drm/i915: Split up ironlake_check_fdi_lanes
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62         /**
63          * find_pll() - Find the best values for the PLL
64          * @limit: limits for the PLL
65          * @crtc: current CRTC
66          * @target: target frequency in kHz
67          * @refclk: reference clock frequency in kHz
68          * @match_clock: if provided, @best_clock P divider must
69          *               match the P divider from @match_clock
70          *               used for LVDS downclocking
71          * @best_clock: best PLL values found
72          *
73          * Returns true on success, false on failure.
74          */
75         bool (*find_pll)(const intel_limit_t *limit,
76                          struct drm_crtc *crtc,
77                          int target, int refclk,
78                          intel_clock_t *match_clock,
79                          intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89
90         WARN_ON(!HAS_PCH_SPLIT(dev));
91
92         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                     int target, int refclk, intel_clock_t *match_clock,
98                     intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101                         int target, int refclk, intel_clock_t *match_clock,
102                         intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106                         int target, int refclk, intel_clock_t *match_clock,
107                         intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112         if (IS_GEN5(dev)) {
113                 struct drm_i915_private *dev_priv = dev->dev_private;
114                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115         } else
116                 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 930000, .max = 1400000 },
122         .n = { .min = 3, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 2 },
130         .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134         .dot = { .min = 25000, .max = 350000 },
135         .vco = { .min = 930000, .max = 1400000 },
136         .n = { .min = 3, .max = 16 },
137         .m = { .min = 96, .max = 140 },
138         .m1 = { .min = 18, .max = 26 },
139         .m2 = { .min = 6, .max = 16 },
140         .p = { .min = 4, .max = 128 },
141         .p1 = { .min = 1, .max = 6 },
142         .p2 = { .dot_limit = 165000,
143                 .p2_slow = 14, .p2_fast = 7 },
144         .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 5, .max = 80 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 200000,
157                 .p2_slow = 10, .p2_fast = 5 },
158         .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162         .dot = { .min = 20000, .max = 400000 },
163         .vco = { .min = 1400000, .max = 2800000 },
164         .n = { .min = 1, .max = 6 },
165         .m = { .min = 70, .max = 120 },
166         .m1 = { .min = 8, .max = 18 },
167         .m2 = { .min = 3, .max = 7 },
168         .p = { .min = 7, .max = 98 },
169         .p1 = { .min = 1, .max = 8 },
170         .p2 = { .dot_limit = 112000,
171                 .p2_slow = 14, .p2_fast = 7 },
172         .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177         .dot = { .min = 25000, .max = 270000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 17, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 10, .max = 30 },
184         .p1 = { .min = 1, .max = 3},
185         .p2 = { .dot_limit = 270000,
186                 .p2_slow = 10,
187                 .p2_fast = 10
188         },
189         .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193         .dot = { .min = 22000, .max = 400000 },
194         .vco = { .min = 1750000, .max = 3500000},
195         .n = { .min = 1, .max = 4 },
196         .m = { .min = 104, .max = 138 },
197         .m1 = { .min = 16, .max = 23 },
198         .m2 = { .min = 5, .max = 11 },
199         .p = { .min = 5, .max = 80 },
200         .p1 = { .min = 1, .max = 8},
201         .p2 = { .dot_limit = 165000,
202                 .p2_slow = 10, .p2_fast = 5 },
203         .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207         .dot = { .min = 20000, .max = 115000 },
208         .vco = { .min = 1750000, .max = 3500000 },
209         .n = { .min = 1, .max = 3 },
210         .m = { .min = 104, .max = 138 },
211         .m1 = { .min = 17, .max = 23 },
212         .m2 = { .min = 5, .max = 11 },
213         .p = { .min = 28, .max = 112 },
214         .p1 = { .min = 2, .max = 8 },
215         .p2 = { .dot_limit = 0,
216                 .p2_slow = 14, .p2_fast = 14
217         },
218         .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222         .dot = { .min = 80000, .max = 224000 },
223         .vco = { .min = 1750000, .max = 3500000 },
224         .n = { .min = 1, .max = 3 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 14, .max = 42 },
229         .p1 = { .min = 2, .max = 6 },
230         .p2 = { .dot_limit = 0,
231                 .p2_slow = 7, .p2_fast = 7
232         },
233         .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237         .dot = { .min = 20000, .max = 400000},
238         .vco = { .min = 1700000, .max = 3500000 },
239         /* Pineview's Ncounter is a ring counter */
240         .n = { .min = 3, .max = 6 },
241         .m = { .min = 2, .max = 256 },
242         /* Pineview only has one combined m divider, which we treat as m2. */
243         .m1 = { .min = 0, .max = 0 },
244         .m2 = { .min = 0, .max = 254 },
245         .p = { .min = 5, .max = 80 },
246         .p1 = { .min = 1, .max = 8 },
247         .p2 = { .dot_limit = 200000,
248                 .p2_slow = 10, .p2_fast = 5 },
249         .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253         .dot = { .min = 20000, .max = 400000 },
254         .vco = { .min = 1700000, .max = 3500000 },
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         .m1 = { .min = 0, .max = 0 },
258         .m2 = { .min = 0, .max = 254 },
259         .p = { .min = 7, .max = 112 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 112000,
262                 .p2_slow = 14, .p2_fast = 14 },
263         .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267  *
268  * We calculate clock using (register_value + 2) for N/M1/M2, so here
269  * the range value for them is (actual_value - 2).
270  */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 1760000, .max = 3510000 },
274         .n = { .min = 1, .max = 5 },
275         .m = { .min = 79, .max = 127 },
276         .m1 = { .min = 12, .max = 22 },
277         .m2 = { .min = 5, .max = 9 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 225000,
281                 .p2_slow = 10, .p2_fast = 5 },
282         .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 1760000, .max = 3510000 },
288         .n = { .min = 1, .max = 3 },
289         .m = { .min = 79, .max = 118 },
290         .m1 = { .min = 12, .max = 22 },
291         .m2 = { .min = 5, .max = 9 },
292         .p = { .min = 28, .max = 112 },
293         .p1 = { .min = 2, .max = 8 },
294         .p2 = { .dot_limit = 225000,
295                 .p2_slow = 14, .p2_fast = 14 },
296         .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 127 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 56 },
307         .p1 = { .min = 2, .max = 8 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310         .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 2 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 28, .max = 112 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 14, .p2_fast = 14 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 126 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 42 },
336         .p1 = { .min = 2, .max = 6 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339         .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 }, /* guess */
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353         .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357         .dot = { .min = 25000, .max = 270000 },
358         .vco = { .min = 4000000, .max = 6000000 },
359         .n = { .min = 1, .max = 7 },
360         .m = { .min = 60, .max = 300 }, /* guess */
361         .m1 = { .min = 2, .max = 3 },
362         .m2 = { .min = 11, .max = 156 },
363         .p = { .min = 10, .max = 30 },
364         .p1 = { .min = 2, .max = 3 },
365         .p2 = { .dot_limit = 270000,
366                 .p2_slow = 2, .p2_fast = 20 },
367         .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371         .dot = { .min = 25000, .max = 270000 },
372         .vco = { .min = 4000000, .max = 6000000 },
373         .n = { .min = 1, .max = 7 },
374         .m = { .min = 22, .max = 450 },
375         .m1 = { .min = 2, .max = 3 },
376         .m2 = { .min = 11, .max = 156 },
377         .p = { .min = 10, .max = 30 },
378         .p1 = { .min = 1, .max = 3 },
379         .p2 = { .dot_limit = 270000,
380                 .p2_slow = 2, .p2_fast = 20 },
381         .find_pll = intel_vlv_find_best_pll,
382 };
383
384 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
385 {
386         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
387
388         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
389                 DRM_ERROR("DPIO idle wait timed out\n");
390                 return 0;
391         }
392
393         I915_WRITE(DPIO_REG, reg);
394         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
395                    DPIO_BYTE);
396         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
397                 DRM_ERROR("DPIO read wait timed out\n");
398                 return 0;
399         }
400
401         return I915_READ(DPIO_DATA);
402 }
403
404 void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
405 {
406         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
407
408         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
409                 DRM_ERROR("DPIO idle wait timed out\n");
410                 return;
411         }
412
413         I915_WRITE(DPIO_DATA, val);
414         I915_WRITE(DPIO_REG, reg);
415         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
416                    DPIO_BYTE);
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
418                 DRM_ERROR("DPIO write wait timed out\n");
419 }
420
421 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422                                                 int refclk)
423 {
424         struct drm_device *dev = crtc->dev;
425         const intel_limit_t *limit;
426
427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
428                 if (intel_is_dual_link_lvds(dev)) {
429                         if (refclk == 100000)
430                                 limit = &intel_limits_ironlake_dual_lvds_100m;
431                         else
432                                 limit = &intel_limits_ironlake_dual_lvds;
433                 } else {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_single_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_single_lvds;
438                 }
439         } else
440                 limit = &intel_limits_ironlake_dac;
441
442         return limit;
443 }
444
445 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446 {
447         struct drm_device *dev = crtc->dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev))
452                         limit = &intel_limits_g4x_dual_channel_lvds;
453                 else
454                         limit = &intel_limits_g4x_single_channel_lvds;
455         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
457                 limit = &intel_limits_g4x_hdmi;
458         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
459                 limit = &intel_limits_g4x_sdvo;
460         } else /* The option is for other outputs */
461                 limit = &intel_limits_i9xx_sdvo;
462
463         return limit;
464 }
465
466 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
467 {
468         struct drm_device *dev = crtc->dev;
469         const intel_limit_t *limit;
470
471         if (HAS_PCH_SPLIT(dev))
472                 limit = intel_ironlake_limit(crtc, refclk);
473         else if (IS_G4X(dev)) {
474                 limit = intel_g4x_limit(crtc);
475         } else if (IS_PINEVIEW(dev)) {
476                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
477                         limit = &intel_limits_pineview_lvds;
478                 else
479                         limit = &intel_limits_pineview_sdvo;
480         } else if (IS_VALLEYVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
482                         limit = &intel_limits_vlv_dac;
483                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
484                         limit = &intel_limits_vlv_hdmi;
485                 else
486                         limit = &intel_limits_vlv_dp;
487         } else if (!IS_GEN2(dev)) {
488                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
489                         limit = &intel_limits_i9xx_lvds;
490                 else
491                         limit = &intel_limits_i9xx_sdvo;
492         } else {
493                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
494                         limit = &intel_limits_i8xx_lvds;
495                 else
496                         limit = &intel_limits_i8xx_dvo;
497         }
498         return limit;
499 }
500
501 /* m1 is reserved as 0 in Pineview, n is a ring counter */
502 static void pineview_clock(int refclk, intel_clock_t *clock)
503 {
504         clock->m = clock->m2 + 2;
505         clock->p = clock->p1 * clock->p2;
506         clock->vco = refclk * clock->m / clock->n;
507         clock->dot = clock->vco / clock->p;
508 }
509
510 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
511 {
512         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
513 }
514
515 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
516 {
517         if (IS_PINEVIEW(dev)) {
518                 pineview_clock(refclk, clock);
519                 return;
520         }
521         clock->m = i9xx_dpll_compute_m(clock);
522         clock->p = clock->p1 * clock->p2;
523         clock->vco = refclk * clock->m / (clock->n + 2);
524         clock->dot = clock->vco / clock->p;
525 }
526
527 /**
528  * Returns whether any output on the specified pipe is of the specified type
529  */
530 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
531 {
532         struct drm_device *dev = crtc->dev;
533         struct intel_encoder *encoder;
534
535         for_each_encoder_on_crtc(dev, crtc, encoder)
536                 if (encoder->type == type)
537                         return true;
538
539         return false;
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
553                 INTELPllInvalid("p1 out of range\n");
554         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
555                 INTELPllInvalid("p out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
561                 INTELPllInvalid("m1 <= m2\n");
562         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
563                 INTELPllInvalid("m out of range\n");
564         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
565                 INTELPllInvalid("n out of range\n");
566         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
567                 INTELPllInvalid("vco out of range\n");
568         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
569          * connector, etc., rather than just a single range.
570          */
571         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
572                 INTELPllInvalid("dot out of range\n");
573
574         return true;
575 }
576
577 static bool
578 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                     int target, int refclk, intel_clock_t *match_clock,
580                     intel_clock_t *best_clock)
581
582 {
583         struct drm_device *dev = crtc->dev;
584         intel_clock_t clock;
585         int err = target;
586
587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         clock.p2 = limit->p2.p2_fast;
595                 else
596                         clock.p2 = limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         clock.p2 = limit->p2.p2_slow;
600                 else
601                         clock.p2 = limit->p2.p2_fast;
602         }
603
604         memset(best_clock, 0, sizeof(*best_clock));
605
606         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607              clock.m1++) {
608                 for (clock.m2 = limit->m2.min;
609                      clock.m2 <= limit->m2.max; clock.m2++) {
610                         /* m1 is always 0 in Pineview */
611                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
612                                 break;
613                         for (clock.n = limit->n.min;
614                              clock.n <= limit->n.max; clock.n++) {
615                                 for (clock.p1 = limit->p1.min;
616                                         clock.p1 <= limit->p1.max; clock.p1++) {
617                                         int this_err;
618
619                                         intel_clock(dev, refclk, &clock);
620                                         if (!intel_PLL_is_valid(dev, limit,
621                                                                 &clock))
622                                                 continue;
623                                         if (match_clock &&
624                                             clock.p != match_clock->p)
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err) {
629                                                 *best_clock = clock;
630                                                 err = this_err;
631                                         }
632                                 }
633                         }
634                 }
635         }
636
637         return (err != target);
638 }
639
640 static bool
641 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                         int target, int refclk, intel_clock_t *match_clock,
643                         intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647         int max_n;
648         bool found;
649         /* approximately equals target * 0.00585 */
650         int err_most = (target >> 8) + (target >> 9);
651         found = false;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 int lvds_reg;
655
656                 if (HAS_PCH_SPLIT(dev))
657                         lvds_reg = PCH_LVDS;
658                 else
659                         lvds_reg = LVDS;
660                 if (intel_is_dual_link_lvds(dev))
661                         clock.p2 = limit->p2.p2_fast;
662                 else
663                         clock.p2 = limit->p2.p2_slow;
664         } else {
665                 if (target < limit->p2.dot_limit)
666                         clock.p2 = limit->p2.p2_slow;
667                 else
668                         clock.p2 = limit->p2.p2_fast;
669         }
670
671         memset(best_clock, 0, sizeof(*best_clock));
672         max_n = limit->n.max;
673         /* based on hardware requirement, prefer smaller n to precision */
674         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
675                 /* based on hardware requirement, prefere larger m1,m2 */
676                 for (clock.m1 = limit->m1.max;
677                      clock.m1 >= limit->m1.min; clock.m1--) {
678                         for (clock.m2 = limit->m2.max;
679                              clock.m2 >= limit->m2.min; clock.m2--) {
680                                 for (clock.p1 = limit->p1.max;
681                                      clock.p1 >= limit->p1.min; clock.p1--) {
682                                         int this_err;
683
684                                         intel_clock(dev, refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err_most) {
691                                                 *best_clock = clock;
692                                                 err_most = this_err;
693                                                 max_n = clock.n;
694                                                 found = true;
695                                         }
696                                 }
697                         }
698                 }
699         }
700         return found;
701 }
702
703 static bool
704 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                         int target, int refclk, intel_clock_t *match_clock,
706                         intel_clock_t *best_clock)
707 {
708         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
709         u32 m, n, fastclk;
710         u32 updrate, minupdate, fracbits, p;
711         unsigned long bestppm, ppm, absppm;
712         int dotclk, flag;
713
714         flag = 0;
715         dotclk = target * 1000;
716         bestppm = 1000000;
717         ppm = absppm = 0;
718         fastclk = dotclk / (2*100);
719         updrate = 0;
720         minupdate = 19200;
721         fracbits = 1;
722         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
723         bestm1 = bestm2 = bestp1 = bestp2 = 0;
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
727                 updrate = refclk / n;
728                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
729                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
730                                 if (p2 > 10)
731                                         p2 = p2 - 1;
732                                 p = p1 * p2;
733                                 /* based on hardware requirement, prefer bigger m1,m2 values */
734                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
735                                         m2 = (((2*(fastclk * p * n / m1 )) +
736                                                refclk) / (2*refclk));
737                                         m = m1 * m2;
738                                         vco = updrate * m;
739                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
740                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
741                                                 absppm = (ppm > 0) ? ppm : (-ppm);
742                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
743                                                         bestppm = 0;
744                                                         flag = 1;
745                                                 }
746                                                 if (absppm < bestppm - 10) {
747                                                         bestppm = absppm;
748                                                         flag = 1;
749                                                 }
750                                                 if (flag) {
751                                                         bestn = n;
752                                                         bestm1 = m1;
753                                                         bestm2 = m2;
754                                                         bestp1 = p1;
755                                                         bestp2 = p2;
756                                                         flag = 0;
757                                                 }
758                                         }
759                                 }
760                         }
761                 }
762         }
763         best_clock->n = bestn;
764         best_clock->m1 = bestm1;
765         best_clock->m2 = bestm2;
766         best_clock->p1 = bestp1;
767         best_clock->p2 = bestp2;
768
769         return true;
770 }
771
772 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
773                                              enum pipe pipe)
774 {
775         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777
778         return intel_crtc->config.cpu_transcoder;
779 }
780
781 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         u32 frame, frame_reg = PIPEFRAME(pipe);
785
786         frame = I915_READ(frame_reg);
787
788         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
789                 DRM_DEBUG_KMS("vblank wait timed out\n");
790 }
791
792 /**
793  * intel_wait_for_vblank - wait for vblank on a given pipe
794  * @dev: drm device
795  * @pipe: pipe to wait for
796  *
797  * Wait for vblank to occur on a given pipe.  Needed for various bits of
798  * mode setting code.
799  */
800 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         int pipestat_reg = PIPESTAT(pipe);
804
805         if (INTEL_INFO(dev)->gen >= 5) {
806                 ironlake_wait_for_vblank(dev, pipe);
807                 return;
808         }
809
810         /* Clear existing vblank status. Note this will clear any other
811          * sticky status fields as well.
812          *
813          * This races with i915_driver_irq_handler() with the result
814          * that either function could miss a vblank event.  Here it is not
815          * fatal, as we will either wait upon the next vblank interrupt or
816          * timeout.  Generally speaking intel_wait_for_vblank() is only
817          * called during modeset at which time the GPU should be idle and
818          * should *not* be performing page flips and thus not waiting on
819          * vblanks...
820          * Currently, the result of us stealing a vblank from the irq
821          * handler is that a single frame will be skipped during swapbuffers.
822          */
823         I915_WRITE(pipestat_reg,
824                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
825
826         /* Wait for vblank interrupt bit to set */
827         if (wait_for(I915_READ(pipestat_reg) &
828                      PIPE_VBLANK_INTERRUPT_STATUS,
829                      50))
830                 DRM_DEBUG_KMS("vblank wait timed out\n");
831 }
832
833 /*
834  * intel_wait_for_pipe_off - wait for pipe to turn off
835  * @dev: drm device
836  * @pipe: pipe to wait for
837  *
838  * After disabling a pipe, we can't wait for vblank in the usual way,
839  * spinning on the vblank interrupt status bit, since we won't actually
840  * see an interrupt when the pipe is disabled.
841  *
842  * On Gen4 and above:
843  *   wait for the pipe register state bit to turn off
844  *
845  * Otherwise:
846  *   wait for the display line value to settle (it usually
847  *   ends up stopping at the start of the next frame).
848  *
849  */
850 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
854                                                                       pipe);
855
856         if (INTEL_INFO(dev)->gen >= 4) {
857                 int reg = PIPECONF(cpu_transcoder);
858
859                 /* Wait for the Pipe State to go off */
860                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
861                              100))
862                         WARN(1, "pipe_off wait timed out\n");
863         } else {
864                 u32 last_line, line_mask;
865                 int reg = PIPEDSL(pipe);
866                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
867
868                 if (IS_GEN2(dev))
869                         line_mask = DSL_LINEMASK_GEN2;
870                 else
871                         line_mask = DSL_LINEMASK_GEN3;
872
873                 /* Wait for the display line to settle */
874                 do {
875                         last_line = I915_READ(reg) & line_mask;
876                         mdelay(5);
877                 } while (((I915_READ(reg) & line_mask) != last_line) &&
878                          time_after(timeout, jiffies));
879                 if (time_after(jiffies, timeout))
880                         WARN(1, "pipe_off wait timed out\n");
881         }
882 }
883
884 /*
885  * ibx_digital_port_connected - is the specified port connected?
886  * @dev_priv: i915 private structure
887  * @port: the port to test
888  *
889  * Returns true if @port is connected, false otherwise.
890  */
891 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
892                                 struct intel_digital_port *port)
893 {
894         u32 bit;
895
896         if (HAS_PCH_IBX(dev_priv->dev)) {
897                 switch(port->port) {
898                 case PORT_B:
899                         bit = SDE_PORTB_HOTPLUG;
900                         break;
901                 case PORT_C:
902                         bit = SDE_PORTC_HOTPLUG;
903                         break;
904                 case PORT_D:
905                         bit = SDE_PORTD_HOTPLUG;
906                         break;
907                 default:
908                         return true;
909                 }
910         } else {
911                 switch(port->port) {
912                 case PORT_B:
913                         bit = SDE_PORTB_HOTPLUG_CPT;
914                         break;
915                 case PORT_C:
916                         bit = SDE_PORTC_HOTPLUG_CPT;
917                         break;
918                 case PORT_D:
919                         bit = SDE_PORTD_HOTPLUG_CPT;
920                         break;
921                 default:
922                         return true;
923                 }
924         }
925
926         return I915_READ(SDEISR) & bit;
927 }
928
929 static const char *state_string(bool enabled)
930 {
931         return enabled ? "on" : "off";
932 }
933
934 /* Only for pre-ILK configs */
935 static void assert_pll(struct drm_i915_private *dev_priv,
936                        enum pipe pipe, bool state)
937 {
938         int reg;
939         u32 val;
940         bool cur_state;
941
942         reg = DPLL(pipe);
943         val = I915_READ(reg);
944         cur_state = !!(val & DPLL_VCO_ENABLE);
945         WARN(cur_state != state,
946              "PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
950 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
951
952 /* For ILK+ */
953 static void assert_pch_pll(struct drm_i915_private *dev_priv,
954                            struct intel_pch_pll *pll,
955                            struct intel_crtc *crtc,
956                            bool state)
957 {
958         u32 val;
959         bool cur_state;
960
961         if (HAS_PCH_LPT(dev_priv->dev)) {
962                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
963                 return;
964         }
965
966         if (WARN (!pll,
967                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
968                 return;
969
970         val = I915_READ(pll->pll_reg);
971         cur_state = !!(val & DPLL_VCO_ENABLE);
972         WARN(cur_state != state,
973              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
974              pll->pll_reg, state_string(state), state_string(cur_state), val);
975
976         /* Make sure the selected PLL is correctly attached to the transcoder */
977         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
978                 u32 pch_dpll;
979
980                 pch_dpll = I915_READ(PCH_DPLL_SEL);
981                 cur_state = pll->pll_reg == _PCH_DPLL_B;
982                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
983                           "PLL[%d] not attached to this transcoder %c: %08x\n",
984                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
985                         cur_state = !!(val >> (4*crtc->pipe + 3));
986                         WARN(cur_state != state,
987                              "PLL[%d] not %s on this transcoder %c: %08x\n",
988                              pll->pll_reg == _PCH_DPLL_B,
989                              state_string(state),
990                              pipe_name(crtc->pipe),
991                              val);
992                 }
993         }
994 }
995 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
996 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
997
998 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
999                           enum pipe pipe, bool state)
1000 {
1001         int reg;
1002         u32 val;
1003         bool cur_state;
1004         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1005                                                                       pipe);
1006
1007         if (HAS_DDI(dev_priv->dev)) {
1008                 /* DDI does not have a specific FDI_TX register */
1009                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1010                 val = I915_READ(reg);
1011                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1012         } else {
1013                 reg = FDI_TX_CTL(pipe);
1014                 val = I915_READ(reg);
1015                 cur_state = !!(val & FDI_TX_ENABLE);
1016         }
1017         WARN(cur_state != state,
1018              "FDI TX state assertion failure (expected %s, current %s)\n",
1019              state_string(state), state_string(cur_state));
1020 }
1021 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1022 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1023
1024 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1025                           enum pipe pipe, bool state)
1026 {
1027         int reg;
1028         u32 val;
1029         bool cur_state;
1030
1031         reg = FDI_RX_CTL(pipe);
1032         val = I915_READ(reg);
1033         cur_state = !!(val & FDI_RX_ENABLE);
1034         WARN(cur_state != state,
1035              "FDI RX state assertion failure (expected %s, current %s)\n",
1036              state_string(state), state_string(cur_state));
1037 }
1038 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1039 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1040
1041 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1042                                       enum pipe pipe)
1043 {
1044         int reg;
1045         u32 val;
1046
1047         /* ILK FDI PLL is always enabled */
1048         if (dev_priv->info->gen == 5)
1049                 return;
1050
1051         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1052         if (HAS_DDI(dev_priv->dev))
1053                 return;
1054
1055         reg = FDI_TX_CTL(pipe);
1056         val = I915_READ(reg);
1057         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1058 }
1059
1060 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1061                                       enum pipe pipe)
1062 {
1063         int reg;
1064         u32 val;
1065
1066         reg = FDI_RX_CTL(pipe);
1067         val = I915_READ(reg);
1068         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1069 }
1070
1071 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1072                                   enum pipe pipe)
1073 {
1074         int pp_reg, lvds_reg;
1075         u32 val;
1076         enum pipe panel_pipe = PIPE_A;
1077         bool locked = true;
1078
1079         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080                 pp_reg = PCH_PP_CONTROL;
1081                 lvds_reg = PCH_LVDS;
1082         } else {
1083                 pp_reg = PP_CONTROL;
1084                 lvds_reg = LVDS;
1085         }
1086
1087         val = I915_READ(pp_reg);
1088         if (!(val & PANEL_POWER_ON) ||
1089             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1090                 locked = false;
1091
1092         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1093                 panel_pipe = PIPE_B;
1094
1095         WARN(panel_pipe == pipe && locked,
1096              "panel assertion failure, pipe %c regs locked\n",
1097              pipe_name(pipe));
1098 }
1099
1100 void assert_pipe(struct drm_i915_private *dev_priv,
1101                  enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1107                                                                       pipe);
1108
1109         /* if we need the pipe A quirk it must be always on */
1110         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1111                 state = true;
1112
1113         if (!intel_using_power_well(dev_priv->dev) &&
1114             cpu_transcoder != TRANSCODER_EDP) {
1115                 cur_state = false;
1116         } else {
1117                 reg = PIPECONF(cpu_transcoder);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & PIPECONF_ENABLE);
1120         }
1121
1122         WARN(cur_state != state,
1123              "pipe %c assertion failure (expected %s, current %s)\n",
1124              pipe_name(pipe), state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_plane(struct drm_i915_private *dev_priv,
1128                          enum plane plane, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DSPCNTR(plane);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1137         WARN(cur_state != state,
1138              "plane %c assertion failure (expected %s, current %s)\n",
1139              plane_name(plane), state_string(state), state_string(cur_state));
1140 }
1141
1142 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1143 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1144
1145 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1146                                    enum pipe pipe)
1147 {
1148         int reg, i;
1149         u32 val;
1150         int cur_pipe;
1151
1152         /* Planes are fixed to pipes on ILK+ */
1153         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1154                 reg = DSPCNTR(pipe);
1155                 val = I915_READ(reg);
1156                 WARN((val & DISPLAY_PLANE_ENABLE),
1157                      "plane %c assertion failure, should be disabled but not\n",
1158                      plane_name(pipe));
1159                 return;
1160         }
1161
1162         /* Need to check both planes against the pipe */
1163         for (i = 0; i < 2; i++) {
1164                 reg = DSPCNTR(i);
1165                 val = I915_READ(reg);
1166                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1167                         DISPPLANE_SEL_PIPE_SHIFT;
1168                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1169                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1170                      plane_name(i), pipe_name(pipe));
1171         }
1172 }
1173
1174 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1175                                     enum pipe pipe)
1176 {
1177         int reg, i;
1178         u32 val;
1179
1180         if (!IS_VALLEYVIEW(dev_priv->dev))
1181                 return;
1182
1183         /* Need to check both planes against the pipe */
1184         for (i = 0; i < dev_priv->num_plane; i++) {
1185                 reg = SPCNTR(pipe, i);
1186                 val = I915_READ(reg);
1187                 WARN((val & SP_ENABLE),
1188                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1189                      sprite_name(pipe, i), pipe_name(pipe));
1190         }
1191 }
1192
1193 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1194 {
1195         u32 val;
1196         bool enabled;
1197
1198         if (HAS_PCH_LPT(dev_priv->dev)) {
1199                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1200                 return;
1201         }
1202
1203         val = I915_READ(PCH_DREF_CONTROL);
1204         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1205                             DREF_SUPERSPREAD_SOURCE_MASK));
1206         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1207 }
1208
1209 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1210                                        enum pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214         bool enabled;
1215
1216         reg = TRANSCONF(pipe);
1217         val = I915_READ(reg);
1218         enabled = !!(val & TRANS_ENABLE);
1219         WARN(enabled,
1220              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1221              pipe_name(pipe));
1222 }
1223
1224 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1225                             enum pipe pipe, u32 port_sel, u32 val)
1226 {
1227         if ((val & DP_PORT_EN) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1232                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1233                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1234                         return false;
1235         } else {
1236                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & SDVO_ENABLE) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & LVDS_PORT_EN) == 0)
1262                 return false;
1263
1264         if (HAS_PCH_CPT(dev_priv->dev)) {
1265                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1266                         return false;
1267         } else {
1268                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1269                         return false;
1270         }
1271         return true;
1272 }
1273
1274 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1275                               enum pipe pipe, u32 val)
1276 {
1277         if ((val & ADPA_DAC_ENABLE) == 0)
1278                 return false;
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1290                                    enum pipe pipe, int reg, u32 port_sel)
1291 {
1292         u32 val = I915_READ(reg);
1293         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1294              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1295              reg, pipe_name(pipe));
1296
1297         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1298              && (val & DP_PIPEB_SELECT),
1299              "IBX PCH dp port still using transcoder B\n");
1300 }
1301
1302 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1303                                      enum pipe pipe, int reg)
1304 {
1305         u32 val = I915_READ(reg);
1306         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1307              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1308              reg, pipe_name(pipe));
1309
1310         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1311              && (val & SDVO_PIPE_B_SELECT),
1312              "IBX PCH hdmi port still using transcoder B\n");
1313 }
1314
1315 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1316                                       enum pipe pipe)
1317 {
1318         int reg;
1319         u32 val;
1320
1321         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1322         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1323         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1324
1325         reg = PCH_ADPA;
1326         val = I915_READ(reg);
1327         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1328              "PCH VGA enabled on transcoder %c, should be disabled\n",
1329              pipe_name(pipe));
1330
1331         reg = PCH_LVDS;
1332         val = I915_READ(reg);
1333         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1334              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1335              pipe_name(pipe));
1336
1337         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1338         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1339         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1340 }
1341
1342 /**
1343  * intel_enable_pll - enable a PLL
1344  * @dev_priv: i915 private structure
1345  * @pipe: pipe PLL to enable
1346  *
1347  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1348  * make sure the PLL reg is writable first though, since the panel write
1349  * protect mechanism may be enabled.
1350  *
1351  * Note!  This is for pre-ILK only.
1352  *
1353  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1354  */
1355 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1356 {
1357         int reg;
1358         u32 val;
1359
1360         assert_pipe_disabled(dev_priv, pipe);
1361
1362         /* No really, not for ILK+ */
1363         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1364
1365         /* PLL is protected by panel, make sure we can write it */
1366         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1367                 assert_panel_unlocked(dev_priv, pipe);
1368
1369         reg = DPLL(pipe);
1370         val = I915_READ(reg);
1371         val |= DPLL_VCO_ENABLE;
1372
1373         /* We do this three times for luck */
1374         I915_WRITE(reg, val);
1375         POSTING_READ(reg);
1376         udelay(150); /* wait for warmup */
1377         I915_WRITE(reg, val);
1378         POSTING_READ(reg);
1379         udelay(150); /* wait for warmup */
1380         I915_WRITE(reg, val);
1381         POSTING_READ(reg);
1382         udelay(150); /* wait for warmup */
1383 }
1384
1385 /**
1386  * intel_disable_pll - disable a PLL
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe PLL to disable
1389  *
1390  * Disable the PLL for @pipe, making sure the pipe is off first.
1391  *
1392  * Note!  This is for pre-ILK only.
1393  */
1394 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1395 {
1396         int reg;
1397         u32 val;
1398
1399         /* Don't disable pipe A or pipe A PLLs if needed */
1400         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1401                 return;
1402
1403         /* Make sure the pipe isn't still relying on us */
1404         assert_pipe_disabled(dev_priv, pipe);
1405
1406         reg = DPLL(pipe);
1407         val = I915_READ(reg);
1408         val &= ~DPLL_VCO_ENABLE;
1409         I915_WRITE(reg, val);
1410         POSTING_READ(reg);
1411 }
1412
1413 /* SBI access */
1414 static void
1415 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1416                 enum intel_sbi_destination destination)
1417 {
1418         u32 tmp;
1419
1420         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1421
1422         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1423                                 100)) {
1424                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1425                 return;
1426         }
1427
1428         I915_WRITE(SBI_ADDR, (reg << 16));
1429         I915_WRITE(SBI_DATA, value);
1430
1431         if (destination == SBI_ICLK)
1432                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1433         else
1434                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1435         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1436
1437         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1438                                 100)) {
1439                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1440                 return;
1441         }
1442 }
1443
1444 static u32
1445 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1446                enum intel_sbi_destination destination)
1447 {
1448         u32 value = 0;
1449         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1450
1451         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1452                                 100)) {
1453                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1454                 return 0;
1455         }
1456
1457         I915_WRITE(SBI_ADDR, (reg << 16));
1458
1459         if (destination == SBI_ICLK)
1460                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1461         else
1462                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1463         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1464
1465         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1466                                 100)) {
1467                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1468                 return 0;
1469         }
1470
1471         return I915_READ(SBI_DATA);
1472 }
1473
1474 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1475 {
1476         u32 port_mask;
1477
1478         if (!port)
1479                 port_mask = DPLL_PORTB_READY_MASK;
1480         else
1481                 port_mask = DPLL_PORTC_READY_MASK;
1482
1483         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1484                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1485                      'B' + port, I915_READ(DPLL(0)));
1486 }
1487
1488 /**
1489  * ironlake_enable_pch_pll - enable PCH PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to enable
1492  *
1493  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1494  * drives the transcoder clock.
1495  */
1496 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1497 {
1498         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1499         struct intel_pch_pll *pll;
1500         int reg;
1501         u32 val;
1502
1503         /* PCH PLLs only available on ILK, SNB and IVB */
1504         BUG_ON(dev_priv->info->gen < 5);
1505         pll = intel_crtc->pch_pll;
1506         if (pll == NULL)
1507                 return;
1508
1509         if (WARN_ON(pll->refcount == 0))
1510                 return;
1511
1512         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1513                       pll->pll_reg, pll->active, pll->on,
1514                       intel_crtc->base.base.id);
1515
1516         /* PCH refclock must be enabled first */
1517         assert_pch_refclk_enabled(dev_priv);
1518
1519         if (pll->active++ && pll->on) {
1520                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1521                 return;
1522         }
1523
1524         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1525
1526         reg = pll->pll_reg;
1527         val = I915_READ(reg);
1528         val |= DPLL_VCO_ENABLE;
1529         I915_WRITE(reg, val);
1530         POSTING_READ(reg);
1531         udelay(200);
1532
1533         pll->on = true;
1534 }
1535
1536 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1537 {
1538         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1539         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1540         int reg;
1541         u32 val;
1542
1543         /* PCH only available on ILK+ */
1544         BUG_ON(dev_priv->info->gen < 5);
1545         if (pll == NULL)
1546                return;
1547
1548         if (WARN_ON(pll->refcount == 0))
1549                 return;
1550
1551         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1552                       pll->pll_reg, pll->active, pll->on,
1553                       intel_crtc->base.base.id);
1554
1555         if (WARN_ON(pll->active == 0)) {
1556                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1557                 return;
1558         }
1559
1560         if (--pll->active) {
1561                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1562                 return;
1563         }
1564
1565         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1566
1567         /* Make sure transcoder isn't still depending on us */
1568         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1569
1570         reg = pll->pll_reg;
1571         val = I915_READ(reg);
1572         val &= ~DPLL_VCO_ENABLE;
1573         I915_WRITE(reg, val);
1574         POSTING_READ(reg);
1575         udelay(200);
1576
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         uint32_t reg, val, pipeconf_val;
1586
1587         /* PCH only available on ILK+ */
1588         BUG_ON(dev_priv->info->gen < 5);
1589
1590         /* Make sure PCH DPLL is enabled */
1591         assert_pch_pll_enabled(dev_priv,
1592                                to_intel_crtc(crtc)->pch_pll,
1593                                to_intel_crtc(crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1663         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(_TRANSACONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(_TRANSACONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_sprites_disabled(dev_priv, pipe);
1739
1740         if (HAS_PCH_LPT(dev_priv->dev))
1741                 pch_transcoder = TRANSCODER_A;
1742         else
1743                 pch_transcoder = pipe;
1744
1745         /*
1746          * A pipe without a PLL won't actually be able to drive bits from
1747          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1748          * need the check.
1749          */
1750         if (!HAS_PCH_SPLIT(dev_priv->dev))
1751                 assert_pll_enabled(dev_priv, pipe);
1752         else {
1753                 if (pch_port) {
1754                         /* if driving the PCH, we need FDI enabled */
1755                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1756                         assert_fdi_tx_pll_enabled(dev_priv,
1757                                                   (enum pipe) cpu_transcoder);
1758                 }
1759                 /* FIXME: assert CPU port conditions for SNB+ */
1760         }
1761
1762         reg = PIPECONF(cpu_transcoder);
1763         val = I915_READ(reg);
1764         if (val & PIPECONF_ENABLE)
1765                 return;
1766
1767         I915_WRITE(reg, val | PIPECONF_ENABLE);
1768         intel_wait_for_vblank(dev_priv->dev, pipe);
1769 }
1770
1771 /**
1772  * intel_disable_pipe - disable a pipe, asserting requirements
1773  * @dev_priv: i915 private structure
1774  * @pipe: pipe to disable
1775  *
1776  * Disable @pipe, making sure that various hardware specific requirements
1777  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1778  *
1779  * @pipe should be %PIPE_A or %PIPE_B.
1780  *
1781  * Will wait until the pipe has shut down before returning.
1782  */
1783 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1784                                enum pipe pipe)
1785 {
1786         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1787                                                                       pipe);
1788         int reg;
1789         u32 val;
1790
1791         /*
1792          * Make sure planes won't keep trying to pump pixels to us,
1793          * or we might hang the display.
1794          */
1795         assert_planes_disabled(dev_priv, pipe);
1796         assert_sprites_disabled(dev_priv, pipe);
1797
1798         /* Don't disable pipe A or pipe A PLLs if needed */
1799         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1800                 return;
1801
1802         reg = PIPECONF(cpu_transcoder);
1803         val = I915_READ(reg);
1804         if ((val & PIPECONF_ENABLE) == 0)
1805                 return;
1806
1807         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1808         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1809 }
1810
1811 /*
1812  * Plane regs are double buffered, going from enabled->disabled needs a
1813  * trigger in order to latch.  The display address reg provides this.
1814  */
1815 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1816                                       enum plane plane)
1817 {
1818         if (dev_priv->info->gen >= 4)
1819                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1820         else
1821                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1822 }
1823
1824 /**
1825  * intel_enable_plane - enable a display plane on a given pipe
1826  * @dev_priv: i915 private structure
1827  * @plane: plane to enable
1828  * @pipe: pipe being fed
1829  *
1830  * Enable @plane on @pipe, making sure that @pipe is running first.
1831  */
1832 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833                                enum plane plane, enum pipe pipe)
1834 {
1835         int reg;
1836         u32 val;
1837
1838         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839         assert_pipe_enabled(dev_priv, pipe);
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if (val & DISPLAY_PLANE_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 /**
1852  * intel_disable_plane - disable a display plane
1853  * @dev_priv: i915 private structure
1854  * @plane: plane to disable
1855  * @pipe: pipe consuming the data
1856  *
1857  * Disable @plane; should be an independent operation.
1858  */
1859 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860                                 enum plane plane, enum pipe pipe)
1861 {
1862         int reg;
1863         u32 val;
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868                 return;
1869
1870         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 static bool need_vtd_wa(struct drm_device *dev)
1876 {
1877 #ifdef CONFIG_INTEL_IOMMU
1878         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1879                 return true;
1880 #endif
1881         return false;
1882 }
1883
1884 int
1885 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1886                            struct drm_i915_gem_object *obj,
1887                            struct intel_ring_buffer *pipelined)
1888 {
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 alignment;
1891         int ret;
1892
1893         switch (obj->tiling_mode) {
1894         case I915_TILING_NONE:
1895                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1896                         alignment = 128 * 1024;
1897                 else if (INTEL_INFO(dev)->gen >= 4)
1898                         alignment = 4 * 1024;
1899                 else
1900                         alignment = 64 * 1024;
1901                 break;
1902         case I915_TILING_X:
1903                 /* pin() will align the object as required by fence */
1904                 alignment = 0;
1905                 break;
1906         case I915_TILING_Y:
1907                 /* Despite that we check this in framebuffer_init userspace can
1908                  * screw us over and change the tiling after the fact. Only
1909                  * pinned buffers can't change their tiling. */
1910                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1911                 return -EINVAL;
1912         default:
1913                 BUG();
1914         }
1915
1916         /* Note that the w/a also requires 64 PTE of padding following the
1917          * bo. We currently fill all unused PTE with the shadow page and so
1918          * we should always have valid PTE following the scanout preventing
1919          * the VT-d warning.
1920          */
1921         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1922                 alignment = 256 * 1024;
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1959                                              unsigned int tiling_mode,
1960                                              unsigned int cpp,
1961                                              unsigned int pitch)
1962 {
1963         if (tiling_mode != I915_TILING_NONE) {
1964                 unsigned int tile_rows, tiles;
1965
1966                 tile_rows = *y / 8;
1967                 *y %= 8;
1968
1969                 tiles = *x / (512/cpp);
1970                 *x %= 512/cpp;
1971
1972                 return tile_rows * pitch * 8 + tiles * 4096;
1973         } else {
1974                 unsigned int offset;
1975
1976                 offset = *y * pitch + *x * cpp;
1977                 *y = 0;
1978                 *x = (offset & 4095) / cpp;
1979                 return offset & -4096;
1980         }
1981 }
1982
1983 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1984                              int x, int y)
1985 {
1986         struct drm_device *dev = crtc->dev;
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1989         struct intel_framebuffer *intel_fb;
1990         struct drm_i915_gem_object *obj;
1991         int plane = intel_crtc->plane;
1992         unsigned long linear_offset;
1993         u32 dspcntr;
1994         u32 reg;
1995
1996         switch (plane) {
1997         case 0:
1998         case 1:
1999                 break;
2000         default:
2001                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2002                 return -EINVAL;
2003         }
2004
2005         intel_fb = to_intel_framebuffer(fb);
2006         obj = intel_fb->obj;
2007
2008         reg = DSPCNTR(plane);
2009         dspcntr = I915_READ(reg);
2010         /* Mask out pixel format bits in case we change it */
2011         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2012         switch (fb->pixel_format) {
2013         case DRM_FORMAT_C8:
2014                 dspcntr |= DISPPLANE_8BPP;
2015                 break;
2016         case DRM_FORMAT_XRGB1555:
2017         case DRM_FORMAT_ARGB1555:
2018                 dspcntr |= DISPPLANE_BGRX555;
2019                 break;
2020         case DRM_FORMAT_RGB565:
2021                 dspcntr |= DISPPLANE_BGRX565;
2022                 break;
2023         case DRM_FORMAT_XRGB8888:
2024         case DRM_FORMAT_ARGB8888:
2025                 dspcntr |= DISPPLANE_BGRX888;
2026                 break;
2027         case DRM_FORMAT_XBGR8888:
2028         case DRM_FORMAT_ABGR8888:
2029                 dspcntr |= DISPPLANE_RGBX888;
2030                 break;
2031         case DRM_FORMAT_XRGB2101010:
2032         case DRM_FORMAT_ARGB2101010:
2033                 dspcntr |= DISPPLANE_BGRX101010;
2034                 break;
2035         case DRM_FORMAT_XBGR2101010:
2036         case DRM_FORMAT_ABGR2101010:
2037                 dspcntr |= DISPPLANE_RGBX101010;
2038                 break;
2039         default:
2040                 BUG();
2041         }
2042
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 if (obj->tiling_mode != I915_TILING_NONE)
2045                         dspcntr |= DISPPLANE_TILED;
2046                 else
2047                         dspcntr &= ~DISPPLANE_TILED;
2048         }
2049
2050         I915_WRITE(reg, dspcntr);
2051
2052         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2053
2054         if (INTEL_INFO(dev)->gen >= 4) {
2055                 intel_crtc->dspaddr_offset =
2056                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2057                                                        fb->bits_per_pixel / 8,
2058                                                        fb->pitches[0]);
2059                 linear_offset -= intel_crtc->dspaddr_offset;
2060         } else {
2061                 intel_crtc->dspaddr_offset = linear_offset;
2062         }
2063
2064         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2065                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2066         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2067         if (INTEL_INFO(dev)->gen >= 4) {
2068                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2069                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2070                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2071                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2072         } else
2073                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2074         POSTING_READ(reg);
2075
2076         return 0;
2077 }
2078
2079 static int ironlake_update_plane(struct drm_crtc *crtc,
2080                                  struct drm_framebuffer *fb, int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095         case 2:
2096                 break;
2097         default:
2098                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2099                 return -EINVAL;
2100         }
2101
2102         intel_fb = to_intel_framebuffer(fb);
2103         obj = intel_fb->obj;
2104
2105         reg = DSPCNTR(plane);
2106         dspcntr = I915_READ(reg);
2107         /* Mask out pixel format bits in case we change it */
2108         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109         switch (fb->pixel_format) {
2110         case DRM_FORMAT_C8:
2111                 dspcntr |= DISPPLANE_8BPP;
2112                 break;
2113         case DRM_FORMAT_RGB565:
2114                 dspcntr |= DISPPLANE_BGRX565;
2115                 break;
2116         case DRM_FORMAT_XRGB8888:
2117         case DRM_FORMAT_ARGB8888:
2118                 dspcntr |= DISPPLANE_BGRX888;
2119                 break;
2120         case DRM_FORMAT_XBGR8888:
2121         case DRM_FORMAT_ABGR8888:
2122                 dspcntr |= DISPPLANE_RGBX888;
2123                 break;
2124         case DRM_FORMAT_XRGB2101010:
2125         case DRM_FORMAT_ARGB2101010:
2126                 dspcntr |= DISPPLANE_BGRX101010;
2127                 break;
2128         case DRM_FORMAT_XBGR2101010:
2129         case DRM_FORMAT_ABGR2101010:
2130                 dspcntr |= DISPPLANE_RGBX101010;
2131                 break;
2132         default:
2133                 BUG();
2134         }
2135
2136         if (obj->tiling_mode != I915_TILING_NONE)
2137                 dspcntr |= DISPPLANE_TILED;
2138         else
2139                 dspcntr &= ~DISPPLANE_TILED;
2140
2141         /* must disable */
2142         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2143
2144         I915_WRITE(reg, dspcntr);
2145
2146         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2147         intel_crtc->dspaddr_offset =
2148                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2149                                                fb->bits_per_pixel / 8,
2150                                                fb->pitches[0]);
2151         linear_offset -= intel_crtc->dspaddr_offset;
2152
2153         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2154                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2155         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2156         I915_MODIFY_DISPBASE(DSPSURF(plane),
2157                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2158         if (IS_HASWELL(dev)) {
2159                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2160         } else {
2161                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2162                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2163         }
2164         POSTING_READ(reg);
2165
2166         return 0;
2167 }
2168
2169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2170 static int
2171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2172                            int x, int y, enum mode_set_atomic state)
2173 {
2174         struct drm_device *dev = crtc->dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176
2177         if (dev_priv->display.disable_fbc)
2178                 dev_priv->display.disable_fbc(dev);
2179         intel_increase_pllclock(crtc);
2180
2181         return dev_priv->display.update_plane(crtc, fb, x, y);
2182 }
2183
2184 void intel_display_handle_reset(struct drm_device *dev)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct drm_crtc *crtc;
2188
2189         /*
2190          * Flips in the rings have been nuked by the reset,
2191          * so complete all pending flips so that user space
2192          * will get its events and not get stuck.
2193          *
2194          * Also update the base address of all primary
2195          * planes to the the last fb to make sure we're
2196          * showing the correct fb after a reset.
2197          *
2198          * Need to make two loops over the crtcs so that we
2199          * don't try to grab a crtc mutex before the
2200          * pending_flip_queue really got woken up.
2201          */
2202
2203         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2204                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2205                 enum plane plane = intel_crtc->plane;
2206
2207                 intel_prepare_page_flip(dev, plane);
2208                 intel_finish_page_flip_plane(dev, plane);
2209         }
2210
2211         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2212                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213
2214                 mutex_lock(&crtc->mutex);
2215                 if (intel_crtc->active)
2216                         dev_priv->display.update_plane(crtc, crtc->fb,
2217                                                        crtc->x, crtc->y);
2218                 mutex_unlock(&crtc->mutex);
2219         }
2220 }
2221
2222 static int
2223 intel_finish_fb(struct drm_framebuffer *old_fb)
2224 {
2225         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2226         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2227         bool was_interruptible = dev_priv->mm.interruptible;
2228         int ret;
2229
2230         /* Big Hammer, we also need to ensure that any pending
2231          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2232          * current scanout is retired before unpinning the old
2233          * framebuffer.
2234          *
2235          * This should only fail upon a hung GPU, in which case we
2236          * can safely continue.
2237          */
2238         dev_priv->mm.interruptible = false;
2239         ret = i915_gem_object_finish_gpu(obj);
2240         dev_priv->mm.interruptible = was_interruptible;
2241
2242         return ret;
2243 }
2244
2245 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2246 {
2247         struct drm_device *dev = crtc->dev;
2248         struct drm_i915_master_private *master_priv;
2249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251         if (!dev->primary->master)
2252                 return;
2253
2254         master_priv = dev->primary->master->driver_priv;
2255         if (!master_priv->sarea_priv)
2256                 return;
2257
2258         switch (intel_crtc->pipe) {
2259         case 0:
2260                 master_priv->sarea_priv->pipeA_x = x;
2261                 master_priv->sarea_priv->pipeA_y = y;
2262                 break;
2263         case 1:
2264                 master_priv->sarea_priv->pipeB_x = x;
2265                 master_priv->sarea_priv->pipeB_y = y;
2266                 break;
2267         default:
2268                 break;
2269         }
2270 }
2271
2272 static int
2273 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2274                     struct drm_framebuffer *fb)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279         struct drm_framebuffer *old_fb;
2280         int ret;
2281
2282         /* no fb bound */
2283         if (!fb) {
2284                 DRM_ERROR("No FB bound\n");
2285                 return 0;
2286         }
2287
2288         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2289                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2290                           plane_name(intel_crtc->plane),
2291                           INTEL_INFO(dev)->num_pipes);
2292                 return -EINVAL;
2293         }
2294
2295         mutex_lock(&dev->struct_mutex);
2296         ret = intel_pin_and_fence_fb_obj(dev,
2297                                          to_intel_framebuffer(fb)->obj,
2298                                          NULL);
2299         if (ret != 0) {
2300                 mutex_unlock(&dev->struct_mutex);
2301                 DRM_ERROR("pin & fence failed\n");
2302                 return ret;
2303         }
2304
2305         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2306         if (ret) {
2307                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2308                 mutex_unlock(&dev->struct_mutex);
2309                 DRM_ERROR("failed to update base address\n");
2310                 return ret;
2311         }
2312
2313         old_fb = crtc->fb;
2314         crtc->fb = fb;
2315         crtc->x = x;
2316         crtc->y = y;
2317
2318         if (old_fb) {
2319                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2320                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2321         }
2322
2323         intel_update_fbc(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static void ivb_modeset_global_resources(struct drm_device *dev)
2373 {
2374         struct drm_i915_private *dev_priv = dev->dev_private;
2375         struct intel_crtc *pipe_B_crtc =
2376                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2377         struct intel_crtc *pipe_C_crtc =
2378                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2379         uint32_t temp;
2380
2381         /* When everything is off disable fdi C so that we could enable fdi B
2382          * with all lanes. XXX: This misses the case where a pipe is not using
2383          * any pch resources and so doesn't need any fdi lanes. */
2384         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2385                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2386                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2387
2388                 temp = I915_READ(SOUTH_CHICKEN1);
2389                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2390                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2391                 I915_WRITE(SOUTH_CHICKEN1, temp);
2392         }
2393 }
2394
2395 /* The FDI link training functions for ILK/Ibexpeak. */
2396 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2397 {
2398         struct drm_device *dev = crtc->dev;
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401         int pipe = intel_crtc->pipe;
2402         int plane = intel_crtc->plane;
2403         u32 reg, temp, tries;
2404
2405         /* FDI needs bits from pipe & plane first */
2406         assert_pipe_enabled(dev_priv, pipe);
2407         assert_plane_enabled(dev_priv, plane);
2408
2409         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2410            for train result */
2411         reg = FDI_RX_IMR(pipe);
2412         temp = I915_READ(reg);
2413         temp &= ~FDI_RX_SYMBOL_LOCK;
2414         temp &= ~FDI_RX_BIT_LOCK;
2415         I915_WRITE(reg, temp);
2416         I915_READ(reg);
2417         udelay(150);
2418
2419         /* enable CPU FDI TX and PCH FDI RX */
2420         reg = FDI_TX_CTL(pipe);
2421         temp = I915_READ(reg);
2422         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2423         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2424         temp &= ~FDI_LINK_TRAIN_NONE;
2425         temp |= FDI_LINK_TRAIN_PATTERN_1;
2426         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2427
2428         reg = FDI_RX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_LINK_TRAIN_NONE;
2431         temp |= FDI_LINK_TRAIN_PATTERN_1;
2432         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2433
2434         POSTING_READ(reg);
2435         udelay(150);
2436
2437         /* Ironlake workaround, enable clock pointer after FDI enable*/
2438         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2439         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2440                    FDI_RX_PHASE_SYNC_POINTER_EN);
2441
2442         reg = FDI_RX_IIR(pipe);
2443         for (tries = 0; tries < 5; tries++) {
2444                 temp = I915_READ(reg);
2445                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2446
2447                 if ((temp & FDI_RX_BIT_LOCK)) {
2448                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2449                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2450                         break;
2451                 }
2452         }
2453         if (tries == 5)
2454                 DRM_ERROR("FDI train 1 fail!\n");
2455
2456         /* Train 2 */
2457         reg = FDI_TX_CTL(pipe);
2458         temp = I915_READ(reg);
2459         temp &= ~FDI_LINK_TRAIN_NONE;
2460         temp |= FDI_LINK_TRAIN_PATTERN_2;
2461         I915_WRITE(reg, temp);
2462
2463         reg = FDI_RX_CTL(pipe);
2464         temp = I915_READ(reg);
2465         temp &= ~FDI_LINK_TRAIN_NONE;
2466         temp |= FDI_LINK_TRAIN_PATTERN_2;
2467         I915_WRITE(reg, temp);
2468
2469         POSTING_READ(reg);
2470         udelay(150);
2471
2472         reg = FDI_RX_IIR(pipe);
2473         for (tries = 0; tries < 5; tries++) {
2474                 temp = I915_READ(reg);
2475                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2476
2477                 if (temp & FDI_RX_SYMBOL_LOCK) {
2478                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2479                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2480                         break;
2481                 }
2482         }
2483         if (tries == 5)
2484                 DRM_ERROR("FDI train 2 fail!\n");
2485
2486         DRM_DEBUG_KMS("FDI train done\n");
2487
2488 }
2489
2490 static const int snb_b_fdi_train_param[] = {
2491         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2492         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2493         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2494         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2495 };
2496
2497 /* The FDI link training functions for SNB/Cougarpoint. */
2498 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2499 {
2500         struct drm_device *dev = crtc->dev;
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503         int pipe = intel_crtc->pipe;
2504         u32 reg, temp, i, retry;
2505
2506         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2507            for train result */
2508         reg = FDI_RX_IMR(pipe);
2509         temp = I915_READ(reg);
2510         temp &= ~FDI_RX_SYMBOL_LOCK;
2511         temp &= ~FDI_RX_BIT_LOCK;
2512         I915_WRITE(reg, temp);
2513
2514         POSTING_READ(reg);
2515         udelay(150);
2516
2517         /* enable CPU FDI TX and PCH FDI RX */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2521         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2522         temp &= ~FDI_LINK_TRAIN_NONE;
2523         temp |= FDI_LINK_TRAIN_PATTERN_1;
2524         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2525         /* SNB-B */
2526         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2527         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2528
2529         I915_WRITE(FDI_RX_MISC(pipe),
2530                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2531
2532         reg = FDI_RX_CTL(pipe);
2533         temp = I915_READ(reg);
2534         if (HAS_PCH_CPT(dev)) {
2535                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2536                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2537         } else {
2538                 temp &= ~FDI_LINK_TRAIN_NONE;
2539                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2540         }
2541         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2542
2543         POSTING_READ(reg);
2544         udelay(150);
2545
2546         for (i = 0; i < 4; i++) {
2547                 reg = FDI_TX_CTL(pipe);
2548                 temp = I915_READ(reg);
2549                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2550                 temp |= snb_b_fdi_train_param[i];
2551                 I915_WRITE(reg, temp);
2552
2553                 POSTING_READ(reg);
2554                 udelay(500);
2555
2556                 for (retry = 0; retry < 5; retry++) {
2557                         reg = FDI_RX_IIR(pipe);
2558                         temp = I915_READ(reg);
2559                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2560                         if (temp & FDI_RX_BIT_LOCK) {
2561                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2562                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2563                                 break;
2564                         }
2565                         udelay(50);
2566                 }
2567                 if (retry < 5)
2568                         break;
2569         }
2570         if (i == 4)
2571                 DRM_ERROR("FDI train 1 fail!\n");
2572
2573         /* Train 2 */
2574         reg = FDI_TX_CTL(pipe);
2575         temp = I915_READ(reg);
2576         temp &= ~FDI_LINK_TRAIN_NONE;
2577         temp |= FDI_LINK_TRAIN_PATTERN_2;
2578         if (IS_GEN6(dev)) {
2579                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2580                 /* SNB-B */
2581                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582         }
2583         I915_WRITE(reg, temp);
2584
2585         reg = FDI_RX_CTL(pipe);
2586         temp = I915_READ(reg);
2587         if (HAS_PCH_CPT(dev)) {
2588                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2590         } else {
2591                 temp &= ~FDI_LINK_TRAIN_NONE;
2592                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2593         }
2594         I915_WRITE(reg, temp);
2595
2596         POSTING_READ(reg);
2597         udelay(150);
2598
2599         for (i = 0; i < 4; i++) {
2600                 reg = FDI_TX_CTL(pipe);
2601                 temp = I915_READ(reg);
2602                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603                 temp |= snb_b_fdi_train_param[i];
2604                 I915_WRITE(reg, temp);
2605
2606                 POSTING_READ(reg);
2607                 udelay(500);
2608
2609                 for (retry = 0; retry < 5; retry++) {
2610                         reg = FDI_RX_IIR(pipe);
2611                         temp = I915_READ(reg);
2612                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2613                         if (temp & FDI_RX_SYMBOL_LOCK) {
2614                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2615                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2616                                 break;
2617                         }
2618                         udelay(50);
2619                 }
2620                 if (retry < 5)
2621                         break;
2622         }
2623         if (i == 4)
2624                 DRM_ERROR("FDI train 2 fail!\n");
2625
2626         DRM_DEBUG_KMS("FDI train done.\n");
2627 }
2628
2629 /* Manual link training for Ivy Bridge A0 parts */
2630 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2631 {
2632         struct drm_device *dev = crtc->dev;
2633         struct drm_i915_private *dev_priv = dev->dev_private;
2634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2635         int pipe = intel_crtc->pipe;
2636         u32 reg, temp, i;
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645
2646         POSTING_READ(reg);
2647         udelay(150);
2648
2649         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2650                       I915_READ(FDI_RX_IIR(pipe)));
2651
2652         /* enable CPU FDI TX and PCH FDI RX */
2653         reg = FDI_TX_CTL(pipe);
2654         temp = I915_READ(reg);
2655         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2656         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2657         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2658         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2659         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2660         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2661         temp |= FDI_COMPOSITE_SYNC;
2662         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2663
2664         I915_WRITE(FDI_RX_MISC(pipe),
2665                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2666
2667         reg = FDI_RX_CTL(pipe);
2668         temp = I915_READ(reg);
2669         temp &= ~FDI_LINK_TRAIN_AUTO;
2670         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2671         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2672         temp |= FDI_COMPOSITE_SYNC;
2673         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2674
2675         POSTING_READ(reg);
2676         udelay(150);
2677
2678         for (i = 0; i < 4; i++) {
2679                 reg = FDI_TX_CTL(pipe);
2680                 temp = I915_READ(reg);
2681                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682                 temp |= snb_b_fdi_train_param[i];
2683                 I915_WRITE(reg, temp);
2684
2685                 POSTING_READ(reg);
2686                 udelay(500);
2687
2688                 reg = FDI_RX_IIR(pipe);
2689                 temp = I915_READ(reg);
2690                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2691
2692                 if (temp & FDI_RX_BIT_LOCK ||
2693                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2694                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2695                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2696                         break;
2697                 }
2698         }
2699         if (i == 4)
2700                 DRM_ERROR("FDI train 1 fail!\n");
2701
2702         /* Train 2 */
2703         reg = FDI_TX_CTL(pipe);
2704         temp = I915_READ(reg);
2705         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2706         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2707         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2708         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2709         I915_WRITE(reg, temp);
2710
2711         reg = FDI_RX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2714         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2715         I915_WRITE(reg, temp);
2716
2717         POSTING_READ(reg);
2718         udelay(150);
2719
2720         for (i = 0; i < 4; i++) {
2721                 reg = FDI_TX_CTL(pipe);
2722                 temp = I915_READ(reg);
2723                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724                 temp |= snb_b_fdi_train_param[i];
2725                 I915_WRITE(reg, temp);
2726
2727                 POSTING_READ(reg);
2728                 udelay(500);
2729
2730                 reg = FDI_RX_IIR(pipe);
2731                 temp = I915_READ(reg);
2732                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2733
2734                 if (temp & FDI_RX_SYMBOL_LOCK) {
2735                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2736                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2737                         break;
2738                 }
2739         }
2740         if (i == 4)
2741                 DRM_ERROR("FDI train 2 fail!\n");
2742
2743         DRM_DEBUG_KMS("FDI train done.\n");
2744 }
2745
2746 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2747 {
2748         struct drm_device *dev = intel_crtc->base.dev;
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         int pipe = intel_crtc->pipe;
2751         u32 reg, temp;
2752
2753
2754         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2755         reg = FDI_RX_CTL(pipe);
2756         temp = I915_READ(reg);
2757         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2758         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2759         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2760         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2761
2762         POSTING_READ(reg);
2763         udelay(200);
2764
2765         /* Switch from Rawclk to PCDclk */
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp | FDI_PCDCLK);
2768
2769         POSTING_READ(reg);
2770         udelay(200);
2771
2772         /* Enable CPU FDI TX PLL, always on for Ironlake */
2773         reg = FDI_TX_CTL(pipe);
2774         temp = I915_READ(reg);
2775         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2776                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2777
2778                 POSTING_READ(reg);
2779                 udelay(100);
2780         }
2781 }
2782
2783 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2784 {
2785         struct drm_device *dev = intel_crtc->base.dev;
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         int pipe = intel_crtc->pipe;
2788         u32 reg, temp;
2789
2790         /* Switch from PCDclk to Rawclk */
2791         reg = FDI_RX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2794
2795         /* Disable CPU FDI TX PLL */
2796         reg = FDI_TX_CTL(pipe);
2797         temp = I915_READ(reg);
2798         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2799
2800         POSTING_READ(reg);
2801         udelay(100);
2802
2803         reg = FDI_RX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2806
2807         /* Wait for the clocks to turn off. */
2808         POSTING_READ(reg);
2809         udelay(100);
2810 }
2811
2812 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2813 {
2814         struct drm_device *dev = crtc->dev;
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2817         int pipe = intel_crtc->pipe;
2818         u32 reg, temp;
2819
2820         /* disable CPU FDI tx and PCH FDI rx */
2821         reg = FDI_TX_CTL(pipe);
2822         temp = I915_READ(reg);
2823         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2824         POSTING_READ(reg);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         temp &= ~(0x7 << 16);
2829         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2830         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2831
2832         POSTING_READ(reg);
2833         udelay(100);
2834
2835         /* Ironlake workaround, disable clock pointer after downing FDI */
2836         if (HAS_PCH_IBX(dev)) {
2837                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2838         }
2839
2840         /* still set train pattern 1 */
2841         reg = FDI_TX_CTL(pipe);
2842         temp = I915_READ(reg);
2843         temp &= ~FDI_LINK_TRAIN_NONE;
2844         temp |= FDI_LINK_TRAIN_PATTERN_1;
2845         I915_WRITE(reg, temp);
2846
2847         reg = FDI_RX_CTL(pipe);
2848         temp = I915_READ(reg);
2849         if (HAS_PCH_CPT(dev)) {
2850                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2851                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2852         } else {
2853                 temp &= ~FDI_LINK_TRAIN_NONE;
2854                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2855         }
2856         /* BPC in FDI rx is consistent with that in PIPECONF */
2857         temp &= ~(0x07 << 16);
2858         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2859         I915_WRITE(reg, temp);
2860
2861         POSTING_READ(reg);
2862         udelay(100);
2863 }
2864
2865 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2870         unsigned long flags;
2871         bool pending;
2872
2873         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2874             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2875                 return false;
2876
2877         spin_lock_irqsave(&dev->event_lock, flags);
2878         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2879         spin_unlock_irqrestore(&dev->event_lock, flags);
2880
2881         return pending;
2882 }
2883
2884 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2885 {
2886         struct drm_device *dev = crtc->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888
2889         if (crtc->fb == NULL)
2890                 return;
2891
2892         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2893
2894         wait_event(dev_priv->pending_flip_queue,
2895                    !intel_crtc_has_pending_flip(crtc));
2896
2897         mutex_lock(&dev->struct_mutex);
2898         intel_finish_fb(crtc->fb);
2899         mutex_unlock(&dev->struct_mutex);
2900 }
2901
2902 /* Program iCLKIP clock to the desired frequency */
2903 static void lpt_program_iclkip(struct drm_crtc *crtc)
2904 {
2905         struct drm_device *dev = crtc->dev;
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2908         u32 temp;
2909
2910         mutex_lock(&dev_priv->dpio_lock);
2911
2912         /* It is necessary to ungate the pixclk gate prior to programming
2913          * the divisors, and gate it back when it is done.
2914          */
2915         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2916
2917         /* Disable SSCCTL */
2918         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2919                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2920                                 SBI_SSCCTL_DISABLE,
2921                         SBI_ICLK);
2922
2923         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2924         if (crtc->mode.clock == 20000) {
2925                 auxdiv = 1;
2926                 divsel = 0x41;
2927                 phaseinc = 0x20;
2928         } else {
2929                 /* The iCLK virtual clock root frequency is in MHz,
2930                  * but the crtc->mode.clock in in KHz. To get the divisors,
2931                  * it is necessary to divide one by another, so we
2932                  * convert the virtual clock precision to KHz here for higher
2933                  * precision.
2934                  */
2935                 u32 iclk_virtual_root_freq = 172800 * 1000;
2936                 u32 iclk_pi_range = 64;
2937                 u32 desired_divisor, msb_divisor_value, pi_value;
2938
2939                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2940                 msb_divisor_value = desired_divisor / iclk_pi_range;
2941                 pi_value = desired_divisor % iclk_pi_range;
2942
2943                 auxdiv = 0;
2944                 divsel = msb_divisor_value - 2;
2945                 phaseinc = pi_value;
2946         }
2947
2948         /* This should not happen with any sane values */
2949         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2950                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2951         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2952                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2953
2954         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2955                         crtc->mode.clock,
2956                         auxdiv,
2957                         divsel,
2958                         phasedir,
2959                         phaseinc);
2960
2961         /* Program SSCDIVINTPHASE6 */
2962         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2963         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2964         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2965         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2966         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2967         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2968         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2969         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2970
2971         /* Program SSCAUXDIV */
2972         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2973         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2974         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2975         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2976
2977         /* Enable modulator and associated divider */
2978         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2979         temp &= ~SBI_SSCCTL_DISABLE;
2980         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2981
2982         /* Wait for initialization time */
2983         udelay(24);
2984
2985         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2986
2987         mutex_unlock(&dev_priv->dpio_lock);
2988 }
2989
2990 /*
2991  * Enable PCH resources required for PCH ports:
2992  *   - PCH PLLs
2993  *   - FDI training & RX/TX
2994  *   - update transcoder timings
2995  *   - DP transcoding bits
2996  *   - transcoder
2997  */
2998 static void ironlake_pch_enable(struct drm_crtc *crtc)
2999 {
3000         struct drm_device *dev = crtc->dev;
3001         struct drm_i915_private *dev_priv = dev->dev_private;
3002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3003         int pipe = intel_crtc->pipe;
3004         u32 reg, temp;
3005
3006         assert_transcoder_disabled(dev_priv, pipe);
3007
3008         /* Write the TU size bits before fdi link training, so that error
3009          * detection works. */
3010         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3011                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3012
3013         /* For PCH output, training FDI link */
3014         dev_priv->display.fdi_link_train(crtc);
3015
3016         /* XXX: pch pll's can be enabled any time before we enable the PCH
3017          * transcoder, and we actually should do this to not upset any PCH
3018          * transcoder that already use the clock when we share it.
3019          *
3020          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3021          * unconditionally resets the pll - we need that to have the right LVDS
3022          * enable sequence. */
3023         ironlake_enable_pch_pll(intel_crtc);
3024
3025         if (HAS_PCH_CPT(dev)) {
3026                 u32 sel;
3027
3028                 temp = I915_READ(PCH_DPLL_SEL);
3029                 switch (pipe) {
3030                 default:
3031                 case 0:
3032                         temp |= TRANSA_DPLL_ENABLE;
3033                         sel = TRANSA_DPLLB_SEL;
3034                         break;
3035                 case 1:
3036                         temp |= TRANSB_DPLL_ENABLE;
3037                         sel = TRANSB_DPLLB_SEL;
3038                         break;
3039                 case 2:
3040                         temp |= TRANSC_DPLL_ENABLE;
3041                         sel = TRANSC_DPLLB_SEL;
3042                         break;
3043                 }
3044                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3045                         temp |= sel;
3046                 else
3047                         temp &= ~sel;
3048                 I915_WRITE(PCH_DPLL_SEL, temp);
3049         }
3050
3051         /* set transcoder timing, panel must allow it */
3052         assert_panel_unlocked(dev_priv, pipe);
3053         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3054         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3055         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3056
3057         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3058         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3059         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3060         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3061
3062         intel_fdi_normal_train(crtc);
3063
3064         /* For PCH DP, enable TRANS_DP_CTL */
3065         if (HAS_PCH_CPT(dev) &&
3066             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3067              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3068                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3069                 reg = TRANS_DP_CTL(pipe);
3070                 temp = I915_READ(reg);
3071                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3072                           TRANS_DP_SYNC_MASK |
3073                           TRANS_DP_BPC_MASK);
3074                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3075                          TRANS_DP_ENH_FRAMING);
3076                 temp |= bpc << 9; /* same format but at 11:9 */
3077
3078                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3079                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3080                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3081                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3082
3083                 switch (intel_trans_dp_port_sel(crtc)) {
3084                 case PCH_DP_B:
3085                         temp |= TRANS_DP_PORT_SEL_B;
3086                         break;
3087                 case PCH_DP_C:
3088                         temp |= TRANS_DP_PORT_SEL_C;
3089                         break;
3090                 case PCH_DP_D:
3091                         temp |= TRANS_DP_PORT_SEL_D;
3092                         break;
3093                 default:
3094                         BUG();
3095                 }
3096
3097                 I915_WRITE(reg, temp);
3098         }
3099
3100         ironlake_enable_pch_transcoder(dev_priv, pipe);
3101 }
3102
3103 static void lpt_pch_enable(struct drm_crtc *crtc)
3104 {
3105         struct drm_device *dev = crtc->dev;
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3108         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3109
3110         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3111
3112         lpt_program_iclkip(crtc);
3113
3114         /* Set transcoder timing. */
3115         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3116         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3117         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3118
3119         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3120         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3121         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3122         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3123
3124         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3125 }
3126
3127 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3128 {
3129         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3130
3131         if (pll == NULL)
3132                 return;
3133
3134         if (pll->refcount == 0) {
3135                 WARN(1, "bad PCH PLL refcount\n");
3136                 return;
3137         }
3138
3139         --pll->refcount;
3140         intel_crtc->pch_pll = NULL;
3141 }
3142
3143 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3144 {
3145         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3146         struct intel_pch_pll *pll;
3147         int i;
3148
3149         pll = intel_crtc->pch_pll;
3150         if (pll) {
3151                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3152                               intel_crtc->base.base.id, pll->pll_reg);
3153                 goto prepare;
3154         }
3155
3156         if (HAS_PCH_IBX(dev_priv->dev)) {
3157                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3158                 i = intel_crtc->pipe;
3159                 pll = &dev_priv->pch_plls[i];
3160
3161                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3162                               intel_crtc->base.base.id, pll->pll_reg);
3163
3164                 goto found;
3165         }
3166
3167         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3168                 pll = &dev_priv->pch_plls[i];
3169
3170                 /* Only want to check enabled timings first */
3171                 if (pll->refcount == 0)
3172                         continue;
3173
3174                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3175                     fp == I915_READ(pll->fp0_reg)) {
3176                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3177                                       intel_crtc->base.base.id,
3178                                       pll->pll_reg, pll->refcount, pll->active);
3179
3180                         goto found;
3181                 }
3182         }
3183
3184         /* Ok no matching timings, maybe there's a free one? */
3185         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3186                 pll = &dev_priv->pch_plls[i];
3187                 if (pll->refcount == 0) {
3188                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3189                                       intel_crtc->base.base.id, pll->pll_reg);
3190                         goto found;
3191                 }
3192         }
3193
3194         return NULL;
3195
3196 found:
3197         intel_crtc->pch_pll = pll;
3198         pll->refcount++;
3199         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3200 prepare: /* separate function? */
3201         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3202
3203         /* Wait for the clocks to stabilize before rewriting the regs */
3204         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3205         POSTING_READ(pll->pll_reg);
3206         udelay(150);
3207
3208         I915_WRITE(pll->fp0_reg, fp);
3209         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3210         pll->on = false;
3211         return pll;
3212 }
3213
3214 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3215 {
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217         int dslreg = PIPEDSL(pipe);
3218         u32 temp;
3219
3220         temp = I915_READ(dslreg);
3221         udelay(500);
3222         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3223                 if (wait_for(I915_READ(dslreg) != temp, 5))
3224                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3225         }
3226 }
3227
3228 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         int pipe = crtc->pipe;
3233
3234         if (crtc->config.pch_pfit.size &&
3235             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
3236                 /* Force use of hard-coded filter coefficients
3237                  * as some pre-programmed values are broken,
3238                  * e.g. x201.
3239                  */
3240                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3241                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3242                                                  PF_PIPE_SEL_IVB(pipe));
3243                 else
3244                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3245                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3246                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3247         }
3248 }
3249
3250 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3251 {
3252         struct drm_device *dev = crtc->dev;
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3255         struct intel_encoder *encoder;
3256         int pipe = intel_crtc->pipe;
3257         int plane = intel_crtc->plane;
3258         u32 temp;
3259
3260         WARN_ON(!crtc->enabled);
3261
3262         if (intel_crtc->active)
3263                 return;
3264
3265         intel_crtc->active = true;
3266
3267         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3268         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3269
3270         intel_update_watermarks(dev);
3271
3272         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3273                 temp = I915_READ(PCH_LVDS);
3274                 if ((temp & LVDS_PORT_EN) == 0)
3275                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3276         }
3277
3278
3279         if (intel_crtc->config.has_pch_encoder) {
3280                 /* Note: FDI PLL enabling _must_ be done before we enable the
3281                  * cpu pipes, hence this is separate from all the other fdi/pch
3282                  * enabling. */
3283                 ironlake_fdi_pll_enable(intel_crtc);
3284         } else {
3285                 assert_fdi_tx_disabled(dev_priv, pipe);
3286                 assert_fdi_rx_disabled(dev_priv, pipe);
3287         }
3288
3289         for_each_encoder_on_crtc(dev, crtc, encoder)
3290                 if (encoder->pre_enable)
3291                         encoder->pre_enable(encoder);
3292
3293         /* Enable panel fitting for LVDS */
3294         ironlake_pfit_enable(intel_crtc);
3295
3296         /*
3297          * On ILK+ LUT must be loaded before the pipe is running but with
3298          * clocks enabled
3299          */
3300         intel_crtc_load_lut(crtc);
3301
3302         intel_enable_pipe(dev_priv, pipe,
3303                           intel_crtc->config.has_pch_encoder);
3304         intel_enable_plane(dev_priv, plane, pipe);
3305
3306         if (intel_crtc->config.has_pch_encoder)
3307                 ironlake_pch_enable(crtc);
3308
3309         mutex_lock(&dev->struct_mutex);
3310         intel_update_fbc(dev);
3311         mutex_unlock(&dev->struct_mutex);
3312
3313         intel_crtc_update_cursor(crtc, true);
3314
3315         for_each_encoder_on_crtc(dev, crtc, encoder)
3316                 encoder->enable(encoder);
3317
3318         if (HAS_PCH_CPT(dev))
3319                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3320
3321         /*
3322          * There seems to be a race in PCH platform hw (at least on some
3323          * outputs) where an enabled pipe still completes any pageflip right
3324          * away (as if the pipe is off) instead of waiting for vblank. As soon
3325          * as the first vblank happend, everything works as expected. Hence just
3326          * wait for one vblank before returning to avoid strange things
3327          * happening.
3328          */
3329         intel_wait_for_vblank(dev, intel_crtc->pipe);
3330 }
3331
3332 static void haswell_crtc_enable(struct drm_crtc *crtc)
3333 {
3334         struct drm_device *dev = crtc->dev;
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337         struct intel_encoder *encoder;
3338         int pipe = intel_crtc->pipe;
3339         int plane = intel_crtc->plane;
3340
3341         WARN_ON(!crtc->enabled);
3342
3343         if (intel_crtc->active)
3344                 return;
3345
3346         intel_crtc->active = true;
3347
3348         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3349         if (intel_crtc->config.has_pch_encoder)
3350                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3351
3352         intel_update_watermarks(dev);
3353
3354         if (intel_crtc->config.has_pch_encoder)
3355                 dev_priv->display.fdi_link_train(crtc);
3356
3357         for_each_encoder_on_crtc(dev, crtc, encoder)
3358                 if (encoder->pre_enable)
3359                         encoder->pre_enable(encoder);
3360
3361         intel_ddi_enable_pipe_clock(intel_crtc);
3362
3363         /* Enable panel fitting for eDP */
3364         ironlake_pfit_enable(intel_crtc);
3365
3366         /*
3367          * On ILK+ LUT must be loaded before the pipe is running but with
3368          * clocks enabled
3369          */
3370         intel_crtc_load_lut(crtc);
3371
3372         intel_ddi_set_pipe_settings(crtc);
3373         intel_ddi_enable_transcoder_func(crtc);
3374
3375         intel_enable_pipe(dev_priv, pipe,
3376                           intel_crtc->config.has_pch_encoder);
3377         intel_enable_plane(dev_priv, plane, pipe);
3378
3379         if (intel_crtc->config.has_pch_encoder)
3380                 lpt_pch_enable(crtc);
3381
3382         mutex_lock(&dev->struct_mutex);
3383         intel_update_fbc(dev);
3384         mutex_unlock(&dev->struct_mutex);
3385
3386         intel_crtc_update_cursor(crtc, true);
3387
3388         for_each_encoder_on_crtc(dev, crtc, encoder)
3389                 encoder->enable(encoder);
3390
3391         /*
3392          * There seems to be a race in PCH platform hw (at least on some
3393          * outputs) where an enabled pipe still completes any pageflip right
3394          * away (as if the pipe is off) instead of waiting for vblank. As soon
3395          * as the first vblank happend, everything works as expected. Hence just
3396          * wait for one vblank before returning to avoid strange things
3397          * happening.
3398          */
3399         intel_wait_for_vblank(dev, intel_crtc->pipe);
3400 }
3401
3402 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         struct intel_encoder *encoder;
3408         int pipe = intel_crtc->pipe;
3409         int plane = intel_crtc->plane;
3410         u32 reg, temp;
3411
3412
3413         if (!intel_crtc->active)
3414                 return;
3415
3416         for_each_encoder_on_crtc(dev, crtc, encoder)
3417                 encoder->disable(encoder);
3418
3419         intel_crtc_wait_for_pending_flips(crtc);
3420         drm_vblank_off(dev, pipe);
3421         intel_crtc_update_cursor(crtc, false);
3422
3423         intel_disable_plane(dev_priv, plane, pipe);
3424
3425         if (dev_priv->cfb_plane == plane)
3426                 intel_disable_fbc(dev);
3427
3428         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3429         intel_disable_pipe(dev_priv, pipe);
3430
3431         /* Disable PF */
3432         I915_WRITE(PF_CTL(pipe), 0);
3433         I915_WRITE(PF_WIN_SZ(pipe), 0);
3434
3435         for_each_encoder_on_crtc(dev, crtc, encoder)
3436                 if (encoder->post_disable)
3437                         encoder->post_disable(encoder);
3438
3439         ironlake_fdi_disable(crtc);
3440
3441         ironlake_disable_pch_transcoder(dev_priv, pipe);
3442         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3443
3444         if (HAS_PCH_CPT(dev)) {
3445                 /* disable TRANS_DP_CTL */
3446                 reg = TRANS_DP_CTL(pipe);
3447                 temp = I915_READ(reg);
3448                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3449                 temp |= TRANS_DP_PORT_SEL_NONE;
3450                 I915_WRITE(reg, temp);
3451
3452                 /* disable DPLL_SEL */
3453                 temp = I915_READ(PCH_DPLL_SEL);
3454                 switch (pipe) {
3455                 case 0:
3456                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3457                         break;
3458                 case 1:
3459                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3460                         break;
3461                 case 2:
3462                         /* C shares PLL A or B */
3463                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3464                         break;
3465                 default:
3466                         BUG(); /* wtf */
3467                 }
3468                 I915_WRITE(PCH_DPLL_SEL, temp);
3469         }
3470
3471         /* disable PCH DPLL */
3472         intel_disable_pch_pll(intel_crtc);
3473
3474         ironlake_fdi_pll_disable(intel_crtc);
3475
3476         intel_crtc->active = false;
3477         intel_update_watermarks(dev);
3478
3479         mutex_lock(&dev->struct_mutex);
3480         intel_update_fbc(dev);
3481         mutex_unlock(&dev->struct_mutex);
3482 }
3483
3484 static void haswell_crtc_disable(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489         struct intel_encoder *encoder;
3490         int pipe = intel_crtc->pipe;
3491         int plane = intel_crtc->plane;
3492         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3493
3494         if (!intel_crtc->active)
3495                 return;
3496
3497         for_each_encoder_on_crtc(dev, crtc, encoder)
3498                 encoder->disable(encoder);
3499
3500         intel_crtc_wait_for_pending_flips(crtc);
3501         drm_vblank_off(dev, pipe);
3502         intel_crtc_update_cursor(crtc, false);
3503
3504         intel_disable_plane(dev_priv, plane, pipe);
3505
3506         if (dev_priv->cfb_plane == plane)
3507                 intel_disable_fbc(dev);
3508
3509         if (intel_crtc->config.has_pch_encoder)
3510                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3511         intel_disable_pipe(dev_priv, pipe);
3512
3513         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3514
3515         /* XXX: Once we have proper panel fitter state tracking implemented with
3516          * hardware state read/check support we should switch to only disable
3517          * the panel fitter when we know it's used. */
3518         if (intel_using_power_well(dev)) {
3519                 I915_WRITE(PF_CTL(pipe), 0);
3520                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3521         }
3522
3523         intel_ddi_disable_pipe_clock(intel_crtc);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 if (encoder->post_disable)
3527                         encoder->post_disable(encoder);
3528
3529         if (intel_crtc->config.has_pch_encoder) {
3530                 lpt_disable_pch_transcoder(dev_priv);
3531                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3532                 intel_ddi_fdi_disable(crtc);
3533         }
3534
3535         intel_crtc->active = false;
3536         intel_update_watermarks(dev);
3537
3538         mutex_lock(&dev->struct_mutex);
3539         intel_update_fbc(dev);
3540         mutex_unlock(&dev->struct_mutex);
3541 }
3542
3543 static void ironlake_crtc_off(struct drm_crtc *crtc)
3544 {
3545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546         intel_put_pch_pll(intel_crtc);
3547 }
3548
3549 static void haswell_crtc_off(struct drm_crtc *crtc)
3550 {
3551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552
3553         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3554          * start using it. */
3555         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3556
3557         intel_ddi_put_crtc_pll(crtc);
3558 }
3559
3560 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3561 {
3562         if (!enable && intel_crtc->overlay) {
3563                 struct drm_device *dev = intel_crtc->base.dev;
3564                 struct drm_i915_private *dev_priv = dev->dev_private;
3565
3566                 mutex_lock(&dev->struct_mutex);
3567                 dev_priv->mm.interruptible = false;
3568                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3569                 dev_priv->mm.interruptible = true;
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572
3573         /* Let userspace switch the overlay on again. In most cases userspace
3574          * has to recompute where to put it anyway.
3575          */
3576 }
3577
3578 /**
3579  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3580  * cursor plane briefly if not already running after enabling the display
3581  * plane.
3582  * This workaround avoids occasional blank screens when self refresh is
3583  * enabled.
3584  */
3585 static void
3586 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3587 {
3588         u32 cntl = I915_READ(CURCNTR(pipe));
3589
3590         if ((cntl & CURSOR_MODE) == 0) {
3591                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3592
3593                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3594                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3595                 intel_wait_for_vblank(dev_priv->dev, pipe);
3596                 I915_WRITE(CURCNTR(pipe), cntl);
3597                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3598                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3599         }
3600 }
3601
3602 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3603 {
3604         struct drm_device *dev = crtc->base.dev;
3605         struct drm_i915_private *dev_priv = dev->dev_private;
3606         struct intel_crtc_config *pipe_config = &crtc->config;
3607
3608         if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
3609               intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
3610                 return;
3611
3612         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3613         assert_pipe_disabled(dev_priv, crtc->pipe);
3614
3615         /*
3616          * Enable automatic panel scaling so that non-native modes
3617          * fill the screen.  The panel fitter should only be
3618          * adjusted whilst the pipe is disabled, according to
3619          * register description and PRM.
3620          */
3621         DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
3622                       pipe_config->gmch_pfit.control,
3623                       pipe_config->gmch_pfit.pgm_ratios);
3624
3625         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3626         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3627 }
3628
3629 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3630 {
3631         struct drm_device *dev = crtc->dev;
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634         struct intel_encoder *encoder;
3635         int pipe = intel_crtc->pipe;
3636         int plane = intel_crtc->plane;
3637
3638         WARN_ON(!crtc->enabled);
3639
3640         if (intel_crtc->active)
3641                 return;
3642
3643         intel_crtc->active = true;
3644         intel_update_watermarks(dev);
3645
3646         mutex_lock(&dev_priv->dpio_lock);
3647
3648         for_each_encoder_on_crtc(dev, crtc, encoder)
3649                 if (encoder->pre_pll_enable)
3650                         encoder->pre_pll_enable(encoder);
3651
3652         intel_enable_pll(dev_priv, pipe);
3653
3654         for_each_encoder_on_crtc(dev, crtc, encoder)
3655                 if (encoder->pre_enable)
3656                         encoder->pre_enable(encoder);
3657
3658         /* VLV wants encoder enabling _before_ the pipe is up. */
3659         for_each_encoder_on_crtc(dev, crtc, encoder)
3660                 encoder->enable(encoder);
3661
3662         /* Enable panel fitting for eDP */
3663         i9xx_pfit_enable(intel_crtc);
3664
3665         intel_enable_pipe(dev_priv, pipe, false);
3666         intel_enable_plane(dev_priv, plane, pipe);
3667
3668         intel_crtc_load_lut(crtc);
3669         intel_update_fbc(dev);
3670
3671         /* Give the overlay scaler a chance to enable if it's on this pipe */
3672         intel_crtc_dpms_overlay(intel_crtc, true);
3673         intel_crtc_update_cursor(crtc, true);
3674
3675         mutex_unlock(&dev_priv->dpio_lock);
3676 }
3677
3678 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3679 {
3680         struct drm_device *dev = crtc->dev;
3681         struct drm_i915_private *dev_priv = dev->dev_private;
3682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3683         struct intel_encoder *encoder;
3684         int pipe = intel_crtc->pipe;
3685         int plane = intel_crtc->plane;
3686
3687         WARN_ON(!crtc->enabled);
3688
3689         if (intel_crtc->active)
3690                 return;
3691
3692         intel_crtc->active = true;
3693         intel_update_watermarks(dev);
3694
3695         intel_enable_pll(dev_priv, pipe);
3696
3697         for_each_encoder_on_crtc(dev, crtc, encoder)
3698                 if (encoder->pre_enable)
3699                         encoder->pre_enable(encoder);
3700
3701         /* Enable panel fitting for LVDS */
3702         i9xx_pfit_enable(intel_crtc);
3703
3704         intel_enable_pipe(dev_priv, pipe, false);
3705         intel_enable_plane(dev_priv, plane, pipe);
3706         if (IS_G4X(dev))
3707                 g4x_fixup_plane(dev_priv, pipe);
3708
3709         intel_crtc_load_lut(crtc);
3710         intel_update_fbc(dev);
3711
3712         /* Give the overlay scaler a chance to enable if it's on this pipe */
3713         intel_crtc_dpms_overlay(intel_crtc, true);
3714         intel_crtc_update_cursor(crtc, true);
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 encoder->enable(encoder);
3718 }
3719
3720 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3721 {
3722         struct drm_device *dev = crtc->base.dev;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         enum pipe pipe;
3725         uint32_t pctl = I915_READ(PFIT_CONTROL);
3726
3727         assert_pipe_disabled(dev_priv, crtc->pipe);
3728
3729         if (INTEL_INFO(dev)->gen >= 4)
3730                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3731         else
3732                 pipe = PIPE_B;
3733
3734         if (pipe == crtc->pipe) {
3735                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3736                 I915_WRITE(PFIT_CONTROL, 0);
3737         }
3738 }
3739
3740 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3741 {
3742         struct drm_device *dev = crtc->dev;
3743         struct drm_i915_private *dev_priv = dev->dev_private;
3744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3745         struct intel_encoder *encoder;
3746         int pipe = intel_crtc->pipe;
3747         int plane = intel_crtc->plane;
3748
3749         if (!intel_crtc->active)
3750                 return;
3751
3752         for_each_encoder_on_crtc(dev, crtc, encoder)
3753                 encoder->disable(encoder);
3754
3755         /* Give the overlay scaler a chance to disable if it's on this pipe */
3756         intel_crtc_wait_for_pending_flips(crtc);
3757         drm_vblank_off(dev, pipe);
3758         intel_crtc_dpms_overlay(intel_crtc, false);
3759         intel_crtc_update_cursor(crtc, false);
3760
3761         if (dev_priv->cfb_plane == plane)
3762                 intel_disable_fbc(dev);
3763
3764         intel_disable_plane(dev_priv, plane, pipe);
3765         intel_disable_pipe(dev_priv, pipe);
3766
3767         i9xx_pfit_disable(intel_crtc);
3768
3769         for_each_encoder_on_crtc(dev, crtc, encoder)
3770                 if (encoder->post_disable)
3771                         encoder->post_disable(encoder);
3772
3773         intel_disable_pll(dev_priv, pipe);
3774
3775         intel_crtc->active = false;
3776         intel_update_fbc(dev);
3777         intel_update_watermarks(dev);
3778 }
3779
3780 static void i9xx_crtc_off(struct drm_crtc *crtc)
3781 {
3782 }
3783
3784 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3785                                     bool enabled)
3786 {
3787         struct drm_device *dev = crtc->dev;
3788         struct drm_i915_master_private *master_priv;
3789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3790         int pipe = intel_crtc->pipe;
3791
3792         if (!dev->primary->master)
3793                 return;
3794
3795         master_priv = dev->primary->master->driver_priv;
3796         if (!master_priv->sarea_priv)
3797                 return;
3798
3799         switch (pipe) {
3800         case 0:
3801                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3802                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3803                 break;
3804         case 1:
3805                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3806                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3807                 break;
3808         default:
3809                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3810                 break;
3811         }
3812 }
3813
3814 /**
3815  * Sets the power management mode of the pipe and plane.
3816  */
3817 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3818 {
3819         struct drm_device *dev = crtc->dev;
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         struct intel_encoder *intel_encoder;
3822         bool enable = false;
3823
3824         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3825                 enable |= intel_encoder->connectors_active;
3826
3827         if (enable)
3828                 dev_priv->display.crtc_enable(crtc);
3829         else
3830                 dev_priv->display.crtc_disable(crtc);
3831
3832         intel_crtc_update_sarea(crtc, enable);
3833 }
3834
3835 static void intel_crtc_disable(struct drm_crtc *crtc)
3836 {
3837         struct drm_device *dev = crtc->dev;
3838         struct drm_connector *connector;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841
3842         /* crtc should still be enabled when we disable it. */
3843         WARN_ON(!crtc->enabled);
3844
3845         intel_crtc->eld_vld = false;
3846         dev_priv->display.crtc_disable(crtc);
3847         intel_crtc_update_sarea(crtc, false);
3848         dev_priv->display.off(crtc);
3849
3850         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3851         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3852
3853         if (crtc->fb) {
3854                 mutex_lock(&dev->struct_mutex);
3855                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3856                 mutex_unlock(&dev->struct_mutex);
3857                 crtc->fb = NULL;
3858         }
3859
3860         /* Update computed state. */
3861         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3862                 if (!connector->encoder || !connector->encoder->crtc)
3863                         continue;
3864
3865                 if (connector->encoder->crtc != crtc)
3866                         continue;
3867
3868                 connector->dpms = DRM_MODE_DPMS_OFF;
3869                 to_intel_encoder(connector->encoder)->connectors_active = false;
3870         }
3871 }
3872
3873 void intel_modeset_disable(struct drm_device *dev)
3874 {
3875         struct drm_crtc *crtc;
3876
3877         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3878                 if (crtc->enabled)
3879                         intel_crtc_disable(crtc);
3880         }
3881 }
3882
3883 void intel_encoder_destroy(struct drm_encoder *encoder)
3884 {
3885         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3886
3887         drm_encoder_cleanup(encoder);
3888         kfree(intel_encoder);
3889 }
3890
3891 /* Simple dpms helper for encodres with just one connector, no cloning and only
3892  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3893  * state of the entire output pipe. */
3894 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3895 {
3896         if (mode == DRM_MODE_DPMS_ON) {
3897                 encoder->connectors_active = true;
3898
3899                 intel_crtc_update_dpms(encoder->base.crtc);
3900         } else {
3901                 encoder->connectors_active = false;
3902
3903                 intel_crtc_update_dpms(encoder->base.crtc);
3904         }
3905 }
3906
3907 /* Cross check the actual hw state with our own modeset state tracking (and it's
3908  * internal consistency). */
3909 static void intel_connector_check_state(struct intel_connector *connector)
3910 {
3911         if (connector->get_hw_state(connector)) {
3912                 struct intel_encoder *encoder = connector->encoder;
3913                 struct drm_crtc *crtc;
3914                 bool encoder_enabled;
3915                 enum pipe pipe;
3916
3917                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3918                               connector->base.base.id,
3919                               drm_get_connector_name(&connector->base));
3920
3921                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3922                      "wrong connector dpms state\n");
3923                 WARN(connector->base.encoder != &encoder->base,
3924                      "active connector not linked to encoder\n");
3925                 WARN(!encoder->connectors_active,
3926                      "encoder->connectors_active not set\n");
3927
3928                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3929                 WARN(!encoder_enabled, "encoder not enabled\n");
3930                 if (WARN_ON(!encoder->base.crtc))
3931                         return;
3932
3933                 crtc = encoder->base.crtc;
3934
3935                 WARN(!crtc->enabled, "crtc not enabled\n");
3936                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3937                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3938                      "encoder active on the wrong pipe\n");
3939         }
3940 }
3941
3942 /* Even simpler default implementation, if there's really no special case to
3943  * consider. */
3944 void intel_connector_dpms(struct drm_connector *connector, int mode)
3945 {
3946         struct intel_encoder *encoder = intel_attached_encoder(connector);
3947
3948         /* All the simple cases only support two dpms states. */
3949         if (mode != DRM_MODE_DPMS_ON)
3950                 mode = DRM_MODE_DPMS_OFF;
3951
3952         if (mode == connector->dpms)
3953                 return;
3954
3955         connector->dpms = mode;
3956
3957         /* Only need to change hw state when actually enabled */
3958         if (encoder->base.crtc)
3959                 intel_encoder_dpms(encoder, mode);
3960         else
3961                 WARN_ON(encoder->connectors_active != false);
3962
3963         intel_modeset_check_state(connector->dev);
3964 }
3965
3966 /* Simple connector->get_hw_state implementation for encoders that support only
3967  * one connector and no cloning and hence the encoder state determines the state
3968  * of the connector. */
3969 bool intel_connector_get_hw_state(struct intel_connector *connector)
3970 {
3971         enum pipe pipe = 0;
3972         struct intel_encoder *encoder = connector->encoder;
3973
3974         return encoder->get_hw_state(encoder, &pipe);
3975 }
3976
3977 static void ironlake_fdi_compute_config(struct drm_device *dev,
3978                                         struct intel_crtc_config *pipe_config)
3979 {
3980         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3981         int target_clock, lane, link_bw;
3982
3983         /* FDI is a binary signal running at ~2.7GHz, encoding
3984          * each output octet as 10 bits. The actual frequency
3985          * is stored as a divider into a 100MHz clock, and the
3986          * mode pixel clock is stored in units of 1KHz.
3987          * Hence the bw of each lane in terms of the mode signal
3988          * is:
3989          */
3990         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3991
3992         if (pipe_config->pixel_target_clock)
3993                 target_clock = pipe_config->pixel_target_clock;
3994         else
3995                 target_clock = adjusted_mode->clock;
3996
3997         lane = ironlake_get_lanes_required(target_clock, link_bw,
3998                                            pipe_config->pipe_bpp);
3999
4000         pipe_config->fdi_lanes = lane;
4001
4002         if (pipe_config->pixel_multiplier > 1)
4003                 link_bw *= pipe_config->pixel_multiplier;
4004         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
4005                                link_bw, &pipe_config->fdi_m_n);
4006 }
4007
4008 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
4009                                       struct intel_crtc_config *pipe_config)
4010 {
4011         struct drm_device *dev = crtc->dev;
4012         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4013
4014         if (HAS_PCH_SPLIT(dev)) {
4015                 /* FDI link clock is fixed at 2.7G */
4016                 if (pipe_config->requested_mode.clock * 3
4017                     > IRONLAKE_FDI_FREQ * 4)
4018                         return false;
4019         }
4020
4021         /* All interlaced capable intel hw wants timings in frames. Note though
4022          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4023          * timings, so we need to be careful not to clobber these.*/
4024         if (!pipe_config->timings_set)
4025                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4026
4027         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4028          * with a hsync front porch of 0.
4029          */
4030         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4031                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4032                 return false;
4033
4034         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4035                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4036         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4037                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4038                  * for lvds. */
4039                 pipe_config->pipe_bpp = 8*3;
4040         }
4041
4042         if (pipe_config->has_pch_encoder)
4043                 ironlake_fdi_compute_config(dev, pipe_config);
4044
4045         return true;
4046 }
4047
4048 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4049 {
4050         return 400000; /* FIXME */
4051 }
4052
4053 static int i945_get_display_clock_speed(struct drm_device *dev)
4054 {
4055         return 400000;
4056 }
4057
4058 static int i915_get_display_clock_speed(struct drm_device *dev)
4059 {
4060         return 333000;
4061 }
4062
4063 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4064 {
4065         return 200000;
4066 }
4067
4068 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4069 {
4070         u16 gcfgc = 0;
4071
4072         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4073
4074         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4075                 return 133000;
4076         else {
4077                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4078                 case GC_DISPLAY_CLOCK_333_MHZ:
4079                         return 333000;
4080                 default:
4081                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4082                         return 190000;
4083                 }
4084         }
4085 }
4086
4087 static int i865_get_display_clock_speed(struct drm_device *dev)
4088 {
4089         return 266000;
4090 }
4091
4092 static int i855_get_display_clock_speed(struct drm_device *dev)
4093 {
4094         u16 hpllcc = 0;
4095         /* Assume that the hardware is in the high speed state.  This
4096          * should be the default.
4097          */
4098         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4099         case GC_CLOCK_133_200:
4100         case GC_CLOCK_100_200:
4101                 return 200000;
4102         case GC_CLOCK_166_250:
4103                 return 250000;
4104         case GC_CLOCK_100_133:
4105                 return 133000;
4106         }
4107
4108         /* Shouldn't happen */
4109         return 0;
4110 }
4111
4112 static int i830_get_display_clock_speed(struct drm_device *dev)
4113 {
4114         return 133000;
4115 }
4116
4117 static void
4118 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4119 {
4120         while (*num > 0xffffff || *den > 0xffffff) {
4121                 *num >>= 1;
4122                 *den >>= 1;
4123         }
4124 }
4125
4126 void
4127 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4128                        int pixel_clock, int link_clock,
4129                        struct intel_link_m_n *m_n)
4130 {
4131         m_n->tu = 64;
4132         m_n->gmch_m = bits_per_pixel * pixel_clock;
4133         m_n->gmch_n = link_clock * nlanes * 8;
4134         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4135         m_n->link_m = pixel_clock;
4136         m_n->link_n = link_clock;
4137         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4138 }
4139
4140 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4141 {
4142         if (i915_panel_use_ssc >= 0)
4143                 return i915_panel_use_ssc != 0;
4144         return dev_priv->lvds_use_ssc
4145                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4146 }
4147
4148 static int vlv_get_refclk(struct drm_crtc *crtc)
4149 {
4150         struct drm_device *dev = crtc->dev;
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         int refclk = 27000; /* for DP & HDMI */
4153
4154         return 100000; /* only one validated so far */
4155
4156         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4157                 refclk = 96000;
4158         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4159                 if (intel_panel_use_ssc(dev_priv))
4160                         refclk = 100000;
4161                 else
4162                         refclk = 96000;
4163         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4164                 refclk = 100000;
4165         }
4166
4167         return refclk;
4168 }
4169
4170 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4171 {
4172         struct drm_device *dev = crtc->dev;
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         int refclk;
4175
4176         if (IS_VALLEYVIEW(dev)) {
4177                 refclk = vlv_get_refclk(crtc);
4178         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4179             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4180                 refclk = dev_priv->lvds_ssc_freq * 1000;
4181                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4182                               refclk / 1000);
4183         } else if (!IS_GEN2(dev)) {
4184                 refclk = 96000;
4185         } else {
4186                 refclk = 48000;
4187         }
4188
4189         return refclk;
4190 }
4191
4192 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4193 {
4194         unsigned dotclock = crtc->config.adjusted_mode.clock;
4195         struct dpll *clock = &crtc->config.dpll;
4196
4197         /* SDVO TV has fixed PLL values depend on its clock range,
4198            this mirrors vbios setting. */
4199         if (dotclock >= 100000 && dotclock < 140500) {
4200                 clock->p1 = 2;
4201                 clock->p2 = 10;
4202                 clock->n = 3;
4203                 clock->m1 = 16;
4204                 clock->m2 = 8;
4205         } else if (dotclock >= 140500 && dotclock <= 200000) {
4206                 clock->p1 = 1;
4207                 clock->p2 = 10;
4208                 clock->n = 6;
4209                 clock->m1 = 12;
4210                 clock->m2 = 8;
4211         }
4212
4213         crtc->config.clock_set = true;
4214 }
4215
4216 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4217 {
4218         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4219 }
4220
4221 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4222 {
4223         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4224 }
4225
4226 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4227                                      intel_clock_t *reduced_clock)
4228 {
4229         struct drm_device *dev = crtc->base.dev;
4230         struct drm_i915_private *dev_priv = dev->dev_private;
4231         int pipe = crtc->pipe;
4232         u32 fp, fp2 = 0;
4233
4234         if (IS_PINEVIEW(dev)) {
4235                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4236                 if (reduced_clock)
4237                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4238         } else {
4239                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4240                 if (reduced_clock)
4241                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4242         }
4243
4244         I915_WRITE(FP0(pipe), fp);
4245
4246         crtc->lowfreq_avail = false;
4247         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4248             reduced_clock && i915_powersave) {
4249                 I915_WRITE(FP1(pipe), fp2);
4250                 crtc->lowfreq_avail = true;
4251         } else {
4252                 I915_WRITE(FP1(pipe), fp);
4253         }
4254 }
4255
4256 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4257 {
4258         u32 reg_val;
4259
4260         /*
4261          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4262          * and set it to a reasonable value instead.
4263          */
4264         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4265         reg_val &= 0xffffff00;
4266         reg_val |= 0x00000030;
4267         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4268
4269         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4270         reg_val &= 0x8cffffff;
4271         reg_val = 0x8c000000;
4272         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4273
4274         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4275         reg_val &= 0xffffff00;
4276         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4277
4278         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4279         reg_val &= 0x00ffffff;
4280         reg_val |= 0xb0000000;
4281         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4282 }
4283
4284 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4285 {
4286         if (crtc->config.has_pch_encoder)
4287                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4288         else
4289                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4290 }
4291
4292 static void vlv_update_pll(struct intel_crtc *crtc)
4293 {
4294         struct drm_device *dev = crtc->base.dev;
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         struct drm_display_mode *adjusted_mode =
4297                 &crtc->config.adjusted_mode;
4298         struct intel_encoder *encoder;
4299         int pipe = crtc->pipe;
4300         u32 dpll, mdiv;
4301         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4302         bool is_hdmi;
4303         u32 coreclk, reg_val, dpll_md;
4304
4305         mutex_lock(&dev_priv->dpio_lock);
4306
4307         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4308
4309         bestn = crtc->config.dpll.n;
4310         bestm1 = crtc->config.dpll.m1;
4311         bestm2 = crtc->config.dpll.m2;
4312         bestp1 = crtc->config.dpll.p1;
4313         bestp2 = crtc->config.dpll.p2;
4314
4315         /* See eDP HDMI DPIO driver vbios notes doc */
4316
4317         /* PLL B needs special handling */
4318         if (pipe)
4319                 vlv_pllb_recal_opamp(dev_priv);
4320
4321         /* Set up Tx target for periodic Rcomp update */
4322         intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4323
4324         /* Disable target IRef on PLL */
4325         reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4326         reg_val &= 0x00ffffff;
4327         intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4328
4329         /* Disable fast lock */
4330         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4331
4332         /* Set idtafcrecal before PLL is enabled */
4333         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4334         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4335         mdiv |= ((bestn << DPIO_N_SHIFT));
4336         mdiv |= (1 << DPIO_K_SHIFT);
4337         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
4338             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4339             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4340                 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4341         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4342
4343         mdiv |= DPIO_ENABLE_CALIBRATION;
4344         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4345
4346         /* Set HBR and RBR LPF coefficients */
4347         if (adjusted_mode->clock == 162000 ||
4348             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4349                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4350                                  0x005f0021);
4351         else
4352                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4353                                  0x00d0000f);
4354
4355         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4356             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4357                 /* Use SSC source */
4358                 if (!pipe)
4359                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4360                                          0x0df40000);
4361                 else
4362                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4363                                          0x0df70000);
4364         } else { /* HDMI or VGA */
4365                 /* Use bend source */
4366                 if (!pipe)
4367                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4368                                          0x0df70000);
4369                 else
4370                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4371                                          0x0df40000);
4372         }
4373
4374         coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4375         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4376         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4377             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4378                 coreclk |= 0x01000000;
4379         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4380
4381         intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4382
4383         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4384                 if (encoder->pre_pll_enable)
4385                         encoder->pre_pll_enable(encoder);
4386
4387         /* Enable DPIO clock input */
4388         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4389                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4390         if (pipe)
4391                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4392
4393         dpll |= DPLL_VCO_ENABLE;
4394         I915_WRITE(DPLL(pipe), dpll);
4395         POSTING_READ(DPLL(pipe));
4396         udelay(150);
4397
4398         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4399                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4400
4401         dpll_md = 0;
4402         if (crtc->config.pixel_multiplier > 1) {
4403                 dpll_md = (crtc->config.pixel_multiplier - 1)
4404                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4405         }
4406         I915_WRITE(DPLL_MD(pipe), dpll_md);
4407         POSTING_READ(DPLL_MD(pipe));
4408
4409         if (crtc->config.has_dp_encoder)
4410                 intel_dp_set_m_n(crtc);
4411
4412         mutex_unlock(&dev_priv->dpio_lock);
4413 }
4414
4415 static void i9xx_update_pll(struct intel_crtc *crtc,
4416                             intel_clock_t *reduced_clock,
4417                             int num_connectors)
4418 {
4419         struct drm_device *dev = crtc->base.dev;
4420         struct drm_i915_private *dev_priv = dev->dev_private;
4421         struct intel_encoder *encoder;
4422         int pipe = crtc->pipe;
4423         u32 dpll;
4424         bool is_sdvo;
4425         struct dpll *clock = &crtc->config.dpll;
4426
4427         i9xx_update_pll_dividers(crtc, reduced_clock);
4428
4429         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4430                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4431
4432         dpll = DPLL_VGA_MODE_DIS;
4433
4434         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4435                 dpll |= DPLLB_MODE_LVDS;
4436         else
4437                 dpll |= DPLLB_MODE_DAC_SERIAL;
4438
4439         if ((crtc->config.pixel_multiplier > 1) &&
4440             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4441                 dpll |= (crtc->config.pixel_multiplier - 1)
4442                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4443         }
4444
4445         if (is_sdvo)
4446                 dpll |= DPLL_DVO_HIGH_SPEED;
4447
4448         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4449                 dpll |= DPLL_DVO_HIGH_SPEED;
4450
4451         /* compute bitmask from p1 value */
4452         if (IS_PINEVIEW(dev))
4453                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4454         else {
4455                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4456                 if (IS_G4X(dev) && reduced_clock)
4457                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4458         }
4459         switch (clock->p2) {
4460         case 5:
4461                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4462                 break;
4463         case 7:
4464                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4465                 break;
4466         case 10:
4467                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4468                 break;
4469         case 14:
4470                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4471                 break;
4472         }
4473         if (INTEL_INFO(dev)->gen >= 4)
4474                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4475
4476         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4477                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4478         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4479                 /* XXX: just matching BIOS for now */
4480                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4481                 dpll |= 3;
4482         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4483                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4484                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4485         else
4486                 dpll |= PLL_REF_INPUT_DREFCLK;
4487
4488         dpll |= DPLL_VCO_ENABLE;
4489         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4490         POSTING_READ(DPLL(pipe));
4491         udelay(150);
4492
4493         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4494                 if (encoder->pre_pll_enable)
4495                         encoder->pre_pll_enable(encoder);
4496
4497         if (crtc->config.has_dp_encoder)
4498                 intel_dp_set_m_n(crtc);
4499
4500         I915_WRITE(DPLL(pipe), dpll);
4501
4502         /* Wait for the clocks to stabilize. */
4503         POSTING_READ(DPLL(pipe));
4504         udelay(150);
4505
4506         if (INTEL_INFO(dev)->gen >= 4) {
4507                 u32 dpll_md = 0;
4508                 if (crtc->config.pixel_multiplier > 1) {
4509                         dpll_md = (crtc->config.pixel_multiplier - 1)
4510                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4511                 }
4512                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4513         } else {
4514                 /* The pixel multiplier can only be updated once the
4515                  * DPLL is enabled and the clocks are stable.
4516                  *
4517                  * So write it again.
4518                  */
4519                 I915_WRITE(DPLL(pipe), dpll);
4520         }
4521 }
4522
4523 static void i8xx_update_pll(struct intel_crtc *crtc,
4524                             struct drm_display_mode *adjusted_mode,
4525                             intel_clock_t *reduced_clock,
4526                             int num_connectors)
4527 {
4528         struct drm_device *dev = crtc->base.dev;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         struct intel_encoder *encoder;
4531         int pipe = crtc->pipe;
4532         u32 dpll;
4533         struct dpll *clock = &crtc->config.dpll;
4534
4535         i9xx_update_pll_dividers(crtc, reduced_clock);
4536
4537         dpll = DPLL_VGA_MODE_DIS;
4538
4539         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4540                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4541         } else {
4542                 if (clock->p1 == 2)
4543                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4544                 else
4545                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4546                 if (clock->p2 == 4)
4547                         dpll |= PLL_P2_DIVIDE_BY_4;
4548         }
4549
4550         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4551                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4552                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4553         else
4554                 dpll |= PLL_REF_INPUT_DREFCLK;
4555
4556         dpll |= DPLL_VCO_ENABLE;
4557         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4558         POSTING_READ(DPLL(pipe));
4559         udelay(150);
4560
4561         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4562                 if (encoder->pre_pll_enable)
4563                         encoder->pre_pll_enable(encoder);
4564
4565         I915_WRITE(DPLL(pipe), dpll);
4566
4567         /* Wait for the clocks to stabilize. */
4568         POSTING_READ(DPLL(pipe));
4569         udelay(150);
4570
4571         /* The pixel multiplier can only be updated once the
4572          * DPLL is enabled and the clocks are stable.
4573          *
4574          * So write it again.
4575          */
4576         I915_WRITE(DPLL(pipe), dpll);
4577 }
4578
4579 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4580                                    struct drm_display_mode *mode,
4581                                    struct drm_display_mode *adjusted_mode)
4582 {
4583         struct drm_device *dev = intel_crtc->base.dev;
4584         struct drm_i915_private *dev_priv = dev->dev_private;
4585         enum pipe pipe = intel_crtc->pipe;
4586         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4587         uint32_t vsyncshift;
4588
4589         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4590                 /* the chip adds 2 halflines automatically */
4591                 adjusted_mode->crtc_vtotal -= 1;
4592                 adjusted_mode->crtc_vblank_end -= 1;
4593                 vsyncshift = adjusted_mode->crtc_hsync_start
4594                              - adjusted_mode->crtc_htotal / 2;
4595         } else {
4596                 vsyncshift = 0;
4597         }
4598
4599         if (INTEL_INFO(dev)->gen > 3)
4600                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4601
4602         I915_WRITE(HTOTAL(cpu_transcoder),
4603                    (adjusted_mode->crtc_hdisplay - 1) |
4604                    ((adjusted_mode->crtc_htotal - 1) << 16));
4605         I915_WRITE(HBLANK(cpu_transcoder),
4606                    (adjusted_mode->crtc_hblank_start - 1) |
4607                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4608         I915_WRITE(HSYNC(cpu_transcoder),
4609                    (adjusted_mode->crtc_hsync_start - 1) |
4610                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4611
4612         I915_WRITE(VTOTAL(cpu_transcoder),
4613                    (adjusted_mode->crtc_vdisplay - 1) |
4614                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4615         I915_WRITE(VBLANK(cpu_transcoder),
4616                    (adjusted_mode->crtc_vblank_start - 1) |
4617                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4618         I915_WRITE(VSYNC(cpu_transcoder),
4619                    (adjusted_mode->crtc_vsync_start - 1) |
4620                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4621
4622         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4623          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4624          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4625          * bits. */
4626         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4627             (pipe == PIPE_B || pipe == PIPE_C))
4628                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4629
4630         /* pipesrc controls the size that is scaled from, which should
4631          * always be the user's requested size.
4632          */
4633         I915_WRITE(PIPESRC(pipe),
4634                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4635 }
4636
4637 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4638 {
4639         struct drm_device *dev = intel_crtc->base.dev;
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         uint32_t pipeconf;
4642
4643         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4644
4645         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4646                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4647                  * core speed.
4648                  *
4649                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4650                  * pipe == 0 check?
4651                  */
4652                 if (intel_crtc->config.requested_mode.clock >
4653                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4654                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4655                 else
4656                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4657         }
4658
4659         /* only g4x and later have fancy bpc/dither controls */
4660         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4661                 pipeconf &= ~(PIPECONF_BPC_MASK |
4662                               PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4663
4664                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4665                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4666                         pipeconf |= PIPECONF_DITHER_EN |
4667                                     PIPECONF_DITHER_TYPE_SP;
4668
4669                 switch (intel_crtc->config.pipe_bpp) {
4670                 case 18:
4671                         pipeconf |= PIPECONF_6BPC;
4672                         break;
4673                 case 24:
4674                         pipeconf |= PIPECONF_8BPC;
4675                         break;
4676                 case 30:
4677                         pipeconf |= PIPECONF_10BPC;
4678                         break;
4679                 default:
4680                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4681                         BUG();
4682                 }
4683         }
4684
4685         if (HAS_PIPE_CXSR(dev)) {
4686                 if (intel_crtc->lowfreq_avail) {
4687                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4688                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4689                 } else {
4690                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4691                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4692                 }
4693         }
4694
4695         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4696         if (!IS_GEN2(dev) &&
4697             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4698                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4699         else
4700                 pipeconf |= PIPECONF_PROGRESSIVE;
4701
4702         if (IS_VALLEYVIEW(dev)) {
4703                 if (intel_crtc->config.limited_color_range)
4704                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4705                 else
4706                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4707         }
4708
4709         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4710         POSTING_READ(PIPECONF(intel_crtc->pipe));
4711 }
4712
4713 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4714                               int x, int y,
4715                               struct drm_framebuffer *fb)
4716 {
4717         struct drm_device *dev = crtc->dev;
4718         struct drm_i915_private *dev_priv = dev->dev_private;
4719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4720         struct drm_display_mode *adjusted_mode =
4721                 &intel_crtc->config.adjusted_mode;
4722         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4723         int pipe = intel_crtc->pipe;
4724         int plane = intel_crtc->plane;
4725         int refclk, num_connectors = 0;
4726         intel_clock_t clock, reduced_clock;
4727         u32 dspcntr;
4728         bool ok, has_reduced_clock = false, is_sdvo = false;
4729         bool is_lvds = false, is_tv = false;
4730         struct intel_encoder *encoder;
4731         const intel_limit_t *limit;
4732         int ret;
4733
4734         for_each_encoder_on_crtc(dev, crtc, encoder) {
4735                 switch (encoder->type) {
4736                 case INTEL_OUTPUT_LVDS:
4737                         is_lvds = true;
4738                         break;
4739                 case INTEL_OUTPUT_SDVO:
4740                 case INTEL_OUTPUT_HDMI:
4741                         is_sdvo = true;
4742                         if (encoder->needs_tv_clock)
4743                                 is_tv = true;
4744                         break;
4745                 case INTEL_OUTPUT_TVOUT:
4746                         is_tv = true;
4747                         break;
4748                 }
4749
4750                 num_connectors++;
4751         }
4752
4753         refclk = i9xx_get_refclk(crtc, num_connectors);
4754
4755         /*
4756          * Returns a set of divisors for the desired target clock with the given
4757          * refclk, or FALSE.  The returned values represent the clock equation:
4758          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4759          */
4760         limit = intel_limit(crtc, refclk);
4761         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4762                              &clock);
4763         if (!ok) {
4764                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4765                 return -EINVAL;
4766         }
4767
4768         /* Ensure that the cursor is valid for the new mode before changing... */
4769         intel_crtc_update_cursor(crtc, true);
4770
4771         if (is_lvds && dev_priv->lvds_downclock_avail) {
4772                 /*
4773                  * Ensure we match the reduced clock's P to the target clock.
4774                  * If the clocks don't match, we can't switch the display clock
4775                  * by using the FP0/FP1. In such case we will disable the LVDS
4776                  * downclock feature.
4777                 */
4778                 has_reduced_clock = limit->find_pll(limit, crtc,
4779                                                     dev_priv->lvds_downclock,
4780                                                     refclk,
4781                                                     &clock,
4782                                                     &reduced_clock);
4783         }
4784         /* Compat-code for transition, will disappear. */
4785         if (!intel_crtc->config.clock_set) {
4786                 intel_crtc->config.dpll.n = clock.n;
4787                 intel_crtc->config.dpll.m1 = clock.m1;
4788                 intel_crtc->config.dpll.m2 = clock.m2;
4789                 intel_crtc->config.dpll.p1 = clock.p1;
4790                 intel_crtc->config.dpll.p2 = clock.p2;
4791         }
4792
4793         if (is_sdvo && is_tv)
4794                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4795
4796         if (IS_GEN2(dev))
4797                 i8xx_update_pll(intel_crtc, adjusted_mode,
4798                                 has_reduced_clock ? &reduced_clock : NULL,
4799                                 num_connectors);
4800         else if (IS_VALLEYVIEW(dev))
4801                 vlv_update_pll(intel_crtc);
4802         else
4803                 i9xx_update_pll(intel_crtc,
4804                                 has_reduced_clock ? &reduced_clock : NULL,
4805                                 num_connectors);
4806
4807         /* Set up the display plane register */
4808         dspcntr = DISPPLANE_GAMMA_ENABLE;
4809
4810         if (!IS_VALLEYVIEW(dev)) {
4811                 if (pipe == 0)
4812                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4813                 else
4814                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4815         }
4816
4817         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4818         drm_mode_debug_printmodeline(mode);
4819
4820         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4821
4822         /* pipesrc and dspsize control the size that is scaled from,
4823          * which should always be the user's requested size.
4824          */
4825         I915_WRITE(DSPSIZE(plane),
4826                    ((mode->vdisplay - 1) << 16) |
4827                    (mode->hdisplay - 1));
4828         I915_WRITE(DSPPOS(plane), 0);
4829
4830         i9xx_set_pipeconf(intel_crtc);
4831
4832         I915_WRITE(DSPCNTR(plane), dspcntr);
4833         POSTING_READ(DSPCNTR(plane));
4834
4835         ret = intel_pipe_set_base(crtc, x, y, fb);
4836
4837         intel_update_watermarks(dev);
4838
4839         return ret;
4840 }
4841
4842 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4843                                  struct intel_crtc_config *pipe_config)
4844 {
4845         struct drm_device *dev = crtc->base.dev;
4846         struct drm_i915_private *dev_priv = dev->dev_private;
4847         uint32_t tmp;
4848
4849         tmp = I915_READ(PIPECONF(crtc->pipe));
4850         if (!(tmp & PIPECONF_ENABLE))
4851                 return false;
4852
4853         return true;
4854 }
4855
4856 static void ironlake_init_pch_refclk(struct drm_device *dev)
4857 {
4858         struct drm_i915_private *dev_priv = dev->dev_private;
4859         struct drm_mode_config *mode_config = &dev->mode_config;
4860         struct intel_encoder *encoder;
4861         u32 val, final;
4862         bool has_lvds = false;
4863         bool has_cpu_edp = false;
4864         bool has_pch_edp = false;
4865         bool has_panel = false;
4866         bool has_ck505 = false;
4867         bool can_ssc = false;
4868
4869         /* We need to take the global config into account */
4870         list_for_each_entry(encoder, &mode_config->encoder_list,
4871                             base.head) {
4872                 switch (encoder->type) {
4873                 case INTEL_OUTPUT_LVDS:
4874                         has_panel = true;
4875                         has_lvds = true;
4876                         break;
4877                 case INTEL_OUTPUT_EDP:
4878                         has_panel = true;
4879                         if (intel_encoder_is_pch_edp(&encoder->base))
4880                                 has_pch_edp = true;
4881                         else
4882                                 has_cpu_edp = true;
4883                         break;
4884                 }
4885         }
4886
4887         if (HAS_PCH_IBX(dev)) {
4888                 has_ck505 = dev_priv->display_clock_mode;
4889                 can_ssc = has_ck505;
4890         } else {
4891                 has_ck505 = false;
4892                 can_ssc = true;
4893         }
4894
4895         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4896                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4897                       has_ck505);
4898
4899         /* Ironlake: try to setup display ref clock before DPLL
4900          * enabling. This is only under driver's control after
4901          * PCH B stepping, previous chipset stepping should be
4902          * ignoring this setting.
4903          */
4904         val = I915_READ(PCH_DREF_CONTROL);
4905
4906         /* As we must carefully and slowly disable/enable each source in turn,
4907          * compute the final state we want first and check if we need to
4908          * make any changes at all.
4909          */
4910         final = val;
4911         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4912         if (has_ck505)
4913                 final |= DREF_NONSPREAD_CK505_ENABLE;
4914         else
4915                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4916
4917         final &= ~DREF_SSC_SOURCE_MASK;
4918         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4919         final &= ~DREF_SSC1_ENABLE;
4920
4921         if (has_panel) {
4922                 final |= DREF_SSC_SOURCE_ENABLE;
4923
4924                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4925                         final |= DREF_SSC1_ENABLE;
4926
4927                 if (has_cpu_edp) {
4928                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4929                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4930                         else
4931                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4932                 } else
4933                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4934         } else {
4935                 final |= DREF_SSC_SOURCE_DISABLE;
4936                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4937         }
4938
4939         if (final == val)
4940                 return;
4941
4942         /* Always enable nonspread source */
4943         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4944
4945         if (has_ck505)
4946                 val |= DREF_NONSPREAD_CK505_ENABLE;
4947         else
4948                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4949
4950         if (has_panel) {
4951                 val &= ~DREF_SSC_SOURCE_MASK;
4952                 val |= DREF_SSC_SOURCE_ENABLE;
4953
4954                 /* SSC must be turned on before enabling the CPU output  */
4955                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4956                         DRM_DEBUG_KMS("Using SSC on panel\n");
4957                         val |= DREF_SSC1_ENABLE;
4958                 } else
4959                         val &= ~DREF_SSC1_ENABLE;
4960
4961                 /* Get SSC going before enabling the outputs */
4962                 I915_WRITE(PCH_DREF_CONTROL, val);
4963                 POSTING_READ(PCH_DREF_CONTROL);
4964                 udelay(200);
4965
4966                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4967
4968                 /* Enable CPU source on CPU attached eDP */
4969                 if (has_cpu_edp) {
4970                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4971                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4972                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4973                         }
4974                         else
4975                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4976                 } else
4977                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4978
4979                 I915_WRITE(PCH_DREF_CONTROL, val);
4980                 POSTING_READ(PCH_DREF_CONTROL);
4981                 udelay(200);
4982         } else {
4983                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4984
4985                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4986
4987                 /* Turn off CPU output */
4988                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4989
4990                 I915_WRITE(PCH_DREF_CONTROL, val);
4991                 POSTING_READ(PCH_DREF_CONTROL);
4992                 udelay(200);
4993
4994                 /* Turn off the SSC source */
4995                 val &= ~DREF_SSC_SOURCE_MASK;
4996                 val |= DREF_SSC_SOURCE_DISABLE;
4997
4998                 /* Turn off SSC1 */
4999                 val &= ~DREF_SSC1_ENABLE;
5000
5001                 I915_WRITE(PCH_DREF_CONTROL, val);
5002                 POSTING_READ(PCH_DREF_CONTROL);
5003                 udelay(200);
5004         }
5005
5006         BUG_ON(val != final);
5007 }
5008
5009 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5010 static void lpt_init_pch_refclk(struct drm_device *dev)
5011 {
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013         struct drm_mode_config *mode_config = &dev->mode_config;
5014         struct intel_encoder *encoder;
5015         bool has_vga = false;
5016         bool is_sdv = false;
5017         u32 tmp;
5018
5019         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5020                 switch (encoder->type) {
5021                 case INTEL_OUTPUT_ANALOG:
5022                         has_vga = true;
5023                         break;
5024                 }
5025         }
5026
5027         if (!has_vga)
5028                 return;
5029
5030         mutex_lock(&dev_priv->dpio_lock);
5031
5032         /* XXX: Rip out SDV support once Haswell ships for real. */
5033         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5034                 is_sdv = true;
5035
5036         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5037         tmp &= ~SBI_SSCCTL_DISABLE;
5038         tmp |= SBI_SSCCTL_PATHALT;
5039         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5040
5041         udelay(24);
5042
5043         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5044         tmp &= ~SBI_SSCCTL_PATHALT;
5045         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5046
5047         if (!is_sdv) {
5048                 tmp = I915_READ(SOUTH_CHICKEN2);
5049                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5050                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5051
5052                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5053                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5054                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5055
5056                 tmp = I915_READ(SOUTH_CHICKEN2);
5057                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5058                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5059
5060                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5061                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5062                                        100))
5063                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5064         }
5065
5066         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5067         tmp &= ~(0xFF << 24);
5068         tmp |= (0x12 << 24);
5069         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5070
5071         if (is_sdv) {
5072                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5073                 tmp |= 0x7FFF;
5074                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5075         }
5076
5077         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5078         tmp |= (1 << 11);
5079         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5080
5081         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5082         tmp |= (1 << 11);
5083         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5084
5085         if (is_sdv) {
5086                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5087                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5088                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5089
5090                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5091                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5092                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5093
5094                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5095                 tmp |= (0x3F << 8);
5096                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5097
5098                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5099                 tmp |= (0x3F << 8);
5100                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5101         }
5102
5103         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5104         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5105         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5106
5107         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5108         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5109         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5110
5111         if (!is_sdv) {
5112                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5113                 tmp &= ~(7 << 13);
5114                 tmp |= (5 << 13);
5115                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5116
5117                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5118                 tmp &= ~(7 << 13);
5119                 tmp |= (5 << 13);
5120                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5121         }
5122
5123         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5124         tmp &= ~0xFF;
5125         tmp |= 0x1C;
5126         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5127
5128         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5129         tmp &= ~0xFF;
5130         tmp |= 0x1C;
5131         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5132
5133         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5134         tmp &= ~(0xFF << 16);
5135         tmp |= (0x1C << 16);
5136         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5137
5138         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5139         tmp &= ~(0xFF << 16);
5140         tmp |= (0x1C << 16);
5141         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5142
5143         if (!is_sdv) {
5144                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5145                 tmp |= (1 << 27);
5146                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5147
5148                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5149                 tmp |= (1 << 27);
5150                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5151
5152                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5153                 tmp &= ~(0xF << 28);
5154                 tmp |= (4 << 28);
5155                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5156
5157                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5158                 tmp &= ~(0xF << 28);
5159                 tmp |= (4 << 28);
5160                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5161         }
5162
5163         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5164         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5165         tmp |= SBI_DBUFF0_ENABLE;
5166         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5167
5168         mutex_unlock(&dev_priv->dpio_lock);
5169 }
5170
5171 /*
5172  * Initialize reference clocks when the driver loads
5173  */
5174 void intel_init_pch_refclk(struct drm_device *dev)
5175 {
5176         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5177                 ironlake_init_pch_refclk(dev);
5178         else if (HAS_PCH_LPT(dev))
5179                 lpt_init_pch_refclk(dev);
5180 }
5181
5182 static int ironlake_get_refclk(struct drm_crtc *crtc)
5183 {
5184         struct drm_device *dev = crtc->dev;
5185         struct drm_i915_private *dev_priv = dev->dev_private;
5186         struct intel_encoder *encoder;
5187         struct intel_encoder *edp_encoder = NULL;
5188         int num_connectors = 0;
5189         bool is_lvds = false;
5190
5191         for_each_encoder_on_crtc(dev, crtc, encoder) {
5192                 switch (encoder->type) {
5193                 case INTEL_OUTPUT_LVDS:
5194                         is_lvds = true;
5195                         break;
5196                 case INTEL_OUTPUT_EDP:
5197                         edp_encoder = encoder;
5198                         break;
5199                 }
5200                 num_connectors++;
5201         }
5202
5203         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5204                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5205                               dev_priv->lvds_ssc_freq);
5206                 return dev_priv->lvds_ssc_freq * 1000;
5207         }
5208
5209         return 120000;
5210 }
5211
5212 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5213 {
5214         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5216         int pipe = intel_crtc->pipe;
5217         uint32_t val;
5218
5219         val = I915_READ(PIPECONF(pipe));
5220
5221         val &= ~PIPECONF_BPC_MASK;
5222         switch (intel_crtc->config.pipe_bpp) {
5223         case 18:
5224                 val |= PIPECONF_6BPC;
5225                 break;
5226         case 24:
5227                 val |= PIPECONF_8BPC;
5228                 break;
5229         case 30:
5230                 val |= PIPECONF_10BPC;
5231                 break;
5232         case 36:
5233                 val |= PIPECONF_12BPC;
5234                 break;
5235         default:
5236                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5237                 BUG();
5238         }
5239
5240         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5241         if (intel_crtc->config.dither)
5242                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5243
5244         val &= ~PIPECONF_INTERLACE_MASK;
5245         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5246                 val |= PIPECONF_INTERLACED_ILK;
5247         else
5248                 val |= PIPECONF_PROGRESSIVE;
5249
5250         if (intel_crtc->config.limited_color_range)
5251                 val |= PIPECONF_COLOR_RANGE_SELECT;
5252         else
5253                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5254
5255         I915_WRITE(PIPECONF(pipe), val);
5256         POSTING_READ(PIPECONF(pipe));
5257 }
5258
5259 /*
5260  * Set up the pipe CSC unit.
5261  *
5262  * Currently only full range RGB to limited range RGB conversion
5263  * is supported, but eventually this should handle various
5264  * RGB<->YCbCr scenarios as well.
5265  */
5266 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5267 {
5268         struct drm_device *dev = crtc->dev;
5269         struct drm_i915_private *dev_priv = dev->dev_private;
5270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5271         int pipe = intel_crtc->pipe;
5272         uint16_t coeff = 0x7800; /* 1.0 */
5273
5274         /*
5275          * TODO: Check what kind of values actually come out of the pipe
5276          * with these coeff/postoff values and adjust to get the best
5277          * accuracy. Perhaps we even need to take the bpc value into
5278          * consideration.
5279          */
5280
5281         if (intel_crtc->config.limited_color_range)
5282                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5283
5284         /*
5285          * GY/GU and RY/RU should be the other way around according
5286          * to BSpec, but reality doesn't agree. Just set them up in
5287          * a way that results in the correct picture.
5288          */
5289         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5290         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5291
5292         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5293         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5294
5295         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5296         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5297
5298         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5299         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5300         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5301
5302         if (INTEL_INFO(dev)->gen > 6) {
5303                 uint16_t postoff = 0;
5304
5305                 if (intel_crtc->config.limited_color_range)
5306                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5307
5308                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5309                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5310                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5311
5312                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5313         } else {
5314                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5315
5316                 if (intel_crtc->config.limited_color_range)
5317                         mode |= CSC_BLACK_SCREEN_OFFSET;
5318
5319                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5320         }
5321 }
5322
5323 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5324 {
5325         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5327         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5328         uint32_t val;
5329
5330         val = I915_READ(PIPECONF(cpu_transcoder));
5331
5332         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5333         if (intel_crtc->config.dither)
5334                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5335
5336         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5337         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5338                 val |= PIPECONF_INTERLACED_ILK;
5339         else
5340                 val |= PIPECONF_PROGRESSIVE;
5341
5342         I915_WRITE(PIPECONF(cpu_transcoder), val);
5343         POSTING_READ(PIPECONF(cpu_transcoder));
5344 }
5345
5346 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5347                                     struct drm_display_mode *adjusted_mode,
5348                                     intel_clock_t *clock,
5349                                     bool *has_reduced_clock,
5350                                     intel_clock_t *reduced_clock)
5351 {
5352         struct drm_device *dev = crtc->dev;
5353         struct drm_i915_private *dev_priv = dev->dev_private;
5354         struct intel_encoder *intel_encoder;
5355         int refclk;
5356         const intel_limit_t *limit;
5357         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5358
5359         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5360                 switch (intel_encoder->type) {
5361                 case INTEL_OUTPUT_LVDS:
5362                         is_lvds = true;
5363                         break;
5364                 case INTEL_OUTPUT_SDVO:
5365                 case INTEL_OUTPUT_HDMI:
5366                         is_sdvo = true;
5367                         if (intel_encoder->needs_tv_clock)
5368                                 is_tv = true;
5369                         break;
5370                 case INTEL_OUTPUT_TVOUT:
5371                         is_tv = true;
5372                         break;
5373                 }
5374         }
5375
5376         refclk = ironlake_get_refclk(crtc);
5377
5378         /*
5379          * Returns a set of divisors for the desired target clock with the given
5380          * refclk, or FALSE.  The returned values represent the clock equation:
5381          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5382          */
5383         limit = intel_limit(crtc, refclk);
5384         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5385                               clock);
5386         if (!ret)
5387                 return false;
5388
5389         if (is_lvds && dev_priv->lvds_downclock_avail) {
5390                 /*
5391                  * Ensure we match the reduced clock's P to the target clock.
5392                  * If the clocks don't match, we can't switch the display clock
5393                  * by using the FP0/FP1. In such case we will disable the LVDS
5394                  * downclock feature.
5395                 */
5396                 *has_reduced_clock = limit->find_pll(limit, crtc,
5397                                                      dev_priv->lvds_downclock,
5398                                                      refclk,
5399                                                      clock,
5400                                                      reduced_clock);
5401         }
5402
5403         if (is_sdvo && is_tv)
5404                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5405
5406         return true;
5407 }
5408
5409 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5410 {
5411         struct drm_i915_private *dev_priv = dev->dev_private;
5412         uint32_t temp;
5413
5414         temp = I915_READ(SOUTH_CHICKEN1);
5415         if (temp & FDI_BC_BIFURCATION_SELECT)
5416                 return;
5417
5418         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5419         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5420
5421         temp |= FDI_BC_BIFURCATION_SELECT;
5422         DRM_DEBUG_KMS("enabling fdi C rx\n");
5423         I915_WRITE(SOUTH_CHICKEN1, temp);
5424         POSTING_READ(SOUTH_CHICKEN1);
5425 }
5426
5427 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5428 {
5429         struct drm_device *dev = intel_crtc->base.dev;
5430         struct drm_i915_private *dev_priv = dev->dev_private;
5431         struct intel_crtc *pipe_B_crtc =
5432                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5433
5434         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5435                       pipe_name(intel_crtc->pipe), intel_crtc->config.fdi_lanes);
5436         if (intel_crtc->config.fdi_lanes > 4) {
5437                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5438                               pipe_name(intel_crtc->pipe), intel_crtc->config.fdi_lanes);
5439                 /* Clamp lanes to avoid programming the hw with bogus values. */
5440                 intel_crtc->config.fdi_lanes = 4;
5441
5442                 return false;
5443         }
5444
5445         if (INTEL_INFO(dev)->num_pipes == 2)
5446                 return true;
5447
5448         switch (intel_crtc->pipe) {
5449         case PIPE_A:
5450                 return true;
5451         case PIPE_B:
5452                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5453                     intel_crtc->config.fdi_lanes > 2) {
5454                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5455                                       pipe_name(intel_crtc->pipe), intel_crtc->config.fdi_lanes);
5456                         /* Clamp lanes to avoid programming the hw with bogus values. */
5457                         intel_crtc->config.fdi_lanes = 2;
5458
5459                         return false;
5460                 }
5461
5462                 return true;
5463         case PIPE_C:
5464                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->config.fdi_lanes <= 2) {
5465                         if (intel_crtc->config.fdi_lanes > 2) {
5466                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5467                                               pipe_name(intel_crtc->pipe), intel_crtc->config.fdi_lanes);
5468                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5469                                 intel_crtc->config.fdi_lanes = 2;
5470
5471                                 return false;
5472                         }
5473                 } else {
5474                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5475                         return false;
5476                 }
5477
5478                 return true;
5479         default:
5480                 BUG();
5481         }
5482 }
5483
5484 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5485 {
5486         struct drm_device *dev = intel_crtc->base.dev;
5487         struct drm_i915_private *dev_priv = dev->dev_private;
5488
5489         switch (intel_crtc->pipe) {
5490         case PIPE_A:
5491                 break;
5492         case PIPE_B:
5493                 if (intel_crtc->config.fdi_lanes > 2)
5494                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5495                 else
5496                         cpt_enable_fdi_bc_bifurcation(dev);
5497
5498                 break;
5499         case PIPE_C:
5500                 cpt_enable_fdi_bc_bifurcation(dev);
5501
5502                 break;
5503         default:
5504                 BUG();
5505         }
5506 }
5507
5508 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5509 {
5510         /*
5511          * Account for spread spectrum to avoid
5512          * oversubscribing the link. Max center spread
5513          * is 2.5%; use 5% for safety's sake.
5514          */
5515         u32 bps = target_clock * bpp * 21 / 20;
5516         return bps / (link_bw * 8) + 1;
5517 }
5518
5519 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5520                                   struct intel_link_m_n *m_n)
5521 {
5522         struct drm_device *dev = crtc->base.dev;
5523         struct drm_i915_private *dev_priv = dev->dev_private;
5524         int pipe = crtc->pipe;
5525
5526         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5527         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5528         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5529         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5530 }
5531
5532 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5533                                   struct intel_link_m_n *m_n)
5534 {
5535         struct drm_device *dev = crtc->base.dev;
5536         struct drm_i915_private *dev_priv = dev->dev_private;
5537         int pipe = crtc->pipe;
5538         enum transcoder transcoder = crtc->config.cpu_transcoder;
5539
5540         if (INTEL_INFO(dev)->gen >= 5) {
5541                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5542                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5543                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5544                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5545         } else {
5546                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5547                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5548                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5549                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5550         }
5551 }
5552
5553 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5554 {
5555         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5556 }
5557
5558 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5559                                       u32 *fp,
5560                                       intel_clock_t *reduced_clock, u32 *fp2)
5561 {
5562         struct drm_crtc *crtc = &intel_crtc->base;
5563         struct drm_device *dev = crtc->dev;
5564         struct drm_i915_private *dev_priv = dev->dev_private;
5565         struct intel_encoder *intel_encoder;
5566         uint32_t dpll;
5567         int factor, num_connectors = 0;
5568         bool is_lvds = false, is_sdvo = false, is_tv = false;
5569
5570         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5571                 switch (intel_encoder->type) {
5572                 case INTEL_OUTPUT_LVDS:
5573                         is_lvds = true;
5574                         break;
5575                 case INTEL_OUTPUT_SDVO:
5576                 case INTEL_OUTPUT_HDMI:
5577                         is_sdvo = true;
5578                         if (intel_encoder->needs_tv_clock)
5579                                 is_tv = true;
5580                         break;
5581                 case INTEL_OUTPUT_TVOUT:
5582                         is_tv = true;
5583                         break;
5584                 }
5585
5586                 num_connectors++;
5587         }
5588
5589         /* Enable autotuning of the PLL clock (if permissible) */
5590         factor = 21;
5591         if (is_lvds) {
5592                 if ((intel_panel_use_ssc(dev_priv) &&
5593                      dev_priv->lvds_ssc_freq == 100) ||
5594                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5595                         factor = 25;
5596         } else if (is_sdvo && is_tv)
5597                 factor = 20;
5598
5599         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5600                 *fp |= FP_CB_TUNE;
5601
5602         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5603                 *fp2 |= FP_CB_TUNE;
5604
5605         dpll = 0;
5606
5607         if (is_lvds)
5608                 dpll |= DPLLB_MODE_LVDS;
5609         else
5610                 dpll |= DPLLB_MODE_DAC_SERIAL;
5611
5612         if (intel_crtc->config.pixel_multiplier > 1) {
5613                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5614                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5615         }
5616
5617         if (is_sdvo)
5618                 dpll |= DPLL_DVO_HIGH_SPEED;
5619         if (intel_crtc->config.has_dp_encoder)
5620                 dpll |= DPLL_DVO_HIGH_SPEED;
5621
5622         /* compute bitmask from p1 value */
5623         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5624         /* also FPA1 */
5625         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5626
5627         switch (intel_crtc->config.dpll.p2) {
5628         case 5:
5629                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5630                 break;
5631         case 7:
5632                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5633                 break;
5634         case 10:
5635                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5636                 break;
5637         case 14:
5638                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5639                 break;
5640         }
5641
5642         if (is_sdvo && is_tv)
5643                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5644         else if (is_tv)
5645                 /* XXX: just matching BIOS for now */
5646                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5647                 dpll |= 3;
5648         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5649                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5650         else
5651                 dpll |= PLL_REF_INPUT_DREFCLK;
5652
5653         return dpll;
5654 }
5655
5656 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5657                                   int x, int y,
5658                                   struct drm_framebuffer *fb)
5659 {
5660         struct drm_device *dev = crtc->dev;
5661         struct drm_i915_private *dev_priv = dev->dev_private;
5662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5663         struct drm_display_mode *adjusted_mode =
5664                 &intel_crtc->config.adjusted_mode;
5665         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5666         int pipe = intel_crtc->pipe;
5667         int plane = intel_crtc->plane;
5668         int num_connectors = 0;
5669         intel_clock_t clock, reduced_clock;
5670         u32 dpll = 0, fp = 0, fp2 = 0;
5671         bool ok, has_reduced_clock = false;
5672         bool is_lvds = false;
5673         struct intel_encoder *encoder;
5674         int ret;
5675         bool fdi_config_ok;
5676
5677         for_each_encoder_on_crtc(dev, crtc, encoder) {
5678                 switch (encoder->type) {
5679                 case INTEL_OUTPUT_LVDS:
5680                         is_lvds = true;
5681                         break;
5682                 }
5683
5684                 num_connectors++;
5685         }
5686
5687         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5688              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5689
5690         intel_crtc->config.cpu_transcoder = pipe;
5691
5692         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5693                                      &has_reduced_clock, &reduced_clock);
5694         if (!ok) {
5695                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5696                 return -EINVAL;
5697         }
5698         /* Compat-code for transition, will disappear. */
5699         if (!intel_crtc->config.clock_set) {
5700                 intel_crtc->config.dpll.n = clock.n;
5701                 intel_crtc->config.dpll.m1 = clock.m1;
5702                 intel_crtc->config.dpll.m2 = clock.m2;
5703                 intel_crtc->config.dpll.p1 = clock.p1;
5704                 intel_crtc->config.dpll.p2 = clock.p2;
5705         }
5706
5707         /* Ensure that the cursor is valid for the new mode before changing... */
5708         intel_crtc_update_cursor(crtc, true);
5709
5710         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5711         drm_mode_debug_printmodeline(mode);
5712
5713         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5714         if (intel_crtc->config.has_pch_encoder) {
5715                 struct intel_pch_pll *pll;
5716
5717                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5718                 if (has_reduced_clock)
5719                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5720
5721                 dpll = ironlake_compute_dpll(intel_crtc,
5722                                              &fp, &reduced_clock,
5723                                              has_reduced_clock ? &fp2 : NULL);
5724
5725                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5726                 if (pll == NULL) {
5727                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5728                                          pipe_name(pipe));
5729                         return -EINVAL;
5730                 }
5731         } else
5732                 intel_put_pch_pll(intel_crtc);
5733
5734         if (intel_crtc->config.has_dp_encoder)
5735                 intel_dp_set_m_n(intel_crtc);
5736
5737         for_each_encoder_on_crtc(dev, crtc, encoder)
5738                 if (encoder->pre_pll_enable)
5739                         encoder->pre_pll_enable(encoder);
5740
5741         if (intel_crtc->pch_pll) {
5742                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5743
5744                 /* Wait for the clocks to stabilize. */
5745                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5746                 udelay(150);
5747
5748                 /* The pixel multiplier can only be updated once the
5749                  * DPLL is enabled and the clocks are stable.
5750                  *
5751                  * So write it again.
5752                  */
5753                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5754         }
5755
5756         intel_crtc->lowfreq_avail = false;
5757         if (intel_crtc->pch_pll) {
5758                 if (is_lvds && has_reduced_clock && i915_powersave) {
5759                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5760                         intel_crtc->lowfreq_avail = true;
5761                 } else {
5762                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5763                 }
5764         }
5765
5766         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5767
5768         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5769          * ironlake_check_fdi_lanes. */
5770         if (intel_crtc->config.has_pch_encoder) {
5771                 intel_cpu_transcoder_set_m_n(intel_crtc,
5772                                              &intel_crtc->config.fdi_m_n);
5773         }
5774
5775         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5776         if (IS_IVYBRIDGE(dev))
5777                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5778
5779         ironlake_set_pipeconf(crtc);
5780
5781         /* Set up the display plane register */
5782         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5783         POSTING_READ(DSPCNTR(plane));
5784
5785         ret = intel_pipe_set_base(crtc, x, y, fb);
5786
5787         intel_update_watermarks(dev);
5788
5789         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5790
5791         return fdi_config_ok ? ret : -EINVAL;
5792 }
5793
5794 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5795                                      struct intel_crtc_config *pipe_config)
5796 {
5797         struct drm_device *dev = crtc->base.dev;
5798         struct drm_i915_private *dev_priv = dev->dev_private;
5799         uint32_t tmp;
5800
5801         tmp = I915_READ(PIPECONF(crtc->pipe));
5802         if (!(tmp & PIPECONF_ENABLE))
5803                 return false;
5804
5805         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5806                 pipe_config->has_pch_encoder = true;
5807
5808                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5809                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5810                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5811         }
5812
5813         return true;
5814 }
5815
5816 static void haswell_modeset_global_resources(struct drm_device *dev)
5817 {
5818         struct drm_i915_private *dev_priv = dev->dev_private;
5819         bool enable = false;
5820         struct intel_crtc *crtc;
5821         struct intel_encoder *encoder;
5822
5823         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5824                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5825                         enable = true;
5826                 /* XXX: Should check for edp transcoder here, but thanks to init
5827                  * sequence that's not yet available. Just in case desktop eDP
5828                  * on PORT D is possible on haswell, too. */
5829                 /* Even the eDP panel fitter is outside the always-on well. */
5830                 if (I915_READ(PF_WIN_SZ(crtc->pipe)))
5831                         enable = true;
5832         }
5833
5834         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5835                             base.head) {
5836                 if (encoder->type != INTEL_OUTPUT_EDP &&
5837                     encoder->connectors_active)
5838                         enable = true;
5839         }
5840
5841         intel_set_power_well(dev, enable);
5842 }
5843
5844 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5845                                  int x, int y,
5846                                  struct drm_framebuffer *fb)
5847 {
5848         struct drm_device *dev = crtc->dev;
5849         struct drm_i915_private *dev_priv = dev->dev_private;
5850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5851         struct drm_display_mode *adjusted_mode =
5852                 &intel_crtc->config.adjusted_mode;
5853         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5854         int pipe = intel_crtc->pipe;
5855         int plane = intel_crtc->plane;
5856         int num_connectors = 0;
5857         bool is_cpu_edp = false;
5858         struct intel_encoder *encoder;
5859         int ret;
5860
5861         for_each_encoder_on_crtc(dev, crtc, encoder) {
5862                 switch (encoder->type) {
5863                 case INTEL_OUTPUT_EDP:
5864                         if (!intel_encoder_is_pch_edp(&encoder->base))
5865                                 is_cpu_edp = true;
5866                         break;
5867                 }
5868
5869                 num_connectors++;
5870         }
5871
5872         if (is_cpu_edp)
5873                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5874         else
5875                 intel_crtc->config.cpu_transcoder = pipe;
5876
5877         /* We are not sure yet this won't happen. */
5878         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5879              INTEL_PCH_TYPE(dev));
5880
5881         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5882              num_connectors, pipe_name(pipe));
5883
5884         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5885                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5886
5887         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5888
5889         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5890                 return -EINVAL;
5891
5892         /* Ensure that the cursor is valid for the new mode before changing... */
5893         intel_crtc_update_cursor(crtc, true);
5894
5895         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5896         drm_mode_debug_printmodeline(mode);
5897
5898         if (intel_crtc->config.has_dp_encoder)
5899                 intel_dp_set_m_n(intel_crtc);
5900
5901         intel_crtc->lowfreq_avail = false;
5902
5903         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5904
5905         if (intel_crtc->config.has_pch_encoder) {
5906                 intel_cpu_transcoder_set_m_n(intel_crtc,
5907                                              &intel_crtc->config.fdi_m_n);
5908         }
5909
5910         haswell_set_pipeconf(crtc);
5911
5912         intel_set_pipe_csc(crtc);
5913
5914         /* Set up the display plane register */
5915         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5916         POSTING_READ(DSPCNTR(plane));
5917
5918         ret = intel_pipe_set_base(crtc, x, y, fb);
5919
5920         intel_update_watermarks(dev);
5921
5922         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5923
5924         return ret;
5925 }
5926
5927 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5928                                     struct intel_crtc_config *pipe_config)
5929 {
5930         struct drm_device *dev = crtc->base.dev;
5931         struct drm_i915_private *dev_priv = dev->dev_private;
5932         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
5933         uint32_t tmp;
5934
5935         if (!intel_using_power_well(dev_priv->dev) &&
5936             cpu_transcoder != TRANSCODER_EDP)
5937                 return false;
5938
5939         tmp = I915_READ(PIPECONF(cpu_transcoder));
5940         if (!(tmp & PIPECONF_ENABLE))
5941                 return false;
5942
5943         /*
5944          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5945          * DDI E. So just check whether this pipe is wired to DDI E and whether
5946          * the PCH transcoder is on.
5947          */
5948         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
5949         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5950             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE) {
5951                 pipe_config->has_pch_encoder = true;
5952
5953                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5954                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5955                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5956         }
5957
5958         return true;
5959 }
5960
5961 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5962                                int x, int y,
5963                                struct drm_framebuffer *fb)
5964 {
5965         struct drm_device *dev = crtc->dev;
5966         struct drm_i915_private *dev_priv = dev->dev_private;
5967         struct drm_encoder_helper_funcs *encoder_funcs;
5968         struct intel_encoder *encoder;
5969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5970         struct drm_display_mode *adjusted_mode =
5971                 &intel_crtc->config.adjusted_mode;
5972         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5973         int pipe = intel_crtc->pipe;
5974         int ret;
5975
5976         drm_vblank_pre_modeset(dev, pipe);
5977
5978         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5979
5980         drm_vblank_post_modeset(dev, pipe);
5981
5982         if (ret != 0)
5983                 return ret;
5984
5985         for_each_encoder_on_crtc(dev, crtc, encoder) {
5986                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5987                         encoder->base.base.id,
5988                         drm_get_encoder_name(&encoder->base),
5989                         mode->base.id, mode->name);
5990                 if (encoder->mode_set) {
5991                         encoder->mode_set(encoder);
5992                 } else {
5993                         encoder_funcs = encoder->base.helper_private;
5994                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5995                 }
5996         }
5997
5998         return 0;
5999 }
6000
6001 static bool intel_eld_uptodate(struct drm_connector *connector,
6002                                int reg_eldv, uint32_t bits_eldv,
6003                                int reg_elda, uint32_t bits_elda,
6004                                int reg_edid)
6005 {
6006         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6007         uint8_t *eld = connector->eld;
6008         uint32_t i;
6009
6010         i = I915_READ(reg_eldv);
6011         i &= bits_eldv;
6012
6013         if (!eld[0])
6014                 return !i;
6015
6016         if (!i)
6017                 return false;
6018
6019         i = I915_READ(reg_elda);
6020         i &= ~bits_elda;
6021         I915_WRITE(reg_elda, i);
6022
6023         for (i = 0; i < eld[2]; i++)
6024                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6025                         return false;
6026
6027         return true;
6028 }
6029
6030 static void g4x_write_eld(struct drm_connector *connector,
6031                           struct drm_crtc *crtc)
6032 {
6033         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6034         uint8_t *eld = connector->eld;
6035         uint32_t eldv;
6036         uint32_t len;
6037         uint32_t i;
6038
6039         i = I915_READ(G4X_AUD_VID_DID);
6040
6041         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6042                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6043         else
6044                 eldv = G4X_ELDV_DEVCTG;
6045
6046         if (intel_eld_uptodate(connector,
6047                                G4X_AUD_CNTL_ST, eldv,
6048                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6049                                G4X_HDMIW_HDMIEDID))
6050                 return;
6051
6052         i = I915_READ(G4X_AUD_CNTL_ST);
6053         i &= ~(eldv | G4X_ELD_ADDR);
6054         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6055         I915_WRITE(G4X_AUD_CNTL_ST, i);
6056
6057         if (!eld[0])
6058                 return;
6059
6060         len = min_t(uint8_t, eld[2], len);
6061         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6062         for (i = 0; i < len; i++)
6063                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6064
6065         i = I915_READ(G4X_AUD_CNTL_ST);
6066         i |= eldv;
6067         I915_WRITE(G4X_AUD_CNTL_ST, i);
6068 }
6069
6070 static void haswell_write_eld(struct drm_connector *connector,
6071                                      struct drm_crtc *crtc)
6072 {
6073         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6074         uint8_t *eld = connector->eld;
6075         struct drm_device *dev = crtc->dev;
6076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6077         uint32_t eldv;
6078         uint32_t i;
6079         int len;
6080         int pipe = to_intel_crtc(crtc)->pipe;
6081         int tmp;
6082
6083         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6084         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6085         int aud_config = HSW_AUD_CFG(pipe);
6086         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6087
6088
6089         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6090
6091         /* Audio output enable */
6092         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6093         tmp = I915_READ(aud_cntrl_st2);
6094         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6095         I915_WRITE(aud_cntrl_st2, tmp);
6096
6097         /* Wait for 1 vertical blank */
6098         intel_wait_for_vblank(dev, pipe);
6099
6100         /* Set ELD valid state */
6101         tmp = I915_READ(aud_cntrl_st2);
6102         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6103         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6104         I915_WRITE(aud_cntrl_st2, tmp);
6105         tmp = I915_READ(aud_cntrl_st2);
6106         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6107
6108         /* Enable HDMI mode */
6109         tmp = I915_READ(aud_config);
6110         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6111         /* clear N_programing_enable and N_value_index */
6112         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6113         I915_WRITE(aud_config, tmp);
6114
6115         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6116
6117         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6118         intel_crtc->eld_vld = true;
6119
6120         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6121                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6122                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6123                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6124         } else
6125                 I915_WRITE(aud_config, 0);
6126
6127         if (intel_eld_uptodate(connector,
6128                                aud_cntrl_st2, eldv,
6129                                aud_cntl_st, IBX_ELD_ADDRESS,
6130                                hdmiw_hdmiedid))
6131                 return;
6132
6133         i = I915_READ(aud_cntrl_st2);
6134         i &= ~eldv;
6135         I915_WRITE(aud_cntrl_st2, i);
6136
6137         if (!eld[0])
6138                 return;
6139
6140         i = I915_READ(aud_cntl_st);
6141         i &= ~IBX_ELD_ADDRESS;
6142         I915_WRITE(aud_cntl_st, i);
6143         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6144         DRM_DEBUG_DRIVER("port num:%d\n", i);
6145
6146         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6147         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6148         for (i = 0; i < len; i++)
6149                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6150
6151         i = I915_READ(aud_cntrl_st2);
6152         i |= eldv;
6153         I915_WRITE(aud_cntrl_st2, i);
6154
6155 }
6156
6157 static void ironlake_write_eld(struct drm_connector *connector,
6158                                      struct drm_crtc *crtc)
6159 {
6160         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6161         uint8_t *eld = connector->eld;
6162         uint32_t eldv;
6163         uint32_t i;
6164         int len;
6165         int hdmiw_hdmiedid;
6166         int aud_config;
6167         int aud_cntl_st;
6168         int aud_cntrl_st2;
6169         int pipe = to_intel_crtc(crtc)->pipe;
6170
6171         if (HAS_PCH_IBX(connector->dev)) {
6172                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6173                 aud_config = IBX_AUD_CFG(pipe);
6174                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6175                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6176         } else {
6177                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6178                 aud_config = CPT_AUD_CFG(pipe);
6179                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6180                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6181         }
6182
6183         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6184
6185         i = I915_READ(aud_cntl_st);
6186         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6187         if (!i) {
6188                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6189                 /* operate blindly on all ports */
6190                 eldv = IBX_ELD_VALIDB;
6191                 eldv |= IBX_ELD_VALIDB << 4;
6192                 eldv |= IBX_ELD_VALIDB << 8;
6193         } else {
6194                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6195                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6196         }
6197
6198         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6199                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6200                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6201                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6202         } else
6203                 I915_WRITE(aud_config, 0);
6204
6205         if (intel_eld_uptodate(connector,
6206                                aud_cntrl_st2, eldv,
6207                                aud_cntl_st, IBX_ELD_ADDRESS,
6208                                hdmiw_hdmiedid))
6209                 return;
6210
6211         i = I915_READ(aud_cntrl_st2);
6212         i &= ~eldv;
6213         I915_WRITE(aud_cntrl_st2, i);
6214
6215         if (!eld[0])
6216                 return;
6217
6218         i = I915_READ(aud_cntl_st);
6219         i &= ~IBX_ELD_ADDRESS;
6220         I915_WRITE(aud_cntl_st, i);
6221
6222         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6223         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6224         for (i = 0; i < len; i++)
6225                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6226
6227         i = I915_READ(aud_cntrl_st2);
6228         i |= eldv;
6229         I915_WRITE(aud_cntrl_st2, i);
6230 }
6231
6232 void intel_write_eld(struct drm_encoder *encoder,
6233                      struct drm_display_mode *mode)
6234 {
6235         struct drm_crtc *crtc = encoder->crtc;
6236         struct drm_connector *connector;
6237         struct drm_device *dev = encoder->dev;
6238         struct drm_i915_private *dev_priv = dev->dev_private;
6239
6240         connector = drm_select_eld(encoder, mode);
6241         if (!connector)
6242                 return;
6243
6244         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6245                          connector->base.id,
6246                          drm_get_connector_name(connector),
6247                          connector->encoder->base.id,
6248                          drm_get_encoder_name(connector->encoder));
6249
6250         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6251
6252         if (dev_priv->display.write_eld)
6253                 dev_priv->display.write_eld(connector, crtc);
6254 }
6255
6256 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6257 void intel_crtc_load_lut(struct drm_crtc *crtc)
6258 {
6259         struct drm_device *dev = crtc->dev;
6260         struct drm_i915_private *dev_priv = dev->dev_private;
6261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6262         int palreg = PALETTE(intel_crtc->pipe);
6263         int i;
6264
6265         /* The clocks have to be on to load the palette. */
6266         if (!crtc->enabled || !intel_crtc->active)
6267                 return;
6268
6269         /* use legacy palette for Ironlake */
6270         if (HAS_PCH_SPLIT(dev))
6271                 palreg = LGC_PALETTE(intel_crtc->pipe);
6272
6273         for (i = 0; i < 256; i++) {
6274                 I915_WRITE(palreg + 4 * i,
6275                            (intel_crtc->lut_r[i] << 16) |
6276                            (intel_crtc->lut_g[i] << 8) |
6277                            intel_crtc->lut_b[i]);
6278         }
6279 }
6280
6281 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6282 {
6283         struct drm_device *dev = crtc->dev;
6284         struct drm_i915_private *dev_priv = dev->dev_private;
6285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6286         bool visible = base != 0;
6287         u32 cntl;
6288
6289         if (intel_crtc->cursor_visible == visible)
6290                 return;
6291
6292         cntl = I915_READ(_CURACNTR);
6293         if (visible) {
6294                 /* On these chipsets we can only modify the base whilst
6295                  * the cursor is disabled.
6296                  */
6297                 I915_WRITE(_CURABASE, base);
6298
6299                 cntl &= ~(CURSOR_FORMAT_MASK);
6300                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6301                 cntl |= CURSOR_ENABLE |
6302                         CURSOR_GAMMA_ENABLE |
6303                         CURSOR_FORMAT_ARGB;
6304         } else
6305                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6306         I915_WRITE(_CURACNTR, cntl);
6307
6308         intel_crtc->cursor_visible = visible;
6309 }
6310
6311 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6312 {
6313         struct drm_device *dev = crtc->dev;
6314         struct drm_i915_private *dev_priv = dev->dev_private;
6315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6316         int pipe = intel_crtc->pipe;
6317         bool visible = base != 0;
6318
6319         if (intel_crtc->cursor_visible != visible) {
6320                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6321                 if (base) {
6322                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6323                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6324                         cntl |= pipe << 28; /* Connect to correct pipe */
6325                 } else {
6326                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6327                         cntl |= CURSOR_MODE_DISABLE;
6328                 }
6329                 I915_WRITE(CURCNTR(pipe), cntl);
6330
6331                 intel_crtc->cursor_visible = visible;
6332         }
6333         /* and commit changes on next vblank */
6334         I915_WRITE(CURBASE(pipe), base);
6335 }
6336
6337 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6338 {
6339         struct drm_device *dev = crtc->dev;
6340         struct drm_i915_private *dev_priv = dev->dev_private;
6341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6342         int pipe = intel_crtc->pipe;
6343         bool visible = base != 0;
6344
6345         if (intel_crtc->cursor_visible != visible) {
6346                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6347                 if (base) {
6348                         cntl &= ~CURSOR_MODE;
6349                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6350                 } else {
6351                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6352                         cntl |= CURSOR_MODE_DISABLE;
6353                 }
6354                 if (IS_HASWELL(dev))
6355                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6356                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6357
6358                 intel_crtc->cursor_visible = visible;
6359         }
6360         /* and commit changes on next vblank */
6361         I915_WRITE(CURBASE_IVB(pipe), base);
6362 }
6363
6364 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6365 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6366                                      bool on)
6367 {
6368         struct drm_device *dev = crtc->dev;
6369         struct drm_i915_private *dev_priv = dev->dev_private;
6370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6371         int pipe = intel_crtc->pipe;
6372         int x = intel_crtc->cursor_x;
6373         int y = intel_crtc->cursor_y;
6374         u32 base, pos;
6375         bool visible;
6376
6377         pos = 0;
6378
6379         if (on && crtc->enabled && crtc->fb) {
6380                 base = intel_crtc->cursor_addr;
6381                 if (x > (int) crtc->fb->width)
6382                         base = 0;
6383
6384                 if (y > (int) crtc->fb->height)
6385                         base = 0;
6386         } else
6387                 base = 0;
6388
6389         if (x < 0) {
6390                 if (x + intel_crtc->cursor_width < 0)
6391                         base = 0;
6392
6393                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6394                 x = -x;
6395         }
6396         pos |= x << CURSOR_X_SHIFT;
6397
6398         if (y < 0) {
6399                 if (y + intel_crtc->cursor_height < 0)
6400                         base = 0;
6401
6402                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6403                 y = -y;
6404         }
6405         pos |= y << CURSOR_Y_SHIFT;
6406
6407         visible = base != 0;
6408         if (!visible && !intel_crtc->cursor_visible)
6409                 return;
6410
6411         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6412                 I915_WRITE(CURPOS_IVB(pipe), pos);
6413                 ivb_update_cursor(crtc, base);
6414         } else {
6415                 I915_WRITE(CURPOS(pipe), pos);
6416                 if (IS_845G(dev) || IS_I865G(dev))
6417                         i845_update_cursor(crtc, base);
6418                 else
6419                         i9xx_update_cursor(crtc, base);
6420         }
6421 }
6422
6423 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6424                                  struct drm_file *file,
6425                                  uint32_t handle,
6426                                  uint32_t width, uint32_t height)
6427 {
6428         struct drm_device *dev = crtc->dev;
6429         struct drm_i915_private *dev_priv = dev->dev_private;
6430         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6431         struct drm_i915_gem_object *obj;
6432         uint32_t addr;
6433         int ret;
6434
6435         /* if we want to turn off the cursor ignore width and height */
6436         if (!handle) {
6437                 DRM_DEBUG_KMS("cursor off\n");
6438                 addr = 0;
6439                 obj = NULL;
6440                 mutex_lock(&dev->struct_mutex);
6441                 goto finish;
6442         }
6443
6444         /* Currently we only support 64x64 cursors */
6445         if (width != 64 || height != 64) {
6446                 DRM_ERROR("we currently only support 64x64 cursors\n");
6447                 return -EINVAL;
6448         }
6449
6450         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6451         if (&obj->base == NULL)
6452                 return -ENOENT;
6453
6454         if (obj->base.size < width * height * 4) {
6455                 DRM_ERROR("buffer is to small\n");
6456                 ret = -ENOMEM;
6457                 goto fail;
6458         }
6459
6460         /* we only need to pin inside GTT if cursor is non-phy */
6461         mutex_lock(&dev->struct_mutex);
6462         if (!dev_priv->info->cursor_needs_physical) {
6463                 unsigned alignment;
6464
6465                 if (obj->tiling_mode) {
6466                         DRM_ERROR("cursor cannot be tiled\n");
6467                         ret = -EINVAL;
6468                         goto fail_locked;
6469                 }
6470
6471                 /* Note that the w/a also requires 2 PTE of padding following
6472                  * the bo. We currently fill all unused PTE with the shadow
6473                  * page and so we should always have valid PTE following the
6474                  * cursor preventing the VT-d warning.
6475                  */
6476                 alignment = 0;
6477                 if (need_vtd_wa(dev))
6478                         alignment = 64*1024;
6479
6480                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6481                 if (ret) {
6482                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6483                         goto fail_locked;
6484                 }
6485
6486                 ret = i915_gem_object_put_fence(obj);
6487                 if (ret) {
6488                         DRM_ERROR("failed to release fence for cursor");
6489                         goto fail_unpin;
6490                 }
6491
6492                 addr = obj->gtt_offset;
6493         } else {
6494                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6495                 ret = i915_gem_attach_phys_object(dev, obj,
6496                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6497                                                   align);
6498                 if (ret) {
6499                         DRM_ERROR("failed to attach phys object\n");
6500                         goto fail_locked;
6501                 }
6502                 addr = obj->phys_obj->handle->busaddr;
6503         }
6504
6505         if (IS_GEN2(dev))
6506                 I915_WRITE(CURSIZE, (height << 12) | width);
6507
6508  finish:
6509         if (intel_crtc->cursor_bo) {
6510                 if (dev_priv->info->cursor_needs_physical) {
6511                         if (intel_crtc->cursor_bo != obj)
6512                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6513                 } else
6514                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6515                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6516         }
6517
6518         mutex_unlock(&dev->struct_mutex);
6519
6520         intel_crtc->cursor_addr = addr;
6521         intel_crtc->cursor_bo = obj;
6522         intel_crtc->cursor_width = width;
6523         intel_crtc->cursor_height = height;
6524
6525         intel_crtc_update_cursor(crtc, true);
6526
6527         return 0;
6528 fail_unpin:
6529         i915_gem_object_unpin(obj);
6530 fail_locked:
6531         mutex_unlock(&dev->struct_mutex);
6532 fail:
6533         drm_gem_object_unreference_unlocked(&obj->base);
6534         return ret;
6535 }
6536
6537 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6538 {
6539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6540
6541         intel_crtc->cursor_x = x;
6542         intel_crtc->cursor_y = y;
6543
6544         intel_crtc_update_cursor(crtc, true);
6545
6546         return 0;
6547 }
6548
6549 /** Sets the color ramps on behalf of RandR */
6550 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6551                                  u16 blue, int regno)
6552 {
6553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6554
6555         intel_crtc->lut_r[regno] = red >> 8;
6556         intel_crtc->lut_g[regno] = green >> 8;
6557         intel_crtc->lut_b[regno] = blue >> 8;
6558 }
6559
6560 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6561                              u16 *blue, int regno)
6562 {
6563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6564
6565         *red = intel_crtc->lut_r[regno] << 8;
6566         *green = intel_crtc->lut_g[regno] << 8;
6567         *blue = intel_crtc->lut_b[regno] << 8;
6568 }
6569
6570 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6571                                  u16 *blue, uint32_t start, uint32_t size)
6572 {
6573         int end = (start + size > 256) ? 256 : start + size, i;
6574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6575
6576         for (i = start; i < end; i++) {
6577                 intel_crtc->lut_r[i] = red[i] >> 8;
6578                 intel_crtc->lut_g[i] = green[i] >> 8;
6579                 intel_crtc->lut_b[i] = blue[i] >> 8;
6580         }
6581
6582         intel_crtc_load_lut(crtc);
6583 }
6584
6585 /* VESA 640x480x72Hz mode to set on the pipe */
6586 static struct drm_display_mode load_detect_mode = {
6587         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6588                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6589 };
6590
6591 static struct drm_framebuffer *
6592 intel_framebuffer_create(struct drm_device *dev,
6593                          struct drm_mode_fb_cmd2 *mode_cmd,
6594                          struct drm_i915_gem_object *obj)
6595 {
6596         struct intel_framebuffer *intel_fb;
6597         int ret;
6598
6599         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6600         if (!intel_fb) {
6601                 drm_gem_object_unreference_unlocked(&obj->base);
6602                 return ERR_PTR(-ENOMEM);
6603         }
6604
6605         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6606         if (ret) {
6607                 drm_gem_object_unreference_unlocked(&obj->base);
6608                 kfree(intel_fb);
6609                 return ERR_PTR(ret);
6610         }
6611
6612         return &intel_fb->base;
6613 }
6614
6615 static u32
6616 intel_framebuffer_pitch_for_width(int width, int bpp)
6617 {
6618         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6619         return ALIGN(pitch, 64);
6620 }
6621
6622 static u32
6623 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6624 {
6625         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6626         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6627 }
6628
6629 static struct drm_framebuffer *
6630 intel_framebuffer_create_for_mode(struct drm_device *dev,
6631                                   struct drm_display_mode *mode,
6632                                   int depth, int bpp)
6633 {
6634         struct drm_i915_gem_object *obj;
6635         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6636
6637         obj = i915_gem_alloc_object(dev,
6638                                     intel_framebuffer_size_for_mode(mode, bpp));
6639         if (obj == NULL)
6640                 return ERR_PTR(-ENOMEM);
6641
6642         mode_cmd.width = mode->hdisplay;
6643         mode_cmd.height = mode->vdisplay;
6644         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6645                                                                 bpp);
6646         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6647
6648         return intel_framebuffer_create(dev, &mode_cmd, obj);
6649 }
6650
6651 static struct drm_framebuffer *
6652 mode_fits_in_fbdev(struct drm_device *dev,
6653                    struct drm_display_mode *mode)
6654 {
6655         struct drm_i915_private *dev_priv = dev->dev_private;
6656         struct drm_i915_gem_object *obj;
6657         struct drm_framebuffer *fb;
6658
6659         if (dev_priv->fbdev == NULL)
6660                 return NULL;
6661
6662         obj = dev_priv->fbdev->ifb.obj;
6663         if (obj == NULL)
6664                 return NULL;
6665
6666         fb = &dev_priv->fbdev->ifb.base;
6667         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6668                                                                fb->bits_per_pixel))
6669                 return NULL;
6670
6671         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6672                 return NULL;
6673
6674         return fb;
6675 }
6676
6677 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6678                                 struct drm_display_mode *mode,
6679                                 struct intel_load_detect_pipe *old)
6680 {
6681         struct intel_crtc *intel_crtc;
6682         struct intel_encoder *intel_encoder =
6683                 intel_attached_encoder(connector);
6684         struct drm_crtc *possible_crtc;
6685         struct drm_encoder *encoder = &intel_encoder->base;
6686         struct drm_crtc *crtc = NULL;
6687         struct drm_device *dev = encoder->dev;
6688         struct drm_framebuffer *fb;
6689         int i = -1;
6690
6691         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6692                       connector->base.id, drm_get_connector_name(connector),
6693                       encoder->base.id, drm_get_encoder_name(encoder));
6694
6695         /*
6696          * Algorithm gets a little messy:
6697          *
6698          *   - if the connector already has an assigned crtc, use it (but make
6699          *     sure it's on first)
6700          *
6701          *   - try to find the first unused crtc that can drive this connector,
6702          *     and use that if we find one
6703          */
6704
6705         /* See if we already have a CRTC for this connector */
6706         if (encoder->crtc) {
6707                 crtc = encoder->crtc;
6708
6709                 mutex_lock(&crtc->mutex);
6710
6711                 old->dpms_mode = connector->dpms;
6712                 old->load_detect_temp = false;
6713
6714                 /* Make sure the crtc and connector are running */
6715                 if (connector->dpms != DRM_MODE_DPMS_ON)
6716                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6717
6718                 return true;
6719         }
6720
6721         /* Find an unused one (if possible) */
6722         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6723                 i++;
6724                 if (!(encoder->possible_crtcs & (1 << i)))
6725                         continue;
6726                 if (!possible_crtc->enabled) {
6727                         crtc = possible_crtc;
6728                         break;
6729                 }
6730         }
6731
6732         /*
6733          * If we didn't find an unused CRTC, don't use any.
6734          */
6735         if (!crtc) {
6736                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6737                 return false;
6738         }
6739
6740         mutex_lock(&crtc->mutex);
6741         intel_encoder->new_crtc = to_intel_crtc(crtc);
6742         to_intel_connector(connector)->new_encoder = intel_encoder;
6743
6744         intel_crtc = to_intel_crtc(crtc);
6745         old->dpms_mode = connector->dpms;
6746         old->load_detect_temp = true;
6747         old->release_fb = NULL;
6748
6749         if (!mode)
6750                 mode = &load_detect_mode;
6751
6752         /* We need a framebuffer large enough to accommodate all accesses
6753          * that the plane may generate whilst we perform load detection.
6754          * We can not rely on the fbcon either being present (we get called
6755          * during its initialisation to detect all boot displays, or it may
6756          * not even exist) or that it is large enough to satisfy the
6757          * requested mode.
6758          */
6759         fb = mode_fits_in_fbdev(dev, mode);
6760         if (fb == NULL) {
6761                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6762                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6763                 old->release_fb = fb;
6764         } else
6765                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6766         if (IS_ERR(fb)) {
6767                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6768                 mutex_unlock(&crtc->mutex);
6769                 return false;
6770         }
6771
6772         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6773                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6774                 if (old->release_fb)
6775                         old->release_fb->funcs->destroy(old->release_fb);
6776                 mutex_unlock(&crtc->mutex);
6777                 return false;
6778         }
6779
6780         /* let the connector get through one full cycle before testing */
6781         intel_wait_for_vblank(dev, intel_crtc->pipe);
6782         return true;
6783 }
6784
6785 void intel_release_load_detect_pipe(struct drm_connector *connector,
6786                                     struct intel_load_detect_pipe *old)
6787 {
6788         struct intel_encoder *intel_encoder =
6789                 intel_attached_encoder(connector);
6790         struct drm_encoder *encoder = &intel_encoder->base;
6791         struct drm_crtc *crtc = encoder->crtc;
6792
6793         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6794                       connector->base.id, drm_get_connector_name(connector),
6795                       encoder->base.id, drm_get_encoder_name(encoder));
6796
6797         if (old->load_detect_temp) {
6798                 to_intel_connector(connector)->new_encoder = NULL;
6799                 intel_encoder->new_crtc = NULL;
6800                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6801
6802                 if (old->release_fb) {
6803                         drm_framebuffer_unregister_private(old->release_fb);
6804                         drm_framebuffer_unreference(old->release_fb);
6805                 }
6806
6807                 mutex_unlock(&crtc->mutex);
6808                 return;
6809         }
6810
6811         /* Switch crtc and encoder back off if necessary */
6812         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6813                 connector->funcs->dpms(connector, old->dpms_mode);
6814
6815         mutex_unlock(&crtc->mutex);
6816 }
6817
6818 /* Returns the clock of the currently programmed mode of the given pipe. */
6819 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6820 {
6821         struct drm_i915_private *dev_priv = dev->dev_private;
6822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6823         int pipe = intel_crtc->pipe;
6824         u32 dpll = I915_READ(DPLL(pipe));
6825         u32 fp;
6826         intel_clock_t clock;
6827
6828         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6829                 fp = I915_READ(FP0(pipe));
6830         else
6831                 fp = I915_READ(FP1(pipe));
6832
6833         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6834         if (IS_PINEVIEW(dev)) {
6835                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6836                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6837         } else {
6838                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6839                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6840         }
6841
6842         if (!IS_GEN2(dev)) {
6843                 if (IS_PINEVIEW(dev))
6844                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6845                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6846                 else
6847                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6848                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6849
6850                 switch (dpll & DPLL_MODE_MASK) {
6851                 case DPLLB_MODE_DAC_SERIAL:
6852                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6853                                 5 : 10;
6854                         break;
6855                 case DPLLB_MODE_LVDS:
6856                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6857                                 7 : 14;
6858                         break;
6859                 default:
6860                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6861                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6862                         return 0;
6863                 }
6864
6865                 /* XXX: Handle the 100Mhz refclk */
6866                 intel_clock(dev, 96000, &clock);
6867         } else {
6868                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6869
6870                 if (is_lvds) {
6871                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6872                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6873                         clock.p2 = 14;
6874
6875                         if ((dpll & PLL_REF_INPUT_MASK) ==
6876                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6877                                 /* XXX: might not be 66MHz */
6878                                 intel_clock(dev, 66000, &clock);
6879                         } else
6880                                 intel_clock(dev, 48000, &clock);
6881                 } else {
6882                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6883                                 clock.p1 = 2;
6884                         else {
6885                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6886                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6887                         }
6888                         if (dpll & PLL_P2_DIVIDE_BY_4)
6889                                 clock.p2 = 4;
6890                         else
6891                                 clock.p2 = 2;
6892
6893                         intel_clock(dev, 48000, &clock);
6894                 }
6895         }
6896
6897         /* XXX: It would be nice to validate the clocks, but we can't reuse
6898          * i830PllIsValid() because it relies on the xf86_config connector
6899          * configuration being accurate, which it isn't necessarily.
6900          */
6901
6902         return clock.dot;
6903 }
6904
6905 /** Returns the currently programmed mode of the given pipe. */
6906 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6907                                              struct drm_crtc *crtc)
6908 {
6909         struct drm_i915_private *dev_priv = dev->dev_private;
6910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6911         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6912         struct drm_display_mode *mode;
6913         int htot = I915_READ(HTOTAL(cpu_transcoder));
6914         int hsync = I915_READ(HSYNC(cpu_transcoder));
6915         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6916         int vsync = I915_READ(VSYNC(cpu_transcoder));
6917
6918         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6919         if (!mode)
6920                 return NULL;
6921
6922         mode->clock = intel_crtc_clock_get(dev, crtc);
6923         mode->hdisplay = (htot & 0xffff) + 1;
6924         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6925         mode->hsync_start = (hsync & 0xffff) + 1;
6926         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6927         mode->vdisplay = (vtot & 0xffff) + 1;
6928         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6929         mode->vsync_start = (vsync & 0xffff) + 1;
6930         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6931
6932         drm_mode_set_name(mode);
6933
6934         return mode;
6935 }
6936
6937 static void intel_increase_pllclock(struct drm_crtc *crtc)
6938 {
6939         struct drm_device *dev = crtc->dev;
6940         drm_i915_private_t *dev_priv = dev->dev_private;
6941         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6942         int pipe = intel_crtc->pipe;
6943         int dpll_reg = DPLL(pipe);
6944         int dpll;
6945
6946         if (HAS_PCH_SPLIT(dev))
6947                 return;
6948
6949         if (!dev_priv->lvds_downclock_avail)
6950                 return;
6951
6952         dpll = I915_READ(dpll_reg);
6953         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6954                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6955
6956                 assert_panel_unlocked(dev_priv, pipe);
6957
6958                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6959                 I915_WRITE(dpll_reg, dpll);
6960                 intel_wait_for_vblank(dev, pipe);
6961
6962                 dpll = I915_READ(dpll_reg);
6963                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6964                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6965         }
6966 }
6967
6968 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6969 {
6970         struct drm_device *dev = crtc->dev;
6971         drm_i915_private_t *dev_priv = dev->dev_private;
6972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973
6974         if (HAS_PCH_SPLIT(dev))
6975                 return;
6976
6977         if (!dev_priv->lvds_downclock_avail)
6978                 return;
6979
6980         /*
6981          * Since this is called by a timer, we should never get here in
6982          * the manual case.
6983          */
6984         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6985                 int pipe = intel_crtc->pipe;
6986                 int dpll_reg = DPLL(pipe);
6987                 int dpll;
6988
6989                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6990
6991                 assert_panel_unlocked(dev_priv, pipe);
6992
6993                 dpll = I915_READ(dpll_reg);
6994                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6995                 I915_WRITE(dpll_reg, dpll);
6996                 intel_wait_for_vblank(dev, pipe);
6997                 dpll = I915_READ(dpll_reg);
6998                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6999                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7000         }
7001
7002 }
7003
7004 void intel_mark_busy(struct drm_device *dev)
7005 {
7006         i915_update_gfx_val(dev->dev_private);
7007 }
7008
7009 void intel_mark_idle(struct drm_device *dev)
7010 {
7011         struct drm_crtc *crtc;
7012
7013         if (!i915_powersave)
7014                 return;
7015
7016         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7017                 if (!crtc->fb)
7018                         continue;
7019
7020                 intel_decrease_pllclock(crtc);
7021         }
7022 }
7023
7024 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7025 {
7026         struct drm_device *dev = obj->base.dev;
7027         struct drm_crtc *crtc;
7028
7029         if (!i915_powersave)
7030                 return;
7031
7032         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7033                 if (!crtc->fb)
7034                         continue;
7035
7036                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7037                         intel_increase_pllclock(crtc);
7038         }
7039 }
7040
7041 static void intel_crtc_destroy(struct drm_crtc *crtc)
7042 {
7043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7044         struct drm_device *dev = crtc->dev;
7045         struct intel_unpin_work *work;
7046         unsigned long flags;
7047
7048         spin_lock_irqsave(&dev->event_lock, flags);
7049         work = intel_crtc->unpin_work;
7050         intel_crtc->unpin_work = NULL;
7051         spin_unlock_irqrestore(&dev->event_lock, flags);
7052
7053         if (work) {
7054                 cancel_work_sync(&work->work);
7055                 kfree(work);
7056         }
7057
7058         drm_crtc_cleanup(crtc);
7059
7060         kfree(intel_crtc);
7061 }
7062
7063 static void intel_unpin_work_fn(struct work_struct *__work)
7064 {
7065         struct intel_unpin_work *work =
7066                 container_of(__work, struct intel_unpin_work, work);
7067         struct drm_device *dev = work->crtc->dev;
7068
7069         mutex_lock(&dev->struct_mutex);
7070         intel_unpin_fb_obj(work->old_fb_obj);
7071         drm_gem_object_unreference(&work->pending_flip_obj->base);
7072         drm_gem_object_unreference(&work->old_fb_obj->base);
7073
7074         intel_update_fbc(dev);
7075         mutex_unlock(&dev->struct_mutex);
7076
7077         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7078         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7079
7080         kfree(work);
7081 }
7082
7083 static void do_intel_finish_page_flip(struct drm_device *dev,
7084                                       struct drm_crtc *crtc)
7085 {
7086         drm_i915_private_t *dev_priv = dev->dev_private;
7087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7088         struct intel_unpin_work *work;
7089         unsigned long flags;
7090
7091         /* Ignore early vblank irqs */
7092         if (intel_crtc == NULL)
7093                 return;
7094
7095         spin_lock_irqsave(&dev->event_lock, flags);
7096         work = intel_crtc->unpin_work;
7097
7098         /* Ensure we don't miss a work->pending update ... */
7099         smp_rmb();
7100
7101         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7102                 spin_unlock_irqrestore(&dev->event_lock, flags);
7103                 return;
7104         }
7105
7106         /* and that the unpin work is consistent wrt ->pending. */
7107         smp_rmb();
7108
7109         intel_crtc->unpin_work = NULL;
7110
7111         if (work->event)
7112                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7113
7114         drm_vblank_put(dev, intel_crtc->pipe);
7115
7116         spin_unlock_irqrestore(&dev->event_lock, flags);
7117
7118         wake_up_all(&dev_priv->pending_flip_queue);
7119
7120         queue_work(dev_priv->wq, &work->work);
7121
7122         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7123 }
7124
7125 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7126 {
7127         drm_i915_private_t *dev_priv = dev->dev_private;
7128         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7129
7130         do_intel_finish_page_flip(dev, crtc);
7131 }
7132
7133 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7134 {
7135         drm_i915_private_t *dev_priv = dev->dev_private;
7136         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7137
7138         do_intel_finish_page_flip(dev, crtc);
7139 }
7140
7141 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7142 {
7143         drm_i915_private_t *dev_priv = dev->dev_private;
7144         struct intel_crtc *intel_crtc =
7145                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7146         unsigned long flags;
7147
7148         /* NB: An MMIO update of the plane base pointer will also
7149          * generate a page-flip completion irq, i.e. every modeset
7150          * is also accompanied by a spurious intel_prepare_page_flip().
7151          */
7152         spin_lock_irqsave(&dev->event_lock, flags);
7153         if (intel_crtc->unpin_work)
7154                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7155         spin_unlock_irqrestore(&dev->event_lock, flags);
7156 }
7157
7158 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7159 {
7160         /* Ensure that the work item is consistent when activating it ... */
7161         smp_wmb();
7162         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7163         /* and that it is marked active as soon as the irq could fire. */
7164         smp_wmb();
7165 }
7166
7167 static int intel_gen2_queue_flip(struct drm_device *dev,
7168                                  struct drm_crtc *crtc,
7169                                  struct drm_framebuffer *fb,
7170                                  struct drm_i915_gem_object *obj)
7171 {
7172         struct drm_i915_private *dev_priv = dev->dev_private;
7173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7174         u32 flip_mask;
7175         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7176         int ret;
7177
7178         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7179         if (ret)
7180                 goto err;
7181
7182         ret = intel_ring_begin(ring, 6);
7183         if (ret)
7184                 goto err_unpin;
7185
7186         /* Can't queue multiple flips, so wait for the previous
7187          * one to finish before executing the next.
7188          */
7189         if (intel_crtc->plane)
7190                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7191         else
7192                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7193         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7194         intel_ring_emit(ring, MI_NOOP);
7195         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7196                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7197         intel_ring_emit(ring, fb->pitches[0]);
7198         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7199         intel_ring_emit(ring, 0); /* aux display base address, unused */
7200
7201         intel_mark_page_flip_active(intel_crtc);
7202         intel_ring_advance(ring);
7203         return 0;
7204
7205 err_unpin:
7206         intel_unpin_fb_obj(obj);
7207 err:
7208         return ret;
7209 }
7210
7211 static int intel_gen3_queue_flip(struct drm_device *dev,
7212                                  struct drm_crtc *crtc,
7213                                  struct drm_framebuffer *fb,
7214                                  struct drm_i915_gem_object *obj)
7215 {
7216         struct drm_i915_private *dev_priv = dev->dev_private;
7217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7218         u32 flip_mask;
7219         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7220         int ret;
7221
7222         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7223         if (ret)
7224                 goto err;
7225
7226         ret = intel_ring_begin(ring, 6);
7227         if (ret)
7228                 goto err_unpin;
7229
7230         if (intel_crtc->plane)
7231                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7232         else
7233                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7234         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7235         intel_ring_emit(ring, MI_NOOP);
7236         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7237                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7238         intel_ring_emit(ring, fb->pitches[0]);
7239         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7240         intel_ring_emit(ring, MI_NOOP);
7241
7242         intel_mark_page_flip_active(intel_crtc);
7243         intel_ring_advance(ring);
7244         return 0;
7245
7246 err_unpin:
7247         intel_unpin_fb_obj(obj);
7248 err:
7249         return ret;
7250 }
7251
7252 static int intel_gen4_queue_flip(struct drm_device *dev,
7253                                  struct drm_crtc *crtc,
7254                                  struct drm_framebuffer *fb,
7255                                  struct drm_i915_gem_object *obj)
7256 {
7257         struct drm_i915_private *dev_priv = dev->dev_private;
7258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7259         uint32_t pf, pipesrc;
7260         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7261         int ret;
7262
7263         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7264         if (ret)
7265                 goto err;
7266
7267         ret = intel_ring_begin(ring, 4);
7268         if (ret)
7269                 goto err_unpin;
7270
7271         /* i965+ uses the linear or tiled offsets from the
7272          * Display Registers (which do not change across a page-flip)
7273          * so we need only reprogram the base address.
7274          */
7275         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7276                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7277         intel_ring_emit(ring, fb->pitches[0]);
7278         intel_ring_emit(ring,
7279                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7280                         obj->tiling_mode);
7281
7282         /* XXX Enabling the panel-fitter across page-flip is so far
7283          * untested on non-native modes, so ignore it for now.
7284          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7285          */
7286         pf = 0;
7287         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7288         intel_ring_emit(ring, pf | pipesrc);
7289
7290         intel_mark_page_flip_active(intel_crtc);
7291         intel_ring_advance(ring);
7292         return 0;
7293
7294 err_unpin:
7295         intel_unpin_fb_obj(obj);
7296 err:
7297         return ret;
7298 }
7299
7300 static int intel_gen6_queue_flip(struct drm_device *dev,
7301                                  struct drm_crtc *crtc,
7302                                  struct drm_framebuffer *fb,
7303                                  struct drm_i915_gem_object *obj)
7304 {
7305         struct drm_i915_private *dev_priv = dev->dev_private;
7306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7307         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7308         uint32_t pf, pipesrc;
7309         int ret;
7310
7311         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7312         if (ret)
7313                 goto err;
7314
7315         ret = intel_ring_begin(ring, 4);
7316         if (ret)
7317                 goto err_unpin;
7318
7319         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7320                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7321         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7322         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7323
7324         /* Contrary to the suggestions in the documentation,
7325          * "Enable Panel Fitter" does not seem to be required when page
7326          * flipping with a non-native mode, and worse causes a normal
7327          * modeset to fail.
7328          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7329          */
7330         pf = 0;
7331         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7332         intel_ring_emit(ring, pf | pipesrc);
7333
7334         intel_mark_page_flip_active(intel_crtc);
7335         intel_ring_advance(ring);
7336         return 0;
7337
7338 err_unpin:
7339         intel_unpin_fb_obj(obj);
7340 err:
7341         return ret;
7342 }
7343
7344 /*
7345  * On gen7 we currently use the blit ring because (in early silicon at least)
7346  * the render ring doesn't give us interrpts for page flip completion, which
7347  * means clients will hang after the first flip is queued.  Fortunately the
7348  * blit ring generates interrupts properly, so use it instead.
7349  */
7350 static int intel_gen7_queue_flip(struct drm_device *dev,
7351                                  struct drm_crtc *crtc,
7352                                  struct drm_framebuffer *fb,
7353                                  struct drm_i915_gem_object *obj)
7354 {
7355         struct drm_i915_private *dev_priv = dev->dev_private;
7356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7357         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7358         uint32_t plane_bit = 0;
7359         int ret;
7360
7361         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7362         if (ret)
7363                 goto err;
7364
7365         switch(intel_crtc->plane) {
7366         case PLANE_A:
7367                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7368                 break;
7369         case PLANE_B:
7370                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7371                 break;
7372         case PLANE_C:
7373                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7374                 break;
7375         default:
7376                 WARN_ONCE(1, "unknown plane in flip command\n");
7377                 ret = -ENODEV;
7378                 goto err_unpin;
7379         }
7380
7381         ret = intel_ring_begin(ring, 4);
7382         if (ret)
7383                 goto err_unpin;
7384
7385         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7386         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7387         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7388         intel_ring_emit(ring, (MI_NOOP));
7389
7390         intel_mark_page_flip_active(intel_crtc);
7391         intel_ring_advance(ring);
7392         return 0;
7393
7394 err_unpin:
7395         intel_unpin_fb_obj(obj);
7396 err:
7397         return ret;
7398 }
7399
7400 static int intel_default_queue_flip(struct drm_device *dev,
7401                                     struct drm_crtc *crtc,
7402                                     struct drm_framebuffer *fb,
7403                                     struct drm_i915_gem_object *obj)
7404 {
7405         return -ENODEV;
7406 }
7407
7408 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7409                                 struct drm_framebuffer *fb,
7410                                 struct drm_pending_vblank_event *event)
7411 {
7412         struct drm_device *dev = crtc->dev;
7413         struct drm_i915_private *dev_priv = dev->dev_private;
7414         struct drm_framebuffer *old_fb = crtc->fb;
7415         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7417         struct intel_unpin_work *work;
7418         unsigned long flags;
7419         int ret;
7420
7421         /* Can't change pixel format via MI display flips. */
7422         if (fb->pixel_format != crtc->fb->pixel_format)
7423                 return -EINVAL;
7424
7425         /*
7426          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7427          * Note that pitch changes could also affect these register.
7428          */
7429         if (INTEL_INFO(dev)->gen > 3 &&
7430             (fb->offsets[0] != crtc->fb->offsets[0] ||
7431              fb->pitches[0] != crtc->fb->pitches[0]))
7432                 return -EINVAL;
7433
7434         work = kzalloc(sizeof *work, GFP_KERNEL);
7435         if (work == NULL)
7436                 return -ENOMEM;
7437
7438         work->event = event;
7439         work->crtc = crtc;
7440         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7441         INIT_WORK(&work->work, intel_unpin_work_fn);
7442
7443         ret = drm_vblank_get(dev, intel_crtc->pipe);
7444         if (ret)
7445                 goto free_work;
7446
7447         /* We borrow the event spin lock for protecting unpin_work */
7448         spin_lock_irqsave(&dev->event_lock, flags);
7449         if (intel_crtc->unpin_work) {
7450                 spin_unlock_irqrestore(&dev->event_lock, flags);
7451                 kfree(work);
7452                 drm_vblank_put(dev, intel_crtc->pipe);
7453
7454                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7455                 return -EBUSY;
7456         }
7457         intel_crtc->unpin_work = work;
7458         spin_unlock_irqrestore(&dev->event_lock, flags);
7459
7460         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7461                 flush_workqueue(dev_priv->wq);
7462
7463         ret = i915_mutex_lock_interruptible(dev);
7464         if (ret)
7465                 goto cleanup;
7466
7467         /* Reference the objects for the scheduled work. */
7468         drm_gem_object_reference(&work->old_fb_obj->base);
7469         drm_gem_object_reference(&obj->base);
7470
7471         crtc->fb = fb;
7472
7473         work->pending_flip_obj = obj;
7474
7475         work->enable_stall_check = true;
7476
7477         atomic_inc(&intel_crtc->unpin_work_count);
7478         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7479
7480         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7481         if (ret)
7482                 goto cleanup_pending;
7483
7484         intel_disable_fbc(dev);
7485         intel_mark_fb_busy(obj);
7486         mutex_unlock(&dev->struct_mutex);
7487
7488         trace_i915_flip_request(intel_crtc->plane, obj);
7489
7490         return 0;
7491
7492 cleanup_pending:
7493         atomic_dec(&intel_crtc->unpin_work_count);
7494         crtc->fb = old_fb;
7495         drm_gem_object_unreference(&work->old_fb_obj->base);
7496         drm_gem_object_unreference(&obj->base);
7497         mutex_unlock(&dev->struct_mutex);
7498
7499 cleanup:
7500         spin_lock_irqsave(&dev->event_lock, flags);
7501         intel_crtc->unpin_work = NULL;
7502         spin_unlock_irqrestore(&dev->event_lock, flags);
7503
7504         drm_vblank_put(dev, intel_crtc->pipe);
7505 free_work:
7506         kfree(work);
7507
7508         return ret;
7509 }
7510
7511 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7512         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7513         .load_lut = intel_crtc_load_lut,
7514 };
7515
7516 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7517 {
7518         struct intel_encoder *other_encoder;
7519         struct drm_crtc *crtc = &encoder->new_crtc->base;
7520
7521         if (WARN_ON(!crtc))
7522                 return false;
7523
7524         list_for_each_entry(other_encoder,
7525                             &crtc->dev->mode_config.encoder_list,
7526                             base.head) {
7527
7528                 if (&other_encoder->new_crtc->base != crtc ||
7529                     encoder == other_encoder)
7530                         continue;
7531                 else
7532                         return true;
7533         }
7534
7535         return false;
7536 }
7537
7538 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7539                                   struct drm_crtc *crtc)
7540 {
7541         struct drm_device *dev;
7542         struct drm_crtc *tmp;
7543         int crtc_mask = 1;
7544
7545         WARN(!crtc, "checking null crtc?\n");
7546
7547         dev = crtc->dev;
7548
7549         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7550                 if (tmp == crtc)
7551                         break;
7552                 crtc_mask <<= 1;
7553         }
7554
7555         if (encoder->possible_crtcs & crtc_mask)
7556                 return true;
7557         return false;
7558 }
7559
7560 /**
7561  * intel_modeset_update_staged_output_state
7562  *
7563  * Updates the staged output configuration state, e.g. after we've read out the
7564  * current hw state.
7565  */
7566 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7567 {
7568         struct intel_encoder *encoder;
7569         struct intel_connector *connector;
7570
7571         list_for_each_entry(connector, &dev->mode_config.connector_list,
7572                             base.head) {
7573                 connector->new_encoder =
7574                         to_intel_encoder(connector->base.encoder);
7575         }
7576
7577         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7578                             base.head) {
7579                 encoder->new_crtc =
7580                         to_intel_crtc(encoder->base.crtc);
7581         }
7582 }
7583
7584 /**
7585  * intel_modeset_commit_output_state
7586  *
7587  * This function copies the stage display pipe configuration to the real one.
7588  */
7589 static void intel_modeset_commit_output_state(struct drm_device *dev)
7590 {
7591         struct intel_encoder *encoder;
7592         struct intel_connector *connector;
7593
7594         list_for_each_entry(connector, &dev->mode_config.connector_list,
7595                             base.head) {
7596                 connector->base.encoder = &connector->new_encoder->base;
7597         }
7598
7599         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7600                             base.head) {
7601                 encoder->base.crtc = &encoder->new_crtc->base;
7602         }
7603 }
7604
7605 static int
7606 pipe_config_set_bpp(struct drm_crtc *crtc,
7607                     struct drm_framebuffer *fb,
7608                     struct intel_crtc_config *pipe_config)
7609 {
7610         struct drm_device *dev = crtc->dev;
7611         struct drm_connector *connector;
7612         int bpp;
7613
7614         switch (fb->pixel_format) {
7615         case DRM_FORMAT_C8:
7616                 bpp = 8*3; /* since we go through a colormap */
7617                 break;
7618         case DRM_FORMAT_XRGB1555:
7619         case DRM_FORMAT_ARGB1555:
7620                 /* checked in intel_framebuffer_init already */
7621                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7622                         return -EINVAL;
7623         case DRM_FORMAT_RGB565:
7624                 bpp = 6*3; /* min is 18bpp */
7625                 break;
7626         case DRM_FORMAT_XBGR8888:
7627         case DRM_FORMAT_ABGR8888:
7628                 /* checked in intel_framebuffer_init already */
7629                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7630                         return -EINVAL;
7631         case DRM_FORMAT_XRGB8888:
7632         case DRM_FORMAT_ARGB8888:
7633                 bpp = 8*3;
7634                 break;
7635         case DRM_FORMAT_XRGB2101010:
7636         case DRM_FORMAT_ARGB2101010:
7637         case DRM_FORMAT_XBGR2101010:
7638         case DRM_FORMAT_ABGR2101010:
7639                 /* checked in intel_framebuffer_init already */
7640                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7641                         return -EINVAL;
7642                 bpp = 10*3;
7643                 break;
7644         /* TODO: gen4+ supports 16 bpc floating point, too. */
7645         default:
7646                 DRM_DEBUG_KMS("unsupported depth\n");
7647                 return -EINVAL;
7648         }
7649
7650         pipe_config->pipe_bpp = bpp;
7651
7652         /* Clamp display bpp to EDID value */
7653         list_for_each_entry(connector, &dev->mode_config.connector_list,
7654                             head) {
7655                 if (connector->encoder && connector->encoder->crtc != crtc)
7656                         continue;
7657
7658                 /* Don't use an invalid EDID bpc value */
7659                 if (connector->display_info.bpc &&
7660                     connector->display_info.bpc * 3 < bpp) {
7661                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7662                                       bpp, connector->display_info.bpc*3);
7663                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7664                 }
7665
7666                 /* Clamp bpp to 8 on screens without EDID 1.4 */
7667                 if (connector->display_info.bpc == 0 && bpp > 24) {
7668                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7669                                       bpp);
7670                         pipe_config->pipe_bpp = 24;
7671                 }
7672         }
7673
7674         return bpp;
7675 }
7676
7677 static struct intel_crtc_config *
7678 intel_modeset_pipe_config(struct drm_crtc *crtc,
7679                           struct drm_framebuffer *fb,
7680                           struct drm_display_mode *mode)
7681 {
7682         struct drm_device *dev = crtc->dev;
7683         struct drm_encoder_helper_funcs *encoder_funcs;
7684         struct intel_encoder *encoder;
7685         struct intel_crtc_config *pipe_config;
7686         int plane_bpp;
7687
7688         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7689         if (!pipe_config)
7690                 return ERR_PTR(-ENOMEM);
7691
7692         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7693         drm_mode_copy(&pipe_config->requested_mode, mode);
7694
7695         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7696         if (plane_bpp < 0)
7697                 goto fail;
7698
7699         /* Pass our mode to the connectors and the CRTC to give them a chance to
7700          * adjust it according to limitations or connector properties, and also
7701          * a chance to reject the mode entirely.
7702          */
7703         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7704                             base.head) {
7705
7706                 if (&encoder->new_crtc->base != crtc)
7707                         continue;
7708
7709                 if (encoder->compute_config) {
7710                         if (!(encoder->compute_config(encoder, pipe_config))) {
7711                                 DRM_DEBUG_KMS("Encoder config failure\n");
7712                                 goto fail;
7713                         }
7714
7715                         continue;
7716                 }
7717
7718                 encoder_funcs = encoder->base.helper_private;
7719                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7720                                                 &pipe_config->requested_mode,
7721                                                 &pipe_config->adjusted_mode))) {
7722                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7723                         goto fail;
7724                 }
7725         }
7726
7727         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7728                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7729                 goto fail;
7730         }
7731         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7732
7733         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7734         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7735                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7736
7737         return pipe_config;
7738 fail:
7739         kfree(pipe_config);
7740         return ERR_PTR(-EINVAL);
7741 }
7742
7743 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7744  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7745 static void
7746 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7747                              unsigned *prepare_pipes, unsigned *disable_pipes)
7748 {
7749         struct intel_crtc *intel_crtc;
7750         struct drm_device *dev = crtc->dev;
7751         struct intel_encoder *encoder;
7752         struct intel_connector *connector;
7753         struct drm_crtc *tmp_crtc;
7754
7755         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7756
7757         /* Check which crtcs have changed outputs connected to them, these need
7758          * to be part of the prepare_pipes mask. We don't (yet) support global
7759          * modeset across multiple crtcs, so modeset_pipes will only have one
7760          * bit set at most. */
7761         list_for_each_entry(connector, &dev->mode_config.connector_list,
7762                             base.head) {
7763                 if (connector->base.encoder == &connector->new_encoder->base)
7764                         continue;
7765
7766                 if (connector->base.encoder) {
7767                         tmp_crtc = connector->base.encoder->crtc;
7768
7769                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7770                 }
7771
7772                 if (connector->new_encoder)
7773                         *prepare_pipes |=
7774                                 1 << connector->new_encoder->new_crtc->pipe;
7775         }
7776
7777         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7778                             base.head) {
7779                 if (encoder->base.crtc == &encoder->new_crtc->base)
7780                         continue;
7781
7782                 if (encoder->base.crtc) {
7783                         tmp_crtc = encoder->base.crtc;
7784
7785                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7786                 }
7787
7788                 if (encoder->new_crtc)
7789                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7790         }
7791
7792         /* Check for any pipes that will be fully disabled ... */
7793         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7794                             base.head) {
7795                 bool used = false;
7796
7797                 /* Don't try to disable disabled crtcs. */
7798                 if (!intel_crtc->base.enabled)
7799                         continue;
7800
7801                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7802                                     base.head) {
7803                         if (encoder->new_crtc == intel_crtc)
7804                                 used = true;
7805                 }
7806
7807                 if (!used)
7808                         *disable_pipes |= 1 << intel_crtc->pipe;
7809         }
7810
7811
7812         /* set_mode is also used to update properties on life display pipes. */
7813         intel_crtc = to_intel_crtc(crtc);
7814         if (crtc->enabled)
7815                 *prepare_pipes |= 1 << intel_crtc->pipe;
7816
7817         /*
7818          * For simplicity do a full modeset on any pipe where the output routing
7819          * changed. We could be more clever, but that would require us to be
7820          * more careful with calling the relevant encoder->mode_set functions.
7821          */
7822         if (*prepare_pipes)
7823                 *modeset_pipes = *prepare_pipes;
7824
7825         /* ... and mask these out. */
7826         *modeset_pipes &= ~(*disable_pipes);
7827         *prepare_pipes &= ~(*disable_pipes);
7828
7829         /*
7830          * HACK: We don't (yet) fully support global modesets. intel_set_config
7831          * obies this rule, but the modeset restore mode of
7832          * intel_modeset_setup_hw_state does not.
7833          */
7834         *modeset_pipes &= 1 << intel_crtc->pipe;
7835         *prepare_pipes &= 1 << intel_crtc->pipe;
7836
7837         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7838                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7839 }
7840
7841 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7842 {
7843         struct drm_encoder *encoder;
7844         struct drm_device *dev = crtc->dev;
7845
7846         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7847                 if (encoder->crtc == crtc)
7848                         return true;
7849
7850         return false;
7851 }
7852
7853 static void
7854 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7855 {
7856         struct intel_encoder *intel_encoder;
7857         struct intel_crtc *intel_crtc;
7858         struct drm_connector *connector;
7859
7860         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7861                             base.head) {
7862                 if (!intel_encoder->base.crtc)
7863                         continue;
7864
7865                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7866
7867                 if (prepare_pipes & (1 << intel_crtc->pipe))
7868                         intel_encoder->connectors_active = false;
7869         }
7870
7871         intel_modeset_commit_output_state(dev);
7872
7873         /* Update computed state. */
7874         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7875                             base.head) {
7876                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7877         }
7878
7879         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7880                 if (!connector->encoder || !connector->encoder->crtc)
7881                         continue;
7882
7883                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7884
7885                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7886                         struct drm_property *dpms_property =
7887                                 dev->mode_config.dpms_property;
7888
7889                         connector->dpms = DRM_MODE_DPMS_ON;
7890                         drm_object_property_set_value(&connector->base,
7891                                                          dpms_property,
7892                                                          DRM_MODE_DPMS_ON);
7893
7894                         intel_encoder = to_intel_encoder(connector->encoder);
7895                         intel_encoder->connectors_active = true;
7896                 }
7897         }
7898
7899 }
7900
7901 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7902         list_for_each_entry((intel_crtc), \
7903                             &(dev)->mode_config.crtc_list, \
7904                             base.head) \
7905                 if (mask & (1 <<(intel_crtc)->pipe)) \
7906
7907 static bool
7908 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7909                           struct intel_crtc_config *pipe_config)
7910 {
7911         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7912                 DRM_ERROR("mismatch in has_pch_encoder "
7913                           "(expected %i, found %i)\n",
7914                           current_config->has_pch_encoder,
7915                           pipe_config->has_pch_encoder);
7916                 return false;
7917         }
7918
7919         if (current_config->fdi_lanes != pipe_config->fdi_lanes) {
7920                 DRM_ERROR("mismatch in fdi_lanes "
7921                           "(expected %i, found %i)\n",
7922                           current_config->fdi_lanes,
7923                           pipe_config->fdi_lanes);
7924                 return false;
7925         }
7926
7927         return true;
7928 }
7929
7930 void
7931 intel_modeset_check_state(struct drm_device *dev)
7932 {
7933         drm_i915_private_t *dev_priv = dev->dev_private;
7934         struct intel_crtc *crtc;
7935         struct intel_encoder *encoder;
7936         struct intel_connector *connector;
7937         struct intel_crtc_config pipe_config;
7938
7939         list_for_each_entry(connector, &dev->mode_config.connector_list,
7940                             base.head) {
7941                 /* This also checks the encoder/connector hw state with the
7942                  * ->get_hw_state callbacks. */
7943                 intel_connector_check_state(connector);
7944
7945                 WARN(&connector->new_encoder->base != connector->base.encoder,
7946                      "connector's staged encoder doesn't match current encoder\n");
7947         }
7948
7949         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7950                             base.head) {
7951                 bool enabled = false;
7952                 bool active = false;
7953                 enum pipe pipe, tracked_pipe;
7954
7955                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7956                               encoder->base.base.id,
7957                               drm_get_encoder_name(&encoder->base));
7958
7959                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7960                      "encoder's stage crtc doesn't match current crtc\n");
7961                 WARN(encoder->connectors_active && !encoder->base.crtc,
7962                      "encoder's active_connectors set, but no crtc\n");
7963
7964                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7965                                     base.head) {
7966                         if (connector->base.encoder != &encoder->base)
7967                                 continue;
7968                         enabled = true;
7969                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7970                                 active = true;
7971                 }
7972                 WARN(!!encoder->base.crtc != enabled,
7973                      "encoder's enabled state mismatch "
7974                      "(expected %i, found %i)\n",
7975                      !!encoder->base.crtc, enabled);
7976                 WARN(active && !encoder->base.crtc,
7977                      "active encoder with no crtc\n");
7978
7979                 WARN(encoder->connectors_active != active,
7980                      "encoder's computed active state doesn't match tracked active state "
7981                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7982
7983                 active = encoder->get_hw_state(encoder, &pipe);
7984                 WARN(active != encoder->connectors_active,
7985                      "encoder's hw state doesn't match sw tracking "
7986                      "(expected %i, found %i)\n",
7987                      encoder->connectors_active, active);
7988
7989                 if (!encoder->base.crtc)
7990                         continue;
7991
7992                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7993                 WARN(active && pipe != tracked_pipe,
7994                      "active encoder's pipe doesn't match"
7995                      "(expected %i, found %i)\n",
7996                      tracked_pipe, pipe);
7997
7998         }
7999
8000         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8001                             base.head) {
8002                 bool enabled = false;
8003                 bool active = false;
8004
8005                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8006                               crtc->base.base.id);
8007
8008                 WARN(crtc->active && !crtc->base.enabled,
8009                      "active crtc, but not enabled in sw tracking\n");
8010
8011                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8012                                     base.head) {
8013                         if (encoder->base.crtc != &crtc->base)
8014                                 continue;
8015                         enabled = true;
8016                         if (encoder->connectors_active)
8017                                 active = true;
8018                 }
8019                 WARN(active != crtc->active,
8020                      "crtc's computed active state doesn't match tracked active state "
8021                      "(expected %i, found %i)\n", active, crtc->active);
8022                 WARN(enabled != crtc->base.enabled,
8023                      "crtc's computed enabled state doesn't match tracked enabled state "
8024                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8025
8026                 memset(&pipe_config, 0, sizeof(pipe_config));
8027                 pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
8028                 active = dev_priv->display.get_pipe_config(crtc,
8029                                                            &pipe_config);
8030                 WARN(crtc->active != active,
8031                      "crtc active state doesn't match with hw state "
8032                      "(expected %i, found %i)\n", crtc->active, active);
8033
8034                 WARN(active &&
8035                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
8036                      "pipe state doesn't match!\n");
8037         }
8038 }
8039
8040 static int __intel_set_mode(struct drm_crtc *crtc,
8041                             struct drm_display_mode *mode,
8042                             int x, int y, struct drm_framebuffer *fb)
8043 {
8044         struct drm_device *dev = crtc->dev;
8045         drm_i915_private_t *dev_priv = dev->dev_private;
8046         struct drm_display_mode *saved_mode, *saved_hwmode;
8047         struct intel_crtc_config *pipe_config = NULL;
8048         struct intel_crtc *intel_crtc;
8049         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8050         int ret = 0;
8051
8052         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8053         if (!saved_mode)
8054                 return -ENOMEM;
8055         saved_hwmode = saved_mode + 1;
8056
8057         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8058                                      &prepare_pipes, &disable_pipes);
8059
8060         *saved_hwmode = crtc->hwmode;
8061         *saved_mode = crtc->mode;
8062
8063         /* Hack: Because we don't (yet) support global modeset on multiple
8064          * crtcs, we don't keep track of the new mode for more than one crtc.
8065          * Hence simply check whether any bit is set in modeset_pipes in all the
8066          * pieces of code that are not yet converted to deal with mutliple crtcs
8067          * changing their mode at the same time. */
8068         if (modeset_pipes) {
8069                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8070                 if (IS_ERR(pipe_config)) {
8071                         ret = PTR_ERR(pipe_config);
8072                         pipe_config = NULL;
8073
8074                         goto out;
8075                 }
8076         }
8077
8078         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8079                 intel_crtc_disable(&intel_crtc->base);
8080
8081         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8082                 if (intel_crtc->base.enabled)
8083                         dev_priv->display.crtc_disable(&intel_crtc->base);
8084         }
8085
8086         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8087          * to set it here already despite that we pass it down the callchain.
8088          */
8089         if (modeset_pipes) {
8090                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8091                 crtc->mode = *mode;
8092                 /* mode_set/enable/disable functions rely on a correct pipe
8093                  * config. */
8094                 to_intel_crtc(crtc)->config = *pipe_config;
8095                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8096         }
8097
8098         /* Only after disabling all output pipelines that will be changed can we
8099          * update the the output configuration. */
8100         intel_modeset_update_state(dev, prepare_pipes);
8101
8102         if (dev_priv->display.modeset_global_resources)
8103                 dev_priv->display.modeset_global_resources(dev);
8104
8105         /* Set up the DPLL and any encoders state that needs to adjust or depend
8106          * on the DPLL.
8107          */
8108         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8109                 ret = intel_crtc_mode_set(&intel_crtc->base,
8110                                           x, y, fb);
8111                 if (ret)
8112                         goto done;
8113         }
8114
8115         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8116         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8117                 dev_priv->display.crtc_enable(&intel_crtc->base);
8118
8119         if (modeset_pipes) {
8120                 /* Store real post-adjustment hardware mode. */
8121                 crtc->hwmode = pipe_config->adjusted_mode;
8122
8123                 /* Calculate and store various constants which
8124                  * are later needed by vblank and swap-completion
8125                  * timestamping. They are derived from true hwmode.
8126                  */
8127                 drm_calc_timestamping_constants(crtc);
8128         }
8129
8130         /* FIXME: add subpixel order */
8131 done:
8132         if (ret && crtc->enabled) {
8133                 crtc->hwmode = *saved_hwmode;
8134                 crtc->mode = *saved_mode;
8135         }
8136
8137 out:
8138         kfree(pipe_config);
8139         kfree(saved_mode);
8140         return ret;
8141 }
8142
8143 int intel_set_mode(struct drm_crtc *crtc,
8144                      struct drm_display_mode *mode,
8145                      int x, int y, struct drm_framebuffer *fb)
8146 {
8147         int ret;
8148
8149         ret = __intel_set_mode(crtc, mode, x, y, fb);
8150
8151         if (ret == 0)
8152                 intel_modeset_check_state(crtc->dev);
8153
8154         return ret;
8155 }
8156
8157 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8158 {
8159         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8160 }
8161
8162 #undef for_each_intel_crtc_masked
8163
8164 static void intel_set_config_free(struct intel_set_config *config)
8165 {
8166         if (!config)
8167                 return;
8168
8169         kfree(config->save_connector_encoders);
8170         kfree(config->save_encoder_crtcs);
8171         kfree(config);
8172 }
8173
8174 static int intel_set_config_save_state(struct drm_device *dev,
8175                                        struct intel_set_config *config)
8176 {
8177         struct drm_encoder *encoder;
8178         struct drm_connector *connector;
8179         int count;
8180
8181         config->save_encoder_crtcs =
8182                 kcalloc(dev->mode_config.num_encoder,
8183                         sizeof(struct drm_crtc *), GFP_KERNEL);
8184         if (!config->save_encoder_crtcs)
8185                 return -ENOMEM;
8186
8187         config->save_connector_encoders =
8188                 kcalloc(dev->mode_config.num_connector,
8189                         sizeof(struct drm_encoder *), GFP_KERNEL);
8190         if (!config->save_connector_encoders)
8191                 return -ENOMEM;
8192
8193         /* Copy data. Note that driver private data is not affected.
8194          * Should anything bad happen only the expected state is
8195          * restored, not the drivers personal bookkeeping.
8196          */
8197         count = 0;
8198         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8199                 config->save_encoder_crtcs[count++] = encoder->crtc;
8200         }
8201
8202         count = 0;
8203         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8204                 config->save_connector_encoders[count++] = connector->encoder;
8205         }
8206
8207         return 0;
8208 }
8209
8210 static void intel_set_config_restore_state(struct drm_device *dev,
8211                                            struct intel_set_config *config)
8212 {
8213         struct intel_encoder *encoder;
8214         struct intel_connector *connector;
8215         int count;
8216
8217         count = 0;
8218         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8219                 encoder->new_crtc =
8220                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8221         }
8222
8223         count = 0;
8224         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8225                 connector->new_encoder =
8226                         to_intel_encoder(config->save_connector_encoders[count++]);
8227         }
8228 }
8229
8230 static void
8231 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8232                                       struct intel_set_config *config)
8233 {
8234
8235         /* We should be able to check here if the fb has the same properties
8236          * and then just flip_or_move it */
8237         if (set->crtc->fb != set->fb) {
8238                 /* If we have no fb then treat it as a full mode set */
8239                 if (set->crtc->fb == NULL) {
8240                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8241                         config->mode_changed = true;
8242                 } else if (set->fb == NULL) {
8243                         config->mode_changed = true;
8244                 } else if (set->fb->pixel_format !=
8245                            set->crtc->fb->pixel_format) {
8246                         config->mode_changed = true;
8247                 } else
8248                         config->fb_changed = true;
8249         }
8250
8251         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8252                 config->fb_changed = true;
8253
8254         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8255                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8256                 drm_mode_debug_printmodeline(&set->crtc->mode);
8257                 drm_mode_debug_printmodeline(set->mode);
8258                 config->mode_changed = true;
8259         }
8260 }
8261
8262 static int
8263 intel_modeset_stage_output_state(struct drm_device *dev,
8264                                  struct drm_mode_set *set,
8265                                  struct intel_set_config *config)
8266 {
8267         struct drm_crtc *new_crtc;
8268         struct intel_connector *connector;
8269         struct intel_encoder *encoder;
8270         int count, ro;
8271
8272         /* The upper layers ensure that we either disable a crtc or have a list
8273          * of connectors. For paranoia, double-check this. */
8274         WARN_ON(!set->fb && (set->num_connectors != 0));
8275         WARN_ON(set->fb && (set->num_connectors == 0));
8276
8277         count = 0;
8278         list_for_each_entry(connector, &dev->mode_config.connector_list,
8279                             base.head) {
8280                 /* Otherwise traverse passed in connector list and get encoders
8281                  * for them. */
8282                 for (ro = 0; ro < set->num_connectors; ro++) {
8283                         if (set->connectors[ro] == &connector->base) {
8284                                 connector->new_encoder = connector->encoder;
8285                                 break;
8286                         }
8287                 }
8288
8289                 /* If we disable the crtc, disable all its connectors. Also, if
8290                  * the connector is on the changing crtc but not on the new
8291                  * connector list, disable it. */
8292                 if ((!set->fb || ro == set->num_connectors) &&
8293                     connector->base.encoder &&
8294                     connector->base.encoder->crtc == set->crtc) {
8295                         connector->new_encoder = NULL;
8296
8297                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8298                                 connector->base.base.id,
8299                                 drm_get_connector_name(&connector->base));
8300                 }
8301
8302
8303                 if (&connector->new_encoder->base != connector->base.encoder) {
8304                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8305                         config->mode_changed = true;
8306                 }
8307         }
8308         /* connector->new_encoder is now updated for all connectors. */
8309
8310         /* Update crtc of enabled connectors. */
8311         count = 0;
8312         list_for_each_entry(connector, &dev->mode_config.connector_list,
8313                             base.head) {
8314                 if (!connector->new_encoder)
8315                         continue;
8316
8317                 new_crtc = connector->new_encoder->base.crtc;
8318
8319                 for (ro = 0; ro < set->num_connectors; ro++) {
8320                         if (set->connectors[ro] == &connector->base)
8321                                 new_crtc = set->crtc;
8322                 }
8323
8324                 /* Make sure the new CRTC will work with the encoder */
8325                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8326                                            new_crtc)) {
8327                         return -EINVAL;
8328                 }
8329                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8330
8331                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8332                         connector->base.base.id,
8333                         drm_get_connector_name(&connector->base),
8334                         new_crtc->base.id);
8335         }
8336
8337         /* Check for any encoders that needs to be disabled. */
8338         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8339                             base.head) {
8340                 list_for_each_entry(connector,
8341                                     &dev->mode_config.connector_list,
8342                                     base.head) {
8343                         if (connector->new_encoder == encoder) {
8344                                 WARN_ON(!connector->new_encoder->new_crtc);
8345
8346                                 goto next_encoder;
8347                         }
8348                 }
8349                 encoder->new_crtc = NULL;
8350 next_encoder:
8351                 /* Only now check for crtc changes so we don't miss encoders
8352                  * that will be disabled. */
8353                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8354                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8355                         config->mode_changed = true;
8356                 }
8357         }
8358         /* Now we've also updated encoder->new_crtc for all encoders. */
8359
8360         return 0;
8361 }
8362
8363 static int intel_crtc_set_config(struct drm_mode_set *set)
8364 {
8365         struct drm_device *dev;
8366         struct drm_mode_set save_set;
8367         struct intel_set_config *config;
8368         int ret;
8369
8370         BUG_ON(!set);
8371         BUG_ON(!set->crtc);
8372         BUG_ON(!set->crtc->helper_private);
8373
8374         /* Enforce sane interface api - has been abused by the fb helper. */
8375         BUG_ON(!set->mode && set->fb);
8376         BUG_ON(set->fb && set->num_connectors == 0);
8377
8378         if (set->fb) {
8379                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8380                                 set->crtc->base.id, set->fb->base.id,
8381                                 (int)set->num_connectors, set->x, set->y);
8382         } else {
8383                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8384         }
8385
8386         dev = set->crtc->dev;
8387
8388         ret = -ENOMEM;
8389         config = kzalloc(sizeof(*config), GFP_KERNEL);
8390         if (!config)
8391                 goto out_config;
8392
8393         ret = intel_set_config_save_state(dev, config);
8394         if (ret)
8395                 goto out_config;
8396
8397         save_set.crtc = set->crtc;
8398         save_set.mode = &set->crtc->mode;
8399         save_set.x = set->crtc->x;
8400         save_set.y = set->crtc->y;
8401         save_set.fb = set->crtc->fb;
8402
8403         /* Compute whether we need a full modeset, only an fb base update or no
8404          * change at all. In the future we might also check whether only the
8405          * mode changed, e.g. for LVDS where we only change the panel fitter in
8406          * such cases. */
8407         intel_set_config_compute_mode_changes(set, config);
8408
8409         ret = intel_modeset_stage_output_state(dev, set, config);
8410         if (ret)
8411                 goto fail;
8412
8413         if (config->mode_changed) {
8414                 if (set->mode) {
8415                         DRM_DEBUG_KMS("attempting to set mode from"
8416                                         " userspace\n");
8417                         drm_mode_debug_printmodeline(set->mode);
8418                 }
8419
8420                 ret = intel_set_mode(set->crtc, set->mode,
8421                                      set->x, set->y, set->fb);
8422                 if (ret) {
8423                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8424                                   set->crtc->base.id, ret);
8425                         goto fail;
8426                 }
8427         } else if (config->fb_changed) {
8428                 intel_crtc_wait_for_pending_flips(set->crtc);
8429
8430                 ret = intel_pipe_set_base(set->crtc,
8431                                           set->x, set->y, set->fb);
8432         }
8433
8434         intel_set_config_free(config);
8435
8436         return 0;
8437
8438 fail:
8439         intel_set_config_restore_state(dev, config);
8440
8441         /* Try to restore the config */
8442         if (config->mode_changed &&
8443             intel_set_mode(save_set.crtc, save_set.mode,
8444                            save_set.x, save_set.y, save_set.fb))
8445                 DRM_ERROR("failed to restore config after modeset failure\n");
8446
8447 out_config:
8448         intel_set_config_free(config);
8449         return ret;
8450 }
8451
8452 static const struct drm_crtc_funcs intel_crtc_funcs = {
8453         .cursor_set = intel_crtc_cursor_set,
8454         .cursor_move = intel_crtc_cursor_move,
8455         .gamma_set = intel_crtc_gamma_set,
8456         .set_config = intel_crtc_set_config,
8457         .destroy = intel_crtc_destroy,
8458         .page_flip = intel_crtc_page_flip,
8459 };
8460
8461 static void intel_cpu_pll_init(struct drm_device *dev)
8462 {
8463         if (HAS_DDI(dev))
8464                 intel_ddi_pll_init(dev);
8465 }
8466
8467 static void intel_pch_pll_init(struct drm_device *dev)
8468 {
8469         drm_i915_private_t *dev_priv = dev->dev_private;
8470         int i;
8471
8472         if (dev_priv->num_pch_pll == 0) {
8473                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8474                 return;
8475         }
8476
8477         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8478                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8479                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8480                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8481         }
8482 }
8483
8484 static void intel_crtc_init(struct drm_device *dev, int pipe)
8485 {
8486         drm_i915_private_t *dev_priv = dev->dev_private;
8487         struct intel_crtc *intel_crtc;
8488         int i;
8489
8490         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8491         if (intel_crtc == NULL)
8492                 return;
8493
8494         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8495
8496         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8497         for (i = 0; i < 256; i++) {
8498                 intel_crtc->lut_r[i] = i;
8499                 intel_crtc->lut_g[i] = i;
8500                 intel_crtc->lut_b[i] = i;
8501         }
8502
8503         /* Swap pipes & planes for FBC on pre-965 */
8504         intel_crtc->pipe = pipe;
8505         intel_crtc->plane = pipe;
8506         intel_crtc->config.cpu_transcoder = pipe;
8507         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8508                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8509                 intel_crtc->plane = !pipe;
8510         }
8511
8512         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8513                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8514         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8515         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8516
8517         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8518 }
8519
8520 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8521                                 struct drm_file *file)
8522 {
8523         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8524         struct drm_mode_object *drmmode_obj;
8525         struct intel_crtc *crtc;
8526
8527         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8528                 return -ENODEV;
8529
8530         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8531                         DRM_MODE_OBJECT_CRTC);
8532
8533         if (!drmmode_obj) {
8534                 DRM_ERROR("no such CRTC id\n");
8535                 return -EINVAL;
8536         }
8537
8538         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8539         pipe_from_crtc_id->pipe = crtc->pipe;
8540
8541         return 0;
8542 }
8543
8544 static int intel_encoder_clones(struct intel_encoder *encoder)
8545 {
8546         struct drm_device *dev = encoder->base.dev;
8547         struct intel_encoder *source_encoder;
8548         int index_mask = 0;
8549         int entry = 0;
8550
8551         list_for_each_entry(source_encoder,
8552                             &dev->mode_config.encoder_list, base.head) {
8553
8554                 if (encoder == source_encoder)
8555                         index_mask |= (1 << entry);
8556
8557                 /* Intel hw has only one MUX where enocoders could be cloned. */
8558                 if (encoder->cloneable && source_encoder->cloneable)
8559                         index_mask |= (1 << entry);
8560
8561                 entry++;
8562         }
8563
8564         return index_mask;
8565 }
8566
8567 static bool has_edp_a(struct drm_device *dev)
8568 {
8569         struct drm_i915_private *dev_priv = dev->dev_private;
8570
8571         if (!IS_MOBILE(dev))
8572                 return false;
8573
8574         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8575                 return false;
8576
8577         if (IS_GEN5(dev) &&
8578             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8579                 return false;
8580
8581         return true;
8582 }
8583
8584 static void intel_setup_outputs(struct drm_device *dev)
8585 {
8586         struct drm_i915_private *dev_priv = dev->dev_private;
8587         struct intel_encoder *encoder;
8588         bool dpd_is_edp = false;
8589         bool has_lvds;
8590
8591         has_lvds = intel_lvds_init(dev);
8592         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8593                 /* disable the panel fitter on everything but LVDS */
8594                 I915_WRITE(PFIT_CONTROL, 0);
8595         }
8596
8597         if (!IS_ULT(dev))
8598                 intel_crt_init(dev);
8599
8600         if (HAS_DDI(dev)) {
8601                 int found;
8602
8603                 /* Haswell uses DDI functions to detect digital outputs */
8604                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8605                 /* DDI A only supports eDP */
8606                 if (found)
8607                         intel_ddi_init(dev, PORT_A);
8608
8609                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8610                  * register */
8611                 found = I915_READ(SFUSE_STRAP);
8612
8613                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8614                         intel_ddi_init(dev, PORT_B);
8615                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8616                         intel_ddi_init(dev, PORT_C);
8617                 if (found & SFUSE_STRAP_DDID_DETECTED)
8618                         intel_ddi_init(dev, PORT_D);
8619         } else if (HAS_PCH_SPLIT(dev)) {
8620                 int found;
8621                 dpd_is_edp = intel_dpd_is_edp(dev);
8622
8623                 if (has_edp_a(dev))
8624                         intel_dp_init(dev, DP_A, PORT_A);
8625
8626                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8627                         /* PCH SDVOB multiplex with HDMIB */
8628                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8629                         if (!found)
8630                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8631                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8632                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8633                 }
8634
8635                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8636                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8637
8638                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8639                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8640
8641                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8642                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8643
8644                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8645                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8646         } else if (IS_VALLEYVIEW(dev)) {
8647                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8648                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8649                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8650
8651                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8652                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8653                                         PORT_B);
8654                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8655                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8656                 }
8657         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8658                 bool found = false;
8659
8660                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8661                         DRM_DEBUG_KMS("probing SDVOB\n");
8662                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8663                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8664                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8665                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8666                         }
8667
8668                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8669                                 DRM_DEBUG_KMS("probing DP_B\n");
8670                                 intel_dp_init(dev, DP_B, PORT_B);
8671                         }
8672                 }
8673
8674                 /* Before G4X SDVOC doesn't have its own detect register */
8675
8676                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8677                         DRM_DEBUG_KMS("probing SDVOC\n");
8678                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8679                 }
8680
8681                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8682
8683                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8684                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8685                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8686                         }
8687                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8688                                 DRM_DEBUG_KMS("probing DP_C\n");
8689                                 intel_dp_init(dev, DP_C, PORT_C);
8690                         }
8691                 }
8692
8693                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8694                     (I915_READ(DP_D) & DP_DETECTED)) {
8695                         DRM_DEBUG_KMS("probing DP_D\n");
8696                         intel_dp_init(dev, DP_D, PORT_D);
8697                 }
8698         } else if (IS_GEN2(dev))
8699                 intel_dvo_init(dev);
8700
8701         if (SUPPORTS_TV(dev))
8702                 intel_tv_init(dev);
8703
8704         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8705                 encoder->base.possible_crtcs = encoder->crtc_mask;
8706                 encoder->base.possible_clones =
8707                         intel_encoder_clones(encoder);
8708         }
8709
8710         intel_init_pch_refclk(dev);
8711
8712         drm_helper_move_panel_connectors_to_head(dev);
8713 }
8714
8715 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8716 {
8717         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8718
8719         drm_framebuffer_cleanup(fb);
8720         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8721
8722         kfree(intel_fb);
8723 }
8724
8725 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8726                                                 struct drm_file *file,
8727                                                 unsigned int *handle)
8728 {
8729         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8730         struct drm_i915_gem_object *obj = intel_fb->obj;
8731
8732         return drm_gem_handle_create(file, &obj->base, handle);
8733 }
8734
8735 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8736         .destroy = intel_user_framebuffer_destroy,
8737         .create_handle = intel_user_framebuffer_create_handle,
8738 };
8739
8740 int intel_framebuffer_init(struct drm_device *dev,
8741                            struct intel_framebuffer *intel_fb,
8742                            struct drm_mode_fb_cmd2 *mode_cmd,
8743                            struct drm_i915_gem_object *obj)
8744 {
8745         int ret;
8746
8747         if (obj->tiling_mode == I915_TILING_Y) {
8748                 DRM_DEBUG("hardware does not support tiling Y\n");
8749                 return -EINVAL;
8750         }
8751
8752         if (mode_cmd->pitches[0] & 63) {
8753                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8754                           mode_cmd->pitches[0]);
8755                 return -EINVAL;
8756         }
8757
8758         /* FIXME <= Gen4 stride limits are bit unclear */
8759         if (mode_cmd->pitches[0] > 32768) {
8760                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8761                           mode_cmd->pitches[0]);
8762                 return -EINVAL;
8763         }
8764
8765         if (obj->tiling_mode != I915_TILING_NONE &&
8766             mode_cmd->pitches[0] != obj->stride) {
8767                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8768                           mode_cmd->pitches[0], obj->stride);
8769                 return -EINVAL;
8770         }
8771
8772         /* Reject formats not supported by any plane early. */
8773         switch (mode_cmd->pixel_format) {
8774         case DRM_FORMAT_C8:
8775         case DRM_FORMAT_RGB565:
8776         case DRM_FORMAT_XRGB8888:
8777         case DRM_FORMAT_ARGB8888:
8778                 break;
8779         case DRM_FORMAT_XRGB1555:
8780         case DRM_FORMAT_ARGB1555:
8781                 if (INTEL_INFO(dev)->gen > 3) {
8782                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8783                         return -EINVAL;
8784                 }
8785                 break;
8786         case DRM_FORMAT_XBGR8888:
8787         case DRM_FORMAT_ABGR8888:
8788         case DRM_FORMAT_XRGB2101010:
8789         case DRM_FORMAT_ARGB2101010:
8790         case DRM_FORMAT_XBGR2101010:
8791         case DRM_FORMAT_ABGR2101010:
8792                 if (INTEL_INFO(dev)->gen < 4) {
8793                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8794                         return -EINVAL;
8795                 }
8796                 break;
8797         case DRM_FORMAT_YUYV:
8798         case DRM_FORMAT_UYVY:
8799         case DRM_FORMAT_YVYU:
8800         case DRM_FORMAT_VYUY:
8801                 if (INTEL_INFO(dev)->gen < 5) {
8802                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8803                         return -EINVAL;
8804                 }
8805                 break;
8806         default:
8807                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8808                 return -EINVAL;
8809         }
8810
8811         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8812         if (mode_cmd->offsets[0] != 0)
8813                 return -EINVAL;
8814
8815         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8816         intel_fb->obj = obj;
8817
8818         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8819         if (ret) {
8820                 DRM_ERROR("framebuffer init failed %d\n", ret);
8821                 return ret;
8822         }
8823
8824         return 0;
8825 }
8826
8827 static struct drm_framebuffer *
8828 intel_user_framebuffer_create(struct drm_device *dev,
8829                               struct drm_file *filp,
8830                               struct drm_mode_fb_cmd2 *mode_cmd)
8831 {
8832         struct drm_i915_gem_object *obj;
8833
8834         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8835                                                 mode_cmd->handles[0]));
8836         if (&obj->base == NULL)
8837                 return ERR_PTR(-ENOENT);
8838
8839         return intel_framebuffer_create(dev, mode_cmd, obj);
8840 }
8841
8842 static const struct drm_mode_config_funcs intel_mode_funcs = {
8843         .fb_create = intel_user_framebuffer_create,
8844         .output_poll_changed = intel_fb_output_poll_changed,
8845 };
8846
8847 /* Set up chip specific display functions */
8848 static void intel_init_display(struct drm_device *dev)
8849 {
8850         struct drm_i915_private *dev_priv = dev->dev_private;
8851
8852         if (HAS_DDI(dev)) {
8853                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8854                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8855                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8856                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8857                 dev_priv->display.off = haswell_crtc_off;
8858                 dev_priv->display.update_plane = ironlake_update_plane;
8859         } else if (HAS_PCH_SPLIT(dev)) {
8860                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8861                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8862                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8863                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8864                 dev_priv->display.off = ironlake_crtc_off;
8865                 dev_priv->display.update_plane = ironlake_update_plane;
8866         } else if (IS_VALLEYVIEW(dev)) {
8867                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8868                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8869                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
8870                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8871                 dev_priv->display.off = i9xx_crtc_off;
8872                 dev_priv->display.update_plane = i9xx_update_plane;
8873         } else {
8874                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8875                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8876                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8877                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8878                 dev_priv->display.off = i9xx_crtc_off;
8879                 dev_priv->display.update_plane = i9xx_update_plane;
8880         }
8881
8882         /* Returns the core display clock speed */
8883         if (IS_VALLEYVIEW(dev))
8884                 dev_priv->display.get_display_clock_speed =
8885                         valleyview_get_display_clock_speed;
8886         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8887                 dev_priv->display.get_display_clock_speed =
8888                         i945_get_display_clock_speed;
8889         else if (IS_I915G(dev))
8890                 dev_priv->display.get_display_clock_speed =
8891                         i915_get_display_clock_speed;
8892         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8893                 dev_priv->display.get_display_clock_speed =
8894                         i9xx_misc_get_display_clock_speed;
8895         else if (IS_I915GM(dev))
8896                 dev_priv->display.get_display_clock_speed =
8897                         i915gm_get_display_clock_speed;
8898         else if (IS_I865G(dev))
8899                 dev_priv->display.get_display_clock_speed =
8900                         i865_get_display_clock_speed;
8901         else if (IS_I85X(dev))
8902                 dev_priv->display.get_display_clock_speed =
8903                         i855_get_display_clock_speed;
8904         else /* 852, 830 */
8905                 dev_priv->display.get_display_clock_speed =
8906                         i830_get_display_clock_speed;
8907
8908         if (HAS_PCH_SPLIT(dev)) {
8909                 if (IS_GEN5(dev)) {
8910                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8911                         dev_priv->display.write_eld = ironlake_write_eld;
8912                 } else if (IS_GEN6(dev)) {
8913                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8914                         dev_priv->display.write_eld = ironlake_write_eld;
8915                 } else if (IS_IVYBRIDGE(dev)) {
8916                         /* FIXME: detect B0+ stepping and use auto training */
8917                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8918                         dev_priv->display.write_eld = ironlake_write_eld;
8919                         dev_priv->display.modeset_global_resources =
8920                                 ivb_modeset_global_resources;
8921                 } else if (IS_HASWELL(dev)) {
8922                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8923                         dev_priv->display.write_eld = haswell_write_eld;
8924                         dev_priv->display.modeset_global_resources =
8925                                 haswell_modeset_global_resources;
8926                 }
8927         } else if (IS_G4X(dev)) {
8928                 dev_priv->display.write_eld = g4x_write_eld;
8929         }
8930
8931         /* Default just returns -ENODEV to indicate unsupported */
8932         dev_priv->display.queue_flip = intel_default_queue_flip;
8933
8934         switch (INTEL_INFO(dev)->gen) {
8935         case 2:
8936                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8937                 break;
8938
8939         case 3:
8940                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8941                 break;
8942
8943         case 4:
8944         case 5:
8945                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8946                 break;
8947
8948         case 6:
8949                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8950                 break;
8951         case 7:
8952                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8953                 break;
8954         }
8955 }
8956
8957 /*
8958  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8959  * resume, or other times.  This quirk makes sure that's the case for
8960  * affected systems.
8961  */
8962 static void quirk_pipea_force(struct drm_device *dev)
8963 {
8964         struct drm_i915_private *dev_priv = dev->dev_private;
8965
8966         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8967         DRM_INFO("applying pipe a force quirk\n");
8968 }
8969
8970 /*
8971  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8972  */
8973 static void quirk_ssc_force_disable(struct drm_device *dev)
8974 {
8975         struct drm_i915_private *dev_priv = dev->dev_private;
8976         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8977         DRM_INFO("applying lvds SSC disable quirk\n");
8978 }
8979
8980 /*
8981  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8982  * brightness value
8983  */
8984 static void quirk_invert_brightness(struct drm_device *dev)
8985 {
8986         struct drm_i915_private *dev_priv = dev->dev_private;
8987         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8988         DRM_INFO("applying inverted panel brightness quirk\n");
8989 }
8990
8991 struct intel_quirk {
8992         int device;
8993         int subsystem_vendor;
8994         int subsystem_device;
8995         void (*hook)(struct drm_device *dev);
8996 };
8997
8998 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8999 struct intel_dmi_quirk {
9000         void (*hook)(struct drm_device *dev);
9001         const struct dmi_system_id (*dmi_id_list)[];
9002 };
9003
9004 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9005 {
9006         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9007         return 1;
9008 }
9009
9010 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9011         {
9012                 .dmi_id_list = &(const struct dmi_system_id[]) {
9013                         {
9014                                 .callback = intel_dmi_reverse_brightness,
9015                                 .ident = "NCR Corporation",
9016                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9017                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9018                                 },
9019                         },
9020                         { }  /* terminating entry */
9021                 },
9022                 .hook = quirk_invert_brightness,
9023         },
9024 };
9025
9026 static struct intel_quirk intel_quirks[] = {
9027         /* HP Mini needs pipe A force quirk (LP: #322104) */
9028         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9029
9030         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9031         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9032
9033         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9034         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9035
9036         /* 830/845 need to leave pipe A & dpll A up */
9037         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9038         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9039
9040         /* Lenovo U160 cannot use SSC on LVDS */
9041         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9042
9043         /* Sony Vaio Y cannot use SSC on LVDS */
9044         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9045
9046         /* Acer Aspire 5734Z must invert backlight brightness */
9047         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9048
9049         /* Acer/eMachines G725 */
9050         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9051
9052         /* Acer/eMachines e725 */
9053         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9054
9055         /* Acer/Packard Bell NCL20 */
9056         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9057
9058         /* Acer Aspire 4736Z */
9059         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9060 };
9061
9062 static void intel_init_quirks(struct drm_device *dev)
9063 {
9064         struct pci_dev *d = dev->pdev;
9065         int i;
9066
9067         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9068                 struct intel_quirk *q = &intel_quirks[i];
9069
9070                 if (d->device == q->device &&
9071                     (d->subsystem_vendor == q->subsystem_vendor ||
9072                      q->subsystem_vendor == PCI_ANY_ID) &&
9073                     (d->subsystem_device == q->subsystem_device ||
9074                      q->subsystem_device == PCI_ANY_ID))
9075                         q->hook(dev);
9076         }
9077         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9078                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9079                         intel_dmi_quirks[i].hook(dev);
9080         }
9081 }
9082
9083 /* Disable the VGA plane that we never use */
9084 static void i915_disable_vga(struct drm_device *dev)
9085 {
9086         struct drm_i915_private *dev_priv = dev->dev_private;
9087         u8 sr1;
9088         u32 vga_reg = i915_vgacntrl_reg(dev);
9089
9090         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9091         outb(SR01, VGA_SR_INDEX);
9092         sr1 = inb(VGA_SR_DATA);
9093         outb(sr1 | 1<<5, VGA_SR_DATA);
9094         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9095         udelay(300);
9096
9097         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9098         POSTING_READ(vga_reg);
9099 }
9100
9101 void intel_modeset_init_hw(struct drm_device *dev)
9102 {
9103         intel_init_power_well(dev);
9104
9105         intel_prepare_ddi(dev);
9106
9107         intel_init_clock_gating(dev);
9108
9109         mutex_lock(&dev->struct_mutex);
9110         intel_enable_gt_powersave(dev);
9111         mutex_unlock(&dev->struct_mutex);
9112 }
9113
9114 void intel_modeset_init(struct drm_device *dev)
9115 {
9116         struct drm_i915_private *dev_priv = dev->dev_private;
9117         int i, j, ret;
9118
9119         drm_mode_config_init(dev);
9120
9121         dev->mode_config.min_width = 0;
9122         dev->mode_config.min_height = 0;
9123
9124         dev->mode_config.preferred_depth = 24;
9125         dev->mode_config.prefer_shadow = 1;
9126
9127         dev->mode_config.funcs = &intel_mode_funcs;
9128
9129         intel_init_quirks(dev);
9130
9131         intel_init_pm(dev);
9132
9133         if (INTEL_INFO(dev)->num_pipes == 0)
9134                 return;
9135
9136         intel_init_display(dev);
9137
9138         if (IS_GEN2(dev)) {
9139                 dev->mode_config.max_width = 2048;
9140                 dev->mode_config.max_height = 2048;
9141         } else if (IS_GEN3(dev)) {
9142                 dev->mode_config.max_width = 4096;
9143                 dev->mode_config.max_height = 4096;
9144         } else {
9145                 dev->mode_config.max_width = 8192;
9146                 dev->mode_config.max_height = 8192;
9147         }
9148         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9149
9150         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9151                       INTEL_INFO(dev)->num_pipes,
9152                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9153
9154         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9155                 intel_crtc_init(dev, i);
9156                 for (j = 0; j < dev_priv->num_plane; j++) {
9157                         ret = intel_plane_init(dev, i, j);
9158                         if (ret)
9159                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9160                                               pipe_name(i), sprite_name(i, j), ret);
9161                 }
9162         }
9163
9164         intel_cpu_pll_init(dev);
9165         intel_pch_pll_init(dev);
9166
9167         /* Just disable it once at startup */
9168         i915_disable_vga(dev);
9169         intel_setup_outputs(dev);
9170
9171         /* Just in case the BIOS is doing something questionable. */
9172         intel_disable_fbc(dev);
9173 }
9174
9175 static void
9176 intel_connector_break_all_links(struct intel_connector *connector)
9177 {
9178         connector->base.dpms = DRM_MODE_DPMS_OFF;
9179         connector->base.encoder = NULL;
9180         connector->encoder->connectors_active = false;
9181         connector->encoder->base.crtc = NULL;
9182 }
9183
9184 static void intel_enable_pipe_a(struct drm_device *dev)
9185 {
9186         struct intel_connector *connector;
9187         struct drm_connector *crt = NULL;
9188         struct intel_load_detect_pipe load_detect_temp;
9189
9190         /* We can't just switch on the pipe A, we need to set things up with a
9191          * proper mode and output configuration. As a gross hack, enable pipe A
9192          * by enabling the load detect pipe once. */
9193         list_for_each_entry(connector,
9194                             &dev->mode_config.connector_list,
9195                             base.head) {
9196                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9197                         crt = &connector->base;
9198                         break;
9199                 }
9200         }
9201
9202         if (!crt)
9203                 return;
9204
9205         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9206                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9207
9208
9209 }
9210
9211 static bool
9212 intel_check_plane_mapping(struct intel_crtc *crtc)
9213 {
9214         struct drm_device *dev = crtc->base.dev;
9215         struct drm_i915_private *dev_priv = dev->dev_private;
9216         u32 reg, val;
9217
9218         if (INTEL_INFO(dev)->num_pipes == 1)
9219                 return true;
9220
9221         reg = DSPCNTR(!crtc->plane);
9222         val = I915_READ(reg);
9223
9224         if ((val & DISPLAY_PLANE_ENABLE) &&
9225             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9226                 return false;
9227
9228         return true;
9229 }
9230
9231 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9232 {
9233         struct drm_device *dev = crtc->base.dev;
9234         struct drm_i915_private *dev_priv = dev->dev_private;
9235         u32 reg;
9236
9237         /* Clear any frame start delays used for debugging left by the BIOS */
9238         reg = PIPECONF(crtc->config.cpu_transcoder);
9239         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9240
9241         /* We need to sanitize the plane -> pipe mapping first because this will
9242          * disable the crtc (and hence change the state) if it is wrong. Note
9243          * that gen4+ has a fixed plane -> pipe mapping.  */
9244         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9245                 struct intel_connector *connector;
9246                 bool plane;
9247
9248                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9249                               crtc->base.base.id);
9250
9251                 /* Pipe has the wrong plane attached and the plane is active.
9252                  * Temporarily change the plane mapping and disable everything
9253                  * ...  */
9254                 plane = crtc->plane;
9255                 crtc->plane = !plane;
9256                 dev_priv->display.crtc_disable(&crtc->base);
9257                 crtc->plane = plane;
9258
9259                 /* ... and break all links. */
9260                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9261                                     base.head) {
9262                         if (connector->encoder->base.crtc != &crtc->base)
9263                                 continue;
9264
9265                         intel_connector_break_all_links(connector);
9266                 }
9267
9268                 WARN_ON(crtc->active);
9269                 crtc->base.enabled = false;
9270         }
9271
9272         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9273             crtc->pipe == PIPE_A && !crtc->active) {
9274                 /* BIOS forgot to enable pipe A, this mostly happens after
9275                  * resume. Force-enable the pipe to fix this, the update_dpms
9276                  * call below we restore the pipe to the right state, but leave
9277                  * the required bits on. */
9278                 intel_enable_pipe_a(dev);
9279         }
9280
9281         /* Adjust the state of the output pipe according to whether we
9282          * have active connectors/encoders. */
9283         intel_crtc_update_dpms(&crtc->base);
9284
9285         if (crtc->active != crtc->base.enabled) {
9286                 struct intel_encoder *encoder;
9287
9288                 /* This can happen either due to bugs in the get_hw_state
9289                  * functions or because the pipe is force-enabled due to the
9290                  * pipe A quirk. */
9291                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9292                               crtc->base.base.id,
9293                               crtc->base.enabled ? "enabled" : "disabled",
9294                               crtc->active ? "enabled" : "disabled");
9295
9296                 crtc->base.enabled = crtc->active;
9297
9298                 /* Because we only establish the connector -> encoder ->
9299                  * crtc links if something is active, this means the
9300                  * crtc is now deactivated. Break the links. connector
9301                  * -> encoder links are only establish when things are
9302                  *  actually up, hence no need to break them. */
9303                 WARN_ON(crtc->active);
9304
9305                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9306                         WARN_ON(encoder->connectors_active);
9307                         encoder->base.crtc = NULL;
9308                 }
9309         }
9310 }
9311
9312 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9313 {
9314         struct intel_connector *connector;
9315         struct drm_device *dev = encoder->base.dev;
9316
9317         /* We need to check both for a crtc link (meaning that the
9318          * encoder is active and trying to read from a pipe) and the
9319          * pipe itself being active. */
9320         bool has_active_crtc = encoder->base.crtc &&
9321                 to_intel_crtc(encoder->base.crtc)->active;
9322
9323         if (encoder->connectors_active && !has_active_crtc) {
9324                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9325                               encoder->base.base.id,
9326                               drm_get_encoder_name(&encoder->base));
9327
9328                 /* Connector is active, but has no active pipe. This is
9329                  * fallout from our resume register restoring. Disable
9330                  * the encoder manually again. */
9331                 if (encoder->base.crtc) {
9332                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9333                                       encoder->base.base.id,
9334                                       drm_get_encoder_name(&encoder->base));
9335                         encoder->disable(encoder);
9336                 }
9337
9338                 /* Inconsistent output/port/pipe state happens presumably due to
9339                  * a bug in one of the get_hw_state functions. Or someplace else
9340                  * in our code, like the register restore mess on resume. Clamp
9341                  * things to off as a safer default. */
9342                 list_for_each_entry(connector,
9343                                     &dev->mode_config.connector_list,
9344                                     base.head) {
9345                         if (connector->encoder != encoder)
9346                                 continue;
9347
9348                         intel_connector_break_all_links(connector);
9349                 }
9350         }
9351         /* Enabled encoders without active connectors will be fixed in
9352          * the crtc fixup. */
9353 }
9354
9355 void i915_redisable_vga(struct drm_device *dev)
9356 {
9357         struct drm_i915_private *dev_priv = dev->dev_private;
9358         u32 vga_reg = i915_vgacntrl_reg(dev);
9359
9360         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9361                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9362                 i915_disable_vga(dev);
9363         }
9364 }
9365
9366 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9367  * and i915 state tracking structures. */
9368 void intel_modeset_setup_hw_state(struct drm_device *dev,
9369                                   bool force_restore)
9370 {
9371         struct drm_i915_private *dev_priv = dev->dev_private;
9372         enum pipe pipe;
9373         u32 tmp;
9374         struct drm_plane *plane;
9375         struct intel_crtc *crtc;
9376         struct intel_encoder *encoder;
9377         struct intel_connector *connector;
9378
9379         if (HAS_DDI(dev)) {
9380                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9381
9382                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9383                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9384                         case TRANS_DDI_EDP_INPUT_A_ON:
9385                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9386                                 pipe = PIPE_A;
9387                                 break;
9388                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9389                                 pipe = PIPE_B;
9390                                 break;
9391                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9392                                 pipe = PIPE_C;
9393                                 break;
9394                         default:
9395                                 /* A bogus value has been programmed, disable
9396                                  * the transcoder */
9397                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9398                                 intel_ddi_disable_transcoder_func(dev_priv,
9399                                                 TRANSCODER_EDP);
9400                                 goto setup_pipes;
9401                         }
9402
9403                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9404                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9405
9406                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9407                                       pipe_name(pipe));
9408                 }
9409         }
9410
9411 setup_pipes:
9412         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9413                             base.head) {
9414                 enum transcoder tmp = crtc->config.cpu_transcoder;
9415                 memset(&crtc->config, 0, sizeof(crtc->config));
9416                 crtc->config.cpu_transcoder = tmp;
9417
9418                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9419                                                                  &crtc->config);
9420
9421                 crtc->base.enabled = crtc->active;
9422
9423                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9424                               crtc->base.base.id,
9425                               crtc->active ? "enabled" : "disabled");
9426         }
9427
9428         if (HAS_DDI(dev))
9429                 intel_ddi_setup_hw_pll_state(dev);
9430
9431         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9432                             base.head) {
9433                 pipe = 0;
9434
9435                 if (encoder->get_hw_state(encoder, &pipe)) {
9436                         encoder->base.crtc =
9437                                 dev_priv->pipe_to_crtc_mapping[pipe];
9438                 } else {
9439                         encoder->base.crtc = NULL;
9440                 }
9441
9442                 encoder->connectors_active = false;
9443                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9444                               encoder->base.base.id,
9445                               drm_get_encoder_name(&encoder->base),
9446                               encoder->base.crtc ? "enabled" : "disabled",
9447                               pipe);
9448         }
9449
9450         list_for_each_entry(connector, &dev->mode_config.connector_list,
9451                             base.head) {
9452                 if (connector->get_hw_state(connector)) {
9453                         connector->base.dpms = DRM_MODE_DPMS_ON;
9454                         connector->encoder->connectors_active = true;
9455                         connector->base.encoder = &connector->encoder->base;
9456                 } else {
9457                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9458                         connector->base.encoder = NULL;
9459                 }
9460                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9461                               connector->base.base.id,
9462                               drm_get_connector_name(&connector->base),
9463                               connector->base.encoder ? "enabled" : "disabled");
9464         }
9465
9466         /* HW state is read out, now we need to sanitize this mess. */
9467         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9468                             base.head) {
9469                 intel_sanitize_encoder(encoder);
9470         }
9471
9472         for_each_pipe(pipe) {
9473                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9474                 intel_sanitize_crtc(crtc);
9475         }
9476
9477         if (force_restore) {
9478                 /*
9479                  * We need to use raw interfaces for restoring state to avoid
9480                  * checking (bogus) intermediate states.
9481                  */
9482                 for_each_pipe(pipe) {
9483                         struct drm_crtc *crtc =
9484                                 dev_priv->pipe_to_crtc_mapping[pipe];
9485
9486                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9487                                          crtc->fb);
9488                 }
9489                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9490                         intel_plane_restore(plane);
9491
9492                 i915_redisable_vga(dev);
9493         } else {
9494                 intel_modeset_update_staged_output_state(dev);
9495         }
9496
9497         intel_modeset_check_state(dev);
9498
9499         drm_mode_config_reset(dev);
9500 }
9501
9502 void intel_modeset_gem_init(struct drm_device *dev)
9503 {
9504         intel_modeset_init_hw(dev);
9505
9506         intel_setup_overlay(dev);
9507
9508         intel_modeset_setup_hw_state(dev, false);
9509 }
9510
9511 void intel_modeset_cleanup(struct drm_device *dev)
9512 {
9513         struct drm_i915_private *dev_priv = dev->dev_private;
9514         struct drm_crtc *crtc;
9515         struct intel_crtc *intel_crtc;
9516
9517         /*
9518          * Interrupts and polling as the first thing to avoid creating havoc.
9519          * Too much stuff here (turning of rps, connectors, ...) would
9520          * experience fancy races otherwise.
9521          */
9522         drm_irq_uninstall(dev);
9523         cancel_work_sync(&dev_priv->hotplug_work);
9524         /*
9525          * Due to the hpd irq storm handling the hotplug work can re-arm the
9526          * poll handlers. Hence disable polling after hpd handling is shut down.
9527          */
9528         drm_kms_helper_poll_fini(dev);
9529
9530         mutex_lock(&dev->struct_mutex);
9531
9532         intel_unregister_dsm_handler();
9533
9534         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9535                 /* Skip inactive CRTCs */
9536                 if (!crtc->fb)
9537                         continue;
9538
9539                 intel_crtc = to_intel_crtc(crtc);
9540                 intel_increase_pllclock(crtc);
9541         }
9542
9543         intel_disable_fbc(dev);
9544
9545         intel_disable_gt_powersave(dev);
9546
9547         ironlake_teardown_rc6(dev);
9548
9549         mutex_unlock(&dev->struct_mutex);
9550
9551         /* flush any delayed tasks or pending work */
9552         flush_scheduled_work();
9553
9554         /* destroy backlight, if any, before the connectors */
9555         intel_panel_destroy_backlight(dev);
9556
9557         drm_mode_config_cleanup(dev);
9558
9559         intel_cleanup_overlay(dev);
9560 }
9561
9562 /*
9563  * Return which encoder is currently attached for connector.
9564  */
9565 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9566 {
9567         return &intel_attached_encoder(connector)->base;
9568 }
9569
9570 void intel_connector_attach_encoder(struct intel_connector *connector,
9571                                     struct intel_encoder *encoder)
9572 {
9573         connector->encoder = encoder;
9574         drm_mode_connector_attach_encoder(&connector->base,
9575                                           &encoder->base);
9576 }
9577
9578 /*
9579  * set vga decode state - true == enable VGA decode
9580  */
9581 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9582 {
9583         struct drm_i915_private *dev_priv = dev->dev_private;
9584         u16 gmch_ctrl;
9585
9586         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9587         if (state)
9588                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9589         else
9590                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9591         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9592         return 0;
9593 }
9594
9595 #ifdef CONFIG_DEBUG_FS
9596 #include <linux/seq_file.h>
9597
9598 struct intel_display_error_state {
9599         struct intel_cursor_error_state {
9600                 u32 control;
9601                 u32 position;
9602                 u32 base;
9603                 u32 size;
9604         } cursor[I915_MAX_PIPES];
9605
9606         struct intel_pipe_error_state {
9607                 u32 conf;
9608                 u32 source;
9609
9610                 u32 htotal;
9611                 u32 hblank;
9612                 u32 hsync;
9613                 u32 vtotal;
9614                 u32 vblank;
9615                 u32 vsync;
9616         } pipe[I915_MAX_PIPES];
9617
9618         struct intel_plane_error_state {
9619                 u32 control;
9620                 u32 stride;
9621                 u32 size;
9622                 u32 pos;
9623                 u32 addr;
9624                 u32 surface;
9625                 u32 tile_offset;
9626         } plane[I915_MAX_PIPES];
9627 };
9628
9629 struct intel_display_error_state *
9630 intel_display_capture_error_state(struct drm_device *dev)
9631 {
9632         drm_i915_private_t *dev_priv = dev->dev_private;
9633         struct intel_display_error_state *error;
9634         enum transcoder cpu_transcoder;
9635         int i;
9636
9637         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9638         if (error == NULL)
9639                 return NULL;
9640
9641         for_each_pipe(i) {
9642                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9643
9644                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9645                         error->cursor[i].control = I915_READ(CURCNTR(i));
9646                         error->cursor[i].position = I915_READ(CURPOS(i));
9647                         error->cursor[i].base = I915_READ(CURBASE(i));
9648                 } else {
9649                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9650                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9651                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9652                 }
9653
9654                 error->plane[i].control = I915_READ(DSPCNTR(i));
9655                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9656                 if (INTEL_INFO(dev)->gen <= 3) {
9657                         error->plane[i].size = I915_READ(DSPSIZE(i));
9658                         error->plane[i].pos = I915_READ(DSPPOS(i));
9659                 }
9660                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9661                         error->plane[i].addr = I915_READ(DSPADDR(i));
9662                 if (INTEL_INFO(dev)->gen >= 4) {
9663                         error->plane[i].surface = I915_READ(DSPSURF(i));
9664                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9665                 }
9666
9667                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9668                 error->pipe[i].source = I915_READ(PIPESRC(i));
9669                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9670                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9671                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9672                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9673                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9674                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9675         }
9676
9677         return error;
9678 }
9679
9680 void
9681 intel_display_print_error_state(struct seq_file *m,
9682                                 struct drm_device *dev,
9683                                 struct intel_display_error_state *error)
9684 {
9685         int i;
9686
9687         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9688         for_each_pipe(i) {
9689                 seq_printf(m, "Pipe [%d]:\n", i);
9690                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9691                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9692                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9693                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9694                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9695                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9696                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9697                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9698
9699                 seq_printf(m, "Plane [%d]:\n", i);
9700                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9701                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9702                 if (INTEL_INFO(dev)->gen <= 3) {
9703                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9704                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9705                 }
9706                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9707                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9708                 if (INTEL_INFO(dev)->gen >= 4) {
9709                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9710                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9711                 }
9712
9713                 seq_printf(m, "Cursor [%d]:\n", i);
9714                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9715                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9716                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9717         }
9718 }
9719 #endif