drm/i915: Don't die in wait_for_pending_flips
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74         intel_p2_t          p2;
75 };
76
77 int
78 intel_pch_rawclk(struct drm_device *dev)
79 {
80         struct drm_i915_private *dev_priv = dev->dev_private;
81
82         WARN_ON(!HAS_PCH_SPLIT(dev));
83
84         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
85 }
86
87 static inline u32 /* units of 100MHz */
88 intel_fdi_link_freq(struct drm_device *dev)
89 {
90         if (IS_GEN5(dev)) {
91                 struct drm_i915_private *dev_priv = dev->dev_private;
92                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
93         } else
94                 return 27;
95 }
96
97 static const intel_limit_t intel_limits_i8xx_dac = {
98         .dot = { .min = 25000, .max = 350000 },
99         .vco = { .min = 908000, .max = 1512000 },
100         .n = { .min = 2, .max = 16 },
101         .m = { .min = 96, .max = 140 },
102         .m1 = { .min = 18, .max = 26 },
103         .m2 = { .min = 6, .max = 16 },
104         .p = { .min = 4, .max = 128 },
105         .p1 = { .min = 2, .max = 33 },
106         .p2 = { .dot_limit = 165000,
107                 .p2_slow = 4, .p2_fast = 2 },
108 };
109
110 static const intel_limit_t intel_limits_i8xx_dvo = {
111         .dot = { .min = 25000, .max = 350000 },
112         .vco = { .min = 908000, .max = 1512000 },
113         .n = { .min = 2, .max = 16 },
114         .m = { .min = 96, .max = 140 },
115         .m1 = { .min = 18, .max = 26 },
116         .m2 = { .min = 6, .max = 16 },
117         .p = { .min = 4, .max = 128 },
118         .p1 = { .min = 2, .max = 33 },
119         .p2 = { .dot_limit = 165000,
120                 .p2_slow = 4, .p2_fast = 4 },
121 };
122
123 static const intel_limit_t intel_limits_i8xx_lvds = {
124         .dot = { .min = 25000, .max = 350000 },
125         .vco = { .min = 908000, .max = 1512000 },
126         .n = { .min = 2, .max = 16 },
127         .m = { .min = 96, .max = 140 },
128         .m1 = { .min = 18, .max = 26 },
129         .m2 = { .min = 6, .max = 16 },
130         .p = { .min = 4, .max = 128 },
131         .p1 = { .min = 1, .max = 6 },
132         .p2 = { .dot_limit = 165000,
133                 .p2_slow = 14, .p2_fast = 7 },
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 8, .max = 18 },
142         .m2 = { .min = 3, .max = 7 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147 };
148
149 static const intel_limit_t intel_limits_i9xx_lvds = {
150         .dot = { .min = 20000, .max = 400000 },
151         .vco = { .min = 1400000, .max = 2800000 },
152         .n = { .min = 1, .max = 6 },
153         .m = { .min = 70, .max = 120 },
154         .m1 = { .min = 8, .max = 18 },
155         .m2 = { .min = 3, .max = 7 },
156         .p = { .min = 7, .max = 98 },
157         .p1 = { .min = 1, .max = 8 },
158         .p2 = { .dot_limit = 112000,
159                 .p2_slow = 14, .p2_fast = 7 },
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176 };
177
178 static const intel_limit_t intel_limits_g4x_hdmi = {
179         .dot = { .min = 22000, .max = 400000 },
180         .vco = { .min = 1750000, .max = 3500000},
181         .n = { .min = 1, .max = 4 },
182         .m = { .min = 104, .max = 138 },
183         .m1 = { .min = 16, .max = 23 },
184         .m2 = { .min = 5, .max = 11 },
185         .p = { .min = 5, .max = 80 },
186         .p1 = { .min = 1, .max = 8},
187         .p2 = { .dot_limit = 165000,
188                 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
192         .dot = { .min = 20000, .max = 115000 },
193         .vco = { .min = 1750000, .max = 3500000 },
194         .n = { .min = 1, .max = 3 },
195         .m = { .min = 104, .max = 138 },
196         .m1 = { .min = 17, .max = 23 },
197         .m2 = { .min = 5, .max = 11 },
198         .p = { .min = 28, .max = 112 },
199         .p1 = { .min = 2, .max = 8 },
200         .p2 = { .dot_limit = 0,
201                 .p2_slow = 14, .p2_fast = 14
202         },
203 };
204
205 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
206         .dot = { .min = 80000, .max = 224000 },
207         .vco = { .min = 1750000, .max = 3500000 },
208         .n = { .min = 1, .max = 3 },
209         .m = { .min = 104, .max = 138 },
210         .m1 = { .min = 17, .max = 23 },
211         .m2 = { .min = 5, .max = 11 },
212         .p = { .min = 14, .max = 42 },
213         .p1 = { .min = 2, .max = 6 },
214         .p2 = { .dot_limit = 0,
215                 .p2_slow = 7, .p2_fast = 7
216         },
217 };
218
219 static const intel_limit_t intel_limits_pineview_sdvo = {
220         .dot = { .min = 20000, .max = 400000},
221         .vco = { .min = 1700000, .max = 3500000 },
222         /* Pineview's Ncounter is a ring counter */
223         .n = { .min = 3, .max = 6 },
224         .m = { .min = 2, .max = 256 },
225         /* Pineview only has one combined m divider, which we treat as m2. */
226         .m1 = { .min = 0, .max = 0 },
227         .m2 = { .min = 0, .max = 254 },
228         .p = { .min = 5, .max = 80 },
229         .p1 = { .min = 1, .max = 8 },
230         .p2 = { .dot_limit = 200000,
231                 .p2_slow = 10, .p2_fast = 5 },
232 };
233
234 static const intel_limit_t intel_limits_pineview_lvds = {
235         .dot = { .min = 20000, .max = 400000 },
236         .vco = { .min = 1700000, .max = 3500000 },
237         .n = { .min = 3, .max = 6 },
238         .m = { .min = 2, .max = 256 },
239         .m1 = { .min = 0, .max = 0 },
240         .m2 = { .min = 0, .max = 254 },
241         .p = { .min = 7, .max = 112 },
242         .p1 = { .min = 1, .max = 8 },
243         .p2 = { .dot_limit = 112000,
244                 .p2_slow = 14, .p2_fast = 14 },
245 };
246
247 /* Ironlake / Sandybridge
248  *
249  * We calculate clock using (register_value + 2) for N/M1/M2, so here
250  * the range value for them is (actual_value - 2).
251  */
252 static const intel_limit_t intel_limits_ironlake_dac = {
253         .dot = { .min = 25000, .max = 350000 },
254         .vco = { .min = 1760000, .max = 3510000 },
255         .n = { .min = 1, .max = 5 },
256         .m = { .min = 79, .max = 127 },
257         .m1 = { .min = 12, .max = 22 },
258         .m2 = { .min = 5, .max = 9 },
259         .p = { .min = 5, .max = 80 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 225000,
262                 .p2_slow = 10, .p2_fast = 5 },
263 };
264
265 static const intel_limit_t intel_limits_ironlake_single_lvds = {
266         .dot = { .min = 25000, .max = 350000 },
267         .vco = { .min = 1760000, .max = 3510000 },
268         .n = { .min = 1, .max = 3 },
269         .m = { .min = 79, .max = 118 },
270         .m1 = { .min = 12, .max = 22 },
271         .m2 = { .min = 5, .max = 9 },
272         .p = { .min = 28, .max = 112 },
273         .p1 = { .min = 2, .max = 8 },
274         .p2 = { .dot_limit = 225000,
275                 .p2_slow = 14, .p2_fast = 14 },
276 };
277
278 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 3 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 14, .max = 56 },
286         .p1 = { .min = 2, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 7, .p2_fast = 7 },
289 };
290
291 /* LVDS 100mhz refclk limits. */
292 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 2 },
296         .m = { .min = 79, .max = 126 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 126 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 42 },
313         .p1 = { .min = 2, .max = 6 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316 };
317
318 static const intel_limit_t intel_limits_vlv = {
319          /*
320           * These are the data rate limits (measured in fast clocks)
321           * since those are the strictest limits we have. The fast
322           * clock and actual rate limits are more relaxed, so checking
323           * them would make no difference.
324           */
325         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
326         .vco = { .min = 4000000, .max = 6000000 },
327         .n = { .min = 1, .max = 7 },
328         .m1 = { .min = 2, .max = 3 },
329         .m2 = { .min = 11, .max = 156 },
330         .p1 = { .min = 2, .max = 3 },
331         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
332 };
333
334 static const intel_limit_t intel_limits_chv = {
335         /*
336          * These are the data rate limits (measured in fast clocks)
337          * since those are the strictest limits we have.  The fast
338          * clock and actual rate limits are more relaxed, so checking
339          * them would make no difference.
340          */
341         .dot = { .min = 25000 * 5, .max = 540000 * 5},
342         .vco = { .min = 4860000, .max = 6700000 },
343         .n = { .min = 1, .max = 1 },
344         .m1 = { .min = 2, .max = 2 },
345         .m2 = { .min = 24 << 22, .max = 175 << 22 },
346         .p1 = { .min = 2, .max = 4 },
347         .p2 = { .p2_slow = 1, .p2_fast = 14 },
348 };
349
350 static void vlv_clock(int refclk, intel_clock_t *clock)
351 {
352         clock->m = clock->m1 * clock->m2;
353         clock->p = clock->p1 * clock->p2;
354         if (WARN_ON(clock->n == 0 || clock->p == 0))
355                 return;
356         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
357         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
358 }
359
360 /**
361  * Returns whether any output on the specified pipe is of the specified type
362  */
363 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
364 {
365         struct drm_device *dev = crtc->dev;
366         struct intel_encoder *encoder;
367
368         for_each_encoder_on_crtc(dev, crtc, encoder)
369                 if (encoder->type == type)
370                         return true;
371
372         return false;
373 }
374
375 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
376                                                 int refclk)
377 {
378         struct drm_device *dev = crtc->dev;
379         const intel_limit_t *limit;
380
381         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382                 if (intel_is_dual_link_lvds(dev)) {
383                         if (refclk == 100000)
384                                 limit = &intel_limits_ironlake_dual_lvds_100m;
385                         else
386                                 limit = &intel_limits_ironlake_dual_lvds;
387                 } else {
388                         if (refclk == 100000)
389                                 limit = &intel_limits_ironlake_single_lvds_100m;
390                         else
391                                 limit = &intel_limits_ironlake_single_lvds;
392                 }
393         } else
394                 limit = &intel_limits_ironlake_dac;
395
396         return limit;
397 }
398
399 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
400 {
401         struct drm_device *dev = crtc->dev;
402         const intel_limit_t *limit;
403
404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
405                 if (intel_is_dual_link_lvds(dev))
406                         limit = &intel_limits_g4x_dual_channel_lvds;
407                 else
408                         limit = &intel_limits_g4x_single_channel_lvds;
409         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
410                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
411                 limit = &intel_limits_g4x_hdmi;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
413                 limit = &intel_limits_g4x_sdvo;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (IS_CHERRYVIEW(dev)) {
435                 limit = &intel_limits_chv;
436         } else if (IS_VALLEYVIEW(dev)) {
437                 limit = &intel_limits_vlv;
438         } else if (!IS_GEN2(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_i9xx_lvds;
441                 else
442                         limit = &intel_limits_i9xx_sdvo;
443         } else {
444                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
445                         limit = &intel_limits_i8xx_lvds;
446                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
447                         limit = &intel_limits_i8xx_dvo;
448                 else
449                         limit = &intel_limits_i8xx_dac;
450         }
451         return limit;
452 }
453
454 /* m1 is reserved as 0 in Pineview, n is a ring counter */
455 static void pineview_clock(int refclk, intel_clock_t *clock)
456 {
457         clock->m = clock->m2 + 2;
458         clock->p = clock->p1 * clock->p2;
459         if (WARN_ON(clock->n == 0 || clock->p == 0))
460                 return;
461         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
462         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
463 }
464
465 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
466 {
467         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
468 }
469
470 static void i9xx_clock(int refclk, intel_clock_t *clock)
471 {
472         clock->m = i9xx_dpll_compute_m(clock);
473         clock->p = clock->p1 * clock->p2;
474         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
475                 return;
476         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
477         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
478 }
479
480 static void chv_clock(int refclk, intel_clock_t *clock)
481 {
482         clock->m = clock->m1 * clock->m2;
483         clock->p = clock->p1 * clock->p2;
484         if (WARN_ON(clock->n == 0 || clock->p == 0))
485                 return;
486         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
487                         clock->n << 22);
488         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
489 }
490
491 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
492 /**
493  * Returns whether the given set of divisors are valid for a given refclk with
494  * the given connectors.
495  */
496
497 static bool intel_PLL_is_valid(struct drm_device *dev,
498                                const intel_limit_t *limit,
499                                const intel_clock_t *clock)
500 {
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid("n out of range\n");
503         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
504                 INTELPllInvalid("p1 out of range\n");
505         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
506                 INTELPllInvalid("m2 out of range\n");
507         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
508                 INTELPllInvalid("m1 out of range\n");
509
510         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
511                 if (clock->m1 <= clock->m2)
512                         INTELPllInvalid("m1 <= m2\n");
513
514         if (!IS_VALLEYVIEW(dev)) {
515                 if (clock->p < limit->p.min || limit->p.max < clock->p)
516                         INTELPllInvalid("p out of range\n");
517                 if (clock->m < limit->m.min || limit->m.max < clock->m)
518                         INTELPllInvalid("m out of range\n");
519         }
520
521         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
522                 INTELPllInvalid("vco out of range\n");
523         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
524          * connector, etc., rather than just a single range.
525          */
526         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
527                 INTELPllInvalid("dot out of range\n");
528
529         return true;
530 }
531
532 static bool
533 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
534                     int target, int refclk, intel_clock_t *match_clock,
535                     intel_clock_t *best_clock)
536 {
537         struct drm_device *dev = crtc->dev;
538         intel_clock_t clock;
539         int err = target;
540
541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
542                 /*
543                  * For LVDS just rely on its current settings for dual-channel.
544                  * We haven't figured out how to reliably set up different
545                  * single/dual channel state, if we even can.
546                  */
547                 if (intel_is_dual_link_lvds(dev))
548                         clock.p2 = limit->p2.p2_fast;
549                 else
550                         clock.p2 = limit->p2.p2_slow;
551         } else {
552                 if (target < limit->p2.dot_limit)
553                         clock.p2 = limit->p2.p2_slow;
554                 else
555                         clock.p2 = limit->p2.p2_fast;
556         }
557
558         memset(best_clock, 0, sizeof(*best_clock));
559
560         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
561              clock.m1++) {
562                 for (clock.m2 = limit->m2.min;
563                      clock.m2 <= limit->m2.max; clock.m2++) {
564                         if (clock.m2 >= clock.m1)
565                                 break;
566                         for (clock.n = limit->n.min;
567                              clock.n <= limit->n.max; clock.n++) {
568                                 for (clock.p1 = limit->p1.min;
569                                         clock.p1 <= limit->p1.max; clock.p1++) {
570                                         int this_err;
571
572                                         i9xx_clock(refclk, &clock);
573                                         if (!intel_PLL_is_valid(dev, limit,
574                                                                 &clock))
575                                                 continue;
576                                         if (match_clock &&
577                                             clock.p != match_clock->p)
578                                                 continue;
579
580                                         this_err = abs(clock.dot - target);
581                                         if (this_err < err) {
582                                                 *best_clock = clock;
583                                                 err = this_err;
584                                         }
585                                 }
586                         }
587                 }
588         }
589
590         return (err != target);
591 }
592
593 static bool
594 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
595                    int target, int refclk, intel_clock_t *match_clock,
596                    intel_clock_t *best_clock)
597 {
598         struct drm_device *dev = crtc->dev;
599         intel_clock_t clock;
600         int err = target;
601
602         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
603                 /*
604                  * For LVDS just rely on its current settings for dual-channel.
605                  * We haven't figured out how to reliably set up different
606                  * single/dual channel state, if we even can.
607                  */
608                 if (intel_is_dual_link_lvds(dev))
609                         clock.p2 = limit->p2.p2_fast;
610                 else
611                         clock.p2 = limit->p2.p2_slow;
612         } else {
613                 if (target < limit->p2.dot_limit)
614                         clock.p2 = limit->p2.p2_slow;
615                 else
616                         clock.p2 = limit->p2.p2_fast;
617         }
618
619         memset(best_clock, 0, sizeof(*best_clock));
620
621         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
622              clock.m1++) {
623                 for (clock.m2 = limit->m2.min;
624                      clock.m2 <= limit->m2.max; clock.m2++) {
625                         for (clock.n = limit->n.min;
626                              clock.n <= limit->n.max; clock.n++) {
627                                 for (clock.p1 = limit->p1.min;
628                                         clock.p1 <= limit->p1.max; clock.p1++) {
629                                         int this_err;
630
631                                         pineview_clock(refclk, &clock);
632                                         if (!intel_PLL_is_valid(dev, limit,
633                                                                 &clock))
634                                                 continue;
635                                         if (match_clock &&
636                                             clock.p != match_clock->p)
637                                                 continue;
638
639                                         this_err = abs(clock.dot - target);
640                                         if (this_err < err) {
641                                                 *best_clock = clock;
642                                                 err = this_err;
643                                         }
644                                 }
645                         }
646                 }
647         }
648
649         return (err != target);
650 }
651
652 static bool
653 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
654                    int target, int refclk, intel_clock_t *match_clock,
655                    intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         intel_clock_t clock;
659         int max_n;
660         bool found;
661         /* approximately equals target * 0.00585 */
662         int err_most = (target >> 8) + (target >> 9);
663         found = false;
664
665         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
666                 if (intel_is_dual_link_lvds(dev))
667                         clock.p2 = limit->p2.p2_fast;
668                 else
669                         clock.p2 = limit->p2.p2_slow;
670         } else {
671                 if (target < limit->p2.dot_limit)
672                         clock.p2 = limit->p2.p2_slow;
673                 else
674                         clock.p2 = limit->p2.p2_fast;
675         }
676
677         memset(best_clock, 0, sizeof(*best_clock));
678         max_n = limit->n.max;
679         /* based on hardware requirement, prefer smaller n to precision */
680         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
681                 /* based on hardware requirement, prefere larger m1,m2 */
682                 for (clock.m1 = limit->m1.max;
683                      clock.m1 >= limit->m1.min; clock.m1--) {
684                         for (clock.m2 = limit->m2.max;
685                              clock.m2 >= limit->m2.min; clock.m2--) {
686                                 for (clock.p1 = limit->p1.max;
687                                      clock.p1 >= limit->p1.min; clock.p1--) {
688                                         int this_err;
689
690                                         i9xx_clock(refclk, &clock);
691                                         if (!intel_PLL_is_valid(dev, limit,
692                                                                 &clock))
693                                                 continue;
694
695                                         this_err = abs(clock.dot - target);
696                                         if (this_err < err_most) {
697                                                 *best_clock = clock;
698                                                 err_most = this_err;
699                                                 max_n = clock.n;
700                                                 found = true;
701                                         }
702                                 }
703                         }
704                 }
705         }
706         return found;
707 }
708
709 static bool
710 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
711                    int target, int refclk, intel_clock_t *match_clock,
712                    intel_clock_t *best_clock)
713 {
714         struct drm_device *dev = crtc->dev;
715         intel_clock_t clock;
716         unsigned int bestppm = 1000000;
717         /* min update 19.2 MHz */
718         int max_n = min(limit->n.max, refclk / 19200);
719         bool found = false;
720
721         target *= 5; /* fast clock */
722
723         memset(best_clock, 0, sizeof(*best_clock));
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
727                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
728                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
729                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
730                                 clock.p = clock.p1 * clock.p2;
731                                 /* based on hardware requirement, prefer bigger m1,m2 values */
732                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
733                                         unsigned int ppm, diff;
734
735                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
736                                                                      refclk * clock.m1);
737
738                                         vlv_clock(refclk, &clock);
739
740                                         if (!intel_PLL_is_valid(dev, limit,
741                                                                 &clock))
742                                                 continue;
743
744                                         diff = abs(clock.dot - target);
745                                         ppm = div_u64(1000000ULL * diff, target);
746
747                                         if (ppm < 100 && clock.p > best_clock->p) {
748                                                 bestppm = 0;
749                                                 *best_clock = clock;
750                                                 found = true;
751                                         }
752
753                                         if (bestppm >= 10 && ppm < bestppm - 10) {
754                                                 bestppm = ppm;
755                                                 *best_clock = clock;
756                                                 found = true;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return found;
764 }
765
766 static bool
767 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc->dev;
772         intel_clock_t clock;
773         uint64_t m2;
774         int found = false;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         /*
779          * Based on hardware doc, the n always set to 1, and m1 always
780          * set to 2.  If requires to support 200Mhz refclk, we need to
781          * revisit this because n may not 1 anymore.
782          */
783         clock.n = 1, clock.m1 = 2;
784         target *= 5;    /* fast clock */
785
786         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
787                 for (clock.p2 = limit->p2.p2_fast;
788                                 clock.p2 >= limit->p2.p2_slow;
789                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
790
791                         clock.p = clock.p1 * clock.p2;
792
793                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
794                                         clock.n) << 22, refclk * clock.m1);
795
796                         if (m2 > INT_MAX/clock.m1)
797                                 continue;
798
799                         clock.m2 = m2;
800
801                         chv_clock(refclk, &clock);
802
803                         if (!intel_PLL_is_valid(dev, limit, &clock))
804                                 continue;
805
806                         /* based on hardware requirement, prefer bigger p
807                          */
808                         if (clock.p > best_clock->p) {
809                                 *best_clock = clock;
810                                 found = true;
811                         }
812                 }
813         }
814
815         return found;
816 }
817
818 bool intel_crtc_active(struct drm_crtc *crtc)
819 {
820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822         /* Be paranoid as we can arrive here with only partial
823          * state retrieved from the hardware during setup.
824          *
825          * We can ditch the adjusted_mode.crtc_clock check as soon
826          * as Haswell has gained clock readout/fastboot support.
827          *
828          * We can ditch the crtc->primary->fb check as soon as we can
829          * properly reconstruct framebuffers.
830          */
831         return intel_crtc->active && crtc->primary->fb &&
832                 intel_crtc->config.adjusted_mode.crtc_clock;
833 }
834
835 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
836                                              enum pipe pipe)
837 {
838         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
840
841         return intel_crtc->config.cpu_transcoder;
842 }
843
844 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
848
849         frame = I915_READ(frame_reg);
850
851         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
852                 WARN(1, "vblank wait timed out\n");
853 }
854
855 /**
856  * intel_wait_for_vblank - wait for vblank on a given pipe
857  * @dev: drm device
858  * @pipe: pipe to wait for
859  *
860  * Wait for vblank to occur on a given pipe.  Needed for various bits of
861  * mode setting code.
862  */
863 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int pipestat_reg = PIPESTAT(pipe);
867
868         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
869                 g4x_wait_for_vblank(dev, pipe);
870                 return;
871         }
872
873         /* Clear existing vblank status. Note this will clear any other
874          * sticky status fields as well.
875          *
876          * This races with i915_driver_irq_handler() with the result
877          * that either function could miss a vblank event.  Here it is not
878          * fatal, as we will either wait upon the next vblank interrupt or
879          * timeout.  Generally speaking intel_wait_for_vblank() is only
880          * called during modeset at which time the GPU should be idle and
881          * should *not* be performing page flips and thus not waiting on
882          * vblanks...
883          * Currently, the result of us stealing a vblank from the irq
884          * handler is that a single frame will be skipped during swapbuffers.
885          */
886         I915_WRITE(pipestat_reg,
887                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
888
889         /* Wait for vblank interrupt bit to set */
890         if (wait_for(I915_READ(pipestat_reg) &
891                      PIPE_VBLANK_INTERRUPT_STATUS,
892                      50))
893                 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
897 {
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         u32 reg = PIPEDSL(pipe);
900         u32 line1, line2;
901         u32 line_mask;
902
903         if (IS_GEN2(dev))
904                 line_mask = DSL_LINEMASK_GEN2;
905         else
906                 line_mask = DSL_LINEMASK_GEN3;
907
908         line1 = I915_READ(reg) & line_mask;
909         mdelay(5);
910         line2 = I915_READ(reg) & line_mask;
911
912         return line1 == line2;
913 }
914
915 /*
916  * intel_wait_for_pipe_off - wait for pipe to turn off
917  * @dev: drm device
918  * @pipe: pipe to wait for
919  *
920  * After disabling a pipe, we can't wait for vblank in the usual way,
921  * spinning on the vblank interrupt status bit, since we won't actually
922  * see an interrupt when the pipe is disabled.
923  *
924  * On Gen4 and above:
925  *   wait for the pipe register state bit to turn off
926  *
927  * Otherwise:
928  *   wait for the display line value to settle (it usually
929  *   ends up stopping at the start of the next frame).
930  *
931  */
932 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
933 {
934         struct drm_i915_private *dev_priv = dev->dev_private;
935         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
936                                                                       pipe);
937
938         if (INTEL_INFO(dev)->gen >= 4) {
939                 int reg = PIPECONF(cpu_transcoder);
940
941                 /* Wait for the Pipe State to go off */
942                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
943                              100))
944                         WARN(1, "pipe_off wait timed out\n");
945         } else {
946                 /* Wait for the display line to settle */
947                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
948                         WARN(1, "pipe_off wait timed out\n");
949         }
950 }
951
952 /*
953  * ibx_digital_port_connected - is the specified port connected?
954  * @dev_priv: i915 private structure
955  * @port: the port to test
956  *
957  * Returns true if @port is connected, false otherwise.
958  */
959 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
960                                 struct intel_digital_port *port)
961 {
962         u32 bit;
963
964         if (HAS_PCH_IBX(dev_priv->dev)) {
965                 switch (port->port) {
966                 case PORT_B:
967                         bit = SDE_PORTB_HOTPLUG;
968                         break;
969                 case PORT_C:
970                         bit = SDE_PORTC_HOTPLUG;
971                         break;
972                 case PORT_D:
973                         bit = SDE_PORTD_HOTPLUG;
974                         break;
975                 default:
976                         return true;
977                 }
978         } else {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG_CPT;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG_CPT;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG_CPT;
988                         break;
989                 default:
990                         return true;
991                 }
992         }
993
994         return I915_READ(SDEISR) & bit;
995 }
996
997 static const char *state_string(bool enabled)
998 {
999         return enabled ? "on" : "off";
1000 }
1001
1002 /* Only for pre-ILK configs */
1003 void assert_pll(struct drm_i915_private *dev_priv,
1004                 enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = DPLL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & DPLL_VCO_ENABLE);
1013         WARN(cur_state != state,
1014              "PLL state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017
1018 /* XXX: the dsi pll is shared between MIPI DSI ports */
1019 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1020 {
1021         u32 val;
1022         bool cur_state;
1023
1024         mutex_lock(&dev_priv->dpio_lock);
1025         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1026         mutex_unlock(&dev_priv->dpio_lock);
1027
1028         cur_state = val & DSI_PLL_VCO_EN;
1029         WARN(cur_state != state,
1030              "DSI PLL state assertion failure (expected %s, current %s)\n",
1031              state_string(state), state_string(cur_state));
1032 }
1033 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1034 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1035
1036 struct intel_shared_dpll *
1037 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1038 {
1039         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1040
1041         if (crtc->config.shared_dpll < 0)
1042                 return NULL;
1043
1044         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1045 }
1046
1047 /* For ILK+ */
1048 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1049                         struct intel_shared_dpll *pll,
1050                         bool state)
1051 {
1052         bool cur_state;
1053         struct intel_dpll_hw_state hw_state;
1054
1055         if (HAS_PCH_LPT(dev_priv->dev)) {
1056                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1057                 return;
1058         }
1059
1060         if (WARN (!pll,
1061                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1062                 return;
1063
1064         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1065         WARN(cur_state != state,
1066              "%s assertion failure (expected %s, current %s)\n",
1067              pll->name, state_string(state), state_string(cur_state));
1068 }
1069
1070 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1071                           enum pipe pipe, bool state)
1072 {
1073         int reg;
1074         u32 val;
1075         bool cur_state;
1076         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077                                                                       pipe);
1078
1079         if (HAS_DDI(dev_priv->dev)) {
1080                 /* DDI does not have a specific FDI_TX register */
1081                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1082                 val = I915_READ(reg);
1083                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1084         } else {
1085                 reg = FDI_TX_CTL(pipe);
1086                 val = I915_READ(reg);
1087                 cur_state = !!(val & FDI_TX_ENABLE);
1088         }
1089         WARN(cur_state != state,
1090              "FDI TX state assertion failure (expected %s, current %s)\n",
1091              state_string(state), state_string(cur_state));
1092 }
1093 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1094 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1095
1096 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1097                           enum pipe pipe, bool state)
1098 {
1099         int reg;
1100         u32 val;
1101         bool cur_state;
1102
1103         reg = FDI_RX_CTL(pipe);
1104         val = I915_READ(reg);
1105         cur_state = !!(val & FDI_RX_ENABLE);
1106         WARN(cur_state != state,
1107              "FDI RX state assertion failure (expected %s, current %s)\n",
1108              state_string(state), state_string(cur_state));
1109 }
1110 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1111 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1112
1113 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1114                                       enum pipe pipe)
1115 {
1116         int reg;
1117         u32 val;
1118
1119         /* ILK FDI PLL is always enabled */
1120         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1121                 return;
1122
1123         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1124         if (HAS_DDI(dev_priv->dev))
1125                 return;
1126
1127         reg = FDI_TX_CTL(pipe);
1128         val = I915_READ(reg);
1129         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1130 }
1131
1132 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1133                        enum pipe pipe, bool state)
1134 {
1135         int reg;
1136         u32 val;
1137         bool cur_state;
1138
1139         reg = FDI_RX_CTL(pipe);
1140         val = I915_READ(reg);
1141         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1142         WARN(cur_state != state,
1143              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1144              state_string(state), state_string(cur_state));
1145 }
1146
1147 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1148                                   enum pipe pipe)
1149 {
1150         int pp_reg, lvds_reg;
1151         u32 val;
1152         enum pipe panel_pipe = PIPE_A;
1153         bool locked = true;
1154
1155         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1156                 pp_reg = PCH_PP_CONTROL;
1157                 lvds_reg = PCH_LVDS;
1158         } else {
1159                 pp_reg = PP_CONTROL;
1160                 lvds_reg = LVDS;
1161         }
1162
1163         val = I915_READ(pp_reg);
1164         if (!(val & PANEL_POWER_ON) ||
1165             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1166                 locked = false;
1167
1168         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1169                 panel_pipe = PIPE_B;
1170
1171         WARN(panel_pipe == pipe && locked,
1172              "panel assertion failure, pipe %c regs locked\n",
1173              pipe_name(pipe));
1174 }
1175
1176 static void assert_cursor(struct drm_i915_private *dev_priv,
1177                           enum pipe pipe, bool state)
1178 {
1179         struct drm_device *dev = dev_priv->dev;
1180         bool cur_state;
1181
1182         if (IS_845G(dev) || IS_I865G(dev))
1183                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1184         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1185                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1186         else
1187                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1188
1189         WARN(cur_state != state,
1190              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191              pipe_name(pipe), state_string(state), state_string(cur_state));
1192 }
1193 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
1196 void assert_pipe(struct drm_i915_private *dev_priv,
1197                  enum pipe pipe, bool state)
1198 {
1199         int reg;
1200         u32 val;
1201         bool cur_state;
1202         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203                                                                       pipe);
1204
1205         /* if we need the pipe A quirk it must be always on */
1206         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1207                 state = true;
1208
1209         if (!intel_display_power_enabled(dev_priv,
1210                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1211                 cur_state = false;
1212         } else {
1213                 reg = PIPECONF(cpu_transcoder);
1214                 val = I915_READ(reg);
1215                 cur_state = !!(val & PIPECONF_ENABLE);
1216         }
1217
1218         WARN(cur_state != state,
1219              "pipe %c assertion failure (expected %s, current %s)\n",
1220              pipe_name(pipe), state_string(state), state_string(cur_state));
1221 }
1222
1223 static void assert_plane(struct drm_i915_private *dev_priv,
1224                          enum plane plane, bool state)
1225 {
1226         int reg;
1227         u32 val;
1228         bool cur_state;
1229
1230         reg = DSPCNTR(plane);
1231         val = I915_READ(reg);
1232         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1233         WARN(cur_state != state,
1234              "plane %c assertion failure (expected %s, current %s)\n",
1235              plane_name(plane), state_string(state), state_string(cur_state));
1236 }
1237
1238 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1239 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1240
1241 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1242                                    enum pipe pipe)
1243 {
1244         struct drm_device *dev = dev_priv->dev;
1245         int reg, i;
1246         u32 val;
1247         int cur_pipe;
1248
1249         /* Primary planes are fixed to pipes on gen4+ */
1250         if (INTEL_INFO(dev)->gen >= 4) {
1251                 reg = DSPCNTR(pipe);
1252                 val = I915_READ(reg);
1253                 WARN(val & DISPLAY_PLANE_ENABLE,
1254                      "plane %c assertion failure, should be disabled but not\n",
1255                      plane_name(pipe));
1256                 return;
1257         }
1258
1259         /* Need to check both planes against the pipe */
1260         for_each_pipe(i) {
1261                 reg = DSPCNTR(i);
1262                 val = I915_READ(reg);
1263                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1264                         DISPPLANE_SEL_PIPE_SHIFT;
1265                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1266                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1267                      plane_name(i), pipe_name(pipe));
1268         }
1269 }
1270
1271 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1272                                     enum pipe pipe)
1273 {
1274         struct drm_device *dev = dev_priv->dev;
1275         int reg, sprite;
1276         u32 val;
1277
1278         if (IS_VALLEYVIEW(dev)) {
1279                 for_each_sprite(pipe, sprite) {
1280                         reg = SPCNTR(pipe, sprite);
1281                         val = I915_READ(reg);
1282                         WARN(val & SP_ENABLE,
1283                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                              sprite_name(pipe, sprite), pipe_name(pipe));
1285                 }
1286         } else if (INTEL_INFO(dev)->gen >= 7) {
1287                 reg = SPRCTL(pipe);
1288                 val = I915_READ(reg);
1289                 WARN(val & SPRITE_ENABLE,
1290                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                      plane_name(pipe), pipe_name(pipe));
1292         } else if (INTEL_INFO(dev)->gen >= 5) {
1293                 reg = DVSCNTR(pipe);
1294                 val = I915_READ(reg);
1295                 WARN(val & DVS_ENABLE,
1296                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1297                      plane_name(pipe), pipe_name(pipe));
1298         }
1299 }
1300
1301 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1302 {
1303         u32 val;
1304         bool enabled;
1305
1306         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                            enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = PCH_TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1341                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1342                         return false;
1343         } else {
1344                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1345                         return false;
1346         }
1347         return true;
1348 }
1349
1350 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1351                               enum pipe pipe, u32 val)
1352 {
1353         if ((val & SDVO_ENABLE) == 0)
1354                 return false;
1355
1356         if (HAS_PCH_CPT(dev_priv->dev)) {
1357                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1358                         return false;
1359         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1360                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1361                         return false;
1362         } else {
1363                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1364                         return false;
1365         }
1366         return true;
1367 }
1368
1369 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1370                               enum pipe pipe, u32 val)
1371 {
1372         if ((val & LVDS_PORT_EN) == 0)
1373                 return false;
1374
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1386                               enum pipe pipe, u32 val)
1387 {
1388         if ((val & ADPA_DAC_ENABLE) == 0)
1389                 return false;
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1392                         return false;
1393         } else {
1394                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1395                         return false;
1396         }
1397         return true;
1398 }
1399
1400 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1401                                    enum pipe pipe, int reg, u32 port_sel)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1405              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1409              && (val & DP_PIPEB_SELECT),
1410              "IBX PCH dp port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1414                                      enum pipe pipe, int reg)
1415 {
1416         u32 val = I915_READ(reg);
1417         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1418              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1419              reg, pipe_name(pipe));
1420
1421         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1422              && (val & SDVO_PIPE_B_SELECT),
1423              "IBX PCH hdmi port still using transcoder B\n");
1424 }
1425
1426 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1427                                       enum pipe pipe)
1428 {
1429         int reg;
1430         u32 val;
1431
1432         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1433         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1434         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1435
1436         reg = PCH_ADPA;
1437         val = I915_READ(reg);
1438         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1439              "PCH VGA enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         reg = PCH_LVDS;
1443         val = I915_READ(reg);
1444         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1445              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1449         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1450         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1451 }
1452
1453 static void intel_init_dpio(struct drm_device *dev)
1454 {
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457         if (!IS_VALLEYVIEW(dev))
1458                 return;
1459
1460         /*
1461          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1462          * CHV x1 PHY (DP/HDMI D)
1463          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1464          */
1465         if (IS_CHERRYVIEW(dev)) {
1466                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1467                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1468         } else {
1469                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1470         }
1471 }
1472
1473 static void intel_reset_dpio(struct drm_device *dev)
1474 {
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477         if (!IS_VALLEYVIEW(dev))
1478                 return;
1479
1480         /*
1481          * Enable the CRI clock source so we can get at the display and the
1482          * reference clock for VGA hotplug / manual detection.
1483          */
1484         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1485                    DPLL_REFA_CLK_ENABLE_VLV |
1486                    DPLL_INTEGRATED_CRI_CLK_VLV);
1487
1488         if (IS_CHERRYVIEW(dev)) {
1489                 enum dpio_phy phy;
1490                 u32 val;
1491
1492                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1493                         /* Poll for phypwrgood signal */
1494                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1495                                                 PHY_POWERGOOD(phy), 1))
1496                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1497
1498                         /*
1499                          * Deassert common lane reset for PHY.
1500                          *
1501                          * This should only be done on init and resume from S3
1502                          * with both PLLs disabled, or we risk losing DPIO and
1503                          * PLL synchronization.
1504                          */
1505                         val = I915_READ(DISPLAY_PHY_CONTROL);
1506                         I915_WRITE(DISPLAY_PHY_CONTROL,
1507                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1508                 }
1509
1510         } else {
1511                 /*
1512                  * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1513                  *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1514                  *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1515                  *   b. The other bits such as sfr settings / modesel may all
1516                  *      be set to 0.
1517                  *
1518                  * This should only be done on init and resume from S3 with
1519                  * both PLLs disabled, or we risk losing DPIO and PLL
1520                  * synchronization.
1521                  */
1522                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1523         }
1524 }
1525
1526 static void vlv_enable_pll(struct intel_crtc *crtc)
1527 {
1528         struct drm_device *dev = crtc->base.dev;
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         int reg = DPLL(crtc->pipe);
1531         u32 dpll = crtc->config.dpll_hw_state.dpll;
1532
1533         assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535         /* No really, not for ILK+ */
1536         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1537
1538         /* PLL is protected by panel, make sure we can write it */
1539         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1540                 assert_panel_unlocked(dev_priv, crtc->pipe);
1541
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150);
1545
1546         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1547                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1548
1549         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1550         POSTING_READ(DPLL_MD(crtc->pipe));
1551
1552         /* We do this three times for luck */
1553         I915_WRITE(reg, dpll);
1554         POSTING_READ(reg);
1555         udelay(150); /* wait for warmup */
1556         I915_WRITE(reg, dpll);
1557         POSTING_READ(reg);
1558         udelay(150); /* wait for warmup */
1559         I915_WRITE(reg, dpll);
1560         POSTING_READ(reg);
1561         udelay(150); /* wait for warmup */
1562 }
1563
1564 static void chv_enable_pll(struct intel_crtc *crtc)
1565 {
1566         struct drm_device *dev = crtc->base.dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         int pipe = crtc->pipe;
1569         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1570         int dpll = DPLL(crtc->pipe);
1571         u32 tmp;
1572
1573         assert_pipe_disabled(dev_priv, crtc->pipe);
1574
1575         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1576
1577         mutex_lock(&dev_priv->dpio_lock);
1578
1579         /* Enable back the 10bit clock to display controller */
1580         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1581         tmp |= DPIO_DCLKP_EN;
1582         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         tmp = I915_READ(dpll);
1591         tmp |= DPLL_VCO_ENABLE;
1592         I915_WRITE(dpll, tmp);
1593
1594         /* Check PLL is locked */
1595         if (wait_for(((I915_READ(dpll) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1596                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1597
1598         /* Deassert soft data lane reset*/
1599         tmp = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
1600         tmp |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1601         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), tmp);
1602
1603
1604         mutex_unlock(&dev_priv->dpio_lock);
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609         struct drm_device *dev = crtc->base.dev;
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         int reg = DPLL(crtc->pipe);
1612         u32 dpll = crtc->config.dpll_hw_state.dpll;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         /* No really, not for ILK+ */
1617         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1618
1619         /* PLL is protected by panel, make sure we can write it */
1620         if (IS_MOBILE(dev) && !IS_I830(dev))
1621                 assert_panel_unlocked(dev_priv, crtc->pipe);
1622
1623         I915_WRITE(reg, dpll);
1624
1625         /* Wait for the clocks to stabilize. */
1626         POSTING_READ(reg);
1627         udelay(150);
1628
1629         if (INTEL_INFO(dev)->gen >= 4) {
1630                 I915_WRITE(DPLL_MD(crtc->pipe),
1631                            crtc->config.dpll_hw_state.dpll_md);
1632         } else {
1633                 /* The pixel multiplier can only be updated once the
1634                  * DPLL is enabled and the clocks are stable.
1635                  *
1636                  * So write it again.
1637                  */
1638                 I915_WRITE(reg, dpll);
1639         }
1640
1641         /* We do this three times for luck */
1642         I915_WRITE(reg, dpll);
1643         POSTING_READ(reg);
1644         udelay(150); /* wait for warmup */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651 }
1652
1653 /**
1654  * i9xx_disable_pll - disable a PLL
1655  * @dev_priv: i915 private structure
1656  * @pipe: pipe PLL to disable
1657  *
1658  * Disable the PLL for @pipe, making sure the pipe is off first.
1659  *
1660  * Note!  This is for pre-ILK only.
1661  */
1662 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 {
1664         /* Don't disable pipe A or pipe A PLLs if needed */
1665         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1666                 return;
1667
1668         /* Make sure the pipe isn't still relying on us */
1669         assert_pipe_disabled(dev_priv, pipe);
1670
1671         I915_WRITE(DPLL(pipe), 0);
1672         POSTING_READ(DPLL(pipe));
1673 }
1674
1675 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         u32 val = 0;
1678
1679         /* Make sure the pipe isn't still relying on us */
1680         assert_pipe_disabled(dev_priv, pipe);
1681
1682         /*
1683          * Leave integrated clock source and reference clock enabled for pipe B.
1684          * The latter is needed for VGA hotplug / manual detection.
1685          */
1686         if (pipe == PIPE_B)
1687                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1688         I915_WRITE(DPLL(pipe), val);
1689         POSTING_READ(DPLL(pipe));
1690
1691 }
1692
1693 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         int dpll = DPLL(pipe);
1696         u32 val;
1697
1698         /* Set PLL en = 0 */
1699         val = I915_READ(dpll);
1700         val &= ~DPLL_VCO_ENABLE;
1701         I915_WRITE(dpll, val);
1702
1703 }
1704
1705 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1706                 struct intel_digital_port *dport)
1707 {
1708         u32 port_mask;
1709         int dpll_reg;
1710
1711         switch (dport->port) {
1712         case PORT_B:
1713                 port_mask = DPLL_PORTB_READY_MASK;
1714                 dpll_reg = DPLL(0);
1715                 break;
1716         case PORT_C:
1717                 port_mask = DPLL_PORTC_READY_MASK;
1718                 dpll_reg = DPLL(0);
1719                 break;
1720         case PORT_D:
1721                 port_mask = DPLL_PORTD_READY_MASK;
1722                 dpll_reg = DPIO_PHY_STATUS;
1723                 break;
1724         default:
1725                 BUG();
1726         }
1727
1728         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1729                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1730                      port_name(dport->port), I915_READ(dpll_reg));
1731 }
1732
1733 /**
1734  * ironlake_enable_shared_dpll - enable PCH PLL
1735  * @dev_priv: i915 private structure
1736  * @pipe: pipe PLL to enable
1737  *
1738  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1739  * drives the transcoder clock.
1740  */
1741 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1742 {
1743         struct drm_device *dev = crtc->base.dev;
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1746
1747         /* PCH PLLs only available on ILK, SNB and IVB */
1748         BUG_ON(INTEL_INFO(dev)->gen < 5);
1749         if (WARN_ON(pll == NULL))
1750                 return;
1751
1752         if (WARN_ON(pll->refcount == 0))
1753                 return;
1754
1755         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1756                       pll->name, pll->active, pll->on,
1757                       crtc->base.base.id);
1758
1759         if (pll->active++) {
1760                 WARN_ON(!pll->on);
1761                 assert_shared_dpll_enabled(dev_priv, pll);
1762                 return;
1763         }
1764         WARN_ON(pll->on);
1765
1766         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1767         pll->enable(dev_priv, pll);
1768         pll->on = true;
1769 }
1770
1771 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1772 {
1773         struct drm_device *dev = crtc->base.dev;
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1776
1777         /* PCH only available on ILK+ */
1778         BUG_ON(INTEL_INFO(dev)->gen < 5);
1779         if (WARN_ON(pll == NULL))
1780                return;
1781
1782         if (WARN_ON(pll->refcount == 0))
1783                 return;
1784
1785         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1786                       pll->name, pll->active, pll->on,
1787                       crtc->base.base.id);
1788
1789         if (WARN_ON(pll->active == 0)) {
1790                 assert_shared_dpll_disabled(dev_priv, pll);
1791                 return;
1792         }
1793
1794         assert_shared_dpll_enabled(dev_priv, pll);
1795         WARN_ON(!pll->on);
1796         if (--pll->active)
1797                 return;
1798
1799         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1800         pll->disable(dev_priv, pll);
1801         pll->on = false;
1802 }
1803
1804 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1805                                            enum pipe pipe)
1806 {
1807         struct drm_device *dev = dev_priv->dev;
1808         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1810         uint32_t reg, val, pipeconf_val;
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814
1815         /* Make sure PCH DPLL is enabled */
1816         assert_shared_dpll_enabled(dev_priv,
1817                                    intel_crtc_to_shared_dpll(intel_crtc));
1818
1819         /* FDI must be feeding us bits for PCH ports */
1820         assert_fdi_tx_enabled(dev_priv, pipe);
1821         assert_fdi_rx_enabled(dev_priv, pipe);
1822
1823         if (HAS_PCH_CPT(dev)) {
1824                 /* Workaround: Set the timing override bit before enabling the
1825                  * pch transcoder. */
1826                 reg = TRANS_CHICKEN2(pipe);
1827                 val = I915_READ(reg);
1828                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1829                 I915_WRITE(reg, val);
1830         }
1831
1832         reg = PCH_TRANSCONF(pipe);
1833         val = I915_READ(reg);
1834         pipeconf_val = I915_READ(PIPECONF(pipe));
1835
1836         if (HAS_PCH_IBX(dev_priv->dev)) {
1837                 /*
1838                  * make the BPC in transcoder be consistent with
1839                  * that in pipeconf reg.
1840                  */
1841                 val &= ~PIPECONF_BPC_MASK;
1842                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1843         }
1844
1845         val &= ~TRANS_INTERLACE_MASK;
1846         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1847                 if (HAS_PCH_IBX(dev_priv->dev) &&
1848                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1849                         val |= TRANS_LEGACY_INTERLACED_ILK;
1850                 else
1851                         val |= TRANS_INTERLACED;
1852         else
1853                 val |= TRANS_PROGRESSIVE;
1854
1855         I915_WRITE(reg, val | TRANS_ENABLE);
1856         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1857                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1858 }
1859
1860 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1861                                       enum transcoder cpu_transcoder)
1862 {
1863         u32 val, pipeconf_val;
1864
1865         /* PCH only available on ILK+ */
1866         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1867
1868         /* FDI must be feeding us bits for PCH ports */
1869         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1870         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1871
1872         /* Workaround: set timing override bit. */
1873         val = I915_READ(_TRANSA_CHICKEN2);
1874         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875         I915_WRITE(_TRANSA_CHICKEN2, val);
1876
1877         val = TRANS_ENABLE;
1878         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1879
1880         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1881             PIPECONF_INTERLACED_ILK)
1882                 val |= TRANS_INTERLACED;
1883         else
1884                 val |= TRANS_PROGRESSIVE;
1885
1886         I915_WRITE(LPT_TRANSCONF, val);
1887         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1888                 DRM_ERROR("Failed to enable PCH transcoder\n");
1889 }
1890
1891 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1892                                             enum pipe pipe)
1893 {
1894         struct drm_device *dev = dev_priv->dev;
1895         uint32_t reg, val;
1896
1897         /* FDI relies on the transcoder */
1898         assert_fdi_tx_disabled(dev_priv, pipe);
1899         assert_fdi_rx_disabled(dev_priv, pipe);
1900
1901         /* Ports must be off as well */
1902         assert_pch_ports_disabled(dev_priv, pipe);
1903
1904         reg = PCH_TRANSCONF(pipe);
1905         val = I915_READ(reg);
1906         val &= ~TRANS_ENABLE;
1907         I915_WRITE(reg, val);
1908         /* wait for PCH transcoder off, transcoder state */
1909         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1910                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1911
1912         if (!HAS_PCH_IBX(dev)) {
1913                 /* Workaround: Clear the timing override chicken bit again. */
1914                 reg = TRANS_CHICKEN2(pipe);
1915                 val = I915_READ(reg);
1916                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917                 I915_WRITE(reg, val);
1918         }
1919 }
1920
1921 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1922 {
1923         u32 val;
1924
1925         val = I915_READ(LPT_TRANSCONF);
1926         val &= ~TRANS_ENABLE;
1927         I915_WRITE(LPT_TRANSCONF, val);
1928         /* wait for PCH transcoder off, transcoder state */
1929         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1930                 DRM_ERROR("Failed to disable PCH transcoder\n");
1931
1932         /* Workaround: clear timing override bit. */
1933         val = I915_READ(_TRANSA_CHICKEN2);
1934         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1935         I915_WRITE(_TRANSA_CHICKEN2, val);
1936 }
1937
1938 /**
1939  * intel_enable_pipe - enable a pipe, asserting requirements
1940  * @crtc: crtc responsible for the pipe
1941  *
1942  * Enable @crtc's pipe, making sure that various hardware specific requirements
1943  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1944  */
1945 static void intel_enable_pipe(struct intel_crtc *crtc)
1946 {
1947         struct drm_device *dev = crtc->base.dev;
1948         struct drm_i915_private *dev_priv = dev->dev_private;
1949         enum pipe pipe = crtc->pipe;
1950         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1951                                                                       pipe);
1952         enum pipe pch_transcoder;
1953         int reg;
1954         u32 val;
1955
1956         assert_planes_disabled(dev_priv, pipe);
1957         assert_cursor_disabled(dev_priv, pipe);
1958         assert_sprites_disabled(dev_priv, pipe);
1959
1960         if (HAS_PCH_LPT(dev_priv->dev))
1961                 pch_transcoder = TRANSCODER_A;
1962         else
1963                 pch_transcoder = pipe;
1964
1965         /*
1966          * A pipe without a PLL won't actually be able to drive bits from
1967          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1968          * need the check.
1969          */
1970         if (!HAS_PCH_SPLIT(dev_priv->dev))
1971                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1972                         assert_dsi_pll_enabled(dev_priv);
1973                 else
1974                         assert_pll_enabled(dev_priv, pipe);
1975         else {
1976                 if (crtc->config.has_pch_encoder) {
1977                         /* if driving the PCH, we need FDI enabled */
1978                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1979                         assert_fdi_tx_pll_enabled(dev_priv,
1980                                                   (enum pipe) cpu_transcoder);
1981                 }
1982                 /* FIXME: assert CPU port conditions for SNB+ */
1983         }
1984
1985         reg = PIPECONF(cpu_transcoder);
1986         val = I915_READ(reg);
1987         if (val & PIPECONF_ENABLE) {
1988                 WARN_ON(!(pipe == PIPE_A &&
1989                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1990                 return;
1991         }
1992
1993         I915_WRITE(reg, val | PIPECONF_ENABLE);
1994         POSTING_READ(reg);
1995 }
1996
1997 /**
1998  * intel_disable_pipe - disable a pipe, asserting requirements
1999  * @dev_priv: i915 private structure
2000  * @pipe: pipe to disable
2001  *
2002  * Disable @pipe, making sure that various hardware specific requirements
2003  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2004  *
2005  * @pipe should be %PIPE_A or %PIPE_B.
2006  *
2007  * Will wait until the pipe has shut down before returning.
2008  */
2009 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2010                                enum pipe pipe)
2011 {
2012         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2013                                                                       pipe);
2014         int reg;
2015         u32 val;
2016
2017         /*
2018          * Make sure planes won't keep trying to pump pixels to us,
2019          * or we might hang the display.
2020          */
2021         assert_planes_disabled(dev_priv, pipe);
2022         assert_cursor_disabled(dev_priv, pipe);
2023         assert_sprites_disabled(dev_priv, pipe);
2024
2025         /* Don't disable pipe A or pipe A PLLs if needed */
2026         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2027                 return;
2028
2029         reg = PIPECONF(cpu_transcoder);
2030         val = I915_READ(reg);
2031         if ((val & PIPECONF_ENABLE) == 0)
2032                 return;
2033
2034         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2035         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2036 }
2037
2038 /*
2039  * Plane regs are double buffered, going from enabled->disabled needs a
2040  * trigger in order to latch.  The display address reg provides this.
2041  */
2042 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2043                                enum plane plane)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2047
2048         I915_WRITE(reg, I915_READ(reg));
2049         POSTING_READ(reg);
2050 }
2051
2052 /**
2053  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2054  * @dev_priv: i915 private structure
2055  * @plane: plane to enable
2056  * @pipe: pipe being fed
2057  *
2058  * Enable @plane on @pipe, making sure that @pipe is running first.
2059  */
2060 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2061                                           enum plane plane, enum pipe pipe)
2062 {
2063         struct intel_crtc *intel_crtc =
2064                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2065         int reg;
2066         u32 val;
2067
2068         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2069         assert_pipe_enabled(dev_priv, pipe);
2070
2071         if (intel_crtc->primary_enabled)
2072                 return;
2073
2074         intel_crtc->primary_enabled = true;
2075
2076         reg = DSPCNTR(plane);
2077         val = I915_READ(reg);
2078         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2079
2080         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2081         intel_flush_primary_plane(dev_priv, plane);
2082         intel_wait_for_vblank(dev_priv->dev, pipe);
2083 }
2084
2085 /**
2086  * intel_disable_primary_hw_plane - disable the primary hardware plane
2087  * @dev_priv: i915 private structure
2088  * @plane: plane to disable
2089  * @pipe: pipe consuming the data
2090  *
2091  * Disable @plane; should be an independent operation.
2092  */
2093 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2094                                            enum plane plane, enum pipe pipe)
2095 {
2096         struct intel_crtc *intel_crtc =
2097                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2098         int reg;
2099         u32 val;
2100
2101         if (!intel_crtc->primary_enabled)
2102                 return;
2103
2104         intel_crtc->primary_enabled = false;
2105
2106         reg = DSPCNTR(plane);
2107         val = I915_READ(reg);
2108         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2109
2110         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2111         intel_flush_primary_plane(dev_priv, plane);
2112         intel_wait_for_vblank(dev_priv->dev, pipe);
2113 }
2114
2115 static bool need_vtd_wa(struct drm_device *dev)
2116 {
2117 #ifdef CONFIG_INTEL_IOMMU
2118         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2119                 return true;
2120 #endif
2121         return false;
2122 }
2123
2124 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2125 {
2126         int tile_height;
2127
2128         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2129         return ALIGN(height, tile_height);
2130 }
2131
2132 int
2133 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2134                            struct drm_i915_gem_object *obj,
2135                            struct intel_ring_buffer *pipelined)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         u32 alignment;
2139         int ret;
2140
2141         switch (obj->tiling_mode) {
2142         case I915_TILING_NONE:
2143                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2144                         alignment = 128 * 1024;
2145                 else if (INTEL_INFO(dev)->gen >= 4)
2146                         alignment = 4 * 1024;
2147                 else
2148                         alignment = 64 * 1024;
2149                 break;
2150         case I915_TILING_X:
2151                 /* pin() will align the object as required by fence */
2152                 alignment = 0;
2153                 break;
2154         case I915_TILING_Y:
2155                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2156                 return -EINVAL;
2157         default:
2158                 BUG();
2159         }
2160
2161         /* Note that the w/a also requires 64 PTE of padding following the
2162          * bo. We currently fill all unused PTE with the shadow page and so
2163          * we should always have valid PTE following the scanout preventing
2164          * the VT-d warning.
2165          */
2166         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2167                 alignment = 256 * 1024;
2168
2169         dev_priv->mm.interruptible = false;
2170         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2171         if (ret)
2172                 goto err_interruptible;
2173
2174         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2175          * fence, whereas 965+ only requires a fence if using
2176          * framebuffer compression.  For simplicity, we always install
2177          * a fence as the cost is not that onerous.
2178          */
2179         ret = i915_gem_object_get_fence(obj);
2180         if (ret)
2181                 goto err_unpin;
2182
2183         i915_gem_object_pin_fence(obj);
2184
2185         dev_priv->mm.interruptible = true;
2186         return 0;
2187
2188 err_unpin:
2189         i915_gem_object_unpin_from_display_plane(obj);
2190 err_interruptible:
2191         dev_priv->mm.interruptible = true;
2192         return ret;
2193 }
2194
2195 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2196 {
2197         i915_gem_object_unpin_fence(obj);
2198         i915_gem_object_unpin_from_display_plane(obj);
2199 }
2200
2201 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2202  * is assumed to be a power-of-two. */
2203 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2204                                              unsigned int tiling_mode,
2205                                              unsigned int cpp,
2206                                              unsigned int pitch)
2207 {
2208         if (tiling_mode != I915_TILING_NONE) {
2209                 unsigned int tile_rows, tiles;
2210
2211                 tile_rows = *y / 8;
2212                 *y %= 8;
2213
2214                 tiles = *x / (512/cpp);
2215                 *x %= 512/cpp;
2216
2217                 return tile_rows * pitch * 8 + tiles * 4096;
2218         } else {
2219                 unsigned int offset;
2220
2221                 offset = *y * pitch + *x * cpp;
2222                 *y = 0;
2223                 *x = (offset & 4095) / cpp;
2224                 return offset & -4096;
2225         }
2226 }
2227
2228 int intel_format_to_fourcc(int format)
2229 {
2230         switch (format) {
2231         case DISPPLANE_8BPP:
2232                 return DRM_FORMAT_C8;
2233         case DISPPLANE_BGRX555:
2234                 return DRM_FORMAT_XRGB1555;
2235         case DISPPLANE_BGRX565:
2236                 return DRM_FORMAT_RGB565;
2237         default:
2238         case DISPPLANE_BGRX888:
2239                 return DRM_FORMAT_XRGB8888;
2240         case DISPPLANE_RGBX888:
2241                 return DRM_FORMAT_XBGR8888;
2242         case DISPPLANE_BGRX101010:
2243                 return DRM_FORMAT_XRGB2101010;
2244         case DISPPLANE_RGBX101010:
2245                 return DRM_FORMAT_XBGR2101010;
2246         }
2247 }
2248
2249 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2250                                   struct intel_plane_config *plane_config)
2251 {
2252         struct drm_device *dev = crtc->base.dev;
2253         struct drm_i915_gem_object *obj = NULL;
2254         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2255         u32 base = plane_config->base;
2256
2257         if (plane_config->size == 0)
2258                 return false;
2259
2260         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2261                                                              plane_config->size);
2262         if (!obj)
2263                 return false;
2264
2265         if (plane_config->tiled) {
2266                 obj->tiling_mode = I915_TILING_X;
2267                 obj->stride = crtc->base.primary->fb->pitches[0];
2268         }
2269
2270         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2271         mode_cmd.width = crtc->base.primary->fb->width;
2272         mode_cmd.height = crtc->base.primary->fb->height;
2273         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2274
2275         mutex_lock(&dev->struct_mutex);
2276
2277         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2278                                    &mode_cmd, obj)) {
2279                 DRM_DEBUG_KMS("intel fb init failed\n");
2280                 goto out_unref_obj;
2281         }
2282
2283         mutex_unlock(&dev->struct_mutex);
2284
2285         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2286         return true;
2287
2288 out_unref_obj:
2289         drm_gem_object_unreference(&obj->base);
2290         mutex_unlock(&dev->struct_mutex);
2291         return false;
2292 }
2293
2294 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2295                                  struct intel_plane_config *plane_config)
2296 {
2297         struct drm_device *dev = intel_crtc->base.dev;
2298         struct drm_crtc *c;
2299         struct intel_crtc *i;
2300         struct intel_framebuffer *fb;
2301
2302         if (!intel_crtc->base.primary->fb)
2303                 return;
2304
2305         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2306                 return;
2307
2308         kfree(intel_crtc->base.primary->fb);
2309         intel_crtc->base.primary->fb = NULL;
2310
2311         /*
2312          * Failed to alloc the obj, check to see if we should share
2313          * an fb with another CRTC instead
2314          */
2315         for_each_crtc(dev, c) {
2316                 i = to_intel_crtc(c);
2317
2318                 if (c == &intel_crtc->base)
2319                         continue;
2320
2321                 if (!i->active || !c->primary->fb)
2322                         continue;
2323
2324                 fb = to_intel_framebuffer(c->primary->fb);
2325                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2326                         drm_framebuffer_reference(c->primary->fb);
2327                         intel_crtc->base.primary->fb = c->primary->fb;
2328                         break;
2329                 }
2330         }
2331 }
2332
2333 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2334                                       struct drm_framebuffer *fb,
2335                                       int x, int y)
2336 {
2337         struct drm_device *dev = crtc->dev;
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2340         struct intel_framebuffer *intel_fb;
2341         struct drm_i915_gem_object *obj;
2342         int plane = intel_crtc->plane;
2343         unsigned long linear_offset;
2344         u32 dspcntr;
2345         u32 reg;
2346
2347         intel_fb = to_intel_framebuffer(fb);
2348         obj = intel_fb->obj;
2349
2350         reg = DSPCNTR(plane);
2351         dspcntr = I915_READ(reg);
2352         /* Mask out pixel format bits in case we change it */
2353         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2354         switch (fb->pixel_format) {
2355         case DRM_FORMAT_C8:
2356                 dspcntr |= DISPPLANE_8BPP;
2357                 break;
2358         case DRM_FORMAT_XRGB1555:
2359         case DRM_FORMAT_ARGB1555:
2360                 dspcntr |= DISPPLANE_BGRX555;
2361                 break;
2362         case DRM_FORMAT_RGB565:
2363                 dspcntr |= DISPPLANE_BGRX565;
2364                 break;
2365         case DRM_FORMAT_XRGB8888:
2366         case DRM_FORMAT_ARGB8888:
2367                 dspcntr |= DISPPLANE_BGRX888;
2368                 break;
2369         case DRM_FORMAT_XBGR8888:
2370         case DRM_FORMAT_ABGR8888:
2371                 dspcntr |= DISPPLANE_RGBX888;
2372                 break;
2373         case DRM_FORMAT_XRGB2101010:
2374         case DRM_FORMAT_ARGB2101010:
2375                 dspcntr |= DISPPLANE_BGRX101010;
2376                 break;
2377         case DRM_FORMAT_XBGR2101010:
2378         case DRM_FORMAT_ABGR2101010:
2379                 dspcntr |= DISPPLANE_RGBX101010;
2380                 break;
2381         default:
2382                 BUG();
2383         }
2384
2385         if (INTEL_INFO(dev)->gen >= 4) {
2386                 if (obj->tiling_mode != I915_TILING_NONE)
2387                         dspcntr |= DISPPLANE_TILED;
2388                 else
2389                         dspcntr &= ~DISPPLANE_TILED;
2390         }
2391
2392         if (IS_G4X(dev))
2393                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2394
2395         I915_WRITE(reg, dspcntr);
2396
2397         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2398
2399         if (INTEL_INFO(dev)->gen >= 4) {
2400                 intel_crtc->dspaddr_offset =
2401                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2402                                                        fb->bits_per_pixel / 8,
2403                                                        fb->pitches[0]);
2404                 linear_offset -= intel_crtc->dspaddr_offset;
2405         } else {
2406                 intel_crtc->dspaddr_offset = linear_offset;
2407         }
2408
2409         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2410                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2411                       fb->pitches[0]);
2412         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2413         if (INTEL_INFO(dev)->gen >= 4) {
2414                 I915_WRITE(DSPSURF(plane),
2415                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2416                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2417                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2418         } else
2419                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2420         POSTING_READ(reg);
2421 }
2422
2423 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2424                                           struct drm_framebuffer *fb,
2425                                           int x, int y)
2426 {
2427         struct drm_device *dev = crtc->dev;
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2430         struct intel_framebuffer *intel_fb;
2431         struct drm_i915_gem_object *obj;
2432         int plane = intel_crtc->plane;
2433         unsigned long linear_offset;
2434         u32 dspcntr;
2435         u32 reg;
2436
2437         intel_fb = to_intel_framebuffer(fb);
2438         obj = intel_fb->obj;
2439
2440         reg = DSPCNTR(plane);
2441         dspcntr = I915_READ(reg);
2442         /* Mask out pixel format bits in case we change it */
2443         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2444         switch (fb->pixel_format) {
2445         case DRM_FORMAT_C8:
2446                 dspcntr |= DISPPLANE_8BPP;
2447                 break;
2448         case DRM_FORMAT_RGB565:
2449                 dspcntr |= DISPPLANE_BGRX565;
2450                 break;
2451         case DRM_FORMAT_XRGB8888:
2452         case DRM_FORMAT_ARGB8888:
2453                 dspcntr |= DISPPLANE_BGRX888;
2454                 break;
2455         case DRM_FORMAT_XBGR8888:
2456         case DRM_FORMAT_ABGR8888:
2457                 dspcntr |= DISPPLANE_RGBX888;
2458                 break;
2459         case DRM_FORMAT_XRGB2101010:
2460         case DRM_FORMAT_ARGB2101010:
2461                 dspcntr |= DISPPLANE_BGRX101010;
2462                 break;
2463         case DRM_FORMAT_XBGR2101010:
2464         case DRM_FORMAT_ABGR2101010:
2465                 dspcntr |= DISPPLANE_RGBX101010;
2466                 break;
2467         default:
2468                 BUG();
2469         }
2470
2471         if (obj->tiling_mode != I915_TILING_NONE)
2472                 dspcntr |= DISPPLANE_TILED;
2473         else
2474                 dspcntr &= ~DISPPLANE_TILED;
2475
2476         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2477                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2478         else
2479                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2480
2481         I915_WRITE(reg, dspcntr);
2482
2483         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2484         intel_crtc->dspaddr_offset =
2485                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2486                                                fb->bits_per_pixel / 8,
2487                                                fb->pitches[0]);
2488         linear_offset -= intel_crtc->dspaddr_offset;
2489
2490         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2491                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2492                       fb->pitches[0]);
2493         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2494         I915_WRITE(DSPSURF(plane),
2495                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2496         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2497                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2498         } else {
2499                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2500                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2501         }
2502         POSTING_READ(reg);
2503 }
2504
2505 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2506 static int
2507 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2508                            int x, int y, enum mode_set_atomic state)
2509 {
2510         struct drm_device *dev = crtc->dev;
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513         if (dev_priv->display.disable_fbc)
2514                 dev_priv->display.disable_fbc(dev);
2515         intel_increase_pllclock(crtc);
2516
2517         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2518
2519         return 0;
2520 }
2521
2522 void intel_display_handle_reset(struct drm_device *dev)
2523 {
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct drm_crtc *crtc;
2526
2527         /*
2528          * Flips in the rings have been nuked by the reset,
2529          * so complete all pending flips so that user space
2530          * will get its events and not get stuck.
2531          *
2532          * Also update the base address of all primary
2533          * planes to the the last fb to make sure we're
2534          * showing the correct fb after a reset.
2535          *
2536          * Need to make two loops over the crtcs so that we
2537          * don't try to grab a crtc mutex before the
2538          * pending_flip_queue really got woken up.
2539          */
2540
2541         for_each_crtc(dev, crtc) {
2542                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2543                 enum plane plane = intel_crtc->plane;
2544
2545                 intel_prepare_page_flip(dev, plane);
2546                 intel_finish_page_flip_plane(dev, plane);
2547         }
2548
2549         for_each_crtc(dev, crtc) {
2550                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2551
2552                 mutex_lock(&crtc->mutex);
2553                 /*
2554                  * FIXME: Once we have proper support for primary planes (and
2555                  * disabling them without disabling the entire crtc) allow again
2556                  * a NULL crtc->primary->fb.
2557                  */
2558                 if (intel_crtc->active && crtc->primary->fb)
2559                         dev_priv->display.update_primary_plane(crtc,
2560                                                                crtc->primary->fb,
2561                                                                crtc->x,
2562                                                                crtc->y);
2563                 mutex_unlock(&crtc->mutex);
2564         }
2565 }
2566
2567 static int
2568 intel_finish_fb(struct drm_framebuffer *old_fb)
2569 {
2570         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2571         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2572         bool was_interruptible = dev_priv->mm.interruptible;
2573         int ret;
2574
2575         /* Big Hammer, we also need to ensure that any pending
2576          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2577          * current scanout is retired before unpinning the old
2578          * framebuffer.
2579          *
2580          * This should only fail upon a hung GPU, in which case we
2581          * can safely continue.
2582          */
2583         dev_priv->mm.interruptible = false;
2584         ret = i915_gem_object_finish_gpu(obj);
2585         dev_priv->mm.interruptible = was_interruptible;
2586
2587         return ret;
2588 }
2589
2590 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2591 {
2592         struct drm_device *dev = crtc->dev;
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2595         unsigned long flags;
2596         bool pending;
2597
2598         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2599             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2600                 return false;
2601
2602         spin_lock_irqsave(&dev->event_lock, flags);
2603         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2604         spin_unlock_irqrestore(&dev->event_lock, flags);
2605
2606         return pending;
2607 }
2608
2609 static int
2610 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2611                     struct drm_framebuffer *fb)
2612 {
2613         struct drm_device *dev = crtc->dev;
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2616         struct drm_framebuffer *old_fb;
2617         int ret;
2618
2619         if (intel_crtc_has_pending_flip(crtc)) {
2620                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2621                 return -EBUSY;
2622         }
2623
2624         /* no fb bound */
2625         if (!fb) {
2626                 DRM_ERROR("No FB bound\n");
2627                 return 0;
2628         }
2629
2630         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2631                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2632                           plane_name(intel_crtc->plane),
2633                           INTEL_INFO(dev)->num_pipes);
2634                 return -EINVAL;
2635         }
2636
2637         mutex_lock(&dev->struct_mutex);
2638         ret = intel_pin_and_fence_fb_obj(dev,
2639                                          to_intel_framebuffer(fb)->obj,
2640                                          NULL);
2641         mutex_unlock(&dev->struct_mutex);
2642         if (ret != 0) {
2643                 DRM_ERROR("pin & fence failed\n");
2644                 return ret;
2645         }
2646
2647         /*
2648          * Update pipe size and adjust fitter if needed: the reason for this is
2649          * that in compute_mode_changes we check the native mode (not the pfit
2650          * mode) to see if we can flip rather than do a full mode set. In the
2651          * fastboot case, we'll flip, but if we don't update the pipesrc and
2652          * pfit state, we'll end up with a big fb scanned out into the wrong
2653          * sized surface.
2654          *
2655          * To fix this properly, we need to hoist the checks up into
2656          * compute_mode_changes (or above), check the actual pfit state and
2657          * whether the platform allows pfit disable with pipe active, and only
2658          * then update the pipesrc and pfit state, even on the flip path.
2659          */
2660         if (i915.fastboot) {
2661                 const struct drm_display_mode *adjusted_mode =
2662                         &intel_crtc->config.adjusted_mode;
2663
2664                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2665                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2666                            (adjusted_mode->crtc_vdisplay - 1));
2667                 if (!intel_crtc->config.pch_pfit.enabled &&
2668                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2669                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2670                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2671                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2672                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2673                 }
2674                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2675                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2676         }
2677
2678         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2679
2680         old_fb = crtc->primary->fb;
2681         crtc->primary->fb = fb;
2682         crtc->x = x;
2683         crtc->y = y;
2684
2685         if (old_fb) {
2686                 if (intel_crtc->active && old_fb != fb)
2687                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2688                 mutex_lock(&dev->struct_mutex);
2689                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2690                 mutex_unlock(&dev->struct_mutex);
2691         }
2692
2693         mutex_lock(&dev->struct_mutex);
2694         intel_update_fbc(dev);
2695         intel_edp_psr_update(dev);
2696         mutex_unlock(&dev->struct_mutex);
2697
2698         return 0;
2699 }
2700
2701 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2702 {
2703         struct drm_device *dev = crtc->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2706         int pipe = intel_crtc->pipe;
2707         u32 reg, temp;
2708
2709         /* enable normal train */
2710         reg = FDI_TX_CTL(pipe);
2711         temp = I915_READ(reg);
2712         if (IS_IVYBRIDGE(dev)) {
2713                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2714                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2715         } else {
2716                 temp &= ~FDI_LINK_TRAIN_NONE;
2717                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2718         }
2719         I915_WRITE(reg, temp);
2720
2721         reg = FDI_RX_CTL(pipe);
2722         temp = I915_READ(reg);
2723         if (HAS_PCH_CPT(dev)) {
2724                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2725                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2726         } else {
2727                 temp &= ~FDI_LINK_TRAIN_NONE;
2728                 temp |= FDI_LINK_TRAIN_NONE;
2729         }
2730         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2731
2732         /* wait one idle pattern time */
2733         POSTING_READ(reg);
2734         udelay(1000);
2735
2736         /* IVB wants error correction enabled */
2737         if (IS_IVYBRIDGE(dev))
2738                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2739                            FDI_FE_ERRC_ENABLE);
2740 }
2741
2742 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2743 {
2744         return crtc->base.enabled && crtc->active &&
2745                 crtc->config.has_pch_encoder;
2746 }
2747
2748 static void ivb_modeset_global_resources(struct drm_device *dev)
2749 {
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         struct intel_crtc *pipe_B_crtc =
2752                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2753         struct intel_crtc *pipe_C_crtc =
2754                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2755         uint32_t temp;
2756
2757         /*
2758          * When everything is off disable fdi C so that we could enable fdi B
2759          * with all lanes. Note that we don't care about enabled pipes without
2760          * an enabled pch encoder.
2761          */
2762         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2763             !pipe_has_enabled_pch(pipe_C_crtc)) {
2764                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2765                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2766
2767                 temp = I915_READ(SOUTH_CHICKEN1);
2768                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2769                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2770                 I915_WRITE(SOUTH_CHICKEN1, temp);
2771         }
2772 }
2773
2774 /* The FDI link training functions for ILK/Ibexpeak. */
2775 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2776 {
2777         struct drm_device *dev = crtc->dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         int pipe = intel_crtc->pipe;
2781         u32 reg, temp, tries;
2782
2783         /* FDI needs bits from pipe first */
2784         assert_pipe_enabled(dev_priv, pipe);
2785
2786         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2787            for train result */
2788         reg = FDI_RX_IMR(pipe);
2789         temp = I915_READ(reg);
2790         temp &= ~FDI_RX_SYMBOL_LOCK;
2791         temp &= ~FDI_RX_BIT_LOCK;
2792         I915_WRITE(reg, temp);
2793         I915_READ(reg);
2794         udelay(150);
2795
2796         /* enable CPU FDI TX and PCH FDI RX */
2797         reg = FDI_TX_CTL(pipe);
2798         temp = I915_READ(reg);
2799         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2800         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~FDI_LINK_TRAIN_NONE;
2808         temp |= FDI_LINK_TRAIN_PATTERN_1;
2809         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2810
2811         POSTING_READ(reg);
2812         udelay(150);
2813
2814         /* Ironlake workaround, enable clock pointer after FDI enable*/
2815         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2816         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2817                    FDI_RX_PHASE_SYNC_POINTER_EN);
2818
2819         reg = FDI_RX_IIR(pipe);
2820         for (tries = 0; tries < 5; tries++) {
2821                 temp = I915_READ(reg);
2822                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2823
2824                 if ((temp & FDI_RX_BIT_LOCK)) {
2825                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2826                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2827                         break;
2828                 }
2829         }
2830         if (tries == 5)
2831                 DRM_ERROR("FDI train 1 fail!\n");
2832
2833         /* Train 2 */
2834         reg = FDI_TX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         temp &= ~FDI_LINK_TRAIN_NONE;
2837         temp |= FDI_LINK_TRAIN_PATTERN_2;
2838         I915_WRITE(reg, temp);
2839
2840         reg = FDI_RX_CTL(pipe);
2841         temp = I915_READ(reg);
2842         temp &= ~FDI_LINK_TRAIN_NONE;
2843         temp |= FDI_LINK_TRAIN_PATTERN_2;
2844         I915_WRITE(reg, temp);
2845
2846         POSTING_READ(reg);
2847         udelay(150);
2848
2849         reg = FDI_RX_IIR(pipe);
2850         for (tries = 0; tries < 5; tries++) {
2851                 temp = I915_READ(reg);
2852                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2853
2854                 if (temp & FDI_RX_SYMBOL_LOCK) {
2855                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2856                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2857                         break;
2858                 }
2859         }
2860         if (tries == 5)
2861                 DRM_ERROR("FDI train 2 fail!\n");
2862
2863         DRM_DEBUG_KMS("FDI train done\n");
2864
2865 }
2866
2867 static const int snb_b_fdi_train_param[] = {
2868         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2869         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2870         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2871         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2872 };
2873
2874 /* The FDI link training functions for SNB/Cougarpoint. */
2875 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp, i, retry;
2882
2883         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2884            for train result */
2885         reg = FDI_RX_IMR(pipe);
2886         temp = I915_READ(reg);
2887         temp &= ~FDI_RX_SYMBOL_LOCK;
2888         temp &= ~FDI_RX_BIT_LOCK;
2889         I915_WRITE(reg, temp);
2890
2891         POSTING_READ(reg);
2892         udelay(150);
2893
2894         /* enable CPU FDI TX and PCH FDI RX */
2895         reg = FDI_TX_CTL(pipe);
2896         temp = I915_READ(reg);
2897         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2898         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2899         temp &= ~FDI_LINK_TRAIN_NONE;
2900         temp |= FDI_LINK_TRAIN_PATTERN_1;
2901         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2902         /* SNB-B */
2903         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2904         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2905
2906         I915_WRITE(FDI_RX_MISC(pipe),
2907                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2908
2909         reg = FDI_RX_CTL(pipe);
2910         temp = I915_READ(reg);
2911         if (HAS_PCH_CPT(dev)) {
2912                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914         } else {
2915                 temp &= ~FDI_LINK_TRAIN_NONE;
2916                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2917         }
2918         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2919
2920         POSTING_READ(reg);
2921         udelay(150);
2922
2923         for (i = 0; i < 4; i++) {
2924                 reg = FDI_TX_CTL(pipe);
2925                 temp = I915_READ(reg);
2926                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2927                 temp |= snb_b_fdi_train_param[i];
2928                 I915_WRITE(reg, temp);
2929
2930                 POSTING_READ(reg);
2931                 udelay(500);
2932
2933                 for (retry = 0; retry < 5; retry++) {
2934                         reg = FDI_RX_IIR(pipe);
2935                         temp = I915_READ(reg);
2936                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2937                         if (temp & FDI_RX_BIT_LOCK) {
2938                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2939                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2940                                 break;
2941                         }
2942                         udelay(50);
2943                 }
2944                 if (retry < 5)
2945                         break;
2946         }
2947         if (i == 4)
2948                 DRM_ERROR("FDI train 1 fail!\n");
2949
2950         /* Train 2 */
2951         reg = FDI_TX_CTL(pipe);
2952         temp = I915_READ(reg);
2953         temp &= ~FDI_LINK_TRAIN_NONE;
2954         temp |= FDI_LINK_TRAIN_PATTERN_2;
2955         if (IS_GEN6(dev)) {
2956                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2957                 /* SNB-B */
2958                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2959         }
2960         I915_WRITE(reg, temp);
2961
2962         reg = FDI_RX_CTL(pipe);
2963         temp = I915_READ(reg);
2964         if (HAS_PCH_CPT(dev)) {
2965                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2966                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2967         } else {
2968                 temp &= ~FDI_LINK_TRAIN_NONE;
2969                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2970         }
2971         I915_WRITE(reg, temp);
2972
2973         POSTING_READ(reg);
2974         udelay(150);
2975
2976         for (i = 0; i < 4; i++) {
2977                 reg = FDI_TX_CTL(pipe);
2978                 temp = I915_READ(reg);
2979                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2980                 temp |= snb_b_fdi_train_param[i];
2981                 I915_WRITE(reg, temp);
2982
2983                 POSTING_READ(reg);
2984                 udelay(500);
2985
2986                 for (retry = 0; retry < 5; retry++) {
2987                         reg = FDI_RX_IIR(pipe);
2988                         temp = I915_READ(reg);
2989                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2990                         if (temp & FDI_RX_SYMBOL_LOCK) {
2991                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2992                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2993                                 break;
2994                         }
2995                         udelay(50);
2996                 }
2997                 if (retry < 5)
2998                         break;
2999         }
3000         if (i == 4)
3001                 DRM_ERROR("FDI train 2 fail!\n");
3002
3003         DRM_DEBUG_KMS("FDI train done.\n");
3004 }
3005
3006 /* Manual link training for Ivy Bridge A0 parts */
3007 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3008 {
3009         struct drm_device *dev = crtc->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3012         int pipe = intel_crtc->pipe;
3013         u32 reg, temp, i, j;
3014
3015         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3016            for train result */
3017         reg = FDI_RX_IMR(pipe);
3018         temp = I915_READ(reg);
3019         temp &= ~FDI_RX_SYMBOL_LOCK;
3020         temp &= ~FDI_RX_BIT_LOCK;
3021         I915_WRITE(reg, temp);
3022
3023         POSTING_READ(reg);
3024         udelay(150);
3025
3026         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3027                       I915_READ(FDI_RX_IIR(pipe)));
3028
3029         /* Try each vswing and preemphasis setting twice before moving on */
3030         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3031                 /* disable first in case we need to retry */
3032                 reg = FDI_TX_CTL(pipe);
3033                 temp = I915_READ(reg);
3034                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3035                 temp &= ~FDI_TX_ENABLE;
3036                 I915_WRITE(reg, temp);
3037
3038                 reg = FDI_RX_CTL(pipe);
3039                 temp = I915_READ(reg);
3040                 temp &= ~FDI_LINK_TRAIN_AUTO;
3041                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3042                 temp &= ~FDI_RX_ENABLE;
3043                 I915_WRITE(reg, temp);
3044
3045                 /* enable CPU FDI TX and PCH FDI RX */
3046                 reg = FDI_TX_CTL(pipe);
3047                 temp = I915_READ(reg);
3048                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3049                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3050                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3051                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3052                 temp |= snb_b_fdi_train_param[j/2];
3053                 temp |= FDI_COMPOSITE_SYNC;
3054                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3055
3056                 I915_WRITE(FDI_RX_MISC(pipe),
3057                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3058
3059                 reg = FDI_RX_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3062                 temp |= FDI_COMPOSITE_SYNC;
3063                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3064
3065                 POSTING_READ(reg);
3066                 udelay(1); /* should be 0.5us */
3067
3068                 for (i = 0; i < 4; i++) {
3069                         reg = FDI_RX_IIR(pipe);
3070                         temp = I915_READ(reg);
3071                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3072
3073                         if (temp & FDI_RX_BIT_LOCK ||
3074                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3075                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3076                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3077                                               i);
3078                                 break;
3079                         }
3080                         udelay(1); /* should be 0.5us */
3081                 }
3082                 if (i == 4) {
3083                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3084                         continue;
3085                 }
3086
3087                 /* Train 2 */
3088                 reg = FDI_TX_CTL(pipe);
3089                 temp = I915_READ(reg);
3090                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3092                 I915_WRITE(reg, temp);
3093
3094                 reg = FDI_RX_CTL(pipe);
3095                 temp = I915_READ(reg);
3096                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3097                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3098                 I915_WRITE(reg, temp);
3099
3100                 POSTING_READ(reg);
3101                 udelay(2); /* should be 1.5us */
3102
3103                 for (i = 0; i < 4; i++) {
3104                         reg = FDI_RX_IIR(pipe);
3105                         temp = I915_READ(reg);
3106                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3107
3108                         if (temp & FDI_RX_SYMBOL_LOCK ||
3109                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3110                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3111                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3112                                               i);
3113                                 goto train_done;
3114                         }
3115                         udelay(2); /* should be 1.5us */
3116                 }
3117                 if (i == 4)
3118                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3119         }
3120
3121 train_done:
3122         DRM_DEBUG_KMS("FDI train done.\n");
3123 }
3124
3125 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3126 {
3127         struct drm_device *dev = intel_crtc->base.dev;
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129         int pipe = intel_crtc->pipe;
3130         u32 reg, temp;
3131
3132
3133         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3134         reg = FDI_RX_CTL(pipe);
3135         temp = I915_READ(reg);
3136         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3137         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3138         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3139         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3140
3141         POSTING_READ(reg);
3142         udelay(200);
3143
3144         /* Switch from Rawclk to PCDclk */
3145         temp = I915_READ(reg);
3146         I915_WRITE(reg, temp | FDI_PCDCLK);
3147
3148         POSTING_READ(reg);
3149         udelay(200);
3150
3151         /* Enable CPU FDI TX PLL, always on for Ironlake */
3152         reg = FDI_TX_CTL(pipe);
3153         temp = I915_READ(reg);
3154         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3155                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3156
3157                 POSTING_READ(reg);
3158                 udelay(100);
3159         }
3160 }
3161
3162 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3163 {
3164         struct drm_device *dev = intel_crtc->base.dev;
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         int pipe = intel_crtc->pipe;
3167         u32 reg, temp;
3168
3169         /* Switch from PCDclk to Rawclk */
3170         reg = FDI_RX_CTL(pipe);
3171         temp = I915_READ(reg);
3172         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3173
3174         /* Disable CPU FDI TX PLL */
3175         reg = FDI_TX_CTL(pipe);
3176         temp = I915_READ(reg);
3177         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3178
3179         POSTING_READ(reg);
3180         udelay(100);
3181
3182         reg = FDI_RX_CTL(pipe);
3183         temp = I915_READ(reg);
3184         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3185
3186         /* Wait for the clocks to turn off. */
3187         POSTING_READ(reg);
3188         udelay(100);
3189 }
3190
3191 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3192 {
3193         struct drm_device *dev = crtc->dev;
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3196         int pipe = intel_crtc->pipe;
3197         u32 reg, temp;
3198
3199         /* disable CPU FDI tx and PCH FDI rx */
3200         reg = FDI_TX_CTL(pipe);
3201         temp = I915_READ(reg);
3202         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3203         POSTING_READ(reg);
3204
3205         reg = FDI_RX_CTL(pipe);
3206         temp = I915_READ(reg);
3207         temp &= ~(0x7 << 16);
3208         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3209         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3210
3211         POSTING_READ(reg);
3212         udelay(100);
3213
3214         /* Ironlake workaround, disable clock pointer after downing FDI */
3215         if (HAS_PCH_IBX(dev))
3216                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3217
3218         /* still set train pattern 1 */
3219         reg = FDI_TX_CTL(pipe);
3220         temp = I915_READ(reg);
3221         temp &= ~FDI_LINK_TRAIN_NONE;
3222         temp |= FDI_LINK_TRAIN_PATTERN_1;
3223         I915_WRITE(reg, temp);
3224
3225         reg = FDI_RX_CTL(pipe);
3226         temp = I915_READ(reg);
3227         if (HAS_PCH_CPT(dev)) {
3228                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3229                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3230         } else {
3231                 temp &= ~FDI_LINK_TRAIN_NONE;
3232                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3233         }
3234         /* BPC in FDI rx is consistent with that in PIPECONF */
3235         temp &= ~(0x07 << 16);
3236         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3237         I915_WRITE(reg, temp);
3238
3239         POSTING_READ(reg);
3240         udelay(100);
3241 }
3242
3243 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3244 {
3245         struct intel_crtc *crtc;
3246
3247         /* Note that we don't need to be called with mode_config.lock here
3248          * as our list of CRTC objects is static for the lifetime of the
3249          * device and so cannot disappear as we iterate. Similarly, we can
3250          * happily treat the predicates as racy, atomic checks as userspace
3251          * cannot claim and pin a new fb without at least acquring the
3252          * struct_mutex and so serialising with us.
3253          */
3254         for_each_intel_crtc(dev, crtc) {
3255                 if (atomic_read(&crtc->unpin_work_count) == 0)
3256                         continue;
3257
3258                 if (crtc->unpin_work)
3259                         intel_wait_for_vblank(dev, crtc->pipe);
3260
3261                 return true;
3262         }
3263
3264         return false;
3265 }
3266
3267 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3268 {
3269         struct drm_device *dev = crtc->dev;
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271
3272         if (crtc->primary->fb == NULL)
3273                 return;
3274
3275         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3276
3277         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3278                                    !intel_crtc_has_pending_flip(crtc),
3279                                    60*HZ) == 0);
3280
3281         mutex_lock(&dev->struct_mutex);
3282         intel_finish_fb(crtc->primary->fb);
3283         mutex_unlock(&dev->struct_mutex);
3284 }
3285
3286 /* Program iCLKIP clock to the desired frequency */
3287 static void lpt_program_iclkip(struct drm_crtc *crtc)
3288 {
3289         struct drm_device *dev = crtc->dev;
3290         struct drm_i915_private *dev_priv = dev->dev_private;
3291         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3292         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3293         u32 temp;
3294
3295         mutex_lock(&dev_priv->dpio_lock);
3296
3297         /* It is necessary to ungate the pixclk gate prior to programming
3298          * the divisors, and gate it back when it is done.
3299          */
3300         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3301
3302         /* Disable SSCCTL */
3303         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3304                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3305                                 SBI_SSCCTL_DISABLE,
3306                         SBI_ICLK);
3307
3308         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3309         if (clock == 20000) {
3310                 auxdiv = 1;
3311                 divsel = 0x41;
3312                 phaseinc = 0x20;
3313         } else {
3314                 /* The iCLK virtual clock root frequency is in MHz,
3315                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3316                  * divisors, it is necessary to divide one by another, so we
3317                  * convert the virtual clock precision to KHz here for higher
3318                  * precision.
3319                  */
3320                 u32 iclk_virtual_root_freq = 172800 * 1000;
3321                 u32 iclk_pi_range = 64;
3322                 u32 desired_divisor, msb_divisor_value, pi_value;
3323
3324                 desired_divisor = (iclk_virtual_root_freq / clock);
3325                 msb_divisor_value = desired_divisor / iclk_pi_range;
3326                 pi_value = desired_divisor % iclk_pi_range;
3327
3328                 auxdiv = 0;
3329                 divsel = msb_divisor_value - 2;
3330                 phaseinc = pi_value;
3331         }
3332
3333         /* This should not happen with any sane values */
3334         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3335                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3336         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3337                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3338
3339         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3340                         clock,
3341                         auxdiv,
3342                         divsel,
3343                         phasedir,
3344                         phaseinc);
3345
3346         /* Program SSCDIVINTPHASE6 */
3347         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3348         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3349         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3350         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3351         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3352         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3353         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3354         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3355
3356         /* Program SSCAUXDIV */
3357         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3358         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3359         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3360         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3361
3362         /* Enable modulator and associated divider */
3363         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3364         temp &= ~SBI_SSCCTL_DISABLE;
3365         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3366
3367         /* Wait for initialization time */
3368         udelay(24);
3369
3370         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3371
3372         mutex_unlock(&dev_priv->dpio_lock);
3373 }
3374
3375 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3376                                                 enum pipe pch_transcoder)
3377 {
3378         struct drm_device *dev = crtc->base.dev;
3379         struct drm_i915_private *dev_priv = dev->dev_private;
3380         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3381
3382         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3383                    I915_READ(HTOTAL(cpu_transcoder)));
3384         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3385                    I915_READ(HBLANK(cpu_transcoder)));
3386         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3387                    I915_READ(HSYNC(cpu_transcoder)));
3388
3389         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3390                    I915_READ(VTOTAL(cpu_transcoder)));
3391         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3392                    I915_READ(VBLANK(cpu_transcoder)));
3393         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3394                    I915_READ(VSYNC(cpu_transcoder)));
3395         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3396                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3397 }
3398
3399 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         uint32_t temp;
3403
3404         temp = I915_READ(SOUTH_CHICKEN1);
3405         if (temp & FDI_BC_BIFURCATION_SELECT)
3406                 return;
3407
3408         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3409         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3410
3411         temp |= FDI_BC_BIFURCATION_SELECT;
3412         DRM_DEBUG_KMS("enabling fdi C rx\n");
3413         I915_WRITE(SOUTH_CHICKEN1, temp);
3414         POSTING_READ(SOUTH_CHICKEN1);
3415 }
3416
3417 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3418 {
3419         struct drm_device *dev = intel_crtc->base.dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421
3422         switch (intel_crtc->pipe) {
3423         case PIPE_A:
3424                 break;
3425         case PIPE_B:
3426                 if (intel_crtc->config.fdi_lanes > 2)
3427                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3428                 else
3429                         cpt_enable_fdi_bc_bifurcation(dev);
3430
3431                 break;
3432         case PIPE_C:
3433                 cpt_enable_fdi_bc_bifurcation(dev);
3434
3435                 break;
3436         default:
3437                 BUG();
3438         }
3439 }
3440
3441 /*
3442  * Enable PCH resources required for PCH ports:
3443  *   - PCH PLLs
3444  *   - FDI training & RX/TX
3445  *   - update transcoder timings
3446  *   - DP transcoding bits
3447  *   - transcoder
3448  */
3449 static void ironlake_pch_enable(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         assert_pch_transcoder_disabled(dev_priv, pipe);
3458
3459         if (IS_IVYBRIDGE(dev))
3460                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3461
3462         /* Write the TU size bits before fdi link training, so that error
3463          * detection works. */
3464         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3465                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3466
3467         /* For PCH output, training FDI link */
3468         dev_priv->display.fdi_link_train(crtc);
3469
3470         /* We need to program the right clock selection before writing the pixel
3471          * mutliplier into the DPLL. */
3472         if (HAS_PCH_CPT(dev)) {
3473                 u32 sel;
3474
3475                 temp = I915_READ(PCH_DPLL_SEL);
3476                 temp |= TRANS_DPLL_ENABLE(pipe);
3477                 sel = TRANS_DPLLB_SEL(pipe);
3478                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3479                         temp |= sel;
3480                 else
3481                         temp &= ~sel;
3482                 I915_WRITE(PCH_DPLL_SEL, temp);
3483         }
3484
3485         /* XXX: pch pll's can be enabled any time before we enable the PCH
3486          * transcoder, and we actually should do this to not upset any PCH
3487          * transcoder that already use the clock when we share it.
3488          *
3489          * Note that enable_shared_dpll tries to do the right thing, but
3490          * get_shared_dpll unconditionally resets the pll - we need that to have
3491          * the right LVDS enable sequence. */
3492         ironlake_enable_shared_dpll(intel_crtc);
3493
3494         /* set transcoder timing, panel must allow it */
3495         assert_panel_unlocked(dev_priv, pipe);
3496         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3497
3498         intel_fdi_normal_train(crtc);
3499
3500         /* For PCH DP, enable TRANS_DP_CTL */
3501         if (HAS_PCH_CPT(dev) &&
3502             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3503              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3504                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3505                 reg = TRANS_DP_CTL(pipe);
3506                 temp = I915_READ(reg);
3507                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3508                           TRANS_DP_SYNC_MASK |
3509                           TRANS_DP_BPC_MASK);
3510                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3511                          TRANS_DP_ENH_FRAMING);
3512                 temp |= bpc << 9; /* same format but at 11:9 */
3513
3514                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3515                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3516                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3517                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3518
3519                 switch (intel_trans_dp_port_sel(crtc)) {
3520                 case PCH_DP_B:
3521                         temp |= TRANS_DP_PORT_SEL_B;
3522                         break;
3523                 case PCH_DP_C:
3524                         temp |= TRANS_DP_PORT_SEL_C;
3525                         break;
3526                 case PCH_DP_D:
3527                         temp |= TRANS_DP_PORT_SEL_D;
3528                         break;
3529                 default:
3530                         BUG();
3531                 }
3532
3533                 I915_WRITE(reg, temp);
3534         }
3535
3536         ironlake_enable_pch_transcoder(dev_priv, pipe);
3537 }
3538
3539 static void lpt_pch_enable(struct drm_crtc *crtc)
3540 {
3541         struct drm_device *dev = crtc->dev;
3542         struct drm_i915_private *dev_priv = dev->dev_private;
3543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3544         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3545
3546         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3547
3548         lpt_program_iclkip(crtc);
3549
3550         /* Set transcoder timing. */
3551         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3552
3553         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3554 }
3555
3556 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3557 {
3558         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3559
3560         if (pll == NULL)
3561                 return;
3562
3563         if (pll->refcount == 0) {
3564                 WARN(1, "bad %s refcount\n", pll->name);
3565                 return;
3566         }
3567
3568         if (--pll->refcount == 0) {
3569                 WARN_ON(pll->on);
3570                 WARN_ON(pll->active);
3571         }
3572
3573         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3574 }
3575
3576 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3577 {
3578         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3579         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3580         enum intel_dpll_id i;
3581
3582         if (pll) {
3583                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3584                               crtc->base.base.id, pll->name);
3585                 intel_put_shared_dpll(crtc);
3586         }
3587
3588         if (HAS_PCH_IBX(dev_priv->dev)) {
3589                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3590                 i = (enum intel_dpll_id) crtc->pipe;
3591                 pll = &dev_priv->shared_dplls[i];
3592
3593                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3594                               crtc->base.base.id, pll->name);
3595
3596                 goto found;
3597         }
3598
3599         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3600                 pll = &dev_priv->shared_dplls[i];
3601
3602                 /* Only want to check enabled timings first */
3603                 if (pll->refcount == 0)
3604                         continue;
3605
3606                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3607                            sizeof(pll->hw_state)) == 0) {
3608                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3609                                       crtc->base.base.id,
3610                                       pll->name, pll->refcount, pll->active);
3611
3612                         goto found;
3613                 }
3614         }
3615
3616         /* Ok no matching timings, maybe there's a free one? */
3617         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3618                 pll = &dev_priv->shared_dplls[i];
3619                 if (pll->refcount == 0) {
3620                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3621                                       crtc->base.base.id, pll->name);
3622                         goto found;
3623                 }
3624         }
3625
3626         return NULL;
3627
3628 found:
3629         crtc->config.shared_dpll = i;
3630         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3631                          pipe_name(crtc->pipe));
3632
3633         if (pll->active == 0) {
3634                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3635                        sizeof(pll->hw_state));
3636
3637                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3638                 WARN_ON(pll->on);
3639                 assert_shared_dpll_disabled(dev_priv, pll);
3640
3641                 pll->mode_set(dev_priv, pll);
3642         }
3643         pll->refcount++;
3644
3645         return pll;
3646 }
3647
3648 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651         int dslreg = PIPEDSL(pipe);
3652         u32 temp;
3653
3654         temp = I915_READ(dslreg);
3655         udelay(500);
3656         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3657                 if (wait_for(I915_READ(dslreg) != temp, 5))
3658                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3659         }
3660 }
3661
3662 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3663 {
3664         struct drm_device *dev = crtc->base.dev;
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666         int pipe = crtc->pipe;
3667
3668         if (crtc->config.pch_pfit.enabled) {
3669                 /* Force use of hard-coded filter coefficients
3670                  * as some pre-programmed values are broken,
3671                  * e.g. x201.
3672                  */
3673                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3674                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3675                                                  PF_PIPE_SEL_IVB(pipe));
3676                 else
3677                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3678                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3679                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3680         }
3681 }
3682
3683 static void intel_enable_planes(struct drm_crtc *crtc)
3684 {
3685         struct drm_device *dev = crtc->dev;
3686         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3687         struct drm_plane *plane;
3688         struct intel_plane *intel_plane;
3689
3690         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3691                 intel_plane = to_intel_plane(plane);
3692                 if (intel_plane->pipe == pipe)
3693                         intel_plane_restore(&intel_plane->base);
3694         }
3695 }
3696
3697 static void intel_disable_planes(struct drm_crtc *crtc)
3698 {
3699         struct drm_device *dev = crtc->dev;
3700         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3701         struct drm_plane *plane;
3702         struct intel_plane *intel_plane;
3703
3704         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3705                 intel_plane = to_intel_plane(plane);
3706                 if (intel_plane->pipe == pipe)
3707                         intel_plane_disable(&intel_plane->base);
3708         }
3709 }
3710
3711 void hsw_enable_ips(struct intel_crtc *crtc)
3712 {
3713         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3714
3715         if (!crtc->config.ips_enabled)
3716                 return;
3717
3718         /* We can only enable IPS after we enable a plane and wait for a vblank.
3719          * We guarantee that the plane is enabled by calling intel_enable_ips
3720          * only after intel_enable_plane. And intel_enable_plane already waits
3721          * for a vblank, so all we need to do here is to enable the IPS bit. */
3722         assert_plane_enabled(dev_priv, crtc->plane);
3723         if (IS_BROADWELL(crtc->base.dev)) {
3724                 mutex_lock(&dev_priv->rps.hw_lock);
3725                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3726                 mutex_unlock(&dev_priv->rps.hw_lock);
3727                 /* Quoting Art Runyan: "its not safe to expect any particular
3728                  * value in IPS_CTL bit 31 after enabling IPS through the
3729                  * mailbox." Moreover, the mailbox may return a bogus state,
3730                  * so we need to just enable it and continue on.
3731                  */
3732         } else {
3733                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3734                 /* The bit only becomes 1 in the next vblank, so this wait here
3735                  * is essentially intel_wait_for_vblank. If we don't have this
3736                  * and don't wait for vblanks until the end of crtc_enable, then
3737                  * the HW state readout code will complain that the expected
3738                  * IPS_CTL value is not the one we read. */
3739                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3740                         DRM_ERROR("Timed out waiting for IPS enable\n");
3741         }
3742 }
3743
3744 void hsw_disable_ips(struct intel_crtc *crtc)
3745 {
3746         struct drm_device *dev = crtc->base.dev;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748
3749         if (!crtc->config.ips_enabled)
3750                 return;
3751
3752         assert_plane_enabled(dev_priv, crtc->plane);
3753         if (IS_BROADWELL(dev)) {
3754                 mutex_lock(&dev_priv->rps.hw_lock);
3755                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3756                 mutex_unlock(&dev_priv->rps.hw_lock);
3757                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3758                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3759                         DRM_ERROR("Timed out waiting for IPS disable\n");
3760         } else {
3761                 I915_WRITE(IPS_CTL, 0);
3762                 POSTING_READ(IPS_CTL);
3763         }
3764
3765         /* We need to wait for a vblank before we can disable the plane. */
3766         intel_wait_for_vblank(dev, crtc->pipe);
3767 }
3768
3769 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3770 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3771 {
3772         struct drm_device *dev = crtc->dev;
3773         struct drm_i915_private *dev_priv = dev->dev_private;
3774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775         enum pipe pipe = intel_crtc->pipe;
3776         int palreg = PALETTE(pipe);
3777         int i;
3778         bool reenable_ips = false;
3779
3780         /* The clocks have to be on to load the palette. */
3781         if (!crtc->enabled || !intel_crtc->active)
3782                 return;
3783
3784         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3785                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3786                         assert_dsi_pll_enabled(dev_priv);
3787                 else
3788                         assert_pll_enabled(dev_priv, pipe);
3789         }
3790
3791         /* use legacy palette for Ironlake */
3792         if (HAS_PCH_SPLIT(dev))
3793                 palreg = LGC_PALETTE(pipe);
3794
3795         /* Workaround : Do not read or write the pipe palette/gamma data while
3796          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3797          */
3798         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3799             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3800              GAMMA_MODE_MODE_SPLIT)) {
3801                 hsw_disable_ips(intel_crtc);
3802                 reenable_ips = true;
3803         }
3804
3805         for (i = 0; i < 256; i++) {
3806                 I915_WRITE(palreg + 4 * i,
3807                            (intel_crtc->lut_r[i] << 16) |
3808                            (intel_crtc->lut_g[i] << 8) |
3809                            intel_crtc->lut_b[i]);
3810         }
3811
3812         if (reenable_ips)
3813                 hsw_enable_ips(intel_crtc);
3814 }
3815
3816 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3817 {
3818         if (!enable && intel_crtc->overlay) {
3819                 struct drm_device *dev = intel_crtc->base.dev;
3820                 struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822                 mutex_lock(&dev->struct_mutex);
3823                 dev_priv->mm.interruptible = false;
3824                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3825                 dev_priv->mm.interruptible = true;
3826                 mutex_unlock(&dev->struct_mutex);
3827         }
3828
3829         /* Let userspace switch the overlay on again. In most cases userspace
3830          * has to recompute where to put it anyway.
3831          */
3832 }
3833
3834 /**
3835  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3836  * cursor plane briefly if not already running after enabling the display
3837  * plane.
3838  * This workaround avoids occasional blank screens when self refresh is
3839  * enabled.
3840  */
3841 static void
3842 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3843 {
3844         u32 cntl = I915_READ(CURCNTR(pipe));
3845
3846         if ((cntl & CURSOR_MODE) == 0) {
3847                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3848
3849                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3850                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3851                 intel_wait_for_vblank(dev_priv->dev, pipe);
3852                 I915_WRITE(CURCNTR(pipe), cntl);
3853                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3854                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3855         }
3856 }
3857
3858 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3859 {
3860         struct drm_device *dev = crtc->dev;
3861         struct drm_i915_private *dev_priv = dev->dev_private;
3862         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3863         int pipe = intel_crtc->pipe;
3864         int plane = intel_crtc->plane;
3865
3866         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3867         intel_enable_planes(crtc);
3868         /* The fixup needs to happen before cursor is enabled */
3869         if (IS_G4X(dev))
3870                 g4x_fixup_plane(dev_priv, pipe);
3871         intel_crtc_update_cursor(crtc, true);
3872         intel_crtc_dpms_overlay(intel_crtc, true);
3873
3874         hsw_enable_ips(intel_crtc);
3875
3876         mutex_lock(&dev->struct_mutex);
3877         intel_update_fbc(dev);
3878         intel_edp_psr_update(dev);
3879         mutex_unlock(&dev->struct_mutex);
3880 }
3881
3882 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3883 {
3884         struct drm_device *dev = crtc->dev;
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3887         int pipe = intel_crtc->pipe;
3888         int plane = intel_crtc->plane;
3889
3890         intel_crtc_wait_for_pending_flips(crtc);
3891         drm_vblank_off(dev, pipe);
3892
3893         if (dev_priv->fbc.plane == plane)
3894                 intel_disable_fbc(dev);
3895
3896         hsw_disable_ips(intel_crtc);
3897
3898         intel_crtc_dpms_overlay(intel_crtc, false);
3899         intel_crtc_update_cursor(crtc, false);
3900         intel_disable_planes(crtc);
3901         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3902 }
3903
3904 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3905 {
3906         struct drm_device *dev = crtc->dev;
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3909         struct intel_encoder *encoder;
3910         int pipe = intel_crtc->pipe;
3911
3912         WARN_ON(!crtc->enabled);
3913
3914         if (intel_crtc->active)
3915                 return;
3916
3917         intel_crtc->active = true;
3918
3919         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3920         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3921
3922         for_each_encoder_on_crtc(dev, crtc, encoder)
3923                 if (encoder->pre_enable)
3924                         encoder->pre_enable(encoder);
3925
3926         if (intel_crtc->config.has_pch_encoder) {
3927                 /* Note: FDI PLL enabling _must_ be done before we enable the
3928                  * cpu pipes, hence this is separate from all the other fdi/pch
3929                  * enabling. */
3930                 ironlake_fdi_pll_enable(intel_crtc);
3931         } else {
3932                 assert_fdi_tx_disabled(dev_priv, pipe);
3933                 assert_fdi_rx_disabled(dev_priv, pipe);
3934         }
3935
3936         ironlake_pfit_enable(intel_crtc);
3937
3938         /*
3939          * On ILK+ LUT must be loaded before the pipe is running but with
3940          * clocks enabled
3941          */
3942         intel_crtc_load_lut(crtc);
3943
3944         intel_update_watermarks(crtc);
3945         intel_enable_pipe(intel_crtc);
3946
3947         if (intel_crtc->config.has_pch_encoder)
3948                 ironlake_pch_enable(crtc);
3949
3950         for_each_encoder_on_crtc(dev, crtc, encoder)
3951                 encoder->enable(encoder);
3952
3953         if (HAS_PCH_CPT(dev))
3954                 cpt_verify_modeset(dev, intel_crtc->pipe);
3955
3956         intel_crtc_enable_planes(crtc);
3957
3958         /*
3959          * There seems to be a race in PCH platform hw (at least on some
3960          * outputs) where an enabled pipe still completes any pageflip right
3961          * away (as if the pipe is off) instead of waiting for vblank. As soon
3962          * as the first vblank happend, everything works as expected. Hence just
3963          * wait for one vblank before returning to avoid strange things
3964          * happening.
3965          */
3966         intel_wait_for_vblank(dev, intel_crtc->pipe);
3967 }
3968
3969 /* IPS only exists on ULT machines and is tied to pipe A. */
3970 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3971 {
3972         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3973 }
3974
3975 /*
3976  * This implements the workaround described in the "notes" section of the mode
3977  * set sequence documentation. When going from no pipes or single pipe to
3978  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3979  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3980  */
3981 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3982 {
3983         struct drm_device *dev = crtc->base.dev;
3984         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3985
3986         /* We want to get the other_active_crtc only if there's only 1 other
3987          * active crtc. */
3988         for_each_intel_crtc(dev, crtc_it) {
3989                 if (!crtc_it->active || crtc_it == crtc)
3990                         continue;
3991
3992                 if (other_active_crtc)
3993                         return;
3994
3995                 other_active_crtc = crtc_it;
3996         }
3997         if (!other_active_crtc)
3998                 return;
3999
4000         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4001         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4002 }
4003
4004 static void haswell_crtc_enable(struct drm_crtc *crtc)
4005 {
4006         struct drm_device *dev = crtc->dev;
4007         struct drm_i915_private *dev_priv = dev->dev_private;
4008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4009         struct intel_encoder *encoder;
4010         int pipe = intel_crtc->pipe;
4011
4012         WARN_ON(!crtc->enabled);
4013
4014         if (intel_crtc->active)
4015                 return;
4016
4017         intel_crtc->active = true;
4018
4019         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4020         if (intel_crtc->config.has_pch_encoder)
4021                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4022
4023         if (intel_crtc->config.has_pch_encoder)
4024                 dev_priv->display.fdi_link_train(crtc);
4025
4026         for_each_encoder_on_crtc(dev, crtc, encoder)
4027                 if (encoder->pre_enable)
4028                         encoder->pre_enable(encoder);
4029
4030         intel_ddi_enable_pipe_clock(intel_crtc);
4031
4032         ironlake_pfit_enable(intel_crtc);
4033
4034         /*
4035          * On ILK+ LUT must be loaded before the pipe is running but with
4036          * clocks enabled
4037          */
4038         intel_crtc_load_lut(crtc);
4039
4040         intel_ddi_set_pipe_settings(crtc);
4041         intel_ddi_enable_transcoder_func(crtc);
4042
4043         intel_update_watermarks(crtc);
4044         intel_enable_pipe(intel_crtc);
4045
4046         if (intel_crtc->config.has_pch_encoder)
4047                 lpt_pch_enable(crtc);
4048
4049         for_each_encoder_on_crtc(dev, crtc, encoder) {
4050                 encoder->enable(encoder);
4051                 intel_opregion_notify_encoder(encoder, true);
4052         }
4053
4054         /* If we change the relative order between pipe/planes enabling, we need
4055          * to change the workaround. */
4056         haswell_mode_set_planes_workaround(intel_crtc);
4057         intel_crtc_enable_planes(crtc);
4058 }
4059
4060 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4061 {
4062         struct drm_device *dev = crtc->base.dev;
4063         struct drm_i915_private *dev_priv = dev->dev_private;
4064         int pipe = crtc->pipe;
4065
4066         /* To avoid upsetting the power well on haswell only disable the pfit if
4067          * it's in use. The hw state code will make sure we get this right. */
4068         if (crtc->config.pch_pfit.enabled) {
4069                 I915_WRITE(PF_CTL(pipe), 0);
4070                 I915_WRITE(PF_WIN_POS(pipe), 0);
4071                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4072         }
4073 }
4074
4075 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4076 {
4077         struct drm_device *dev = crtc->dev;
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4080         struct intel_encoder *encoder;
4081         int pipe = intel_crtc->pipe;
4082         u32 reg, temp;
4083
4084         if (!intel_crtc->active)
4085                 return;
4086
4087         intel_crtc_disable_planes(crtc);
4088
4089         for_each_encoder_on_crtc(dev, crtc, encoder)
4090                 encoder->disable(encoder);
4091
4092         if (intel_crtc->config.has_pch_encoder)
4093                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4094
4095         intel_disable_pipe(dev_priv, pipe);
4096
4097         ironlake_pfit_disable(intel_crtc);
4098
4099         for_each_encoder_on_crtc(dev, crtc, encoder)
4100                 if (encoder->post_disable)
4101                         encoder->post_disable(encoder);
4102
4103         if (intel_crtc->config.has_pch_encoder) {
4104                 ironlake_fdi_disable(crtc);
4105
4106                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4107                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4108
4109                 if (HAS_PCH_CPT(dev)) {
4110                         /* disable TRANS_DP_CTL */
4111                         reg = TRANS_DP_CTL(pipe);
4112                         temp = I915_READ(reg);
4113                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4114                                   TRANS_DP_PORT_SEL_MASK);
4115                         temp |= TRANS_DP_PORT_SEL_NONE;
4116                         I915_WRITE(reg, temp);
4117
4118                         /* disable DPLL_SEL */
4119                         temp = I915_READ(PCH_DPLL_SEL);
4120                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4121                         I915_WRITE(PCH_DPLL_SEL, temp);
4122                 }
4123
4124                 /* disable PCH DPLL */
4125                 intel_disable_shared_dpll(intel_crtc);
4126
4127                 ironlake_fdi_pll_disable(intel_crtc);
4128         }
4129
4130         intel_crtc->active = false;
4131         intel_update_watermarks(crtc);
4132
4133         mutex_lock(&dev->struct_mutex);
4134         intel_update_fbc(dev);
4135         intel_edp_psr_update(dev);
4136         mutex_unlock(&dev->struct_mutex);
4137 }
4138
4139 static void haswell_crtc_disable(struct drm_crtc *crtc)
4140 {
4141         struct drm_device *dev = crtc->dev;
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4144         struct intel_encoder *encoder;
4145         int pipe = intel_crtc->pipe;
4146         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4147
4148         if (!intel_crtc->active)
4149                 return;
4150
4151         intel_crtc_disable_planes(crtc);
4152
4153         for_each_encoder_on_crtc(dev, crtc, encoder) {
4154                 intel_opregion_notify_encoder(encoder, false);
4155                 encoder->disable(encoder);
4156         }
4157
4158         if (intel_crtc->config.has_pch_encoder)
4159                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4160         intel_disable_pipe(dev_priv, pipe);
4161
4162         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4163
4164         ironlake_pfit_disable(intel_crtc);
4165
4166         intel_ddi_disable_pipe_clock(intel_crtc);
4167
4168         for_each_encoder_on_crtc(dev, crtc, encoder)
4169                 if (encoder->post_disable)
4170                         encoder->post_disable(encoder);
4171
4172         if (intel_crtc->config.has_pch_encoder) {
4173                 lpt_disable_pch_transcoder(dev_priv);
4174                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4175                 intel_ddi_fdi_disable(crtc);
4176         }
4177
4178         intel_crtc->active = false;
4179         intel_update_watermarks(crtc);
4180
4181         mutex_lock(&dev->struct_mutex);
4182         intel_update_fbc(dev);
4183         intel_edp_psr_update(dev);
4184         mutex_unlock(&dev->struct_mutex);
4185 }
4186
4187 static void ironlake_crtc_off(struct drm_crtc *crtc)
4188 {
4189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190         intel_put_shared_dpll(intel_crtc);
4191 }
4192
4193 static void haswell_crtc_off(struct drm_crtc *crtc)
4194 {
4195         intel_ddi_put_crtc_pll(crtc);
4196 }
4197
4198 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4199 {
4200         struct drm_device *dev = crtc->base.dev;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         struct intel_crtc_config *pipe_config = &crtc->config;
4203
4204         if (!crtc->config.gmch_pfit.control)
4205                 return;
4206
4207         /*
4208          * The panel fitter should only be adjusted whilst the pipe is disabled,
4209          * according to register description and PRM.
4210          */
4211         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4212         assert_pipe_disabled(dev_priv, crtc->pipe);
4213
4214         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4215         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4216
4217         /* Border color in case we don't scale up to the full screen. Black by
4218          * default, change to something else for debugging. */
4219         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4220 }
4221
4222 #define for_each_power_domain(domain, mask)                             \
4223         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4224                 if ((1 << (domain)) & (mask))
4225
4226 enum intel_display_power_domain
4227 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4228 {
4229         struct drm_device *dev = intel_encoder->base.dev;
4230         struct intel_digital_port *intel_dig_port;
4231
4232         switch (intel_encoder->type) {
4233         case INTEL_OUTPUT_UNKNOWN:
4234                 /* Only DDI platforms should ever use this output type */
4235                 WARN_ON_ONCE(!HAS_DDI(dev));
4236         case INTEL_OUTPUT_DISPLAYPORT:
4237         case INTEL_OUTPUT_HDMI:
4238         case INTEL_OUTPUT_EDP:
4239                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4240                 switch (intel_dig_port->port) {
4241                 case PORT_A:
4242                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4243                 case PORT_B:
4244                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4245                 case PORT_C:
4246                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4247                 case PORT_D:
4248                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4249                 default:
4250                         WARN_ON_ONCE(1);
4251                         return POWER_DOMAIN_PORT_OTHER;
4252                 }
4253         case INTEL_OUTPUT_ANALOG:
4254                 return POWER_DOMAIN_PORT_CRT;
4255         case INTEL_OUTPUT_DSI:
4256                 return POWER_DOMAIN_PORT_DSI;
4257         default:
4258                 return POWER_DOMAIN_PORT_OTHER;
4259         }
4260 }
4261
4262 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4263 {
4264         struct drm_device *dev = crtc->dev;
4265         struct intel_encoder *intel_encoder;
4266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4267         enum pipe pipe = intel_crtc->pipe;
4268         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4269         unsigned long mask;
4270         enum transcoder transcoder;
4271
4272         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4273
4274         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4275         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4276         if (pfit_enabled)
4277                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4278
4279         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4280                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4281
4282         return mask;
4283 }
4284
4285 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4286                                   bool enable)
4287 {
4288         if (dev_priv->power_domains.init_power_on == enable)
4289                 return;
4290
4291         if (enable)
4292                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4293         else
4294                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4295
4296         dev_priv->power_domains.init_power_on = enable;
4297 }
4298
4299 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4300 {
4301         struct drm_i915_private *dev_priv = dev->dev_private;
4302         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4303         struct intel_crtc *crtc;
4304
4305         /*
4306          * First get all needed power domains, then put all unneeded, to avoid
4307          * any unnecessary toggling of the power wells.
4308          */
4309         for_each_intel_crtc(dev, crtc) {
4310                 enum intel_display_power_domain domain;
4311
4312                 if (!crtc->base.enabled)
4313                         continue;
4314
4315                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4316
4317                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4318                         intel_display_power_get(dev_priv, domain);
4319         }
4320
4321         for_each_intel_crtc(dev, crtc) {
4322                 enum intel_display_power_domain domain;
4323
4324                 for_each_power_domain(domain, crtc->enabled_power_domains)
4325                         intel_display_power_put(dev_priv, domain);
4326
4327                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4328         }
4329
4330         intel_display_set_init_power(dev_priv, false);
4331 }
4332
4333 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4334 {
4335         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4336
4337         /* Obtain SKU information */
4338         mutex_lock(&dev_priv->dpio_lock);
4339         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4340                 CCK_FUSE_HPLL_FREQ_MASK;
4341         mutex_unlock(&dev_priv->dpio_lock);
4342
4343         return vco_freq[hpll_freq];
4344 }
4345
4346 /* Adjust CDclk dividers to allow high res or save power if possible */
4347 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4348 {
4349         struct drm_i915_private *dev_priv = dev->dev_private;
4350         u32 val, cmd;
4351
4352         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4353         dev_priv->vlv_cdclk_freq = cdclk;
4354
4355         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4356                 cmd = 2;
4357         else if (cdclk == 266)
4358                 cmd = 1;
4359         else
4360                 cmd = 0;
4361
4362         mutex_lock(&dev_priv->rps.hw_lock);
4363         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4364         val &= ~DSPFREQGUAR_MASK;
4365         val |= (cmd << DSPFREQGUAR_SHIFT);
4366         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4367         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4368                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4369                      50)) {
4370                 DRM_ERROR("timed out waiting for CDclk change\n");
4371         }
4372         mutex_unlock(&dev_priv->rps.hw_lock);
4373
4374         if (cdclk == 400) {
4375                 u32 divider, vco;
4376
4377                 vco = valleyview_get_vco(dev_priv);
4378                 divider = ((vco << 1) / cdclk) - 1;
4379
4380                 mutex_lock(&dev_priv->dpio_lock);
4381                 /* adjust cdclk divider */
4382                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4383                 val &= ~0xf;
4384                 val |= divider;
4385                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4386                 mutex_unlock(&dev_priv->dpio_lock);
4387         }
4388
4389         mutex_lock(&dev_priv->dpio_lock);
4390         /* adjust self-refresh exit latency value */
4391         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4392         val &= ~0x7f;
4393
4394         /*
4395          * For high bandwidth configs, we set a higher latency in the bunit
4396          * so that the core display fetch happens in time to avoid underruns.
4397          */
4398         if (cdclk == 400)
4399                 val |= 4500 / 250; /* 4.5 usec */
4400         else
4401                 val |= 3000 / 250; /* 3.0 usec */
4402         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4403         mutex_unlock(&dev_priv->dpio_lock);
4404
4405         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4406         intel_i2c_reset(dev);
4407 }
4408
4409 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4410 {
4411         int cur_cdclk, vco;
4412         int divider;
4413
4414         vco = valleyview_get_vco(dev_priv);
4415
4416         mutex_lock(&dev_priv->dpio_lock);
4417         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4418         mutex_unlock(&dev_priv->dpio_lock);
4419
4420         divider &= 0xf;
4421
4422         cur_cdclk = (vco << 1) / (divider + 1);
4423
4424         return cur_cdclk;
4425 }
4426
4427 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4428                                  int max_pixclk)
4429 {
4430         /*
4431          * Really only a few cases to deal with, as only 4 CDclks are supported:
4432          *   200MHz
4433          *   267MHz
4434          *   320MHz
4435          *   400MHz
4436          * So we check to see whether we're above 90% of the lower bin and
4437          * adjust if needed.
4438          */
4439         if (max_pixclk > 288000) {
4440                 return 400;
4441         } else if (max_pixclk > 240000) {
4442                 return 320;
4443         } else
4444                 return 266;
4445         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4446 }
4447
4448 /* compute the max pixel clock for new configuration */
4449 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4450 {
4451         struct drm_device *dev = dev_priv->dev;
4452         struct intel_crtc *intel_crtc;
4453         int max_pixclk = 0;
4454
4455         for_each_intel_crtc(dev, intel_crtc) {
4456                 if (intel_crtc->new_enabled)
4457                         max_pixclk = max(max_pixclk,
4458                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4459         }
4460
4461         return max_pixclk;
4462 }
4463
4464 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4465                                             unsigned *prepare_pipes)
4466 {
4467         struct drm_i915_private *dev_priv = dev->dev_private;
4468         struct intel_crtc *intel_crtc;
4469         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4470
4471         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4472             dev_priv->vlv_cdclk_freq)
4473                 return;
4474
4475         /* disable/enable all currently active pipes while we change cdclk */
4476         for_each_intel_crtc(dev, intel_crtc)
4477                 if (intel_crtc->base.enabled)
4478                         *prepare_pipes |= (1 << intel_crtc->pipe);
4479 }
4480
4481 static void valleyview_modeset_global_resources(struct drm_device *dev)
4482 {
4483         struct drm_i915_private *dev_priv = dev->dev_private;
4484         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4485         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4486
4487         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4488                 valleyview_set_cdclk(dev, req_cdclk);
4489         modeset_update_crtc_power_domains(dev);
4490 }
4491
4492 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4493 {
4494         struct drm_device *dev = crtc->dev;
4495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4496         struct intel_encoder *encoder;
4497         int pipe = intel_crtc->pipe;
4498         bool is_dsi;
4499
4500         WARN_ON(!crtc->enabled);
4501
4502         if (intel_crtc->active)
4503                 return;
4504
4505         intel_crtc->active = true;
4506
4507         for_each_encoder_on_crtc(dev, crtc, encoder)
4508                 if (encoder->pre_pll_enable)
4509                         encoder->pre_pll_enable(encoder);
4510
4511         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4512
4513         if (!is_dsi) {
4514                 if (IS_CHERRYVIEW(dev))
4515                         chv_enable_pll(intel_crtc);
4516                 else
4517                         vlv_enable_pll(intel_crtc);
4518         }
4519
4520         for_each_encoder_on_crtc(dev, crtc, encoder)
4521                 if (encoder->pre_enable)
4522                         encoder->pre_enable(encoder);
4523
4524         i9xx_pfit_enable(intel_crtc);
4525
4526         intel_crtc_load_lut(crtc);
4527
4528         intel_update_watermarks(crtc);
4529         intel_enable_pipe(intel_crtc);
4530         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4531
4532         for_each_encoder_on_crtc(dev, crtc, encoder)
4533                 encoder->enable(encoder);
4534
4535         intel_crtc_enable_planes(crtc);
4536 }
4537
4538 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4539 {
4540         struct drm_device *dev = crtc->dev;
4541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4542         struct intel_encoder *encoder;
4543         int pipe = intel_crtc->pipe;
4544
4545         WARN_ON(!crtc->enabled);
4546
4547         if (intel_crtc->active)
4548                 return;
4549
4550         intel_crtc->active = true;
4551
4552         for_each_encoder_on_crtc(dev, crtc, encoder)
4553                 if (encoder->pre_enable)
4554                         encoder->pre_enable(encoder);
4555
4556         i9xx_enable_pll(intel_crtc);
4557
4558         i9xx_pfit_enable(intel_crtc);
4559
4560         intel_crtc_load_lut(crtc);
4561
4562         intel_update_watermarks(crtc);
4563         intel_enable_pipe(intel_crtc);
4564         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4565
4566         for_each_encoder_on_crtc(dev, crtc, encoder)
4567                 encoder->enable(encoder);
4568
4569         intel_crtc_enable_planes(crtc);
4570 }
4571
4572 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4573 {
4574         struct drm_device *dev = crtc->base.dev;
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576
4577         if (!crtc->config.gmch_pfit.control)
4578                 return;
4579
4580         assert_pipe_disabled(dev_priv, crtc->pipe);
4581
4582         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4583                          I915_READ(PFIT_CONTROL));
4584         I915_WRITE(PFIT_CONTROL, 0);
4585 }
4586
4587 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4588 {
4589         struct drm_device *dev = crtc->dev;
4590         struct drm_i915_private *dev_priv = dev->dev_private;
4591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4592         struct intel_encoder *encoder;
4593         int pipe = intel_crtc->pipe;
4594
4595         if (!intel_crtc->active)
4596                 return;
4597
4598         intel_crtc_disable_planes(crtc);
4599
4600         for_each_encoder_on_crtc(dev, crtc, encoder)
4601                 encoder->disable(encoder);
4602
4603         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4604         intel_disable_pipe(dev_priv, pipe);
4605
4606         i9xx_pfit_disable(intel_crtc);
4607
4608         for_each_encoder_on_crtc(dev, crtc, encoder)
4609                 if (encoder->post_disable)
4610                         encoder->post_disable(encoder);
4611
4612         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4613                 if (IS_CHERRYVIEW(dev))
4614                         chv_disable_pll(dev_priv, pipe);
4615                 else if (IS_VALLEYVIEW(dev))
4616                         vlv_disable_pll(dev_priv, pipe);
4617                 else
4618                         i9xx_disable_pll(dev_priv, pipe);
4619         }
4620
4621         intel_crtc->active = false;
4622         intel_update_watermarks(crtc);
4623
4624         mutex_lock(&dev->struct_mutex);
4625         intel_update_fbc(dev);
4626         intel_edp_psr_update(dev);
4627         mutex_unlock(&dev->struct_mutex);
4628 }
4629
4630 static void i9xx_crtc_off(struct drm_crtc *crtc)
4631 {
4632 }
4633
4634 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4635                                     bool enabled)
4636 {
4637         struct drm_device *dev = crtc->dev;
4638         struct drm_i915_master_private *master_priv;
4639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4640         int pipe = intel_crtc->pipe;
4641
4642         if (!dev->primary->master)
4643                 return;
4644
4645         master_priv = dev->primary->master->driver_priv;
4646         if (!master_priv->sarea_priv)
4647                 return;
4648
4649         switch (pipe) {
4650         case 0:
4651                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4652                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4653                 break;
4654         case 1:
4655                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4656                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4657                 break;
4658         default:
4659                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4660                 break;
4661         }
4662 }
4663
4664 /**
4665  * Sets the power management mode of the pipe and plane.
4666  */
4667 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4668 {
4669         struct drm_device *dev = crtc->dev;
4670         struct drm_i915_private *dev_priv = dev->dev_private;
4671         struct intel_encoder *intel_encoder;
4672         bool enable = false;
4673
4674         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4675                 enable |= intel_encoder->connectors_active;
4676
4677         if (enable)
4678                 dev_priv->display.crtc_enable(crtc);
4679         else
4680                 dev_priv->display.crtc_disable(crtc);
4681
4682         intel_crtc_update_sarea(crtc, enable);
4683 }
4684
4685 static void intel_crtc_disable(struct drm_crtc *crtc)
4686 {
4687         struct drm_device *dev = crtc->dev;
4688         struct drm_connector *connector;
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690
4691         /* crtc should still be enabled when we disable it. */
4692         WARN_ON(!crtc->enabled);
4693
4694         dev_priv->display.crtc_disable(crtc);
4695         intel_crtc_update_sarea(crtc, false);
4696         dev_priv->display.off(crtc);
4697
4698         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4699         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4700         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4701
4702         if (crtc->primary->fb) {
4703                 mutex_lock(&dev->struct_mutex);
4704                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4705                 mutex_unlock(&dev->struct_mutex);
4706                 crtc->primary->fb = NULL;
4707         }
4708
4709         /* Update computed state. */
4710         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4711                 if (!connector->encoder || !connector->encoder->crtc)
4712                         continue;
4713
4714                 if (connector->encoder->crtc != crtc)
4715                         continue;
4716
4717                 connector->dpms = DRM_MODE_DPMS_OFF;
4718                 to_intel_encoder(connector->encoder)->connectors_active = false;
4719         }
4720 }
4721
4722 void intel_encoder_destroy(struct drm_encoder *encoder)
4723 {
4724         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4725
4726         drm_encoder_cleanup(encoder);
4727         kfree(intel_encoder);
4728 }
4729
4730 /* Simple dpms helper for encoders with just one connector, no cloning and only
4731  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4732  * state of the entire output pipe. */
4733 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4734 {
4735         if (mode == DRM_MODE_DPMS_ON) {
4736                 encoder->connectors_active = true;
4737
4738                 intel_crtc_update_dpms(encoder->base.crtc);
4739         } else {
4740                 encoder->connectors_active = false;
4741
4742                 intel_crtc_update_dpms(encoder->base.crtc);
4743         }
4744 }
4745
4746 /* Cross check the actual hw state with our own modeset state tracking (and it's
4747  * internal consistency). */
4748 static void intel_connector_check_state(struct intel_connector *connector)
4749 {
4750         if (connector->get_hw_state(connector)) {
4751                 struct intel_encoder *encoder = connector->encoder;
4752                 struct drm_crtc *crtc;
4753                 bool encoder_enabled;
4754                 enum pipe pipe;
4755
4756                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4757                               connector->base.base.id,
4758                               drm_get_connector_name(&connector->base));
4759
4760                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4761                      "wrong connector dpms state\n");
4762                 WARN(connector->base.encoder != &encoder->base,
4763                      "active connector not linked to encoder\n");
4764                 WARN(!encoder->connectors_active,
4765                      "encoder->connectors_active not set\n");
4766
4767                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4768                 WARN(!encoder_enabled, "encoder not enabled\n");
4769                 if (WARN_ON(!encoder->base.crtc))
4770                         return;
4771
4772                 crtc = encoder->base.crtc;
4773
4774                 WARN(!crtc->enabled, "crtc not enabled\n");
4775                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4776                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4777                      "encoder active on the wrong pipe\n");
4778         }
4779 }
4780
4781 /* Even simpler default implementation, if there's really no special case to
4782  * consider. */
4783 void intel_connector_dpms(struct drm_connector *connector, int mode)
4784 {
4785         /* All the simple cases only support two dpms states. */
4786         if (mode != DRM_MODE_DPMS_ON)
4787                 mode = DRM_MODE_DPMS_OFF;
4788
4789         if (mode == connector->dpms)
4790                 return;
4791
4792         connector->dpms = mode;
4793
4794         /* Only need to change hw state when actually enabled */
4795         if (connector->encoder)
4796                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4797
4798         intel_modeset_check_state(connector->dev);
4799 }
4800
4801 /* Simple connector->get_hw_state implementation for encoders that support only
4802  * one connector and no cloning and hence the encoder state determines the state
4803  * of the connector. */
4804 bool intel_connector_get_hw_state(struct intel_connector *connector)
4805 {
4806         enum pipe pipe = 0;
4807         struct intel_encoder *encoder = connector->encoder;
4808
4809         return encoder->get_hw_state(encoder, &pipe);
4810 }
4811
4812 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4813                                      struct intel_crtc_config *pipe_config)
4814 {
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         struct intel_crtc *pipe_B_crtc =
4817                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4818
4819         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4820                       pipe_name(pipe), pipe_config->fdi_lanes);
4821         if (pipe_config->fdi_lanes > 4) {
4822                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4823                               pipe_name(pipe), pipe_config->fdi_lanes);
4824                 return false;
4825         }
4826
4827         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4828                 if (pipe_config->fdi_lanes > 2) {
4829                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4830                                       pipe_config->fdi_lanes);
4831                         return false;
4832                 } else {
4833                         return true;
4834                 }
4835         }
4836
4837         if (INTEL_INFO(dev)->num_pipes == 2)
4838                 return true;
4839
4840         /* Ivybridge 3 pipe is really complicated */
4841         switch (pipe) {
4842         case PIPE_A:
4843                 return true;
4844         case PIPE_B:
4845                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4846                     pipe_config->fdi_lanes > 2) {
4847                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4848                                       pipe_name(pipe), pipe_config->fdi_lanes);
4849                         return false;
4850                 }
4851                 return true;
4852         case PIPE_C:
4853                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4854                     pipe_B_crtc->config.fdi_lanes <= 2) {
4855                         if (pipe_config->fdi_lanes > 2) {
4856                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4857                                               pipe_name(pipe), pipe_config->fdi_lanes);
4858                                 return false;
4859                         }
4860                 } else {
4861                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4862                         return false;
4863                 }
4864                 return true;
4865         default:
4866                 BUG();
4867         }
4868 }
4869
4870 #define RETRY 1
4871 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4872                                        struct intel_crtc_config *pipe_config)
4873 {
4874         struct drm_device *dev = intel_crtc->base.dev;
4875         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4876         int lane, link_bw, fdi_dotclock;
4877         bool setup_ok, needs_recompute = false;
4878
4879 retry:
4880         /* FDI is a binary signal running at ~2.7GHz, encoding
4881          * each output octet as 10 bits. The actual frequency
4882          * is stored as a divider into a 100MHz clock, and the
4883          * mode pixel clock is stored in units of 1KHz.
4884          * Hence the bw of each lane in terms of the mode signal
4885          * is:
4886          */
4887         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4888
4889         fdi_dotclock = adjusted_mode->crtc_clock;
4890
4891         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4892                                            pipe_config->pipe_bpp);
4893
4894         pipe_config->fdi_lanes = lane;
4895
4896         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4897                                link_bw, &pipe_config->fdi_m_n);
4898
4899         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4900                                             intel_crtc->pipe, pipe_config);
4901         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4902                 pipe_config->pipe_bpp -= 2*3;
4903                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4904                               pipe_config->pipe_bpp);
4905                 needs_recompute = true;
4906                 pipe_config->bw_constrained = true;
4907
4908                 goto retry;
4909         }
4910
4911         if (needs_recompute)
4912                 return RETRY;
4913
4914         return setup_ok ? 0 : -EINVAL;
4915 }
4916
4917 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4918                                    struct intel_crtc_config *pipe_config)
4919 {
4920         pipe_config->ips_enabled = i915.enable_ips &&
4921                                    hsw_crtc_supports_ips(crtc) &&
4922                                    pipe_config->pipe_bpp <= 24;
4923 }
4924
4925 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4926                                      struct intel_crtc_config *pipe_config)
4927 {
4928         struct drm_device *dev = crtc->base.dev;
4929         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4930
4931         /* FIXME should check pixel clock limits on all platforms */
4932         if (INTEL_INFO(dev)->gen < 4) {
4933                 struct drm_i915_private *dev_priv = dev->dev_private;
4934                 int clock_limit =
4935                         dev_priv->display.get_display_clock_speed(dev);
4936
4937                 /*
4938                  * Enable pixel doubling when the dot clock
4939                  * is > 90% of the (display) core speed.
4940                  *
4941                  * GDG double wide on either pipe,
4942                  * otherwise pipe A only.
4943                  */
4944                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4945                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4946                         clock_limit *= 2;
4947                         pipe_config->double_wide = true;
4948                 }
4949
4950                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4951                         return -EINVAL;
4952         }
4953
4954         /*
4955          * Pipe horizontal size must be even in:
4956          * - DVO ganged mode
4957          * - LVDS dual channel mode
4958          * - Double wide pipe
4959          */
4960         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4961              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4962                 pipe_config->pipe_src_w &= ~1;
4963
4964         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4965          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4966          */
4967         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4968                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4969                 return -EINVAL;
4970
4971         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4972                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4973         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4974                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4975                  * for lvds. */
4976                 pipe_config->pipe_bpp = 8*3;
4977         }
4978
4979         if (HAS_IPS(dev))
4980                 hsw_compute_ips_config(crtc, pipe_config);
4981
4982         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4983          * clock survives for now. */
4984         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4985                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4986
4987         if (pipe_config->has_pch_encoder)
4988                 return ironlake_fdi_compute_config(crtc, pipe_config);
4989
4990         return 0;
4991 }
4992
4993 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4994 {
4995         return 400000; /* FIXME */
4996 }
4997
4998 static int i945_get_display_clock_speed(struct drm_device *dev)
4999 {
5000         return 400000;
5001 }
5002
5003 static int i915_get_display_clock_speed(struct drm_device *dev)
5004 {
5005         return 333000;
5006 }
5007
5008 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5009 {
5010         return 200000;
5011 }
5012
5013 static int pnv_get_display_clock_speed(struct drm_device *dev)
5014 {
5015         u16 gcfgc = 0;
5016
5017         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5018
5019         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5020         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5021                 return 267000;
5022         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5023                 return 333000;
5024         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5025                 return 444000;
5026         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5027                 return 200000;
5028         default:
5029                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5030         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5031                 return 133000;
5032         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5033                 return 167000;
5034         }
5035 }
5036
5037 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5038 {
5039         u16 gcfgc = 0;
5040
5041         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5042
5043         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5044                 return 133000;
5045         else {
5046                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5047                 case GC_DISPLAY_CLOCK_333_MHZ:
5048                         return 333000;
5049                 default:
5050                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5051                         return 190000;
5052                 }
5053         }
5054 }
5055
5056 static int i865_get_display_clock_speed(struct drm_device *dev)
5057 {
5058         return 266000;
5059 }
5060
5061 static int i855_get_display_clock_speed(struct drm_device *dev)
5062 {
5063         u16 hpllcc = 0;
5064         /* Assume that the hardware is in the high speed state.  This
5065          * should be the default.
5066          */
5067         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5068         case GC_CLOCK_133_200:
5069         case GC_CLOCK_100_200:
5070                 return 200000;
5071         case GC_CLOCK_166_250:
5072                 return 250000;
5073         case GC_CLOCK_100_133:
5074                 return 133000;
5075         }
5076
5077         /* Shouldn't happen */
5078         return 0;
5079 }
5080
5081 static int i830_get_display_clock_speed(struct drm_device *dev)
5082 {
5083         return 133000;
5084 }
5085
5086 static void
5087 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5088 {
5089         while (*num > DATA_LINK_M_N_MASK ||
5090                *den > DATA_LINK_M_N_MASK) {
5091                 *num >>= 1;
5092                 *den >>= 1;
5093         }
5094 }
5095
5096 static void compute_m_n(unsigned int m, unsigned int n,
5097                         uint32_t *ret_m, uint32_t *ret_n)
5098 {
5099         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5100         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5101         intel_reduce_m_n_ratio(ret_m, ret_n);
5102 }
5103
5104 void
5105 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5106                        int pixel_clock, int link_clock,
5107                        struct intel_link_m_n *m_n)
5108 {
5109         m_n->tu = 64;
5110
5111         compute_m_n(bits_per_pixel * pixel_clock,
5112                     link_clock * nlanes * 8,
5113                     &m_n->gmch_m, &m_n->gmch_n);
5114
5115         compute_m_n(pixel_clock, link_clock,
5116                     &m_n->link_m, &m_n->link_n);
5117 }
5118
5119 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5120 {
5121         if (i915.panel_use_ssc >= 0)
5122                 return i915.panel_use_ssc != 0;
5123         return dev_priv->vbt.lvds_use_ssc
5124                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5125 }
5126
5127 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5128 {
5129         struct drm_device *dev = crtc->dev;
5130         struct drm_i915_private *dev_priv = dev->dev_private;
5131         int refclk;
5132
5133         if (IS_VALLEYVIEW(dev)) {
5134                 refclk = 100000;
5135         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5136             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5137                 refclk = dev_priv->vbt.lvds_ssc_freq;
5138                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5139         } else if (!IS_GEN2(dev)) {
5140                 refclk = 96000;
5141         } else {
5142                 refclk = 48000;
5143         }
5144
5145         return refclk;
5146 }
5147
5148 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5149 {
5150         return (1 << dpll->n) << 16 | dpll->m2;
5151 }
5152
5153 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5154 {
5155         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5156 }
5157
5158 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5159                                      intel_clock_t *reduced_clock)
5160 {
5161         struct drm_device *dev = crtc->base.dev;
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         int pipe = crtc->pipe;
5164         u32 fp, fp2 = 0;
5165
5166         if (IS_PINEVIEW(dev)) {
5167                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5168                 if (reduced_clock)
5169                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5170         } else {
5171                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5172                 if (reduced_clock)
5173                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5174         }
5175
5176         I915_WRITE(FP0(pipe), fp);
5177         crtc->config.dpll_hw_state.fp0 = fp;
5178
5179         crtc->lowfreq_avail = false;
5180         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5181             reduced_clock && i915.powersave) {
5182                 I915_WRITE(FP1(pipe), fp2);
5183                 crtc->config.dpll_hw_state.fp1 = fp2;
5184                 crtc->lowfreq_avail = true;
5185         } else {
5186                 I915_WRITE(FP1(pipe), fp);
5187                 crtc->config.dpll_hw_state.fp1 = fp;
5188         }
5189 }
5190
5191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5192                 pipe)
5193 {
5194         u32 reg_val;
5195
5196         /*
5197          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5198          * and set it to a reasonable value instead.
5199          */
5200         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5201         reg_val &= 0xffffff00;
5202         reg_val |= 0x00000030;
5203         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5204
5205         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5206         reg_val &= 0x8cffffff;
5207         reg_val = 0x8c000000;
5208         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5209
5210         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5211         reg_val &= 0xffffff00;
5212         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5213
5214         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5215         reg_val &= 0x00ffffff;
5216         reg_val |= 0xb0000000;
5217         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5218 }
5219
5220 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5221                                          struct intel_link_m_n *m_n)
5222 {
5223         struct drm_device *dev = crtc->base.dev;
5224         struct drm_i915_private *dev_priv = dev->dev_private;
5225         int pipe = crtc->pipe;
5226
5227         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5228         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5229         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5230         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5231 }
5232
5233 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5234                                          struct intel_link_m_n *m_n)
5235 {
5236         struct drm_device *dev = crtc->base.dev;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         int pipe = crtc->pipe;
5239         enum transcoder transcoder = crtc->config.cpu_transcoder;
5240
5241         if (INTEL_INFO(dev)->gen >= 5) {
5242                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5243                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5244                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5245                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5246         } else {
5247                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5248                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5249                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5250                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5251         }
5252 }
5253
5254 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5255 {
5256         if (crtc->config.has_pch_encoder)
5257                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5258         else
5259                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5260 }
5261
5262 static void vlv_update_pll(struct intel_crtc *crtc)
5263 {
5264         struct drm_device *dev = crtc->base.dev;
5265         struct drm_i915_private *dev_priv = dev->dev_private;
5266         int pipe = crtc->pipe;
5267         u32 dpll, mdiv;
5268         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5269         u32 coreclk, reg_val, dpll_md;
5270
5271         mutex_lock(&dev_priv->dpio_lock);
5272
5273         bestn = crtc->config.dpll.n;
5274         bestm1 = crtc->config.dpll.m1;
5275         bestm2 = crtc->config.dpll.m2;
5276         bestp1 = crtc->config.dpll.p1;
5277         bestp2 = crtc->config.dpll.p2;
5278
5279         /* See eDP HDMI DPIO driver vbios notes doc */
5280
5281         /* PLL B needs special handling */
5282         if (pipe)
5283                 vlv_pllb_recal_opamp(dev_priv, pipe);
5284
5285         /* Set up Tx target for periodic Rcomp update */
5286         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5287
5288         /* Disable target IRef on PLL */
5289         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5290         reg_val &= 0x00ffffff;
5291         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5292
5293         /* Disable fast lock */
5294         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5295
5296         /* Set idtafcrecal before PLL is enabled */
5297         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5298         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5299         mdiv |= ((bestn << DPIO_N_SHIFT));
5300         mdiv |= (1 << DPIO_K_SHIFT);
5301
5302         /*
5303          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5304          * but we don't support that).
5305          * Note: don't use the DAC post divider as it seems unstable.
5306          */
5307         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5308         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5309
5310         mdiv |= DPIO_ENABLE_CALIBRATION;
5311         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5312
5313         /* Set HBR and RBR LPF coefficients */
5314         if (crtc->config.port_clock == 162000 ||
5315             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5316             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5317                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5318                                  0x009f0003);
5319         else
5320                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5321                                  0x00d0000f);
5322
5323         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5324             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5325                 /* Use SSC source */
5326                 if (!pipe)
5327                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5328                                          0x0df40000);
5329                 else
5330                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5331                                          0x0df70000);
5332         } else { /* HDMI or VGA */
5333                 /* Use bend source */
5334                 if (!pipe)
5335                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5336                                          0x0df70000);
5337                 else
5338                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5339                                          0x0df40000);
5340         }
5341
5342         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5343         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5344         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5345             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5346                 coreclk |= 0x01000000;
5347         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5348
5349         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5350
5351         /*
5352          * Enable DPIO clock input. We should never disable the reference
5353          * clock for pipe B, since VGA hotplug / manual detection depends
5354          * on it.
5355          */
5356         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5357                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5358         /* We should never disable this, set it here for state tracking */
5359         if (pipe == PIPE_B)
5360                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5361         dpll |= DPLL_VCO_ENABLE;
5362         crtc->config.dpll_hw_state.dpll = dpll;
5363
5364         dpll_md = (crtc->config.pixel_multiplier - 1)
5365                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5366         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5367
5368         mutex_unlock(&dev_priv->dpio_lock);
5369 }
5370
5371 static void chv_update_pll(struct intel_crtc *crtc)
5372 {
5373         struct drm_device *dev = crtc->base.dev;
5374         struct drm_i915_private *dev_priv = dev->dev_private;
5375         int pipe = crtc->pipe;
5376         int dpll_reg = DPLL(crtc->pipe);
5377         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5378         u32 val, loopfilter, intcoeff;
5379         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5380         int refclk;
5381
5382         mutex_lock(&dev_priv->dpio_lock);
5383
5384         bestn = crtc->config.dpll.n;
5385         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5386         bestm1 = crtc->config.dpll.m1;
5387         bestm2 = crtc->config.dpll.m2 >> 22;
5388         bestp1 = crtc->config.dpll.p1;
5389         bestp2 = crtc->config.dpll.p2;
5390
5391         /*
5392          * Enable Refclk and SSC
5393          */
5394         val = I915_READ(dpll_reg);
5395         val |= (DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV);
5396         I915_WRITE(dpll_reg, val);
5397
5398         /* Propagate soft reset to data lane reset */
5399         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(port));
5400         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
5401         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), val);
5402
5403         /* Disable 10bit clock to display controller */
5404         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
5405         val &= ~DPIO_DCLKP_EN;
5406         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
5407
5408         /* p1 and p2 divider */
5409         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5410                         5 << DPIO_CHV_S1_DIV_SHIFT |
5411                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5412                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5413                         1 << DPIO_CHV_K_DIV_SHIFT);
5414
5415         /* Feedback post-divider - m2 */
5416         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5417
5418         /* Feedback refclk divider - n and m1 */
5419         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5420                         DPIO_CHV_M1_DIV_BY_2 |
5421                         1 << DPIO_CHV_N_DIV_SHIFT);
5422
5423         /* M2 fraction division */
5424         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5425
5426         /* M2 fraction division enable */
5427         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5428                        DPIO_CHV_FRAC_DIV_EN |
5429                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5430
5431         /* Loop filter */
5432         refclk = i9xx_get_refclk(&crtc->base, 0);
5433         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5434                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5435         if (refclk == 100000)
5436                 intcoeff = 11;
5437         else if (refclk == 38400)
5438                 intcoeff = 10;
5439         else
5440                 intcoeff = 9;
5441         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5442         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5443
5444         /* AFC Recal */
5445         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5446                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5447                         DPIO_AFC_RECAL);
5448
5449         mutex_unlock(&dev_priv->dpio_lock);
5450 }
5451
5452 static void i9xx_update_pll(struct intel_crtc *crtc,
5453                             intel_clock_t *reduced_clock,
5454                             int num_connectors)
5455 {
5456         struct drm_device *dev = crtc->base.dev;
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         u32 dpll;
5459         bool is_sdvo;
5460         struct dpll *clock = &crtc->config.dpll;
5461
5462         i9xx_update_pll_dividers(crtc, reduced_clock);
5463
5464         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5465                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5466
5467         dpll = DPLL_VGA_MODE_DIS;
5468
5469         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5470                 dpll |= DPLLB_MODE_LVDS;
5471         else
5472                 dpll |= DPLLB_MODE_DAC_SERIAL;
5473
5474         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5475                 dpll |= (crtc->config.pixel_multiplier - 1)
5476                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5477         }
5478
5479         if (is_sdvo)
5480                 dpll |= DPLL_SDVO_HIGH_SPEED;
5481
5482         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5483                 dpll |= DPLL_SDVO_HIGH_SPEED;
5484
5485         /* compute bitmask from p1 value */
5486         if (IS_PINEVIEW(dev))
5487                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5488         else {
5489                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5490                 if (IS_G4X(dev) && reduced_clock)
5491                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5492         }
5493         switch (clock->p2) {
5494         case 5:
5495                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5496                 break;
5497         case 7:
5498                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5499                 break;
5500         case 10:
5501                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5502                 break;
5503         case 14:
5504                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5505                 break;
5506         }
5507         if (INTEL_INFO(dev)->gen >= 4)
5508                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5509
5510         if (crtc->config.sdvo_tv_clock)
5511                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5512         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5513                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5514                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5515         else
5516                 dpll |= PLL_REF_INPUT_DREFCLK;
5517
5518         dpll |= DPLL_VCO_ENABLE;
5519         crtc->config.dpll_hw_state.dpll = dpll;
5520
5521         if (INTEL_INFO(dev)->gen >= 4) {
5522                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5523                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5524                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5525         }
5526 }
5527
5528 static void i8xx_update_pll(struct intel_crtc *crtc,
5529                             intel_clock_t *reduced_clock,
5530                             int num_connectors)
5531 {
5532         struct drm_device *dev = crtc->base.dev;
5533         struct drm_i915_private *dev_priv = dev->dev_private;
5534         u32 dpll;
5535         struct dpll *clock = &crtc->config.dpll;
5536
5537         i9xx_update_pll_dividers(crtc, reduced_clock);
5538
5539         dpll = DPLL_VGA_MODE_DIS;
5540
5541         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5542                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5543         } else {
5544                 if (clock->p1 == 2)
5545                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5546                 else
5547                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5548                 if (clock->p2 == 4)
5549                         dpll |= PLL_P2_DIVIDE_BY_4;
5550         }
5551
5552         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5553                 dpll |= DPLL_DVO_2X_MODE;
5554
5555         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5556                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5557                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5558         else
5559                 dpll |= PLL_REF_INPUT_DREFCLK;
5560
5561         dpll |= DPLL_VCO_ENABLE;
5562         crtc->config.dpll_hw_state.dpll = dpll;
5563 }
5564
5565 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5566 {
5567         struct drm_device *dev = intel_crtc->base.dev;
5568         struct drm_i915_private *dev_priv = dev->dev_private;
5569         enum pipe pipe = intel_crtc->pipe;
5570         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5571         struct drm_display_mode *adjusted_mode =
5572                 &intel_crtc->config.adjusted_mode;
5573         uint32_t crtc_vtotal, crtc_vblank_end;
5574         int vsyncshift = 0;
5575
5576         /* We need to be careful not to changed the adjusted mode, for otherwise
5577          * the hw state checker will get angry at the mismatch. */
5578         crtc_vtotal = adjusted_mode->crtc_vtotal;
5579         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5580
5581         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5582                 /* the chip adds 2 halflines automatically */
5583                 crtc_vtotal -= 1;
5584                 crtc_vblank_end -= 1;
5585
5586                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5587                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5588                 else
5589                         vsyncshift = adjusted_mode->crtc_hsync_start -
5590                                 adjusted_mode->crtc_htotal / 2;
5591                 if (vsyncshift < 0)
5592                         vsyncshift += adjusted_mode->crtc_htotal;
5593         }
5594
5595         if (INTEL_INFO(dev)->gen > 3)
5596                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5597
5598         I915_WRITE(HTOTAL(cpu_transcoder),
5599                    (adjusted_mode->crtc_hdisplay - 1) |
5600                    ((adjusted_mode->crtc_htotal - 1) << 16));
5601         I915_WRITE(HBLANK(cpu_transcoder),
5602                    (adjusted_mode->crtc_hblank_start - 1) |
5603                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5604         I915_WRITE(HSYNC(cpu_transcoder),
5605                    (adjusted_mode->crtc_hsync_start - 1) |
5606                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5607
5608         I915_WRITE(VTOTAL(cpu_transcoder),
5609                    (adjusted_mode->crtc_vdisplay - 1) |
5610                    ((crtc_vtotal - 1) << 16));
5611         I915_WRITE(VBLANK(cpu_transcoder),
5612                    (adjusted_mode->crtc_vblank_start - 1) |
5613                    ((crtc_vblank_end - 1) << 16));
5614         I915_WRITE(VSYNC(cpu_transcoder),
5615                    (adjusted_mode->crtc_vsync_start - 1) |
5616                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5617
5618         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5619          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5620          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5621          * bits. */
5622         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5623             (pipe == PIPE_B || pipe == PIPE_C))
5624                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5625
5626         /* pipesrc controls the size that is scaled from, which should
5627          * always be the user's requested size.
5628          */
5629         I915_WRITE(PIPESRC(pipe),
5630                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5631                    (intel_crtc->config.pipe_src_h - 1));
5632 }
5633
5634 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5635                                    struct intel_crtc_config *pipe_config)
5636 {
5637         struct drm_device *dev = crtc->base.dev;
5638         struct drm_i915_private *dev_priv = dev->dev_private;
5639         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5640         uint32_t tmp;
5641
5642         tmp = I915_READ(HTOTAL(cpu_transcoder));
5643         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5644         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5645         tmp = I915_READ(HBLANK(cpu_transcoder));
5646         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5647         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5648         tmp = I915_READ(HSYNC(cpu_transcoder));
5649         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5650         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5651
5652         tmp = I915_READ(VTOTAL(cpu_transcoder));
5653         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5654         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5655         tmp = I915_READ(VBLANK(cpu_transcoder));
5656         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5657         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5658         tmp = I915_READ(VSYNC(cpu_transcoder));
5659         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5660         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5661
5662         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5663                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5664                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5665                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5666         }
5667
5668         tmp = I915_READ(PIPESRC(crtc->pipe));
5669         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5670         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5671
5672         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5673         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5674 }
5675
5676 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5677                                  struct intel_crtc_config *pipe_config)
5678 {
5679         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5680         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5681         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5682         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5683
5684         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5685         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5686         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5687         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5688
5689         mode->flags = pipe_config->adjusted_mode.flags;
5690
5691         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5692         mode->flags |= pipe_config->adjusted_mode.flags;
5693 }
5694
5695 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5696 {
5697         struct drm_device *dev = intel_crtc->base.dev;
5698         struct drm_i915_private *dev_priv = dev->dev_private;
5699         uint32_t pipeconf;
5700
5701         pipeconf = 0;
5702
5703         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5704             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5705                 pipeconf |= PIPECONF_ENABLE;
5706
5707         if (intel_crtc->config.double_wide)
5708                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5709
5710         /* only g4x and later have fancy bpc/dither controls */
5711         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5712                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5713                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5714                         pipeconf |= PIPECONF_DITHER_EN |
5715                                     PIPECONF_DITHER_TYPE_SP;
5716
5717                 switch (intel_crtc->config.pipe_bpp) {
5718                 case 18:
5719                         pipeconf |= PIPECONF_6BPC;
5720                         break;
5721                 case 24:
5722                         pipeconf |= PIPECONF_8BPC;
5723                         break;
5724                 case 30:
5725                         pipeconf |= PIPECONF_10BPC;
5726                         break;
5727                 default:
5728                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5729                         BUG();
5730                 }
5731         }
5732
5733         if (HAS_PIPE_CXSR(dev)) {
5734                 if (intel_crtc->lowfreq_avail) {
5735                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5736                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5737                 } else {
5738                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5739                 }
5740         }
5741
5742         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5743                 if (INTEL_INFO(dev)->gen < 4 ||
5744                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5745                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5746                 else
5747                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5748         } else
5749                 pipeconf |= PIPECONF_PROGRESSIVE;
5750
5751         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5752                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5753
5754         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5755         POSTING_READ(PIPECONF(intel_crtc->pipe));
5756 }
5757
5758 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5759                               int x, int y,
5760                               struct drm_framebuffer *fb)
5761 {
5762         struct drm_device *dev = crtc->dev;
5763         struct drm_i915_private *dev_priv = dev->dev_private;
5764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5765         int pipe = intel_crtc->pipe;
5766         int plane = intel_crtc->plane;
5767         int refclk, num_connectors = 0;
5768         intel_clock_t clock, reduced_clock;
5769         u32 dspcntr;
5770         bool ok, has_reduced_clock = false;
5771         bool is_lvds = false, is_dsi = false;
5772         struct intel_encoder *encoder;
5773         const intel_limit_t *limit;
5774
5775         for_each_encoder_on_crtc(dev, crtc, encoder) {
5776                 switch (encoder->type) {
5777                 case INTEL_OUTPUT_LVDS:
5778                         is_lvds = true;
5779                         break;
5780                 case INTEL_OUTPUT_DSI:
5781                         is_dsi = true;
5782                         break;
5783                 }
5784
5785                 num_connectors++;
5786         }
5787
5788         if (is_dsi)
5789                 goto skip_dpll;
5790
5791         if (!intel_crtc->config.clock_set) {
5792                 refclk = i9xx_get_refclk(crtc, num_connectors);
5793
5794                 /*
5795                  * Returns a set of divisors for the desired target clock with
5796                  * the given refclk, or FALSE.  The returned values represent
5797                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5798                  * 2) / p1 / p2.
5799                  */
5800                 limit = intel_limit(crtc, refclk);
5801                 ok = dev_priv->display.find_dpll(limit, crtc,
5802                                                  intel_crtc->config.port_clock,
5803                                                  refclk, NULL, &clock);
5804                 if (!ok) {
5805                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5806                         return -EINVAL;
5807                 }
5808
5809                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5810                         /*
5811                          * Ensure we match the reduced clock's P to the target
5812                          * clock.  If the clocks don't match, we can't switch
5813                          * the display clock by using the FP0/FP1. In such case
5814                          * we will disable the LVDS downclock feature.
5815                          */
5816                         has_reduced_clock =
5817                                 dev_priv->display.find_dpll(limit, crtc,
5818                                                             dev_priv->lvds_downclock,
5819                                                             refclk, &clock,
5820                                                             &reduced_clock);
5821                 }
5822                 /* Compat-code for transition, will disappear. */
5823                 intel_crtc->config.dpll.n = clock.n;
5824                 intel_crtc->config.dpll.m1 = clock.m1;
5825                 intel_crtc->config.dpll.m2 = clock.m2;
5826                 intel_crtc->config.dpll.p1 = clock.p1;
5827                 intel_crtc->config.dpll.p2 = clock.p2;
5828         }
5829
5830         if (IS_GEN2(dev)) {
5831                 i8xx_update_pll(intel_crtc,
5832                                 has_reduced_clock ? &reduced_clock : NULL,
5833                                 num_connectors);
5834         } else if (IS_CHERRYVIEW(dev)) {
5835                 chv_update_pll(intel_crtc);
5836         } else if (IS_VALLEYVIEW(dev)) {
5837                 vlv_update_pll(intel_crtc);
5838         } else {
5839                 i9xx_update_pll(intel_crtc,
5840                                 has_reduced_clock ? &reduced_clock : NULL,
5841                                 num_connectors);
5842         }
5843
5844 skip_dpll:
5845         /* Set up the display plane register */
5846         dspcntr = DISPPLANE_GAMMA_ENABLE;
5847
5848         if (!IS_VALLEYVIEW(dev)) {
5849                 if (pipe == 0)
5850                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5851                 else
5852                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5853         }
5854
5855         if (intel_crtc->config.has_dp_encoder)
5856                 intel_dp_set_m_n(intel_crtc);
5857
5858         intel_set_pipe_timings(intel_crtc);
5859
5860         /* pipesrc and dspsize control the size that is scaled from,
5861          * which should always be the user's requested size.
5862          */
5863         I915_WRITE(DSPSIZE(plane),
5864                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5865                    (intel_crtc->config.pipe_src_w - 1));
5866         I915_WRITE(DSPPOS(plane), 0);
5867
5868         i9xx_set_pipeconf(intel_crtc);
5869
5870         I915_WRITE(DSPCNTR(plane), dspcntr);
5871         POSTING_READ(DSPCNTR(plane));
5872
5873         dev_priv->display.update_primary_plane(crtc, fb, x, y);
5874
5875         return 0;
5876 }
5877
5878 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5879                                  struct intel_crtc_config *pipe_config)
5880 {
5881         struct drm_device *dev = crtc->base.dev;
5882         struct drm_i915_private *dev_priv = dev->dev_private;
5883         uint32_t tmp;
5884
5885         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5886                 return;
5887
5888         tmp = I915_READ(PFIT_CONTROL);
5889         if (!(tmp & PFIT_ENABLE))
5890                 return;
5891
5892         /* Check whether the pfit is attached to our pipe. */
5893         if (INTEL_INFO(dev)->gen < 4) {
5894                 if (crtc->pipe != PIPE_B)
5895                         return;
5896         } else {
5897                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5898                         return;
5899         }
5900
5901         pipe_config->gmch_pfit.control = tmp;
5902         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5903         if (INTEL_INFO(dev)->gen < 5)
5904                 pipe_config->gmch_pfit.lvds_border_bits =
5905                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5906 }
5907
5908 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5909                                struct intel_crtc_config *pipe_config)
5910 {
5911         struct drm_device *dev = crtc->base.dev;
5912         struct drm_i915_private *dev_priv = dev->dev_private;
5913         int pipe = pipe_config->cpu_transcoder;
5914         intel_clock_t clock;
5915         u32 mdiv;
5916         int refclk = 100000;
5917
5918         mutex_lock(&dev_priv->dpio_lock);
5919         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5920         mutex_unlock(&dev_priv->dpio_lock);
5921
5922         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5923         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5924         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5925         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5926         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5927
5928         vlv_clock(refclk, &clock);
5929
5930         /* clock.dot is the fast clock */
5931         pipe_config->port_clock = clock.dot / 5;
5932 }
5933
5934 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5935                                   struct intel_plane_config *plane_config)
5936 {
5937         struct drm_device *dev = crtc->base.dev;
5938         struct drm_i915_private *dev_priv = dev->dev_private;
5939         u32 val, base, offset;
5940         int pipe = crtc->pipe, plane = crtc->plane;
5941         int fourcc, pixel_format;
5942         int aligned_height;
5943
5944         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5945         if (!crtc->base.primary->fb) {
5946                 DRM_DEBUG_KMS("failed to alloc fb\n");
5947                 return;
5948         }
5949
5950         val = I915_READ(DSPCNTR(plane));
5951
5952         if (INTEL_INFO(dev)->gen >= 4)
5953                 if (val & DISPPLANE_TILED)
5954                         plane_config->tiled = true;
5955
5956         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5957         fourcc = intel_format_to_fourcc(pixel_format);
5958         crtc->base.primary->fb->pixel_format = fourcc;
5959         crtc->base.primary->fb->bits_per_pixel =
5960                 drm_format_plane_cpp(fourcc, 0) * 8;
5961
5962         if (INTEL_INFO(dev)->gen >= 4) {
5963                 if (plane_config->tiled)
5964                         offset = I915_READ(DSPTILEOFF(plane));
5965                 else
5966                         offset = I915_READ(DSPLINOFF(plane));
5967                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5968         } else {
5969                 base = I915_READ(DSPADDR(plane));
5970         }
5971         plane_config->base = base;
5972
5973         val = I915_READ(PIPESRC(pipe));
5974         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5975         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5976
5977         val = I915_READ(DSPSTRIDE(pipe));
5978         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5979
5980         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5981                                             plane_config->tiled);
5982
5983         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5984                                    aligned_height, PAGE_SIZE);
5985
5986         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5987                       pipe, plane, crtc->base.primary->fb->width,
5988                       crtc->base.primary->fb->height,
5989                       crtc->base.primary->fb->bits_per_pixel, base,
5990                       crtc->base.primary->fb->pitches[0],
5991                       plane_config->size);
5992
5993 }
5994
5995 static void chv_crtc_clock_get(struct intel_crtc *crtc,
5996                                struct intel_crtc_config *pipe_config)
5997 {
5998         struct drm_device *dev = crtc->base.dev;
5999         struct drm_i915_private *dev_priv = dev->dev_private;
6000         int pipe = pipe_config->cpu_transcoder;
6001         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6002         intel_clock_t clock;
6003         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6004         int refclk = 100000;
6005
6006         mutex_lock(&dev_priv->dpio_lock);
6007         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6008         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6009         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6010         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6011         mutex_unlock(&dev_priv->dpio_lock);
6012
6013         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6014         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6015         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6016         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6017         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6018
6019         chv_clock(refclk, &clock);
6020
6021         /* clock.dot is the fast clock */
6022         pipe_config->port_clock = clock.dot / 5;
6023 }
6024
6025 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6026                                  struct intel_crtc_config *pipe_config)
6027 {
6028         struct drm_device *dev = crtc->base.dev;
6029         struct drm_i915_private *dev_priv = dev->dev_private;
6030         uint32_t tmp;
6031
6032         if (!intel_display_power_enabled(dev_priv,
6033                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6034                 return false;
6035
6036         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6037         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6038
6039         tmp = I915_READ(PIPECONF(crtc->pipe));
6040         if (!(tmp & PIPECONF_ENABLE))
6041                 return false;
6042
6043         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6044                 switch (tmp & PIPECONF_BPC_MASK) {
6045                 case PIPECONF_6BPC:
6046                         pipe_config->pipe_bpp = 18;
6047                         break;
6048                 case PIPECONF_8BPC:
6049                         pipe_config->pipe_bpp = 24;
6050                         break;
6051                 case PIPECONF_10BPC:
6052                         pipe_config->pipe_bpp = 30;
6053                         break;
6054                 default:
6055                         break;
6056                 }
6057         }
6058
6059         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6060                 pipe_config->limited_color_range = true;
6061
6062         if (INTEL_INFO(dev)->gen < 4)
6063                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6064
6065         intel_get_pipe_timings(crtc, pipe_config);
6066
6067         i9xx_get_pfit_config(crtc, pipe_config);
6068
6069         if (INTEL_INFO(dev)->gen >= 4) {
6070                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6071                 pipe_config->pixel_multiplier =
6072                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6073                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6074                 pipe_config->dpll_hw_state.dpll_md = tmp;
6075         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6076                 tmp = I915_READ(DPLL(crtc->pipe));
6077                 pipe_config->pixel_multiplier =
6078                         ((tmp & SDVO_MULTIPLIER_MASK)
6079                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6080         } else {
6081                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6082                  * port and will be fixed up in the encoder->get_config
6083                  * function. */
6084                 pipe_config->pixel_multiplier = 1;
6085         }
6086         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6087         if (!IS_VALLEYVIEW(dev)) {
6088                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6089                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6090         } else {
6091                 /* Mask out read-only status bits. */
6092                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6093                                                      DPLL_PORTC_READY_MASK |
6094                                                      DPLL_PORTB_READY_MASK);
6095         }
6096
6097         if (IS_CHERRYVIEW(dev))
6098                 chv_crtc_clock_get(crtc, pipe_config);
6099         else if (IS_VALLEYVIEW(dev))
6100                 vlv_crtc_clock_get(crtc, pipe_config);
6101         else
6102                 i9xx_crtc_clock_get(crtc, pipe_config);
6103
6104         return true;
6105 }
6106
6107 static void ironlake_init_pch_refclk(struct drm_device *dev)
6108 {
6109         struct drm_i915_private *dev_priv = dev->dev_private;
6110         struct drm_mode_config *mode_config = &dev->mode_config;
6111         struct intel_encoder *encoder;
6112         u32 val, final;
6113         bool has_lvds = false;
6114         bool has_cpu_edp = false;
6115         bool has_panel = false;
6116         bool has_ck505 = false;
6117         bool can_ssc = false;
6118
6119         /* We need to take the global config into account */
6120         list_for_each_entry(encoder, &mode_config->encoder_list,
6121                             base.head) {
6122                 switch (encoder->type) {
6123                 case INTEL_OUTPUT_LVDS:
6124                         has_panel = true;
6125                         has_lvds = true;
6126                         break;
6127                 case INTEL_OUTPUT_EDP:
6128                         has_panel = true;
6129                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6130                                 has_cpu_edp = true;
6131                         break;
6132                 }
6133         }
6134
6135         if (HAS_PCH_IBX(dev)) {
6136                 has_ck505 = dev_priv->vbt.display_clock_mode;
6137                 can_ssc = has_ck505;
6138         } else {
6139                 has_ck505 = false;
6140                 can_ssc = true;
6141         }
6142
6143         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6144                       has_panel, has_lvds, has_ck505);
6145
6146         /* Ironlake: try to setup display ref clock before DPLL
6147          * enabling. This is only under driver's control after
6148          * PCH B stepping, previous chipset stepping should be
6149          * ignoring this setting.
6150          */
6151         val = I915_READ(PCH_DREF_CONTROL);
6152
6153         /* As we must carefully and slowly disable/enable each source in turn,
6154          * compute the final state we want first and check if we need to
6155          * make any changes at all.
6156          */
6157         final = val;
6158         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6159         if (has_ck505)
6160                 final |= DREF_NONSPREAD_CK505_ENABLE;
6161         else
6162                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6163
6164         final &= ~DREF_SSC_SOURCE_MASK;
6165         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6166         final &= ~DREF_SSC1_ENABLE;
6167
6168         if (has_panel) {
6169                 final |= DREF_SSC_SOURCE_ENABLE;
6170
6171                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6172                         final |= DREF_SSC1_ENABLE;
6173
6174                 if (has_cpu_edp) {
6175                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6176                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6177                         else
6178                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6179                 } else
6180                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6181         } else {
6182                 final |= DREF_SSC_SOURCE_DISABLE;
6183                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6184         }
6185
6186         if (final == val)
6187                 return;
6188
6189         /* Always enable nonspread source */
6190         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6191
6192         if (has_ck505)
6193                 val |= DREF_NONSPREAD_CK505_ENABLE;
6194         else
6195                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6196
6197         if (has_panel) {
6198                 val &= ~DREF_SSC_SOURCE_MASK;
6199                 val |= DREF_SSC_SOURCE_ENABLE;
6200
6201                 /* SSC must be turned on before enabling the CPU output  */
6202                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6203                         DRM_DEBUG_KMS("Using SSC on panel\n");
6204                         val |= DREF_SSC1_ENABLE;
6205                 } else
6206                         val &= ~DREF_SSC1_ENABLE;
6207
6208                 /* Get SSC going before enabling the outputs */
6209                 I915_WRITE(PCH_DREF_CONTROL, val);
6210                 POSTING_READ(PCH_DREF_CONTROL);
6211                 udelay(200);
6212
6213                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6214
6215                 /* Enable CPU source on CPU attached eDP */
6216                 if (has_cpu_edp) {
6217                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6218                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6219                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6220                         } else
6221                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6222                 } else
6223                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6224
6225                 I915_WRITE(PCH_DREF_CONTROL, val);
6226                 POSTING_READ(PCH_DREF_CONTROL);
6227                 udelay(200);
6228         } else {
6229                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6230
6231                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6232
6233                 /* Turn off CPU output */
6234                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6235
6236                 I915_WRITE(PCH_DREF_CONTROL, val);
6237                 POSTING_READ(PCH_DREF_CONTROL);
6238                 udelay(200);
6239
6240                 /* Turn off the SSC source */
6241                 val &= ~DREF_SSC_SOURCE_MASK;
6242                 val |= DREF_SSC_SOURCE_DISABLE;
6243
6244                 /* Turn off SSC1 */
6245                 val &= ~DREF_SSC1_ENABLE;
6246
6247                 I915_WRITE(PCH_DREF_CONTROL, val);
6248                 POSTING_READ(PCH_DREF_CONTROL);
6249                 udelay(200);
6250         }
6251
6252         BUG_ON(val != final);
6253 }
6254
6255 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6256 {
6257         uint32_t tmp;
6258
6259         tmp = I915_READ(SOUTH_CHICKEN2);
6260         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6261         I915_WRITE(SOUTH_CHICKEN2, tmp);
6262
6263         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6264                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6265                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6266
6267         tmp = I915_READ(SOUTH_CHICKEN2);
6268         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6269         I915_WRITE(SOUTH_CHICKEN2, tmp);
6270
6271         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6272                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6273                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6274 }
6275
6276 /* WaMPhyProgramming:hsw */
6277 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6278 {
6279         uint32_t tmp;
6280
6281         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6282         tmp &= ~(0xFF << 24);
6283         tmp |= (0x12 << 24);
6284         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6285
6286         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6287         tmp |= (1 << 11);
6288         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6289
6290         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6291         tmp |= (1 << 11);
6292         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6293
6294         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6295         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6296         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6297
6298         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6299         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6300         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6301
6302         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6303         tmp &= ~(7 << 13);
6304         tmp |= (5 << 13);
6305         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6306
6307         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6308         tmp &= ~(7 << 13);
6309         tmp |= (5 << 13);
6310         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6311
6312         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6313         tmp &= ~0xFF;
6314         tmp |= 0x1C;
6315         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6316
6317         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6318         tmp &= ~0xFF;
6319         tmp |= 0x1C;
6320         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6321
6322         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6323         tmp &= ~(0xFF << 16);
6324         tmp |= (0x1C << 16);
6325         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6326
6327         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6328         tmp &= ~(0xFF << 16);
6329         tmp |= (0x1C << 16);
6330         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6331
6332         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6333         tmp |= (1 << 27);
6334         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6335
6336         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6337         tmp |= (1 << 27);
6338         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6339
6340         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6341         tmp &= ~(0xF << 28);
6342         tmp |= (4 << 28);
6343         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6344
6345         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6346         tmp &= ~(0xF << 28);
6347         tmp |= (4 << 28);
6348         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6349 }
6350
6351 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6352  * Programming" based on the parameters passed:
6353  * - Sequence to enable CLKOUT_DP
6354  * - Sequence to enable CLKOUT_DP without spread
6355  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6356  */
6357 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6358                                  bool with_fdi)
6359 {
6360         struct drm_i915_private *dev_priv = dev->dev_private;
6361         uint32_t reg, tmp;
6362
6363         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6364                 with_spread = true;
6365         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6366                  with_fdi, "LP PCH doesn't have FDI\n"))
6367                 with_fdi = false;
6368
6369         mutex_lock(&dev_priv->dpio_lock);
6370
6371         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6372         tmp &= ~SBI_SSCCTL_DISABLE;
6373         tmp |= SBI_SSCCTL_PATHALT;
6374         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6375
6376         udelay(24);
6377
6378         if (with_spread) {
6379                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6380                 tmp &= ~SBI_SSCCTL_PATHALT;
6381                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6382
6383                 if (with_fdi) {
6384                         lpt_reset_fdi_mphy(dev_priv);
6385                         lpt_program_fdi_mphy(dev_priv);
6386                 }
6387         }
6388
6389         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6390                SBI_GEN0 : SBI_DBUFF0;
6391         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6392         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6393         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6394
6395         mutex_unlock(&dev_priv->dpio_lock);
6396 }
6397
6398 /* Sequence to disable CLKOUT_DP */
6399 static void lpt_disable_clkout_dp(struct drm_device *dev)
6400 {
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         uint32_t reg, tmp;
6403
6404         mutex_lock(&dev_priv->dpio_lock);
6405
6406         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6407                SBI_GEN0 : SBI_DBUFF0;
6408         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6409         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6410         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6411
6412         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6413         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6414                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6415                         tmp |= SBI_SSCCTL_PATHALT;
6416                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6417                         udelay(32);
6418                 }
6419                 tmp |= SBI_SSCCTL_DISABLE;
6420                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6421         }
6422
6423         mutex_unlock(&dev_priv->dpio_lock);
6424 }
6425
6426 static void lpt_init_pch_refclk(struct drm_device *dev)
6427 {
6428         struct drm_mode_config *mode_config = &dev->mode_config;
6429         struct intel_encoder *encoder;
6430         bool has_vga = false;
6431
6432         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6433                 switch (encoder->type) {
6434                 case INTEL_OUTPUT_ANALOG:
6435                         has_vga = true;
6436                         break;
6437                 }
6438         }
6439
6440         if (has_vga)
6441                 lpt_enable_clkout_dp(dev, true, true);
6442         else
6443                 lpt_disable_clkout_dp(dev);
6444 }
6445
6446 /*
6447  * Initialize reference clocks when the driver loads
6448  */
6449 void intel_init_pch_refclk(struct drm_device *dev)
6450 {
6451         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6452                 ironlake_init_pch_refclk(dev);
6453         else if (HAS_PCH_LPT(dev))
6454                 lpt_init_pch_refclk(dev);
6455 }
6456
6457 static int ironlake_get_refclk(struct drm_crtc *crtc)
6458 {
6459         struct drm_device *dev = crtc->dev;
6460         struct drm_i915_private *dev_priv = dev->dev_private;
6461         struct intel_encoder *encoder;
6462         int num_connectors = 0;
6463         bool is_lvds = false;
6464
6465         for_each_encoder_on_crtc(dev, crtc, encoder) {
6466                 switch (encoder->type) {
6467                 case INTEL_OUTPUT_LVDS:
6468                         is_lvds = true;
6469                         break;
6470                 }
6471                 num_connectors++;
6472         }
6473
6474         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6475                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6476                               dev_priv->vbt.lvds_ssc_freq);
6477                 return dev_priv->vbt.lvds_ssc_freq;
6478         }
6479
6480         return 120000;
6481 }
6482
6483 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6484 {
6485         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6487         int pipe = intel_crtc->pipe;
6488         uint32_t val;
6489
6490         val = 0;
6491
6492         switch (intel_crtc->config.pipe_bpp) {
6493         case 18:
6494                 val |= PIPECONF_6BPC;
6495                 break;
6496         case 24:
6497                 val |= PIPECONF_8BPC;
6498                 break;
6499         case 30:
6500                 val |= PIPECONF_10BPC;
6501                 break;
6502         case 36:
6503                 val |= PIPECONF_12BPC;
6504                 break;
6505         default:
6506                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6507                 BUG();
6508         }
6509
6510         if (intel_crtc->config.dither)
6511                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6512
6513         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6514                 val |= PIPECONF_INTERLACED_ILK;
6515         else
6516                 val |= PIPECONF_PROGRESSIVE;
6517
6518         if (intel_crtc->config.limited_color_range)
6519                 val |= PIPECONF_COLOR_RANGE_SELECT;
6520
6521         I915_WRITE(PIPECONF(pipe), val);
6522         POSTING_READ(PIPECONF(pipe));
6523 }
6524
6525 /*
6526  * Set up the pipe CSC unit.
6527  *
6528  * Currently only full range RGB to limited range RGB conversion
6529  * is supported, but eventually this should handle various
6530  * RGB<->YCbCr scenarios as well.
6531  */
6532 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6533 {
6534         struct drm_device *dev = crtc->dev;
6535         struct drm_i915_private *dev_priv = dev->dev_private;
6536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6537         int pipe = intel_crtc->pipe;
6538         uint16_t coeff = 0x7800; /* 1.0 */
6539
6540         /*
6541          * TODO: Check what kind of values actually come out of the pipe
6542          * with these coeff/postoff values and adjust to get the best
6543          * accuracy. Perhaps we even need to take the bpc value into
6544          * consideration.
6545          */
6546
6547         if (intel_crtc->config.limited_color_range)
6548                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6549
6550         /*
6551          * GY/GU and RY/RU should be the other way around according
6552          * to BSpec, but reality doesn't agree. Just set them up in
6553          * a way that results in the correct picture.
6554          */
6555         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6556         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6557
6558         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6559         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6560
6561         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6562         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6563
6564         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6565         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6566         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6567
6568         if (INTEL_INFO(dev)->gen > 6) {
6569                 uint16_t postoff = 0;
6570
6571                 if (intel_crtc->config.limited_color_range)
6572                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6573
6574                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6575                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6576                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6577
6578                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6579         } else {
6580                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6581
6582                 if (intel_crtc->config.limited_color_range)
6583                         mode |= CSC_BLACK_SCREEN_OFFSET;
6584
6585                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6586         }
6587 }
6588
6589 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6590 {
6591         struct drm_device *dev = crtc->dev;
6592         struct drm_i915_private *dev_priv = dev->dev_private;
6593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6594         enum pipe pipe = intel_crtc->pipe;
6595         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6596         uint32_t val;
6597
6598         val = 0;
6599
6600         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6601                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6602
6603         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6604                 val |= PIPECONF_INTERLACED_ILK;
6605         else
6606                 val |= PIPECONF_PROGRESSIVE;
6607
6608         I915_WRITE(PIPECONF(cpu_transcoder), val);
6609         POSTING_READ(PIPECONF(cpu_transcoder));
6610
6611         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6612         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6613
6614         if (IS_BROADWELL(dev)) {
6615                 val = 0;
6616
6617                 switch (intel_crtc->config.pipe_bpp) {
6618                 case 18:
6619                         val |= PIPEMISC_DITHER_6_BPC;
6620                         break;
6621                 case 24:
6622                         val |= PIPEMISC_DITHER_8_BPC;
6623                         break;
6624                 case 30:
6625                         val |= PIPEMISC_DITHER_10_BPC;
6626                         break;
6627                 case 36:
6628                         val |= PIPEMISC_DITHER_12_BPC;
6629                         break;
6630                 default:
6631                         /* Case prevented by pipe_config_set_bpp. */
6632                         BUG();
6633                 }
6634
6635                 if (intel_crtc->config.dither)
6636                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6637
6638                 I915_WRITE(PIPEMISC(pipe), val);
6639         }
6640 }
6641
6642 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6643                                     intel_clock_t *clock,
6644                                     bool *has_reduced_clock,
6645                                     intel_clock_t *reduced_clock)
6646 {
6647         struct drm_device *dev = crtc->dev;
6648         struct drm_i915_private *dev_priv = dev->dev_private;
6649         struct intel_encoder *intel_encoder;
6650         int refclk;
6651         const intel_limit_t *limit;
6652         bool ret, is_lvds = false;
6653
6654         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6655                 switch (intel_encoder->type) {
6656                 case INTEL_OUTPUT_LVDS:
6657                         is_lvds = true;
6658                         break;
6659                 }
6660         }
6661
6662         refclk = ironlake_get_refclk(crtc);
6663
6664         /*
6665          * Returns a set of divisors for the desired target clock with the given
6666          * refclk, or FALSE.  The returned values represent the clock equation:
6667          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6668          */
6669         limit = intel_limit(crtc, refclk);
6670         ret = dev_priv->display.find_dpll(limit, crtc,
6671                                           to_intel_crtc(crtc)->config.port_clock,
6672                                           refclk, NULL, clock);
6673         if (!ret)
6674                 return false;
6675
6676         if (is_lvds && dev_priv->lvds_downclock_avail) {
6677                 /*
6678                  * Ensure we match the reduced clock's P to the target clock.
6679                  * If the clocks don't match, we can't switch the display clock
6680                  * by using the FP0/FP1. In such case we will disable the LVDS
6681                  * downclock feature.
6682                 */
6683                 *has_reduced_clock =
6684                         dev_priv->display.find_dpll(limit, crtc,
6685                                                     dev_priv->lvds_downclock,
6686                                                     refclk, clock,
6687                                                     reduced_clock);
6688         }
6689
6690         return true;
6691 }
6692
6693 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6694 {
6695         /*
6696          * Account for spread spectrum to avoid
6697          * oversubscribing the link. Max center spread
6698          * is 2.5%; use 5% for safety's sake.
6699          */
6700         u32 bps = target_clock * bpp * 21 / 20;
6701         return DIV_ROUND_UP(bps, link_bw * 8);
6702 }
6703
6704 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6705 {
6706         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6707 }
6708
6709 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6710                                       u32 *fp,
6711                                       intel_clock_t *reduced_clock, u32 *fp2)
6712 {
6713         struct drm_crtc *crtc = &intel_crtc->base;
6714         struct drm_device *dev = crtc->dev;
6715         struct drm_i915_private *dev_priv = dev->dev_private;
6716         struct intel_encoder *intel_encoder;
6717         uint32_t dpll;
6718         int factor, num_connectors = 0;
6719         bool is_lvds = false, is_sdvo = false;
6720
6721         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6722                 switch (intel_encoder->type) {
6723                 case INTEL_OUTPUT_LVDS:
6724                         is_lvds = true;
6725                         break;
6726                 case INTEL_OUTPUT_SDVO:
6727                 case INTEL_OUTPUT_HDMI:
6728                         is_sdvo = true;
6729                         break;
6730                 }
6731
6732                 num_connectors++;
6733         }
6734
6735         /* Enable autotuning of the PLL clock (if permissible) */
6736         factor = 21;
6737         if (is_lvds) {
6738                 if ((intel_panel_use_ssc(dev_priv) &&
6739                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6740                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6741                         factor = 25;
6742         } else if (intel_crtc->config.sdvo_tv_clock)
6743                 factor = 20;
6744
6745         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6746                 *fp |= FP_CB_TUNE;
6747
6748         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6749                 *fp2 |= FP_CB_TUNE;
6750
6751         dpll = 0;
6752
6753         if (is_lvds)
6754                 dpll |= DPLLB_MODE_LVDS;
6755         else
6756                 dpll |= DPLLB_MODE_DAC_SERIAL;
6757
6758         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6759                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6760
6761         if (is_sdvo)
6762                 dpll |= DPLL_SDVO_HIGH_SPEED;
6763         if (intel_crtc->config.has_dp_encoder)
6764                 dpll |= DPLL_SDVO_HIGH_SPEED;
6765
6766         /* compute bitmask from p1 value */
6767         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6768         /* also FPA1 */
6769         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6770
6771         switch (intel_crtc->config.dpll.p2) {
6772         case 5:
6773                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6774                 break;
6775         case 7:
6776                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6777                 break;
6778         case 10:
6779                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6780                 break;
6781         case 14:
6782                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6783                 break;
6784         }
6785
6786         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6787                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6788         else
6789                 dpll |= PLL_REF_INPUT_DREFCLK;
6790
6791         return dpll | DPLL_VCO_ENABLE;
6792 }
6793
6794 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6795                                   int x, int y,
6796                                   struct drm_framebuffer *fb)
6797 {
6798         struct drm_device *dev = crtc->dev;
6799         struct drm_i915_private *dev_priv = dev->dev_private;
6800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6801         int pipe = intel_crtc->pipe;
6802         int plane = intel_crtc->plane;
6803         int num_connectors = 0;
6804         intel_clock_t clock, reduced_clock;
6805         u32 dpll = 0, fp = 0, fp2 = 0;
6806         bool ok, has_reduced_clock = false;
6807         bool is_lvds = false;
6808         struct intel_encoder *encoder;
6809         struct intel_shared_dpll *pll;
6810
6811         for_each_encoder_on_crtc(dev, crtc, encoder) {
6812                 switch (encoder->type) {
6813                 case INTEL_OUTPUT_LVDS:
6814                         is_lvds = true;
6815                         break;
6816                 }
6817
6818                 num_connectors++;
6819         }
6820
6821         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6822              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6823
6824         ok = ironlake_compute_clocks(crtc, &clock,
6825                                      &has_reduced_clock, &reduced_clock);
6826         if (!ok && !intel_crtc->config.clock_set) {
6827                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6828                 return -EINVAL;
6829         }
6830         /* Compat-code for transition, will disappear. */
6831         if (!intel_crtc->config.clock_set) {
6832                 intel_crtc->config.dpll.n = clock.n;
6833                 intel_crtc->config.dpll.m1 = clock.m1;
6834                 intel_crtc->config.dpll.m2 = clock.m2;
6835                 intel_crtc->config.dpll.p1 = clock.p1;
6836                 intel_crtc->config.dpll.p2 = clock.p2;
6837         }
6838
6839         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6840         if (intel_crtc->config.has_pch_encoder) {
6841                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6842                 if (has_reduced_clock)
6843                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6844
6845                 dpll = ironlake_compute_dpll(intel_crtc,
6846                                              &fp, &reduced_clock,
6847                                              has_reduced_clock ? &fp2 : NULL);
6848
6849                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6850                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6851                 if (has_reduced_clock)
6852                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6853                 else
6854                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6855
6856                 pll = intel_get_shared_dpll(intel_crtc);
6857                 if (pll == NULL) {
6858                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6859                                          pipe_name(pipe));
6860                         return -EINVAL;
6861                 }
6862         } else
6863                 intel_put_shared_dpll(intel_crtc);
6864
6865         if (intel_crtc->config.has_dp_encoder)
6866                 intel_dp_set_m_n(intel_crtc);
6867
6868         if (is_lvds && has_reduced_clock && i915.powersave)
6869                 intel_crtc->lowfreq_avail = true;
6870         else
6871                 intel_crtc->lowfreq_avail = false;
6872
6873         intel_set_pipe_timings(intel_crtc);
6874
6875         if (intel_crtc->config.has_pch_encoder) {
6876                 intel_cpu_transcoder_set_m_n(intel_crtc,
6877                                              &intel_crtc->config.fdi_m_n);
6878         }
6879
6880         ironlake_set_pipeconf(crtc);
6881
6882         /* Set up the display plane register */
6883         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6884         POSTING_READ(DSPCNTR(plane));
6885
6886         dev_priv->display.update_primary_plane(crtc, fb, x, y);
6887
6888         return 0;
6889 }
6890
6891 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6892                                          struct intel_link_m_n *m_n)
6893 {
6894         struct drm_device *dev = crtc->base.dev;
6895         struct drm_i915_private *dev_priv = dev->dev_private;
6896         enum pipe pipe = crtc->pipe;
6897
6898         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6899         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6900         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6901                 & ~TU_SIZE_MASK;
6902         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6903         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6904                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6905 }
6906
6907 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6908                                          enum transcoder transcoder,
6909                                          struct intel_link_m_n *m_n)
6910 {
6911         struct drm_device *dev = crtc->base.dev;
6912         struct drm_i915_private *dev_priv = dev->dev_private;
6913         enum pipe pipe = crtc->pipe;
6914
6915         if (INTEL_INFO(dev)->gen >= 5) {
6916                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6917                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6918                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6919                         & ~TU_SIZE_MASK;
6920                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6921                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6922                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6923         } else {
6924                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6925                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6926                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6927                         & ~TU_SIZE_MASK;
6928                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6929                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6930                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6931         }
6932 }
6933
6934 void intel_dp_get_m_n(struct intel_crtc *crtc,
6935                       struct intel_crtc_config *pipe_config)
6936 {
6937         if (crtc->config.has_pch_encoder)
6938                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6939         else
6940                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6941                                              &pipe_config->dp_m_n);
6942 }
6943
6944 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6945                                         struct intel_crtc_config *pipe_config)
6946 {
6947         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6948                                      &pipe_config->fdi_m_n);
6949 }
6950
6951 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6952                                      struct intel_crtc_config *pipe_config)
6953 {
6954         struct drm_device *dev = crtc->base.dev;
6955         struct drm_i915_private *dev_priv = dev->dev_private;
6956         uint32_t tmp;
6957
6958         tmp = I915_READ(PF_CTL(crtc->pipe));
6959
6960         if (tmp & PF_ENABLE) {
6961                 pipe_config->pch_pfit.enabled = true;
6962                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6963                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6964
6965                 /* We currently do not free assignements of panel fitters on
6966                  * ivb/hsw (since we don't use the higher upscaling modes which
6967                  * differentiates them) so just WARN about this case for now. */
6968                 if (IS_GEN7(dev)) {
6969                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6970                                 PF_PIPE_SEL_IVB(crtc->pipe));
6971                 }
6972         }
6973 }
6974
6975 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6976                                       struct intel_plane_config *plane_config)
6977 {
6978         struct drm_device *dev = crtc->base.dev;
6979         struct drm_i915_private *dev_priv = dev->dev_private;
6980         u32 val, base, offset;
6981         int pipe = crtc->pipe, plane = crtc->plane;
6982         int fourcc, pixel_format;
6983         int aligned_height;
6984
6985         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6986         if (!crtc->base.primary->fb) {
6987                 DRM_DEBUG_KMS("failed to alloc fb\n");
6988                 return;
6989         }
6990
6991         val = I915_READ(DSPCNTR(plane));
6992
6993         if (INTEL_INFO(dev)->gen >= 4)
6994                 if (val & DISPPLANE_TILED)
6995                         plane_config->tiled = true;
6996
6997         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6998         fourcc = intel_format_to_fourcc(pixel_format);
6999         crtc->base.primary->fb->pixel_format = fourcc;
7000         crtc->base.primary->fb->bits_per_pixel =
7001                 drm_format_plane_cpp(fourcc, 0) * 8;
7002
7003         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7004         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7005                 offset = I915_READ(DSPOFFSET(plane));
7006         } else {
7007                 if (plane_config->tiled)
7008                         offset = I915_READ(DSPTILEOFF(plane));
7009                 else
7010                         offset = I915_READ(DSPLINOFF(plane));
7011         }
7012         plane_config->base = base;
7013
7014         val = I915_READ(PIPESRC(pipe));
7015         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7016         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7017
7018         val = I915_READ(DSPSTRIDE(pipe));
7019         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7020
7021         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7022                                             plane_config->tiled);
7023
7024         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7025                                    aligned_height, PAGE_SIZE);
7026
7027         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7028                       pipe, plane, crtc->base.primary->fb->width,
7029                       crtc->base.primary->fb->height,
7030                       crtc->base.primary->fb->bits_per_pixel, base,
7031                       crtc->base.primary->fb->pitches[0],
7032                       plane_config->size);
7033 }
7034
7035 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7036                                      struct intel_crtc_config *pipe_config)
7037 {
7038         struct drm_device *dev = crtc->base.dev;
7039         struct drm_i915_private *dev_priv = dev->dev_private;
7040         uint32_t tmp;
7041
7042         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7043         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7044
7045         tmp = I915_READ(PIPECONF(crtc->pipe));
7046         if (!(tmp & PIPECONF_ENABLE))
7047                 return false;
7048
7049         switch (tmp & PIPECONF_BPC_MASK) {
7050         case PIPECONF_6BPC:
7051                 pipe_config->pipe_bpp = 18;
7052                 break;
7053         case PIPECONF_8BPC:
7054                 pipe_config->pipe_bpp = 24;
7055                 break;
7056         case PIPECONF_10BPC:
7057                 pipe_config->pipe_bpp = 30;
7058                 break;
7059         case PIPECONF_12BPC:
7060                 pipe_config->pipe_bpp = 36;
7061                 break;
7062         default:
7063                 break;
7064         }
7065
7066         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7067                 pipe_config->limited_color_range = true;
7068
7069         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7070                 struct intel_shared_dpll *pll;
7071
7072                 pipe_config->has_pch_encoder = true;
7073
7074                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7075                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7076                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7077
7078                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7079
7080                 if (HAS_PCH_IBX(dev_priv->dev)) {
7081                         pipe_config->shared_dpll =
7082                                 (enum intel_dpll_id) crtc->pipe;
7083                 } else {
7084                         tmp = I915_READ(PCH_DPLL_SEL);
7085                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7086                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7087                         else
7088                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7089                 }
7090
7091                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7092
7093                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7094                                            &pipe_config->dpll_hw_state));
7095
7096                 tmp = pipe_config->dpll_hw_state.dpll;
7097                 pipe_config->pixel_multiplier =
7098                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7099                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7100
7101                 ironlake_pch_clock_get(crtc, pipe_config);
7102         } else {
7103                 pipe_config->pixel_multiplier = 1;
7104         }
7105
7106         intel_get_pipe_timings(crtc, pipe_config);
7107
7108         ironlake_get_pfit_config(crtc, pipe_config);
7109
7110         return true;
7111 }
7112
7113 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7114 {
7115         struct drm_device *dev = dev_priv->dev;
7116         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7117         struct intel_crtc *crtc;
7118
7119         for_each_intel_crtc(dev, crtc)
7120                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7121                      pipe_name(crtc->pipe));
7122
7123         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7124         WARN(plls->spll_refcount, "SPLL enabled\n");
7125         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7126         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7127         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7128         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7129              "CPU PWM1 enabled\n");
7130         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7131              "CPU PWM2 enabled\n");
7132         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7133              "PCH PWM1 enabled\n");
7134         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7135              "Utility pin enabled\n");
7136         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7137
7138         /*
7139          * In theory we can still leave IRQs enabled, as long as only the HPD
7140          * interrupts remain enabled. We used to check for that, but since it's
7141          * gen-specific and since we only disable LCPLL after we fully disable
7142          * the interrupts, the check below should be enough.
7143          */
7144         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7145 }
7146
7147 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7148 {
7149         struct drm_device *dev = dev_priv->dev;
7150
7151         if (IS_HASWELL(dev)) {
7152                 mutex_lock(&dev_priv->rps.hw_lock);
7153                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7154                                             val))
7155                         DRM_ERROR("Failed to disable D_COMP\n");
7156                 mutex_unlock(&dev_priv->rps.hw_lock);
7157         } else {
7158                 I915_WRITE(D_COMP, val);
7159         }
7160         POSTING_READ(D_COMP);
7161 }
7162
7163 /*
7164  * This function implements pieces of two sequences from BSpec:
7165  * - Sequence for display software to disable LCPLL
7166  * - Sequence for display software to allow package C8+
7167  * The steps implemented here are just the steps that actually touch the LCPLL
7168  * register. Callers should take care of disabling all the display engine
7169  * functions, doing the mode unset, fixing interrupts, etc.
7170  */
7171 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7172                               bool switch_to_fclk, bool allow_power_down)
7173 {
7174         uint32_t val;
7175
7176         assert_can_disable_lcpll(dev_priv);
7177
7178         val = I915_READ(LCPLL_CTL);
7179
7180         if (switch_to_fclk) {
7181                 val |= LCPLL_CD_SOURCE_FCLK;
7182                 I915_WRITE(LCPLL_CTL, val);
7183
7184                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7185                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7186                         DRM_ERROR("Switching to FCLK failed\n");
7187
7188                 val = I915_READ(LCPLL_CTL);
7189         }
7190
7191         val |= LCPLL_PLL_DISABLE;
7192         I915_WRITE(LCPLL_CTL, val);
7193         POSTING_READ(LCPLL_CTL);
7194
7195         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7196                 DRM_ERROR("LCPLL still locked\n");
7197
7198         val = I915_READ(D_COMP);
7199         val |= D_COMP_COMP_DISABLE;
7200         hsw_write_dcomp(dev_priv, val);
7201         ndelay(100);
7202
7203         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7204                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7205
7206         if (allow_power_down) {
7207                 val = I915_READ(LCPLL_CTL);
7208                 val |= LCPLL_POWER_DOWN_ALLOW;
7209                 I915_WRITE(LCPLL_CTL, val);
7210                 POSTING_READ(LCPLL_CTL);
7211         }
7212 }
7213
7214 /*
7215  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7216  * source.
7217  */
7218 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7219 {
7220         uint32_t val;
7221         unsigned long irqflags;
7222
7223         val = I915_READ(LCPLL_CTL);
7224
7225         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7226                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7227                 return;
7228
7229         /*
7230          * Make sure we're not on PC8 state before disabling PC8, otherwise
7231          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7232          *
7233          * The other problem is that hsw_restore_lcpll() is called as part of
7234          * the runtime PM resume sequence, so we can't just call
7235          * gen6_gt_force_wake_get() because that function calls
7236          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7237          * while we are on the resume sequence. So to solve this problem we have
7238          * to call special forcewake code that doesn't touch runtime PM and
7239          * doesn't enable the forcewake delayed work.
7240          */
7241         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7242         if (dev_priv->uncore.forcewake_count++ == 0)
7243                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7244         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7245
7246         if (val & LCPLL_POWER_DOWN_ALLOW) {
7247                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7248                 I915_WRITE(LCPLL_CTL, val);
7249                 POSTING_READ(LCPLL_CTL);
7250         }
7251
7252         val = I915_READ(D_COMP);
7253         val |= D_COMP_COMP_FORCE;
7254         val &= ~D_COMP_COMP_DISABLE;
7255         hsw_write_dcomp(dev_priv, val);
7256
7257         val = I915_READ(LCPLL_CTL);
7258         val &= ~LCPLL_PLL_DISABLE;
7259         I915_WRITE(LCPLL_CTL, val);
7260
7261         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7262                 DRM_ERROR("LCPLL not locked yet\n");
7263
7264         if (val & LCPLL_CD_SOURCE_FCLK) {
7265                 val = I915_READ(LCPLL_CTL);
7266                 val &= ~LCPLL_CD_SOURCE_FCLK;
7267                 I915_WRITE(LCPLL_CTL, val);
7268
7269                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7270                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7271                         DRM_ERROR("Switching back to LCPLL failed\n");
7272         }
7273
7274         /* See the big comment above. */
7275         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7276         if (--dev_priv->uncore.forcewake_count == 0)
7277                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7278         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7279 }
7280
7281 /*
7282  * Package states C8 and deeper are really deep PC states that can only be
7283  * reached when all the devices on the system allow it, so even if the graphics
7284  * device allows PC8+, it doesn't mean the system will actually get to these
7285  * states. Our driver only allows PC8+ when going into runtime PM.
7286  *
7287  * The requirements for PC8+ are that all the outputs are disabled, the power
7288  * well is disabled and most interrupts are disabled, and these are also
7289  * requirements for runtime PM. When these conditions are met, we manually do
7290  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7291  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7292  * hang the machine.
7293  *
7294  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7295  * the state of some registers, so when we come back from PC8+ we need to
7296  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7297  * need to take care of the registers kept by RC6. Notice that this happens even
7298  * if we don't put the device in PCI D3 state (which is what currently happens
7299  * because of the runtime PM support).
7300  *
7301  * For more, read "Display Sequences for Package C8" on the hardware
7302  * documentation.
7303  */
7304 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7305 {
7306         struct drm_device *dev = dev_priv->dev;
7307         uint32_t val;
7308
7309         DRM_DEBUG_KMS("Enabling package C8+\n");
7310
7311         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7312                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7313                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7314                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7315         }
7316
7317         lpt_disable_clkout_dp(dev);
7318         hsw_disable_lcpll(dev_priv, true, true);
7319 }
7320
7321 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7322 {
7323         struct drm_device *dev = dev_priv->dev;
7324         uint32_t val;
7325
7326         DRM_DEBUG_KMS("Disabling package C8+\n");
7327
7328         hsw_restore_lcpll(dev_priv);
7329         lpt_init_pch_refclk(dev);
7330
7331         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7332                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7333                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7334                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7335         }
7336
7337         intel_prepare_ddi(dev);
7338 }
7339
7340 static void snb_modeset_global_resources(struct drm_device *dev)
7341 {
7342         modeset_update_crtc_power_domains(dev);
7343 }
7344
7345 static void haswell_modeset_global_resources(struct drm_device *dev)
7346 {
7347         modeset_update_crtc_power_domains(dev);
7348 }
7349
7350 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7351                                  int x, int y,
7352                                  struct drm_framebuffer *fb)
7353 {
7354         struct drm_device *dev = crtc->dev;
7355         struct drm_i915_private *dev_priv = dev->dev_private;
7356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7357         int plane = intel_crtc->plane;
7358
7359         if (!intel_ddi_pll_select(intel_crtc))
7360                 return -EINVAL;
7361         intel_ddi_pll_enable(intel_crtc);
7362
7363         if (intel_crtc->config.has_dp_encoder)
7364                 intel_dp_set_m_n(intel_crtc);
7365
7366         intel_crtc->lowfreq_avail = false;
7367
7368         intel_set_pipe_timings(intel_crtc);
7369
7370         if (intel_crtc->config.has_pch_encoder) {
7371                 intel_cpu_transcoder_set_m_n(intel_crtc,
7372                                              &intel_crtc->config.fdi_m_n);
7373         }
7374
7375         haswell_set_pipeconf(crtc);
7376
7377         intel_set_pipe_csc(crtc);
7378
7379         /* Set up the display plane register */
7380         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7381         POSTING_READ(DSPCNTR(plane));
7382
7383         dev_priv->display.update_primary_plane(crtc, fb, x, y);
7384
7385         return 0;
7386 }
7387
7388 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7389                                     struct intel_crtc_config *pipe_config)
7390 {
7391         struct drm_device *dev = crtc->base.dev;
7392         struct drm_i915_private *dev_priv = dev->dev_private;
7393         enum intel_display_power_domain pfit_domain;
7394         uint32_t tmp;
7395
7396         if (!intel_display_power_enabled(dev_priv,
7397                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7398                 return false;
7399
7400         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7401         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7402
7403         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7404         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7405                 enum pipe trans_edp_pipe;
7406                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7407                 default:
7408                         WARN(1, "unknown pipe linked to edp transcoder\n");
7409                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7410                 case TRANS_DDI_EDP_INPUT_A_ON:
7411                         trans_edp_pipe = PIPE_A;
7412                         break;
7413                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7414                         trans_edp_pipe = PIPE_B;
7415                         break;
7416                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7417                         trans_edp_pipe = PIPE_C;
7418                         break;
7419                 }
7420
7421                 if (trans_edp_pipe == crtc->pipe)
7422                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7423         }
7424
7425         if (!intel_display_power_enabled(dev_priv,
7426                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7427                 return false;
7428
7429         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7430         if (!(tmp & PIPECONF_ENABLE))
7431                 return false;
7432
7433         /*
7434          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7435          * DDI E. So just check whether this pipe is wired to DDI E and whether
7436          * the PCH transcoder is on.
7437          */
7438         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7439         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7440             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7441                 pipe_config->has_pch_encoder = true;
7442
7443                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7444                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7445                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7446
7447                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7448         }
7449
7450         intel_get_pipe_timings(crtc, pipe_config);
7451
7452         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7453         if (intel_display_power_enabled(dev_priv, pfit_domain))
7454                 ironlake_get_pfit_config(crtc, pipe_config);
7455
7456         if (IS_HASWELL(dev))
7457                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7458                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7459
7460         pipe_config->pixel_multiplier = 1;
7461
7462         return true;
7463 }
7464
7465 static struct {
7466         int clock;
7467         u32 config;
7468 } hdmi_audio_clock[] = {
7469         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7470         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7471         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7472         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7473         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7474         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7475         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7476         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7477         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7478         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7479 };
7480
7481 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7482 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7483 {
7484         int i;
7485
7486         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7487                 if (mode->clock == hdmi_audio_clock[i].clock)
7488                         break;
7489         }
7490
7491         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7492                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7493                 i = 1;
7494         }
7495
7496         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7497                       hdmi_audio_clock[i].clock,
7498                       hdmi_audio_clock[i].config);
7499
7500         return hdmi_audio_clock[i].config;
7501 }
7502
7503 static bool intel_eld_uptodate(struct drm_connector *connector,
7504                                int reg_eldv, uint32_t bits_eldv,
7505                                int reg_elda, uint32_t bits_elda,
7506                                int reg_edid)
7507 {
7508         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7509         uint8_t *eld = connector->eld;
7510         uint32_t i;
7511
7512         i = I915_READ(reg_eldv);
7513         i &= bits_eldv;
7514
7515         if (!eld[0])
7516                 return !i;
7517
7518         if (!i)
7519                 return false;
7520
7521         i = I915_READ(reg_elda);
7522         i &= ~bits_elda;
7523         I915_WRITE(reg_elda, i);
7524
7525         for (i = 0; i < eld[2]; i++)
7526                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7527                         return false;
7528
7529         return true;
7530 }
7531
7532 static void g4x_write_eld(struct drm_connector *connector,
7533                           struct drm_crtc *crtc,
7534                           struct drm_display_mode *mode)
7535 {
7536         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7537         uint8_t *eld = connector->eld;
7538         uint32_t eldv;
7539         uint32_t len;
7540         uint32_t i;
7541
7542         i = I915_READ(G4X_AUD_VID_DID);
7543
7544         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7545                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7546         else
7547                 eldv = G4X_ELDV_DEVCTG;
7548
7549         if (intel_eld_uptodate(connector,
7550                                G4X_AUD_CNTL_ST, eldv,
7551                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7552                                G4X_HDMIW_HDMIEDID))
7553                 return;
7554
7555         i = I915_READ(G4X_AUD_CNTL_ST);
7556         i &= ~(eldv | G4X_ELD_ADDR);
7557         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7558         I915_WRITE(G4X_AUD_CNTL_ST, i);
7559
7560         if (!eld[0])
7561                 return;
7562
7563         len = min_t(uint8_t, eld[2], len);
7564         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7565         for (i = 0; i < len; i++)
7566                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7567
7568         i = I915_READ(G4X_AUD_CNTL_ST);
7569         i |= eldv;
7570         I915_WRITE(G4X_AUD_CNTL_ST, i);
7571 }
7572
7573 static void haswell_write_eld(struct drm_connector *connector,
7574                               struct drm_crtc *crtc,
7575                               struct drm_display_mode *mode)
7576 {
7577         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7578         uint8_t *eld = connector->eld;
7579         uint32_t eldv;
7580         uint32_t i;
7581         int len;
7582         int pipe = to_intel_crtc(crtc)->pipe;
7583         int tmp;
7584
7585         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7586         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7587         int aud_config = HSW_AUD_CFG(pipe);
7588         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7589
7590         /* Audio output enable */
7591         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7592         tmp = I915_READ(aud_cntrl_st2);
7593         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7594         I915_WRITE(aud_cntrl_st2, tmp);
7595         POSTING_READ(aud_cntrl_st2);
7596
7597         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7598
7599         /* Set ELD valid state */
7600         tmp = I915_READ(aud_cntrl_st2);
7601         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7602         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7603         I915_WRITE(aud_cntrl_st2, tmp);
7604         tmp = I915_READ(aud_cntrl_st2);
7605         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7606
7607         /* Enable HDMI mode */
7608         tmp = I915_READ(aud_config);
7609         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7610         /* clear N_programing_enable and N_value_index */
7611         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7612         I915_WRITE(aud_config, tmp);
7613
7614         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7615
7616         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7617
7618         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7619                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7620                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7621                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7622         } else {
7623                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7624         }
7625
7626         if (intel_eld_uptodate(connector,
7627                                aud_cntrl_st2, eldv,
7628                                aud_cntl_st, IBX_ELD_ADDRESS,
7629                                hdmiw_hdmiedid))
7630                 return;
7631
7632         i = I915_READ(aud_cntrl_st2);
7633         i &= ~eldv;
7634         I915_WRITE(aud_cntrl_st2, i);
7635
7636         if (!eld[0])
7637                 return;
7638
7639         i = I915_READ(aud_cntl_st);
7640         i &= ~IBX_ELD_ADDRESS;
7641         I915_WRITE(aud_cntl_st, i);
7642         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7643         DRM_DEBUG_DRIVER("port num:%d\n", i);
7644
7645         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7646         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7647         for (i = 0; i < len; i++)
7648                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7649
7650         i = I915_READ(aud_cntrl_st2);
7651         i |= eldv;
7652         I915_WRITE(aud_cntrl_st2, i);
7653
7654 }
7655
7656 static void ironlake_write_eld(struct drm_connector *connector,
7657                                struct drm_crtc *crtc,
7658                                struct drm_display_mode *mode)
7659 {
7660         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7661         uint8_t *eld = connector->eld;
7662         uint32_t eldv;
7663         uint32_t i;
7664         int len;
7665         int hdmiw_hdmiedid;
7666         int aud_config;
7667         int aud_cntl_st;
7668         int aud_cntrl_st2;
7669         int pipe = to_intel_crtc(crtc)->pipe;
7670
7671         if (HAS_PCH_IBX(connector->dev)) {
7672                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7673                 aud_config = IBX_AUD_CFG(pipe);
7674                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7675                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7676         } else if (IS_VALLEYVIEW(connector->dev)) {
7677                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7678                 aud_config = VLV_AUD_CFG(pipe);
7679                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7680                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7681         } else {
7682                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7683                 aud_config = CPT_AUD_CFG(pipe);
7684                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7685                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7686         }
7687
7688         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7689
7690         if (IS_VALLEYVIEW(connector->dev))  {
7691                 struct intel_encoder *intel_encoder;
7692                 struct intel_digital_port *intel_dig_port;
7693
7694                 intel_encoder = intel_attached_encoder(connector);
7695                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7696                 i = intel_dig_port->port;
7697         } else {
7698                 i = I915_READ(aud_cntl_st);
7699                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7700                 /* DIP_Port_Select, 0x1 = PortB */
7701         }
7702
7703         if (!i) {
7704                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7705                 /* operate blindly on all ports */
7706                 eldv = IBX_ELD_VALIDB;
7707                 eldv |= IBX_ELD_VALIDB << 4;
7708                 eldv |= IBX_ELD_VALIDB << 8;
7709         } else {
7710                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7711                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7712         }
7713
7714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7715                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7716                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7717                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7718         } else {
7719                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7720         }
7721
7722         if (intel_eld_uptodate(connector,
7723                                aud_cntrl_st2, eldv,
7724                                aud_cntl_st, IBX_ELD_ADDRESS,
7725                                hdmiw_hdmiedid))
7726                 return;
7727
7728         i = I915_READ(aud_cntrl_st2);
7729         i &= ~eldv;
7730         I915_WRITE(aud_cntrl_st2, i);
7731
7732         if (!eld[0])
7733                 return;
7734
7735         i = I915_READ(aud_cntl_st);
7736         i &= ~IBX_ELD_ADDRESS;
7737         I915_WRITE(aud_cntl_st, i);
7738
7739         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7740         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7741         for (i = 0; i < len; i++)
7742                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7743
7744         i = I915_READ(aud_cntrl_st2);
7745         i |= eldv;
7746         I915_WRITE(aud_cntrl_st2, i);
7747 }
7748
7749 void intel_write_eld(struct drm_encoder *encoder,
7750                      struct drm_display_mode *mode)
7751 {
7752         struct drm_crtc *crtc = encoder->crtc;
7753         struct drm_connector *connector;
7754         struct drm_device *dev = encoder->dev;
7755         struct drm_i915_private *dev_priv = dev->dev_private;
7756
7757         connector = drm_select_eld(encoder, mode);
7758         if (!connector)
7759                 return;
7760
7761         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7762                          connector->base.id,
7763                          drm_get_connector_name(connector),
7764                          connector->encoder->base.id,
7765                          drm_get_encoder_name(connector->encoder));
7766
7767         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7768
7769         if (dev_priv->display.write_eld)
7770                 dev_priv->display.write_eld(connector, crtc, mode);
7771 }
7772
7773 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7774 {
7775         struct drm_device *dev = crtc->dev;
7776         struct drm_i915_private *dev_priv = dev->dev_private;
7777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7778         bool visible = base != 0;
7779         u32 cntl;
7780
7781         if (intel_crtc->cursor_visible == visible)
7782                 return;
7783
7784         cntl = I915_READ(_CURACNTR);
7785         if (visible) {
7786                 /* On these chipsets we can only modify the base whilst
7787                  * the cursor is disabled.
7788                  */
7789                 I915_WRITE(_CURABASE, base);
7790
7791                 cntl &= ~(CURSOR_FORMAT_MASK);
7792                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7793                 cntl |= CURSOR_ENABLE |
7794                         CURSOR_GAMMA_ENABLE |
7795                         CURSOR_FORMAT_ARGB;
7796         } else
7797                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7798         I915_WRITE(_CURACNTR, cntl);
7799
7800         intel_crtc->cursor_visible = visible;
7801 }
7802
7803 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7804 {
7805         struct drm_device *dev = crtc->dev;
7806         struct drm_i915_private *dev_priv = dev->dev_private;
7807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7808         int pipe = intel_crtc->pipe;
7809         bool visible = base != 0;
7810
7811         if (intel_crtc->cursor_visible != visible) {
7812                 int16_t width = intel_crtc->cursor_width;
7813                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7814                 if (base) {
7815                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7816                         cntl |= MCURSOR_GAMMA_ENABLE;
7817
7818                         switch (width) {
7819                         case 64:
7820                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7821                                 break;
7822                         case 128:
7823                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7824                                 break;
7825                         case 256:
7826                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7827                                 break;
7828                         default:
7829                                 WARN_ON(1);
7830                                 return;
7831                         }
7832                         cntl |= pipe << 28; /* Connect to correct pipe */
7833                 } else {
7834                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7835                         cntl |= CURSOR_MODE_DISABLE;
7836                 }
7837                 I915_WRITE(CURCNTR(pipe), cntl);
7838
7839                 intel_crtc->cursor_visible = visible;
7840         }
7841         /* and commit changes on next vblank */
7842         POSTING_READ(CURCNTR(pipe));
7843         I915_WRITE(CURBASE(pipe), base);
7844         POSTING_READ(CURBASE(pipe));
7845 }
7846
7847 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7848 {
7849         struct drm_device *dev = crtc->dev;
7850         struct drm_i915_private *dev_priv = dev->dev_private;
7851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7852         int pipe = intel_crtc->pipe;
7853         bool visible = base != 0;
7854
7855         if (intel_crtc->cursor_visible != visible) {
7856                 int16_t width = intel_crtc->cursor_width;
7857                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7858                 if (base) {
7859                         cntl &= ~CURSOR_MODE;
7860                         cntl |= MCURSOR_GAMMA_ENABLE;
7861                         switch (width) {
7862                         case 64:
7863                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7864                                 break;
7865                         case 128:
7866                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7867                                 break;
7868                         case 256:
7869                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7870                                 break;
7871                         default:
7872                                 WARN_ON(1);
7873                                 return;
7874                         }
7875                 } else {
7876                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7877                         cntl |= CURSOR_MODE_DISABLE;
7878                 }
7879                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7880                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7881                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7882                 }
7883                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7884
7885                 intel_crtc->cursor_visible = visible;
7886         }
7887         /* and commit changes on next vblank */
7888         POSTING_READ(CURCNTR_IVB(pipe));
7889         I915_WRITE(CURBASE_IVB(pipe), base);
7890         POSTING_READ(CURBASE_IVB(pipe));
7891 }
7892
7893 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7894 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7895                                      bool on)
7896 {
7897         struct drm_device *dev = crtc->dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7900         int pipe = intel_crtc->pipe;
7901         int x = intel_crtc->cursor_x;
7902         int y = intel_crtc->cursor_y;
7903         u32 base = 0, pos = 0;
7904         bool visible;
7905
7906         if (on)
7907                 base = intel_crtc->cursor_addr;
7908
7909         if (x >= intel_crtc->config.pipe_src_w)
7910                 base = 0;
7911
7912         if (y >= intel_crtc->config.pipe_src_h)
7913                 base = 0;
7914
7915         if (x < 0) {
7916                 if (x + intel_crtc->cursor_width <= 0)
7917                         base = 0;
7918
7919                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7920                 x = -x;
7921         }
7922         pos |= x << CURSOR_X_SHIFT;
7923
7924         if (y < 0) {
7925                 if (y + intel_crtc->cursor_height <= 0)
7926                         base = 0;
7927
7928                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7929                 y = -y;
7930         }
7931         pos |= y << CURSOR_Y_SHIFT;
7932
7933         visible = base != 0;
7934         if (!visible && !intel_crtc->cursor_visible)
7935                 return;
7936
7937         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7938                 I915_WRITE(CURPOS_IVB(pipe), pos);
7939                 ivb_update_cursor(crtc, base);
7940         } else {
7941                 I915_WRITE(CURPOS(pipe), pos);
7942                 if (IS_845G(dev) || IS_I865G(dev))
7943                         i845_update_cursor(crtc, base);
7944                 else
7945                         i9xx_update_cursor(crtc, base);
7946         }
7947 }
7948
7949 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7950                                  struct drm_file *file,
7951                                  uint32_t handle,
7952                                  uint32_t width, uint32_t height)
7953 {
7954         struct drm_device *dev = crtc->dev;
7955         struct drm_i915_private *dev_priv = dev->dev_private;
7956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7957         struct drm_i915_gem_object *obj;
7958         unsigned old_width;
7959         uint32_t addr;
7960         int ret;
7961
7962         /* if we want to turn off the cursor ignore width and height */
7963         if (!handle) {
7964                 DRM_DEBUG_KMS("cursor off\n");
7965                 addr = 0;
7966                 obj = NULL;
7967                 mutex_lock(&dev->struct_mutex);
7968                 goto finish;
7969         }
7970
7971         /* Check for which cursor types we support */
7972         if (!((width == 64 && height == 64) ||
7973                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7974                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7975                 DRM_DEBUG("Cursor dimension not supported\n");
7976                 return -EINVAL;
7977         }
7978
7979         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7980         if (&obj->base == NULL)
7981                 return -ENOENT;
7982
7983         if (obj->base.size < width * height * 4) {
7984                 DRM_DEBUG_KMS("buffer is to small\n");
7985                 ret = -ENOMEM;
7986                 goto fail;
7987         }
7988
7989         /* we only need to pin inside GTT if cursor is non-phy */
7990         mutex_lock(&dev->struct_mutex);
7991         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7992                 unsigned alignment;
7993
7994                 if (obj->tiling_mode) {
7995                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7996                         ret = -EINVAL;
7997                         goto fail_locked;
7998                 }
7999
8000                 /* Note that the w/a also requires 2 PTE of padding following
8001                  * the bo. We currently fill all unused PTE with the shadow
8002                  * page and so we should always have valid PTE following the
8003                  * cursor preventing the VT-d warning.
8004                  */
8005                 alignment = 0;
8006                 if (need_vtd_wa(dev))
8007                         alignment = 64*1024;
8008
8009                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8010                 if (ret) {
8011                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8012                         goto fail_locked;
8013                 }
8014
8015                 ret = i915_gem_object_put_fence(obj);
8016                 if (ret) {
8017                         DRM_DEBUG_KMS("failed to release fence for cursor");
8018                         goto fail_unpin;
8019                 }
8020
8021                 addr = i915_gem_obj_ggtt_offset(obj);
8022         } else {
8023                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8024                 ret = i915_gem_attach_phys_object(dev, obj,
8025                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
8026                                                   align);
8027                 if (ret) {
8028                         DRM_DEBUG_KMS("failed to attach phys object\n");
8029                         goto fail_locked;
8030                 }
8031                 addr = obj->phys_obj->handle->busaddr;
8032         }
8033
8034         if (IS_GEN2(dev))
8035                 I915_WRITE(CURSIZE, (height << 12) | width);
8036
8037  finish:
8038         if (intel_crtc->cursor_bo) {
8039                 if (INTEL_INFO(dev)->cursor_needs_physical) {
8040                         if (intel_crtc->cursor_bo != obj)
8041                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
8042                 } else
8043                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8044                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8045         }
8046
8047         mutex_unlock(&dev->struct_mutex);
8048
8049         old_width = intel_crtc->cursor_width;
8050
8051         intel_crtc->cursor_addr = addr;
8052         intel_crtc->cursor_bo = obj;
8053         intel_crtc->cursor_width = width;
8054         intel_crtc->cursor_height = height;
8055
8056         if (intel_crtc->active) {
8057                 if (old_width != width)
8058                         intel_update_watermarks(crtc);
8059                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8060         }
8061
8062         return 0;
8063 fail_unpin:
8064         i915_gem_object_unpin_from_display_plane(obj);
8065 fail_locked:
8066         mutex_unlock(&dev->struct_mutex);
8067 fail:
8068         drm_gem_object_unreference_unlocked(&obj->base);
8069         return ret;
8070 }
8071
8072 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8073 {
8074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8075
8076         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8077         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8078
8079         if (intel_crtc->active)
8080                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8081
8082         return 0;
8083 }
8084
8085 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8086                                  u16 *blue, uint32_t start, uint32_t size)
8087 {
8088         int end = (start + size > 256) ? 256 : start + size, i;
8089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8090
8091         for (i = start; i < end; i++) {
8092                 intel_crtc->lut_r[i] = red[i] >> 8;
8093                 intel_crtc->lut_g[i] = green[i] >> 8;
8094                 intel_crtc->lut_b[i] = blue[i] >> 8;
8095         }
8096
8097         intel_crtc_load_lut(crtc);
8098 }
8099
8100 /* VESA 640x480x72Hz mode to set on the pipe */
8101 static struct drm_display_mode load_detect_mode = {
8102         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8103                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8104 };
8105
8106 struct drm_framebuffer *
8107 __intel_framebuffer_create(struct drm_device *dev,
8108                            struct drm_mode_fb_cmd2 *mode_cmd,
8109                            struct drm_i915_gem_object *obj)
8110 {
8111         struct intel_framebuffer *intel_fb;
8112         int ret;
8113
8114         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8115         if (!intel_fb) {
8116                 drm_gem_object_unreference_unlocked(&obj->base);
8117                 return ERR_PTR(-ENOMEM);
8118         }
8119
8120         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8121         if (ret)
8122                 goto err;
8123
8124         return &intel_fb->base;
8125 err:
8126         drm_gem_object_unreference_unlocked(&obj->base);
8127         kfree(intel_fb);
8128
8129         return ERR_PTR(ret);
8130 }
8131
8132 static struct drm_framebuffer *
8133 intel_framebuffer_create(struct drm_device *dev,
8134                          struct drm_mode_fb_cmd2 *mode_cmd,
8135                          struct drm_i915_gem_object *obj)
8136 {
8137         struct drm_framebuffer *fb;
8138         int ret;
8139
8140         ret = i915_mutex_lock_interruptible(dev);
8141         if (ret)
8142                 return ERR_PTR(ret);
8143         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8144         mutex_unlock(&dev->struct_mutex);
8145
8146         return fb;
8147 }
8148
8149 static u32
8150 intel_framebuffer_pitch_for_width(int width, int bpp)
8151 {
8152         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8153         return ALIGN(pitch, 64);
8154 }
8155
8156 static u32
8157 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8158 {
8159         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8160         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8161 }
8162
8163 static struct drm_framebuffer *
8164 intel_framebuffer_create_for_mode(struct drm_device *dev,
8165                                   struct drm_display_mode *mode,
8166                                   int depth, int bpp)
8167 {
8168         struct drm_i915_gem_object *obj;
8169         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8170
8171         obj = i915_gem_alloc_object(dev,
8172                                     intel_framebuffer_size_for_mode(mode, bpp));
8173         if (obj == NULL)
8174                 return ERR_PTR(-ENOMEM);
8175
8176         mode_cmd.width = mode->hdisplay;
8177         mode_cmd.height = mode->vdisplay;
8178         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8179                                                                 bpp);
8180         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8181
8182         return intel_framebuffer_create(dev, &mode_cmd, obj);
8183 }
8184
8185 static struct drm_framebuffer *
8186 mode_fits_in_fbdev(struct drm_device *dev,
8187                    struct drm_display_mode *mode)
8188 {
8189 #ifdef CONFIG_DRM_I915_FBDEV
8190         struct drm_i915_private *dev_priv = dev->dev_private;
8191         struct drm_i915_gem_object *obj;
8192         struct drm_framebuffer *fb;
8193
8194         if (!dev_priv->fbdev)
8195                 return NULL;
8196
8197         if (!dev_priv->fbdev->fb)
8198                 return NULL;
8199
8200         obj = dev_priv->fbdev->fb->obj;
8201         BUG_ON(!obj);
8202
8203         fb = &dev_priv->fbdev->fb->base;
8204         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8205                                                                fb->bits_per_pixel))
8206                 return NULL;
8207
8208         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8209                 return NULL;
8210
8211         return fb;
8212 #else
8213         return NULL;
8214 #endif
8215 }
8216
8217 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8218                                 struct drm_display_mode *mode,
8219                                 struct intel_load_detect_pipe *old)
8220 {
8221         struct intel_crtc *intel_crtc;
8222         struct intel_encoder *intel_encoder =
8223                 intel_attached_encoder(connector);
8224         struct drm_crtc *possible_crtc;
8225         struct drm_encoder *encoder = &intel_encoder->base;
8226         struct drm_crtc *crtc = NULL;
8227         struct drm_device *dev = encoder->dev;
8228         struct drm_framebuffer *fb;
8229         int i = -1;
8230
8231         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8232                       connector->base.id, drm_get_connector_name(connector),
8233                       encoder->base.id, drm_get_encoder_name(encoder));
8234
8235         /*
8236          * Algorithm gets a little messy:
8237          *
8238          *   - if the connector already has an assigned crtc, use it (but make
8239          *     sure it's on first)
8240          *
8241          *   - try to find the first unused crtc that can drive this connector,
8242          *     and use that if we find one
8243          */
8244
8245         /* See if we already have a CRTC for this connector */
8246         if (encoder->crtc) {
8247                 crtc = encoder->crtc;
8248
8249                 mutex_lock(&crtc->mutex);
8250
8251                 old->dpms_mode = connector->dpms;
8252                 old->load_detect_temp = false;
8253
8254                 /* Make sure the crtc and connector are running */
8255                 if (connector->dpms != DRM_MODE_DPMS_ON)
8256                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8257
8258                 return true;
8259         }
8260
8261         /* Find an unused one (if possible) */
8262         for_each_crtc(dev, possible_crtc) {
8263                 i++;
8264                 if (!(encoder->possible_crtcs & (1 << i)))
8265                         continue;
8266                 if (!possible_crtc->enabled) {
8267                         crtc = possible_crtc;
8268                         break;
8269                 }
8270         }
8271
8272         /*
8273          * If we didn't find an unused CRTC, don't use any.
8274          */
8275         if (!crtc) {
8276                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8277                 return false;
8278         }
8279
8280         mutex_lock(&crtc->mutex);
8281         intel_encoder->new_crtc = to_intel_crtc(crtc);
8282         to_intel_connector(connector)->new_encoder = intel_encoder;
8283
8284         intel_crtc = to_intel_crtc(crtc);
8285         intel_crtc->new_enabled = true;
8286         intel_crtc->new_config = &intel_crtc->config;
8287         old->dpms_mode = connector->dpms;
8288         old->load_detect_temp = true;
8289         old->release_fb = NULL;
8290
8291         if (!mode)
8292                 mode = &load_detect_mode;
8293
8294         /* We need a framebuffer large enough to accommodate all accesses
8295          * that the plane may generate whilst we perform load detection.
8296          * We can not rely on the fbcon either being present (we get called
8297          * during its initialisation to detect all boot displays, or it may
8298          * not even exist) or that it is large enough to satisfy the
8299          * requested mode.
8300          */
8301         fb = mode_fits_in_fbdev(dev, mode);
8302         if (fb == NULL) {
8303                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8304                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8305                 old->release_fb = fb;
8306         } else
8307                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8308         if (IS_ERR(fb)) {
8309                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8310                 goto fail;
8311         }
8312
8313         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8314                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8315                 if (old->release_fb)
8316                         old->release_fb->funcs->destroy(old->release_fb);
8317                 goto fail;
8318         }
8319
8320         /* let the connector get through one full cycle before testing */
8321         intel_wait_for_vblank(dev, intel_crtc->pipe);
8322         return true;
8323
8324  fail:
8325         intel_crtc->new_enabled = crtc->enabled;
8326         if (intel_crtc->new_enabled)
8327                 intel_crtc->new_config = &intel_crtc->config;
8328         else
8329                 intel_crtc->new_config = NULL;
8330         mutex_unlock(&crtc->mutex);
8331         return false;
8332 }
8333
8334 void intel_release_load_detect_pipe(struct drm_connector *connector,
8335                                     struct intel_load_detect_pipe *old)
8336 {
8337         struct intel_encoder *intel_encoder =
8338                 intel_attached_encoder(connector);
8339         struct drm_encoder *encoder = &intel_encoder->base;
8340         struct drm_crtc *crtc = encoder->crtc;
8341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8342
8343         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8344                       connector->base.id, drm_get_connector_name(connector),
8345                       encoder->base.id, drm_get_encoder_name(encoder));
8346
8347         if (old->load_detect_temp) {
8348                 to_intel_connector(connector)->new_encoder = NULL;
8349                 intel_encoder->new_crtc = NULL;
8350                 intel_crtc->new_enabled = false;
8351                 intel_crtc->new_config = NULL;
8352                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8353
8354                 if (old->release_fb) {
8355                         drm_framebuffer_unregister_private(old->release_fb);
8356                         drm_framebuffer_unreference(old->release_fb);
8357                 }
8358
8359                 mutex_unlock(&crtc->mutex);
8360                 return;
8361         }
8362
8363         /* Switch crtc and encoder back off if necessary */
8364         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8365                 connector->funcs->dpms(connector, old->dpms_mode);
8366
8367         mutex_unlock(&crtc->mutex);
8368 }
8369
8370 static int i9xx_pll_refclk(struct drm_device *dev,
8371                            const struct intel_crtc_config *pipe_config)
8372 {
8373         struct drm_i915_private *dev_priv = dev->dev_private;
8374         u32 dpll = pipe_config->dpll_hw_state.dpll;
8375
8376         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8377                 return dev_priv->vbt.lvds_ssc_freq;
8378         else if (HAS_PCH_SPLIT(dev))
8379                 return 120000;
8380         else if (!IS_GEN2(dev))
8381                 return 96000;
8382         else
8383                 return 48000;
8384 }
8385
8386 /* Returns the clock of the currently programmed mode of the given pipe. */
8387 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8388                                 struct intel_crtc_config *pipe_config)
8389 {
8390         struct drm_device *dev = crtc->base.dev;
8391         struct drm_i915_private *dev_priv = dev->dev_private;
8392         int pipe = pipe_config->cpu_transcoder;
8393         u32 dpll = pipe_config->dpll_hw_state.dpll;
8394         u32 fp;
8395         intel_clock_t clock;
8396         int refclk = i9xx_pll_refclk(dev, pipe_config);
8397
8398         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8399                 fp = pipe_config->dpll_hw_state.fp0;
8400         else
8401                 fp = pipe_config->dpll_hw_state.fp1;
8402
8403         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8404         if (IS_PINEVIEW(dev)) {
8405                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8406                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8407         } else {
8408                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8409                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8410         }
8411
8412         if (!IS_GEN2(dev)) {
8413                 if (IS_PINEVIEW(dev))
8414                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8415                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8416                 else
8417                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8418                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8419
8420                 switch (dpll & DPLL_MODE_MASK) {
8421                 case DPLLB_MODE_DAC_SERIAL:
8422                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8423                                 5 : 10;
8424                         break;
8425                 case DPLLB_MODE_LVDS:
8426                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8427                                 7 : 14;
8428                         break;
8429                 default:
8430                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8431                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8432                         return;
8433                 }
8434
8435                 if (IS_PINEVIEW(dev))
8436                         pineview_clock(refclk, &clock);
8437                 else
8438                         i9xx_clock(refclk, &clock);
8439         } else {
8440                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8441                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8442
8443                 if (is_lvds) {
8444                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8445                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8446
8447                         if (lvds & LVDS_CLKB_POWER_UP)
8448                                 clock.p2 = 7;
8449                         else
8450                                 clock.p2 = 14;
8451                 } else {
8452                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8453                                 clock.p1 = 2;
8454                         else {
8455                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8456                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8457                         }
8458                         if (dpll & PLL_P2_DIVIDE_BY_4)
8459                                 clock.p2 = 4;
8460                         else
8461                                 clock.p2 = 2;
8462                 }
8463
8464                 i9xx_clock(refclk, &clock);
8465         }
8466
8467         /*
8468          * This value includes pixel_multiplier. We will use
8469          * port_clock to compute adjusted_mode.crtc_clock in the
8470          * encoder's get_config() function.
8471          */
8472         pipe_config->port_clock = clock.dot;
8473 }
8474
8475 int intel_dotclock_calculate(int link_freq,
8476                              const struct intel_link_m_n *m_n)
8477 {
8478         /*
8479          * The calculation for the data clock is:
8480          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8481          * But we want to avoid losing precison if possible, so:
8482          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8483          *
8484          * and the link clock is simpler:
8485          * link_clock = (m * link_clock) / n
8486          */
8487
8488         if (!m_n->link_n)
8489                 return 0;
8490
8491         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8492 }
8493
8494 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8495                                    struct intel_crtc_config *pipe_config)
8496 {
8497         struct drm_device *dev = crtc->base.dev;
8498
8499         /* read out port_clock from the DPLL */
8500         i9xx_crtc_clock_get(crtc, pipe_config);
8501
8502         /*
8503          * This value does not include pixel_multiplier.
8504          * We will check that port_clock and adjusted_mode.crtc_clock
8505          * agree once we know their relationship in the encoder's
8506          * get_config() function.
8507          */
8508         pipe_config->adjusted_mode.crtc_clock =
8509                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8510                                          &pipe_config->fdi_m_n);
8511 }
8512
8513 /** Returns the currently programmed mode of the given pipe. */
8514 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8515                                              struct drm_crtc *crtc)
8516 {
8517         struct drm_i915_private *dev_priv = dev->dev_private;
8518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8519         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8520         struct drm_display_mode *mode;
8521         struct intel_crtc_config pipe_config;
8522         int htot = I915_READ(HTOTAL(cpu_transcoder));
8523         int hsync = I915_READ(HSYNC(cpu_transcoder));
8524         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8525         int vsync = I915_READ(VSYNC(cpu_transcoder));
8526         enum pipe pipe = intel_crtc->pipe;
8527
8528         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8529         if (!mode)
8530                 return NULL;
8531
8532         /*
8533          * Construct a pipe_config sufficient for getting the clock info
8534          * back out of crtc_clock_get.
8535          *
8536          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8537          * to use a real value here instead.
8538          */
8539         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8540         pipe_config.pixel_multiplier = 1;
8541         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8542         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8543         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8544         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8545
8546         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8547         mode->hdisplay = (htot & 0xffff) + 1;
8548         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8549         mode->hsync_start = (hsync & 0xffff) + 1;
8550         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8551         mode->vdisplay = (vtot & 0xffff) + 1;
8552         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8553         mode->vsync_start = (vsync & 0xffff) + 1;
8554         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8555
8556         drm_mode_set_name(mode);
8557
8558         return mode;
8559 }
8560
8561 static void intel_increase_pllclock(struct drm_crtc *crtc)
8562 {
8563         struct drm_device *dev = crtc->dev;
8564         struct drm_i915_private *dev_priv = dev->dev_private;
8565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8566         int pipe = intel_crtc->pipe;
8567         int dpll_reg = DPLL(pipe);
8568         int dpll;
8569
8570         if (HAS_PCH_SPLIT(dev))
8571                 return;
8572
8573         if (!dev_priv->lvds_downclock_avail)
8574                 return;
8575
8576         dpll = I915_READ(dpll_reg);
8577         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8578                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8579
8580                 assert_panel_unlocked(dev_priv, pipe);
8581
8582                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8583                 I915_WRITE(dpll_reg, dpll);
8584                 intel_wait_for_vblank(dev, pipe);
8585
8586                 dpll = I915_READ(dpll_reg);
8587                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8588                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8589         }
8590 }
8591
8592 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8593 {
8594         struct drm_device *dev = crtc->dev;
8595         struct drm_i915_private *dev_priv = dev->dev_private;
8596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8597
8598         if (HAS_PCH_SPLIT(dev))
8599                 return;
8600
8601         if (!dev_priv->lvds_downclock_avail)
8602                 return;
8603
8604         /*
8605          * Since this is called by a timer, we should never get here in
8606          * the manual case.
8607          */
8608         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8609                 int pipe = intel_crtc->pipe;
8610                 int dpll_reg = DPLL(pipe);
8611                 int dpll;
8612
8613                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8614
8615                 assert_panel_unlocked(dev_priv, pipe);
8616
8617                 dpll = I915_READ(dpll_reg);
8618                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8619                 I915_WRITE(dpll_reg, dpll);
8620                 intel_wait_for_vblank(dev, pipe);
8621                 dpll = I915_READ(dpll_reg);
8622                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8623                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8624         }
8625
8626 }
8627
8628 void intel_mark_busy(struct drm_device *dev)
8629 {
8630         struct drm_i915_private *dev_priv = dev->dev_private;
8631
8632         if (dev_priv->mm.busy)
8633                 return;
8634
8635         intel_runtime_pm_get(dev_priv);
8636         i915_update_gfx_val(dev_priv);
8637         dev_priv->mm.busy = true;
8638 }
8639
8640 void intel_mark_idle(struct drm_device *dev)
8641 {
8642         struct drm_i915_private *dev_priv = dev->dev_private;
8643         struct drm_crtc *crtc;
8644
8645         if (!dev_priv->mm.busy)
8646                 return;
8647
8648         dev_priv->mm.busy = false;
8649
8650         if (!i915.powersave)
8651                 goto out;
8652
8653         for_each_crtc(dev, crtc) {
8654                 if (!crtc->primary->fb)
8655                         continue;
8656
8657                 intel_decrease_pllclock(crtc);
8658         }
8659
8660         if (INTEL_INFO(dev)->gen >= 6)
8661                 gen6_rps_idle(dev->dev_private);
8662
8663 out:
8664         intel_runtime_pm_put(dev_priv);
8665 }
8666
8667 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8668                         struct intel_ring_buffer *ring)
8669 {
8670         struct drm_device *dev = obj->base.dev;
8671         struct drm_crtc *crtc;
8672
8673         if (!i915.powersave)
8674                 return;
8675
8676         for_each_crtc(dev, crtc) {
8677                 if (!crtc->primary->fb)
8678                         continue;
8679
8680                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8681                         continue;
8682
8683                 intel_increase_pllclock(crtc);
8684                 if (ring && intel_fbc_enabled(dev))
8685                         ring->fbc_dirty = true;
8686         }
8687 }
8688
8689 static void intel_crtc_destroy(struct drm_crtc *crtc)
8690 {
8691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8692         struct drm_device *dev = crtc->dev;
8693         struct intel_unpin_work *work;
8694         unsigned long flags;
8695
8696         spin_lock_irqsave(&dev->event_lock, flags);
8697         work = intel_crtc->unpin_work;
8698         intel_crtc->unpin_work = NULL;
8699         spin_unlock_irqrestore(&dev->event_lock, flags);
8700
8701         if (work) {
8702                 cancel_work_sync(&work->work);
8703                 kfree(work);
8704         }
8705
8706         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8707
8708         drm_crtc_cleanup(crtc);
8709
8710         kfree(intel_crtc);
8711 }
8712
8713 static void intel_unpin_work_fn(struct work_struct *__work)
8714 {
8715         struct intel_unpin_work *work =
8716                 container_of(__work, struct intel_unpin_work, work);
8717         struct drm_device *dev = work->crtc->dev;
8718
8719         mutex_lock(&dev->struct_mutex);
8720         intel_unpin_fb_obj(work->old_fb_obj);
8721         drm_gem_object_unreference(&work->pending_flip_obj->base);
8722         drm_gem_object_unreference(&work->old_fb_obj->base);
8723
8724         intel_update_fbc(dev);
8725         mutex_unlock(&dev->struct_mutex);
8726
8727         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8728         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8729
8730         kfree(work);
8731 }
8732
8733 static void do_intel_finish_page_flip(struct drm_device *dev,
8734                                       struct drm_crtc *crtc)
8735 {
8736         struct drm_i915_private *dev_priv = dev->dev_private;
8737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8738         struct intel_unpin_work *work;
8739         unsigned long flags;
8740
8741         /* Ignore early vblank irqs */
8742         if (intel_crtc == NULL)
8743                 return;
8744
8745         spin_lock_irqsave(&dev->event_lock, flags);
8746         work = intel_crtc->unpin_work;
8747
8748         /* Ensure we don't miss a work->pending update ... */
8749         smp_rmb();
8750
8751         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8752                 spin_unlock_irqrestore(&dev->event_lock, flags);
8753                 return;
8754         }
8755
8756         /* and that the unpin work is consistent wrt ->pending. */
8757         smp_rmb();
8758
8759         intel_crtc->unpin_work = NULL;
8760
8761         if (work->event)
8762                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8763
8764         drm_vblank_put(dev, intel_crtc->pipe);
8765
8766         spin_unlock_irqrestore(&dev->event_lock, flags);
8767
8768         wake_up_all(&dev_priv->pending_flip_queue);
8769
8770         queue_work(dev_priv->wq, &work->work);
8771
8772         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8773 }
8774
8775 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8776 {
8777         struct drm_i915_private *dev_priv = dev->dev_private;
8778         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8779
8780         do_intel_finish_page_flip(dev, crtc);
8781 }
8782
8783 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8784 {
8785         struct drm_i915_private *dev_priv = dev->dev_private;
8786         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8787
8788         do_intel_finish_page_flip(dev, crtc);
8789 }
8790
8791 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8792 {
8793         struct drm_i915_private *dev_priv = dev->dev_private;
8794         struct intel_crtc *intel_crtc =
8795                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8796         unsigned long flags;
8797
8798         /* NB: An MMIO update of the plane base pointer will also
8799          * generate a page-flip completion irq, i.e. every modeset
8800          * is also accompanied by a spurious intel_prepare_page_flip().
8801          */
8802         spin_lock_irqsave(&dev->event_lock, flags);
8803         if (intel_crtc->unpin_work)
8804                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8805         spin_unlock_irqrestore(&dev->event_lock, flags);
8806 }
8807
8808 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8809 {
8810         /* Ensure that the work item is consistent when activating it ... */
8811         smp_wmb();
8812         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8813         /* and that it is marked active as soon as the irq could fire. */
8814         smp_wmb();
8815 }
8816
8817 static int intel_gen2_queue_flip(struct drm_device *dev,
8818                                  struct drm_crtc *crtc,
8819                                  struct drm_framebuffer *fb,
8820                                  struct drm_i915_gem_object *obj,
8821                                  uint32_t flags)
8822 {
8823         struct drm_i915_private *dev_priv = dev->dev_private;
8824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8825         u32 flip_mask;
8826         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8827         int ret;
8828
8829         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8830         if (ret)
8831                 goto err;
8832
8833         ret = intel_ring_begin(ring, 6);
8834         if (ret)
8835                 goto err_unpin;
8836
8837         /* Can't queue multiple flips, so wait for the previous
8838          * one to finish before executing the next.
8839          */
8840         if (intel_crtc->plane)
8841                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8842         else
8843                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8844         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8845         intel_ring_emit(ring, MI_NOOP);
8846         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8847                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8848         intel_ring_emit(ring, fb->pitches[0]);
8849         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8850         intel_ring_emit(ring, 0); /* aux display base address, unused */
8851
8852         intel_mark_page_flip_active(intel_crtc);
8853         __intel_ring_advance(ring);
8854         return 0;
8855
8856 err_unpin:
8857         intel_unpin_fb_obj(obj);
8858 err:
8859         return ret;
8860 }
8861
8862 static int intel_gen3_queue_flip(struct drm_device *dev,
8863                                  struct drm_crtc *crtc,
8864                                  struct drm_framebuffer *fb,
8865                                  struct drm_i915_gem_object *obj,
8866                                  uint32_t flags)
8867 {
8868         struct drm_i915_private *dev_priv = dev->dev_private;
8869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8870         u32 flip_mask;
8871         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8872         int ret;
8873
8874         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8875         if (ret)
8876                 goto err;
8877
8878         ret = intel_ring_begin(ring, 6);
8879         if (ret)
8880                 goto err_unpin;
8881
8882         if (intel_crtc->plane)
8883                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8884         else
8885                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8886         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8887         intel_ring_emit(ring, MI_NOOP);
8888         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8889                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8890         intel_ring_emit(ring, fb->pitches[0]);
8891         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8892         intel_ring_emit(ring, MI_NOOP);
8893
8894         intel_mark_page_flip_active(intel_crtc);
8895         __intel_ring_advance(ring);
8896         return 0;
8897
8898 err_unpin:
8899         intel_unpin_fb_obj(obj);
8900 err:
8901         return ret;
8902 }
8903
8904 static int intel_gen4_queue_flip(struct drm_device *dev,
8905                                  struct drm_crtc *crtc,
8906                                  struct drm_framebuffer *fb,
8907                                  struct drm_i915_gem_object *obj,
8908                                  uint32_t flags)
8909 {
8910         struct drm_i915_private *dev_priv = dev->dev_private;
8911         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8912         uint32_t pf, pipesrc;
8913         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8914         int ret;
8915
8916         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8917         if (ret)
8918                 goto err;
8919
8920         ret = intel_ring_begin(ring, 4);
8921         if (ret)
8922                 goto err_unpin;
8923
8924         /* i965+ uses the linear or tiled offsets from the
8925          * Display Registers (which do not change across a page-flip)
8926          * so we need only reprogram the base address.
8927          */
8928         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8929                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8930         intel_ring_emit(ring, fb->pitches[0]);
8931         intel_ring_emit(ring,
8932                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8933                         obj->tiling_mode);
8934
8935         /* XXX Enabling the panel-fitter across page-flip is so far
8936          * untested on non-native modes, so ignore it for now.
8937          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8938          */
8939         pf = 0;
8940         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8941         intel_ring_emit(ring, pf | pipesrc);
8942
8943         intel_mark_page_flip_active(intel_crtc);
8944         __intel_ring_advance(ring);
8945         return 0;
8946
8947 err_unpin:
8948         intel_unpin_fb_obj(obj);
8949 err:
8950         return ret;
8951 }
8952
8953 static int intel_gen6_queue_flip(struct drm_device *dev,
8954                                  struct drm_crtc *crtc,
8955                                  struct drm_framebuffer *fb,
8956                                  struct drm_i915_gem_object *obj,
8957                                  uint32_t flags)
8958 {
8959         struct drm_i915_private *dev_priv = dev->dev_private;
8960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8961         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8962         uint32_t pf, pipesrc;
8963         int ret;
8964
8965         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8966         if (ret)
8967                 goto err;
8968
8969         ret = intel_ring_begin(ring, 4);
8970         if (ret)
8971                 goto err_unpin;
8972
8973         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8974                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8975         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8976         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8977
8978         /* Contrary to the suggestions in the documentation,
8979          * "Enable Panel Fitter" does not seem to be required when page
8980          * flipping with a non-native mode, and worse causes a normal
8981          * modeset to fail.
8982          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8983          */
8984         pf = 0;
8985         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8986         intel_ring_emit(ring, pf | pipesrc);
8987
8988         intel_mark_page_flip_active(intel_crtc);
8989         __intel_ring_advance(ring);
8990         return 0;
8991
8992 err_unpin:
8993         intel_unpin_fb_obj(obj);
8994 err:
8995         return ret;
8996 }
8997
8998 static int intel_gen7_queue_flip(struct drm_device *dev,
8999                                  struct drm_crtc *crtc,
9000                                  struct drm_framebuffer *fb,
9001                                  struct drm_i915_gem_object *obj,
9002                                  uint32_t flags)
9003 {
9004         struct drm_i915_private *dev_priv = dev->dev_private;
9005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9006         struct intel_ring_buffer *ring;
9007         uint32_t plane_bit = 0;
9008         int len, ret;
9009
9010         ring = obj->ring;
9011         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
9012                 ring = &dev_priv->ring[BCS];
9013
9014         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9015         if (ret)
9016                 goto err;
9017
9018         switch (intel_crtc->plane) {
9019         case PLANE_A:
9020                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9021                 break;
9022         case PLANE_B:
9023                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9024                 break;
9025         case PLANE_C:
9026                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9027                 break;
9028         default:
9029                 WARN_ONCE(1, "unknown plane in flip command\n");
9030                 ret = -ENODEV;
9031                 goto err_unpin;
9032         }
9033
9034         len = 4;
9035         if (ring->id == RCS) {
9036                 len += 6;
9037                 /*
9038                  * On Gen 8, SRM is now taking an extra dword to accommodate
9039                  * 48bits addresses, and we need a NOOP for the batch size to
9040                  * stay even.
9041                  */
9042                 if (IS_GEN8(dev))
9043                         len += 2;
9044         }
9045
9046         /*
9047          * BSpec MI_DISPLAY_FLIP for IVB:
9048          * "The full packet must be contained within the same cache line."
9049          *
9050          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9051          * cacheline, if we ever start emitting more commands before
9052          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9053          * then do the cacheline alignment, and finally emit the
9054          * MI_DISPLAY_FLIP.
9055          */
9056         ret = intel_ring_cacheline_align(ring);
9057         if (ret)
9058                 goto err_unpin;
9059
9060         ret = intel_ring_begin(ring, len);
9061         if (ret)
9062                 goto err_unpin;
9063
9064         /* Unmask the flip-done completion message. Note that the bspec says that
9065          * we should do this for both the BCS and RCS, and that we must not unmask
9066          * more than one flip event at any time (or ensure that one flip message
9067          * can be sent by waiting for flip-done prior to queueing new flips).
9068          * Experimentation says that BCS works despite DERRMR masking all
9069          * flip-done completion events and that unmasking all planes at once
9070          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9071          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9072          */
9073         if (ring->id == RCS) {
9074                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9075                 intel_ring_emit(ring, DERRMR);
9076                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9077                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9078                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9079                 if (IS_GEN8(dev))
9080                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9081                                               MI_SRM_LRM_GLOBAL_GTT);
9082                 else
9083                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9084                                               MI_SRM_LRM_GLOBAL_GTT);
9085                 intel_ring_emit(ring, DERRMR);
9086                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9087                 if (IS_GEN8(dev)) {
9088                         intel_ring_emit(ring, 0);
9089                         intel_ring_emit(ring, MI_NOOP);
9090                 }
9091         }
9092
9093         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9094         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9095         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
9096         intel_ring_emit(ring, (MI_NOOP));
9097
9098         intel_mark_page_flip_active(intel_crtc);
9099         __intel_ring_advance(ring);
9100         return 0;
9101
9102 err_unpin:
9103         intel_unpin_fb_obj(obj);
9104 err:
9105         return ret;
9106 }
9107
9108 static int intel_default_queue_flip(struct drm_device *dev,
9109                                     struct drm_crtc *crtc,
9110                                     struct drm_framebuffer *fb,
9111                                     struct drm_i915_gem_object *obj,
9112                                     uint32_t flags)
9113 {
9114         return -ENODEV;
9115 }
9116
9117 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9118                                 struct drm_framebuffer *fb,
9119                                 struct drm_pending_vblank_event *event,
9120                                 uint32_t page_flip_flags)
9121 {
9122         struct drm_device *dev = crtc->dev;
9123         struct drm_i915_private *dev_priv = dev->dev_private;
9124         struct drm_framebuffer *old_fb = crtc->primary->fb;
9125         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9127         struct intel_unpin_work *work;
9128         unsigned long flags;
9129         int ret;
9130
9131         /* Can't change pixel format via MI display flips. */
9132         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9133                 return -EINVAL;
9134
9135         /*
9136          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9137          * Note that pitch changes could also affect these register.
9138          */
9139         if (INTEL_INFO(dev)->gen > 3 &&
9140             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9141              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9142                 return -EINVAL;
9143
9144         if (i915_terminally_wedged(&dev_priv->gpu_error))
9145                 goto out_hang;
9146
9147         work = kzalloc(sizeof(*work), GFP_KERNEL);
9148         if (work == NULL)
9149                 return -ENOMEM;
9150
9151         work->event = event;
9152         work->crtc = crtc;
9153         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9154         INIT_WORK(&work->work, intel_unpin_work_fn);
9155
9156         ret = drm_vblank_get(dev, intel_crtc->pipe);
9157         if (ret)
9158                 goto free_work;
9159
9160         /* We borrow the event spin lock for protecting unpin_work */
9161         spin_lock_irqsave(&dev->event_lock, flags);
9162         if (intel_crtc->unpin_work) {
9163                 spin_unlock_irqrestore(&dev->event_lock, flags);
9164                 kfree(work);
9165                 drm_vblank_put(dev, intel_crtc->pipe);
9166
9167                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9168                 return -EBUSY;
9169         }
9170         intel_crtc->unpin_work = work;
9171         spin_unlock_irqrestore(&dev->event_lock, flags);
9172
9173         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9174                 flush_workqueue(dev_priv->wq);
9175
9176         ret = i915_mutex_lock_interruptible(dev);
9177         if (ret)
9178                 goto cleanup;
9179
9180         /* Reference the objects for the scheduled work. */
9181         drm_gem_object_reference(&work->old_fb_obj->base);
9182         drm_gem_object_reference(&obj->base);
9183
9184         crtc->primary->fb = fb;
9185
9186         work->pending_flip_obj = obj;
9187
9188         work->enable_stall_check = true;
9189
9190         atomic_inc(&intel_crtc->unpin_work_count);
9191         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9192
9193         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
9194         if (ret)
9195                 goto cleanup_pending;
9196
9197         intel_disable_fbc(dev);
9198         intel_mark_fb_busy(obj, NULL);
9199         mutex_unlock(&dev->struct_mutex);
9200
9201         trace_i915_flip_request(intel_crtc->plane, obj);
9202
9203         return 0;
9204
9205 cleanup_pending:
9206         atomic_dec(&intel_crtc->unpin_work_count);
9207         crtc->primary->fb = old_fb;
9208         drm_gem_object_unreference(&work->old_fb_obj->base);
9209         drm_gem_object_unreference(&obj->base);
9210         mutex_unlock(&dev->struct_mutex);
9211
9212 cleanup:
9213         spin_lock_irqsave(&dev->event_lock, flags);
9214         intel_crtc->unpin_work = NULL;
9215         spin_unlock_irqrestore(&dev->event_lock, flags);
9216
9217         drm_vblank_put(dev, intel_crtc->pipe);
9218 free_work:
9219         kfree(work);
9220
9221         if (ret == -EIO) {
9222 out_hang:
9223                 intel_crtc_wait_for_pending_flips(crtc);
9224                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9225                 if (ret == 0 && event)
9226                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9227         }
9228         return ret;
9229 }
9230
9231 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9232         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9233         .load_lut = intel_crtc_load_lut,
9234 };
9235
9236 /**
9237  * intel_modeset_update_staged_output_state
9238  *
9239  * Updates the staged output configuration state, e.g. after we've read out the
9240  * current hw state.
9241  */
9242 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9243 {
9244         struct intel_crtc *crtc;
9245         struct intel_encoder *encoder;
9246         struct intel_connector *connector;
9247
9248         list_for_each_entry(connector, &dev->mode_config.connector_list,
9249                             base.head) {
9250                 connector->new_encoder =
9251                         to_intel_encoder(connector->base.encoder);
9252         }
9253
9254         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9255                             base.head) {
9256                 encoder->new_crtc =
9257                         to_intel_crtc(encoder->base.crtc);
9258         }
9259
9260         for_each_intel_crtc(dev, crtc) {
9261                 crtc->new_enabled = crtc->base.enabled;
9262
9263                 if (crtc->new_enabled)
9264                         crtc->new_config = &crtc->config;
9265                 else
9266                         crtc->new_config = NULL;
9267         }
9268 }
9269
9270 /**
9271  * intel_modeset_commit_output_state
9272  *
9273  * This function copies the stage display pipe configuration to the real one.
9274  */
9275 static void intel_modeset_commit_output_state(struct drm_device *dev)
9276 {
9277         struct intel_crtc *crtc;
9278         struct intel_encoder *encoder;
9279         struct intel_connector *connector;
9280
9281         list_for_each_entry(connector, &dev->mode_config.connector_list,
9282                             base.head) {
9283                 connector->base.encoder = &connector->new_encoder->base;
9284         }
9285
9286         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9287                             base.head) {
9288                 encoder->base.crtc = &encoder->new_crtc->base;
9289         }
9290
9291         for_each_intel_crtc(dev, crtc) {
9292                 crtc->base.enabled = crtc->new_enabled;
9293         }
9294 }
9295
9296 static void
9297 connected_sink_compute_bpp(struct intel_connector *connector,
9298                            struct intel_crtc_config *pipe_config)
9299 {
9300         int bpp = pipe_config->pipe_bpp;
9301
9302         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9303                 connector->base.base.id,
9304                 drm_get_connector_name(&connector->base));
9305
9306         /* Don't use an invalid EDID bpc value */
9307         if (connector->base.display_info.bpc &&
9308             connector->base.display_info.bpc * 3 < bpp) {
9309                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9310                               bpp, connector->base.display_info.bpc*3);
9311                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9312         }
9313
9314         /* Clamp bpp to 8 on screens without EDID 1.4 */
9315         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9316                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9317                               bpp);
9318                 pipe_config->pipe_bpp = 24;
9319         }
9320 }
9321
9322 static int
9323 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9324                           struct drm_framebuffer *fb,
9325                           struct intel_crtc_config *pipe_config)
9326 {
9327         struct drm_device *dev = crtc->base.dev;
9328         struct intel_connector *connector;
9329         int bpp;
9330
9331         switch (fb->pixel_format) {
9332         case DRM_FORMAT_C8:
9333                 bpp = 8*3; /* since we go through a colormap */
9334                 break;
9335         case DRM_FORMAT_XRGB1555:
9336         case DRM_FORMAT_ARGB1555:
9337                 /* checked in intel_framebuffer_init already */
9338                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9339                         return -EINVAL;
9340         case DRM_FORMAT_RGB565:
9341                 bpp = 6*3; /* min is 18bpp */
9342                 break;
9343         case DRM_FORMAT_XBGR8888:
9344         case DRM_FORMAT_ABGR8888:
9345                 /* checked in intel_framebuffer_init already */
9346                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9347                         return -EINVAL;
9348         case DRM_FORMAT_XRGB8888:
9349         case DRM_FORMAT_ARGB8888:
9350                 bpp = 8*3;
9351                 break;
9352         case DRM_FORMAT_XRGB2101010:
9353         case DRM_FORMAT_ARGB2101010:
9354         case DRM_FORMAT_XBGR2101010:
9355         case DRM_FORMAT_ABGR2101010:
9356                 /* checked in intel_framebuffer_init already */
9357                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9358                         return -EINVAL;
9359                 bpp = 10*3;
9360                 break;
9361         /* TODO: gen4+ supports 16 bpc floating point, too. */
9362         default:
9363                 DRM_DEBUG_KMS("unsupported depth\n");
9364                 return -EINVAL;
9365         }
9366
9367         pipe_config->pipe_bpp = bpp;
9368
9369         /* Clamp display bpp to EDID value */
9370         list_for_each_entry(connector, &dev->mode_config.connector_list,
9371                             base.head) {
9372                 if (!connector->new_encoder ||
9373                     connector->new_encoder->new_crtc != crtc)
9374                         continue;
9375
9376                 connected_sink_compute_bpp(connector, pipe_config);
9377         }
9378
9379         return bpp;
9380 }
9381
9382 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9383 {
9384         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9385                         "type: 0x%x flags: 0x%x\n",
9386                 mode->crtc_clock,
9387                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9388                 mode->crtc_hsync_end, mode->crtc_htotal,
9389                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9390                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9391 }
9392
9393 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9394                                    struct intel_crtc_config *pipe_config,
9395                                    const char *context)
9396 {
9397         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9398                       context, pipe_name(crtc->pipe));
9399
9400         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9401         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9402                       pipe_config->pipe_bpp, pipe_config->dither);
9403         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9404                       pipe_config->has_pch_encoder,
9405                       pipe_config->fdi_lanes,
9406                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9407                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9408                       pipe_config->fdi_m_n.tu);
9409         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9410                       pipe_config->has_dp_encoder,
9411                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9412                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9413                       pipe_config->dp_m_n.tu);
9414         DRM_DEBUG_KMS("requested mode:\n");
9415         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9416         DRM_DEBUG_KMS("adjusted mode:\n");
9417         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9418         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9419         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9420         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9421                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9422         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9423                       pipe_config->gmch_pfit.control,
9424                       pipe_config->gmch_pfit.pgm_ratios,
9425                       pipe_config->gmch_pfit.lvds_border_bits);
9426         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9427                       pipe_config->pch_pfit.pos,
9428                       pipe_config->pch_pfit.size,
9429                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9430         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9431         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9432 }
9433
9434 static bool encoders_cloneable(const struct intel_encoder *a,
9435                                const struct intel_encoder *b)
9436 {
9437         /* masks could be asymmetric, so check both ways */
9438         return a == b || (a->cloneable & (1 << b->type) &&
9439                           b->cloneable & (1 << a->type));
9440 }
9441
9442 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9443                                          struct intel_encoder *encoder)
9444 {
9445         struct drm_device *dev = crtc->base.dev;
9446         struct intel_encoder *source_encoder;
9447
9448         list_for_each_entry(source_encoder,
9449                             &dev->mode_config.encoder_list, base.head) {
9450                 if (source_encoder->new_crtc != crtc)
9451                         continue;
9452
9453                 if (!encoders_cloneable(encoder, source_encoder))
9454                         return false;
9455         }
9456
9457         return true;
9458 }
9459
9460 static bool check_encoder_cloning(struct intel_crtc *crtc)
9461 {
9462         struct drm_device *dev = crtc->base.dev;
9463         struct intel_encoder *encoder;
9464
9465         list_for_each_entry(encoder,
9466                             &dev->mode_config.encoder_list, base.head) {
9467                 if (encoder->new_crtc != crtc)
9468                         continue;
9469
9470                 if (!check_single_encoder_cloning(crtc, encoder))
9471                         return false;
9472         }
9473
9474         return true;
9475 }
9476
9477 static struct intel_crtc_config *
9478 intel_modeset_pipe_config(struct drm_crtc *crtc,
9479                           struct drm_framebuffer *fb,
9480                           struct drm_display_mode *mode)
9481 {
9482         struct drm_device *dev = crtc->dev;
9483         struct intel_encoder *encoder;
9484         struct intel_crtc_config *pipe_config;
9485         int plane_bpp, ret = -EINVAL;
9486         bool retry = true;
9487
9488         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9489                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9490                 return ERR_PTR(-EINVAL);
9491         }
9492
9493         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9494         if (!pipe_config)
9495                 return ERR_PTR(-ENOMEM);
9496
9497         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9498         drm_mode_copy(&pipe_config->requested_mode, mode);
9499
9500         pipe_config->cpu_transcoder =
9501                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9502         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9503
9504         /*
9505          * Sanitize sync polarity flags based on requested ones. If neither
9506          * positive or negative polarity is requested, treat this as meaning
9507          * negative polarity.
9508          */
9509         if (!(pipe_config->adjusted_mode.flags &
9510               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9511                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9512
9513         if (!(pipe_config->adjusted_mode.flags &
9514               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9515                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9516
9517         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9518          * plane pixel format and any sink constraints into account. Returns the
9519          * source plane bpp so that dithering can be selected on mismatches
9520          * after encoders and crtc also have had their say. */
9521         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9522                                               fb, pipe_config);
9523         if (plane_bpp < 0)
9524                 goto fail;
9525
9526         /*
9527          * Determine the real pipe dimensions. Note that stereo modes can
9528          * increase the actual pipe size due to the frame doubling and
9529          * insertion of additional space for blanks between the frame. This
9530          * is stored in the crtc timings. We use the requested mode to do this
9531          * computation to clearly distinguish it from the adjusted mode, which
9532          * can be changed by the connectors in the below retry loop.
9533          */
9534         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9535         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9536         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9537
9538 encoder_retry:
9539         /* Ensure the port clock defaults are reset when retrying. */
9540         pipe_config->port_clock = 0;
9541         pipe_config->pixel_multiplier = 1;
9542
9543         /* Fill in default crtc timings, allow encoders to overwrite them. */
9544         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9545
9546         /* Pass our mode to the connectors and the CRTC to give them a chance to
9547          * adjust it according to limitations or connector properties, and also
9548          * a chance to reject the mode entirely.
9549          */
9550         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9551                             base.head) {
9552
9553                 if (&encoder->new_crtc->base != crtc)
9554                         continue;
9555
9556                 if (!(encoder->compute_config(encoder, pipe_config))) {
9557                         DRM_DEBUG_KMS("Encoder config failure\n");
9558                         goto fail;
9559                 }
9560         }
9561
9562         /* Set default port clock if not overwritten by the encoder. Needs to be
9563          * done afterwards in case the encoder adjusts the mode. */
9564         if (!pipe_config->port_clock)
9565                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9566                         * pipe_config->pixel_multiplier;
9567
9568         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9569         if (ret < 0) {
9570                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9571                 goto fail;
9572         }
9573
9574         if (ret == RETRY) {
9575                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9576                         ret = -EINVAL;
9577                         goto fail;
9578                 }
9579
9580                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9581                 retry = false;
9582                 goto encoder_retry;
9583         }
9584
9585         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9586         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9587                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9588
9589         return pipe_config;
9590 fail:
9591         kfree(pipe_config);
9592         return ERR_PTR(ret);
9593 }
9594
9595 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9596  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9597 static void
9598 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9599                              unsigned *prepare_pipes, unsigned *disable_pipes)
9600 {
9601         struct intel_crtc *intel_crtc;
9602         struct drm_device *dev = crtc->dev;
9603         struct intel_encoder *encoder;
9604         struct intel_connector *connector;
9605         struct drm_crtc *tmp_crtc;
9606
9607         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9608
9609         /* Check which crtcs have changed outputs connected to them, these need
9610          * to be part of the prepare_pipes mask. We don't (yet) support global
9611          * modeset across multiple crtcs, so modeset_pipes will only have one
9612          * bit set at most. */
9613         list_for_each_entry(connector, &dev->mode_config.connector_list,
9614                             base.head) {
9615                 if (connector->base.encoder == &connector->new_encoder->base)
9616                         continue;
9617
9618                 if (connector->base.encoder) {
9619                         tmp_crtc = connector->base.encoder->crtc;
9620
9621                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9622                 }
9623
9624                 if (connector->new_encoder)
9625                         *prepare_pipes |=
9626                                 1 << connector->new_encoder->new_crtc->pipe;
9627         }
9628
9629         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9630                             base.head) {
9631                 if (encoder->base.crtc == &encoder->new_crtc->base)
9632                         continue;
9633
9634                 if (encoder->base.crtc) {
9635                         tmp_crtc = encoder->base.crtc;
9636
9637                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9638                 }
9639
9640                 if (encoder->new_crtc)
9641                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9642         }
9643
9644         /* Check for pipes that will be enabled/disabled ... */
9645         for_each_intel_crtc(dev, intel_crtc) {
9646                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9647                         continue;
9648
9649                 if (!intel_crtc->new_enabled)
9650                         *disable_pipes |= 1 << intel_crtc->pipe;
9651                 else
9652                         *prepare_pipes |= 1 << intel_crtc->pipe;
9653         }
9654
9655
9656         /* set_mode is also used to update properties on life display pipes. */
9657         intel_crtc = to_intel_crtc(crtc);
9658         if (intel_crtc->new_enabled)
9659                 *prepare_pipes |= 1 << intel_crtc->pipe;
9660
9661         /*
9662          * For simplicity do a full modeset on any pipe where the output routing
9663          * changed. We could be more clever, but that would require us to be
9664          * more careful with calling the relevant encoder->mode_set functions.
9665          */
9666         if (*prepare_pipes)
9667                 *modeset_pipes = *prepare_pipes;
9668
9669         /* ... and mask these out. */
9670         *modeset_pipes &= ~(*disable_pipes);
9671         *prepare_pipes &= ~(*disable_pipes);
9672
9673         /*
9674          * HACK: We don't (yet) fully support global modesets. intel_set_config
9675          * obies this rule, but the modeset restore mode of
9676          * intel_modeset_setup_hw_state does not.
9677          */
9678         *modeset_pipes &= 1 << intel_crtc->pipe;
9679         *prepare_pipes &= 1 << intel_crtc->pipe;
9680
9681         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9682                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9683 }
9684
9685 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9686 {
9687         struct drm_encoder *encoder;
9688         struct drm_device *dev = crtc->dev;
9689
9690         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9691                 if (encoder->crtc == crtc)
9692                         return true;
9693
9694         return false;
9695 }
9696
9697 static void
9698 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9699 {
9700         struct intel_encoder *intel_encoder;
9701         struct intel_crtc *intel_crtc;
9702         struct drm_connector *connector;
9703
9704         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9705                             base.head) {
9706                 if (!intel_encoder->base.crtc)
9707                         continue;
9708
9709                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9710
9711                 if (prepare_pipes & (1 << intel_crtc->pipe))
9712                         intel_encoder->connectors_active = false;
9713         }
9714
9715         intel_modeset_commit_output_state(dev);
9716
9717         /* Double check state. */
9718         for_each_intel_crtc(dev, intel_crtc) {
9719                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9720                 WARN_ON(intel_crtc->new_config &&
9721                         intel_crtc->new_config != &intel_crtc->config);
9722                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9723         }
9724
9725         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9726                 if (!connector->encoder || !connector->encoder->crtc)
9727                         continue;
9728
9729                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9730
9731                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9732                         struct drm_property *dpms_property =
9733                                 dev->mode_config.dpms_property;
9734
9735                         connector->dpms = DRM_MODE_DPMS_ON;
9736                         drm_object_property_set_value(&connector->base,
9737                                                          dpms_property,
9738                                                          DRM_MODE_DPMS_ON);
9739
9740                         intel_encoder = to_intel_encoder(connector->encoder);
9741                         intel_encoder->connectors_active = true;
9742                 }
9743         }
9744
9745 }
9746
9747 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9748 {
9749         int diff;
9750
9751         if (clock1 == clock2)
9752                 return true;
9753
9754         if (!clock1 || !clock2)
9755                 return false;
9756
9757         diff = abs(clock1 - clock2);
9758
9759         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9760                 return true;
9761
9762         return false;
9763 }
9764
9765 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9766         list_for_each_entry((intel_crtc), \
9767                             &(dev)->mode_config.crtc_list, \
9768                             base.head) \
9769                 if (mask & (1 <<(intel_crtc)->pipe))
9770
9771 static bool
9772 intel_pipe_config_compare(struct drm_device *dev,
9773                           struct intel_crtc_config *current_config,
9774                           struct intel_crtc_config *pipe_config)
9775 {
9776 #define PIPE_CONF_CHECK_X(name) \
9777         if (current_config->name != pipe_config->name) { \
9778                 DRM_ERROR("mismatch in " #name " " \
9779                           "(expected 0x%08x, found 0x%08x)\n", \
9780                           current_config->name, \
9781                           pipe_config->name); \
9782                 return false; \
9783         }
9784
9785 #define PIPE_CONF_CHECK_I(name) \
9786         if (current_config->name != pipe_config->name) { \
9787                 DRM_ERROR("mismatch in " #name " " \
9788                           "(expected %i, found %i)\n", \
9789                           current_config->name, \
9790                           pipe_config->name); \
9791                 return false; \
9792         }
9793
9794 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9795         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9796                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9797                           "(expected %i, found %i)\n", \
9798                           current_config->name & (mask), \
9799                           pipe_config->name & (mask)); \
9800                 return false; \
9801         }
9802
9803 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9804         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9805                 DRM_ERROR("mismatch in " #name " " \
9806                           "(expected %i, found %i)\n", \
9807                           current_config->name, \
9808                           pipe_config->name); \
9809                 return false; \
9810         }
9811
9812 #define PIPE_CONF_QUIRK(quirk)  \
9813         ((current_config->quirks | pipe_config->quirks) & (quirk))
9814
9815         PIPE_CONF_CHECK_I(cpu_transcoder);
9816
9817         PIPE_CONF_CHECK_I(has_pch_encoder);
9818         PIPE_CONF_CHECK_I(fdi_lanes);
9819         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9820         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9821         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9822         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9823         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9824
9825         PIPE_CONF_CHECK_I(has_dp_encoder);
9826         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9827         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9828         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9829         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9830         PIPE_CONF_CHECK_I(dp_m_n.tu);
9831
9832         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9833         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9834         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9835         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9836         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9837         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9838
9839         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9840         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9841         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9842         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9843         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9844         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9845
9846         PIPE_CONF_CHECK_I(pixel_multiplier);
9847         PIPE_CONF_CHECK_I(has_hdmi_sink);
9848         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9849             IS_VALLEYVIEW(dev))
9850                 PIPE_CONF_CHECK_I(limited_color_range);
9851
9852         PIPE_CONF_CHECK_I(has_audio);
9853
9854         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9855                               DRM_MODE_FLAG_INTERLACE);
9856
9857         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9858                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9859                                       DRM_MODE_FLAG_PHSYNC);
9860                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9861                                       DRM_MODE_FLAG_NHSYNC);
9862                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9863                                       DRM_MODE_FLAG_PVSYNC);
9864                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9865                                       DRM_MODE_FLAG_NVSYNC);
9866         }
9867
9868         PIPE_CONF_CHECK_I(pipe_src_w);
9869         PIPE_CONF_CHECK_I(pipe_src_h);
9870
9871         /*
9872          * FIXME: BIOS likes to set up a cloned config with lvds+external
9873          * screen. Since we don't yet re-compute the pipe config when moving
9874          * just the lvds port away to another pipe the sw tracking won't match.
9875          *
9876          * Proper atomic modesets with recomputed global state will fix this.
9877          * Until then just don't check gmch state for inherited modes.
9878          */
9879         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9880                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9881                 /* pfit ratios are autocomputed by the hw on gen4+ */
9882                 if (INTEL_INFO(dev)->gen < 4)
9883                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9884                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9885         }
9886
9887         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9888         if (current_config->pch_pfit.enabled) {
9889                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9890                 PIPE_CONF_CHECK_I(pch_pfit.size);
9891         }
9892
9893         /* BDW+ don't expose a synchronous way to read the state */
9894         if (IS_HASWELL(dev))
9895                 PIPE_CONF_CHECK_I(ips_enabled);
9896
9897         PIPE_CONF_CHECK_I(double_wide);
9898
9899         PIPE_CONF_CHECK_I(shared_dpll);
9900         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9901         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9902         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9903         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9904
9905         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9906                 PIPE_CONF_CHECK_I(pipe_bpp);
9907
9908         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9909         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9910
9911 #undef PIPE_CONF_CHECK_X
9912 #undef PIPE_CONF_CHECK_I
9913 #undef PIPE_CONF_CHECK_FLAGS
9914 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9915 #undef PIPE_CONF_QUIRK
9916
9917         return true;
9918 }
9919
9920 static void
9921 check_connector_state(struct drm_device *dev)
9922 {
9923         struct intel_connector *connector;
9924
9925         list_for_each_entry(connector, &dev->mode_config.connector_list,
9926                             base.head) {
9927                 /* This also checks the encoder/connector hw state with the
9928                  * ->get_hw_state callbacks. */
9929                 intel_connector_check_state(connector);
9930
9931                 WARN(&connector->new_encoder->base != connector->base.encoder,
9932                      "connector's staged encoder doesn't match current encoder\n");
9933         }
9934 }
9935
9936 static void
9937 check_encoder_state(struct drm_device *dev)
9938 {
9939         struct intel_encoder *encoder;
9940         struct intel_connector *connector;
9941
9942         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9943                             base.head) {
9944                 bool enabled = false;
9945                 bool active = false;
9946                 enum pipe pipe, tracked_pipe;
9947
9948                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9949                               encoder->base.base.id,
9950                               drm_get_encoder_name(&encoder->base));
9951
9952                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9953                      "encoder's stage crtc doesn't match current crtc\n");
9954                 WARN(encoder->connectors_active && !encoder->base.crtc,
9955                      "encoder's active_connectors set, but no crtc\n");
9956
9957                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9958                                     base.head) {
9959                         if (connector->base.encoder != &encoder->base)
9960                                 continue;
9961                         enabled = true;
9962                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9963                                 active = true;
9964                 }
9965                 WARN(!!encoder->base.crtc != enabled,
9966                      "encoder's enabled state mismatch "
9967                      "(expected %i, found %i)\n",
9968                      !!encoder->base.crtc, enabled);
9969                 WARN(active && !encoder->base.crtc,
9970                      "active encoder with no crtc\n");
9971
9972                 WARN(encoder->connectors_active != active,
9973                      "encoder's computed active state doesn't match tracked active state "
9974                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9975
9976                 active = encoder->get_hw_state(encoder, &pipe);
9977                 WARN(active != encoder->connectors_active,
9978                      "encoder's hw state doesn't match sw tracking "
9979                      "(expected %i, found %i)\n",
9980                      encoder->connectors_active, active);
9981
9982                 if (!encoder->base.crtc)
9983                         continue;
9984
9985                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9986                 WARN(active && pipe != tracked_pipe,
9987                      "active encoder's pipe doesn't match"
9988                      "(expected %i, found %i)\n",
9989                      tracked_pipe, pipe);
9990
9991         }
9992 }
9993
9994 static void
9995 check_crtc_state(struct drm_device *dev)
9996 {
9997         struct drm_i915_private *dev_priv = dev->dev_private;
9998         struct intel_crtc *crtc;
9999         struct intel_encoder *encoder;
10000         struct intel_crtc_config pipe_config;
10001
10002         for_each_intel_crtc(dev, crtc) {
10003                 bool enabled = false;
10004                 bool active = false;
10005
10006                 memset(&pipe_config, 0, sizeof(pipe_config));
10007
10008                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10009                               crtc->base.base.id);
10010
10011                 WARN(crtc->active && !crtc->base.enabled,
10012                      "active crtc, but not enabled in sw tracking\n");
10013
10014                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10015                                     base.head) {
10016                         if (encoder->base.crtc != &crtc->base)
10017                                 continue;
10018                         enabled = true;
10019                         if (encoder->connectors_active)
10020                                 active = true;
10021                 }
10022
10023                 WARN(active != crtc->active,
10024                      "crtc's computed active state doesn't match tracked active state "
10025                      "(expected %i, found %i)\n", active, crtc->active);
10026                 WARN(enabled != crtc->base.enabled,
10027                      "crtc's computed enabled state doesn't match tracked enabled state "
10028                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10029
10030                 active = dev_priv->display.get_pipe_config(crtc,
10031                                                            &pipe_config);
10032
10033                 /* hw state is inconsistent with the pipe A quirk */
10034                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10035                         active = crtc->active;
10036
10037                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10038                                     base.head) {
10039                         enum pipe pipe;
10040                         if (encoder->base.crtc != &crtc->base)
10041                                 continue;
10042                         if (encoder->get_hw_state(encoder, &pipe))
10043                                 encoder->get_config(encoder, &pipe_config);
10044                 }
10045
10046                 WARN(crtc->active != active,
10047                      "crtc active state doesn't match with hw state "
10048                      "(expected %i, found %i)\n", crtc->active, active);
10049
10050                 if (active &&
10051                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10052                         WARN(1, "pipe state doesn't match!\n");
10053                         intel_dump_pipe_config(crtc, &pipe_config,
10054                                                "[hw state]");
10055                         intel_dump_pipe_config(crtc, &crtc->config,
10056                                                "[sw state]");
10057                 }
10058         }
10059 }
10060
10061 static void
10062 check_shared_dpll_state(struct drm_device *dev)
10063 {
10064         struct drm_i915_private *dev_priv = dev->dev_private;
10065         struct intel_crtc *crtc;
10066         struct intel_dpll_hw_state dpll_hw_state;
10067         int i;
10068
10069         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10070                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10071                 int enabled_crtcs = 0, active_crtcs = 0;
10072                 bool active;
10073
10074                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10075
10076                 DRM_DEBUG_KMS("%s\n", pll->name);
10077
10078                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10079
10080                 WARN(pll->active > pll->refcount,
10081                      "more active pll users than references: %i vs %i\n",
10082                      pll->active, pll->refcount);
10083                 WARN(pll->active && !pll->on,
10084                      "pll in active use but not on in sw tracking\n");
10085                 WARN(pll->on && !pll->active,
10086                      "pll in on but not on in use in sw tracking\n");
10087                 WARN(pll->on != active,
10088                      "pll on state mismatch (expected %i, found %i)\n",
10089                      pll->on, active);
10090
10091                 for_each_intel_crtc(dev, crtc) {
10092                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10093                                 enabled_crtcs++;
10094                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10095                                 active_crtcs++;
10096                 }
10097                 WARN(pll->active != active_crtcs,
10098                      "pll active crtcs mismatch (expected %i, found %i)\n",
10099                      pll->active, active_crtcs);
10100                 WARN(pll->refcount != enabled_crtcs,
10101                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10102                      pll->refcount, enabled_crtcs);
10103
10104                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10105                                        sizeof(dpll_hw_state)),
10106                      "pll hw state mismatch\n");
10107         }
10108 }
10109
10110 void
10111 intel_modeset_check_state(struct drm_device *dev)
10112 {
10113         check_connector_state(dev);
10114         check_encoder_state(dev);
10115         check_crtc_state(dev);
10116         check_shared_dpll_state(dev);
10117 }
10118
10119 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10120                                      int dotclock)
10121 {
10122         /*
10123          * FDI already provided one idea for the dotclock.
10124          * Yell if the encoder disagrees.
10125          */
10126         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10127              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10128              pipe_config->adjusted_mode.crtc_clock, dotclock);
10129 }
10130
10131 static int __intel_set_mode(struct drm_crtc *crtc,
10132                             struct drm_display_mode *mode,
10133                             int x, int y, struct drm_framebuffer *fb)
10134 {
10135         struct drm_device *dev = crtc->dev;
10136         struct drm_i915_private *dev_priv = dev->dev_private;
10137         struct drm_display_mode *saved_mode;
10138         struct intel_crtc_config *pipe_config = NULL;
10139         struct intel_crtc *intel_crtc;
10140         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10141         int ret = 0;
10142
10143         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10144         if (!saved_mode)
10145                 return -ENOMEM;
10146
10147         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10148                                      &prepare_pipes, &disable_pipes);
10149
10150         *saved_mode = crtc->mode;
10151
10152         /* Hack: Because we don't (yet) support global modeset on multiple
10153          * crtcs, we don't keep track of the new mode for more than one crtc.
10154          * Hence simply check whether any bit is set in modeset_pipes in all the
10155          * pieces of code that are not yet converted to deal with mutliple crtcs
10156          * changing their mode at the same time. */
10157         if (modeset_pipes) {
10158                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10159                 if (IS_ERR(pipe_config)) {
10160                         ret = PTR_ERR(pipe_config);
10161                         pipe_config = NULL;
10162
10163                         goto out;
10164                 }
10165                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10166                                        "[modeset]");
10167                 to_intel_crtc(crtc)->new_config = pipe_config;
10168         }
10169
10170         /*
10171          * See if the config requires any additional preparation, e.g.
10172          * to adjust global state with pipes off.  We need to do this
10173          * here so we can get the modeset_pipe updated config for the new
10174          * mode set on this crtc.  For other crtcs we need to use the
10175          * adjusted_mode bits in the crtc directly.
10176          */
10177         if (IS_VALLEYVIEW(dev)) {
10178                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10179
10180                 /* may have added more to prepare_pipes than we should */
10181                 prepare_pipes &= ~disable_pipes;
10182         }
10183
10184         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10185                 intel_crtc_disable(&intel_crtc->base);
10186
10187         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10188                 if (intel_crtc->base.enabled)
10189                         dev_priv->display.crtc_disable(&intel_crtc->base);
10190         }
10191
10192         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10193          * to set it here already despite that we pass it down the callchain.
10194          */
10195         if (modeset_pipes) {
10196                 crtc->mode = *mode;
10197                 /* mode_set/enable/disable functions rely on a correct pipe
10198                  * config. */
10199                 to_intel_crtc(crtc)->config = *pipe_config;
10200                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10201
10202                 /*
10203                  * Calculate and store various constants which
10204                  * are later needed by vblank and swap-completion
10205                  * timestamping. They are derived from true hwmode.
10206                  */
10207                 drm_calc_timestamping_constants(crtc,
10208                                                 &pipe_config->adjusted_mode);
10209         }
10210
10211         /* Only after disabling all output pipelines that will be changed can we
10212          * update the the output configuration. */
10213         intel_modeset_update_state(dev, prepare_pipes);
10214
10215         if (dev_priv->display.modeset_global_resources)
10216                 dev_priv->display.modeset_global_resources(dev);
10217
10218         /* Set up the DPLL and any encoders state that needs to adjust or depend
10219          * on the DPLL.
10220          */
10221         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10222                 struct drm_framebuffer *old_fb;
10223
10224                 mutex_lock(&dev->struct_mutex);
10225                 ret = intel_pin_and_fence_fb_obj(dev,
10226                                                  to_intel_framebuffer(fb)->obj,
10227                                                  NULL);
10228                 if (ret != 0) {
10229                         DRM_ERROR("pin & fence failed\n");
10230                         mutex_unlock(&dev->struct_mutex);
10231                         goto done;
10232                 }
10233                 old_fb = crtc->primary->fb;
10234                 if (old_fb)
10235                         intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10236                 mutex_unlock(&dev->struct_mutex);
10237
10238                 crtc->primary->fb = fb;
10239                 crtc->x = x;
10240                 crtc->y = y;
10241
10242                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10243                                                       x, y, fb);
10244                 if (ret)
10245                         goto done;
10246         }
10247
10248         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10249         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10250                 dev_priv->display.crtc_enable(&intel_crtc->base);
10251
10252         /* FIXME: add subpixel order */
10253 done:
10254         if (ret && crtc->enabled)
10255                 crtc->mode = *saved_mode;
10256
10257 out:
10258         kfree(pipe_config);
10259         kfree(saved_mode);
10260         return ret;
10261 }
10262
10263 static int intel_set_mode(struct drm_crtc *crtc,
10264                           struct drm_display_mode *mode,
10265                           int x, int y, struct drm_framebuffer *fb)
10266 {
10267         int ret;
10268
10269         ret = __intel_set_mode(crtc, mode, x, y, fb);
10270
10271         if (ret == 0)
10272                 intel_modeset_check_state(crtc->dev);
10273
10274         return ret;
10275 }
10276
10277 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10278 {
10279         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10280 }
10281
10282 #undef for_each_intel_crtc_masked
10283
10284 static void intel_set_config_free(struct intel_set_config *config)
10285 {
10286         if (!config)
10287                 return;
10288
10289         kfree(config->save_connector_encoders);
10290         kfree(config->save_encoder_crtcs);
10291         kfree(config->save_crtc_enabled);
10292         kfree(config);
10293 }
10294
10295 static int intel_set_config_save_state(struct drm_device *dev,
10296                                        struct intel_set_config *config)
10297 {
10298         struct drm_crtc *crtc;
10299         struct drm_encoder *encoder;
10300         struct drm_connector *connector;
10301         int count;
10302
10303         config->save_crtc_enabled =
10304                 kcalloc(dev->mode_config.num_crtc,
10305                         sizeof(bool), GFP_KERNEL);
10306         if (!config->save_crtc_enabled)
10307                 return -ENOMEM;
10308
10309         config->save_encoder_crtcs =
10310                 kcalloc(dev->mode_config.num_encoder,
10311                         sizeof(struct drm_crtc *), GFP_KERNEL);
10312         if (!config->save_encoder_crtcs)
10313                 return -ENOMEM;
10314
10315         config->save_connector_encoders =
10316                 kcalloc(dev->mode_config.num_connector,
10317                         sizeof(struct drm_encoder *), GFP_KERNEL);
10318         if (!config->save_connector_encoders)
10319                 return -ENOMEM;
10320
10321         /* Copy data. Note that driver private data is not affected.
10322          * Should anything bad happen only the expected state is
10323          * restored, not the drivers personal bookkeeping.
10324          */
10325         count = 0;
10326         for_each_crtc(dev, crtc) {
10327                 config->save_crtc_enabled[count++] = crtc->enabled;
10328         }
10329
10330         count = 0;
10331         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10332                 config->save_encoder_crtcs[count++] = encoder->crtc;
10333         }
10334
10335         count = 0;
10336         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10337                 config->save_connector_encoders[count++] = connector->encoder;
10338         }
10339
10340         return 0;
10341 }
10342
10343 static void intel_set_config_restore_state(struct drm_device *dev,
10344                                            struct intel_set_config *config)
10345 {
10346         struct intel_crtc *crtc;
10347         struct intel_encoder *encoder;
10348         struct intel_connector *connector;
10349         int count;
10350
10351         count = 0;
10352         for_each_intel_crtc(dev, crtc) {
10353                 crtc->new_enabled = config->save_crtc_enabled[count++];
10354
10355                 if (crtc->new_enabled)
10356                         crtc->new_config = &crtc->config;
10357                 else
10358                         crtc->new_config = NULL;
10359         }
10360
10361         count = 0;
10362         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10363                 encoder->new_crtc =
10364                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10365         }
10366
10367         count = 0;
10368         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10369                 connector->new_encoder =
10370                         to_intel_encoder(config->save_connector_encoders[count++]);
10371         }
10372 }
10373
10374 static bool
10375 is_crtc_connector_off(struct drm_mode_set *set)
10376 {
10377         int i;
10378
10379         if (set->num_connectors == 0)
10380                 return false;
10381
10382         if (WARN_ON(set->connectors == NULL))
10383                 return false;
10384
10385         for (i = 0; i < set->num_connectors; i++)
10386                 if (set->connectors[i]->encoder &&
10387                     set->connectors[i]->encoder->crtc == set->crtc &&
10388                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10389                         return true;
10390
10391         return false;
10392 }
10393
10394 static void
10395 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10396                                       struct intel_set_config *config)
10397 {
10398
10399         /* We should be able to check here if the fb has the same properties
10400          * and then just flip_or_move it */
10401         if (is_crtc_connector_off(set)) {
10402                 config->mode_changed = true;
10403         } else if (set->crtc->primary->fb != set->fb) {
10404                 /* If we have no fb then treat it as a full mode set */
10405                 if (set->crtc->primary->fb == NULL) {
10406                         struct intel_crtc *intel_crtc =
10407                                 to_intel_crtc(set->crtc);
10408
10409                         if (intel_crtc->active && i915.fastboot) {
10410                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10411                                 config->fb_changed = true;
10412                         } else {
10413                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10414                                 config->mode_changed = true;
10415                         }
10416                 } else if (set->fb == NULL) {
10417                         config->mode_changed = true;
10418                 } else if (set->fb->pixel_format !=
10419                            set->crtc->primary->fb->pixel_format) {
10420                         config->mode_changed = true;
10421                 } else {
10422                         config->fb_changed = true;
10423                 }
10424         }
10425
10426         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10427                 config->fb_changed = true;
10428
10429         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10430                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10431                 drm_mode_debug_printmodeline(&set->crtc->mode);
10432                 drm_mode_debug_printmodeline(set->mode);
10433                 config->mode_changed = true;
10434         }
10435
10436         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10437                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10438 }
10439
10440 static int
10441 intel_modeset_stage_output_state(struct drm_device *dev,
10442                                  struct drm_mode_set *set,
10443                                  struct intel_set_config *config)
10444 {
10445         struct intel_connector *connector;
10446         struct intel_encoder *encoder;
10447         struct intel_crtc *crtc;
10448         int ro;
10449
10450         /* The upper layers ensure that we either disable a crtc or have a list
10451          * of connectors. For paranoia, double-check this. */
10452         WARN_ON(!set->fb && (set->num_connectors != 0));
10453         WARN_ON(set->fb && (set->num_connectors == 0));
10454
10455         list_for_each_entry(connector, &dev->mode_config.connector_list,
10456                             base.head) {
10457                 /* Otherwise traverse passed in connector list and get encoders
10458                  * for them. */
10459                 for (ro = 0; ro < set->num_connectors; ro++) {
10460                         if (set->connectors[ro] == &connector->base) {
10461                                 connector->new_encoder = connector->encoder;
10462                                 break;
10463                         }
10464                 }
10465
10466                 /* If we disable the crtc, disable all its connectors. Also, if
10467                  * the connector is on the changing crtc but not on the new
10468                  * connector list, disable it. */
10469                 if ((!set->fb || ro == set->num_connectors) &&
10470                     connector->base.encoder &&
10471                     connector->base.encoder->crtc == set->crtc) {
10472                         connector->new_encoder = NULL;
10473
10474                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10475                                 connector->base.base.id,
10476                                 drm_get_connector_name(&connector->base));
10477                 }
10478
10479
10480                 if (&connector->new_encoder->base != connector->base.encoder) {
10481                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10482                         config->mode_changed = true;
10483                 }
10484         }
10485         /* connector->new_encoder is now updated for all connectors. */
10486
10487         /* Update crtc of enabled connectors. */
10488         list_for_each_entry(connector, &dev->mode_config.connector_list,
10489                             base.head) {
10490                 struct drm_crtc *new_crtc;
10491
10492                 if (!connector->new_encoder)
10493                         continue;
10494
10495                 new_crtc = connector->new_encoder->base.crtc;
10496
10497                 for (ro = 0; ro < set->num_connectors; ro++) {
10498                         if (set->connectors[ro] == &connector->base)
10499                                 new_crtc = set->crtc;
10500                 }
10501
10502                 /* Make sure the new CRTC will work with the encoder */
10503                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10504                                          new_crtc)) {
10505                         return -EINVAL;
10506                 }
10507                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10508
10509                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10510                         connector->base.base.id,
10511                         drm_get_connector_name(&connector->base),
10512                         new_crtc->base.id);
10513         }
10514
10515         /* Check for any encoders that needs to be disabled. */
10516         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10517                             base.head) {
10518                 int num_connectors = 0;
10519                 list_for_each_entry(connector,
10520                                     &dev->mode_config.connector_list,
10521                                     base.head) {
10522                         if (connector->new_encoder == encoder) {
10523                                 WARN_ON(!connector->new_encoder->new_crtc);
10524                                 num_connectors++;
10525                         }
10526                 }
10527
10528                 if (num_connectors == 0)
10529                         encoder->new_crtc = NULL;
10530                 else if (num_connectors > 1)
10531                         return -EINVAL;
10532
10533                 /* Only now check for crtc changes so we don't miss encoders
10534                  * that will be disabled. */
10535                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10536                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10537                         config->mode_changed = true;
10538                 }
10539         }
10540         /* Now we've also updated encoder->new_crtc for all encoders. */
10541
10542         for_each_intel_crtc(dev, crtc) {
10543                 crtc->new_enabled = false;
10544
10545                 list_for_each_entry(encoder,
10546                                     &dev->mode_config.encoder_list,
10547                                     base.head) {
10548                         if (encoder->new_crtc == crtc) {
10549                                 crtc->new_enabled = true;
10550                                 break;
10551                         }
10552                 }
10553
10554                 if (crtc->new_enabled != crtc->base.enabled) {
10555                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10556                                       crtc->new_enabled ? "en" : "dis");
10557                         config->mode_changed = true;
10558                 }
10559
10560                 if (crtc->new_enabled)
10561                         crtc->new_config = &crtc->config;
10562                 else
10563                         crtc->new_config = NULL;
10564         }
10565
10566         return 0;
10567 }
10568
10569 static void disable_crtc_nofb(struct intel_crtc *crtc)
10570 {
10571         struct drm_device *dev = crtc->base.dev;
10572         struct intel_encoder *encoder;
10573         struct intel_connector *connector;
10574
10575         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10576                       pipe_name(crtc->pipe));
10577
10578         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10579                 if (connector->new_encoder &&
10580                     connector->new_encoder->new_crtc == crtc)
10581                         connector->new_encoder = NULL;
10582         }
10583
10584         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10585                 if (encoder->new_crtc == crtc)
10586                         encoder->new_crtc = NULL;
10587         }
10588
10589         crtc->new_enabled = false;
10590         crtc->new_config = NULL;
10591 }
10592
10593 static int intel_crtc_set_config(struct drm_mode_set *set)
10594 {
10595         struct drm_device *dev;
10596         struct drm_mode_set save_set;
10597         struct intel_set_config *config;
10598         int ret;
10599
10600         BUG_ON(!set);
10601         BUG_ON(!set->crtc);
10602         BUG_ON(!set->crtc->helper_private);
10603
10604         /* Enforce sane interface api - has been abused by the fb helper. */
10605         BUG_ON(!set->mode && set->fb);
10606         BUG_ON(set->fb && set->num_connectors == 0);
10607
10608         if (set->fb) {
10609                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10610                                 set->crtc->base.id, set->fb->base.id,
10611                                 (int)set->num_connectors, set->x, set->y);
10612         } else {
10613                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10614         }
10615
10616         dev = set->crtc->dev;
10617
10618         ret = -ENOMEM;
10619         config = kzalloc(sizeof(*config), GFP_KERNEL);
10620         if (!config)
10621                 goto out_config;
10622
10623         ret = intel_set_config_save_state(dev, config);
10624         if (ret)
10625                 goto out_config;
10626
10627         save_set.crtc = set->crtc;
10628         save_set.mode = &set->crtc->mode;
10629         save_set.x = set->crtc->x;
10630         save_set.y = set->crtc->y;
10631         save_set.fb = set->crtc->primary->fb;
10632
10633         /* Compute whether we need a full modeset, only an fb base update or no
10634          * change at all. In the future we might also check whether only the
10635          * mode changed, e.g. for LVDS where we only change the panel fitter in
10636          * such cases. */
10637         intel_set_config_compute_mode_changes(set, config);
10638
10639         ret = intel_modeset_stage_output_state(dev, set, config);
10640         if (ret)
10641                 goto fail;
10642
10643         if (config->mode_changed) {
10644                 ret = intel_set_mode(set->crtc, set->mode,
10645                                      set->x, set->y, set->fb);
10646         } else if (config->fb_changed) {
10647                 intel_crtc_wait_for_pending_flips(set->crtc);
10648
10649                 ret = intel_pipe_set_base(set->crtc,
10650                                           set->x, set->y, set->fb);
10651                 /*
10652                  * In the fastboot case this may be our only check of the
10653                  * state after boot.  It would be better to only do it on
10654                  * the first update, but we don't have a nice way of doing that
10655                  * (and really, set_config isn't used much for high freq page
10656                  * flipping, so increasing its cost here shouldn't be a big
10657                  * deal).
10658                  */
10659                 if (i915.fastboot && ret == 0)
10660                         intel_modeset_check_state(set->crtc->dev);
10661         }
10662
10663         if (ret) {
10664                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10665                               set->crtc->base.id, ret);
10666 fail:
10667                 intel_set_config_restore_state(dev, config);
10668
10669                 /*
10670                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10671                  * force the pipe off to avoid oopsing in the modeset code
10672                  * due to fb==NULL. This should only happen during boot since
10673                  * we don't yet reconstruct the FB from the hardware state.
10674                  */
10675                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10676                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10677
10678                 /* Try to restore the config */
10679                 if (config->mode_changed &&
10680                     intel_set_mode(save_set.crtc, save_set.mode,
10681                                    save_set.x, save_set.y, save_set.fb))
10682                         DRM_ERROR("failed to restore config after modeset failure\n");
10683         }
10684
10685 out_config:
10686         intel_set_config_free(config);
10687         return ret;
10688 }
10689
10690 static const struct drm_crtc_funcs intel_crtc_funcs = {
10691         .cursor_set = intel_crtc_cursor_set,
10692         .cursor_move = intel_crtc_cursor_move,
10693         .gamma_set = intel_crtc_gamma_set,
10694         .set_config = intel_crtc_set_config,
10695         .destroy = intel_crtc_destroy,
10696         .page_flip = intel_crtc_page_flip,
10697 };
10698
10699 static void intel_cpu_pll_init(struct drm_device *dev)
10700 {
10701         if (HAS_DDI(dev))
10702                 intel_ddi_pll_init(dev);
10703 }
10704
10705 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10706                                       struct intel_shared_dpll *pll,
10707                                       struct intel_dpll_hw_state *hw_state)
10708 {
10709         uint32_t val;
10710
10711         val = I915_READ(PCH_DPLL(pll->id));
10712         hw_state->dpll = val;
10713         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10714         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10715
10716         return val & DPLL_VCO_ENABLE;
10717 }
10718
10719 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10720                                   struct intel_shared_dpll *pll)
10721 {
10722         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10723         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10724 }
10725
10726 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10727                                 struct intel_shared_dpll *pll)
10728 {
10729         /* PCH refclock must be enabled first */
10730         ibx_assert_pch_refclk_enabled(dev_priv);
10731
10732         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10733
10734         /* Wait for the clocks to stabilize. */
10735         POSTING_READ(PCH_DPLL(pll->id));
10736         udelay(150);
10737
10738         /* The pixel multiplier can only be updated once the
10739          * DPLL is enabled and the clocks are stable.
10740          *
10741          * So write it again.
10742          */
10743         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10744         POSTING_READ(PCH_DPLL(pll->id));
10745         udelay(200);
10746 }
10747
10748 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10749                                  struct intel_shared_dpll *pll)
10750 {
10751         struct drm_device *dev = dev_priv->dev;
10752         struct intel_crtc *crtc;
10753
10754         /* Make sure no transcoder isn't still depending on us. */
10755         for_each_intel_crtc(dev, crtc) {
10756                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10757                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10758         }
10759
10760         I915_WRITE(PCH_DPLL(pll->id), 0);
10761         POSTING_READ(PCH_DPLL(pll->id));
10762         udelay(200);
10763 }
10764
10765 static char *ibx_pch_dpll_names[] = {
10766         "PCH DPLL A",
10767         "PCH DPLL B",
10768 };
10769
10770 static void ibx_pch_dpll_init(struct drm_device *dev)
10771 {
10772         struct drm_i915_private *dev_priv = dev->dev_private;
10773         int i;
10774
10775         dev_priv->num_shared_dpll = 2;
10776
10777         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10778                 dev_priv->shared_dplls[i].id = i;
10779                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10780                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10781                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10782                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10783                 dev_priv->shared_dplls[i].get_hw_state =
10784                         ibx_pch_dpll_get_hw_state;
10785         }
10786 }
10787
10788 static void intel_shared_dpll_init(struct drm_device *dev)
10789 {
10790         struct drm_i915_private *dev_priv = dev->dev_private;
10791
10792         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10793                 ibx_pch_dpll_init(dev);
10794         else
10795                 dev_priv->num_shared_dpll = 0;
10796
10797         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10798 }
10799
10800 static void intel_crtc_init(struct drm_device *dev, int pipe)
10801 {
10802         struct drm_i915_private *dev_priv = dev->dev_private;
10803         struct intel_crtc *intel_crtc;
10804         int i;
10805
10806         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10807         if (intel_crtc == NULL)
10808                 return;
10809
10810         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10811
10812         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10813         for (i = 0; i < 256; i++) {
10814                 intel_crtc->lut_r[i] = i;
10815                 intel_crtc->lut_g[i] = i;
10816                 intel_crtc->lut_b[i] = i;
10817         }
10818
10819         /*
10820          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10821          * is hooked to plane B. Hence we want plane A feeding pipe B.
10822          */
10823         intel_crtc->pipe = pipe;
10824         intel_crtc->plane = pipe;
10825         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10826                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10827                 intel_crtc->plane = !pipe;
10828         }
10829
10830         init_waitqueue_head(&intel_crtc->vbl_wait);
10831
10832         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10833                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10834         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10835         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10836
10837         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10838 }
10839
10840 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10841 {
10842         struct drm_encoder *encoder = connector->base.encoder;
10843
10844         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10845
10846         if (!encoder)
10847                 return INVALID_PIPE;
10848
10849         return to_intel_crtc(encoder->crtc)->pipe;
10850 }
10851
10852 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10853                                 struct drm_file *file)
10854 {
10855         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10856         struct drm_mode_object *drmmode_obj;
10857         struct intel_crtc *crtc;
10858
10859         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10860                 return -ENODEV;
10861
10862         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10863                         DRM_MODE_OBJECT_CRTC);
10864
10865         if (!drmmode_obj) {
10866                 DRM_ERROR("no such CRTC id\n");
10867                 return -ENOENT;
10868         }
10869
10870         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10871         pipe_from_crtc_id->pipe = crtc->pipe;
10872
10873         return 0;
10874 }
10875
10876 static int intel_encoder_clones(struct intel_encoder *encoder)
10877 {
10878         struct drm_device *dev = encoder->base.dev;
10879         struct intel_encoder *source_encoder;
10880         int index_mask = 0;
10881         int entry = 0;
10882
10883         list_for_each_entry(source_encoder,
10884                             &dev->mode_config.encoder_list, base.head) {
10885                 if (encoders_cloneable(encoder, source_encoder))
10886                         index_mask |= (1 << entry);
10887
10888                 entry++;
10889         }
10890
10891         return index_mask;
10892 }
10893
10894 static bool has_edp_a(struct drm_device *dev)
10895 {
10896         struct drm_i915_private *dev_priv = dev->dev_private;
10897
10898         if (!IS_MOBILE(dev))
10899                 return false;
10900
10901         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10902                 return false;
10903
10904         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10905                 return false;
10906
10907         return true;
10908 }
10909
10910 const char *intel_output_name(int output)
10911 {
10912         static const char *names[] = {
10913                 [INTEL_OUTPUT_UNUSED] = "Unused",
10914                 [INTEL_OUTPUT_ANALOG] = "Analog",
10915                 [INTEL_OUTPUT_DVO] = "DVO",
10916                 [INTEL_OUTPUT_SDVO] = "SDVO",
10917                 [INTEL_OUTPUT_LVDS] = "LVDS",
10918                 [INTEL_OUTPUT_TVOUT] = "TV",
10919                 [INTEL_OUTPUT_HDMI] = "HDMI",
10920                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10921                 [INTEL_OUTPUT_EDP] = "eDP",
10922                 [INTEL_OUTPUT_DSI] = "DSI",
10923                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10924         };
10925
10926         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10927                 return "Invalid";
10928
10929         return names[output];
10930 }
10931
10932 static void intel_setup_outputs(struct drm_device *dev)
10933 {
10934         struct drm_i915_private *dev_priv = dev->dev_private;
10935         struct intel_encoder *encoder;
10936         bool dpd_is_edp = false;
10937
10938         intel_lvds_init(dev);
10939
10940         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev))
10941                 intel_crt_init(dev);
10942
10943         if (HAS_DDI(dev)) {
10944                 int found;
10945
10946                 /* Haswell uses DDI functions to detect digital outputs */
10947                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10948                 /* DDI A only supports eDP */
10949                 if (found)
10950                         intel_ddi_init(dev, PORT_A);
10951
10952                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10953                  * register */
10954                 found = I915_READ(SFUSE_STRAP);
10955
10956                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10957                         intel_ddi_init(dev, PORT_B);
10958                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10959                         intel_ddi_init(dev, PORT_C);
10960                 if (found & SFUSE_STRAP_DDID_DETECTED)
10961                         intel_ddi_init(dev, PORT_D);
10962         } else if (HAS_PCH_SPLIT(dev)) {
10963                 int found;
10964                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10965
10966                 if (has_edp_a(dev))
10967                         intel_dp_init(dev, DP_A, PORT_A);
10968
10969                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10970                         /* PCH SDVOB multiplex with HDMIB */
10971                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10972                         if (!found)
10973                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10974                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10975                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10976                 }
10977
10978                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10979                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10980
10981                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10982                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10983
10984                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10985                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10986
10987                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10988                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10989         } else if (IS_VALLEYVIEW(dev)) {
10990                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10991                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10992                                         PORT_B);
10993                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10994                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10995                 }
10996
10997                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10998                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10999                                         PORT_C);
11000                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11001                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11002                 }
11003
11004                 intel_dsi_init(dev);
11005         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11006                 bool found = false;
11007
11008                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11009                         DRM_DEBUG_KMS("probing SDVOB\n");
11010                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11011                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11012                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11013                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11014                         }
11015
11016                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11017                                 intel_dp_init(dev, DP_B, PORT_B);
11018                 }
11019
11020                 /* Before G4X SDVOC doesn't have its own detect register */
11021
11022                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11023                         DRM_DEBUG_KMS("probing SDVOC\n");
11024                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11025                 }
11026
11027                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11028
11029                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11030                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11031                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11032                         }
11033                         if (SUPPORTS_INTEGRATED_DP(dev))
11034                                 intel_dp_init(dev, DP_C, PORT_C);
11035                 }
11036
11037                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11038                     (I915_READ(DP_D) & DP_DETECTED))
11039                         intel_dp_init(dev, DP_D, PORT_D);
11040         } else if (IS_GEN2(dev))
11041                 intel_dvo_init(dev);
11042
11043         if (SUPPORTS_TV(dev))
11044                 intel_tv_init(dev);
11045
11046         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11047                 encoder->base.possible_crtcs = encoder->crtc_mask;
11048                 encoder->base.possible_clones =
11049                         intel_encoder_clones(encoder);
11050         }
11051
11052         intel_init_pch_refclk(dev);
11053
11054         drm_helper_move_panel_connectors_to_head(dev);
11055 }
11056
11057 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11058 {
11059         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11060
11061         drm_framebuffer_cleanup(fb);
11062         WARN_ON(!intel_fb->obj->framebuffer_references--);
11063         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11064         kfree(intel_fb);
11065 }
11066
11067 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11068                                                 struct drm_file *file,
11069                                                 unsigned int *handle)
11070 {
11071         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11072         struct drm_i915_gem_object *obj = intel_fb->obj;
11073
11074         return drm_gem_handle_create(file, &obj->base, handle);
11075 }
11076
11077 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11078         .destroy = intel_user_framebuffer_destroy,
11079         .create_handle = intel_user_framebuffer_create_handle,
11080 };
11081
11082 static int intel_framebuffer_init(struct drm_device *dev,
11083                                   struct intel_framebuffer *intel_fb,
11084                                   struct drm_mode_fb_cmd2 *mode_cmd,
11085                                   struct drm_i915_gem_object *obj)
11086 {
11087         int aligned_height;
11088         int pitch_limit;
11089         int ret;
11090
11091         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11092
11093         if (obj->tiling_mode == I915_TILING_Y) {
11094                 DRM_DEBUG("hardware does not support tiling Y\n");
11095                 return -EINVAL;
11096         }
11097
11098         if (mode_cmd->pitches[0] & 63) {
11099                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11100                           mode_cmd->pitches[0]);
11101                 return -EINVAL;
11102         }
11103
11104         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11105                 pitch_limit = 32*1024;
11106         } else if (INTEL_INFO(dev)->gen >= 4) {
11107                 if (obj->tiling_mode)
11108                         pitch_limit = 16*1024;
11109                 else
11110                         pitch_limit = 32*1024;
11111         } else if (INTEL_INFO(dev)->gen >= 3) {
11112                 if (obj->tiling_mode)
11113                         pitch_limit = 8*1024;
11114                 else
11115                         pitch_limit = 16*1024;
11116         } else
11117                 /* XXX DSPC is limited to 4k tiled */
11118                 pitch_limit = 8*1024;
11119
11120         if (mode_cmd->pitches[0] > pitch_limit) {
11121                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11122                           obj->tiling_mode ? "tiled" : "linear",
11123                           mode_cmd->pitches[0], pitch_limit);
11124                 return -EINVAL;
11125         }
11126
11127         if (obj->tiling_mode != I915_TILING_NONE &&
11128             mode_cmd->pitches[0] != obj->stride) {
11129                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11130                           mode_cmd->pitches[0], obj->stride);
11131                 return -EINVAL;
11132         }
11133
11134         /* Reject formats not supported by any plane early. */
11135         switch (mode_cmd->pixel_format) {
11136         case DRM_FORMAT_C8:
11137         case DRM_FORMAT_RGB565:
11138         case DRM_FORMAT_XRGB8888:
11139         case DRM_FORMAT_ARGB8888:
11140                 break;
11141         case DRM_FORMAT_XRGB1555:
11142         case DRM_FORMAT_ARGB1555:
11143                 if (INTEL_INFO(dev)->gen > 3) {
11144                         DRM_DEBUG("unsupported pixel format: %s\n",
11145                                   drm_get_format_name(mode_cmd->pixel_format));
11146                         return -EINVAL;
11147                 }
11148                 break;
11149         case DRM_FORMAT_XBGR8888:
11150         case DRM_FORMAT_ABGR8888:
11151         case DRM_FORMAT_XRGB2101010:
11152         case DRM_FORMAT_ARGB2101010:
11153         case DRM_FORMAT_XBGR2101010:
11154         case DRM_FORMAT_ABGR2101010:
11155                 if (INTEL_INFO(dev)->gen < 4) {
11156                         DRM_DEBUG("unsupported pixel format: %s\n",
11157                                   drm_get_format_name(mode_cmd->pixel_format));
11158                         return -EINVAL;
11159                 }
11160                 break;
11161         case DRM_FORMAT_YUYV:
11162         case DRM_FORMAT_UYVY:
11163         case DRM_FORMAT_YVYU:
11164         case DRM_FORMAT_VYUY:
11165                 if (INTEL_INFO(dev)->gen < 5) {
11166                         DRM_DEBUG("unsupported pixel format: %s\n",
11167                                   drm_get_format_name(mode_cmd->pixel_format));
11168                         return -EINVAL;
11169                 }
11170                 break;
11171         default:
11172                 DRM_DEBUG("unsupported pixel format: %s\n",
11173                           drm_get_format_name(mode_cmd->pixel_format));
11174                 return -EINVAL;
11175         }
11176
11177         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11178         if (mode_cmd->offsets[0] != 0)
11179                 return -EINVAL;
11180
11181         aligned_height = intel_align_height(dev, mode_cmd->height,
11182                                             obj->tiling_mode);
11183         /* FIXME drm helper for size checks (especially planar formats)? */
11184         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11185                 return -EINVAL;
11186
11187         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11188         intel_fb->obj = obj;
11189         intel_fb->obj->framebuffer_references++;
11190
11191         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11192         if (ret) {
11193                 DRM_ERROR("framebuffer init failed %d\n", ret);
11194                 return ret;
11195         }
11196
11197         return 0;
11198 }
11199
11200 static struct drm_framebuffer *
11201 intel_user_framebuffer_create(struct drm_device *dev,
11202                               struct drm_file *filp,
11203                               struct drm_mode_fb_cmd2 *mode_cmd)
11204 {
11205         struct drm_i915_gem_object *obj;
11206
11207         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11208                                                 mode_cmd->handles[0]));
11209         if (&obj->base == NULL)
11210                 return ERR_PTR(-ENOENT);
11211
11212         return intel_framebuffer_create(dev, mode_cmd, obj);
11213 }
11214
11215 #ifndef CONFIG_DRM_I915_FBDEV
11216 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11217 {
11218 }
11219 #endif
11220
11221 static const struct drm_mode_config_funcs intel_mode_funcs = {
11222         .fb_create = intel_user_framebuffer_create,
11223         .output_poll_changed = intel_fbdev_output_poll_changed,
11224 };
11225
11226 /* Set up chip specific display functions */
11227 static void intel_init_display(struct drm_device *dev)
11228 {
11229         struct drm_i915_private *dev_priv = dev->dev_private;
11230
11231         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11232                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11233         else if (IS_CHERRYVIEW(dev))
11234                 dev_priv->display.find_dpll = chv_find_best_dpll;
11235         else if (IS_VALLEYVIEW(dev))
11236                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11237         else if (IS_PINEVIEW(dev))
11238                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11239         else
11240                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11241
11242         if (HAS_DDI(dev)) {
11243                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11244                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11245                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11246                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11247                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11248                 dev_priv->display.off = haswell_crtc_off;
11249                 dev_priv->display.update_primary_plane =
11250                         ironlake_update_primary_plane;
11251         } else if (HAS_PCH_SPLIT(dev)) {
11252                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11253                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11254                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11255                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11256                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11257                 dev_priv->display.off = ironlake_crtc_off;
11258                 dev_priv->display.update_primary_plane =
11259                         ironlake_update_primary_plane;
11260         } else if (IS_VALLEYVIEW(dev)) {
11261                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11262                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11263                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11264                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11265                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11266                 dev_priv->display.off = i9xx_crtc_off;
11267                 dev_priv->display.update_primary_plane =
11268                         i9xx_update_primary_plane;
11269         } else {
11270                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11271                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11272                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11273                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11274                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11275                 dev_priv->display.off = i9xx_crtc_off;
11276                 dev_priv->display.update_primary_plane =
11277                         i9xx_update_primary_plane;
11278         }
11279
11280         /* Returns the core display clock speed */
11281         if (IS_VALLEYVIEW(dev))
11282                 dev_priv->display.get_display_clock_speed =
11283                         valleyview_get_display_clock_speed;
11284         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11285                 dev_priv->display.get_display_clock_speed =
11286                         i945_get_display_clock_speed;
11287         else if (IS_I915G(dev))
11288                 dev_priv->display.get_display_clock_speed =
11289                         i915_get_display_clock_speed;
11290         else if (IS_I945GM(dev) || IS_845G(dev))
11291                 dev_priv->display.get_display_clock_speed =
11292                         i9xx_misc_get_display_clock_speed;
11293         else if (IS_PINEVIEW(dev))
11294                 dev_priv->display.get_display_clock_speed =
11295                         pnv_get_display_clock_speed;
11296         else if (IS_I915GM(dev))
11297                 dev_priv->display.get_display_clock_speed =
11298                         i915gm_get_display_clock_speed;
11299         else if (IS_I865G(dev))
11300                 dev_priv->display.get_display_clock_speed =
11301                         i865_get_display_clock_speed;
11302         else if (IS_I85X(dev))
11303                 dev_priv->display.get_display_clock_speed =
11304                         i855_get_display_clock_speed;
11305         else /* 852, 830 */
11306                 dev_priv->display.get_display_clock_speed =
11307                         i830_get_display_clock_speed;
11308
11309         if (HAS_PCH_SPLIT(dev)) {
11310                 if (IS_GEN5(dev)) {
11311                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11312                         dev_priv->display.write_eld = ironlake_write_eld;
11313                 } else if (IS_GEN6(dev)) {
11314                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11315                         dev_priv->display.write_eld = ironlake_write_eld;
11316                         dev_priv->display.modeset_global_resources =
11317                                 snb_modeset_global_resources;
11318                 } else if (IS_IVYBRIDGE(dev)) {
11319                         /* FIXME: detect B0+ stepping and use auto training */
11320                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11321                         dev_priv->display.write_eld = ironlake_write_eld;
11322                         dev_priv->display.modeset_global_resources =
11323                                 ivb_modeset_global_resources;
11324                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11325                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11326                         dev_priv->display.write_eld = haswell_write_eld;
11327                         dev_priv->display.modeset_global_resources =
11328                                 haswell_modeset_global_resources;
11329                 }
11330         } else if (IS_G4X(dev)) {
11331                 dev_priv->display.write_eld = g4x_write_eld;
11332         } else if (IS_VALLEYVIEW(dev)) {
11333                 dev_priv->display.modeset_global_resources =
11334                         valleyview_modeset_global_resources;
11335                 dev_priv->display.write_eld = ironlake_write_eld;
11336         }
11337
11338         /* Default just returns -ENODEV to indicate unsupported */
11339         dev_priv->display.queue_flip = intel_default_queue_flip;
11340
11341         switch (INTEL_INFO(dev)->gen) {
11342         case 2:
11343                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11344                 break;
11345
11346         case 3:
11347                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11348                 break;
11349
11350         case 4:
11351         case 5:
11352                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11353                 break;
11354
11355         case 6:
11356                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11357                 break;
11358         case 7:
11359         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11360                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11361                 break;
11362         }
11363
11364         intel_panel_init_backlight_funcs(dev);
11365 }
11366
11367 /*
11368  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11369  * resume, or other times.  This quirk makes sure that's the case for
11370  * affected systems.
11371  */
11372 static void quirk_pipea_force(struct drm_device *dev)
11373 {
11374         struct drm_i915_private *dev_priv = dev->dev_private;
11375
11376         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11377         DRM_INFO("applying pipe a force quirk\n");
11378 }
11379
11380 /*
11381  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11382  */
11383 static void quirk_ssc_force_disable(struct drm_device *dev)
11384 {
11385         struct drm_i915_private *dev_priv = dev->dev_private;
11386         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11387         DRM_INFO("applying lvds SSC disable quirk\n");
11388 }
11389
11390 /*
11391  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11392  * brightness value
11393  */
11394 static void quirk_invert_brightness(struct drm_device *dev)
11395 {
11396         struct drm_i915_private *dev_priv = dev->dev_private;
11397         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11398         DRM_INFO("applying inverted panel brightness quirk\n");
11399 }
11400
11401 struct intel_quirk {
11402         int device;
11403         int subsystem_vendor;
11404         int subsystem_device;
11405         void (*hook)(struct drm_device *dev);
11406 };
11407
11408 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11409 struct intel_dmi_quirk {
11410         void (*hook)(struct drm_device *dev);
11411         const struct dmi_system_id (*dmi_id_list)[];
11412 };
11413
11414 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11415 {
11416         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11417         return 1;
11418 }
11419
11420 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11421         {
11422                 .dmi_id_list = &(const struct dmi_system_id[]) {
11423                         {
11424                                 .callback = intel_dmi_reverse_brightness,
11425                                 .ident = "NCR Corporation",
11426                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11427                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11428                                 },
11429                         },
11430                         { }  /* terminating entry */
11431                 },
11432                 .hook = quirk_invert_brightness,
11433         },
11434 };
11435
11436 static struct intel_quirk intel_quirks[] = {
11437         /* HP Mini needs pipe A force quirk (LP: #322104) */
11438         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11439
11440         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11441         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11442
11443         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11444         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11445
11446         /* 830 needs to leave pipe A & dpll A up */
11447         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11448
11449         /* Lenovo U160 cannot use SSC on LVDS */
11450         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11451
11452         /* Sony Vaio Y cannot use SSC on LVDS */
11453         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11454
11455         /* Acer Aspire 5734Z must invert backlight brightness */
11456         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11457
11458         /* Acer/eMachines G725 */
11459         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11460
11461         /* Acer/eMachines e725 */
11462         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11463
11464         /* Acer/Packard Bell NCL20 */
11465         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11466
11467         /* Acer Aspire 4736Z */
11468         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11469
11470         /* Acer Aspire 5336 */
11471         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11472 };
11473
11474 static void intel_init_quirks(struct drm_device *dev)
11475 {
11476         struct pci_dev *d = dev->pdev;
11477         int i;
11478
11479         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11480                 struct intel_quirk *q = &intel_quirks[i];
11481
11482                 if (d->device == q->device &&
11483                     (d->subsystem_vendor == q->subsystem_vendor ||
11484                      q->subsystem_vendor == PCI_ANY_ID) &&
11485                     (d->subsystem_device == q->subsystem_device ||
11486                      q->subsystem_device == PCI_ANY_ID))
11487                         q->hook(dev);
11488         }
11489         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11490                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11491                         intel_dmi_quirks[i].hook(dev);
11492         }
11493 }
11494
11495 /* Disable the VGA plane that we never use */
11496 static void i915_disable_vga(struct drm_device *dev)
11497 {
11498         struct drm_i915_private *dev_priv = dev->dev_private;
11499         u8 sr1;
11500         u32 vga_reg = i915_vgacntrl_reg(dev);
11501
11502         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11503         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11504         outb(SR01, VGA_SR_INDEX);
11505         sr1 = inb(VGA_SR_DATA);
11506         outb(sr1 | 1<<5, VGA_SR_DATA);
11507         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11508         udelay(300);
11509
11510         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11511         POSTING_READ(vga_reg);
11512 }
11513
11514 void intel_modeset_init_hw(struct drm_device *dev)
11515 {
11516         intel_prepare_ddi(dev);
11517
11518         intel_init_clock_gating(dev);
11519
11520         intel_reset_dpio(dev);
11521
11522         intel_enable_gt_powersave(dev);
11523 }
11524
11525 void intel_modeset_suspend_hw(struct drm_device *dev)
11526 {
11527         intel_suspend_hw(dev);
11528 }
11529
11530 void intel_modeset_init(struct drm_device *dev)
11531 {
11532         struct drm_i915_private *dev_priv = dev->dev_private;
11533         int sprite, ret;
11534         enum pipe pipe;
11535         struct intel_crtc *crtc;
11536
11537         drm_mode_config_init(dev);
11538
11539         dev->mode_config.min_width = 0;
11540         dev->mode_config.min_height = 0;
11541
11542         dev->mode_config.preferred_depth = 24;
11543         dev->mode_config.prefer_shadow = 1;
11544
11545         dev->mode_config.funcs = &intel_mode_funcs;
11546
11547         intel_init_quirks(dev);
11548
11549         intel_init_pm(dev);
11550
11551         if (INTEL_INFO(dev)->num_pipes == 0)
11552                 return;
11553
11554         intel_init_display(dev);
11555
11556         if (IS_GEN2(dev)) {
11557                 dev->mode_config.max_width = 2048;
11558                 dev->mode_config.max_height = 2048;
11559         } else if (IS_GEN3(dev)) {
11560                 dev->mode_config.max_width = 4096;
11561                 dev->mode_config.max_height = 4096;
11562         } else {
11563                 dev->mode_config.max_width = 8192;
11564                 dev->mode_config.max_height = 8192;
11565         }
11566
11567         if (IS_GEN2(dev)) {
11568                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11569                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11570         } else {
11571                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11572                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11573         }
11574
11575         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11576
11577         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11578                       INTEL_INFO(dev)->num_pipes,
11579                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11580
11581         for_each_pipe(pipe) {
11582                 intel_crtc_init(dev, pipe);
11583                 for_each_sprite(pipe, sprite) {
11584                         ret = intel_plane_init(dev, pipe, sprite);
11585                         if (ret)
11586                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11587                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11588                 }
11589         }
11590
11591         intel_init_dpio(dev);
11592         intel_reset_dpio(dev);
11593
11594         intel_cpu_pll_init(dev);
11595         intel_shared_dpll_init(dev);
11596
11597         /* Just disable it once at startup */
11598         i915_disable_vga(dev);
11599         intel_setup_outputs(dev);
11600
11601         /* Just in case the BIOS is doing something questionable. */
11602         intel_disable_fbc(dev);
11603
11604         mutex_lock(&dev->mode_config.mutex);
11605         intel_modeset_setup_hw_state(dev, false);
11606         mutex_unlock(&dev->mode_config.mutex);
11607
11608         for_each_intel_crtc(dev, crtc) {
11609                 if (!crtc->active)
11610                         continue;
11611
11612                 /*
11613                  * Note that reserving the BIOS fb up front prevents us
11614                  * from stuffing other stolen allocations like the ring
11615                  * on top.  This prevents some ugliness at boot time, and
11616                  * can even allow for smooth boot transitions if the BIOS
11617                  * fb is large enough for the active pipe configuration.
11618                  */
11619                 if (dev_priv->display.get_plane_config) {
11620                         dev_priv->display.get_plane_config(crtc,
11621                                                            &crtc->plane_config);
11622                         /*
11623                          * If the fb is shared between multiple heads, we'll
11624                          * just get the first one.
11625                          */
11626                         intel_find_plane_obj(crtc, &crtc->plane_config);
11627                 }
11628         }
11629 }
11630
11631 static void
11632 intel_connector_break_all_links(struct intel_connector *connector)
11633 {
11634         connector->base.dpms = DRM_MODE_DPMS_OFF;
11635         connector->base.encoder = NULL;
11636         connector->encoder->connectors_active = false;
11637         connector->encoder->base.crtc = NULL;
11638 }
11639
11640 static void intel_enable_pipe_a(struct drm_device *dev)
11641 {
11642         struct intel_connector *connector;
11643         struct drm_connector *crt = NULL;
11644         struct intel_load_detect_pipe load_detect_temp;
11645
11646         /* We can't just switch on the pipe A, we need to set things up with a
11647          * proper mode and output configuration. As a gross hack, enable pipe A
11648          * by enabling the load detect pipe once. */
11649         list_for_each_entry(connector,
11650                             &dev->mode_config.connector_list,
11651                             base.head) {
11652                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11653                         crt = &connector->base;
11654                         break;
11655                 }
11656         }
11657
11658         if (!crt)
11659                 return;
11660
11661         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11662                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11663
11664
11665 }
11666
11667 static bool
11668 intel_check_plane_mapping(struct intel_crtc *crtc)
11669 {
11670         struct drm_device *dev = crtc->base.dev;
11671         struct drm_i915_private *dev_priv = dev->dev_private;
11672         u32 reg, val;
11673
11674         if (INTEL_INFO(dev)->num_pipes == 1)
11675                 return true;
11676
11677         reg = DSPCNTR(!crtc->plane);
11678         val = I915_READ(reg);
11679
11680         if ((val & DISPLAY_PLANE_ENABLE) &&
11681             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11682                 return false;
11683
11684         return true;
11685 }
11686
11687 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11688 {
11689         struct drm_device *dev = crtc->base.dev;
11690         struct drm_i915_private *dev_priv = dev->dev_private;
11691         u32 reg;
11692
11693         /* Clear any frame start delays used for debugging left by the BIOS */
11694         reg = PIPECONF(crtc->config.cpu_transcoder);
11695         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11696
11697         /* We need to sanitize the plane -> pipe mapping first because this will
11698          * disable the crtc (and hence change the state) if it is wrong. Note
11699          * that gen4+ has a fixed plane -> pipe mapping.  */
11700         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11701                 struct intel_connector *connector;
11702                 bool plane;
11703
11704                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11705                               crtc->base.base.id);
11706
11707                 /* Pipe has the wrong plane attached and the plane is active.
11708                  * Temporarily change the plane mapping and disable everything
11709                  * ...  */
11710                 plane = crtc->plane;
11711                 crtc->plane = !plane;
11712                 dev_priv->display.crtc_disable(&crtc->base);
11713                 crtc->plane = plane;
11714
11715                 /* ... and break all links. */
11716                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11717                                     base.head) {
11718                         if (connector->encoder->base.crtc != &crtc->base)
11719                                 continue;
11720
11721                         intel_connector_break_all_links(connector);
11722                 }
11723
11724                 WARN_ON(crtc->active);
11725                 crtc->base.enabled = false;
11726         }
11727
11728         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11729             crtc->pipe == PIPE_A && !crtc->active) {
11730                 /* BIOS forgot to enable pipe A, this mostly happens after
11731                  * resume. Force-enable the pipe to fix this, the update_dpms
11732                  * call below we restore the pipe to the right state, but leave
11733                  * the required bits on. */
11734                 intel_enable_pipe_a(dev);
11735         }
11736
11737         /* Adjust the state of the output pipe according to whether we
11738          * have active connectors/encoders. */
11739         intel_crtc_update_dpms(&crtc->base);
11740
11741         if (crtc->active != crtc->base.enabled) {
11742                 struct intel_encoder *encoder;
11743
11744                 /* This can happen either due to bugs in the get_hw_state
11745                  * functions or because the pipe is force-enabled due to the
11746                  * pipe A quirk. */
11747                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11748                               crtc->base.base.id,
11749                               crtc->base.enabled ? "enabled" : "disabled",
11750                               crtc->active ? "enabled" : "disabled");
11751
11752                 crtc->base.enabled = crtc->active;
11753
11754                 /* Because we only establish the connector -> encoder ->
11755                  * crtc links if something is active, this means the
11756                  * crtc is now deactivated. Break the links. connector
11757                  * -> encoder links are only establish when things are
11758                  *  actually up, hence no need to break them. */
11759                 WARN_ON(crtc->active);
11760
11761                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11762                         WARN_ON(encoder->connectors_active);
11763                         encoder->base.crtc = NULL;
11764                 }
11765         }
11766         if (crtc->active) {
11767                 /*
11768                  * We start out with underrun reporting disabled to avoid races.
11769                  * For correct bookkeeping mark this on active crtcs.
11770                  *
11771                  * No protection against concurrent access is required - at
11772                  * worst a fifo underrun happens which also sets this to false.
11773                  */
11774                 crtc->cpu_fifo_underrun_disabled = true;
11775                 crtc->pch_fifo_underrun_disabled = true;
11776         }
11777 }
11778
11779 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11780 {
11781         struct intel_connector *connector;
11782         struct drm_device *dev = encoder->base.dev;
11783
11784         /* We need to check both for a crtc link (meaning that the
11785          * encoder is active and trying to read from a pipe) and the
11786          * pipe itself being active. */
11787         bool has_active_crtc = encoder->base.crtc &&
11788                 to_intel_crtc(encoder->base.crtc)->active;
11789
11790         if (encoder->connectors_active && !has_active_crtc) {
11791                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11792                               encoder->base.base.id,
11793                               drm_get_encoder_name(&encoder->base));
11794
11795                 /* Connector is active, but has no active pipe. This is
11796                  * fallout from our resume register restoring. Disable
11797                  * the encoder manually again. */
11798                 if (encoder->base.crtc) {
11799                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11800                                       encoder->base.base.id,
11801                                       drm_get_encoder_name(&encoder->base));
11802                         encoder->disable(encoder);
11803                 }
11804
11805                 /* Inconsistent output/port/pipe state happens presumably due to
11806                  * a bug in one of the get_hw_state functions. Or someplace else
11807                  * in our code, like the register restore mess on resume. Clamp
11808                  * things to off as a safer default. */
11809                 list_for_each_entry(connector,
11810                                     &dev->mode_config.connector_list,
11811                                     base.head) {
11812                         if (connector->encoder != encoder)
11813                                 continue;
11814
11815                         intel_connector_break_all_links(connector);
11816                 }
11817         }
11818         /* Enabled encoders without active connectors will be fixed in
11819          * the crtc fixup. */
11820 }
11821
11822 void i915_redisable_vga_power_on(struct drm_device *dev)
11823 {
11824         struct drm_i915_private *dev_priv = dev->dev_private;
11825         u32 vga_reg = i915_vgacntrl_reg(dev);
11826
11827         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11828                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11829                 i915_disable_vga(dev);
11830         }
11831 }
11832
11833 void i915_redisable_vga(struct drm_device *dev)
11834 {
11835         struct drm_i915_private *dev_priv = dev->dev_private;
11836
11837         /* This function can be called both from intel_modeset_setup_hw_state or
11838          * at a very early point in our resume sequence, where the power well
11839          * structures are not yet restored. Since this function is at a very
11840          * paranoid "someone might have enabled VGA while we were not looking"
11841          * level, just check if the power well is enabled instead of trying to
11842          * follow the "don't touch the power well if we don't need it" policy
11843          * the rest of the driver uses. */
11844         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11845                 return;
11846
11847         i915_redisable_vga_power_on(dev);
11848 }
11849
11850 static bool primary_get_hw_state(struct intel_crtc *crtc)
11851 {
11852         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11853
11854         if (!crtc->active)
11855                 return false;
11856
11857         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11858 }
11859
11860 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11861 {
11862         struct drm_i915_private *dev_priv = dev->dev_private;
11863         enum pipe pipe;
11864         struct intel_crtc *crtc;
11865         struct intel_encoder *encoder;
11866         struct intel_connector *connector;
11867         int i;
11868
11869         for_each_intel_crtc(dev, crtc) {
11870                 memset(&crtc->config, 0, sizeof(crtc->config));
11871
11872                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
11873
11874                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11875                                                                  &crtc->config);
11876
11877                 crtc->base.enabled = crtc->active;
11878                 crtc->primary_enabled = primary_get_hw_state(crtc);
11879
11880                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11881                               crtc->base.base.id,
11882                               crtc->active ? "enabled" : "disabled");
11883         }
11884
11885         /* FIXME: Smash this into the new shared dpll infrastructure. */
11886         if (HAS_DDI(dev))
11887                 intel_ddi_setup_hw_pll_state(dev);
11888
11889         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11890                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11891
11892                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11893                 pll->active = 0;
11894                 for_each_intel_crtc(dev, crtc) {
11895                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11896                                 pll->active++;
11897                 }
11898                 pll->refcount = pll->active;
11899
11900                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11901                               pll->name, pll->refcount, pll->on);
11902         }
11903
11904         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11905                             base.head) {
11906                 pipe = 0;
11907
11908                 if (encoder->get_hw_state(encoder, &pipe)) {
11909                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11910                         encoder->base.crtc = &crtc->base;
11911                         encoder->get_config(encoder, &crtc->config);
11912                 } else {
11913                         encoder->base.crtc = NULL;
11914                 }
11915
11916                 encoder->connectors_active = false;
11917                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11918                               encoder->base.base.id,
11919                               drm_get_encoder_name(&encoder->base),
11920                               encoder->base.crtc ? "enabled" : "disabled",
11921                               pipe_name(pipe));
11922         }
11923
11924         list_for_each_entry(connector, &dev->mode_config.connector_list,
11925                             base.head) {
11926                 if (connector->get_hw_state(connector)) {
11927                         connector->base.dpms = DRM_MODE_DPMS_ON;
11928                         connector->encoder->connectors_active = true;
11929                         connector->base.encoder = &connector->encoder->base;
11930                 } else {
11931                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11932                         connector->base.encoder = NULL;
11933                 }
11934                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11935                               connector->base.base.id,
11936                               drm_get_connector_name(&connector->base),
11937                               connector->base.encoder ? "enabled" : "disabled");
11938         }
11939 }
11940
11941 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11942  * and i915 state tracking structures. */
11943 void intel_modeset_setup_hw_state(struct drm_device *dev,
11944                                   bool force_restore)
11945 {
11946         struct drm_i915_private *dev_priv = dev->dev_private;
11947         enum pipe pipe;
11948         struct intel_crtc *crtc;
11949         struct intel_encoder *encoder;
11950         int i;
11951
11952         intel_modeset_readout_hw_state(dev);
11953
11954         /*
11955          * Now that we have the config, copy it to each CRTC struct
11956          * Note that this could go away if we move to using crtc_config
11957          * checking everywhere.
11958          */
11959         for_each_intel_crtc(dev, crtc) {
11960                 if (crtc->active && i915.fastboot) {
11961                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11962                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11963                                       crtc->base.base.id);
11964                         drm_mode_debug_printmodeline(&crtc->base.mode);
11965                 }
11966         }
11967
11968         /* HW state is read out, now we need to sanitize this mess. */
11969         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11970                             base.head) {
11971                 intel_sanitize_encoder(encoder);
11972         }
11973
11974         for_each_pipe(pipe) {
11975                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11976                 intel_sanitize_crtc(crtc);
11977                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11978         }
11979
11980         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11981                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11982
11983                 if (!pll->on || pll->active)
11984                         continue;
11985
11986                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11987
11988                 pll->disable(dev_priv, pll);
11989                 pll->on = false;
11990         }
11991
11992         if (HAS_PCH_SPLIT(dev))
11993                 ilk_wm_get_hw_state(dev);
11994
11995         if (force_restore) {
11996                 i915_redisable_vga(dev);
11997
11998                 /*
11999                  * We need to use raw interfaces for restoring state to avoid
12000                  * checking (bogus) intermediate states.
12001                  */
12002                 for_each_pipe(pipe) {
12003                         struct drm_crtc *crtc =
12004                                 dev_priv->pipe_to_crtc_mapping[pipe];
12005
12006                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12007                                          crtc->primary->fb);
12008                 }
12009         } else {
12010                 intel_modeset_update_staged_output_state(dev);
12011         }
12012
12013         intel_modeset_check_state(dev);
12014 }
12015
12016 void intel_modeset_gem_init(struct drm_device *dev)
12017 {
12018         struct drm_crtc *c;
12019         struct intel_framebuffer *fb;
12020
12021         mutex_lock(&dev->struct_mutex);
12022         intel_init_gt_powersave(dev);
12023         mutex_unlock(&dev->struct_mutex);
12024
12025         intel_modeset_init_hw(dev);
12026
12027         intel_setup_overlay(dev);
12028
12029         /*
12030          * Make sure any fbs we allocated at startup are properly
12031          * pinned & fenced.  When we do the allocation it's too early
12032          * for this.
12033          */
12034         mutex_lock(&dev->struct_mutex);
12035         for_each_crtc(dev, c) {
12036                 if (!c->primary->fb)
12037                         continue;
12038
12039                 fb = to_intel_framebuffer(c->primary->fb);
12040                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12041                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12042                                   to_intel_crtc(c)->pipe);
12043                         drm_framebuffer_unreference(c->primary->fb);
12044                         c->primary->fb = NULL;
12045                 }
12046         }
12047         mutex_unlock(&dev->struct_mutex);
12048 }
12049
12050 void intel_connector_unregister(struct intel_connector *intel_connector)
12051 {
12052         struct drm_connector *connector = &intel_connector->base;
12053
12054         intel_panel_destroy_backlight(connector);
12055         drm_sysfs_connector_remove(connector);
12056 }
12057
12058 void intel_modeset_cleanup(struct drm_device *dev)
12059 {
12060         struct drm_i915_private *dev_priv = dev->dev_private;
12061         struct drm_crtc *crtc;
12062         struct drm_connector *connector;
12063
12064         /*
12065          * Interrupts and polling as the first thing to avoid creating havoc.
12066          * Too much stuff here (turning of rps, connectors, ...) would
12067          * experience fancy races otherwise.
12068          */
12069         drm_irq_uninstall(dev);
12070         cancel_work_sync(&dev_priv->hotplug_work);
12071         /*
12072          * Due to the hpd irq storm handling the hotplug work can re-arm the
12073          * poll handlers. Hence disable polling after hpd handling is shut down.
12074          */
12075         drm_kms_helper_poll_fini(dev);
12076
12077         mutex_lock(&dev->struct_mutex);
12078
12079         intel_unregister_dsm_handler();
12080
12081         for_each_crtc(dev, crtc) {
12082                 /* Skip inactive CRTCs */
12083                 if (!crtc->primary->fb)
12084                         continue;
12085
12086                 intel_increase_pllclock(crtc);
12087         }
12088
12089         intel_disable_fbc(dev);
12090
12091         intel_disable_gt_powersave(dev);
12092
12093         ironlake_teardown_rc6(dev);
12094
12095         mutex_unlock(&dev->struct_mutex);
12096
12097         /* flush any delayed tasks or pending work */
12098         flush_scheduled_work();
12099
12100         /* destroy the backlight and sysfs files before encoders/connectors */
12101         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12102                 struct intel_connector *intel_connector;
12103
12104                 intel_connector = to_intel_connector(connector);
12105                 intel_connector->unregister(intel_connector);
12106         }
12107
12108         drm_mode_config_cleanup(dev);
12109
12110         intel_cleanup_overlay(dev);
12111
12112         mutex_lock(&dev->struct_mutex);
12113         intel_cleanup_gt_powersave(dev);
12114         mutex_unlock(&dev->struct_mutex);
12115 }
12116
12117 /*
12118  * Return which encoder is currently attached for connector.
12119  */
12120 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12121 {
12122         return &intel_attached_encoder(connector)->base;
12123 }
12124
12125 void intel_connector_attach_encoder(struct intel_connector *connector,
12126                                     struct intel_encoder *encoder)
12127 {
12128         connector->encoder = encoder;
12129         drm_mode_connector_attach_encoder(&connector->base,
12130                                           &encoder->base);
12131 }
12132
12133 /*
12134  * set vga decode state - true == enable VGA decode
12135  */
12136 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12137 {
12138         struct drm_i915_private *dev_priv = dev->dev_private;
12139         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12140         u16 gmch_ctrl;
12141
12142         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12143                 DRM_ERROR("failed to read control word\n");
12144                 return -EIO;
12145         }
12146
12147         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12148                 return 0;
12149
12150         if (state)
12151                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12152         else
12153                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12154
12155         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12156                 DRM_ERROR("failed to write control word\n");
12157                 return -EIO;
12158         }
12159
12160         return 0;
12161 }
12162
12163 struct intel_display_error_state {
12164
12165         u32 power_well_driver;
12166
12167         int num_transcoders;
12168
12169         struct intel_cursor_error_state {
12170                 u32 control;
12171                 u32 position;
12172                 u32 base;
12173                 u32 size;
12174         } cursor[I915_MAX_PIPES];
12175
12176         struct intel_pipe_error_state {
12177                 bool power_domain_on;
12178                 u32 source;
12179                 u32 stat;
12180         } pipe[I915_MAX_PIPES];
12181
12182         struct intel_plane_error_state {
12183                 u32 control;
12184                 u32 stride;
12185                 u32 size;
12186                 u32 pos;
12187                 u32 addr;
12188                 u32 surface;
12189                 u32 tile_offset;
12190         } plane[I915_MAX_PIPES];
12191
12192         struct intel_transcoder_error_state {
12193                 bool power_domain_on;
12194                 enum transcoder cpu_transcoder;
12195
12196                 u32 conf;
12197
12198                 u32 htotal;
12199                 u32 hblank;
12200                 u32 hsync;
12201                 u32 vtotal;
12202                 u32 vblank;
12203                 u32 vsync;
12204         } transcoder[4];
12205 };
12206
12207 struct intel_display_error_state *
12208 intel_display_capture_error_state(struct drm_device *dev)
12209 {
12210         struct drm_i915_private *dev_priv = dev->dev_private;
12211         struct intel_display_error_state *error;
12212         int transcoders[] = {
12213                 TRANSCODER_A,
12214                 TRANSCODER_B,
12215                 TRANSCODER_C,
12216                 TRANSCODER_EDP,
12217         };
12218         int i;
12219
12220         if (INTEL_INFO(dev)->num_pipes == 0)
12221                 return NULL;
12222
12223         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12224         if (error == NULL)
12225                 return NULL;
12226
12227         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12228                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12229
12230         for_each_pipe(i) {
12231                 error->pipe[i].power_domain_on =
12232                         intel_display_power_enabled_sw(dev_priv,
12233                                                        POWER_DOMAIN_PIPE(i));
12234                 if (!error->pipe[i].power_domain_on)
12235                         continue;
12236
12237                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
12238                         error->cursor[i].control = I915_READ(CURCNTR(i));
12239                         error->cursor[i].position = I915_READ(CURPOS(i));
12240                         error->cursor[i].base = I915_READ(CURBASE(i));
12241                 } else {
12242                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
12243                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
12244                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
12245                 }
12246
12247                 error->plane[i].control = I915_READ(DSPCNTR(i));
12248                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12249                 if (INTEL_INFO(dev)->gen <= 3) {
12250                         error->plane[i].size = I915_READ(DSPSIZE(i));
12251                         error->plane[i].pos = I915_READ(DSPPOS(i));
12252                 }
12253                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12254                         error->plane[i].addr = I915_READ(DSPADDR(i));
12255                 if (INTEL_INFO(dev)->gen >= 4) {
12256                         error->plane[i].surface = I915_READ(DSPSURF(i));
12257                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12258                 }
12259
12260                 error->pipe[i].source = I915_READ(PIPESRC(i));
12261
12262                 if (!HAS_PCH_SPLIT(dev))
12263                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12264         }
12265
12266         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12267         if (HAS_DDI(dev_priv->dev))
12268                 error->num_transcoders++; /* Account for eDP. */
12269
12270         for (i = 0; i < error->num_transcoders; i++) {
12271                 enum transcoder cpu_transcoder = transcoders[i];
12272
12273                 error->transcoder[i].power_domain_on =
12274                         intel_display_power_enabled_sw(dev_priv,
12275                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12276                 if (!error->transcoder[i].power_domain_on)
12277                         continue;
12278
12279                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12280
12281                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12282                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12283                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12284                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12285                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12286                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12287                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12288         }
12289
12290         return error;
12291 }
12292
12293 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12294
12295 void
12296 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12297                                 struct drm_device *dev,
12298                                 struct intel_display_error_state *error)
12299 {
12300         int i;
12301
12302         if (!error)
12303                 return;
12304
12305         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12306         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12307                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12308                            error->power_well_driver);
12309         for_each_pipe(i) {
12310                 err_printf(m, "Pipe [%d]:\n", i);
12311                 err_printf(m, "  Power: %s\n",
12312                            error->pipe[i].power_domain_on ? "on" : "off");
12313                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12314                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12315
12316                 err_printf(m, "Plane [%d]:\n", i);
12317                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12318                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12319                 if (INTEL_INFO(dev)->gen <= 3) {
12320                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12321                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12322                 }
12323                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12324                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12325                 if (INTEL_INFO(dev)->gen >= 4) {
12326                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12327                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12328                 }
12329
12330                 err_printf(m, "Cursor [%d]:\n", i);
12331                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12332                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12333                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12334         }
12335
12336         for (i = 0; i < error->num_transcoders; i++) {
12337                 err_printf(m, "CPU transcoder: %c\n",
12338                            transcoder_name(error->transcoder[i].cpu_transcoder));
12339                 err_printf(m, "  Power: %s\n",
12340                            error->transcoder[i].power_domain_on ? "on" : "off");
12341                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12342                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12343                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12344                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12345                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12346                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12347                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12348         }
12349 }