edp = false;
5002         bool has_panel = false;
5003         bool has_ck505 = false;
5004         bool can_ssc = false;
5005
5006         /* We need to take the global config into account */
5007         list_for_each_entry(encoder, &mode_config->encoder_list,
5008                             base.head) {
5009                 switch (encoder->type) {
5010                 case INTEL_OUTPUT_LVDS:
5011                         has_panel = true;
5012                         has_lvds = true;
5013                         break;
5014                 case INTEL_OUTPUT_EDP:
5015                         has_panel = true;
5016                         if (intel_encoder_is_pch_edp(&encoder->base))
5017                                 has_pch_edp = true;
5018                         else
5019                                 has_cpu_edp = true;
5020                         break;
5021                 }
5022         }
5023
5024         if (HAS_PCH_IBX(dev)) {
5025                 has_ck505 = dev_priv->display_clock_mode;
5026                 can_ssc = has_ck505;
5027         } else {
5028                 has_ck505 = false;
5029                 can_ssc = true;
5030         }
5031
5032         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5033                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5034                       has_ck505);
5035
5036         /* Ironlake: try to setup display ref clock before DPLL
5037          * enabling. This is only under driver's control after
5038          * PCH B stepping, previous chipset stepping should be
5039          * ignoring this setting.
5040          */
5041         val = I915_READ(PCH_DREF_CONTROL);
5042
5043         /* As we must carefully and slowly disable/enable each source in turn,
5044          * compute the final state we want first and check if we need to
5045          * make any changes at all.
5046          */
5047         final = val;
5048         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5049         if (has_ck505)
5050                 final |= DREF_NONSPREAD_CK505_ENABLE;
5051         else
5052                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5053
5054         final &= ~DREF_SSC_SOURCE_MASK;
5055         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5056         final &= ~DREF_SSC1_ENABLE;
5057
5058         if (has_panel) {
5059                 final |= DREF_SSC_SOURCE_ENABLE;
5060
5061                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5062                         final |= DREF_SSC1_ENABLE;
5063
5064                 if (has_cpu_edp) {
5065                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5066                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5067                         else
5068                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5069                 } else
5070                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5071         } else {
5072                 final |= DREF_SSC_SOURCE_DISABLE;
5073                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5074         }
5075
5076         if (final == val)
5077                 return;
5078
5079         /* Always enable nonspread source */
5080         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5081
5082         if (has_ck505)
5083                 val |= DREF_NONSPREAD_CK505_ENABLE;
5084         else
5085                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5086
5087         if (has_panel) {
5088                 val &= ~DREF_SSC_SOURCE_MASK;
5089                 val |= DREF_SSC_SOURCE_ENABLE;
5090
5091                 /* SSC must be turned on before enabling the CPU output  */
5092                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5093                         DRM_DEBUG_KMS("Using SSC on panel\n");
5094                         val |= DREF_SSC1_ENABLE;
5095                 } else
5096                         val &= ~DREF_SSC1_ENABLE;
5097
5098                 /* Get SSC going before enabling the outputs */
5099                 I915_WRITE(PCH_DREF_CONTROL, val);
5100                 POSTING_READ(PCH_DREF_CONTROL);
5101                 udelay(200);
5102
5103                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5104
5105                 /* Enable CPU source on CPU attached eDP */
5106                 if (has_cpu_edp) {
5107                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5108                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5109                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5110                         }
5111                         else
5112                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5113                 } else
5114                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5115
5116                 I915_WRITE(PCH_DREF_CONTROL, val);
5117                 POSTING_READ(PCH_DREF_CONTROL);
5118                 udelay(200);
5119         } else {
5120                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5121
5122                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5123
5124                 /* Turn off CPU output */
5125                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5126
5127                 I915_WRITE(PCH_DREF_CONTROL, val);
5128                 POSTING_READ(PCH_DREF_CONTROL);
5129                 udelay(200);
5130
5131                 /* Turn off the SSC source */
5132                 val &= ~DREF_SSC_SOURCE_MASK;
5133                 val |= DREF_SSC_SOURCE_DISABLE;
5134
5135                 /* Turn off SSC1 */
5136                 val &= ~DREF_SSC1_ENABLE;
5137
5138                 I915_WRITE(PCH_DREF_CONTROL, val);
5139                 POSTING_READ(PCH_DREF_CONTROL);
5140                 udelay(200);
5141         }
5142
5143         BUG_ON(val != final);
5144 }
5145
5146 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5147 static void lpt_init_pch_refclk(struct drm_device *dev)
5148 {
5149         struct drm_i915_private *dev_priv = dev->dev_private;
5150         struct drm_mode_config *mode_config = &dev->mode_config;
5151         struct intel_encoder *encoder;
5152         bool has_vga = false;
5153         bool is_sdv = false;
5154         u32 tmp;
5155
5156         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5157                 switch (encoder->type) {
5158                 case INTEL_OUTPUT_ANALOG:
5159                         has_vga = true;
5160                         break;
5161                 }
5162         }
5163
5164         if (!has_vga)
5165                 return;
5166
5167         mutex_lock(&dev_priv->dpio_lock);
5168
5169         /* XXX: Rip out SDV support once Haswell ships for real. */
5170         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5171                 is_sdv = true;
5172
5173         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5174         tmp &= ~SBI_SSCCTL_DISABLE;
5175         tmp |= SBI_SSCCTL_PATHALT;
5176         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5177
5178         udelay(24);
5179
5180         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5181         tmp &= ~SBI_SSCCTL_PATHALT;
5182         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5183
5184         if (!is_sdv) {
5185                 tmp = I915_READ(SOUTH_CHICKEN2);
5186                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5187                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5188
5189                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5190                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5191                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5192
5193                 tmp = I915_READ(SOUTH_CHICKEN2);
5194                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5195                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5196
5197                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5198                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5199                                        100))
5200                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5201         }
5202
5203         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5204         tmp &= ~(0xFF << 24);
5205         tmp |= (0x12 << 24);
5206         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5207
5208         if (is_sdv) {
5209                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5210                 tmp |= 0x7FFF;
5211                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5212         }
5213
5214         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5215         tmp |= (1 << 11);
5216         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5217
5218         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5219         tmp |= (1 << 11);
5220         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5221
5222         if (is_sdv) {
5223                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5224                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5225                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5226
5227                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5228                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5229                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5230
5231                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5232                 tmp |= (0x3F << 8);
5233                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5234
5235                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5236                 tmp |= (0x3F << 8);
5237                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5238         }
5239
5240         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5241         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5242         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5243
5244         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5245         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5246         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5247
5248         if (!is_sdv) {
5249                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5250                 tmp &= ~(7 << 13);
5251                 tmp |= (5 << 13);
5252                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5253
5254                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5255                 tmp &= ~(7 << 13);
5256                 tmp |= (5 << 13);
5257                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5258         }
5259
5260         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5261         tmp &= ~0xFF;
5262         tmp |= 0x1C;
5263         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5264
5265         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5266         tmp &= ~0xFF;
5267         tmp |= 0x1C;
5268         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5269
5270         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5271         tmp &= ~(0xFF << 16);
5272         tmp |= (0x1C << 16);
5273         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5274
5275         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5276         tmp &= ~(0xFF << 16);
5277         tmp |= (0x1C << 16);
5278         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5279
5280         if (!is_sdv) {
5281                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5282                 tmp |= (1 << 27);
5283                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5284
5285                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5286                 tmp |= (1 << 27);
5287                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5288
5289                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5290                 tmp &= ~(0xF << 28);
5291                 tmp |= (4 << 28);
5292                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5293
5294                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5295                 tmp &= ~(0xF << 28);
5296                 tmp |= (4 << 28);
5297                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5298         }
5299
5300         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5301         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5302         tmp |= SBI_DBUFF0_ENABLE;
5303         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5304
5305         mutex_unlock(&dev_priv->dpio_lock);
5306 }
5307
5308 /*
5309  * Initialize reference clocks when the driver loads
5310  */
5311 void intel_init_pch_refclk(struct drm_device *dev)
5312 {
5313         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5314                 ironlake_init_pch_refclk(dev);
5315         else if (HAS_PCH_LPT(dev))
5316                 lpt_init_pch_refclk(dev);
5317 }
5318
5319 static int ironlake_get_refclk(struct drm_crtc *crtc)
5320 {
5321         struct drm_device *dev = crtc->dev;
5322         struct drm_i915_private *dev_priv = dev->dev_private;
5323         struct intel_encoder *encoder;
5324         struct intel_encoder *edp_encoder = NULL;
5325         int num_connectors = 0;
5326         bool is_lvds = false;
5327
5328         for_each_encoder_on_crtc(dev, crtc, encoder) {
5329                 switch (encoder->type) {
5330                 case INTEL_OUTPUT_LVDS:
5331                         is_lvds = true;
5332                         break;
5333                 case INTEL_OUTPUT_EDP:
5334                         edp_encoder = encoder;
5335                         break;
5336                 }
5337                 num_connectors++;
5338         }
5339
5340         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5341                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5342                               dev_priv->lvds_ssc_freq);
5343                 return dev_priv->lvds_ssc_freq * 1000;
5344         }
5345
5346         return 120000;
5347 }
5348
5349 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5350 {
5351         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5353         int pipe = intel_crtc->pipe;
5354         uint32_t val;
5355
5356         val = I915_READ(PIPECONF(pipe));
5357
5358         val &= ~PIPECONF_BPC_MASK;
5359         switch (intel_crtc->config.pipe_bpp) {
5360         case 18:
5361                 val |= PIPECONF_6BPC;
5362                 break;
5363         case 24:
5364                 val |= PIPECONF_8BPC;
5365                 break;
5366         case 30:
5367                 val |= PIPECONF_10BPC;
5368                 break;
5369         case 36:
5370                 val |= PIPECONF_12BPC;
5371                 break;
5372         default:
5373                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5374                 BUG();
5375         }
5376
5377         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5378         if (intel_crtc->config.dither)
5379                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5380
5381         val &= ~PIPECONF_INTERLACE_MASK;
5382         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5383                 val |= PIPECONF_INTERLACED_ILK;
5384         else
5385                 val |= PIPECONF_PROGRESSIVE;
5386
5387         if (intel_crtc->config.limited_color_range)
5388                 val |= PIPECONF_COLOR_RANGE_SELECT;
5389         else
5390                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5391
5392         I915_WRITE(PIPECONF(pipe), val);
5393         POSTING_READ(PIPECONF(pipe));
5394 }
5395
5396 /*
5397  * Set up the pipe CSC unit.
5398  *
5399  * Currently only full range RGB to limited range RGB conversion
5400  * is supported, but eventually this should handle various
5401  * RGB<->YCbCr scenarios as well.
5402  */
5403 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5404 {
5405         struct drm_device *dev = crtc->dev;
5406         struct drm_i915_private *dev_priv = dev->dev_private;
5407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5408         int pipe = intel_crtc->pipe;
5409         uint16_t coeff = 0x7800; /* 1.0 */
5410
5411         /*
5412          * TODO: Check what kind of values actually come out of the pipe
5413          * with these coeff/postoff values and adjust to get the best
5414          * accuracy. Perhaps we even need to take the bpc value into
5415          * consideration.
5416          */
5417
5418         if (intel_crtc->config.limited_color_range)
5419                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5420
5421         /*
5422          * GY/GU and RY/RU should be the other way around according
5423          * to BSpec, but reality doesn't agree. Just set them up in
5424          * a way that results in the correct picture.
5425          */
5426         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5427         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5428
5429         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5430         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5431
5432         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5433         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5434
5435         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5436         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5437         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5438
5439         if (INTEL_INFO(dev)->gen > 6) {
5440                 uint16_t postoff = 0;
5441
5442                 if (intel_crtc->config.limited_color_range)
5443                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5444
5445                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5446                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5447                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5448
5449                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5450         } else {
5451                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5452
5453                 if (intel_crtc->config.limited_color_range)
5454                         mode |= CSC_BLACK_SCREEN_OFFSET;
5455
5456                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5457         }
5458 }
5459
5460 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5461 {
5462         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5465         uint32_t val;
5466
5467         val = I915_READ(PIPECONF(cpu_transcoder));
5468
5469         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5470         if (intel_crtc->config.dither)
5471                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5472
5473         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5474         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5475                 val |= PIPECONF_INTERLACED_ILK;
5476         else
5477                 val |= PIPECONF_PROGRESSIVE;
5478
5479         I915_WRITE(PIPECONF(cpu_transcoder), val);
5480         POSTING_READ(PIPECONF(cpu_transcoder));
5481 }
5482
5483 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5484                                     struct drm_display_mode *adjusted_mode,
5485                                     intel_clock_t *clock,
5486                                     bool *has_reduced_clock,
5487                                     intel_clock_t *reduced_clock)
5488 {
5489         struct drm_device *dev = crtc->dev;
5490         struct drm_i915_private *dev_priv = dev->dev_private;
5491         struct intel_encoder *intel_encoder;
5492         int refclk;
5493         const intel_limit_t *limit;
5494         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5495
5496         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5497                 switch (intel_encoder->type) {
5498                 case INTEL_OUTPUT_LVDS:
5499                         is_lvds = true;
5500                         break;
5501                 case INTEL_OUTPUT_SDVO:
5502                 case INTEL_OUTPUT_HDMI:
5503                         is_sdvo = true;
5504                         if (intel_encoder->needs_tv_clock)
5505                                 is_tv = true;
5506                         break;
5507                 case INTEL_OUTPUT_TVOUT:
5508                         is_tv = true;
5509                         break;
5510                 }
5511         }
5512
5513         refclk = ironlake_get_refclk(crtc);
5514
5515         /*
5516          * Returns a set of divisors for the desired target clock with the given
5517          * refclk, or FALSE.  The returned values represent the clock equation:
5518          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5519          */
5520         limit = intel_limit(crtc, refclk);
5521         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5522                               clock);
5523         if (!ret)
5524                 return false;
5525
5526         if (is_lvds && dev_priv->lvds_downclock_avail) {
5527                 /*
5528                  * Ensure we match the reduced clock's P to the target clock.
5529                  * If the clocks don't match, we can't switch the display clock
5530                  * by using the FP0/FP1. In such case we will disable the LVDS
5531                  * downclock feature.
5532                 */
5533                 *has_reduced_clock = limit->find_pll(limit, crtc,
5534                                                      dev_priv->lvds_downclock,
5535                                                      refclk,
5536                                                      clock,
5537                                                      reduced_clock);
5538         }
5539
5540         if (is_sdvo && is_tv)
5541                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5542
5543         return true;
5544 }
5545
5546 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5547 {
5548         struct drm_i915_private *dev_priv = dev->dev_private;
5549         uint32_t temp;
5550
5551         temp = I915_READ(SOUTH_CHICKEN1);
5552         if (temp & FDI_BC_BIFURCATION_SELECT)
5553                 return;
5554
5555         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5556         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5557
5558         temp |= FDI_BC_BIFURCATION_SELECT;
5559         DRM_DEBUG_KMS("enabling fdi C rx\n");
5560         I915_WRITE(SOUTH_CHICKEN1, temp);
5561         POSTING_READ(SOUTH_CHICKEN1);
5562 }
5563
5564 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5565 {
5566         struct drm_device *dev = intel_crtc->base.dev;
5567         struct drm_i915_private *dev_priv = dev->dev_private;
5568
5569         switch (intel_crtc->pipe) {
5570         case PIPE_A:
5571                 break;
5572         case PIPE_B:
5573                 if (intel_crtc->config.fdi_lanes > 2)
5574                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5575                 else
5576                         cpt_enable_fdi_bc_bifurcation(dev);
5577
5578                 break;
5579         case PIPE_C:
5580                 cpt_enable_fdi_bc_bifurcation(dev);
5581
5582                 break;
5583         default:
5584                 BUG();
5585         }
5586 }
5587
5588 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5589 {
5590         /*
5591          * Account for spread spectrum to avoid
5592          * oversubscribing the link. Max center spread
5593          * is 2.5%; use 5% for safety's sake.
5594          */
5595         u32 bps = target_clock * bpp * 21 / 20;
5596         return bps / (link_bw * 8) + 1;
5597 }
5598
5599 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5600                                   struct intel_link_m_n *m_n)
5601 {
5602         struct drm_device *dev = crtc->base.dev;
5603         struct drm_i915_private *dev_priv = dev->dev_private;
5604         int pipe = crtc->pipe;
5605
5606         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5607         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5608         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5609         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5610 }
5611
5612 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5613                                   struct intel_link_m_n *m_n)
5614 {
5615         struct drm_device *dev = crtc->base.dev;
5616         struct drm_i915_private *dev_priv = dev->dev_private;
5617         int pipe = crtc->pipe;
5618         enum transcoder transcoder = crtc->config.cpu_transcoder;
5619
5620         if (INTEL_INFO(dev)->gen >= 5) {
5621                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5622                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5623                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5624                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5625         } else {
5626                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5627                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5628                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5629                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5630         }
5631 }
5632
5633 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5634 {
5635         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5636 }
5637
5638 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5639                                       u32 *fp,
5640                                       intel_clock_t *reduced_clock, u32 *fp2)
5641 {
5642         struct drm_crtc *crtc = &intel_crtc->base;
5643         struct drm_device *dev = crtc->dev;
5644         struct drm_i915_private *dev_priv = dev->dev_private;
5645         struct intel_encoder *intel_encoder;
5646         uint32_t dpll;
5647         int factor, num_connectors = 0;
5648         bool is_lvds = false, is_sdvo = false, is_tv = false;
5649
5650         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5651                 switch (intel_encoder->type) {
5652                 case INTEL_OUTPUT_LVDS:
5653                         is_lvds = true;
5654                         break;
5655                 case INTEL_OUTPUT_SDVO:
5656                 case INTEL_OUTPUT_HDMI:
5657                         is_sdvo = true;
5658                         if (intel_encoder->needs_tv_clock)
5659                                 is_tv = true;
5660                         break;
5661                 case INTEL_OUTPUT_TVOUT:
5662                         is_tv = true;
5663                         break;
5664                 }
5665
5666                 num_connectors++;
5667         }
5668
5669         /* Enable autotuning of the PLL clock (if permissible) */
5670         factor = 21;
5671         if (is_lvds) {
5672                 if ((intel_panel_use_ssc(dev_priv) &&
5673                      dev_priv->lvds_ssc_freq == 100) ||
5674                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5675                         factor = 25;
5676         } else if (is_sdvo && is_tv)
5677                 factor = 20;
5678
5679         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5680                 *fp |= FP_CB_TUNE;
5681
5682         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5683                 *fp2 |= FP_CB_TUNE;
5684
5685         dpll = 0;
5686
5687         if (is_lvds)
5688                 dpll |= DPLLB_MODE_LVDS;
5689         else
5690                 dpll |= DPLLB_MODE_DAC_SERIAL;
5691
5692         if (intel_crtc->config.pixel_multiplier > 1) {
5693                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5694                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5695         }
5696
5697         if (is_sdvo)
5698                 dpll |= DPLL_DVO_HIGH_SPEED;
5699         if (intel_crtc->config.has_dp_encoder)
5700                 dpll |= DPLL_DVO_HIGH_SPEED;
5701
5702         /* compute bitmask from p1 value */
5703         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5704         /* also FPA1 */
5705         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5706
5707         switch (intel_crtc->config.dpll.p2) {
5708         case 5:
5709                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5710                 break;
5711         case 7:
5712                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5713                 break;
5714         case 10:
5715                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5716                 break;
5717         case 14:
5718                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5719                 break;
5720         }
5721
5722         if (is_sdvo && is_tv)
5723                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5724         else if (is_tv)
5725                 /* XXX: just matching BIOS for now */
5726                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5727                 dpll |= 3;
5728         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5729                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5730         else
5731                 dpll |= PLL_REF_INPUT_DREFCLK;
5732
5733         return dpll;
5734 }
5735
5736 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5737                                   int x, int y,
5738                                   struct drm_framebuffer *fb)
5739 {
5740         struct drm_device *dev = crtc->dev;
5741         struct drm_i915_private *dev_priv = dev->dev_private;
5742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5743         struct drm_display_mode *adjusted_mode =
5744                 &intel_crtc->config.adjusted_mode;
5745         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5746         int pipe = intel_crtc->pipe;
5747         int plane = intel_crtc->plane;
5748         int num_connectors = 0;
5749         intel_clock_t clock, reduced_clock;
5750         u32 dpll = 0, fp = 0, fp2 = 0;
5751         bool ok, has_reduced_clock = false;
5752         bool is_lvds = false;
5753         struct intel_encoder *encoder;
5754         int ret;
5755
5756         for_each_encoder_on_crtc(dev, crtc, encoder) {
5757                 switch (encoder->type) {
5758                 case INTEL_OUTPUT_LVDS:
5759                         is_lvds = true;
5760                         break;
5761                 }
5762
5763                 num_connectors++;
5764         }
5765
5766         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5767              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5768
5769         intel_crtc->config.cpu_transcoder = pipe;
5770
5771         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5772                                      &has_reduced_clock, &reduced_clock);
5773         if (!ok) {
5774                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5775                 return -EINVAL;
5776         }
5777         /* Compat-code for transition, will disappear. */
5778         if (!intel_crtc->config.clock_set) {
5779                 intel_crtc->config.dpll.n = clock.n;
5780                 intel_crtc->config.dpll.m1 = clock.m1;
5781                 intel_crtc->config.dpll.m2 = clock.m2;
5782                 intel_crtc->config.dpll.p1 = clock.p1;
5783                 intel_crtc->config.dpll.p2 = clock.p2;
5784         }
5785
5786         /* Ensure that the cursor is valid for the new mode before changing... */
5787         intel_crtc_update_cursor(crtc, true);
5788
5789         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5790         drm_mode_debug_printmodeline(mode);
5791
5792         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5793         if (intel_crtc->config.has_pch_encoder) {
5794                 struct intel_pch_pll *pll;
5795
5796                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5797                 if (has_reduced_clock)
5798                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5799
5800                 dpll = ironlake_compute_dpll(intel_crtc,
5801                                              &fp, &reduced_clock,
5802                                              has_reduced_clock ? &fp2 : NULL);
5803
5804                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5805                 if (pll == NULL) {
5806                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5807                                          pipe_name(pipe));
5808                         return -EINVAL;
5809                 }
5810         } else
5811                 intel_put_pch_pll(intel_crtc);
5812
5813         if (intel_crtc->config.has_dp_encoder)
5814                 intel_dp_set_m_n(intel_crtc);
5815
5816         for_each_encoder_on_crtc(dev, crtc, encoder)
5817                 if (encoder->pre_pll_enable)
5818                         encoder->pre_pll_enable(encoder);
5819
5820         if (intel_crtc->pch_pll) {
5821                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5822
5823                 /* Wait for the clocks to stabilize. */
5824                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5825                 udelay(150);
5826
5827                 /* The pixel multiplier can only be updated once the
5828                  * DPLL is enabled and the clocks are stable.
5829                  *
5830                  * So write it again.
5831                  */
5832                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5833         }
5834
5835         intel_crtc->lowfreq_avail = false;
5836         if (intel_crtc->pch_pll) {
5837                 if (is_lvds && has_reduced_clock && i915_powersave) {
5838                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5839                         intel_crtc->lowfreq_avail = true;
5840                 } else {
5841                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5842                 }
5843         }
5844
5845         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5846
5847         if (intel_crtc->config.has_pch_encoder) {
5848                 intel_cpu_transcoder_set_m_n(intel_crtc,
5849                                              &intel_crtc->config.fdi_m_n);
5850         }
5851
5852         if (IS_IVYBRIDGE(dev))
5853                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5854
5855         ironlake_set_pipeconf(crtc);
5856
5857         /* Set up the display plane register */
5858         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5859         POSTING_READ(DSPCNTR(plane));
5860
5861         ret = intel_pipe_set_base(crtc, x, y, fb);
5862
5863         intel_update_watermarks(dev);
5864
5865         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5866
5867         return ret;
5868 }
5869
5870 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5871                                         struct intel_crtc_config *pipe_config)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         enum transcoder transcoder = pipe_config->cpu_transcoder;
5876
5877         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5878         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5879         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5880                                         & ~TU_SIZE_MASK;
5881         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5882         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5883                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5884 }
5885
5886 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5887                                      struct intel_crtc_config *pipe_config)
5888 {
5889         struct drm_device *dev = crtc->base.dev;
5890         struct drm_i915_private *dev_priv = dev->dev_private;
5891         uint32_t tmp;
5892
5893         tmp = I915_READ(PIPECONF(crtc->pipe));
5894         if (!(tmp & PIPECONF_ENABLE))
5895                 return false;
5896
5897         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5898                 pipe_config->has_pch_encoder = true;
5899
5900                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5901                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5902                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5903
5904                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5905         }
5906
5907         intel_get_pipe_timings(crtc, pipe_config);
5908
5909         return true;
5910 }
5911
5912 static void haswell_modeset_global_resources(struct drm_device *dev)
5913 {
5914         bool enable = false;
5915         struct intel_crtc *crtc;
5916         struct intel_encoder *encoder;
5917
5918         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5919                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5920                         enable = true;
5921                 /* XXX: Should check for edp transcoder here, but thanks to init
5922                  * sequence that's not yet available. Just in case desktop eDP
5923                  * on PORT D is possible on haswell, too. */
5924                 /* Even the eDP panel fitter is outside the always-on well. */
5925                 if (crtc->config.pch_pfit.size && crtc->base.enabled)
5926                         enable = true;
5927         }
5928
5929         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5930                             base.head) {
5931                 if (encoder->type != INTEL_OUTPUT_EDP &&
5932                     encoder->connectors_active)
5933                         enable = true;
5934         }
5935
5936         intel_set_power_well(dev, enable);
5937 }
5938
5939 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5940                                  int x, int y,
5941                                  struct drm_framebuffer *fb)
5942 {
5943         struct drm_device *dev = crtc->dev;
5944         struct drm_i915_private *dev_priv = dev->dev_private;
5945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5946         struct drm_display_mode *adjusted_mode =
5947                 &intel_crtc->config.adjusted_mode;
5948         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5949         int pipe = intel_crtc->pipe;
5950         int plane = intel_crtc->plane;
5951         int num_connectors = 0;
5952         bool is_cpu_edp = false;
5953         struct intel_encoder *encoder;
5954         int ret;
5955
5956         for_each_encoder_on_crtc(dev, crtc, encoder) {
5957                 switch (encoder->type) {
5958                 case INTEL_OUTPUT_EDP:
5959                         if (!intel_encoder_is_pch_edp(&encoder->base))
5960                                 is_cpu_edp = true;
5961                         break;
5962                 }
5963
5964                 num_connectors++;
5965         }
5966
5967         if (is_cpu_edp)
5968                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5969         else
5970                 intel_crtc->config.cpu_transcoder = pipe;
5971
5972         /* We are not sure yet this won't happen. */
5973         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5974              INTEL_PCH_TYPE(dev));
5975
5976         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5977              num_connectors, pipe_name(pipe));
5978
5979         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5980                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5981
5982         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5983
5984         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5985                 return -EINVAL;
5986
5987         /* Ensure that the cursor is valid for the new mode before changing... */
5988         intel_crtc_update_cursor(crtc, true);
5989
5990         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5991         drm_mode_debug_printmodeline(mode);
5992
5993         if (intel_crtc->config.has_dp_encoder)
5994                 intel_dp_set_m_n(intel_crtc);
5995
5996         intel_crtc->lowfreq_avail = false;
5997
5998         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5999
6000         if (intel_crtc->config.has_pch_encoder) {
6001                 intel_cpu_transcoder_set_m_n(intel_crtc,
6002                                              &intel_crtc->config.fdi_m_n);
6003         }
6004
6005         haswell_set_pipeconf(crtc);
6006
6007         intel_set_pipe_csc(crtc);
6008
6009         /* Set up the display plane register */
6010         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6011         POSTING_READ(DSPCNTR(plane));
6012
6013         ret = intel_pipe_set_base(crtc, x, y, fb);
6014
6015         intel_update_watermarks(dev);
6016
6017         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
6018
6019         return ret;
6020 }
6021
6022 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6023                                     struct intel_crtc_config *pipe_config)
6024 {
6025         struct drm_device *dev = crtc->base.dev;
6026         struct drm_i915_private *dev_priv = dev->dev_private;
6027         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
6028         uint32_t tmp;
6029
6030         if (!intel_using_power_well(dev_priv->dev) &&
6031             cpu_transcoder != TRANSCODER_EDP)
6032                 return false;
6033
6034         tmp = I915_READ(PIPECONF(cpu_transcoder));
6035         if (!(tmp & PIPECONF_ENABLE))
6036                 return false;
6037
6038         /*
6039          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6040          * DDI E. So just check whether this pipe is wired to DDI E and whether
6041          * the PCH transcoder is on.
6042          */
6043         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
6044         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6045             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6046                 pipe_config->has_pch_encoder = true;
6047
6048                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6049                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6050                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6051
6052                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6053         }
6054
6055         intel_get_pipe_timings(crtc, pipe_config);
6056
6057         return true;
6058 }
6059
6060 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6061                                int x, int y,
6062                                struct drm_framebuffer *fb)
6063 {
6064         struct drm_device *dev = crtc->dev;
6065         struct drm_i915_private *dev_priv = dev->dev_private;
6066         struct drm_encoder_helper_funcs *encoder_funcs;
6067         struct intel_encoder *encoder;
6068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6069         struct drm_display_mode *adjusted_mode =
6070                 &intel_crtc->config.adjusted_mode;
6071         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6072         int pipe = intel_crtc->pipe;
6073         int ret;
6074
6075         drm_vblank_pre_modeset(dev, pipe);
6076
6077         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6078
6079         drm_vblank_post_modeset(dev, pipe);
6080
6081         if (ret != 0)
6082                 return ret;
6083
6084         for_each_encoder_on_crtc(dev, crtc, encoder) {
6085                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6086                         encoder->base.base.id,
6087                         drm_get_encoder_name(&encoder->base),
6088                         mode->base.id, mode->name);
6089                 if (encoder->mode_set) {
6090                         encoder->mode_set(encoder);
6091                 } else {
6092                         encoder_funcs = encoder->base.helper_private;
6093                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6094                 }
6095         }
6096
6097         return 0;
6098 }
6099
6100 static bool intel_eld_uptodate(struct drm_connector *connector,
6101                                int reg_eldv, uint32_t bits_eldv,
6102                                int reg_elda, uint32_t bits_elda,
6103                                int reg_edid)
6104 {
6105         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6106         uint8_t *eld = connector->eld;
6107         uint32_t i;
6108
6109         i = I915_READ(reg_eldv);
6110         i &= bits_eldv;
6111
6112         if (!eld[0])
6113                 return !i;
6114
6115         if (!i)
6116                 return false;
6117
6118         i = I915_READ(reg_elda);
6119         i &= ~bits_elda;
6120         I915_WRITE(reg_elda, i);
6121
6122         for (i = 0; i < eld[2]; i++)
6123                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6124                         return false;
6125
6126         return true;
6127 }
6128
6129 static void g4x_write_eld(struct drm_connector *connector,
6130                           struct drm_crtc *crtc)
6131 {
6132         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6133         uint8_t *eld = connector->eld;
6134         uint32_t eldv;
6135         uint32_t len;
6136         uint32_t i;
6137
6138         i = I915_READ(G4X_AUD_VID_DID);
6139
6140         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6141                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6142         else
6143                 eldv = G4X_ELDV_DEVCTG;
6144
6145         if (intel_eld_uptodate(connector,
6146                                G4X_AUD_CNTL_ST, eldv,
6147                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6148                                G4X_HDMIW_HDMIEDID))
6149                 return;
6150
6151         i = I915_READ(G4X_AUD_CNTL_ST);
6152         i &= ~(eldv | G4X_ELD_ADDR);
6153         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6154         I915_WRITE(G4X_AUD_CNTL_ST, i);
6155
6156         if (!eld[0])
6157                 return;
6158
6159         len = min_t(uint8_t, eld[2], len);
6160         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6161         for (i = 0; i < len; i++)
6162                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6163
6164         i = I915_READ(G4X_AUD_CNTL_ST);
6165         i |= eldv;
6166         I915_WRITE(G4X_AUD_CNTL_ST, i);
6167 }
6168
6169 static void haswell_write_eld(struct drm_connector *connector,
6170                                      struct drm_crtc *crtc)
6171 {
6172         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6173         uint8_t *eld = connector->eld;
6174         struct drm_device *dev = crtc->dev;
6175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6176         uint32_t eldv;
6177         uint32_t i;
6178         int len;
6179         int pipe = to_intel_crtc(crtc)->pipe;
6180         int tmp;
6181
6182         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6183         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6184         int aud_config = HSW_AUD_CFG(pipe);
6185         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6186
6187
6188         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6189
6190         /* Audio output enable */
6191         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6192         tmp = I915_READ(aud_cntrl_st2);
6193         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6194         I915_WRITE(aud_cntrl_st2, tmp);
6195
6196         /* Wait for 1 vertical blank */
6197         intel_wait_for_vblank(dev, pipe);
6198
6199         /* Set ELD valid state */
6200         tmp = I915_READ(aud_cntrl_st2);
6201         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6202         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6203         I915_WRITE(aud_cntrl_st2, tmp);
6204         tmp = I915_READ(aud_cntrl_st2);
6205         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6206
6207         /* Enable HDMI mode */
6208         tmp = I915_READ(aud_config);
6209         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6210         /* clear N_programing_enable and N_value_index */
6211         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6212         I915_WRITE(aud_config, tmp);
6213
6214         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6215
6216         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6217         intel_crtc->eld_vld = true;
6218
6219         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6220                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6221                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6222                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6223         } else
6224                 I915_WRITE(aud_config, 0);
6225
6226         if (intel_eld_uptodate(connector,
6227                                aud_cntrl_st2, eldv,
6228                                aud_cntl_st, IBX_ELD_ADDRESS,
6229                                hdmiw_hdmiedid))
6230                 return;
6231
6232         i = I915_READ(aud_cntrl_st2);
6233         i &= ~eldv;
6234         I915_WRITE(aud_cntrl_st2, i);
6235
6236         if (!eld[0])
6237                 return;
6238
6239         i = I915_READ(aud_cntl_st);
6240         i &= ~IBX_ELD_ADDRESS;
6241         I915_WRITE(aud_cntl_st, i);
6242         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6243         DRM_DEBUG_DRIVER("port num:%d\n", i);
6244
6245         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6246         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6247         for (i = 0; i < len; i++)
6248                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6249
6250         i = I915_READ(aud_cntrl_st2);
6251         i |= eldv;
6252         I915_WRITE(aud_cntrl_st2, i);
6253
6254 }
6255
6256 static void ironlake_write_eld(struct drm_connector *connector,
6257                                      struct drm_crtc *crtc)
6258 {
6259         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6260         uint8_t *eld = connector->eld;
6261         uint32_t eldv;
6262         uint32_t i;
6263         int len;
6264         int hdmiw_hdmiedid;
6265         int aud_config;
6266         int aud_cntl_st;
6267         int aud_cntrl_st2;
6268         int pipe = to_intel_crtc(crtc)->pipe;
6269
6270         if (HAS_PCH_IBX(connector->dev)) {
6271                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6272                 aud_config = IBX_AUD_CFG(pipe);
6273                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6274                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6275         } else {
6276                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6277                 aud_config = CPT_AUD_CFG(pipe);
6278                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6279                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6280         }
6281
6282         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6283
6284         i = I915_READ(aud_cntl_st);
6285         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6286         if (!i) {
6287                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6288                 /* operate blindly on all ports */
6289                 eldv = IBX_ELD_VALIDB;
6290                 eldv |= IBX_ELD_VALIDB << 4;
6291                 eldv |= IBX_ELD_VALIDB << 8;
6292         } else {
6293                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6294                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6295         }
6296
6297         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6298                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6299                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6300                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6301         } else
6302                 I915_WRITE(aud_config, 0);
6303
6304         if (intel_eld_uptodate(connector,
6305                                aud_cntrl_st2, eldv,
6306                                aud_cntl_st, IBX_ELD_ADDRESS,
6307                                hdmiw_hdmiedid))
6308                 return;
6309
6310         i = I915_READ(aud_cntrl_st2);
6311         i &= ~eldv;
6312         I915_WRITE(aud_cntrl_st2, i);
6313
6314         if (!eld[0])
6315                 return;
6316
6317         i = I915_READ(aud_cntl_st);
6318         i &= ~IBX_ELD_ADDRESS;
6319         I915_WRITE(aud_cntl_st, i);
6320
6321         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6322         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6323         for (i = 0; i < len; i++)
6324                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6325
6326         i = I915_READ(aud_cntrl_st2);
6327         i |= eldv;
6328         I915_WRITE(aud_cntrl_st2, i);
6329 }
6330
6331 void intel_write_eld(struct drm_encoder *encoder,
6332                      struct drm_display_mode *mode)
6333 {
6334         struct drm_crtc *crtc = encoder->crtc;
6335         struct drm_connector *connector;
6336         struct drm_device *dev = encoder->dev;
6337         struct drm_i915_private *dev_priv = dev->dev_private;
6338
6339         connector = drm_select_eld(encoder, mode);
6340         if (!connector)
6341                 return;
6342
6343         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6344                          connector->base.id,
6345                          drm_get_connector_name(connector),
6346                          connector->encoder->base.id,
6347                          drm_get_encoder_name(connector->encoder));
6348
6349         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6350
6351         if (dev_priv->display.write_eld)
6352                 dev_priv->display.write_eld(connector, crtc);
6353 }
6354
6355 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6356 void intel_crtc_load_lut(struct drm_crtc *crtc)
6357 {
6358         struct drm_device *dev = crtc->dev;
6359         struct drm_i915_private *dev_priv = dev->dev_private;
6360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361         int palreg = PALETTE(intel_crtc->pipe);
6362         int i;
6363
6364         /* The clocks have to be on to load the palette. */
6365         if (!crtc->enabled || !intel_crtc->active)
6366                 return;
6367
6368         /* use legacy palette for Ironlake */
6369         if (HAS_PCH_SPLIT(dev))
6370                 palreg = LGC_PALETTE(intel_crtc->pipe);
6371
6372         for (i = 0; i < 256; i++) {
6373                 I915_WRITE(palreg + 4 * i,
6374                            (intel_crtc->lut_r[i] << 16) |
6375                            (intel_crtc->lut_g[i] << 8) |
6376                            intel_crtc->lut_b[i]);
6377         }
6378 }
6379
6380 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6381 {
6382         struct drm_device *dev = crtc->dev;
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6385         bool visible = base != 0;
6386         u32 cntl;
6387
6388         if (intel_crtc->cursor_visible == visible)
6389                 return;
6390
6391         cntl = I915_READ(_CURACNTR);
6392         if (visible) {
6393                 /* On these chipsets we can only modify the base whilst
6394                  * the cursor is disabled.
6395                  */
6396                 I915_WRITE(_CURABASE, base);
6397
6398                 cntl &= ~(CURSOR_FORMAT_MASK);
6399                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6400                 cntl |= CURSOR_ENABLE |
6401                         CURSOR_GAMMA_ENABLE |
6402                         CURSOR_FORMAT_ARGB;
6403         } else
6404                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6405         I915_WRITE(_CURACNTR, cntl);
6406
6407         intel_crtc->cursor_visible = visible;
6408 }
6409
6410 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6411 {
6412         struct drm_device *dev = crtc->dev;
6413         struct drm_i915_private *dev_priv = dev->dev_private;
6414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6415         int pipe = intel_crtc->pipe;
6416         bool visible = base != 0;
6417
6418         if (intel_crtc->cursor_visible != visible) {
6419                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6420                 if (base) {
6421                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6422                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6423                         cntl |= pipe << 28; /* Connect to correct pipe */
6424                 } else {
6425                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6426                         cntl |= CURSOR_MODE_DISABLE;
6427                 }
6428                 I915_WRITE(CURCNTR(pipe), cntl);
6429
6430                 intel_crtc->cursor_visible = visible;
6431         }
6432         /* and commit changes on next vblank */
6433         I915_WRITE(CURBASE(pipe), base);
6434 }
6435
6436 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6437 {
6438         struct drm_device *dev = crtc->dev;
6439         struct drm_i915_private *dev_priv = dev->dev_private;
6440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6441         int pipe = intel_crtc->pipe;
6442         bool visible = base != 0;
6443
6444         if (intel_crtc->cursor_visible != visible) {
6445                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6446                 if (base) {
6447                         cntl &= ~CURSOR_MODE;
6448                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6449                 } else {
6450                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6451                         cntl |= CURSOR_MODE_DISABLE;
6452                 }
6453                 if (IS_HASWELL(dev))
6454                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6455                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6456
6457                 intel_crtc->cursor_visible = visible;
6458         }
6459         /* and commit changes on next vblank */
6460         I915_WRITE(CURBASE_IVB(pipe), base);
6461 }
6462
6463 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6464 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6465                                      bool on)
6466 {
6467         struct drm_device *dev = crtc->dev;
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6470         int pipe = intel_crtc->pipe;
6471         int x = intel_crtc->cursor_x;
6472         int y = intel_crtc->cursor_y;
6473         u32 base, pos;
6474         bool visible;
6475
6476         pos = 0;
6477
6478         if (on && crtc->enabled && crtc->fb) {
6479                 base = intel_crtc->cursor_addr;
6480                 if (x > (int) crtc->fb->width)
6481                         base = 0;
6482
6483                 if (y > (int) crtc->fb->height)
6484                         base = 0;
6485         } else
6486                 base = 0;
6487
6488         if (x < 0) {
6489                 if (x + intel_crtc->cursor_width < 0)
6490                         base = 0;
6491
6492                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6493                 x = -x;
6494         }
6495         pos |= x << CURSOR_X_SHIFT;
6496
6497         if (y < 0) {
6498                 if (y + intel_crtc->cursor_height < 0)
6499                         base = 0;
6500
6501                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6502                 y = -y;
6503         }
6504         pos |= y << CURSOR_Y_SHIFT;
6505
6506         visible = base != 0;
6507         if (!visible && !intel_crtc->cursor_visible)
6508                 return;
6509
6510         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6511                 I915_WRITE(CURPOS_IVB(pipe), pos);
6512                 ivb_update_cursor(crtc, base);
6513         } else {
6514                 I915_WRITE(CURPOS(pipe), pos);
6515                 if (IS_845G(dev) || IS_I865G(dev))
6516                         i845_update_cursor(crtc, base);
6517                 else
6518                         i9xx_update_cursor(crtc, base);
6519         }
6520 }
6521
6522 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6523                                  struct drm_file *file,
6524                                  uint32_t handle,
6525                                  uint32_t width, uint32_t height)
6526 {
6527         struct drm_device *dev = crtc->dev;
6528         struct drm_i915_private *dev_priv = dev->dev_private;
6529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6530         struct drm_i915_gem_object *obj;
6531         uint32_t addr;
6532         int ret;
6533
6534         /* if we want to turn off the cursor ignore width and height */
6535         if (!handle) {
6536                 DRM_DEBUG_KMS("cursor off\n");
6537                 addr = 0;
6538                 obj = NULL;
6539                 mutex_lock(&dev->struct_mutex);
6540                 goto finish;
6541         }
6542
6543         /* Currently we only support 64x64 cursors */
6544         if (width != 64 || height != 64) {
6545                 DRM_ERROR("we currently only support 64x64 cursors\n");
6546                 return -EINVAL;
6547         }
6548
6549         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6550         if (&obj->base == NULL)
6551                 return -ENOENT;
6552
6553         if (obj->base.size < width * height * 4) {
6554                 DRM_ERROR("buffer is to small\n");
6555                 ret = -ENOMEM;
6556                 goto fail;
6557         }
6558
6559         /* we only need to pin inside GTT if cursor is non-phy */
6560         mutex_lock(&dev->struct_mutex);
6561         if (!dev_priv->info->cursor_needs_physical) {
6562                 unsigned alignment;
6563
6564                 if (obj->tiling_mode) {
6565                         DRM_ERROR("cursor cannot be tiled\n");
6566                         ret = -EINVAL;
6567                         goto fail_locked;
6568                 }
6569
6570                 /* Note that the w/a also requires 2 PTE of padding following
6571                  * the bo. We currently fill all unused PTE with the shadow
6572                  * page and so we should always have valid PTE following the
6573                  * cursor preventing the VT-d warning.
6574                  */
6575                 alignment = 0;
6576                 if (need_vtd_wa(dev))
6577                         alignment = 64*1024;
6578
6579                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6580                 if (ret) {
6581                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6582                         goto fail_locked;
6583                 }
6584
6585                 ret = i915_gem_object_put_fence(obj);
6586                 if (ret) {
6587                         DRM_ERROR("failed to release fence for cursor");
6588                         goto fail_unpin;
6589                 }
6590
6591                 addr = obj->gtt_offset;
6592         } else {
6593                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6594                 ret = i915_gem_attach_phys_object(dev, obj,
6595                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6596                                                   align);
6597                 if (ret) {
6598                         DRM_ERROR("failed to attach phys object\n");
6599                         goto fail_locked;
6600                 }
6601                 addr = obj->phys_obj->handle->busaddr;
6602         }
6603
6604         if (IS_GEN2(dev))
6605                 I915_WRITE(CURSIZE, (height << 12) | width);
6606
6607  finish:
6608         if (intel_crtc->cursor_bo) {
6609                 if (dev_priv->info->cursor_needs_physical) {
6610                         if (intel_crtc->cursor_bo != obj)
6611                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6612                 } else
6613                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6614                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6615         }
6616
6617         mutex_unlock(&dev->struct_mutex);
6618
6619         intel_crtc->cursor_addr = addr;
6620         intel_crtc->cursor_bo = obj;
6621         intel_crtc->cursor_width = width;
6622         intel_crtc->cursor_height = height;
6623
6624         intel_crtc_update_cursor(crtc, true);
6625
6626         return 0;
6627 fail_unpin:
6628         i915_gem_object_unpin(obj);
6629 fail_locked:
6630         mutex_unlock(&dev->struct_mutex);
6631 fail:
6632         drm_gem_object_unreference_unlocked(&obj->base);
6633         return ret;
6634 }
6635
6636 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6637 {
6638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6639
6640         intel_crtc->cursor_x = x;
6641         intel_crtc->cursor_y = y;
6642
6643         intel_crtc_update_cursor(crtc, true);
6644
6645         return 0;
6646 }
6647
6648 /** Sets the color ramps on behalf of RandR */
6649 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6650                                  u16 blue, int regno)
6651 {
6652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6653
6654         intel_crtc->lut_r[regno] = red >> 8;
6655         intel_crtc->lut_g[regno] = green >> 8;
6656         intel_crtc->lut_b[regno] = blue >> 8;
6657 }
6658
6659 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6660                              u16 *blue, int regno)
6661 {
6662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6663
6664         *red = intel_crtc->lut_r[regno] << 8;
6665         *green = intel_crtc->lut_g[regno] << 8;
6666         *blue = intel_crtc->lut_b[regno] << 8;
6667 }
6668
6669 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6670                                  u16 *blue, uint32_t start, uint32_t size)
6671 {
6672         int end = (start + size > 256) ? 256 : start + size, i;
6673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6674
6675         for (i = start; i < end; i++) {
6676                 intel_crtc->lut_r[i] = red[i] >> 8;
6677                 intel_crtc->lut_g[i] = green[i] >> 8;
6678                 intel_crtc->lut_b[i] = blue[i] >> 8;
6679         }
6680
6681         intel_crtc_load_lut(crtc);
6682 }
6683
6684 /* VESA 640x480x72Hz mode to set on the pipe */
6685 static struct drm_display_mode load_detect_mode = {
6686         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6687                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6688 };
6689
6690 static struct drm_framebuffer *
6691 intel_framebuffer_create(struct drm_device *dev,
6692                          struct drm_mode_fb_cmd2 *mode_cmd,
6693                          struct drm_i915_gem_object *obj)
6694 {
6695         struct intel_framebuffer *intel_fb;
6696         int ret;
6697
6698         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6699         if (!intel_fb) {
6700                 drm_gem_object_unreference_unlocked(&obj->base);
6701                 return ERR_PTR(-ENOMEM);
6702         }
6703
6704         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6705         if (ret) {
6706                 drm_gem_object_unreference_unlocked(&obj->base);
6707                 kfree(intel_fb);
6708                 return ERR_PTR(ret);
6709         }
6710
6711         return &intel_fb->base;
6712 }
6713
6714 static u32
6715 intel_framebuffer_pitch_for_width(int width, int bpp)
6716 {
6717         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6718         return ALIGN(pitch, 64);
6719 }
6720
6721 static u32
6722 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6723 {
6724         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6725         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6726 }
6727
6728 static struct drm_framebuffer *
6729 intel_framebuffer_create_for_mode(struct drm_device *dev,
6730                                   struct drm_display_mode *mode,
6731                                   int depth, int bpp)
6732 {
6733         struct drm_i915_gem_object *obj;
6734         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6735
6736         obj = i915_gem_alloc_object(dev,
6737                                     intel_framebuffer_size_for_mode(mode, bpp));
6738         if (obj == NULL)
6739                 return ERR_PTR(-ENOMEM);
6740
6741         mode_cmd.width = mode->hdisplay;
6742         mode_cmd.height = mode->vdisplay;
6743         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6744                                                                 bpp);
6745         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6746
6747         return intel_framebuffer_create(dev, &mode_cmd, obj);
6748 }
6749
6750 static struct drm_framebuffer *
6751 mode_fits_in_fbdev(struct drm_device *dev,
6752                    struct drm_display_mode *mode)
6753 {
6754         struct drm_i915_private *dev_priv = dev->dev_private;
6755         struct drm_i915_gem_object *obj;
6756         struct drm_framebuffer *fb;
6757
6758         if (dev_priv->fbdev == NULL)
6759                 return NULL;
6760
6761         obj = dev_priv->fbdev->ifb.obj;
6762         if (obj == NULL)
6763                 return NULL;
6764
6765         fb = &dev_priv->fbdev->ifb.base;
6766         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6767                                                                fb->bits_per_pixel))
6768                 return NULL;
6769
6770         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6771                 return NULL;
6772
6773         return fb;
6774 }
6775
6776 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6777                                 struct drm_display_mode *mode,
6778                                 struct intel_load_detect_pipe *old)
6779 {
6780         struct intel_crtc *intel_crtc;
6781         struct intel_encoder *intel_encoder =
6782                 intel_attached_encoder(connector);
6783         struct drm_crtc *possible_crtc;
6784         struct drm_encoder *encoder = &intel_encoder->base;
6785         struct drm_crtc *crtc = NULL;
6786         struct drm_device *dev = encoder->dev;
6787         struct drm_framebuffer *fb;
6788         int i = -1;
6789
6790         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6791                       connector->base.id, drm_get_connector_name(connector),
6792                       encoder->base.id, drm_get_encoder_name(encoder));
6793
6794         /*
6795          * Algorithm gets a little messy:
6796          *
6797          *   - if the connector already has an assigned crtc, use it (but make
6798          *     sure it's on first)
6799          *
6800          *   - try to find the first unused crtc that can drive this connector,
6801          *     and use that if we find one
6802          */
6803
6804         /* See if we already have a CRTC for this connector */
6805         if (encoder->crtc) {
6806                 crtc = encoder->crtc;
6807
6808                 mutex_lock(&crtc->mutex);
6809
6810                 old->dpms_mode = connector->dpms;
6811                 old->load_detect_temp = false;
6812
6813                 /* Make sure the crtc and connector are running */
6814                 if (connector->dpms != DRM_MODE_DPMS_ON)
6815                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6816
6817                 return true;
6818         }
6819
6820         /* Find an unused one (if possible) */
6821         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6822                 i++;
6823                 if (!(encoder->possible_crtcs & (1 << i)))
6824                         continue;
6825                 if (!possible_crtc->enabled) {
6826                         crtc = possible_crtc;
6827                         break;
6828                 }
6829         }
6830
6831         /*
6832          * If we didn't find an unused CRTC, don't use any.
6833          */
6834         if (!crtc) {
6835                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6836                 return false;
6837         }
6838
6839         mutex_lock(&crtc->mutex);
6840         intel_encoder->new_crtc = to_intel_crtc(crtc);
6841         to_intel_connector(connector)->new_encoder = intel_encoder;
6842
6843         intel_crtc = to_intel_crtc(crtc);
6844         old->dpms_mode = connector->dpms;
6845         old->load_detect_temp = true;
6846         old->release_fb = NULL;
6847
6848         if (!mode)
6849                 mode = &load_detect_mode;
6850
6851         /* We need a framebuffer large enough to accommodate all accesses
6852          * that the plane may generate whilst we perform load detection.
6853          * We can not rely on the fbcon either being present (we get called
6854          * during its initialisation to detect all boot displays, or it may
6855          * not even exist) or that it is large enough to satisfy the
6856          * requested mode.
6857          */
6858         fb = mode_fits_in_fbdev(dev, mode);
6859         if (fb == NULL) {
6860                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6861                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6862                 old->release_fb = fb;
6863         } else
6864                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6865         if (IS_ERR(fb)) {
6866                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6867                 mutex_unlock(&crtc->mutex);
6868                 return false;
6869         }
6870
6871         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6872                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6873                 if (old->release_fb)
6874                         old->release_fb->funcs->destroy(old->release_fb);
6875                 mutex_unlock(&crtc->mutex);
6876                 return false;
6877         }
6878
6879         /* let the connector get through one full cycle before testing */
6880         intel_wait_for_vblank(dev, intel_crtc->pipe);
6881         return true;
6882 }
6883
6884 void intel_release_load_detect_pipe(struct drm_connector *connector,
6885                                     struct intel_load_detect_pipe *old)
6886 {
6887         struct intel_encoder *intel_encoder =
6888                 intel_attached_encoder(connector);
6889         struct drm_encoder *encoder = &intel_encoder->base;
6890         struct drm_crtc *crtc = encoder->crtc;
6891
6892         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6893                       connector->base.id, drm_get_connector_name(connector),
6894                       encoder->base.id, drm_get_encoder_name(encoder));
6895
6896         if (old->load_detect_temp) {
6897                 to_intel_connector(connector)->new_encoder = NULL;
6898                 intel_encoder->new_crtc = NULL;
6899                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6900
6901                 if (old->release_fb) {
6902                         drm_framebuffer_unregister_private(old->release_fb);
6903                         drm_framebuffer_unreference(old->release_fb);
6904                 }
6905
6906                 mutex_unlock(&crtc->mutex);
6907                 return;
6908         }
6909
6910         /* Switch crtc and encoder back off if necessary */
6911         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6912                 connector->funcs->dpms(connector, old->dpms_mode);
6913
6914         mutex_unlock(&crtc->mutex);
6915 }
6916
6917 /* Returns the clock of the currently programmed mode of the given pipe. */
6918 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6919 {
6920         struct drm_i915_private *dev_priv = dev->dev_private;
6921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6922         int pipe = intel_crtc->pipe;
6923         u32 dpll = I915_READ(DPLL(pipe));
6924         u32 fp;
6925         intel_clock_t clock;
6926
6927         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6928                 fp = I915_READ(FP0(pipe));
6929         else
6930                 fp = I915_READ(FP1(pipe));
6931
6932         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6933         if (IS_PINEVIEW(dev)) {
6934                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6935                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6936         } else {
6937                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6938                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6939         }
6940
6941         if (!IS_GEN2(dev)) {
6942                 if (IS_PINEVIEW(dev))
6943                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6944                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6945                 else
6946                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6947                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6948
6949                 switch (dpll & DPLL_MODE_MASK) {
6950                 case DPLLB_MODE_DAC_SERIAL:
6951                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6952                                 5 : 10;
6953                         break;
6954                 case DPLLB_MODE_LVDS:
6955                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6956                                 7 : 14;
6957                         break;
6958                 default:
6959                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6960                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6961                         return 0;
6962                 }
6963
6964                 /* XXX: Handle the 100Mhz refclk */
6965                 intel_clock(dev, 96000, &clock);
6966         } else {
6967                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6968
6969                 if (is_lvds) {
6970                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6971                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6972                         clock.p2 = 14;
6973
6974                         if ((dpll & PLL_REF_INPUT_MASK) ==
6975                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6976                                 /* XXX: might not be 66MHz */
6977                                 intel_clock(dev, 66000, &clock);
6978                         } else
6979                                 intel_clock(dev, 48000, &clock);
6980                 } else {
6981                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6982                                 clock.p1 = 2;
6983                         else {
6984                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6985                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6986                         }
6987                         if (dpll & PLL_P2_DIVIDE_BY_4)
6988                                 clock.p2 = 4;
6989                         else
6990                                 clock.p2 = 2;
6991
6992                         intel_clock(dev, 48000, &clock);
6993                 }
6994         }
6995
6996         /* XXX: It would be nice to validate the clocks, but we can't reuse
6997          * i830PllIsValid() because it relies on the xf86_config connector
6998          * configuration being accurate, which it isn't necessarily.
6999          */
7000
7001         return clock.dot;
7002 }
7003
7004 /** Returns the currently programmed mode of the given pipe. */
7005 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7006                                              struct drm_crtc *crtc)
7007 {
7008         struct drm_i915_private *dev_priv = dev->dev_private;
7009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7010         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7011         struct drm_display_mode *mode;
7012         int htot = I915_READ(HTOTAL(cpu_transcoder));
7013         int hsync = I915_READ(HSYNC(cpu_transcoder));
7014         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7015         int vsync = I915_READ(VSYNC(cpu_transcoder));
7016
7017         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7018         if (!mode)
7019                 return NULL;
7020
7021         mode->clock = intel_crtc_clock_get(dev, crtc);
7022         mode->hdisplay = (htot & 0xffff) + 1;
7023         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7024         mode->hsync_start = (hsync & 0xffff) + 1;
7025         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7026         mode->vdisplay = (vtot & 0xffff) + 1;
7027         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7028         mode->vsync_start = (vsync & 0xffff) + 1;
7029         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7030
7031         drm_mode_set_name(mode);
7032
7033         return mode;
7034 }
7035
7036 static void intel_increase_pllclock(struct drm_crtc *crtc)
7037 {
7038         struct drm_device *dev = crtc->dev;
7039         drm_i915_private_t *dev_priv = dev->dev_private;
7040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7041         int pipe = intel_crtc->pipe;
7042         int dpll_reg = DPLL(pipe);
7043         int dpll;
7044
7045         if (HAS_PCH_SPLIT(dev))
7046                 return;
7047
7048         if (!dev_priv->lvds_downclock_avail)
7049                 return;
7050
7051         dpll = I915_READ(dpll_reg);
7052         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7053                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7054
7055                 assert_panel_unlocked(dev_priv, pipe);
7056
7057                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7058                 I915_WRITE(dpll_reg, dpll);
7059                 intel_wait_for_vblank(dev, pipe);
7060
7061                 dpll = I915_READ(dpll_reg);
7062                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7063                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7064         }
7065 }
7066
7067 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7068 {
7069         struct drm_device *dev = crtc->dev;
7070         drm_i915_private_t *dev_priv = dev->dev_private;
7071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7072
7073         if (HAS_PCH_SPLIT(dev))
7074                 return;
7075
7076         if (!dev_priv->lvds_downclock_avail)
7077                 return;
7078
7079         /*
7080          * Since this is called by a timer, we should never get here in
7081          * the manual case.
7082          */
7083         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7084                 int pipe = intel_crtc->pipe;
7085                 int dpll_reg = DPLL(pipe);
7086                 int dpll;
7087
7088                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7089
7090                 assert_panel_unlocked(dev_priv, pipe);
7091
7092                 dpll = I915_READ(dpll_reg);
7093                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7094                 I915_WRITE(dpll_reg, dpll);
7095                 intel_wait_for_vblank(dev, pipe);
7096                 dpll = I915_READ(dpll_reg);
7097                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7098                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7099         }
7100
7101 }
7102
7103 void intel_mark_busy(struct drm_device *dev)
7104 {
7105         i915_update_gfx_val(dev->dev_private);
7106 }
7107
7108 void intel_mark_idle(struct drm_device *dev)
7109 {
7110         struct drm_crtc *crtc;
7111
7112         if (!i915_powersave)
7113                 return;
7114
7115         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7116                 if (!crtc->fb)
7117                         continue;
7118
7119                 intel_decrease_pllclock(crtc);
7120         }
7121 }
7122
7123 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7124 {
7125         struct drm_device *dev = obj->base.dev;
7126         struct drm_crtc *crtc;
7127
7128         if (!i915_powersave)
7129                 return;
7130
7131         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7132                 if (!crtc->fb)
7133                         continue;
7134
7135                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7136                         intel_increase_pllclock(crtc);
7137         }
7138 }
7139
7140 static void intel_crtc_destroy(struct drm_crtc *crtc)
7141 {
7142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7143         struct drm_device *dev = crtc->dev;
7144         struct intel_unpin_work *work;
7145         unsigned long flags;
7146
7147         spin_lock_irqsave(&dev->event_lock, flags);
7148         work = intel_crtc->unpin_work;
7149         intel_crtc->unpin_work = NULL;
7150         spin_unlock_irqrestore(&dev->event_lock, flags);
7151
7152         if (work) {
7153                 cancel_work_sync(&work->work);
7154                 kfree(work);
7155         }
7156
7157         drm_crtc_cleanup(crtc);
7158
7159         kfree(intel_crtc);
7160 }
7161
7162 static void intel_unpin_work_fn(struct work_struct *__work)
7163 {
7164         struct intel_unpin_work *work =
7165                 container_of(__work, struct intel_unpin_work, work);
7166         struct drm_device *dev = work->crtc->dev;
7167
7168         mutex_lock(&dev->struct_mutex);
7169         intel_unpin_fb_obj(work->old_fb_obj);
7170         drm_gem_object_unreference(&work->pending_flip_obj->base);
7171         drm_gem_object_unreference(&work->old_fb_obj->base);
7172
7173         intel_update_fbc(dev);
7174         mutex_unlock(&dev->struct_mutex);
7175
7176         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7177         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7178
7179         kfree(work);
7180 }
7181
7182 static void do_intel_finish_page_flip(struct drm_device *dev,
7183                                       struct drm_crtc *crtc)
7184 {
7185         drm_i915_private_t *dev_priv = dev->dev_private;
7186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7187         struct intel_unpin_work *work;
7188         unsigned long flags;
7189
7190         /* Ignore early vblank irqs */
7191         if (intel_crtc == NULL)
7192                 return;
7193
7194         spin_lock_irqsave(&dev->event_lock, flags);
7195         work = intel_crtc->unpin_work;
7196
7197         /* Ensure we don't miss a work->pending update ... */
7198         smp_rmb();
7199
7200         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7201                 spin_unlock_irqrestore(&dev->event_lock, flags);
7202                 return;
7203         }
7204
7205         /* and that the unpin work is consistent wrt ->pending. */
7206         smp_rmb();
7207
7208         intel_crtc->unpin_work = NULL;
7209
7210         if (work->event)
7211                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7212
7213         drm_vblank_put(dev, intel_crtc->pipe);
7214
7215         spin_unlock_irqrestore(&dev->event_lock, flags);
7216
7217         wake_up_all(&dev_priv->pending_flip_queue);
7218
7219         queue_work(dev_priv->wq, &work->work);
7220
7221         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7222 }
7223
7224 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7225 {
7226         drm_i915_private_t *dev_priv = dev->dev_private;
7227         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7228
7229         do_intel_finish_page_flip(dev, crtc);
7230 }
7231
7232 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7233 {
7234         drm_i915_private_t *dev_priv = dev->dev_private;
7235         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7236
7237         do_intel_finish_page_flip(dev, crtc);
7238 }
7239
7240 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7241 {
7242         drm_i915_private_t *dev_priv = dev->dev_private;
7243         struct intel_crtc *intel_crtc =
7244                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7245         unsigned long flags;
7246
7247         /* NB: An MMIO update of the plane base pointer will also
7248          * generate a page-flip completion irq, i.e. every modeset
7249          * is also accompanied by a spurious intel_prepare_page_flip().
7250          */
7251         spin_lock_irqsave(&dev->event_lock, flags);
7252         if (intel_crtc->unpin_work)
7253                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7254         spin_unlock_irqrestore(&dev->event_lock, flags);
7255 }
7256
7257 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7258 {
7259         /* Ensure that the work item is consistent when activating it ... */
7260         smp_wmb();
7261         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7262         /* and that it is marked active as soon as the irq could fire. */
7263         smp_wmb();
7264 }
7265
7266 static int intel_gen2_queue_flip(struct drm_device *dev,
7267                                  struct drm_crtc *crtc,
7268                                  struct drm_framebuffer *fb,
7269                                  struct drm_i915_gem_object *obj)
7270 {
7271         struct drm_i915_private *dev_priv = dev->dev_private;
7272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7273         u32 flip_mask;
7274         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7275         int ret;
7276
7277         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7278         if (ret)
7279                 goto err;
7280
7281         ret = intel_ring_begin(ring, 6);
7282         if (ret)
7283                 goto err_unpin;
7284
7285         /* Can't queue multiple flips, so wait for the previous
7286          * one to finish before executing the next.
7287          */
7288         if (intel_crtc->plane)
7289                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7290         else
7291                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7292         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7293         intel_ring_emit(ring, MI_NOOP);
7294         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7295                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7296         intel_ring_emit(ring, fb->pitches[0]);
7297         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7298         intel_ring_emit(ring, 0); /* aux display base address, unused */
7299
7300         intel_mark_page_flip_active(intel_crtc);
7301         intel_ring_advance(ring);
7302         return 0;
7303
7304 err_unpin:
7305         intel_unpin_fb_obj(obj);
7306 err:
7307         return ret;
7308 }
7309
7310 static int intel_gen3_queue_flip(struct drm_device *dev,
7311                                  struct drm_crtc *crtc,
7312                                  struct drm_framebuffer *fb,
7313                                  struct drm_i915_gem_object *obj)
7314 {
7315         struct drm_i915_private *dev_priv = dev->dev_private;
7316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7317         u32 flip_mask;
7318         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7319         int ret;
7320
7321         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7322         if (ret)
7323                 goto err;
7324
7325         ret = intel_ring_begin(ring, 6);
7326         if (ret)
7327                 goto err_unpin;
7328
7329         if (intel_crtc->plane)
7330                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7331         else
7332                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7333         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7334         intel_ring_emit(ring, MI_NOOP);
7335         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7336                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7337         intel_ring_emit(ring, fb->pitches[0]);
7338         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7339         intel_ring_emit(ring, MI_NOOP);
7340
7341         intel_mark_page_flip_active(intel_crtc);
7342         intel_ring_advance(ring);
7343         return 0;
7344
7345 err_unpin:
7346         intel_unpin_fb_obj(obj);
7347 err:
7348         return ret;
7349 }
7350
7351 static int intel_gen4_queue_flip(struct drm_device *dev,
7352                                  struct drm_crtc *crtc,
7353                                  struct drm_framebuffer *fb,
7354                                  struct drm_i915_gem_object *obj)
7355 {
7356         struct drm_i915_private *dev_priv = dev->dev_private;
7357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7358         uint32_t pf, pipesrc;
7359         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7360         int ret;
7361
7362         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7363         if (ret)
7364                 goto err;
7365
7366         ret = intel_ring_begin(ring, 4);
7367         if (ret)
7368                 goto err_unpin;
7369
7370         /* i965+ uses the linear or tiled offsets from the
7371          * Display Registers (which do not change across a page-flip)
7372          * so we need only reprogram the base address.
7373          */
7374         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7375                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7376         intel_ring_emit(ring, fb->pitches[0]);
7377         intel_ring_emit(ring,
7378                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7379                         obj->tiling_mode);
7380
7381         /* XXX Enabling the panel-fitter across page-flip is so far
7382          * untested on non-native modes, so ignore it for now.
7383          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7384          */
7385         pf = 0;
7386         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7387         intel_ring_emit(ring, pf | pipesrc);
7388
7389         intel_mark_page_flip_active(intel_crtc);
7390         intel_ring_advance(ring);
7391         return 0;
7392
7393 err_unpin:
7394         intel_unpin_fb_obj(obj);
7395 err:
7396         return ret;
7397 }
7398
7399 static int intel_gen6_queue_flip(struct drm_device *dev,
7400                                  struct drm_crtc *crtc,
7401                                  struct drm_framebuffer *fb,
7402                                  struct drm_i915_gem_object *obj)
7403 {
7404         struct drm_i915_private *dev_priv = dev->dev_private;
7405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7406         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7407         uint32_t pf, pipesrc;
7408         int ret;
7409
7410         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7411         if (ret)
7412                 goto err;
7413
7414         ret = intel_ring_begin(ring, 4);
7415         if (ret)
7416                 goto err_unpin;
7417
7418         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7419                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7420         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7421         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7422
7423         /* Contrary to the suggestions in the documentation,
7424          * "Enable Panel Fitter" does not seem to be required when page
7425          * flipping with a non-native mode, and worse causes a normal
7426          * modeset to fail.
7427          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7428          */
7429         pf = 0;
7430         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7431         intel_ring_emit(ring, pf | pipesrc);
7432
7433         intel_mark_page_flip_active(intel_crtc);
7434         intel_ring_advance(ring);
7435         return 0;
7436
7437 err_unpin:
7438         intel_unpin_fb_obj(obj);
7439 err:
7440         return ret;
7441 }
7442
7443 /*
7444  * On gen7 we currently use the blit ring because (in early silicon at least)
7445  * the render ring doesn't give us interrpts for page flip completion, which
7446  * means clients will hang after the first flip is queued.  Fortunately the
7447  * blit ring generates interrupts properly, so use it instead.
7448  */
7449 static int intel_gen7_queue_flip(struct drm_device *dev,
7450                                  struct drm_crtc *crtc,
7451                                  struct drm_framebuffer *fb,
7452                                  struct drm_i915_gem_object *obj)
7453 {
7454         struct drm_i915_private *dev_priv = dev->dev_private;
7455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7456         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7457         uint32_t plane_bit = 0;
7458         int ret;
7459
7460         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7461         if (ret)
7462                 goto err;
7463
7464         switch(intel_crtc->plane) {
7465         case PLANE_A:
7466                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7467                 break;
7468         case PLANE_B:
7469                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7470                 break;
7471         case PLANE_C:
7472                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7473                 break;
7474         default:
7475                 WARN_ONCE(1, "unknown plane in flip command\n");
7476                 ret = -ENODEV;
7477                 goto err_unpin;
7478         }
7479
7480         ret = intel_ring_begin(ring, 4);
7481         if (ret)
7482                 goto err_unpin;
7483
7484         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7485         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7486         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7487         intel_ring_emit(ring, (MI_NOOP));
7488
7489         intel_mark_page_flip_active(intel_crtc);
7490         intel_ring_advance(ring);
7491         return 0;
7492
7493 err_unpin:
7494         intel_unpin_fb_obj(obj);
7495 err:
7496         return ret;
7497 }
7498
7499 static int intel_default_queue_flip(struct drm_device *dev,
7500                                     struct drm_crtc *crtc,
7501                                     struct drm_framebuffer *fb,
7502                                     struct drm_i915_gem_object *obj)
7503 {
7504         return -ENODEV;
7505 }
7506
7507 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7508                                 struct drm_framebuffer *fb,
7509                                 struct drm_pending_vblank_event *event)
7510 {
7511         struct drm_device *dev = crtc->dev;
7512         struct drm_i915_private *dev_priv = dev->dev_private;
7513         struct drm_framebuffer *old_fb = crtc->fb;
7514         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7516         struct intel_unpin_work *work;
7517         unsigned long flags;
7518         int ret;
7519
7520         /* Can't change pixel format via MI display flips. */
7521         if (fb->pixel_format != crtc->fb->pixel_format)
7522                 return -EINVAL;
7523
7524         /*
7525          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7526          * Note that pitch changes could also affect these register.
7527          */
7528         if (INTEL_INFO(dev)->gen > 3 &&
7529             (fb->offsets[0] != crtc->fb->offsets[0] ||
7530              fb->pitches[0] != crtc->fb->pitches[0]))
7531                 return -EINVAL;
7532
7533         work = kzalloc(sizeof *work, GFP_KERNEL);
7534         if (work == NULL)
7535                 return -ENOMEM;
7536
7537         work->event = event;
7538         work->crtc = crtc;
7539         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7540         INIT_WORK(&work->work, intel_unpin_work_fn);
7541
7542         ret = drm_vblank_get(dev, intel_crtc->pipe);
7543         if (ret)
7544                 goto free_work;
7545
7546         /* We borrow the event spin lock for protecting unpin_work */
7547         spin_lock_irqsave(&dev->event_lock, flags);
7548         if (intel_crtc->unpin_work) {
7549                 spin_unlock_irqrestore(&dev->event_lock, flags);
7550                 kfree(work);
7551                 drm_vblank_put(dev, intel_crtc->pipe);
7552
7553                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7554                 return -EBUSY;
7555         }
7556         intel_crtc->unpin_work = work;
7557         spin_unlock_irqrestore(&dev->event_lock, flags);
7558
7559         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7560                 flush_workqueue(dev_priv->wq);
7561
7562         ret = i915_mutex_lock_interruptible(dev);
7563         if (ret)
7564                 goto cleanup;
7565
7566         /* Reference the objects for the scheduled work. */
7567         drm_gem_object_reference(&work->old_fb_obj->base);
7568         drm_gem_object_reference(&obj->base);
7569
7570         crtc->fb = fb;
7571
7572         work->pending_flip_obj = obj;
7573
7574         work->enable_stall_check = true;
7575
7576         atomic_inc(&intel_crtc->unpin_work_count);
7577         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7578
7579         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7580         if (ret)
7581                 goto cleanup_pending;
7582
7583         intel_disable_fbc(dev);
7584         intel_mark_fb_busy(obj);
7585         mutex_unlock(&dev->struct_mutex);
7586
7587         trace_i915_flip_request(intel_crtc->plane, obj);
7588
7589         return 0;
7590
7591 cleanup_pending:
7592         atomic_dec(&intel_crtc->unpin_work_count);
7593         crtc->fb = old_fb;
7594         drm_gem_object_unreference(&work->old_fb_obj->base);
7595         drm_gem_object_unreference(&obj->base);
7596         mutex_unlock(&dev->struct_mutex);
7597
7598 cleanup:
7599         spin_lock_irqsave(&dev->event_lock, flags);
7600         intel_crtc->unpin_work = NULL;
7601         spin_unlock_irqrestore(&dev->event_lock, flags);
7602
7603         drm_vblank_put(dev, intel_crtc->pipe);
7604 free_work:
7605         kfree(work);
7606
7607         return ret;
7608 }
7609
7610 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7611         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7612         .load_lut = intel_crtc_load_lut,
7613 };
7614
7615 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7616 {
7617         struct intel_encoder *other_encoder;
7618         struct drm_crtc *crtc = &encoder->new_crtc->base;
7619
7620         if (WARN_ON(!crtc))
7621                 return false;
7622
7623         list_for_each_entry(other_encoder,
7624                             &crtc->dev->mode_config.encoder_list,
7625                             base.head) {
7626
7627                 if (&other_encoder->new_crtc->base != crtc ||
7628                     encoder == other_encoder)
7629                         continue;
7630                 else
7631                         return true;
7632         }
7633
7634         return false;
7635 }
7636
7637 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7638                                   struct drm_crtc *crtc)
7639 {
7640         struct drm_device *dev;
7641         struct drm_crtc *tmp;
7642         int crtc_mask = 1;
7643
7644         WARN(!crtc, "checking null crtc?\n");
7645
7646         dev = crtc->dev;
7647
7648         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7649                 if (tmp == crtc)
7650                         break;
7651                 crtc_mask <<= 1;
7652         }
7653
7654         if (encoder->possible_crtcs & crtc_mask)
7655                 return true;
7656         return false;
7657 }
7658
7659 /**
7660  * intel_modeset_update_staged_output_state
7661  *
7662  * Updates the staged output configuration state, e.g. after we've read out the
7663  * current hw state.
7664  */
7665 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7666 {
7667         struct intel_encoder *encoder;
7668         struct intel_connector *connector;
7669
7670         list_for_each_entry(connector, &dev->mode_config.connector_list,
7671                             base.head) {
7672                 connector->new_encoder =
7673                         to_intel_encoder(connector->base.encoder);
7674         }
7675
7676         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7677                             base.head) {
7678                 encoder->new_crtc =
7679                         to_intel_crtc(encoder->base.crtc);
7680         }
7681 }
7682
7683 /**
7684  * intel_modeset_commit_output_state
7685  *
7686  * This function copies the stage display pipe configuration to the real one.
7687  */
7688 static void intel_modeset_commit_output_state(struct drm_device *dev)
7689 {
7690         struct intel_encoder *encoder;
7691         struct intel_connector *connector;
7692
7693         list_for_each_entry(connector, &dev->mode_config.connector_list,
7694                             base.head) {
7695                 connector->base.encoder = &connector->new_encoder->base;
7696         }
7697
7698         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7699                             base.head) {
7700                 encoder->base.crtc = &encoder->new_crtc->base;
7701         }
7702 }
7703
7704 static int
7705 pipe_config_set_bpp(struct drm_crtc *crtc,
7706                     struct drm_framebuffer *fb,
7707                     struct intel_crtc_config *pipe_config)
7708 {
7709         struct drm_device *dev = crtc->dev;
7710         struct drm_connector *connector;
7711         int bpp;
7712
7713         switch (fb->pixel_format) {
7714         case DRM_FORMAT_C8:
7715                 bpp = 8*3; /* since we go through a colormap */
7716                 break;
7717         case DRM_FORMAT_XRGB1555:
7718         case DRM_FORMAT_ARGB1555:
7719                 /* checked in intel_framebuffer_init already */
7720                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7721                         return -EINVAL;
7722         case DRM_FORMAT_RGB565:
7723                 bpp = 6*3; /* min is 18bpp */
7724                 break;
7725         case DRM_FORMAT_XBGR8888:
7726         case DRM_FORMAT_ABGR8888:
7727                 /* checked in intel_framebuffer_init already */
7728                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7729                         return -EINVAL;
7730         case DRM_FORMAT_XRGB8888:
7731         case DRM_FORMAT_ARGB8888:
7732                 bpp = 8*3;
7733                 break;
7734         case DRM_FORMAT_XRGB2101010:
7735         case DRM_FORMAT_ARGB2101010:
7736         case DRM_FORMAT_XBGR2101010:
7737         case DRM_FORMAT_ABGR2101010:
7738                 /* checked in intel_framebuffer_init already */
7739                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7740                         return -EINVAL;
7741                 bpp = 10*3;
7742                 break;
7743         /* TODO: gen4+ supports 16 bpc floating point, too. */
7744         default:
7745                 DRM_DEBUG_KMS("unsupported depth\n");
7746                 return -EINVAL;
7747         }
7748
7749         pipe_config->pipe_bpp = bpp;
7750
7751         /* Clamp display bpp to EDID value */
7752         list_for_each_entry(connector, &dev->mode_config.connector_list,
7753                             head) {
7754                 if (connector->encoder && connector->encoder->crtc != crtc)
7755                         continue;
7756
7757                 /* Don't use an invalid EDID bpc value */
7758                 if (connector->display_info.bpc &&
7759                     connector->display_info.bpc * 3 < bpp) {
7760                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7761                                       bpp, connector->display_info.bpc*3);
7762                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7763                 }
7764
7765                 /* Clamp bpp to 8 on screens without EDID 1.4 */
7766                 if (connector->display_info.bpc == 0 && bpp > 24) {
7767                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7768                                       bpp);
7769                         pipe_config->pipe_bpp = 24;
7770                 }
7771         }
7772
7773         return bpp;
7774 }
7775
7776 static struct intel_crtc_config *
7777 intel_modeset_pipe_config(struct drm_crtc *crtc,
7778                           struct drm_framebuffer *fb,
7779                           struct drm_display_mode *mode)
7780 {
7781         struct drm_device *dev = crtc->dev;
7782         struct drm_encoder_helper_funcs *encoder_funcs;
7783         struct intel_encoder *encoder;
7784         struct intel_crtc_config *pipe_config;
7785         int plane_bpp, ret = -EINVAL;
7786         bool retry = true;
7787
7788         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7789         if (!pipe_config)
7790                 return ERR_PTR(-ENOMEM);
7791
7792         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7793         drm_mode_copy(&pipe_config->requested_mode, mode);
7794
7795         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7796         if (plane_bpp < 0)
7797                 goto fail;
7798
7799 encoder_retry:
7800         /* Pass our mode to the connectors and the CRTC to give them a chance to
7801          * adjust it according to limitations or connector properties, and also
7802          * a chance to reject the mode entirely.
7803          */
7804         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7805                             base.head) {
7806
7807                 if (&encoder->new_crtc->base != crtc)
7808                         continue;
7809
7810                 if (encoder->compute_config) {
7811                         if (!(encoder->compute_config(encoder, pipe_config))) {
7812                                 DRM_DEBUG_KMS("Encoder config failure\n");
7813                                 goto fail;
7814                         }
7815
7816                         continue;
7817                 }
7818
7819                 encoder_funcs = encoder->base.helper_private;
7820                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7821                                                 &pipe_config->requested_mode,
7822                                                 &pipe_config->adjusted_mode))) {
7823                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7824                         goto fail;
7825                 }
7826         }
7827
7828         ret = intel_crtc_compute_config(crtc, pipe_config);
7829         if (ret < 0) {
7830                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7831                 goto fail;
7832         }
7833
7834         if (ret == RETRY) {
7835                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7836                         ret = -EINVAL;
7837                         goto fail;
7838                 }
7839
7840                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7841                 retry = false;
7842                 goto encoder_retry;
7843         }
7844
7845         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7846
7847         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7848         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7849                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7850
7851         return pipe_config;
7852 fail:
7853         kfree(pipe_config);
7854         return ERR_PTR(ret);
7855 }
7856
7857 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7858  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7859 static void
7860 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7861                              unsigned *prepare_pipes, unsigned *disable_pipes)
7862 {
7863         struct intel_crtc *intel_crtc;
7864         struct drm_device *dev = crtc->dev;
7865         struct intel_encoder *encoder;
7866         struct intel_connector *connector;
7867         struct drm_crtc *tmp_crtc;
7868
7869         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7870
7871         /* Check which crtcs have changed outputs connected to them, these need
7872          * to be part of the prepare_pipes mask. We don't (yet) support global
7873          * modeset across multiple crtcs, so modeset_pipes will only have one
7874          * bit set at most. */
7875         list_for_each_entry(connector, &dev->mode_config.connector_list,
7876                             base.head) {
7877                 if (connector->base.encoder == &connector->new_encoder->base)
7878                         continue;
7879
7880                 if (connector->base.encoder) {
7881                         tmp_crtc = connector->base.encoder->crtc;
7882
7883                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7884                 }
7885
7886                 if (connector->new_encoder)
7887                         *prepare_pipes |=
7888                                 1 << connector->new_encoder->new_crtc->pipe;
7889         }
7890
7891         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7892                             base.head) {
7893                 if (encoder->base.crtc == &encoder->new_crtc->base)
7894                         continue;
7895
7896                 if (encoder->base.crtc) {
7897                         tmp_crtc = encoder->base.crtc;
7898
7899                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7900                 }
7901
7902                 if (encoder->new_crtc)
7903                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7904         }
7905
7906         /* Check for any pipes that will be fully disabled ... */
7907         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7908                             base.head) {
7909                 bool used = false;
7910
7911                 /* Don't try to disable disabled crtcs. */
7912                 if (!intel_crtc->base.enabled)
7913                         continue;
7914
7915                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7916                                     base.head) {
7917                         if (encoder->new_crtc == intel_crtc)
7918                                 used = true;
7919                 }
7920
7921                 if (!used)
7922                         *disable_pipes |= 1 << intel_crtc->pipe;
7923         }
7924
7925
7926         /* set_mode is also used to update properties on life display pipes. */
7927         intel_crtc = to_intel_crtc(crtc);
7928         if (crtc->enabled)
7929                 *prepare_pipes |= 1 << intel_crtc->pipe;
7930
7931         /*
7932          * For simplicity do a full modeset on any pipe where the output routing
7933          * changed. We could be more clever, but that would require us to be
7934          * more careful with calling the relevant encoder->mode_set functions.
7935          */
7936         if (*prepare_pipes)
7937                 *modeset_pipes = *prepare_pipes;
7938
7939         /* ... and mask these out. */
7940         *modeset_pipes &= ~(*disable_pipes);
7941         *prepare_pipes &= ~(*disable_pipes);
7942
7943         /*
7944          * HACK: We don't (yet) fully support global modesets. intel_set_config
7945          * obies this rule, but the modeset restore mode of
7946          * intel_modeset_setup_hw_state does not.
7947          */
7948         *modeset_pipes &= 1 << intel_crtc->pipe;
7949         *prepare_pipes &= 1 << intel_crtc->pipe;
7950
7951         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7952                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7953 }
7954
7955 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7956 {
7957         struct drm_encoder *encoder;
7958         struct drm_device *dev = crtc->dev;
7959
7960         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7961                 if (encoder->crtc == crtc)
7962                         return true;
7963
7964         return false;
7965 }
7966
7967 static void
7968 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7969 {
7970         struct intel_encoder *intel_encoder;
7971         struct intel_crtc *intel_crtc;
7972         struct drm_connector *connector;
7973
7974         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7975                             base.head) {
7976                 if (!intel_encoder->base.crtc)
7977                         continue;
7978
7979                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7980
7981                 if (prepare_pipes & (1 << intel_crtc->pipe))
7982                         intel_encoder->connectors_active = false;
7983         }
7984
7985         intel_modeset_commit_output_state(dev);
7986
7987         /* Update computed state. */
7988         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7989                             base.head) {
7990                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7991         }
7992
7993         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7994                 if (!connector->encoder || !connector->encoder->crtc)
7995                         continue;
7996
7997                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7998
7999                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8000                         struct drm_property *dpms_property =
8001                                 dev->mode_config.dpms_property;
8002
8003                         connector->dpms = DRM_MODE_DPMS_ON;
8004                         drm_object_property_set_value(&connector->base,
8005                                                          dpms_property,
8006                                                          DRM_MODE_DPMS_ON);
8007
8008                         intel_encoder = to_intel_encoder(connector->encoder);
8009                         intel_encoder->connectors_active = true;
8010                 }
8011         }
8012
8013 }
8014
8015 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8016         list_for_each_entry((intel_crtc), \
8017                             &(dev)->mode_config.crtc_list, \
8018                             base.head) \
8019                 if (mask & (1 <<(intel_crtc)->pipe))
8020
8021 static bool
8022 intel_pipe_config_compare(struct intel_crtc_config *current_config,
8023                           struct intel_crtc_config *pipe_config)
8024 {
8025 #define PIPE_CONF_CHECK_I(name) \
8026         if (current_config->name != pipe_config->name) { \
8027                 DRM_ERROR("mismatch in " #name " " \
8028                           "(expected %i, found %i)\n", \
8029                           current_config->name, \
8030                           pipe_config->name); \
8031                 return false; \
8032         }
8033
8034 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8035         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8036                 DRM_ERROR("mismatch in " #name " " \
8037                           "(expected %i, found %i)\n", \
8038                           current_config->name & (mask), \
8039                           pipe_config->name & (mask)); \
8040                 return false; \
8041         }
8042
8043         PIPE_CONF_CHECK_I(has_pch_encoder);
8044         PIPE_CONF_CHECK_I(fdi_lanes);
8045         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8046         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8047         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8048         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8049         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8050
8051         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8052         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8053         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8054         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8055         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8056         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8057
8058         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8059         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8060         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8061         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8062         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8063         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8064
8065         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8066                               DRM_MODE_FLAG_INTERLACE);
8067
8068         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8069         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8070
8071 #undef PIPE_CONF_CHECK_I
8072 #undef PIPE_CONF_CHECK_FLAGS
8073
8074         return true;
8075 }
8076
8077 void
8078 intel_modeset_check_state(struct drm_device *dev)
8079 {
8080         drm_i915_private_t *dev_priv = dev->dev_private;
8081         struct intel_crtc *crtc;
8082         struct intel_encoder *encoder;
8083         struct intel_connector *connector;
8084         struct intel_crtc_config pipe_config;
8085
8086         list_for_each_entry(connector, &dev->mode_config.connector_list,
8087                             base.head) {
8088                 /* This also checks the encoder/connector hw state with the
8089                  * ->get_hw_state callbacks. */
8090                 intel_connector_check_state(connector);
8091
8092                 WARN(&connector->new_encoder->base != connector->base.encoder,
8093                      "connector's staged encoder doesn't match current encoder\n");
8094         }
8095
8096         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8097                             base.head) {
8098                 bool enabled = false;
8099                 bool active = false;
8100                 enum pipe pipe, tracked_pipe;
8101
8102                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8103                               encoder->base.base.id,
8104                               drm_get_encoder_name(&encoder->base));
8105
8106                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8107                      "encoder's stage crtc doesn't match current crtc\n");
8108                 WARN(encoder->connectors_active && !encoder->base.crtc,
8109                      "encoder's active_connectors set, but no crtc\n");
8110
8111                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8112                                     base.head) {
8113                         if (connector->base.encoder != &encoder->base)
8114                                 continue;
8115                         enabled = true;
8116                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8117                                 active = true;
8118                 }
8119                 WARN(!!encoder->base.crtc != enabled,
8120                      "encoder's enabled state mismatch "
8121                      "(expected %i, found %i)\n",
8122                      !!encoder->base.crtc, enabled);
8123                 WARN(active && !encoder->base.crtc,
8124                      "active encoder with no crtc\n");
8125
8126                 WARN(encoder->connectors_active != active,
8127                      "encoder's computed active state doesn't match tracked active state "
8128                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8129
8130                 active = encoder->get_hw_state(encoder, &pipe);
8131                 WARN(active != encoder->connectors_active,
8132                      "encoder's hw state doesn't match sw tracking "
8133                      "(expected %i, found %i)\n",
8134                      encoder->connectors_active, active);
8135
8136                 if (!encoder->base.crtc)
8137                         continue;
8138
8139                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8140                 WARN(active && pipe != tracked_pipe,
8141                      "active encoder's pipe doesn't match"
8142                      "(expected %i, found %i)\n",
8143                      tracked_pipe, pipe);
8144
8145         }
8146
8147         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8148                             base.head) {
8149                 bool enabled = false;
8150                 bool active = false;
8151
8152                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8153                               crtc->base.base.id);
8154
8155                 WARN(crtc->active && !crtc->base.enabled,
8156                      "active crtc, but not enabled in sw tracking\n");
8157
8158                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8159                                     base.head) {
8160                         if (encoder->base.crtc != &crtc->base)
8161                                 continue;
8162                         enabled = true;
8163                         if (encoder->connectors_active)
8164                                 active = true;
8165                 }
8166                 WARN(active != crtc->active,
8167                      "crtc's computed active state doesn't match tracked active state "
8168                      "(expected %i, found %i)\n", active, crtc->active);
8169                 WARN(enabled != crtc->base.enabled,
8170                      "crtc's computed enabled state doesn't match tracked enabled state "
8171                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8172
8173                 memset(&pipe_config, 0, sizeof(pipe_config));
8174                 pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
8175                 active = dev_priv->display.get_pipe_config(crtc,
8176                                                            &pipe_config);
8177                 WARN(crtc->active != active,
8178                      "crtc active state doesn't match with hw state "
8179                      "(expected %i, found %i)\n", crtc->active, active);
8180
8181                 WARN(active &&
8182                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
8183                      "pipe state doesn't match!\n");
8184         }
8185 }
8186
8187 static int __intel_set_mode(struct drm_crtc *crtc,
8188                             struct drm_display_mode *mode,
8189                             int x, int y, struct drm_framebuffer *fb)
8190 {
8191         struct drm_device *dev = crtc->dev;
8192         drm_i915_private_t *dev_priv = dev->dev_private;
8193         struct drm_display_mode *saved_mode, *saved_hwmode;
8194         struct intel_crtc_config *pipe_config = NULL;
8195         struct intel_crtc *intel_crtc;
8196         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8197         int ret = 0;
8198
8199         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8200         if (!saved_mode)
8201                 return -ENOMEM;
8202         saved_hwmode = saved_mode + 1;
8203
8204         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8205                                      &prepare_pipes, &disable_pipes);
8206
8207         *saved_hwmode = crtc->hwmode;
8208         *saved_mode = crtc->mode;
8209
8210         /* Hack: Because we don't (yet) support global modeset on multiple
8211          * crtcs, we don't keep track of the new mode for more than one crtc.
8212          * Hence simply check whether any bit is set in modeset_pipes in all the
8213          * pieces of code that are not yet converted to deal with mutliple crtcs
8214          * changing their mode at the same time. */
8215         if (modeset_pipes) {
8216                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8217                 if (IS_ERR(pipe_config)) {
8218                         ret = PTR_ERR(pipe_config);
8219                         pipe_config = NULL;
8220
8221                         goto out;
8222                 }
8223         }
8224
8225         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8226                 intel_crtc_disable(&intel_crtc->base);
8227
8228         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8229                 if (intel_crtc->base.enabled)
8230                         dev_priv->display.crtc_disable(&intel_crtc->base);
8231         }
8232
8233         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8234          * to set it here already despite that we pass it down the callchain.
8235          */
8236         if (modeset_pipes) {
8237                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8238                 crtc->mode = *mode;
8239                 /* mode_set/enable/disable functions rely on a correct pipe
8240                  * config. */
8241                 to_intel_crtc(crtc)->config = *pipe_config;
8242                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8243         }
8244
8245         /* Only after disabling all output pipelines that will be changed can we
8246          * update the the output configuration. */
8247         intel_modeset_update_state(dev, prepare_pipes);
8248
8249         if (dev_priv->display.modeset_global_resources)
8250                 dev_priv->display.modeset_global_resources(dev);
8251
8252         /* Set up the DPLL and any encoders state that needs to adjust or depend
8253          * on the DPLL.
8254          */
8255         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8256                 ret = intel_crtc_mode_set(&intel_crtc->base,
8257                                           x, y, fb);
8258                 if (ret)
8259                         goto done;
8260         }
8261
8262         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8263         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8264                 dev_priv->display.crtc_enable(&intel_crtc->base);
8265
8266         if (modeset_pipes) {
8267                 /* Store real post-adjustment hardware mode. */
8268                 crtc->hwmode = pipe_config->adjusted_mode;
8269
8270                 /* Calculate and store various constants which
8271                  * are later needed by vblank and swap-completion
8272                  * timestamping. They are derived from true hwmode.
8273                  */
8274                 drm_calc_timestamping_constants(crtc);
8275         }
8276
8277         /* FIXME: add subpixel order */
8278 done:
8279         if (ret && crtc->enabled) {
8280                 crtc->hwmode = *saved_hwmode;
8281                 crtc->mode = *saved_mode;
8282         }
8283
8284 out:
8285         kfree(pipe_config);
8286         kfree(saved_mode);
8287         return ret;
8288 }
8289
8290 int intel_set_mode(struct drm_crtc *crtc,
8291                      struct drm_display_mode *mode,
8292                      int x, int y, struct drm_framebuffer *fb)
8293 {
8294         int ret;
8295
8296         ret = __intel_set_mode(crtc, mode, x, y, fb);
8297
8298         if (ret == 0)
8299                 intel_modeset_check_state(crtc->dev);
8300
8301         return ret;
8302 }
8303
8304 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8305 {
8306         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8307 }
8308
8309 #undef for_each_intel_crtc_masked
8310
8311 static void intel_set_config_free(struct intel_set_config *config)
8312 {
8313         if (!config)
8314                 return;
8315
8316         kfree(config->save_connector_encoders);
8317         kfree(config->save_encoder_crtcs);
8318         kfree(config);
8319 }
8320
8321 static int intel_set_config_save_state(struct drm_device *dev,
8322                                        struct intel_set_config *config)
8323 {
8324         struct drm_encoder *encoder;
8325         struct drm_connector *connector;
8326         int count;
8327
8328         config->save_encoder_crtcs =
8329                 kcalloc(dev->mode_config.num_encoder,
8330                         sizeof(struct drm_crtc *), GFP_KERNEL);
8331         if (!config->save_encoder_crtcs)
8332                 return -ENOMEM;
8333
8334         config->save_connector_encoders =
8335                 kcalloc(dev->mode_config.num_connector,
8336                         sizeof(struct drm_encoder *), GFP_KERNEL);
8337         if (!config->save_connector_encoders)
8338                 return -ENOMEM;
8339
8340         /* Copy data. Note that driver private data is not affected.
8341          * Should anything bad happen only the expected state is
8342          * restored, not the drivers personal bookkeeping.
8343          */
8344         count = 0;
8345         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8346                 config->save_encoder_crtcs[count++] = encoder->crtc;
8347         }
8348
8349         count = 0;
8350         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8351                 config->save_connector_encoders[count++] = connector->encoder;
8352         }
8353
8354         return 0;
8355 }
8356
8357 static void intel_set_config_restore_state(struct drm_device *dev,
8358                                            struct intel_set_config *config)
8359 {
8360         struct intel_encoder *encoder;
8361         struct intel_connector *connector;
8362         int count;
8363
8364         count = 0;
8365         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8366                 encoder->new_crtc =
8367                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8368         }
8369
8370         count = 0;
8371         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8372                 connector->new_encoder =
8373                         to_intel_encoder(config->save_connector_encoders[count++]);
8374         }
8375 }
8376
8377 static void
8378 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8379                                       struct intel_set_config *config)
8380 {
8381
8382         /* We should be able to check here if the fb has the same properties
8383          * and then just flip_or_move it */
8384         if (set->crtc->fb != set->fb) {
8385                 /* If we have no fb then treat it as a full mode set */
8386                 if (set->crtc->fb == NULL) {
8387                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8388                         config->mode_changed = true;
8389                 } else if (set->fb == NULL) {
8390                         config->mode_changed = true;
8391                 } else if (set->fb->pixel_format !=
8392                            set->crtc->fb->pixel_format) {
8393                         config->mode_changed = true;
8394                 } else
8395                         config->fb_changed = true;
8396         }
8397
8398         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8399                 config->fb_changed = true;
8400
8401         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8402                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8403                 drm_mode_debug_printmodeline(&set->crtc->mode);
8404                 drm_mode_debug_printmodeline(set->mode);
8405                 config->mode_changed = true;
8406         }
8407 }
8408
8409 static int
8410 intel_modeset_stage_output_state(struct drm_device *dev,
8411                                  struct drm_mode_set *set,
8412                                  struct intel_set_config *config)
8413 {
8414         struct drm_crtc *new_crtc;
8415         struct intel_connector *connector;
8416         struct intel_encoder *encoder;
8417         int count, ro;
8418
8419         /* The upper layers ensure that we either disable a crtc or have a list
8420          * of connectors. For paranoia, double-check this. */
8421         WARN_ON(!set->fb && (set->num_connectors != 0));
8422         WARN_ON(set->fb && (set->num_connectors == 0));
8423
8424         count = 0;
8425         list_for_each_entry(connector, &dev->mode_config.connector_list,
8426                             base.head) {
8427                 /* Otherwise traverse passed in connector list and get encoders
8428                  * for them. */
8429                 for (ro = 0; ro < set->num_connectors; ro++) {
8430                         if (set->connectors[ro] == &connector->base) {
8431                                 connector->new_encoder = connector->encoder;
8432                                 break;
8433                         }
8434                 }
8435
8436                 /* If we disable the crtc, disable all its connectors. Also, if
8437                  * the connector is on the changing crtc but not on the new
8438                  * connector list, disable it. */
8439                 if ((!set->fb || ro == set->num_connectors) &&
8440                     connector->base.encoder &&
8441                     connector->base.encoder->crtc == set->crtc) {
8442                         connector->new_encoder = NULL;
8443
8444                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8445                                 connector->base.base.id,
8446                                 drm_get_connector_name(&connector->base));
8447                 }
8448
8449
8450                 if (&connector->new_encoder->base != connector->base.encoder) {
8451                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8452                         config->mode_changed = true;
8453                 }
8454         }
8455         /* connector->new_encoder is now updated for all connectors. */
8456
8457         /* Update crtc of enabled connectors. */
8458         count = 0;
8459         list_for_each_entry(connector, &dev->mode_config.connector_list,
8460                             base.head) {
8461                 if (!connector->new_encoder)
8462                         continue;
8463
8464                 new_crtc = connector->new_encoder->base.crtc;
8465
8466                 for (ro = 0; ro < set->num_connectors; ro++) {
8467                         if (set->connectors[ro] == &connector->base)
8468                                 new_crtc = set->crtc;
8469                 }
8470
8471                 /* Make sure the new CRTC will work with the encoder */
8472                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8473                                            new_crtc)) {
8474                         return -EINVAL;
8475                 }
8476                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8477
8478                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8479                         connector->base.base.id,
8480                         drm_get_connector_name(&connector->base),
8481                         new_crtc->base.id);
8482         }
8483
8484         /* Check for any encoders that needs to be disabled. */
8485         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8486                             base.head) {
8487                 list_for_each_entry(connector,
8488                                     &dev->mode_config.connector_list,
8489                                     base.head) {
8490                         if (connector->new_encoder == encoder) {
8491                                 WARN_ON(!connector->new_encoder->new_crtc);
8492
8493                                 goto next_encoder;
8494                         }
8495                 }
8496                 encoder->new_crtc = NULL;
8497 next_encoder:
8498                 /* Only now check for crtc changes so we don't miss encoders
8499                  * that will be disabled. */
8500                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8501                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8502                         config->mode_changed = true;
8503                 }
8504         }
8505         /* Now we've also updated encoder->new_crtc for all encoders. */
8506
8507         return 0;
8508 }
8509
8510 static int intel_crtc_set_config(struct drm_mode_set *set)
8511 {
8512         struct drm_device *dev;
8513         struct drm_mode_set save_set;
8514         struct intel_set_config *config;
8515         int ret;
8516
8517         BUG_ON(!set);
8518         BUG_ON(!set->crtc);
8519         BUG_ON(!set->crtc->helper_private);
8520
8521         /* Enforce sane interface api - has been abused by the fb helper. */
8522         BUG_ON(!set->mode && set->fb);
8523         BUG_ON(set->fb && set->num_connectors == 0);
8524
8525         if (set->fb) {
8526                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8527                                 set->crtc->base.id, set->fb->base.id,
8528                                 (int)set->num_connectors, set->x, set->y);
8529         } else {
8530                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8531         }
8532
8533         dev = set->crtc->dev;
8534
8535         ret = -ENOMEM;
8536         config = kzalloc(sizeof(*config), GFP_KERNEL);
8537         if (!config)
8538                 goto out_config;
8539
8540         ret = intel_set_config_save_state(dev, config);
8541         if (ret)
8542                 goto out_config;
8543
8544         save_set.crtc = set->crtc;
8545         save_set.mode = &set->crtc->mode;
8546         save_set.x = set->crtc->x;
8547         save_set.y = set->crtc->y;
8548         save_set.fb = set->crtc->fb;
8549
8550         /* Compute whether we need a full modeset, only an fb base update or no
8551          * change at all. In the future we might also check whether only the
8552          * mode changed, e.g. for LVDS where we only change the panel fitter in
8553          * such cases. */
8554         intel_set_config_compute_mode_changes(set, config);
8555
8556         ret = intel_modeset_stage_output_state(dev, set, config);
8557         if (ret)
8558                 goto fail;
8559
8560         if (config->mode_changed) {
8561                 if (set->mode) {
8562                         DRM_DEBUG_KMS("attempting to set mode from"
8563                                         " userspace\n");
8564                         drm_mode_debug_printmodeline(set->mode);
8565                 }
8566
8567                 ret = intel_set_mode(set->crtc, set->mode,
8568                                      set->x, set->y, set->fb);
8569                 if (ret) {
8570                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8571                                   set->crtc->base.id, ret);
8572                         goto fail;
8573                 }
8574         } else if (config->fb_changed) {
8575                 intel_crtc_wait_for_pending_flips(set->crtc);
8576
8577                 ret = intel_pipe_set_base(set->crtc,
8578                                           set->x, set->y, set->fb);
8579         }
8580
8581         intel_set_config_free(config);
8582
8583         return 0;
8584
8585 fail:
8586         intel_set_config_restore_state(dev, config);
8587
8588         /* Try to restore the config */
8589         if (config->mode_changed &&
8590             intel_set_mode(save_set.crtc, save_set.mode,
8591                            save_set.x, save_set.y, save_set.fb))
8592                 DRM_ERROR("failed to restore config after modeset failure\n");
8593
8594 out_config:
8595         intel_set_config_free(config);
8596         return ret;
8597 }
8598
8599 static const struct drm_crtc_funcs intel_crtc_funcs = {
8600         .cursor_set = intel_crtc_cursor_set,
8601         .cursor_move = intel_crtc_cursor_move,
8602         .gamma_set = intel_crtc_gamma_set,
8603         .set_config = intel_crtc_set_config,
8604         .destroy = intel_crtc_destroy,
8605         .page_flip = intel_crtc_page_flip,
8606 };
8607
8608 static void intel_cpu_pll_init(struct drm_device *dev)
8609 {
8610         if (HAS_DDI(dev))
8611                 intel_ddi_pll_init(dev);
8612 }
8613
8614 static void intel_pch_pll_init(struct drm_device *dev)
8615 {
8616         drm_i915_private_t *dev_priv = dev->dev_private;
8617         int i;
8618
8619         if (dev_priv->num_pch_pll == 0) {
8620                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8621                 return;
8622         }
8623
8624         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8625                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8626                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8627                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8628         }
8629 }
8630
8631 static void intel_crtc_init(struct drm_device *dev, int pipe)
8632 {
8633         drm_i915_private_t *dev_priv = dev->dev_private;
8634         struct intel_crtc *intel_crtc;
8635         int i;
8636
8637         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8638         if (intel_crtc == NULL)
8639                 return;
8640
8641         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8642
8643         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8644         for (i = 0; i < 256; i++) {
8645                 intel_crtc->lut_r[i] = i;
8646                 intel_crtc->lut_g[i] = i;
8647                 intel_crtc->lut_b[i] = i;
8648         }
8649
8650         /* Swap pipes & planes for FBC on pre-965 */
8651         intel_crtc->pipe = pipe;
8652         intel_crtc->plane = pipe;
8653         intel_crtc->config.cpu_transcoder = pipe;
8654         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8655                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8656                 intel_crtc->plane = !pipe;
8657         }
8658
8659         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8660                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8661         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8662         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8663
8664         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8665 }
8666
8667 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8668                                 struct drm_file *file)
8669 {
8670         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8671         struct drm_mode_object *drmmode_obj;
8672         struct intel_crtc *crtc;
8673
8674         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8675                 return -ENODEV;
8676
8677         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8678                         DRM_MODE_OBJECT_CRTC);
8679
8680         if (!drmmode_obj) {
8681                 DRM_ERROR("no such CRTC id\n");
8682                 return -EINVAL;
8683         }
8684
8685         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8686         pipe_from_crtc_id->pipe = crtc->pipe;
8687
8688         return 0;
8689 }
8690
8691 static int intel_encoder_clones(struct intel_encoder *encoder)
8692 {
8693         struct drm_device *dev = encoder->base.dev;
8694         struct intel_encoder *source_encoder;
8695         int index_mask = 0;
8696         int entry = 0;
8697
8698         list_for_each_entry(source_encoder,
8699                             &dev->mode_config.encoder_list, base.head) {
8700
8701                 if (encoder == source_encoder)
8702                         index_mask |= (1 << entry);
8703
8704                 /* Intel hw has only one MUX where enocoders could be cloned. */
8705                 if (encoder->cloneable && source_encoder->cloneable)
8706                         index_mask |= (1 << entry);
8707
8708                 entry++;
8709         }
8710
8711         return index_mask;
8712 }
8713
8714 static bool has_edp_a(struct drm_device *dev)
8715 {
8716         struct drm_i915_private *dev_priv = dev->dev_private;
8717
8718         if (!IS_MOBILE(dev))
8719                 return false;
8720
8721         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8722                 return false;
8723
8724         if (IS_GEN5(dev) &&
8725             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8726                 return false;
8727
8728         return true;
8729 }
8730
8731 static void intel_setup_outputs(struct drm_device *dev)
8732 {
8733         struct drm_i915_private *dev_priv = dev->dev_private;
8734         struct intel_encoder *encoder;
8735         bool dpd_is_edp = false;
8736         bool has_lvds;
8737
8738         has_lvds = intel_lvds_init(dev);
8739         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8740                 /* disable the panel fitter on everything but LVDS */
8741                 I915_WRITE(PFIT_CONTROL, 0);
8742         }
8743
8744         if (!IS_ULT(dev))
8745                 intel_crt_init(dev);
8746
8747         if (HAS_DDI(dev)) {
8748                 int found;
8749
8750                 /* Haswell uses DDI functions to detect digital outputs */
8751                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8752                 /* DDI A only supports eDP */
8753                 if (found)
8754                         intel_ddi_init(dev, PORT_A);
8755
8756                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8757                  * register */
8758                 found = I915_READ(SFUSE_STRAP);
8759
8760                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8761                         intel_ddi_init(dev, PORT_B);
8762                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8763                         intel_ddi_init(dev, PORT_C);
8764                 if (found & SFUSE_STRAP_DDID_DETECTED)
8765                         intel_ddi_init(dev, PORT_D);
8766         } else if (HAS_PCH_SPLIT(dev)) {
8767                 int found;
8768                 dpd_is_edp = intel_dpd_is_edp(dev);
8769
8770                 if (has_edp_a(dev))
8771                         intel_dp_init(dev, DP_A, PORT_A);
8772
8773                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8774                         /* PCH SDVOB multiplex with HDMIB */
8775                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8776                         if (!found)
8777                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8778                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8779                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8780                 }
8781
8782                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8783                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8784
8785                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8786                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8787
8788                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8789                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8790
8791                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8792                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8793         } else if (IS_VALLEYVIEW(dev)) {
8794                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8795                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8796                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8797
8798                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8799                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8800                                         PORT_B);
8801                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8802                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8803                 }
8804         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8805                 bool found = false;
8806
8807                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8808                         DRM_DEBUG_KMS("probing SDVOB\n");
8809                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8810                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8811                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8812                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8813                         }
8814
8815                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8816                                 DRM_DEBUG_KMS("probing DP_B\n");
8817                                 intel_dp_init(dev, DP_B, PORT_B);
8818                         }
8819                 }
8820
8821                 /* Before G4X SDVOC doesn't have its own detect register */
8822
8823                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8824                         DRM_DEBUG_KMS("probing SDVOC\n");
8825                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8826                 }
8827
8828                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8829
8830                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8831                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8832                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8833                         }
8834                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8835                                 DRM_DEBUG_KMS("probing DP_C\n");
8836                                 intel_dp_init(dev, DP_C, PORT_C);
8837                         }
8838                 }
8839
8840                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8841                     (I915_READ(DP_D) & DP_DETECTED)) {
8842                         DRM_DEBUG_KMS("probing DP_D\n");
8843                         intel_dp_init(dev, DP_D, PORT_D);
8844                 }
8845         } else if (IS_GEN2(dev))
8846                 intel_dvo_init(dev);
8847
8848         if (SUPPORTS_TV(dev))
8849                 intel_tv_init(dev);
8850
8851         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8852                 encoder->base.possible_crtcs = encoder->crtc_mask;
8853                 encoder->base.possible_clones =
8854                         intel_encoder_clones(encoder);
8855         }
8856
8857         intel_init_pch_refclk(dev);
8858
8859         drm_helper_move_panel_connectors_to_head(dev);
8860 }
8861
8862 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8863 {
8864         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8865
8866         drm_framebuffer_cleanup(fb);
8867         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8868
8869         kfree(intel_fb);
8870 }
8871
8872 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8873                                                 struct drm_file *file,
8874                                                 unsigned int *handle)
8875 {
8876         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8877         struct drm_i915_gem_object *obj = intel_fb->obj;
8878
8879         return drm_gem_handle_create(file, &obj->base, handle);
8880 }
8881
8882 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8883         .destroy = intel_user_framebuffer_destroy,
8884         .create_handle = intel_user_framebuffer_create_handle,
8885 };
8886
8887 int intel_framebuffer_init(struct drm_device *dev,
8888                            struct intel_framebuffer *intel_fb,
8889                            struct drm_mode_fb_cmd2 *mode_cmd,
8890                            struct drm_i915_gem_object *obj)
8891 {
8892         int ret;
8893
8894         if (obj->tiling_mode == I915_TILING_Y) {
8895                 DRM_DEBUG("hardware does not support tiling Y\n");
8896                 return -EINVAL;
8897         }
8898
8899         if (mode_cmd->pitches[0] & 63) {
8900                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8901                           mode_cmd->pitches[0]);
8902                 return -EINVAL;
8903         }
8904
8905         /* FIXME <= Gen4 stride limits are bit unclear */
8906         if (mode_cmd->pitches[0] > 32768) {
8907                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8908                           mode_cmd->pitches[0]);
8909                 return -EINVAL;
8910         }
8911
8912         if (obj->tiling_mode != I915_TILING_NONE &&
8913             mode_cmd->pitches[0] != obj->stride) {
8914                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8915                           mode_cmd->pitches[0], obj->stride);
8916                 return -EINVAL;
8917         }
8918
8919         /* Reject formats not supported by any plane early. */
8920         switch (mode_cmd->pixel_format) {
8921         case DRM_FORMAT_C8:
8922         case DRM_FORMAT_RGB565:
8923         case DRM_FORMAT_XRGB8888:
8924         case DRM_FORMAT_ARGB8888:
8925                 break;
8926         case DRM_FORMAT_XRGB1555:
8927         case DRM_FORMAT_ARGB1555:
8928                 if (INTEL_INFO(dev)->gen > 3) {
8929                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8930                         return -EINVAL;
8931                 }
8932                 break;
8933         case DRM_FORMAT_XBGR8888:
8934         case DRM_FORMAT_ABGR8888:
8935         case DRM_FORMAT_XRGB2101010:
8936         case DRM_FORMAT_ARGB2101010:
8937         case DRM_FORMAT_XBGR2101010:
8938         case DRM_FORMAT_ABGR2101010:
8939                 if (INTEL_INFO(dev)->gen < 4) {
8940                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8941                         return -EINVAL;
8942                 }
8943                 break;
8944         case DRM_FORMAT_YUYV:
8945         case DRM_FORMAT_UYVY:
8946         case DRM_FORMAT_YVYU:
8947         case DRM_FORMAT_VYUY:
8948                 if (INTEL_INFO(dev)->gen < 5) {
8949                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8950                         return -EINVAL;
8951                 }
8952                 break;
8953         default:
8954                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8955                 return -EINVAL;
8956         }
8957
8958         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8959         if (mode_cmd->offsets[0] != 0)
8960                 return -EINVAL;
8961
8962         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8963         intel_fb->obj = obj;
8964
8965         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8966         if (ret) {
8967                 DRM_ERROR("framebuffer init failed %d\n", ret);
8968                 return ret;
8969         }
8970
8971         return 0;
8972 }
8973
8974 static struct drm_framebuffer *
8975 intel_user_framebuffer_create(struct drm_device *dev,
8976                               struct drm_file *filp,
8977                               struct drm_mode_fb_cmd2 *mode_cmd)
8978 {
8979         struct drm_i915_gem_object *obj;
8980
8981         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8982                                                 mode_cmd->handles[0]));
8983         if (&obj->base == NULL)
8984                 return ERR_PTR(-ENOENT);
8985
8986         return intel_framebuffer_create(dev, mode_cmd, obj);
8987 }
8988
8989 static const struct drm_mode_config_funcs intel_mode_funcs = {
8990         .fb_create = intel_user_framebuffer_create,
8991         .output_poll_changed = intel_fb_output_poll_changed,
8992 };
8993
8994 /* Set up chip specific display functions */
8995 static void intel_init_display(struct drm_device *dev)
8996 {
8997         struct drm_i915_private *dev_priv = dev->dev_private;
8998
8999         if (HAS_DDI(dev)) {
9000                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9001                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9002                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9003                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9004                 dev_priv->display.off = haswell_crtc_off;
9005                 dev_priv->display.update_plane = ironlake_update_plane;
9006         } else if (HAS_PCH_SPLIT(dev)) {
9007                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9008                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9009                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9010                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9011                 dev_priv->display.off = ironlake_crtc_off;
9012                 dev_priv->display.update_plane = ironlake_update_plane;
9013         } else if (IS_VALLEYVIEW(dev)) {
9014                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9015                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9016                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9017                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9018                 dev_priv->display.off = i9xx_crtc_off;
9019                 dev_priv->display.update_plane = i9xx_update_plane;
9020         } else {
9021                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9022                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9023                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9024                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9025                 dev_priv->display.off = i9xx_crtc_off;
9026                 dev_priv->display.update_plane = i9xx_update_plane;
9027         }
9028
9029         /* Returns the core display clock speed */
9030         if (IS_VALLEYVIEW(dev))
9031                 dev_priv->display.get_display_clock_speed =
9032                         valleyview_get_display_clock_speed;
9033         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9034                 dev_priv->display.get_display_clock_speed =
9035                         i945_get_display_clock_speed;
9036         else if (IS_I915G(dev))
9037                 dev_priv->display.get_display_clock_speed =
9038                         i915_get_display_clock_speed;
9039         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9040                 dev_priv->display.get_display_clock_speed =
9041                         i9xx_misc_get_display_clock_speed;
9042         else if (IS_I915GM(dev))
9043                 dev_priv->display.get_display_clock_speed =
9044                         i915gm_get_display_clock_speed;
9045         else if (IS_I865G(dev))
9046                 dev_priv->display.get_display_clock_speed =
9047                         i865_get_display_clock_speed;
9048         else if (IS_I85X(dev))
9049                 dev_priv->display.get_display_clock_speed =
9050                         i855_get_display_clock_speed;
9051         else /* 852, 830 */
9052                 dev_priv->display.get_display_clock_speed =
9053                         i830_get_display_clock_speed;
9054
9055         if (HAS_PCH_SPLIT(dev)) {
9056                 if (IS_GEN5(dev)) {
9057                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9058                         dev_priv->display.write_eld = ironlake_write_eld;
9059                 } else if (IS_GEN6(dev)) {
9060                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9061                         dev_priv->display.write_eld = ironlake_write_eld;
9062                 } else if (IS_IVYBRIDGE(dev)) {
9063                         /* FIXME: detect B0+ stepping and use auto training */
9064                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9065                         dev_priv->display.write_eld = ironlake_write_eld;
9066                         dev_priv->display.modeset_global_resources =
9067                                 ivb_modeset_global_resources;
9068                 } else if (IS_HASWELL(dev)) {
9069                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9070                         dev_priv->display.write_eld = haswell_write_eld;
9071                         dev_priv->display.modeset_global_resources =
9072                                 haswell_modeset_global_resources;
9073                 }
9074         } else if (IS_G4X(dev)) {
9075                 dev_priv->display.write_eld = g4x_write_eld;
9076         }
9077
9078         /* Default just returns -ENODEV to indicate unsupported */
9079         dev_priv->display.queue_flip = intel_default_queue_flip;
9080
9081         switch (INTEL_INFO(dev)->gen) {
9082         case 2:
9083                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9084                 break;
9085
9086         case 3:
9087                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9088                 break;
9089
9090         case 4:
9091         case 5:
9092                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9093                 break;
9094
9095         case 6:
9096                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9097                 break;
9098         case 7:
9099                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9100                 break;
9101         }
9102 }
9103
9104 /*
9105  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9106  * resume, or other times.  This quirk makes sure that's the case for
9107  * affected systems.
9108  */
9109 static void quirk_pipea_force(struct drm_device *dev)
9110 {
9111         struct drm_i915_private *dev_priv = dev->dev_private;
9112
9113         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9114         DRM_INFO("applying pipe a force quirk\n");
9115 }
9116
9117 /*
9118  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9119  */
9120 static void quirk_ssc_force_disable(struct drm_device *dev)
9121 {
9122         struct drm_i915_private *dev_priv = dev->dev_private;
9123         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9124         DRM_INFO("applying lvds SSC disable quirk\n");
9125 }
9126
9127 /*
9128  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9129  * brightness value
9130  */
9131 static void quirk_invert_brightness(struct drm_device *dev)
9132 {
9133         struct drm_i915_private *dev_priv = dev->dev_private;
9134         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9135         DRM_INFO("applying inverted panel brightness quirk\n");
9136 }
9137
9138 struct intel_quirk {
9139         int device;
9140         int subsystem_vendor;
9141         int subsystem_device;
9142         void (*hook)(struct drm_device *dev);
9143 };
9144
9145 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9146 struct intel_dmi_quirk {
9147         void (*hook)(struct drm_device *dev);
9148         const struct dmi_system_id (*dmi_id_list)[];
9149 };
9150
9151 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9152 {
9153         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9154         return 1;
9155 }
9156
9157 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9158         {
9159                 .dmi_id_list = &(const struct dmi_system_id[]) {
9160                         {
9161                                 .callback = intel_dmi_reverse_brightness,
9162                                 .ident = "NCR Corporation",
9163                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9164                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9165                                 },
9166                         },
9167                         { }  /* terminating entry */
9168                 },
9169                 .hook = quirk_invert_brightness,
9170         },
9171 };
9172
9173 static struct intel_quirk intel_quirks[] = {
9174         /* HP Mini needs pipe A force quirk (LP: #322104) */
9175         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9176
9177         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9178         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9179
9180         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9181         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9182
9183         /* 830/845 need to leave pipe A & dpll A up */
9184         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9185         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9186
9187         /* Lenovo U160 cannot use SSC on LVDS */
9188         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9189
9190         /* Sony Vaio Y cannot use SSC on LVDS */
9191         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9192
9193         /* Acer Aspire 5734Z must invert backlight brightness */
9194         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9195
9196         /* Acer/eMachines G725 */
9197         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9198
9199         /* Acer/eMachines e725 */
9200         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9201
9202         /* Acer/Packard Bell NCL20 */
9203         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9204
9205         /* Acer Aspire 4736Z */
9206         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9207 };
9208
9209 static void intel_init_quirks(struct drm_device *dev)
9210 {
9211         struct pci_dev *d = dev->pdev;
9212         int i;
9213
9214         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9215                 struct intel_quirk *q = &intel_quirks[i];
9216
9217                 if (d->device == q->device &&
9218                     (d->subsystem_vendor == q->subsystem_vendor ||
9219                      q->subsystem_vendor == PCI_ANY_ID) &&
9220                     (d->subsystem_device == q->subsystem_device ||
9221                      q->subsystem_device == PCI_ANY_ID))
9222                         q->hook(dev);
9223         }
9224         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9225                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9226                         intel_dmi_quirks[i].hook(dev);
9227         }
9228 }
9229
9230 /* Disable the VGA plane that we never use */
9231 static void i915_disable_vga(struct drm_device *dev)
9232 {
9233         struct drm_i915_private *dev_priv = dev->dev_private;
9234         u8 sr1;
9235         u32 vga_reg = i915_vgacntrl_reg(dev);
9236
9237         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9238         outb(SR01, VGA_SR_INDEX);
9239         sr1 = inb(VGA_SR_DATA);
9240         outb(sr1 | 1<<5, VGA_SR_DATA);
9241         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9242         udelay(300);
9243
9244         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9245         POSTING_READ(vga_reg);
9246 }
9247
9248 void intel_modeset_init_hw(struct drm_device *dev)
9249 {
9250         intel_init_power_well(dev);
9251
9252         intel_prepare_ddi(dev);
9253
9254         intel_init_clock_gating(dev);
9255
9256         mutex_lock(&dev->struct_mutex);
9257         intel_enable_gt_powersave(dev);
9258         mutex_unlock(&dev->struct_mutex);
9259 }
9260
9261 void intel_modeset_init(struct drm_device *dev)
9262 {
9263         struct drm_i915_private *dev_priv = dev->dev_private;
9264         int i, j, ret;
9265
9266         drm_mode_config_init(dev);
9267
9268         dev->mode_config.min_width = 0;
9269         dev->mode_config.min_height = 0;
9270
9271         dev->mode_config.preferred_depth = 24;
9272         dev->mode_config.prefer_shadow = 1;
9273
9274         dev->mode_config.funcs = &intel_mode_funcs;
9275
9276         intel_init_quirks(dev);
9277
9278         intel_init_pm(dev);
9279
9280         if (INTEL_INFO(dev)->num_pipes == 0)
9281                 return;
9282
9283         intel_init_display(dev);
9284
9285         if (IS_GEN2(dev)) {
9286                 dev->mode_config.max_width = 2048;
9287                 dev->mode_config.max_height = 2048;
9288         } else if (IS_GEN3(dev)) {
9289                 dev->mode_config.max_width = 4096;
9290                 dev->mode_config.max_height = 4096;
9291         } else {
9292                 dev->mode_config.max_width = 8192;
9293                 dev->mode_config.max_height = 8192;
9294         }
9295         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9296
9297         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9298                       INTEL_INFO(dev)->num_pipes,
9299                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9300
9301         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9302                 intel_crtc_init(dev, i);
9303                 for (j = 0; j < dev_priv->num_plane; j++) {
9304                         ret = intel_plane_init(dev, i, j);
9305                         if (ret)
9306                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9307                                               pipe_name(i), sprite_name(i, j), ret);
9308                 }
9309         }
9310
9311         intel_cpu_pll_init(dev);
9312         intel_pch_pll_init(dev);
9313
9314         /* Just disable it once at startup */
9315         i915_disable_vga(dev);
9316         intel_setup_outputs(dev);
9317
9318         /* Just in case the BIOS is doing something questionable. */
9319         intel_disable_fbc(dev);
9320 }
9321
9322 static void
9323 intel_connector_break_all_links(struct intel_connector *connector)
9324 {
9325         connector->base.dpms = DRM_MODE_DPMS_OFF;
9326         connector->base.encoder = NULL;
9327         connector->encoder->connectors_active = false;
9328         connector->encoder->base.crtc = NULL;
9329 }
9330
9331 static void intel_enable_pipe_a(struct drm_device *dev)
9332 {
9333         struct intel_connector *connector;
9334         struct drm_connector *crt = NULL;
9335         struct intel_load_detect_pipe load_detect_temp;
9336
9337         /* We can't just switch on the pipe A, we need to set things up with a
9338          * proper mode and output configuration. As a gross hack, enable pipe A
9339          * by enabling the load detect pipe once. */
9340         list_for_each_entry(connector,
9341                             &dev->mode_config.connector_list,
9342                             base.head) {
9343                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9344                         crt = &connector->base;
9345                         break;
9346                 }
9347         }
9348
9349         if (!crt)
9350                 return;
9351
9352         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9353                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9354
9355
9356 }
9357
9358 static bool
9359 intel_check_plane_mapping(struct intel_crtc *crtc)
9360 {
9361         struct drm_device *dev = crtc->base.dev;
9362         struct drm_i915_private *dev_priv = dev->dev_private;
9363         u32 reg, val;
9364
9365         if (INTEL_INFO(dev)->num_pipes == 1)
9366                 return true;
9367
9368         reg = DSPCNTR(!crtc->plane);
9369         val = I915_READ(reg);
9370
9371         if ((val & DISPLAY_PLANE_ENABLE) &&
9372             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9373                 return false;
9374
9375         return true;
9376 }
9377
9378 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9379 {
9380         struct drm_device *dev = crtc->base.dev;
9381         struct drm_i915_private *dev_priv = dev->dev_private;
9382         u32 reg;
9383
9384         /* Clear any frame start delays used for debugging left by the BIOS */
9385         reg = PIPECONF(crtc->config.cpu_transcoder);
9386         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9387
9388         /* We need to sanitize the plane -> pipe mapping first because this will
9389          * disable the crtc (and hence change the state) if it is wrong. Note
9390          * that gen4+ has a fixed plane -> pipe mapping.  */
9391         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9392                 struct intel_connector *connector;
9393                 bool plane;
9394
9395                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9396                               crtc->base.base.id);
9397
9398                 /* Pipe has the wrong plane attached and the plane is active.
9399                  * Temporarily change the plane mapping and disable everything
9400                  * ...  */
9401                 plane = crtc->plane;
9402                 crtc->plane = !plane;
9403                 dev_priv->display.crtc_disable(&crtc->base);
9404                 crtc->plane = plane;
9405
9406                 /* ... and break all links. */
9407                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9408                                     base.head) {
9409                         if (connector->encoder->base.crtc != &crtc->base)
9410                                 continue;
9411
9412                         intel_connector_break_all_links(connector);
9413                 }
9414
9415                 WARN_ON(crtc->active);
9416                 crtc->base.enabled = false;
9417         }
9418
9419         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9420             crtc->pipe == PIPE_A && !crtc->active) {
9421                 /* BIOS forgot to enable pipe A, this mostly happens after
9422                  * resume. Force-enable the pipe to fix this, the update_dpms
9423                  * call below we restore the pipe to the right state, but leave
9424                  * the required bits on. */
9425                 intel_enable_pipe_a(dev);
9426         }
9427
9428         /* Adjust the state of the output pipe according to whether we
9429          * have active connectors/encoders. */
9430         intel_crtc_update_dpms(&crtc->base);
9431
9432         if (crtc->active != crtc->base.enabled) {
9433                 struct intel_encoder *encoder;
9434
9435                 /* This can happen either due to bugs in the get_hw_state
9436                  * functions or because the pipe is force-enabled due to the
9437                  * pipe A quirk. */
9438                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9439                               crtc->base.base.id,
9440                               crtc->base.enabled ? "enabled" : "disabled",
9441                               crtc->active ? "enabled" : "disabled");
9442
9443                 crtc->base.enabled = crtc->active;
9444
9445                 /* Because we only establish the connector -> encoder ->
9446                  * crtc links if something is active, this means the
9447                  * crtc is now deactivated. Break the links. connector
9448                  * -> encoder links are only establish when things are
9449                  *  actually up, hence no need to break them. */
9450                 WARN_ON(crtc->active);
9451
9452                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9453                         WARN_ON(encoder->connectors_active);
9454                         encoder->base.crtc = NULL;
9455                 }
9456         }
9457 }
9458
9459 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9460 {
9461         struct intel_connector *connector;
9462         struct drm_device *dev = encoder->base.dev;
9463
9464         /* We need to check both for a crtc link (meaning that the
9465          * encoder is active and trying to read from a pipe) and the
9466          * pipe itself being active. */
9467         bool has_active_crtc = encoder->base.crtc &&
9468                 to_intel_crtc(encoder->base.crtc)->active;
9469
9470         if (encoder->connectors_active && !has_active_crtc) {
9471                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9472                               encoder->base.base.id,
9473                               drm_get_encoder_name(&encoder->base));
9474
9475                 /* Connector is active, but has no active pipe. This is
9476                  * fallout from our resume register restoring. Disable
9477                  * the encoder manually again. */
9478                 if (encoder->base.crtc) {
9479                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9480                                       encoder->base.base.id,
9481                                       drm_get_encoder_name(&encoder->base));
9482                         encoder->disable(encoder);
9483                 }
9484
9485                 /* Inconsistent output/port/pipe state happens presumably due to
9486                  * a bug in one of the get_hw_state functions. Or someplace else
9487                  * in our code, like the register restore mess on resume. Clamp
9488                  * things to off as a safer default. */
9489                 list_for_each_entry(connector,
9490                                     &dev->mode_config.connector_list,
9491                                     base.head) {
9492                         if (connector->encoder != encoder)
9493                                 continue;
9494
9495                         intel_connector_break_all_links(connector);
9496                 }
9497         }
9498         /* Enabled encoders without active connectors will be fixed in
9499          * the crtc fixup. */
9500 }
9501
9502 void i915_redisable_vga(struct drm_device *dev)
9503 {
9504         struct drm_i915_private *dev_priv = dev->dev_private;
9505         u32 vga_reg = i915_vgacntrl_reg(dev);
9506
9507         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9508                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9509                 i915_disable_vga(dev);
9510         }
9511 }
9512
9513 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9514  * and i915 state tracking structures. */
9515 void intel_modeset_setup_hw_state(struct drm_device *dev,
9516                                   bool force_restore)
9517 {
9518         struct drm_i915_private *dev_priv = dev->dev_private;
9519         enum pipe pipe;
9520         u32 tmp;
9521         struct drm_plane *plane;
9522         struct intel_crtc *crtc;
9523         struct intel_encoder *encoder;
9524         struct intel_connector *connector;
9525
9526         if (HAS_DDI(dev)) {
9527                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9528
9529                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9530                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9531                         case TRANS_DDI_EDP_INPUT_A_ON:
9532                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9533                                 pipe = PIPE_A;
9534                                 break;
9535                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9536                                 pipe = PIPE_B;
9537                                 break;
9538                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9539                                 pipe = PIPE_C;
9540                                 break;
9541                         default:
9542                                 /* A bogus value has been programmed, disable
9543                                  * the transcoder */
9544                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9545                                 intel_ddi_disable_transcoder_func(dev_priv,
9546                                                 TRANSCODER_EDP);
9547                                 goto setup_pipes;
9548                         }
9549
9550                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9551                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9552
9553                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9554                                       pipe_name(pipe));
9555                 }
9556         }
9557
9558 setup_pipes:
9559         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9560                             base.head) {
9561                 enum transcoder tmp = crtc->config.cpu_transcoder;
9562                 memset(&crtc->config, 0, sizeof(crtc->config));
9563                 crtc->config.cpu_transcoder = tmp;
9564
9565                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9566                                                                  &crtc->config);
9567
9568                 crtc->base.enabled = crtc->active;
9569
9570                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9571                               crtc->base.base.id,
9572                               crtc->active ? "enabled" : "disabled");
9573         }
9574
9575         if (HAS_DDI(dev))
9576                 intel_ddi_setup_hw_pll_state(dev);
9577
9578         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9579                             base.head) {
9580                 pipe = 0;
9581
9582                 if (encoder->get_hw_state(encoder, &pipe)) {
9583                         encoder->base.crtc =
9584                                 dev_priv->pipe_to_crtc_mapping[pipe];
9585                 } else {
9586                         encoder->base.crtc = NULL;
9587                 }
9588
9589                 encoder->connectors_active = false;
9590                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9591                               encoder->base.base.id,
9592                               drm_get_encoder_name(&encoder->base),
9593                               encoder->base.crtc ? "enabled" : "disabled",
9594                               pipe);
9595         }
9596
9597         list_for_each_entry(connector, &dev->mode_config.connector_list,
9598                             base.head) {
9599                 if (connector->get_hw_state(connector)) {
9600                         connector->base.dpms = DRM_MODE_DPMS_ON;
9601                         connector->encoder->connectors_active = true;
9602                         connector->base.encoder = &connector->encoder->base;
9603                 } else {
9604                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9605                         connector->base.encoder = NULL;
9606                 }
9607                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9608                               connector->base.base.id,
9609                               drm_get_connector_name(&connector->base),
9610                               connector->base.encoder ? "enabled" : "disabled");
9611         }
9612
9613         /* HW state is read out, now we need to sanitize this mess. */
9614         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9615                             base.head) {
9616                 intel_sanitize_encoder(encoder);
9617         }
9618
9619         for_each_pipe(pipe) {
9620                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9621                 intel_sanitize_crtc(crtc);
9622         }
9623
9624         if (force_restore) {
9625                 /*
9626                  * We need to use raw interfaces for restoring state to avoid
9627                  * checking (bogus) intermediate states.
9628                  */
9629                 for_each_pipe(pipe) {
9630                         struct drm_crtc *crtc =
9631                                 dev_priv->pipe_to_crtc_mapping[pipe];
9632
9633                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9634                                          crtc->fb);
9635                 }
9636                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9637                         intel_plane_restore(plane);
9638
9639                 i915_redisable_vga(dev);
9640         } else {
9641                 intel_modeset_update_staged_output_state(dev);
9642         }
9643
9644         intel_modeset_check_state(dev);
9645
9646         drm_mode_config_reset(dev);
9647 }
9648
9649 void intel_modeset_gem_init(struct drm_device *dev)
9650 {
9651         intel_modeset_init_hw(dev);
9652
9653         intel_setup_overlay(dev);
9654
9655         intel_modeset_setup_hw_state(dev, false);
9656 }
9657
9658 void intel_modeset_cleanup(struct drm_device *dev)
9659 {
9660         struct drm_i915_private *dev_priv = dev->dev_private;
9661         struct drm_crtc *crtc;
9662         struct intel_crtc *intel_crtc;
9663
9664         /*
9665          * Interrupts and polling as the first thing to avoid creating havoc.
9666          * Too much stuff here (turning of rps, connectors, ...) would
9667          * experience fancy races otherwise.
9668          */
9669         drm_irq_uninstall(dev);
9670         cancel_work_sync(&dev_priv->hotplug_work);
9671         /*
9672          * Due to the hpd irq storm handling the hotplug work can re-arm the
9673          * poll handlers. Hence disable polling after hpd handling is shut down.
9674          */
9675         drm_kms_helper_poll_fini(dev);
9676
9677         mutex_lock(&dev->struct_mutex);
9678
9679         intel_unregister_dsm_handler();
9680
9681         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9682                 /* Skip inactive CRTCs */
9683                 if (!crtc->fb)
9684                         continue;
9685
9686                 intel_crtc = to_intel_crtc(crtc);
9687                 intel_increase_pllclock(crtc);
9688         }
9689
9690         intel_disable_fbc(dev);
9691
9692         intel_disable_gt_powersave(dev);
9693
9694         ironlake_teardown_rc6(dev);
9695
9696         mutex_unlock(&dev->struct_mutex);
9697
9698         /* flush any delayed tasks or pending work */
9699         flush_scheduled_work();
9700
9701         /* destroy backlight, if any, before the connectors */
9702         intel_panel_destroy_backlight(dev);
9703
9704         drm_mode_config_cleanup(dev);
9705
9706         intel_cleanup_overlay(dev);
9707 }
9708
9709 /*
9710  * Return which encoder is currently attached for connector.
9711  */
9712 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9713 {
9714         return &intel_attached_encoder(connector)->base;
9715 }
9716
9717 void intel_connector_attach_encoder(struct intel_connector *connector,
9718                                     struct intel_encoder *encoder)
9719 {
9720         connector->encoder = encoder;
9721         drm_mode_connector_attach_encoder(&connector->base,
9722                                           &encoder->base);
9723 }
9724
9725 /*
9726  * set vga decode state - true == enable VGA decode
9727  */
9728 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9729 {
9730         struct drm_i915_private *dev_priv = dev->dev_private;
9731         u16 gmch_ctrl;
9732
9733         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9734         if (state)
9735                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9736         else
9737                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9738         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9739         return 0;
9740 }
9741
9742 #ifdef CONFIG_DEBUG_FS
9743 #include <linux/seq_file.h>
9744
9745 struct intel_display_error_state {
9746         struct intel_cursor_error_state {
9747                 u32 control;
9748                 u32 position;
9749                 u32 base;
9750                 u32 size;
9751         } cursor[I915_MAX_PIPES];
9752
9753         struct intel_pipe_error_state {
9754                 u32 conf;
9755                 u32 source;
9756
9757                 u32 htotal;
9758                 u32 hblank;
9759                 u32 hsync;
9760                 u32 vtotal;
9761                 u32 vblank;
9762                 u32 vsync;
9763         } pipe[I915_MAX_PIPES];
9764
9765         struct intel_plane_error_state {
9766                 u32 control;
9767                 u32 stride;
9768                 u32 size;
9769                 u32 pos;
9770                 u32 addr;
9771                 u32 surface;
9772                 u32 tile_offset;
9773         } plane[I915_MAX_PIPES];
9774 };
9775
9776 struct intel_display_error_state *
9777 intel_display_capture_error_state(struct drm_device *dev)
9778 {
9779         drm_i915_private_t *dev_priv = dev->dev_private;
9780         struct intel_display_error_state *error;
9781         enum transcoder cpu_transcoder;
9782         int i;
9783
9784         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9785         if (error == NULL)
9786                 return NULL;
9787
9788         for_each_pipe(i) {
9789                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9790
9791                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9792                         error->cursor[i].control = I915_READ(CURCNTR(i));
9793                         error->cursor[i].position = I915_READ(CURPOS(i));
9794                         error->cursor[i].base = I915_READ(CURBASE(i));
9795                 } else {
9796                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9797                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9798                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9799                 }
9800
9801                 error->plane[i].control = I915_READ(DSPCNTR(i));
9802                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9803                 if (INTEL_INFO(dev)->gen <= 3) {
9804                         error->plane[i].size = I915_READ(DSPSIZE(i));
9805                         error->plane[i].pos = I915_READ(DSPPOS(i));
9806                 }
9807                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9808                         error->plane[i].addr = I915_READ(DSPADDR(i));
9809                 if (INTEL_INFO(dev)->gen >= 4) {
9810                         error->plane[i].surface = I915_READ(DSPSURF(i));
9811                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9812                 }
9813
9814                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9815                 error->pipe[i].source = I915_READ(PIPESRC(i));
9816                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9817                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9818                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9819                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9820                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9821                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9822         }
9823
9824         return error;
9825 }
9826
9827 void
9828 intel_display_print_error_state(struct seq_file *m,
9829                                 struct drm_device *dev,
9830                                 struct intel_display_error_state *error)
9831 {
9832         int i;
9833
9834         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9835         for_each_pipe(i) {
9836                 seq_printf(m, "Pipe [%d]:\n", i);
9837                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9838                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9839                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9840                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9841                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9842                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9843                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9844                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9845
9846                 seq_printf(m, "Plane [%d]:\n", i);
9847                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9848                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9849                 if (INTEL_INFO(dev)->gen <= 3) {
9850                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9851                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9852                 }
9853                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9854                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9855                 if (INTEL_INFO(dev)->gen >= 4) {
9856                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9857                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9858                 }
9859
9860                 seq_printf(m, "Cursor [%d]:\n", i);
9861                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9862                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9863                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9864         }
9865 }
9866 #endif