drm/i915: Remove crtc_mode_set() hook
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2198                            struct drm_i915_gem_object *obj,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         u32 alignment;
2203         int ret;
2204
2205         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
2207         switch (obj->tiling_mode) {
2208         case I915_TILING_NONE:
2209                 if (INTEL_INFO(dev)->gen >= 9)
2210                         alignment = 256 * 1024;
2211                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2212                         alignment = 128 * 1024;
2213                 else if (INTEL_INFO(dev)->gen >= 4)
2214                         alignment = 4 * 1024;
2215                 else
2216                         alignment = 64 * 1024;
2217                 break;
2218         case I915_TILING_X:
2219                 if (INTEL_INFO(dev)->gen >= 9)
2220                         alignment = 256 * 1024;
2221                 else {
2222                         /* pin() will align the object as required by fence */
2223                         alignment = 0;
2224                 }
2225                 break;
2226         case I915_TILING_Y:
2227                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2228                 return -EINVAL;
2229         default:
2230                 BUG();
2231         }
2232
2233         /* Note that the w/a also requires 64 PTE of padding following the
2234          * bo. We currently fill all unused PTE with the shadow page and so
2235          * we should always have valid PTE following the scanout preventing
2236          * the VT-d warning.
2237          */
2238         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239                 alignment = 256 * 1024;
2240
2241         /*
2242          * Global gtt pte registers are special registers which actually forward
2243          * writes to a chunk of system memory. Which means that there is no risk
2244          * that the register values disappear as soon as we call
2245          * intel_runtime_pm_put(), so it is correct to wrap only the
2246          * pin/unpin/fence and not more.
2247          */
2248         intel_runtime_pm_get(dev_priv);
2249
2250         dev_priv->mm.interruptible = false;
2251         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2252         if (ret)
2253                 goto err_interruptible;
2254
2255         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256          * fence, whereas 965+ only requires a fence if using
2257          * framebuffer compression.  For simplicity, we always install
2258          * a fence as the cost is not that onerous.
2259          */
2260         ret = i915_gem_object_get_fence(obj);
2261         if (ret)
2262                 goto err_unpin;
2263
2264         i915_gem_object_pin_fence(obj);
2265
2266         dev_priv->mm.interruptible = true;
2267         intel_runtime_pm_put(dev_priv);
2268         return 0;
2269
2270 err_unpin:
2271         i915_gem_object_unpin_from_display_plane(obj);
2272 err_interruptible:
2273         dev_priv->mm.interruptible = true;
2274         intel_runtime_pm_put(dev_priv);
2275         return ret;
2276 }
2277
2278 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279 {
2280         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
2282         i915_gem_object_unpin_fence(obj);
2283         i915_gem_object_unpin_from_display_plane(obj);
2284 }
2285
2286 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287  * is assumed to be a power-of-two. */
2288 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289                                              unsigned int tiling_mode,
2290                                              unsigned int cpp,
2291                                              unsigned int pitch)
2292 {
2293         if (tiling_mode != I915_TILING_NONE) {
2294                 unsigned int tile_rows, tiles;
2295
2296                 tile_rows = *y / 8;
2297                 *y %= 8;
2298
2299                 tiles = *x / (512/cpp);
2300                 *x %= 512/cpp;
2301
2302                 return tile_rows * pitch * 8 + tiles * 4096;
2303         } else {
2304                 unsigned int offset;
2305
2306                 offset = *y * pitch + *x * cpp;
2307                 *y = 0;
2308                 *x = (offset & 4095) / cpp;
2309                 return offset & -4096;
2310         }
2311 }
2312
2313 int intel_format_to_fourcc(int format)
2314 {
2315         switch (format) {
2316         case DISPPLANE_8BPP:
2317                 return DRM_FORMAT_C8;
2318         case DISPPLANE_BGRX555:
2319                 return DRM_FORMAT_XRGB1555;
2320         case DISPPLANE_BGRX565:
2321                 return DRM_FORMAT_RGB565;
2322         default:
2323         case DISPPLANE_BGRX888:
2324                 return DRM_FORMAT_XRGB8888;
2325         case DISPPLANE_RGBX888:
2326                 return DRM_FORMAT_XBGR8888;
2327         case DISPPLANE_BGRX101010:
2328                 return DRM_FORMAT_XRGB2101010;
2329         case DISPPLANE_RGBX101010:
2330                 return DRM_FORMAT_XBGR2101010;
2331         }
2332 }
2333
2334 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2335                                   struct intel_plane_config *plane_config)
2336 {
2337         struct drm_device *dev = crtc->base.dev;
2338         struct drm_i915_gem_object *obj = NULL;
2339         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340         u32 base = plane_config->base;
2341
2342         if (plane_config->size == 0)
2343                 return false;
2344
2345         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346                                                              plane_config->size);
2347         if (!obj)
2348                 return false;
2349
2350         if (plane_config->tiled) {
2351                 obj->tiling_mode = I915_TILING_X;
2352                 obj->stride = crtc->base.primary->fb->pitches[0];
2353         }
2354
2355         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356         mode_cmd.width = crtc->base.primary->fb->width;
2357         mode_cmd.height = crtc->base.primary->fb->height;
2358         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2359
2360         mutex_lock(&dev->struct_mutex);
2361
2362         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2363                                    &mode_cmd, obj)) {
2364                 DRM_DEBUG_KMS("intel fb init failed\n");
2365                 goto out_unref_obj;
2366         }
2367
2368         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2369         mutex_unlock(&dev->struct_mutex);
2370
2371         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372         return true;
2373
2374 out_unref_obj:
2375         drm_gem_object_unreference(&obj->base);
2376         mutex_unlock(&dev->struct_mutex);
2377         return false;
2378 }
2379
2380 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381                                  struct intel_plane_config *plane_config)
2382 {
2383         struct drm_device *dev = intel_crtc->base.dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct drm_crtc *c;
2386         struct intel_crtc *i;
2387         struct drm_i915_gem_object *obj;
2388
2389         if (!intel_crtc->base.primary->fb)
2390                 return;
2391
2392         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393                 return;
2394
2395         kfree(intel_crtc->base.primary->fb);
2396         intel_crtc->base.primary->fb = NULL;
2397
2398         /*
2399          * Failed to alloc the obj, check to see if we should share
2400          * an fb with another CRTC instead
2401          */
2402         for_each_crtc(dev, c) {
2403                 i = to_intel_crtc(c);
2404
2405                 if (c == &intel_crtc->base)
2406                         continue;
2407
2408                 if (!i->active)
2409                         continue;
2410
2411                 obj = intel_fb_obj(c->primary->fb);
2412                 if (obj == NULL)
2413                         continue;
2414
2415                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2416                         if (obj->tiling_mode != I915_TILING_NONE)
2417                                 dev_priv->preserve_bios_swizzle = true;
2418
2419                         drm_framebuffer_reference(c->primary->fb);
2420                         intel_crtc->base.primary->fb = c->primary->fb;
2421                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2422                         break;
2423                 }
2424         }
2425 }
2426
2427 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428                                       struct drm_framebuffer *fb,
2429                                       int x, int y)
2430 {
2431         struct drm_device *dev = crtc->dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434         struct drm_i915_gem_object *obj;
2435         int plane = intel_crtc->plane;
2436         unsigned long linear_offset;
2437         u32 dspcntr;
2438         u32 reg = DSPCNTR(plane);
2439         int pixel_size;
2440
2441         if (!intel_crtc->primary_enabled) {
2442                 I915_WRITE(reg, 0);
2443                 if (INTEL_INFO(dev)->gen >= 4)
2444                         I915_WRITE(DSPSURF(plane), 0);
2445                 else
2446                         I915_WRITE(DSPADDR(plane), 0);
2447                 POSTING_READ(reg);
2448                 return;
2449         }
2450
2451         obj = intel_fb_obj(fb);
2452         if (WARN_ON(obj == NULL))
2453                 return;
2454
2455         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
2457         dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
2459         dspcntr |= DISPLAY_PLANE_ENABLE;
2460
2461         if (INTEL_INFO(dev)->gen < 4) {
2462                 if (intel_crtc->pipe == PIPE_B)
2463                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465                 /* pipesrc and dspsize control the size that is scaled from,
2466                  * which should always be the user's requested size.
2467                  */
2468                 I915_WRITE(DSPSIZE(plane),
2469                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470                            (intel_crtc->config.pipe_src_w - 1));
2471                 I915_WRITE(DSPPOS(plane), 0);
2472         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473                 I915_WRITE(PRIMSIZE(plane),
2474                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475                            (intel_crtc->config.pipe_src_w - 1));
2476                 I915_WRITE(PRIMPOS(plane), 0);
2477                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2478         }
2479
2480         switch (fb->pixel_format) {
2481         case DRM_FORMAT_C8:
2482                 dspcntr |= DISPPLANE_8BPP;
2483                 break;
2484         case DRM_FORMAT_XRGB1555:
2485         case DRM_FORMAT_ARGB1555:
2486                 dspcntr |= DISPPLANE_BGRX555;
2487                 break;
2488         case DRM_FORMAT_RGB565:
2489                 dspcntr |= DISPPLANE_BGRX565;
2490                 break;
2491         case DRM_FORMAT_XRGB8888:
2492         case DRM_FORMAT_ARGB8888:
2493                 dspcntr |= DISPPLANE_BGRX888;
2494                 break;
2495         case DRM_FORMAT_XBGR8888:
2496         case DRM_FORMAT_ABGR8888:
2497                 dspcntr |= DISPPLANE_RGBX888;
2498                 break;
2499         case DRM_FORMAT_XRGB2101010:
2500         case DRM_FORMAT_ARGB2101010:
2501                 dspcntr |= DISPPLANE_BGRX101010;
2502                 break;
2503         case DRM_FORMAT_XBGR2101010:
2504         case DRM_FORMAT_ABGR2101010:
2505                 dspcntr |= DISPPLANE_RGBX101010;
2506                 break;
2507         default:
2508                 BUG();
2509         }
2510
2511         if (INTEL_INFO(dev)->gen >= 4 &&
2512             obj->tiling_mode != I915_TILING_NONE)
2513                 dspcntr |= DISPPLANE_TILED;
2514
2515         if (IS_G4X(dev))
2516                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
2518         linear_offset = y * fb->pitches[0] + x * pixel_size;
2519
2520         if (INTEL_INFO(dev)->gen >= 4) {
2521                 intel_crtc->dspaddr_offset =
2522                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2523                                                        pixel_size,
2524                                                        fb->pitches[0]);
2525                 linear_offset -= intel_crtc->dspaddr_offset;
2526         } else {
2527                 intel_crtc->dspaddr_offset = linear_offset;
2528         }
2529
2530         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531                 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533                 x += (intel_crtc->config.pipe_src_w - 1);
2534                 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536                 /* Finding the last pixel of the last line of the display
2537                 data and adding to linear_offset*/
2538                 linear_offset +=
2539                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541         }
2542
2543         I915_WRITE(reg, dspcntr);
2544
2545         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547                       fb->pitches[0]);
2548         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2549         if (INTEL_INFO(dev)->gen >= 4) {
2550                 I915_WRITE(DSPSURF(plane),
2551                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2552                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2553                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2554         } else
2555                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2556         POSTING_READ(reg);
2557 }
2558
2559 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560                                           struct drm_framebuffer *fb,
2561                                           int x, int y)
2562 {
2563         struct drm_device *dev = crtc->dev;
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2566         struct drm_i915_gem_object *obj;
2567         int plane = intel_crtc->plane;
2568         unsigned long linear_offset;
2569         u32 dspcntr;
2570         u32 reg = DSPCNTR(plane);
2571         int pixel_size;
2572
2573         if (!intel_crtc->primary_enabled) {
2574                 I915_WRITE(reg, 0);
2575                 I915_WRITE(DSPSURF(plane), 0);
2576                 POSTING_READ(reg);
2577                 return;
2578         }
2579
2580         obj = intel_fb_obj(fb);
2581         if (WARN_ON(obj == NULL))
2582                 return;
2583
2584         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
2586         dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
2588         dspcntr |= DISPLAY_PLANE_ENABLE;
2589
2590         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2592
2593         switch (fb->pixel_format) {
2594         case DRM_FORMAT_C8:
2595                 dspcntr |= DISPPLANE_8BPP;
2596                 break;
2597         case DRM_FORMAT_RGB565:
2598                 dspcntr |= DISPPLANE_BGRX565;
2599                 break;
2600         case DRM_FORMAT_XRGB8888:
2601         case DRM_FORMAT_ARGB8888:
2602                 dspcntr |= DISPPLANE_BGRX888;
2603                 break;
2604         case DRM_FORMAT_XBGR8888:
2605         case DRM_FORMAT_ABGR8888:
2606                 dspcntr |= DISPPLANE_RGBX888;
2607                 break;
2608         case DRM_FORMAT_XRGB2101010:
2609         case DRM_FORMAT_ARGB2101010:
2610                 dspcntr |= DISPPLANE_BGRX101010;
2611                 break;
2612         case DRM_FORMAT_XBGR2101010:
2613         case DRM_FORMAT_ABGR2101010:
2614                 dspcntr |= DISPPLANE_RGBX101010;
2615                 break;
2616         default:
2617                 BUG();
2618         }
2619
2620         if (obj->tiling_mode != I915_TILING_NONE)
2621                 dspcntr |= DISPPLANE_TILED;
2622
2623         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2624                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2625
2626         linear_offset = y * fb->pitches[0] + x * pixel_size;
2627         intel_crtc->dspaddr_offset =
2628                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2629                                                pixel_size,
2630                                                fb->pitches[0]);
2631         linear_offset -= intel_crtc->dspaddr_offset;
2632         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633                 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636                         x += (intel_crtc->config.pipe_src_w - 1);
2637                         y += (intel_crtc->config.pipe_src_h - 1);
2638
2639                         /* Finding the last pixel of the last line of the display
2640                         data and adding to linear_offset*/
2641                         linear_offset +=
2642                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644                 }
2645         }
2646
2647         I915_WRITE(reg, dspcntr);
2648
2649         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651                       fb->pitches[0]);
2652         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2653         I915_WRITE(DSPSURF(plane),
2654                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2655         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2656                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657         } else {
2658                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660         }
2661         POSTING_READ(reg);
2662 }
2663
2664 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665                                          struct drm_framebuffer *fb,
2666                                          int x, int y)
2667 {
2668         struct drm_device *dev = crtc->dev;
2669         struct drm_i915_private *dev_priv = dev->dev_private;
2670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671         struct intel_framebuffer *intel_fb;
2672         struct drm_i915_gem_object *obj;
2673         int pipe = intel_crtc->pipe;
2674         u32 plane_ctl, stride;
2675
2676         if (!intel_crtc->primary_enabled) {
2677                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679                 POSTING_READ(PLANE_CTL(pipe, 0));
2680                 return;
2681         }
2682
2683         plane_ctl = PLANE_CTL_ENABLE |
2684                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2685                     PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687         switch (fb->pixel_format) {
2688         case DRM_FORMAT_RGB565:
2689                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690                 break;
2691         case DRM_FORMAT_XRGB8888:
2692                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693                 break;
2694         case DRM_FORMAT_XBGR8888:
2695                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697                 break;
2698         case DRM_FORMAT_XRGB2101010:
2699                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700                 break;
2701         case DRM_FORMAT_XBGR2101010:
2702                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704                 break;
2705         default:
2706                 BUG();
2707         }
2708
2709         intel_fb = to_intel_framebuffer(fb);
2710         obj = intel_fb->obj;
2711
2712         /*
2713          * The stride is either expressed as a multiple of 64 bytes chunks for
2714          * linear buffers or in number of tiles for tiled buffers.
2715          */
2716         switch (obj->tiling_mode) {
2717         case I915_TILING_NONE:
2718                 stride = fb->pitches[0] >> 6;
2719                 break;
2720         case I915_TILING_X:
2721                 plane_ctl |= PLANE_CTL_TILED_X;
2722                 stride = fb->pitches[0] >> 9;
2723                 break;
2724         default:
2725                 BUG();
2726         }
2727
2728         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2729         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730                 plane_ctl |= PLANE_CTL_ROTATE_180;
2731
2732         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735                       i915_gem_obj_ggtt_offset(obj),
2736                       x, y, fb->width, fb->height,
2737                       fb->pitches[0]);
2738
2739         I915_WRITE(PLANE_POS(pipe, 0), 0);
2740         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741         I915_WRITE(PLANE_SIZE(pipe, 0),
2742                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2743                    (intel_crtc->config.pipe_src_w - 1));
2744         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747         POSTING_READ(PLANE_SURF(pipe, 0));
2748 }
2749
2750 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2751 static int
2752 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753                            int x, int y, enum mode_set_atomic state)
2754 {
2755         struct drm_device *dev = crtc->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757
2758         if (dev_priv->display.disable_fbc)
2759                 dev_priv->display.disable_fbc(dev);
2760
2761         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763         return 0;
2764 }
2765
2766 void intel_display_handle_reset(struct drm_device *dev)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct drm_crtc *crtc;
2770
2771         /*
2772          * Flips in the rings have been nuked by the reset,
2773          * so complete all pending flips so that user space
2774          * will get its events and not get stuck.
2775          *
2776          * Also update the base address of all primary
2777          * planes to the the last fb to make sure we're
2778          * showing the correct fb after a reset.
2779          *
2780          * Need to make two loops over the crtcs so that we
2781          * don't try to grab a crtc mutex before the
2782          * pending_flip_queue really got woken up.
2783          */
2784
2785         for_each_crtc(dev, crtc) {
2786                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787                 enum plane plane = intel_crtc->plane;
2788
2789                 intel_prepare_page_flip(dev, plane);
2790                 intel_finish_page_flip_plane(dev, plane);
2791         }
2792
2793         for_each_crtc(dev, crtc) {
2794                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
2796                 drm_modeset_lock(&crtc->mutex, NULL);
2797                 /*
2798                  * FIXME: Once we have proper support for primary planes (and
2799                  * disabling them without disabling the entire crtc) allow again
2800                  * a NULL crtc->primary->fb.
2801                  */
2802                 if (intel_crtc->active && crtc->primary->fb)
2803                         dev_priv->display.update_primary_plane(crtc,
2804                                                                crtc->primary->fb,
2805                                                                crtc->x,
2806                                                                crtc->y);
2807                 drm_modeset_unlock(&crtc->mutex);
2808         }
2809 }
2810
2811 static int
2812 intel_finish_fb(struct drm_framebuffer *old_fb)
2813 {
2814         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2815         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816         bool was_interruptible = dev_priv->mm.interruptible;
2817         int ret;
2818
2819         /* Big Hammer, we also need to ensure that any pending
2820          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821          * current scanout is retired before unpinning the old
2822          * framebuffer.
2823          *
2824          * This should only fail upon a hung GPU, in which case we
2825          * can safely continue.
2826          */
2827         dev_priv->mm.interruptible = false;
2828         ret = i915_gem_object_finish_gpu(obj);
2829         dev_priv->mm.interruptible = was_interruptible;
2830
2831         return ret;
2832 }
2833
2834 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835 {
2836         struct drm_device *dev = crtc->dev;
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839         bool pending;
2840
2841         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843                 return false;
2844
2845         spin_lock_irq(&dev->event_lock);
2846         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847         spin_unlock_irq(&dev->event_lock);
2848
2849         return pending;
2850 }
2851
2852 static void intel_update_pipe_size(struct intel_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->base.dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856         const struct drm_display_mode *adjusted_mode;
2857
2858         if (!i915.fastboot)
2859                 return;
2860
2861         /*
2862          * Update pipe size and adjust fitter if needed: the reason for this is
2863          * that in compute_mode_changes we check the native mode (not the pfit
2864          * mode) to see if we can flip rather than do a full mode set. In the
2865          * fastboot case, we'll flip, but if we don't update the pipesrc and
2866          * pfit state, we'll end up with a big fb scanned out into the wrong
2867          * sized surface.
2868          *
2869          * To fix this properly, we need to hoist the checks up into
2870          * compute_mode_changes (or above), check the actual pfit state and
2871          * whether the platform allows pfit disable with pipe active, and only
2872          * then update the pipesrc and pfit state, even on the flip path.
2873          */
2874
2875         adjusted_mode = &crtc->config.adjusted_mode;
2876
2877         I915_WRITE(PIPESRC(crtc->pipe),
2878                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879                    (adjusted_mode->crtc_vdisplay - 1));
2880         if (!crtc->config.pch_pfit.enabled &&
2881             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2883                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886         }
2887         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889 }
2890
2891 static int
2892 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2893                     struct drm_framebuffer *fb)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898         enum pipe pipe = intel_crtc->pipe;
2899         struct drm_framebuffer *old_fb = crtc->primary->fb;
2900         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2902         int ret;
2903
2904         if (intel_crtc_has_pending_flip(crtc)) {
2905                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906                 return -EBUSY;
2907         }
2908
2909         /* no fb bound */
2910         if (!fb) {
2911                 DRM_ERROR("No FB bound\n");
2912                 return 0;
2913         }
2914
2915         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2916                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917                           plane_name(intel_crtc->plane),
2918                           INTEL_INFO(dev)->num_pipes);
2919                 return -EINVAL;
2920         }
2921
2922         mutex_lock(&dev->struct_mutex);
2923         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924         if (ret == 0)
2925                 i915_gem_track_fb(old_obj, obj,
2926                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2927         mutex_unlock(&dev->struct_mutex);
2928         if (ret != 0) {
2929                 DRM_ERROR("pin & fence failed\n");
2930                 return ret;
2931         }
2932
2933         intel_update_pipe_size(intel_crtc);
2934
2935         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2936
2937         if (intel_crtc->active)
2938                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
2940         crtc->primary->fb = fb;
2941         crtc->x = x;
2942         crtc->y = y;
2943
2944         if (old_fb) {
2945                 if (intel_crtc->active && old_fb != fb)
2946                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2947                 mutex_lock(&dev->struct_mutex);
2948                 intel_unpin_fb_obj(old_obj);
2949                 mutex_unlock(&dev->struct_mutex);
2950         }
2951
2952         mutex_lock(&dev->struct_mutex);
2953         intel_update_fbc(dev);
2954         mutex_unlock(&dev->struct_mutex);
2955
2956         return 0;
2957 }
2958
2959 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         int pipe = intel_crtc->pipe;
2965         u32 reg, temp;
2966
2967         /* enable normal train */
2968         reg = FDI_TX_CTL(pipe);
2969         temp = I915_READ(reg);
2970         if (IS_IVYBRIDGE(dev)) {
2971                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2973         } else {
2974                 temp &= ~FDI_LINK_TRAIN_NONE;
2975                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2976         }
2977         I915_WRITE(reg, temp);
2978
2979         reg = FDI_RX_CTL(pipe);
2980         temp = I915_READ(reg);
2981         if (HAS_PCH_CPT(dev)) {
2982                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984         } else {
2985                 temp &= ~FDI_LINK_TRAIN_NONE;
2986                 temp |= FDI_LINK_TRAIN_NONE;
2987         }
2988         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990         /* wait one idle pattern time */
2991         POSTING_READ(reg);
2992         udelay(1000);
2993
2994         /* IVB wants error correction enabled */
2995         if (IS_IVYBRIDGE(dev))
2996                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997                            FDI_FE_ERRC_ENABLE);
2998 }
2999
3000 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3001 {
3002         return crtc->base.enabled && crtc->active &&
3003                 crtc->config.has_pch_encoder;
3004 }
3005
3006 static void ivb_modeset_global_resources(struct drm_device *dev)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         struct intel_crtc *pipe_B_crtc =
3010                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011         struct intel_crtc *pipe_C_crtc =
3012                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013         uint32_t temp;
3014
3015         /*
3016          * When everything is off disable fdi C so that we could enable fdi B
3017          * with all lanes. Note that we don't care about enabled pipes without
3018          * an enabled pch encoder.
3019          */
3020         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021             !pipe_has_enabled_pch(pipe_C_crtc)) {
3022                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025                 temp = I915_READ(SOUTH_CHICKEN1);
3026                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028                 I915_WRITE(SOUTH_CHICKEN1, temp);
3029         }
3030 }
3031
3032 /* The FDI link training functions for ILK/Ibexpeak. */
3033 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp, tries;
3040
3041         /* FDI needs bits from pipe first */
3042         assert_pipe_enabled(dev_priv, pipe);
3043
3044         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045            for train result */
3046         reg = FDI_RX_IMR(pipe);
3047         temp = I915_READ(reg);
3048         temp &= ~FDI_RX_SYMBOL_LOCK;
3049         temp &= ~FDI_RX_BIT_LOCK;
3050         I915_WRITE(reg, temp);
3051         I915_READ(reg);
3052         udelay(150);
3053
3054         /* enable CPU FDI TX and PCH FDI RX */
3055         reg = FDI_TX_CTL(pipe);
3056         temp = I915_READ(reg);
3057         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3059         temp &= ~FDI_LINK_TRAIN_NONE;
3060         temp |= FDI_LINK_TRAIN_PATTERN_1;
3061         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3062
3063         reg = FDI_RX_CTL(pipe);
3064         temp = I915_READ(reg);
3065         temp &= ~FDI_LINK_TRAIN_NONE;
3066         temp |= FDI_LINK_TRAIN_PATTERN_1;
3067         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069         POSTING_READ(reg);
3070         udelay(150);
3071
3072         /* Ironlake workaround, enable clock pointer after FDI enable*/
3073         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075                    FDI_RX_PHASE_SYNC_POINTER_EN);
3076
3077         reg = FDI_RX_IIR(pipe);
3078         for (tries = 0; tries < 5; tries++) {
3079                 temp = I915_READ(reg);
3080                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082                 if ((temp & FDI_RX_BIT_LOCK)) {
3083                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3084                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3085                         break;
3086                 }
3087         }
3088         if (tries == 5)
3089                 DRM_ERROR("FDI train 1 fail!\n");
3090
3091         /* Train 2 */
3092         reg = FDI_TX_CTL(pipe);
3093         temp = I915_READ(reg);
3094         temp &= ~FDI_LINK_TRAIN_NONE;
3095         temp |= FDI_LINK_TRAIN_PATTERN_2;
3096         I915_WRITE(reg, temp);
3097
3098         reg = FDI_RX_CTL(pipe);
3099         temp = I915_READ(reg);
3100         temp &= ~FDI_LINK_TRAIN_NONE;
3101         temp |= FDI_LINK_TRAIN_PATTERN_2;
3102         I915_WRITE(reg, temp);
3103
3104         POSTING_READ(reg);
3105         udelay(150);
3106
3107         reg = FDI_RX_IIR(pipe);
3108         for (tries = 0; tries < 5; tries++) {
3109                 temp = I915_READ(reg);
3110                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112                 if (temp & FDI_RX_SYMBOL_LOCK) {
3113                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3114                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3115                         break;
3116                 }
3117         }
3118         if (tries == 5)
3119                 DRM_ERROR("FDI train 2 fail!\n");
3120
3121         DRM_DEBUG_KMS("FDI train done\n");
3122
3123 }
3124
3125 static const int snb_b_fdi_train_param[] = {
3126         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130 };
3131
3132 /* The FDI link training functions for SNB/Cougarpoint. */
3133 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134 {
3135         struct drm_device *dev = crtc->dev;
3136         struct drm_i915_private *dev_priv = dev->dev_private;
3137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138         int pipe = intel_crtc->pipe;
3139         u32 reg, temp, i, retry;
3140
3141         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142            for train result */
3143         reg = FDI_RX_IMR(pipe);
3144         temp = I915_READ(reg);
3145         temp &= ~FDI_RX_SYMBOL_LOCK;
3146         temp &= ~FDI_RX_BIT_LOCK;
3147         I915_WRITE(reg, temp);
3148
3149         POSTING_READ(reg);
3150         udelay(150);
3151
3152         /* enable CPU FDI TX and PCH FDI RX */
3153         reg = FDI_TX_CTL(pipe);
3154         temp = I915_READ(reg);
3155         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3157         temp &= ~FDI_LINK_TRAIN_NONE;
3158         temp |= FDI_LINK_TRAIN_PATTERN_1;
3159         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160         /* SNB-B */
3161         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3162         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3163
3164         I915_WRITE(FDI_RX_MISC(pipe),
3165                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
3167         reg = FDI_RX_CTL(pipe);
3168         temp = I915_READ(reg);
3169         if (HAS_PCH_CPT(dev)) {
3170                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172         } else {
3173                 temp &= ~FDI_LINK_TRAIN_NONE;
3174                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175         }
3176         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178         POSTING_READ(reg);
3179         udelay(150);
3180
3181         for (i = 0; i < 4; i++) {
3182                 reg = FDI_TX_CTL(pipe);
3183                 temp = I915_READ(reg);
3184                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185                 temp |= snb_b_fdi_train_param[i];
3186                 I915_WRITE(reg, temp);
3187
3188                 POSTING_READ(reg);
3189                 udelay(500);
3190
3191                 for (retry = 0; retry < 5; retry++) {
3192                         reg = FDI_RX_IIR(pipe);
3193                         temp = I915_READ(reg);
3194                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195                         if (temp & FDI_RX_BIT_LOCK) {
3196                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198                                 break;
3199                         }
3200                         udelay(50);
3201                 }
3202                 if (retry < 5)
3203                         break;
3204         }
3205         if (i == 4)
3206                 DRM_ERROR("FDI train 1 fail!\n");
3207
3208         /* Train 2 */
3209         reg = FDI_TX_CTL(pipe);
3210         temp = I915_READ(reg);
3211         temp &= ~FDI_LINK_TRAIN_NONE;
3212         temp |= FDI_LINK_TRAIN_PATTERN_2;
3213         if (IS_GEN6(dev)) {
3214                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215                 /* SNB-B */
3216                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217         }
3218         I915_WRITE(reg, temp);
3219
3220         reg = FDI_RX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         if (HAS_PCH_CPT(dev)) {
3223                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225         } else {
3226                 temp &= ~FDI_LINK_TRAIN_NONE;
3227                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228         }
3229         I915_WRITE(reg, temp);
3230
3231         POSTING_READ(reg);
3232         udelay(150);
3233
3234         for (i = 0; i < 4; i++) {
3235                 reg = FDI_TX_CTL(pipe);
3236                 temp = I915_READ(reg);
3237                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238                 temp |= snb_b_fdi_train_param[i];
3239                 I915_WRITE(reg, temp);
3240
3241                 POSTING_READ(reg);
3242                 udelay(500);
3243
3244                 for (retry = 0; retry < 5; retry++) {
3245                         reg = FDI_RX_IIR(pipe);
3246                         temp = I915_READ(reg);
3247                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248                         if (temp & FDI_RX_SYMBOL_LOCK) {
3249                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251                                 break;
3252                         }
3253                         udelay(50);
3254                 }
3255                 if (retry < 5)
3256                         break;
3257         }
3258         if (i == 4)
3259                 DRM_ERROR("FDI train 2 fail!\n");
3260
3261         DRM_DEBUG_KMS("FDI train done.\n");
3262 }
3263
3264 /* Manual link training for Ivy Bridge A0 parts */
3265 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266 {
3267         struct drm_device *dev = crtc->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270         int pipe = intel_crtc->pipe;
3271         u32 reg, temp, i, j;
3272
3273         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274            for train result */
3275         reg = FDI_RX_IMR(pipe);
3276         temp = I915_READ(reg);
3277         temp &= ~FDI_RX_SYMBOL_LOCK;
3278         temp &= ~FDI_RX_BIT_LOCK;
3279         I915_WRITE(reg, temp);
3280
3281         POSTING_READ(reg);
3282         udelay(150);
3283
3284         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285                       I915_READ(FDI_RX_IIR(pipe)));
3286
3287         /* Try each vswing and preemphasis setting twice before moving on */
3288         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289                 /* disable first in case we need to retry */
3290                 reg = FDI_TX_CTL(pipe);
3291                 temp = I915_READ(reg);
3292                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293                 temp &= ~FDI_TX_ENABLE;
3294                 I915_WRITE(reg, temp);
3295
3296                 reg = FDI_RX_CTL(pipe);
3297                 temp = I915_READ(reg);
3298                 temp &= ~FDI_LINK_TRAIN_AUTO;
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp &= ~FDI_RX_ENABLE;
3301                 I915_WRITE(reg, temp);
3302
3303                 /* enable CPU FDI TX and PCH FDI RX */
3304                 reg = FDI_TX_CTL(pipe);
3305                 temp = I915_READ(reg);
3306                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3309                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3310                 temp |= snb_b_fdi_train_param[j/2];
3311                 temp |= FDI_COMPOSITE_SYNC;
3312                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3313
3314                 I915_WRITE(FDI_RX_MISC(pipe),
3315                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3316
3317                 reg = FDI_RX_CTL(pipe);
3318                 temp = I915_READ(reg);
3319                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320                 temp |= FDI_COMPOSITE_SYNC;
3321                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3322
3323                 POSTING_READ(reg);
3324                 udelay(1); /* should be 0.5us */
3325
3326                 for (i = 0; i < 4; i++) {
3327                         reg = FDI_RX_IIR(pipe);
3328                         temp = I915_READ(reg);
3329                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3330
3331                         if (temp & FDI_RX_BIT_LOCK ||
3332                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335                                               i);
3336                                 break;
3337                         }
3338                         udelay(1); /* should be 0.5us */
3339                 }
3340                 if (i == 4) {
3341                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342                         continue;
3343                 }
3344
3345                 /* Train 2 */
3346                 reg = FDI_TX_CTL(pipe);
3347                 temp = I915_READ(reg);
3348                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350                 I915_WRITE(reg, temp);
3351
3352                 reg = FDI_RX_CTL(pipe);
3353                 temp = I915_READ(reg);
3354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3356                 I915_WRITE(reg, temp);
3357
3358                 POSTING_READ(reg);
3359                 udelay(2); /* should be 1.5us */
3360
3361                 for (i = 0; i < 4; i++) {
3362                         reg = FDI_RX_IIR(pipe);
3363                         temp = I915_READ(reg);
3364                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3365
3366                         if (temp & FDI_RX_SYMBOL_LOCK ||
3367                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370                                               i);
3371                                 goto train_done;
3372                         }
3373                         udelay(2); /* should be 1.5us */
3374                 }
3375                 if (i == 4)
3376                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3377         }
3378
3379 train_done:
3380         DRM_DEBUG_KMS("FDI train done.\n");
3381 }
3382
3383 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3384 {
3385         struct drm_device *dev = intel_crtc->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         int pipe = intel_crtc->pipe;
3388         u32 reg, temp;
3389
3390
3391         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3392         reg = FDI_RX_CTL(pipe);
3393         temp = I915_READ(reg);
3394         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3396         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3397         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399         POSTING_READ(reg);
3400         udelay(200);
3401
3402         /* Switch from Rawclk to PCDclk */
3403         temp = I915_READ(reg);
3404         I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406         POSTING_READ(reg);
3407         udelay(200);
3408
3409         /* Enable CPU FDI TX PLL, always on for Ironlake */
3410         reg = FDI_TX_CTL(pipe);
3411         temp = I915_READ(reg);
3412         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3414
3415                 POSTING_READ(reg);
3416                 udelay(100);
3417         }
3418 }
3419
3420 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421 {
3422         struct drm_device *dev = intel_crtc->base.dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         int pipe = intel_crtc->pipe;
3425         u32 reg, temp;
3426
3427         /* Switch from PCDclk to Rawclk */
3428         reg = FDI_RX_CTL(pipe);
3429         temp = I915_READ(reg);
3430         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432         /* Disable CPU FDI TX PLL */
3433         reg = FDI_TX_CTL(pipe);
3434         temp = I915_READ(reg);
3435         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437         POSTING_READ(reg);
3438         udelay(100);
3439
3440         reg = FDI_RX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444         /* Wait for the clocks to turn off. */
3445         POSTING_READ(reg);
3446         udelay(100);
3447 }
3448
3449 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         /* disable CPU FDI tx and PCH FDI rx */
3458         reg = FDI_TX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461         POSTING_READ(reg);
3462
3463         reg = FDI_RX_CTL(pipe);
3464         temp = I915_READ(reg);
3465         temp &= ~(0x7 << 16);
3466         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3467         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469         POSTING_READ(reg);
3470         udelay(100);
3471
3472         /* Ironlake workaround, disable clock pointer after downing FDI */
3473         if (HAS_PCH_IBX(dev))
3474                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3475
3476         /* still set train pattern 1 */
3477         reg = FDI_TX_CTL(pipe);
3478         temp = I915_READ(reg);
3479         temp &= ~FDI_LINK_TRAIN_NONE;
3480         temp |= FDI_LINK_TRAIN_PATTERN_1;
3481         I915_WRITE(reg, temp);
3482
3483         reg = FDI_RX_CTL(pipe);
3484         temp = I915_READ(reg);
3485         if (HAS_PCH_CPT(dev)) {
3486                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488         } else {
3489                 temp &= ~FDI_LINK_TRAIN_NONE;
3490                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491         }
3492         /* BPC in FDI rx is consistent with that in PIPECONF */
3493         temp &= ~(0x07 << 16);
3494         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3495         I915_WRITE(reg, temp);
3496
3497         POSTING_READ(reg);
3498         udelay(100);
3499 }
3500
3501 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502 {
3503         struct intel_crtc *crtc;
3504
3505         /* Note that we don't need to be called with mode_config.lock here
3506          * as our list of CRTC objects is static for the lifetime of the
3507          * device and so cannot disappear as we iterate. Similarly, we can
3508          * happily treat the predicates as racy, atomic checks as userspace
3509          * cannot claim and pin a new fb without at least acquring the
3510          * struct_mutex and so serialising with us.
3511          */
3512         for_each_intel_crtc(dev, crtc) {
3513                 if (atomic_read(&crtc->unpin_work_count) == 0)
3514                         continue;
3515
3516                 if (crtc->unpin_work)
3517                         intel_wait_for_vblank(dev, crtc->pipe);
3518
3519                 return true;
3520         }
3521
3522         return false;
3523 }
3524
3525 static void page_flip_completed(struct intel_crtc *intel_crtc)
3526 {
3527         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528         struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530         /* ensure that the unpin work is consistent wrt ->pending. */
3531         smp_rmb();
3532         intel_crtc->unpin_work = NULL;
3533
3534         if (work->event)
3535                 drm_send_vblank_event(intel_crtc->base.dev,
3536                                       intel_crtc->pipe,
3537                                       work->event);
3538
3539         drm_crtc_vblank_put(&intel_crtc->base);
3540
3541         wake_up_all(&dev_priv->pending_flip_queue);
3542         queue_work(dev_priv->wq, &work->work);
3543
3544         trace_i915_flip_complete(intel_crtc->plane,
3545                                  work->pending_flip_obj);
3546 }
3547
3548 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552
3553         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3554         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555                                        !intel_crtc_has_pending_flip(crtc),
3556                                        60*HZ) == 0)) {
3557                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3558
3559                 spin_lock_irq(&dev->event_lock);
3560                 if (intel_crtc->unpin_work) {
3561                         WARN_ONCE(1, "Removing stuck page flip\n");
3562                         page_flip_completed(intel_crtc);
3563                 }
3564                 spin_unlock_irq(&dev->event_lock);
3565         }
3566
3567         if (crtc->primary->fb) {
3568                 mutex_lock(&dev->struct_mutex);
3569                 intel_finish_fb(crtc->primary->fb);
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572 }
3573
3574 /* Program iCLKIP clock to the desired frequency */
3575 static void lpt_program_iclkip(struct drm_crtc *crtc)
3576 {
3577         struct drm_device *dev = crtc->dev;
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3580         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581         u32 temp;
3582
3583         mutex_lock(&dev_priv->dpio_lock);
3584
3585         /* It is necessary to ungate the pixclk gate prior to programming
3586          * the divisors, and gate it back when it is done.
3587          */
3588         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590         /* Disable SSCCTL */
3591         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3592                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593                                 SBI_SSCCTL_DISABLE,
3594                         SBI_ICLK);
3595
3596         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3597         if (clock == 20000) {
3598                 auxdiv = 1;
3599                 divsel = 0x41;
3600                 phaseinc = 0x20;
3601         } else {
3602                 /* The iCLK virtual clock root frequency is in MHz,
3603                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3604                  * divisors, it is necessary to divide one by another, so we
3605                  * convert the virtual clock precision to KHz here for higher
3606                  * precision.
3607                  */
3608                 u32 iclk_virtual_root_freq = 172800 * 1000;
3609                 u32 iclk_pi_range = 64;
3610                 u32 desired_divisor, msb_divisor_value, pi_value;
3611
3612                 desired_divisor = (iclk_virtual_root_freq / clock);
3613                 msb_divisor_value = desired_divisor / iclk_pi_range;
3614                 pi_value = desired_divisor % iclk_pi_range;
3615
3616                 auxdiv = 0;
3617                 divsel = msb_divisor_value - 2;
3618                 phaseinc = pi_value;
3619         }
3620
3621         /* This should not happen with any sane values */
3622         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3628                         clock,
3629                         auxdiv,
3630                         divsel,
3631                         phasedir,
3632                         phaseinc);
3633
3634         /* Program SSCDIVINTPHASE6 */
3635         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3636         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3642         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3643
3644         /* Program SSCAUXDIV */
3645         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3646         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3648         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3649
3650         /* Enable modulator and associated divider */
3651         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3652         temp &= ~SBI_SSCCTL_DISABLE;
3653         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3654
3655         /* Wait for initialization time */
3656         udelay(24);
3657
3658         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3659
3660         mutex_unlock(&dev_priv->dpio_lock);
3661 }
3662
3663 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664                                                 enum pipe pch_transcoder)
3665 {
3666         struct drm_device *dev = crtc->base.dev;
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671                    I915_READ(HTOTAL(cpu_transcoder)));
3672         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673                    I915_READ(HBLANK(cpu_transcoder)));
3674         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675                    I915_READ(HSYNC(cpu_transcoder)));
3676
3677         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678                    I915_READ(VTOTAL(cpu_transcoder)));
3679         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680                    I915_READ(VBLANK(cpu_transcoder)));
3681         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682                    I915_READ(VSYNC(cpu_transcoder)));
3683         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685 }
3686
3687 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         uint32_t temp;
3691
3692         temp = I915_READ(SOUTH_CHICKEN1);
3693         if (temp & FDI_BC_BIFURCATION_SELECT)
3694                 return;
3695
3696         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699         temp |= FDI_BC_BIFURCATION_SELECT;
3700         DRM_DEBUG_KMS("enabling fdi C rx\n");
3701         I915_WRITE(SOUTH_CHICKEN1, temp);
3702         POSTING_READ(SOUTH_CHICKEN1);
3703 }
3704
3705 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706 {
3707         struct drm_device *dev = intel_crtc->base.dev;
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710         switch (intel_crtc->pipe) {
3711         case PIPE_A:
3712                 break;
3713         case PIPE_B:
3714                 if (intel_crtc->config.fdi_lanes > 2)
3715                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716                 else
3717                         cpt_enable_fdi_bc_bifurcation(dev);
3718
3719                 break;
3720         case PIPE_C:
3721                 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723                 break;
3724         default:
3725                 BUG();
3726         }
3727 }
3728
3729 /*
3730  * Enable PCH resources required for PCH ports:
3731  *   - PCH PLLs
3732  *   - FDI training & RX/TX
3733  *   - update transcoder timings
3734  *   - DP transcoding bits
3735  *   - transcoder
3736  */
3737 static void ironlake_pch_enable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         int pipe = intel_crtc->pipe;
3743         u32 reg, temp;
3744
3745         assert_pch_transcoder_disabled(dev_priv, pipe);
3746
3747         if (IS_IVYBRIDGE(dev))
3748                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
3750         /* Write the TU size bits before fdi link training, so that error
3751          * detection works. */
3752         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
3755         /* For PCH output, training FDI link */
3756         dev_priv->display.fdi_link_train(crtc);
3757
3758         /* We need to program the right clock selection before writing the pixel
3759          * mutliplier into the DPLL. */
3760         if (HAS_PCH_CPT(dev)) {
3761                 u32 sel;
3762
3763                 temp = I915_READ(PCH_DPLL_SEL);
3764                 temp |= TRANS_DPLL_ENABLE(pipe);
3765                 sel = TRANS_DPLLB_SEL(pipe);
3766                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3767                         temp |= sel;
3768                 else
3769                         temp &= ~sel;
3770                 I915_WRITE(PCH_DPLL_SEL, temp);
3771         }
3772
3773         /* XXX: pch pll's can be enabled any time before we enable the PCH
3774          * transcoder, and we actually should do this to not upset any PCH
3775          * transcoder that already use the clock when we share it.
3776          *
3777          * Note that enable_shared_dpll tries to do the right thing, but
3778          * get_shared_dpll unconditionally resets the pll - we need that to have
3779          * the right LVDS enable sequence. */
3780         intel_enable_shared_dpll(intel_crtc);
3781
3782         /* set transcoder timing, panel must allow it */
3783         assert_panel_unlocked(dev_priv, pipe);
3784         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3785
3786         intel_fdi_normal_train(crtc);
3787
3788         /* For PCH DP, enable TRANS_DP_CTL */
3789         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3790                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3791                 reg = TRANS_DP_CTL(pipe);
3792                 temp = I915_READ(reg);
3793                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3794                           TRANS_DP_SYNC_MASK |
3795                           TRANS_DP_BPC_MASK);
3796                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797                          TRANS_DP_ENH_FRAMING);
3798                 temp |= bpc << 9; /* same format but at 11:9 */
3799
3800                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3801                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3802                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3803                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3804
3805                 switch (intel_trans_dp_port_sel(crtc)) {
3806                 case PCH_DP_B:
3807                         temp |= TRANS_DP_PORT_SEL_B;
3808                         break;
3809                 case PCH_DP_C:
3810                         temp |= TRANS_DP_PORT_SEL_C;
3811                         break;
3812                 case PCH_DP_D:
3813                         temp |= TRANS_DP_PORT_SEL_D;
3814                         break;
3815                 default:
3816                         BUG();
3817                 }
3818
3819                 I915_WRITE(reg, temp);
3820         }
3821
3822         ironlake_enable_pch_transcoder(dev_priv, pipe);
3823 }
3824
3825 static void lpt_pch_enable(struct drm_crtc *crtc)
3826 {
3827         struct drm_device *dev = crtc->dev;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3830         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3831
3832         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3833
3834         lpt_program_iclkip(crtc);
3835
3836         /* Set transcoder timing. */
3837         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3838
3839         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3840 }
3841
3842 void intel_put_shared_dpll(struct intel_crtc *crtc)
3843 {
3844         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3845
3846         if (pll == NULL)
3847                 return;
3848
3849         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3850                 WARN(1, "bad %s crtc mask\n", pll->name);
3851                 return;
3852         }
3853
3854         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3855         if (pll->config.crtc_mask == 0) {
3856                 WARN_ON(pll->on);
3857                 WARN_ON(pll->active);
3858         }
3859
3860         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3861 }
3862
3863 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3864 {
3865         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3866         struct intel_shared_dpll *pll;
3867         enum intel_dpll_id i;
3868
3869         if (HAS_PCH_IBX(dev_priv->dev)) {
3870                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3871                 i = (enum intel_dpll_id) crtc->pipe;
3872                 pll = &dev_priv->shared_dplls[i];
3873
3874                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3875                               crtc->base.base.id, pll->name);
3876
3877                 WARN_ON(pll->new_config->crtc_mask);
3878
3879                 goto found;
3880         }
3881
3882         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3883                 pll = &dev_priv->shared_dplls[i];
3884
3885                 /* Only want to check enabled timings first */
3886                 if (pll->new_config->crtc_mask == 0)
3887                         continue;
3888
3889                 if (memcmp(&crtc->new_config->dpll_hw_state,
3890                            &pll->new_config->hw_state,
3891                            sizeof(pll->new_config->hw_state)) == 0) {
3892                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3893                                       crtc->base.base.id, pll->name,
3894                                       pll->new_config->crtc_mask,
3895                                       pll->active);
3896                         goto found;
3897                 }
3898         }
3899
3900         /* Ok no matching timings, maybe there's a free one? */
3901         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3902                 pll = &dev_priv->shared_dplls[i];
3903                 if (pll->new_config->crtc_mask == 0) {
3904                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3905                                       crtc->base.base.id, pll->name);
3906                         goto found;
3907                 }
3908         }
3909
3910         return NULL;
3911
3912 found:
3913         if (pll->new_config->crtc_mask == 0)
3914                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3915
3916         crtc->new_config->shared_dpll = i;
3917         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3918                          pipe_name(crtc->pipe));
3919
3920         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3921
3922         return pll;
3923 }
3924
3925 /**
3926  * intel_shared_dpll_start_config - start a new PLL staged config
3927  * @dev_priv: DRM device
3928  * @clear_pipes: mask of pipes that will have their PLLs freed
3929  *
3930  * Starts a new PLL staged config, copying the current config but
3931  * releasing the references of pipes specified in clear_pipes.
3932  */
3933 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3934                                           unsigned clear_pipes)
3935 {
3936         struct intel_shared_dpll *pll;
3937         enum intel_dpll_id i;
3938
3939         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3940                 pll = &dev_priv->shared_dplls[i];
3941
3942                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3943                                           GFP_KERNEL);
3944                 if (!pll->new_config)
3945                         goto cleanup;
3946
3947                 pll->new_config->crtc_mask &= ~clear_pipes;
3948         }
3949
3950         return 0;
3951
3952 cleanup:
3953         while (--i >= 0) {
3954                 pll = &dev_priv->shared_dplls[i];
3955                 pll->new_config = NULL;
3956         }
3957
3958         return -ENOMEM;
3959 }
3960
3961 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962 {
3963         struct intel_shared_dpll *pll;
3964         enum intel_dpll_id i;
3965
3966         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967                 pll = &dev_priv->shared_dplls[i];
3968
3969                 WARN_ON(pll->new_config == &pll->config);
3970
3971                 pll->config = *pll->new_config;
3972                 kfree(pll->new_config);
3973                 pll->new_config = NULL;
3974         }
3975 }
3976
3977 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978 {
3979         struct intel_shared_dpll *pll;
3980         enum intel_dpll_id i;
3981
3982         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983                 pll = &dev_priv->shared_dplls[i];
3984
3985                 WARN_ON(pll->new_config == &pll->config);
3986
3987                 kfree(pll->new_config);
3988                 pll->new_config = NULL;
3989         }
3990 }
3991
3992 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int dslreg = PIPEDSL(pipe);
3996         u32 temp;
3997
3998         temp = I915_READ(dslreg);
3999         udelay(500);
4000         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4001                 if (wait_for(I915_READ(dslreg) != temp, 5))
4002                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4003         }
4004 }
4005
4006 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007 {
4008         struct drm_device *dev = crtc->base.dev;
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int pipe = crtc->pipe;
4011
4012         if (crtc->config.pch_pfit.enabled) {
4013                 /* Force use of hard-coded filter coefficients
4014                  * as some pre-programmed values are broken,
4015                  * e.g. x201.
4016                  */
4017                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019                                                  PF_PIPE_SEL_IVB(pipe));
4020                 else
4021                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4024         }
4025 }
4026
4027 static void intel_enable_planes(struct drm_crtc *crtc)
4028 {
4029         struct drm_device *dev = crtc->dev;
4030         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4031         struct drm_plane *plane;
4032         struct intel_plane *intel_plane;
4033
4034         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035                 intel_plane = to_intel_plane(plane);
4036                 if (intel_plane->pipe == pipe)
4037                         intel_plane_restore(&intel_plane->base);
4038         }
4039 }
4040
4041 static void intel_disable_planes(struct drm_crtc *crtc)
4042 {
4043         struct drm_device *dev = crtc->dev;
4044         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4045         struct drm_plane *plane;
4046         struct intel_plane *intel_plane;
4047
4048         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049                 intel_plane = to_intel_plane(plane);
4050                 if (intel_plane->pipe == pipe)
4051                         intel_plane_disable(&intel_plane->base);
4052         }
4053 }
4054
4055 void hsw_enable_ips(struct intel_crtc *crtc)
4056 {
4057         struct drm_device *dev = crtc->base.dev;
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059
4060         if (!crtc->config.ips_enabled)
4061                 return;
4062
4063         /* We can only enable IPS after we enable a plane and wait for a vblank */
4064         intel_wait_for_vblank(dev, crtc->pipe);
4065
4066         assert_plane_enabled(dev_priv, crtc->plane);
4067         if (IS_BROADWELL(dev)) {
4068                 mutex_lock(&dev_priv->rps.hw_lock);
4069                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070                 mutex_unlock(&dev_priv->rps.hw_lock);
4071                 /* Quoting Art Runyan: "its not safe to expect any particular
4072                  * value in IPS_CTL bit 31 after enabling IPS through the
4073                  * mailbox." Moreover, the mailbox may return a bogus state,
4074                  * so we need to just enable it and continue on.
4075                  */
4076         } else {
4077                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078                 /* The bit only becomes 1 in the next vblank, so this wait here
4079                  * is essentially intel_wait_for_vblank. If we don't have this
4080                  * and don't wait for vblanks until the end of crtc_enable, then
4081                  * the HW state readout code will complain that the expected
4082                  * IPS_CTL value is not the one we read. */
4083                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084                         DRM_ERROR("Timed out waiting for IPS enable\n");
4085         }
4086 }
4087
4088 void hsw_disable_ips(struct intel_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->base.dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093         if (!crtc->config.ips_enabled)
4094                 return;
4095
4096         assert_plane_enabled(dev_priv, crtc->plane);
4097         if (IS_BROADWELL(dev)) {
4098                 mutex_lock(&dev_priv->rps.hw_lock);
4099                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100                 mutex_unlock(&dev_priv->rps.hw_lock);
4101                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103                         DRM_ERROR("Timed out waiting for IPS disable\n");
4104         } else {
4105                 I915_WRITE(IPS_CTL, 0);
4106                 POSTING_READ(IPS_CTL);
4107         }
4108
4109         /* We need to wait for a vblank before we can disable the plane. */
4110         intel_wait_for_vblank(dev, crtc->pipe);
4111 }
4112
4113 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4114 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         enum pipe pipe = intel_crtc->pipe;
4120         int palreg = PALETTE(pipe);
4121         int i;
4122         bool reenable_ips = false;
4123
4124         /* The clocks have to be on to load the palette. */
4125         if (!crtc->enabled || !intel_crtc->active)
4126                 return;
4127
4128         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4129                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4130                         assert_dsi_pll_enabled(dev_priv);
4131                 else
4132                         assert_pll_enabled(dev_priv, pipe);
4133         }
4134
4135         /* use legacy palette for Ironlake */
4136         if (!HAS_GMCH_DISPLAY(dev))
4137                 palreg = LGC_PALETTE(pipe);
4138
4139         /* Workaround : Do not read or write the pipe palette/gamma data while
4140          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141          */
4142         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4143             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144              GAMMA_MODE_MODE_SPLIT)) {
4145                 hsw_disable_ips(intel_crtc);
4146                 reenable_ips = true;
4147         }
4148
4149         for (i = 0; i < 256; i++) {
4150                 I915_WRITE(palreg + 4 * i,
4151                            (intel_crtc->lut_r[i] << 16) |
4152                            (intel_crtc->lut_g[i] << 8) |
4153                            intel_crtc->lut_b[i]);
4154         }
4155
4156         if (reenable_ips)
4157                 hsw_enable_ips(intel_crtc);
4158 }
4159
4160 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161 {
4162         if (!enable && intel_crtc->overlay) {
4163                 struct drm_device *dev = intel_crtc->base.dev;
4164                 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166                 mutex_lock(&dev->struct_mutex);
4167                 dev_priv->mm.interruptible = false;
4168                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169                 dev_priv->mm.interruptible = true;
4170                 mutex_unlock(&dev->struct_mutex);
4171         }
4172
4173         /* Let userspace switch the overlay on again. In most cases userspace
4174          * has to recompute where to put it anyway.
4175          */
4176 }
4177
4178 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182         int pipe = intel_crtc->pipe;
4183
4184         intel_enable_primary_hw_plane(crtc->primary, crtc);
4185         intel_enable_planes(crtc);
4186         intel_crtc_update_cursor(crtc, true);
4187         intel_crtc_dpms_overlay(intel_crtc, true);
4188
4189         hsw_enable_ips(intel_crtc);
4190
4191         mutex_lock(&dev->struct_mutex);
4192         intel_update_fbc(dev);
4193         mutex_unlock(&dev->struct_mutex);
4194
4195         /*
4196          * FIXME: Once we grow proper nuclear flip support out of this we need
4197          * to compute the mask of flip planes precisely. For the time being
4198          * consider this a flip from a NULL plane.
4199          */
4200         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4201 }
4202
4203 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208         int pipe = intel_crtc->pipe;
4209         int plane = intel_crtc->plane;
4210
4211         intel_crtc_wait_for_pending_flips(crtc);
4212
4213         if (dev_priv->fbc.plane == plane)
4214                 intel_disable_fbc(dev);
4215
4216         hsw_disable_ips(intel_crtc);
4217
4218         intel_crtc_dpms_overlay(intel_crtc, false);
4219         intel_crtc_update_cursor(crtc, false);
4220         intel_disable_planes(crtc);
4221         intel_disable_primary_hw_plane(crtc->primary, crtc);
4222
4223         /*
4224          * FIXME: Once we grow proper nuclear flip support out of this we need
4225          * to compute the mask of flip planes precisely. For the time being
4226          * consider this a flip to a NULL plane.
4227          */
4228         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4229 }
4230
4231 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->dev;
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236         struct intel_encoder *encoder;
4237         int pipe = intel_crtc->pipe;
4238
4239         WARN_ON(!crtc->enabled);
4240
4241         if (intel_crtc->active)
4242                 return;
4243
4244         if (intel_crtc->config.has_pch_encoder)
4245                 intel_prepare_shared_dpll(intel_crtc);
4246
4247         if (intel_crtc->config.has_dp_encoder)
4248                 intel_dp_set_m_n(intel_crtc);
4249
4250         intel_set_pipe_timings(intel_crtc);
4251
4252         if (intel_crtc->config.has_pch_encoder) {
4253                 intel_cpu_transcoder_set_m_n(intel_crtc,
4254                                      &intel_crtc->config.fdi_m_n, NULL);
4255         }
4256
4257         ironlake_set_pipeconf(crtc);
4258
4259         intel_crtc->active = true;
4260
4261         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4263
4264         for_each_encoder_on_crtc(dev, crtc, encoder)
4265                 if (encoder->pre_enable)
4266                         encoder->pre_enable(encoder);
4267
4268         if (intel_crtc->config.has_pch_encoder) {
4269                 /* Note: FDI PLL enabling _must_ be done before we enable the
4270                  * cpu pipes, hence this is separate from all the other fdi/pch
4271                  * enabling. */
4272                 ironlake_fdi_pll_enable(intel_crtc);
4273         } else {
4274                 assert_fdi_tx_disabled(dev_priv, pipe);
4275                 assert_fdi_rx_disabled(dev_priv, pipe);
4276         }
4277
4278         ironlake_pfit_enable(intel_crtc);
4279
4280         /*
4281          * On ILK+ LUT must be loaded before the pipe is running but with
4282          * clocks enabled
4283          */
4284         intel_crtc_load_lut(crtc);
4285
4286         intel_update_watermarks(crtc);
4287         intel_enable_pipe(intel_crtc);
4288
4289         if (intel_crtc->config.has_pch_encoder)
4290                 ironlake_pch_enable(crtc);
4291
4292         for_each_encoder_on_crtc(dev, crtc, encoder)
4293                 encoder->enable(encoder);
4294
4295         if (HAS_PCH_CPT(dev))
4296                 cpt_verify_modeset(dev, intel_crtc->pipe);
4297
4298         assert_vblank_disabled(crtc);
4299         drm_crtc_vblank_on(crtc);
4300
4301         intel_crtc_enable_planes(crtc);
4302 }
4303
4304 /* IPS only exists on ULT machines and is tied to pipe A. */
4305 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306 {
4307         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4308 }
4309
4310 /*
4311  * This implements the workaround described in the "notes" section of the mode
4312  * set sequence documentation. When going from no pipes or single pipe to
4313  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315  */
4316 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317 {
4318         struct drm_device *dev = crtc->base.dev;
4319         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321         /* We want to get the other_active_crtc only if there's only 1 other
4322          * active crtc. */
4323         for_each_intel_crtc(dev, crtc_it) {
4324                 if (!crtc_it->active || crtc_it == crtc)
4325                         continue;
4326
4327                 if (other_active_crtc)
4328                         return;
4329
4330                 other_active_crtc = crtc_it;
4331         }
4332         if (!other_active_crtc)
4333                 return;
4334
4335         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337 }
4338
4339 static void haswell_crtc_enable(struct drm_crtc *crtc)
4340 {
4341         struct drm_device *dev = crtc->dev;
4342         struct drm_i915_private *dev_priv = dev->dev_private;
4343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344         struct intel_encoder *encoder;
4345         int pipe = intel_crtc->pipe;
4346
4347         WARN_ON(!crtc->enabled);
4348
4349         if (intel_crtc->active)
4350                 return;
4351
4352         if (intel_crtc_to_shared_dpll(intel_crtc))
4353                 intel_enable_shared_dpll(intel_crtc);
4354
4355         if (intel_crtc->config.has_dp_encoder)
4356                 intel_dp_set_m_n(intel_crtc);
4357
4358         intel_set_pipe_timings(intel_crtc);
4359
4360         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362                            intel_crtc->config.pixel_multiplier - 1);
4363         }
4364
4365         if (intel_crtc->config.has_pch_encoder) {
4366                 intel_cpu_transcoder_set_m_n(intel_crtc,
4367                                      &intel_crtc->config.fdi_m_n, NULL);
4368         }
4369
4370         haswell_set_pipeconf(crtc);
4371
4372         intel_set_pipe_csc(crtc);
4373
4374         intel_crtc->active = true;
4375
4376         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4377         for_each_encoder_on_crtc(dev, crtc, encoder)
4378                 if (encoder->pre_enable)
4379                         encoder->pre_enable(encoder);
4380
4381         if (intel_crtc->config.has_pch_encoder) {
4382                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383                                                       true);
4384                 dev_priv->display.fdi_link_train(crtc);
4385         }
4386
4387         intel_ddi_enable_pipe_clock(intel_crtc);
4388
4389         ironlake_pfit_enable(intel_crtc);
4390
4391         /*
4392          * On ILK+ LUT must be loaded before the pipe is running but with
4393          * clocks enabled
4394          */
4395         intel_crtc_load_lut(crtc);
4396
4397         intel_ddi_set_pipe_settings(crtc);
4398         intel_ddi_enable_transcoder_func(crtc);
4399
4400         intel_update_watermarks(crtc);
4401         intel_enable_pipe(intel_crtc);
4402
4403         if (intel_crtc->config.has_pch_encoder)
4404                 lpt_pch_enable(crtc);
4405
4406         if (intel_crtc->config.dp_encoder_is_mst)
4407                 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
4409         for_each_encoder_on_crtc(dev, crtc, encoder) {
4410                 encoder->enable(encoder);
4411                 intel_opregion_notify_encoder(encoder, true);
4412         }
4413
4414         assert_vblank_disabled(crtc);
4415         drm_crtc_vblank_on(crtc);
4416
4417         /* If we change the relative order between pipe/planes enabling, we need
4418          * to change the workaround. */
4419         haswell_mode_set_planes_workaround(intel_crtc);
4420         intel_crtc_enable_planes(crtc);
4421 }
4422
4423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424 {
4425         struct drm_device *dev = crtc->base.dev;
4426         struct drm_i915_private *dev_priv = dev->dev_private;
4427         int pipe = crtc->pipe;
4428
4429         /* To avoid upsetting the power well on haswell only disable the pfit if
4430          * it's in use. The hw state code will make sure we get this right. */
4431         if (crtc->config.pch_pfit.enabled) {
4432                 I915_WRITE(PF_CTL(pipe), 0);
4433                 I915_WRITE(PF_WIN_POS(pipe), 0);
4434                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435         }
4436 }
4437
4438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439 {
4440         struct drm_device *dev = crtc->dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4443         struct intel_encoder *encoder;
4444         int pipe = intel_crtc->pipe;
4445         u32 reg, temp;
4446
4447         if (!intel_crtc->active)
4448                 return;
4449
4450         intel_crtc_disable_planes(crtc);
4451
4452         drm_crtc_vblank_off(crtc);
4453         assert_vblank_disabled(crtc);
4454
4455         for_each_encoder_on_crtc(dev, crtc, encoder)
4456                 encoder->disable(encoder);
4457
4458         if (intel_crtc->config.has_pch_encoder)
4459                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4460
4461         intel_disable_pipe(intel_crtc);
4462
4463         ironlake_pfit_disable(intel_crtc);
4464
4465         for_each_encoder_on_crtc(dev, crtc, encoder)
4466                 if (encoder->post_disable)
4467                         encoder->post_disable(encoder);
4468
4469         if (intel_crtc->config.has_pch_encoder) {
4470                 ironlake_fdi_disable(crtc);
4471
4472                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4473                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4474
4475                 if (HAS_PCH_CPT(dev)) {
4476                         /* disable TRANS_DP_CTL */
4477                         reg = TRANS_DP_CTL(pipe);
4478                         temp = I915_READ(reg);
4479                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480                                   TRANS_DP_PORT_SEL_MASK);
4481                         temp |= TRANS_DP_PORT_SEL_NONE;
4482                         I915_WRITE(reg, temp);
4483
4484                         /* disable DPLL_SEL */
4485                         temp = I915_READ(PCH_DPLL_SEL);
4486                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4487                         I915_WRITE(PCH_DPLL_SEL, temp);
4488                 }
4489
4490                 /* disable PCH DPLL */
4491                 intel_disable_shared_dpll(intel_crtc);
4492
4493                 ironlake_fdi_pll_disable(intel_crtc);
4494         }
4495
4496         intel_crtc->active = false;
4497         intel_update_watermarks(crtc);
4498
4499         mutex_lock(&dev->struct_mutex);
4500         intel_update_fbc(dev);
4501         mutex_unlock(&dev->struct_mutex);
4502 }
4503
4504 static void haswell_crtc_disable(struct drm_crtc *crtc)
4505 {
4506         struct drm_device *dev = crtc->dev;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509         struct intel_encoder *encoder;
4510         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4511
4512         if (!intel_crtc->active)
4513                 return;
4514
4515         intel_crtc_disable_planes(crtc);
4516
4517         drm_crtc_vblank_off(crtc);
4518         assert_vblank_disabled(crtc);
4519
4520         for_each_encoder_on_crtc(dev, crtc, encoder) {
4521                 intel_opregion_notify_encoder(encoder, false);
4522                 encoder->disable(encoder);
4523         }
4524
4525         if (intel_crtc->config.has_pch_encoder)
4526                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527                                                       false);
4528         intel_disable_pipe(intel_crtc);
4529
4530         if (intel_crtc->config.dp_encoder_is_mst)
4531                 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
4533         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4534
4535         ironlake_pfit_disable(intel_crtc);
4536
4537         intel_ddi_disable_pipe_clock(intel_crtc);
4538
4539         if (intel_crtc->config.has_pch_encoder) {
4540                 lpt_disable_pch_transcoder(dev_priv);
4541                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542                                                       true);
4543                 intel_ddi_fdi_disable(crtc);
4544         }
4545
4546         for_each_encoder_on_crtc(dev, crtc, encoder)
4547                 if (encoder->post_disable)
4548                         encoder->post_disable(encoder);
4549
4550         intel_crtc->active = false;
4551         intel_update_watermarks(crtc);
4552
4553         mutex_lock(&dev->struct_mutex);
4554         intel_update_fbc(dev);
4555         mutex_unlock(&dev->struct_mutex);
4556
4557         if (intel_crtc_to_shared_dpll(intel_crtc))
4558                 intel_disable_shared_dpll(intel_crtc);
4559 }
4560
4561 static void ironlake_crtc_off(struct drm_crtc *crtc)
4562 {
4563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4564         intel_put_shared_dpll(intel_crtc);
4565 }
4566
4567
4568 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->base.dev;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         struct intel_crtc_config *pipe_config = &crtc->config;
4573
4574         if (!crtc->config.gmch_pfit.control)
4575                 return;
4576
4577         /*
4578          * The panel fitter should only be adjusted whilst the pipe is disabled,
4579          * according to register description and PRM.
4580          */
4581         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582         assert_pipe_disabled(dev_priv, crtc->pipe);
4583
4584         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4586
4587         /* Border color in case we don't scale up to the full screen. Black by
4588          * default, change to something else for debugging. */
4589         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4590 }
4591
4592 static enum intel_display_power_domain port_to_power_domain(enum port port)
4593 {
4594         switch (port) {
4595         case PORT_A:
4596                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597         case PORT_B:
4598                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599         case PORT_C:
4600                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601         case PORT_D:
4602                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603         default:
4604                 WARN_ON_ONCE(1);
4605                 return POWER_DOMAIN_PORT_OTHER;
4606         }
4607 }
4608
4609 #define for_each_power_domain(domain, mask)                             \
4610         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4611                 if ((1 << (domain)) & (mask))
4612
4613 enum intel_display_power_domain
4614 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615 {
4616         struct drm_device *dev = intel_encoder->base.dev;
4617         struct intel_digital_port *intel_dig_port;
4618
4619         switch (intel_encoder->type) {
4620         case INTEL_OUTPUT_UNKNOWN:
4621                 /* Only DDI platforms should ever use this output type */
4622                 WARN_ON_ONCE(!HAS_DDI(dev));
4623         case INTEL_OUTPUT_DISPLAYPORT:
4624         case INTEL_OUTPUT_HDMI:
4625         case INTEL_OUTPUT_EDP:
4626                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4627                 return port_to_power_domain(intel_dig_port->port);
4628         case INTEL_OUTPUT_DP_MST:
4629                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630                 return port_to_power_domain(intel_dig_port->port);
4631         case INTEL_OUTPUT_ANALOG:
4632                 return POWER_DOMAIN_PORT_CRT;
4633         case INTEL_OUTPUT_DSI:
4634                 return POWER_DOMAIN_PORT_DSI;
4635         default:
4636                 return POWER_DOMAIN_PORT_OTHER;
4637         }
4638 }
4639
4640 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4641 {
4642         struct drm_device *dev = crtc->dev;
4643         struct intel_encoder *intel_encoder;
4644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645         enum pipe pipe = intel_crtc->pipe;
4646         unsigned long mask;
4647         enum transcoder transcoder;
4648
4649         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4653         if (intel_crtc->config.pch_pfit.enabled ||
4654             intel_crtc->config.pch_pfit.force_thru)
4655                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
4657         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
4660         return mask;
4661 }
4662
4663 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667         struct intel_crtc *crtc;
4668
4669         /*
4670          * First get all needed power domains, then put all unneeded, to avoid
4671          * any unnecessary toggling of the power wells.
4672          */
4673         for_each_intel_crtc(dev, crtc) {
4674                 enum intel_display_power_domain domain;
4675
4676                 if (!crtc->base.enabled)
4677                         continue;
4678
4679                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4680
4681                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682                         intel_display_power_get(dev_priv, domain);
4683         }
4684
4685         for_each_intel_crtc(dev, crtc) {
4686                 enum intel_display_power_domain domain;
4687
4688                 for_each_power_domain(domain, crtc->enabled_power_domains)
4689                         intel_display_power_put(dev_priv, domain);
4690
4691                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4692         }
4693
4694         intel_display_set_init_power(dev_priv, false);
4695 }
4696
4697 /* returns HPLL frequency in kHz */
4698 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4699 {
4700         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4701
4702         /* Obtain SKU information */
4703         mutex_lock(&dev_priv->dpio_lock);
4704         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4705                 CCK_FUSE_HPLL_FREQ_MASK;
4706         mutex_unlock(&dev_priv->dpio_lock);
4707
4708         return vco_freq[hpll_freq] * 1000;
4709 }
4710
4711 static void vlv_update_cdclk(struct drm_device *dev)
4712 {
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4716         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4717                          dev_priv->vlv_cdclk_freq);
4718
4719         /*
4720          * Program the gmbus_freq based on the cdclk frequency.
4721          * BSpec erroneously claims we should aim for 4MHz, but
4722          * in fact 1MHz is the correct frequency.
4723          */
4724         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4725 }
4726
4727 /* Adjust CDclk dividers to allow high res or save power if possible */
4728 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4729 {
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731         u32 val, cmd;
4732
4733         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4734
4735         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4736                 cmd = 2;
4737         else if (cdclk == 266667)
4738                 cmd = 1;
4739         else
4740                 cmd = 0;
4741
4742         mutex_lock(&dev_priv->rps.hw_lock);
4743         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4744         val &= ~DSPFREQGUAR_MASK;
4745         val |= (cmd << DSPFREQGUAR_SHIFT);
4746         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4747         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4748                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4749                      50)) {
4750                 DRM_ERROR("timed out waiting for CDclk change\n");
4751         }
4752         mutex_unlock(&dev_priv->rps.hw_lock);
4753
4754         if (cdclk == 400000) {
4755                 u32 divider, vco;
4756
4757                 vco = valleyview_get_vco(dev_priv);
4758                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4759
4760                 mutex_lock(&dev_priv->dpio_lock);
4761                 /* adjust cdclk divider */
4762                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4763                 val &= ~DISPLAY_FREQUENCY_VALUES;
4764                 val |= divider;
4765                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4766
4767                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4768                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4769                              50))
4770                         DRM_ERROR("timed out waiting for CDclk change\n");
4771                 mutex_unlock(&dev_priv->dpio_lock);
4772         }
4773
4774         mutex_lock(&dev_priv->dpio_lock);
4775         /* adjust self-refresh exit latency value */
4776         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4777         val &= ~0x7f;
4778
4779         /*
4780          * For high bandwidth configs, we set a higher latency in the bunit
4781          * so that the core display fetch happens in time to avoid underruns.
4782          */
4783         if (cdclk == 400000)
4784                 val |= 4500 / 250; /* 4.5 usec */
4785         else
4786                 val |= 3000 / 250; /* 3.0 usec */
4787         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4788         mutex_unlock(&dev_priv->dpio_lock);
4789
4790         vlv_update_cdclk(dev);
4791 }
4792
4793 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4794 {
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         u32 val, cmd;
4797
4798         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4799
4800         switch (cdclk) {
4801         case 400000:
4802                 cmd = 3;
4803                 break;
4804         case 333333:
4805         case 320000:
4806                 cmd = 2;
4807                 break;
4808         case 266667:
4809                 cmd = 1;
4810                 break;
4811         case 200000:
4812                 cmd = 0;
4813                 break;
4814         default:
4815                 WARN_ON(1);
4816                 return;
4817         }
4818
4819         mutex_lock(&dev_priv->rps.hw_lock);
4820         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4821         val &= ~DSPFREQGUAR_MASK_CHV;
4822         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4823         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4824         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4825                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4826                      50)) {
4827                 DRM_ERROR("timed out waiting for CDclk change\n");
4828         }
4829         mutex_unlock(&dev_priv->rps.hw_lock);
4830
4831         vlv_update_cdclk(dev);
4832 }
4833
4834 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4835                                  int max_pixclk)
4836 {
4837         int vco = valleyview_get_vco(dev_priv);
4838         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4839
4840         /* FIXME: Punit isn't quite ready yet */
4841         if (IS_CHERRYVIEW(dev_priv->dev))
4842                 return 400000;
4843
4844         /*
4845          * Really only a few cases to deal with, as only 4 CDclks are supported:
4846          *   200MHz
4847          *   267MHz
4848          *   320/333MHz (depends on HPLL freq)
4849          *   400MHz
4850          * So we check to see whether we're above 90% of the lower bin and
4851          * adjust if needed.
4852          *
4853          * We seem to get an unstable or solid color picture at 200MHz.
4854          * Not sure what's wrong. For now use 200MHz only when all pipes
4855          * are off.
4856          */
4857         if (max_pixclk > freq_320*9/10)
4858                 return 400000;
4859         else if (max_pixclk > 266667*9/10)
4860                 return freq_320;
4861         else if (max_pixclk > 0)
4862                 return 266667;
4863         else
4864                 return 200000;
4865 }
4866
4867 /* compute the max pixel clock for new configuration */
4868 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4869 {
4870         struct drm_device *dev = dev_priv->dev;
4871         struct intel_crtc *intel_crtc;
4872         int max_pixclk = 0;
4873
4874         for_each_intel_crtc(dev, intel_crtc) {
4875                 if (intel_crtc->new_enabled)
4876                         max_pixclk = max(max_pixclk,
4877                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4878         }
4879
4880         return max_pixclk;
4881 }
4882
4883 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4884                                             unsigned *prepare_pipes)
4885 {
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct intel_crtc *intel_crtc;
4888         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4889
4890         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4891             dev_priv->vlv_cdclk_freq)
4892                 return;
4893
4894         /* disable/enable all currently active pipes while we change cdclk */
4895         for_each_intel_crtc(dev, intel_crtc)
4896                 if (intel_crtc->base.enabled)
4897                         *prepare_pipes |= (1 << intel_crtc->pipe);
4898 }
4899
4900 static void valleyview_modeset_global_resources(struct drm_device *dev)
4901 {
4902         struct drm_i915_private *dev_priv = dev->dev_private;
4903         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4904         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4905
4906         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4907                 if (IS_CHERRYVIEW(dev))
4908                         cherryview_set_cdclk(dev, req_cdclk);
4909                 else
4910                         valleyview_set_cdclk(dev, req_cdclk);
4911         }
4912
4913         modeset_update_crtc_power_domains(dev);
4914 }
4915
4916 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4917 {
4918         struct drm_device *dev = crtc->dev;
4919         struct drm_i915_private *dev_priv = to_i915(dev);
4920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921         struct intel_encoder *encoder;
4922         int pipe = intel_crtc->pipe;
4923         bool is_dsi;
4924
4925         WARN_ON(!crtc->enabled);
4926
4927         if (intel_crtc->active)
4928                 return;
4929
4930         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4931
4932         if (!is_dsi) {
4933                 if (IS_CHERRYVIEW(dev))
4934                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4935                 else
4936                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4937         }
4938
4939         if (intel_crtc->config.has_dp_encoder)
4940                 intel_dp_set_m_n(intel_crtc);
4941
4942         intel_set_pipe_timings(intel_crtc);
4943
4944         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4945                 struct drm_i915_private *dev_priv = dev->dev_private;
4946
4947                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4948                 I915_WRITE(CHV_CANVAS(pipe), 0);
4949         }
4950
4951         i9xx_set_pipeconf(intel_crtc);
4952
4953         intel_crtc->active = true;
4954
4955         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4956
4957         for_each_encoder_on_crtc(dev, crtc, encoder)
4958                 if (encoder->pre_pll_enable)
4959                         encoder->pre_pll_enable(encoder);
4960
4961         if (!is_dsi) {
4962                 if (IS_CHERRYVIEW(dev))
4963                         chv_enable_pll(intel_crtc, &intel_crtc->config);
4964                 else
4965                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
4966         }
4967
4968         for_each_encoder_on_crtc(dev, crtc, encoder)
4969                 if (encoder->pre_enable)
4970                         encoder->pre_enable(encoder);
4971
4972         i9xx_pfit_enable(intel_crtc);
4973
4974         intel_crtc_load_lut(crtc);
4975
4976         intel_update_watermarks(crtc);
4977         intel_enable_pipe(intel_crtc);
4978
4979         for_each_encoder_on_crtc(dev, crtc, encoder)
4980                 encoder->enable(encoder);
4981
4982         assert_vblank_disabled(crtc);
4983         drm_crtc_vblank_on(crtc);
4984
4985         intel_crtc_enable_planes(crtc);
4986
4987         /* Underruns don't raise interrupts, so check manually. */
4988         i9xx_check_fifo_underruns(dev_priv);
4989 }
4990
4991 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4992 {
4993         struct drm_device *dev = crtc->base.dev;
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4997         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4998 }
4999
5000 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = to_i915(dev);
5004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005         struct intel_encoder *encoder;
5006         int pipe = intel_crtc->pipe;
5007
5008         WARN_ON(!crtc->enabled);
5009
5010         if (intel_crtc->active)
5011                 return;
5012
5013         i9xx_set_pll_dividers(intel_crtc);
5014
5015         if (intel_crtc->config.has_dp_encoder)
5016                 intel_dp_set_m_n(intel_crtc);
5017
5018         intel_set_pipe_timings(intel_crtc);
5019
5020         i9xx_set_pipeconf(intel_crtc);
5021
5022         intel_crtc->active = true;
5023
5024         if (!IS_GEN2(dev))
5025                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5026
5027         for_each_encoder_on_crtc(dev, crtc, encoder)
5028                 if (encoder->pre_enable)
5029                         encoder->pre_enable(encoder);
5030
5031         i9xx_enable_pll(intel_crtc);
5032
5033         i9xx_pfit_enable(intel_crtc);
5034
5035         intel_crtc_load_lut(crtc);
5036
5037         intel_update_watermarks(crtc);
5038         intel_enable_pipe(intel_crtc);
5039
5040         for_each_encoder_on_crtc(dev, crtc, encoder)
5041                 encoder->enable(encoder);
5042
5043         assert_vblank_disabled(crtc);
5044         drm_crtc_vblank_on(crtc);
5045
5046         intel_crtc_enable_planes(crtc);
5047
5048         /*
5049          * Gen2 reports pipe underruns whenever all planes are disabled.
5050          * So don't enable underrun reporting before at least some planes
5051          * are enabled.
5052          * FIXME: Need to fix the logic to work when we turn off all planes
5053          * but leave the pipe running.
5054          */
5055         if (IS_GEN2(dev))
5056                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5057
5058         /* Underruns don't raise interrupts, so check manually. */
5059         i9xx_check_fifo_underruns(dev_priv);
5060 }
5061
5062 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5063 {
5064         struct drm_device *dev = crtc->base.dev;
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066
5067         if (!crtc->config.gmch_pfit.control)
5068                 return;
5069
5070         assert_pipe_disabled(dev_priv, crtc->pipe);
5071
5072         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5073                          I915_READ(PFIT_CONTROL));
5074         I915_WRITE(PFIT_CONTROL, 0);
5075 }
5076
5077 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082         struct intel_encoder *encoder;
5083         int pipe = intel_crtc->pipe;
5084
5085         if (!intel_crtc->active)
5086                 return;
5087
5088         /*
5089          * Gen2 reports pipe underruns whenever all planes are disabled.
5090          * So diasble underrun reporting before all the planes get disabled.
5091          * FIXME: Need to fix the logic to work when we turn off all planes
5092          * but leave the pipe running.
5093          */
5094         if (IS_GEN2(dev))
5095                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097         /*
5098          * Vblank time updates from the shadow to live plane control register
5099          * are blocked if the memory self-refresh mode is active at that
5100          * moment. So to make sure the plane gets truly disabled, disable
5101          * first the self-refresh mode. The self-refresh enable bit in turn
5102          * will be checked/applied by the HW only at the next frame start
5103          * event which is after the vblank start event, so we need to have a
5104          * wait-for-vblank between disabling the plane and the pipe.
5105          */
5106         intel_set_memory_cxsr(dev_priv, false);
5107         intel_crtc_disable_planes(crtc);
5108
5109         /*
5110          * On gen2 planes are double buffered but the pipe isn't, so we must
5111          * wait for planes to fully turn off before disabling the pipe.
5112          * We also need to wait on all gmch platforms because of the
5113          * self-refresh mode constraint explained above.
5114          */
5115         intel_wait_for_vblank(dev, pipe);
5116
5117         drm_crtc_vblank_off(crtc);
5118         assert_vblank_disabled(crtc);
5119
5120         for_each_encoder_on_crtc(dev, crtc, encoder)
5121                 encoder->disable(encoder);
5122
5123         intel_disable_pipe(intel_crtc);
5124
5125         i9xx_pfit_disable(intel_crtc);
5126
5127         for_each_encoder_on_crtc(dev, crtc, encoder)
5128                 if (encoder->post_disable)
5129                         encoder->post_disable(encoder);
5130
5131         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5132                 if (IS_CHERRYVIEW(dev))
5133                         chv_disable_pll(dev_priv, pipe);
5134                 else if (IS_VALLEYVIEW(dev))
5135                         vlv_disable_pll(dev_priv, pipe);
5136                 else
5137                         i9xx_disable_pll(intel_crtc);
5138         }
5139
5140         if (!IS_GEN2(dev))
5141                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5142
5143         intel_crtc->active = false;
5144         intel_update_watermarks(crtc);
5145
5146         mutex_lock(&dev->struct_mutex);
5147         intel_update_fbc(dev);
5148         mutex_unlock(&dev->struct_mutex);
5149 }
5150
5151 static void i9xx_crtc_off(struct drm_crtc *crtc)
5152 {
5153 }
5154
5155 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5156                                     bool enabled)
5157 {
5158         struct drm_device *dev = crtc->dev;
5159         struct drm_i915_master_private *master_priv;
5160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161         int pipe = intel_crtc->pipe;
5162
5163         if (!dev->primary->master)
5164                 return;
5165
5166         master_priv = dev->primary->master->driver_priv;
5167         if (!master_priv->sarea_priv)
5168                 return;
5169
5170         switch (pipe) {
5171         case 0:
5172                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5173                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5174                 break;
5175         case 1:
5176                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5177                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5178                 break;
5179         default:
5180                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5181                 break;
5182         }
5183 }
5184
5185 /* Master function to enable/disable CRTC and corresponding power wells */
5186 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5187 {
5188         struct drm_device *dev = crtc->dev;
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5191         enum intel_display_power_domain domain;
5192         unsigned long domains;
5193
5194         if (enable) {
5195                 if (!intel_crtc->active) {
5196                         domains = get_crtc_power_domains(crtc);
5197                         for_each_power_domain(domain, domains)
5198                                 intel_display_power_get(dev_priv, domain);
5199                         intel_crtc->enabled_power_domains = domains;
5200
5201                         dev_priv->display.crtc_enable(crtc);
5202                 }
5203         } else {
5204                 if (intel_crtc->active) {
5205                         dev_priv->display.crtc_disable(crtc);
5206
5207                         domains = intel_crtc->enabled_power_domains;
5208                         for_each_power_domain(domain, domains)
5209                                 intel_display_power_put(dev_priv, domain);
5210                         intel_crtc->enabled_power_domains = 0;
5211                 }
5212         }
5213 }
5214
5215 /**
5216  * Sets the power management mode of the pipe and plane.
5217  */
5218 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5219 {
5220         struct drm_device *dev = crtc->dev;
5221         struct intel_encoder *intel_encoder;
5222         bool enable = false;
5223
5224         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225                 enable |= intel_encoder->connectors_active;
5226
5227         intel_crtc_control(crtc, enable);
5228
5229         intel_crtc_update_sarea(crtc, enable);
5230 }
5231
5232 static void intel_crtc_disable(struct drm_crtc *crtc)
5233 {
5234         struct drm_device *dev = crtc->dev;
5235         struct drm_connector *connector;
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5238         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5239
5240         /* crtc should still be enabled when we disable it. */
5241         WARN_ON(!crtc->enabled);
5242
5243         dev_priv->display.crtc_disable(crtc);
5244         intel_crtc_update_sarea(crtc, false);
5245         dev_priv->display.off(crtc);
5246
5247         if (crtc->primary->fb) {
5248                 mutex_lock(&dev->struct_mutex);
5249                 intel_unpin_fb_obj(old_obj);
5250                 i915_gem_track_fb(old_obj, NULL,
5251                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5252                 mutex_unlock(&dev->struct_mutex);
5253                 crtc->primary->fb = NULL;
5254         }
5255
5256         /* Update computed state. */
5257         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258                 if (!connector->encoder || !connector->encoder->crtc)
5259                         continue;
5260
5261                 if (connector->encoder->crtc != crtc)
5262                         continue;
5263
5264                 connector->dpms = DRM_MODE_DPMS_OFF;
5265                 to_intel_encoder(connector->encoder)->connectors_active = false;
5266         }
5267 }
5268
5269 void intel_encoder_destroy(struct drm_encoder *encoder)
5270 {
5271         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5272
5273         drm_encoder_cleanup(encoder);
5274         kfree(intel_encoder);
5275 }
5276
5277 /* Simple dpms helper for encoders with just one connector, no cloning and only
5278  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279  * state of the entire output pipe. */
5280 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5281 {
5282         if (mode == DRM_MODE_DPMS_ON) {
5283                 encoder->connectors_active = true;
5284
5285                 intel_crtc_update_dpms(encoder->base.crtc);
5286         } else {
5287                 encoder->connectors_active = false;
5288
5289                 intel_crtc_update_dpms(encoder->base.crtc);
5290         }
5291 }
5292
5293 /* Cross check the actual hw state with our own modeset state tracking (and it's
5294  * internal consistency). */
5295 static void intel_connector_check_state(struct intel_connector *connector)
5296 {
5297         if (connector->get_hw_state(connector)) {
5298                 struct intel_encoder *encoder = connector->encoder;
5299                 struct drm_crtc *crtc;
5300                 bool encoder_enabled;
5301                 enum pipe pipe;
5302
5303                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304                               connector->base.base.id,
5305                               connector->base.name);
5306
5307                 /* there is no real hw state for MST connectors */
5308                 if (connector->mst_port)
5309                         return;
5310
5311                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312                      "wrong connector dpms state\n");
5313                 WARN(connector->base.encoder != &encoder->base,
5314                      "active connector not linked to encoder\n");
5315
5316                 if (encoder) {
5317                         WARN(!encoder->connectors_active,
5318                              "encoder->connectors_active not set\n");
5319
5320                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321                         WARN(!encoder_enabled, "encoder not enabled\n");
5322                         if (WARN_ON(!encoder->base.crtc))
5323                                 return;
5324
5325                         crtc = encoder->base.crtc;
5326
5327                         WARN(!crtc->enabled, "crtc not enabled\n");
5328                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5330                              "encoder active on the wrong pipe\n");
5331                 }
5332         }
5333 }
5334
5335 /* Even simpler default implementation, if there's really no special case to
5336  * consider. */
5337 void intel_connector_dpms(struct drm_connector *connector, int mode)
5338 {
5339         /* All the simple cases only support two dpms states. */
5340         if (mode != DRM_MODE_DPMS_ON)
5341                 mode = DRM_MODE_DPMS_OFF;
5342
5343         if (mode == connector->dpms)
5344                 return;
5345
5346         connector->dpms = mode;
5347
5348         /* Only need to change hw state when actually enabled */
5349         if (connector->encoder)
5350                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5351
5352         intel_modeset_check_state(connector->dev);
5353 }
5354
5355 /* Simple connector->get_hw_state implementation for encoders that support only
5356  * one connector and no cloning and hence the encoder state determines the state
5357  * of the connector. */
5358 bool intel_connector_get_hw_state(struct intel_connector *connector)
5359 {
5360         enum pipe pipe = 0;
5361         struct intel_encoder *encoder = connector->encoder;
5362
5363         return encoder->get_hw_state(encoder, &pipe);
5364 }
5365
5366 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367                                      struct intel_crtc_config *pipe_config)
5368 {
5369         struct drm_i915_private *dev_priv = dev->dev_private;
5370         struct intel_crtc *pipe_B_crtc =
5371                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374                       pipe_name(pipe), pipe_config->fdi_lanes);
5375         if (pipe_config->fdi_lanes > 4) {
5376                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377                               pipe_name(pipe), pipe_config->fdi_lanes);
5378                 return false;
5379         }
5380
5381         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5382                 if (pipe_config->fdi_lanes > 2) {
5383                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384                                       pipe_config->fdi_lanes);
5385                         return false;
5386                 } else {
5387                         return true;
5388                 }
5389         }
5390
5391         if (INTEL_INFO(dev)->num_pipes == 2)
5392                 return true;
5393
5394         /* Ivybridge 3 pipe is really complicated */
5395         switch (pipe) {
5396         case PIPE_A:
5397                 return true;
5398         case PIPE_B:
5399                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400                     pipe_config->fdi_lanes > 2) {
5401                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402                                       pipe_name(pipe), pipe_config->fdi_lanes);
5403                         return false;
5404                 }
5405                 return true;
5406         case PIPE_C:
5407                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5408                     pipe_B_crtc->config.fdi_lanes <= 2) {
5409                         if (pipe_config->fdi_lanes > 2) {
5410                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411                                               pipe_name(pipe), pipe_config->fdi_lanes);
5412                                 return false;
5413                         }
5414                 } else {
5415                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416                         return false;
5417                 }
5418                 return true;
5419         default:
5420                 BUG();
5421         }
5422 }
5423
5424 #define RETRY 1
5425 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426                                        struct intel_crtc_config *pipe_config)
5427 {
5428         struct drm_device *dev = intel_crtc->base.dev;
5429         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5430         int lane, link_bw, fdi_dotclock;
5431         bool setup_ok, needs_recompute = false;
5432
5433 retry:
5434         /* FDI is a binary signal running at ~2.7GHz, encoding
5435          * each output octet as 10 bits. The actual frequency
5436          * is stored as a divider into a 100MHz clock, and the
5437          * mode pixel clock is stored in units of 1KHz.
5438          * Hence the bw of each lane in terms of the mode signal
5439          * is:
5440          */
5441         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
5443         fdi_dotclock = adjusted_mode->crtc_clock;
5444
5445         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5446                                            pipe_config->pipe_bpp);
5447
5448         pipe_config->fdi_lanes = lane;
5449
5450         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5451                                link_bw, &pipe_config->fdi_m_n);
5452
5453         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454                                             intel_crtc->pipe, pipe_config);
5455         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456                 pipe_config->pipe_bpp -= 2*3;
5457                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458                               pipe_config->pipe_bpp);
5459                 needs_recompute = true;
5460                 pipe_config->bw_constrained = true;
5461
5462                 goto retry;
5463         }
5464
5465         if (needs_recompute)
5466                 return RETRY;
5467
5468         return setup_ok ? 0 : -EINVAL;
5469 }
5470
5471 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472                                    struct intel_crtc_config *pipe_config)
5473 {
5474         pipe_config->ips_enabled = i915.enable_ips &&
5475                                    hsw_crtc_supports_ips(crtc) &&
5476                                    pipe_config->pipe_bpp <= 24;
5477 }
5478
5479 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5480                                      struct intel_crtc_config *pipe_config)
5481 {
5482         struct drm_device *dev = crtc->base.dev;
5483         struct drm_i915_private *dev_priv = dev->dev_private;
5484         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5485
5486         /* FIXME should check pixel clock limits on all platforms */
5487         if (INTEL_INFO(dev)->gen < 4) {
5488                 int clock_limit =
5489                         dev_priv->display.get_display_clock_speed(dev);
5490
5491                 /*
5492                  * Enable pixel doubling when the dot clock
5493                  * is > 90% of the (display) core speed.
5494                  *
5495                  * GDG double wide on either pipe,
5496                  * otherwise pipe A only.
5497                  */
5498                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5499                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5500                         clock_limit *= 2;
5501                         pipe_config->double_wide = true;
5502                 }
5503
5504                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5505                         return -EINVAL;
5506         }
5507
5508         /*
5509          * Pipe horizontal size must be even in:
5510          * - DVO ganged mode
5511          * - LVDS dual channel mode
5512          * - Double wide pipe
5513          */
5514         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5515              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516                 pipe_config->pipe_src_w &= ~1;
5517
5518         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5520          */
5521         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5523                 return -EINVAL;
5524
5525         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5526                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5527         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5528                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529                  * for lvds. */
5530                 pipe_config->pipe_bpp = 8*3;
5531         }
5532
5533         if (HAS_IPS(dev))
5534                 hsw_compute_ips_config(crtc, pipe_config);
5535
5536         /*
5537          * XXX: PCH/WRPLL clock sharing is done in ->mode_set if ->compute_clock is not
5538          * set, so make sure the old clock survives for now.
5539          */
5540         if (dev_priv->display.crtc_compute_clock == NULL &&
5541             (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)))
5542                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5543
5544         if (pipe_config->has_pch_encoder)
5545                 return ironlake_fdi_compute_config(crtc, pipe_config);
5546
5547         return 0;
5548 }
5549
5550 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5551 {
5552         struct drm_i915_private *dev_priv = dev->dev_private;
5553         int vco = valleyview_get_vco(dev_priv);
5554         u32 val;
5555         int divider;
5556
5557         /* FIXME: Punit isn't quite ready yet */
5558         if (IS_CHERRYVIEW(dev))
5559                 return 400000;
5560
5561         mutex_lock(&dev_priv->dpio_lock);
5562         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5563         mutex_unlock(&dev_priv->dpio_lock);
5564
5565         divider = val & DISPLAY_FREQUENCY_VALUES;
5566
5567         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5568              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5569              "cdclk change in progress\n");
5570
5571         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5572 }
5573
5574 static int i945_get_display_clock_speed(struct drm_device *dev)
5575 {
5576         return 400000;
5577 }
5578
5579 static int i915_get_display_clock_speed(struct drm_device *dev)
5580 {
5581         return 333000;
5582 }
5583
5584 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5585 {
5586         return 200000;
5587 }
5588
5589 static int pnv_get_display_clock_speed(struct drm_device *dev)
5590 {
5591         u16 gcfgc = 0;
5592
5593         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5594
5595         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5596         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5597                 return 267000;
5598         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5599                 return 333000;
5600         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5601                 return 444000;
5602         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5603                 return 200000;
5604         default:
5605                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5606         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5607                 return 133000;
5608         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5609                 return 167000;
5610         }
5611 }
5612
5613 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5614 {
5615         u16 gcfgc = 0;
5616
5617         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5618
5619         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5620                 return 133000;
5621         else {
5622                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623                 case GC_DISPLAY_CLOCK_333_MHZ:
5624                         return 333000;
5625                 default:
5626                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5627                         return 190000;
5628                 }
5629         }
5630 }
5631
5632 static int i865_get_display_clock_speed(struct drm_device *dev)
5633 {
5634         return 266000;
5635 }
5636
5637 static int i855_get_display_clock_speed(struct drm_device *dev)
5638 {
5639         u16 hpllcc = 0;
5640         /* Assume that the hardware is in the high speed state.  This
5641          * should be the default.
5642          */
5643         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5644         case GC_CLOCK_133_200:
5645         case GC_CLOCK_100_200:
5646                 return 200000;
5647         case GC_CLOCK_166_250:
5648                 return 250000;
5649         case GC_CLOCK_100_133:
5650                 return 133000;
5651         }
5652
5653         /* Shouldn't happen */
5654         return 0;
5655 }
5656
5657 static int i830_get_display_clock_speed(struct drm_device *dev)
5658 {
5659         return 133000;
5660 }
5661
5662 static void
5663 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5664 {
5665         while (*num > DATA_LINK_M_N_MASK ||
5666                *den > DATA_LINK_M_N_MASK) {
5667                 *num >>= 1;
5668                 *den >>= 1;
5669         }
5670 }
5671
5672 static void compute_m_n(unsigned int m, unsigned int n,
5673                         uint32_t *ret_m, uint32_t *ret_n)
5674 {
5675         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5676         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5677         intel_reduce_m_n_ratio(ret_m, ret_n);
5678 }
5679
5680 void
5681 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5682                        int pixel_clock, int link_clock,
5683                        struct intel_link_m_n *m_n)
5684 {
5685         m_n->tu = 64;
5686
5687         compute_m_n(bits_per_pixel * pixel_clock,
5688                     link_clock * nlanes * 8,
5689                     &m_n->gmch_m, &m_n->gmch_n);
5690
5691         compute_m_n(pixel_clock, link_clock,
5692                     &m_n->link_m, &m_n->link_n);
5693 }
5694
5695 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5696 {
5697         if (i915.panel_use_ssc >= 0)
5698                 return i915.panel_use_ssc != 0;
5699         return dev_priv->vbt.lvds_use_ssc
5700                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5701 }
5702
5703 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5704 {
5705         struct drm_device *dev = crtc->base.dev;
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         int refclk;
5708
5709         if (IS_VALLEYVIEW(dev)) {
5710                 refclk = 100000;
5711         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5712             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5713                 refclk = dev_priv->vbt.lvds_ssc_freq;
5714                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5715         } else if (!IS_GEN2(dev)) {
5716                 refclk = 96000;
5717         } else {
5718                 refclk = 48000;
5719         }
5720
5721         return refclk;
5722 }
5723
5724 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5725 {
5726         return (1 << dpll->n) << 16 | dpll->m2;
5727 }
5728
5729 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5730 {
5731         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5732 }
5733
5734 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5735                                      intel_clock_t *reduced_clock)
5736 {
5737         struct drm_device *dev = crtc->base.dev;
5738         u32 fp, fp2 = 0;
5739
5740         if (IS_PINEVIEW(dev)) {
5741                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5742                 if (reduced_clock)
5743                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5744         } else {
5745                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5746                 if (reduced_clock)
5747                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5748         }
5749
5750         crtc->config.dpll_hw_state.fp0 = fp;
5751
5752         crtc->lowfreq_avail = false;
5753         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5754             reduced_clock && i915.powersave) {
5755                 crtc->config.dpll_hw_state.fp1 = fp2;
5756                 crtc->lowfreq_avail = true;
5757         } else {
5758                 crtc->config.dpll_hw_state.fp1 = fp;
5759         }
5760 }
5761
5762 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5763                 pipe)
5764 {
5765         u32 reg_val;
5766
5767         /*
5768          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5769          * and set it to a reasonable value instead.
5770          */
5771         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5772         reg_val &= 0xffffff00;
5773         reg_val |= 0x00000030;
5774         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5775
5776         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5777         reg_val &= 0x8cffffff;
5778         reg_val = 0x8c000000;
5779         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5780
5781         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5782         reg_val &= 0xffffff00;
5783         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5784
5785         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5786         reg_val &= 0x00ffffff;
5787         reg_val |= 0xb0000000;
5788         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5789 }
5790
5791 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5792                                          struct intel_link_m_n *m_n)
5793 {
5794         struct drm_device *dev = crtc->base.dev;
5795         struct drm_i915_private *dev_priv = dev->dev_private;
5796         int pipe = crtc->pipe;
5797
5798         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5799         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5800         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5801         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5802 }
5803
5804 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5805                                          struct intel_link_m_n *m_n,
5806                                          struct intel_link_m_n *m2_n2)
5807 {
5808         struct drm_device *dev = crtc->base.dev;
5809         struct drm_i915_private *dev_priv = dev->dev_private;
5810         int pipe = crtc->pipe;
5811         enum transcoder transcoder = crtc->config.cpu_transcoder;
5812
5813         if (INTEL_INFO(dev)->gen >= 5) {
5814                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5815                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5816                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5817                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5818                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5819                  * for gen < 8) and if DRRS is supported (to make sure the
5820                  * registers are not unnecessarily accessed).
5821                  */
5822                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5823                         crtc->config.has_drrs) {
5824                         I915_WRITE(PIPE_DATA_M2(transcoder),
5825                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5826                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5827                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5828                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5829                 }
5830         } else {
5831                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5832                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5833                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5834                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5835         }
5836 }
5837
5838 void intel_dp_set_m_n(struct intel_crtc *crtc)
5839 {
5840         if (crtc->config.has_pch_encoder)
5841                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5842         else
5843                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5844                                                    &crtc->config.dp_m2_n2);
5845 }
5846
5847 static void vlv_update_pll(struct intel_crtc *crtc,
5848                            struct intel_crtc_config *pipe_config)
5849 {
5850         u32 dpll, dpll_md;
5851
5852         /*
5853          * Enable DPIO clock input. We should never disable the reference
5854          * clock for pipe B, since VGA hotplug / manual detection depends
5855          * on it.
5856          */
5857         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5858                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5859         /* We should never disable this, set it here for state tracking */
5860         if (crtc->pipe == PIPE_B)
5861                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5862         dpll |= DPLL_VCO_ENABLE;
5863         pipe_config->dpll_hw_state.dpll = dpll;
5864
5865         dpll_md = (pipe_config->pixel_multiplier - 1)
5866                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5867         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5868 }
5869
5870 static void vlv_prepare_pll(struct intel_crtc *crtc,
5871                             const struct intel_crtc_config *pipe_config)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         int pipe = crtc->pipe;
5876         u32 mdiv;
5877         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5878         u32 coreclk, reg_val;
5879
5880         mutex_lock(&dev_priv->dpio_lock);
5881
5882         bestn = pipe_config->dpll.n;
5883         bestm1 = pipe_config->dpll.m1;
5884         bestm2 = pipe_config->dpll.m2;
5885         bestp1 = pipe_config->dpll.p1;
5886         bestp2 = pipe_config->dpll.p2;
5887
5888         /* See eDP HDMI DPIO driver vbios notes doc */
5889
5890         /* PLL B needs special handling */
5891         if (pipe == PIPE_B)
5892                 vlv_pllb_recal_opamp(dev_priv, pipe);
5893
5894         /* Set up Tx target for periodic Rcomp update */
5895         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5896
5897         /* Disable target IRef on PLL */
5898         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5899         reg_val &= 0x00ffffff;
5900         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5901
5902         /* Disable fast lock */
5903         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5904
5905         /* Set idtafcrecal before PLL is enabled */
5906         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5907         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5908         mdiv |= ((bestn << DPIO_N_SHIFT));
5909         mdiv |= (1 << DPIO_K_SHIFT);
5910
5911         /*
5912          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5913          * but we don't support that).
5914          * Note: don't use the DAC post divider as it seems unstable.
5915          */
5916         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919         mdiv |= DPIO_ENABLE_CALIBRATION;
5920         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5921
5922         /* Set HBR and RBR LPF coefficients */
5923         if (pipe_config->port_clock == 162000 ||
5924             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5925             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5926                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927                                  0x009f0003);
5928         else
5929                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5930                                  0x00d0000f);
5931
5932         if (crtc->config.has_dp_encoder) {
5933                 /* Use SSC source */
5934                 if (pipe == PIPE_A)
5935                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936                                          0x0df40000);
5937                 else
5938                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5939                                          0x0df70000);
5940         } else { /* HDMI or VGA */
5941                 /* Use bend source */
5942                 if (pipe == PIPE_A)
5943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944                                          0x0df70000);
5945                 else
5946                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5947                                          0x0df40000);
5948         }
5949
5950         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5951         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5952         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5953             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5954                 coreclk |= 0x01000000;
5955         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5956
5957         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5958         mutex_unlock(&dev_priv->dpio_lock);
5959 }
5960
5961 static void chv_update_pll(struct intel_crtc *crtc,
5962                            struct intel_crtc_config *pipe_config)
5963 {
5964         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5965                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5966                 DPLL_VCO_ENABLE;
5967         if (crtc->pipe != PIPE_A)
5968                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5969
5970         pipe_config->dpll_hw_state.dpll_md =
5971                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5972 }
5973
5974 static void chv_prepare_pll(struct intel_crtc *crtc,
5975                             const struct intel_crtc_config *pipe_config)
5976 {
5977         struct drm_device *dev = crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         int pipe = crtc->pipe;
5980         int dpll_reg = DPLL(crtc->pipe);
5981         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5982         u32 loopfilter, intcoeff;
5983         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5984         int refclk;
5985
5986         bestn = pipe_config->dpll.n;
5987         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5988         bestm1 = pipe_config->dpll.m1;
5989         bestm2 = pipe_config->dpll.m2 >> 22;
5990         bestp1 = pipe_config->dpll.p1;
5991         bestp2 = pipe_config->dpll.p2;
5992
5993         /*
5994          * Enable Refclk and SSC
5995          */
5996         I915_WRITE(dpll_reg,
5997                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5998
5999         mutex_lock(&dev_priv->dpio_lock);
6000
6001         /* p1 and p2 divider */
6002         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6003                         5 << DPIO_CHV_S1_DIV_SHIFT |
6004                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6005                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6006                         1 << DPIO_CHV_K_DIV_SHIFT);
6007
6008         /* Feedback post-divider - m2 */
6009         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6010
6011         /* Feedback refclk divider - n and m1 */
6012         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6013                         DPIO_CHV_M1_DIV_BY_2 |
6014                         1 << DPIO_CHV_N_DIV_SHIFT);
6015
6016         /* M2 fraction division */
6017         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6018
6019         /* M2 fraction division enable */
6020         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6021                        DPIO_CHV_FRAC_DIV_EN |
6022                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6023
6024         /* Loop filter */
6025         refclk = i9xx_get_refclk(crtc, 0);
6026         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6027                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6028         if (refclk == 100000)
6029                 intcoeff = 11;
6030         else if (refclk == 38400)
6031                 intcoeff = 10;
6032         else
6033                 intcoeff = 9;
6034         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6035         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6036
6037         /* AFC Recal */
6038         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6039                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6040                         DPIO_AFC_RECAL);
6041
6042         mutex_unlock(&dev_priv->dpio_lock);
6043 }
6044
6045 /**
6046  * vlv_force_pll_on - forcibly enable just the PLL
6047  * @dev_priv: i915 private structure
6048  * @pipe: pipe PLL to enable
6049  * @dpll: PLL configuration
6050  *
6051  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6052  * in cases where we need the PLL enabled even when @pipe is not going to
6053  * be enabled.
6054  */
6055 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6056                       const struct dpll *dpll)
6057 {
6058         struct intel_crtc *crtc =
6059                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6060         struct intel_crtc_config pipe_config = {
6061                 .pixel_multiplier = 1,
6062                 .dpll = *dpll,
6063         };
6064
6065         if (IS_CHERRYVIEW(dev)) {
6066                 chv_update_pll(crtc, &pipe_config);
6067                 chv_prepare_pll(crtc, &pipe_config);
6068                 chv_enable_pll(crtc, &pipe_config);
6069         } else {
6070                 vlv_update_pll(crtc, &pipe_config);
6071                 vlv_prepare_pll(crtc, &pipe_config);
6072                 vlv_enable_pll(crtc, &pipe_config);
6073         }
6074 }
6075
6076 /**
6077  * vlv_force_pll_off - forcibly disable just the PLL
6078  * @dev_priv: i915 private structure
6079  * @pipe: pipe PLL to disable
6080  *
6081  * Disable the PLL for @pipe. To be used in cases where we need
6082  * the PLL enabled even when @pipe is not going to be enabled.
6083  */
6084 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6085 {
6086         if (IS_CHERRYVIEW(dev))
6087                 chv_disable_pll(to_i915(dev), pipe);
6088         else
6089                 vlv_disable_pll(to_i915(dev), pipe);
6090 }
6091
6092 static void i9xx_update_pll(struct intel_crtc *crtc,
6093                             intel_clock_t *reduced_clock,
6094                             int num_connectors)
6095 {
6096         struct drm_device *dev = crtc->base.dev;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098         u32 dpll;
6099         bool is_sdvo;
6100         struct dpll *clock = &crtc->new_config->dpll;
6101
6102         i9xx_update_pll_dividers(crtc, reduced_clock);
6103
6104         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6106
6107         dpll = DPLL_VGA_MODE_DIS;
6108
6109         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6110                 dpll |= DPLLB_MODE_LVDS;
6111         else
6112                 dpll |= DPLLB_MODE_DAC_SERIAL;
6113
6114         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6115                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6116                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6117         }
6118
6119         if (is_sdvo)
6120                 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122         if (crtc->new_config->has_dp_encoder)
6123                 dpll |= DPLL_SDVO_HIGH_SPEED;
6124
6125         /* compute bitmask from p1 value */
6126         if (IS_PINEVIEW(dev))
6127                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128         else {
6129                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130                 if (IS_G4X(dev) && reduced_clock)
6131                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132         }
6133         switch (clock->p2) {
6134         case 5:
6135                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136                 break;
6137         case 7:
6138                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139                 break;
6140         case 10:
6141                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142                 break;
6143         case 14:
6144                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145                 break;
6146         }
6147         if (INTEL_INFO(dev)->gen >= 4)
6148                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
6150         if (crtc->new_config->sdvo_tv_clock)
6151                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6152         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6153                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155         else
6156                 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158         dpll |= DPLL_VCO_ENABLE;
6159         crtc->new_config->dpll_hw_state.dpll = dpll;
6160
6161         if (INTEL_INFO(dev)->gen >= 4) {
6162                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6163                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6164                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6165         }
6166 }
6167
6168 static void i8xx_update_pll(struct intel_crtc *crtc,
6169                             intel_clock_t *reduced_clock,
6170                             int num_connectors)
6171 {
6172         struct drm_device *dev = crtc->base.dev;
6173         struct drm_i915_private *dev_priv = dev->dev_private;
6174         u32 dpll;
6175         struct dpll *clock = &crtc->new_config->dpll;
6176
6177         i9xx_update_pll_dividers(crtc, reduced_clock);
6178
6179         dpll = DPLL_VGA_MODE_DIS;
6180
6181         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6182                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6183         } else {
6184                 if (clock->p1 == 2)
6185                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6186                 else
6187                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6188                 if (clock->p2 == 4)
6189                         dpll |= PLL_P2_DIVIDE_BY_4;
6190         }
6191
6192         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6193                 dpll |= DPLL_DVO_2X_MODE;
6194
6195         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6196                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198         else
6199                 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201         dpll |= DPLL_VCO_ENABLE;
6202         crtc->new_config->dpll_hw_state.dpll = dpll;
6203 }
6204
6205 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6206 {
6207         struct drm_device *dev = intel_crtc->base.dev;
6208         struct drm_i915_private *dev_priv = dev->dev_private;
6209         enum pipe pipe = intel_crtc->pipe;
6210         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6211         struct drm_display_mode *adjusted_mode =
6212                 &intel_crtc->config.adjusted_mode;
6213         uint32_t crtc_vtotal, crtc_vblank_end;
6214         int vsyncshift = 0;
6215
6216         /* We need to be careful not to changed the adjusted mode, for otherwise
6217          * the hw state checker will get angry at the mismatch. */
6218         crtc_vtotal = adjusted_mode->crtc_vtotal;
6219         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6220
6221         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6222                 /* the chip adds 2 halflines automatically */
6223                 crtc_vtotal -= 1;
6224                 crtc_vblank_end -= 1;
6225
6226                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6227                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6228                 else
6229                         vsyncshift = adjusted_mode->crtc_hsync_start -
6230                                 adjusted_mode->crtc_htotal / 2;
6231                 if (vsyncshift < 0)
6232                         vsyncshift += adjusted_mode->crtc_htotal;
6233         }
6234
6235         if (INTEL_INFO(dev)->gen > 3)
6236                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6237
6238         I915_WRITE(HTOTAL(cpu_transcoder),
6239                    (adjusted_mode->crtc_hdisplay - 1) |
6240                    ((adjusted_mode->crtc_htotal - 1) << 16));
6241         I915_WRITE(HBLANK(cpu_transcoder),
6242                    (adjusted_mode->crtc_hblank_start - 1) |
6243                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6244         I915_WRITE(HSYNC(cpu_transcoder),
6245                    (adjusted_mode->crtc_hsync_start - 1) |
6246                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6247
6248         I915_WRITE(VTOTAL(cpu_transcoder),
6249                    (adjusted_mode->crtc_vdisplay - 1) |
6250                    ((crtc_vtotal - 1) << 16));
6251         I915_WRITE(VBLANK(cpu_transcoder),
6252                    (adjusted_mode->crtc_vblank_start - 1) |
6253                    ((crtc_vblank_end - 1) << 16));
6254         I915_WRITE(VSYNC(cpu_transcoder),
6255                    (adjusted_mode->crtc_vsync_start - 1) |
6256                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6257
6258         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6259          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6260          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6261          * bits. */
6262         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6263             (pipe == PIPE_B || pipe == PIPE_C))
6264                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6265
6266         /* pipesrc controls the size that is scaled from, which should
6267          * always be the user's requested size.
6268          */
6269         I915_WRITE(PIPESRC(pipe),
6270                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6271                    (intel_crtc->config.pipe_src_h - 1));
6272 }
6273
6274 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6275                                    struct intel_crtc_config *pipe_config)
6276 {
6277         struct drm_device *dev = crtc->base.dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6280         uint32_t tmp;
6281
6282         tmp = I915_READ(HTOTAL(cpu_transcoder));
6283         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6284         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6285         tmp = I915_READ(HBLANK(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6288         tmp = I915_READ(HSYNC(cpu_transcoder));
6289         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6290         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6291
6292         tmp = I915_READ(VTOTAL(cpu_transcoder));
6293         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6294         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6295         tmp = I915_READ(VBLANK(cpu_transcoder));
6296         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6297         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6298         tmp = I915_READ(VSYNC(cpu_transcoder));
6299         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6300         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6301
6302         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6303                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6304                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6305                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6306         }
6307
6308         tmp = I915_READ(PIPESRC(crtc->pipe));
6309         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6310         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6311
6312         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6313         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6314 }
6315
6316 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6317                                  struct intel_crtc_config *pipe_config)
6318 {
6319         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6320         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6321         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6322         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6323
6324         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6325         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6326         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6327         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6328
6329         mode->flags = pipe_config->adjusted_mode.flags;
6330
6331         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6332         mode->flags |= pipe_config->adjusted_mode.flags;
6333 }
6334
6335 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6336 {
6337         struct drm_device *dev = intel_crtc->base.dev;
6338         struct drm_i915_private *dev_priv = dev->dev_private;
6339         uint32_t pipeconf;
6340
6341         pipeconf = 0;
6342
6343         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6344             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6345                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6346
6347         if (intel_crtc->config.double_wide)
6348                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6349
6350         /* only g4x and later have fancy bpc/dither controls */
6351         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6352                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6353                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6354                         pipeconf |= PIPECONF_DITHER_EN |
6355                                     PIPECONF_DITHER_TYPE_SP;
6356
6357                 switch (intel_crtc->config.pipe_bpp) {
6358                 case 18:
6359                         pipeconf |= PIPECONF_6BPC;
6360                         break;
6361                 case 24:
6362                         pipeconf |= PIPECONF_8BPC;
6363                         break;
6364                 case 30:
6365                         pipeconf |= PIPECONF_10BPC;
6366                         break;
6367                 default:
6368                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6369                         BUG();
6370                 }
6371         }
6372
6373         if (HAS_PIPE_CXSR(dev)) {
6374                 if (intel_crtc->lowfreq_avail) {
6375                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6376                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6377                 } else {
6378                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6379                 }
6380         }
6381
6382         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6383                 if (INTEL_INFO(dev)->gen < 4 ||
6384                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6385                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6386                 else
6387                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6388         } else
6389                 pipeconf |= PIPECONF_PROGRESSIVE;
6390
6391         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6392                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6393
6394         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6395         POSTING_READ(PIPECONF(intel_crtc->pipe));
6396 }
6397
6398 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6399 {
6400         struct drm_device *dev = crtc->base.dev;
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         int refclk, num_connectors = 0;
6403         intel_clock_t clock, reduced_clock;
6404         bool ok, has_reduced_clock = false;
6405         bool is_lvds = false, is_dsi = false;
6406         struct intel_encoder *encoder;
6407         const intel_limit_t *limit;
6408
6409         for_each_intel_encoder(dev, encoder) {
6410                 if (encoder->new_crtc != crtc)
6411                         continue;
6412
6413                 switch (encoder->type) {
6414                 case INTEL_OUTPUT_LVDS:
6415                         is_lvds = true;
6416                         break;
6417                 case INTEL_OUTPUT_DSI:
6418                         is_dsi = true;
6419                         break;
6420                 default:
6421                         break;
6422                 }
6423
6424                 num_connectors++;
6425         }
6426
6427         if (is_dsi)
6428                 return 0;
6429
6430         if (!crtc->new_config->clock_set) {
6431                 refclk = i9xx_get_refclk(crtc, num_connectors);
6432
6433                 /*
6434                  * Returns a set of divisors for the desired target clock with
6435                  * the given refclk, or FALSE.  The returned values represent
6436                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6437                  * 2) / p1 / p2.
6438                  */
6439                 limit = intel_limit(crtc, refclk);
6440                 ok = dev_priv->display.find_dpll(limit, crtc,
6441                                                  crtc->new_config->port_clock,
6442                                                  refclk, NULL, &clock);
6443                 if (!ok) {
6444                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6445                         return -EINVAL;
6446                 }
6447
6448                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6449                         /*
6450                          * Ensure we match the reduced clock's P to the target
6451                          * clock.  If the clocks don't match, we can't switch
6452                          * the display clock by using the FP0/FP1. In such case
6453                          * we will disable the LVDS downclock feature.
6454                          */
6455                         has_reduced_clock =
6456                                 dev_priv->display.find_dpll(limit, crtc,
6457                                                             dev_priv->lvds_downclock,
6458                                                             refclk, &clock,
6459                                                             &reduced_clock);
6460                 }
6461                 /* Compat-code for transition, will disappear. */
6462                 crtc->new_config->dpll.n = clock.n;
6463                 crtc->new_config->dpll.m1 = clock.m1;
6464                 crtc->new_config->dpll.m2 = clock.m2;
6465                 crtc->new_config->dpll.p1 = clock.p1;
6466                 crtc->new_config->dpll.p2 = clock.p2;
6467         }
6468
6469         if (IS_GEN2(dev)) {
6470                 i8xx_update_pll(crtc,
6471                                 has_reduced_clock ? &reduced_clock : NULL,
6472                                 num_connectors);
6473         } else if (IS_CHERRYVIEW(dev)) {
6474                 chv_update_pll(crtc, crtc->new_config);
6475         } else if (IS_VALLEYVIEW(dev)) {
6476                 vlv_update_pll(crtc, crtc->new_config);
6477         } else {
6478                 i9xx_update_pll(crtc,
6479                                 has_reduced_clock ? &reduced_clock : NULL,
6480                                 num_connectors);
6481         }
6482
6483         return 0;
6484 }
6485
6486 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6487                                  struct intel_crtc_config *pipe_config)
6488 {
6489         struct drm_device *dev = crtc->base.dev;
6490         struct drm_i915_private *dev_priv = dev->dev_private;
6491         uint32_t tmp;
6492
6493         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6494                 return;
6495
6496         tmp = I915_READ(PFIT_CONTROL);
6497         if (!(tmp & PFIT_ENABLE))
6498                 return;
6499
6500         /* Check whether the pfit is attached to our pipe. */
6501         if (INTEL_INFO(dev)->gen < 4) {
6502                 if (crtc->pipe != PIPE_B)
6503                         return;
6504         } else {
6505                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6506                         return;
6507         }
6508
6509         pipe_config->gmch_pfit.control = tmp;
6510         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6511         if (INTEL_INFO(dev)->gen < 5)
6512                 pipe_config->gmch_pfit.lvds_border_bits =
6513                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6514 }
6515
6516 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6517                                struct intel_crtc_config *pipe_config)
6518 {
6519         struct drm_device *dev = crtc->base.dev;
6520         struct drm_i915_private *dev_priv = dev->dev_private;
6521         int pipe = pipe_config->cpu_transcoder;
6522         intel_clock_t clock;
6523         u32 mdiv;
6524         int refclk = 100000;
6525
6526         /* In case of MIPI DPLL will not even be used */
6527         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6528                 return;
6529
6530         mutex_lock(&dev_priv->dpio_lock);
6531         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6532         mutex_unlock(&dev_priv->dpio_lock);
6533
6534         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6535         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6536         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6537         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6538         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6539
6540         vlv_clock(refclk, &clock);
6541
6542         /* clock.dot is the fast clock */
6543         pipe_config->port_clock = clock.dot / 5;
6544 }
6545
6546 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6547                                   struct intel_plane_config *plane_config)
6548 {
6549         struct drm_device *dev = crtc->base.dev;
6550         struct drm_i915_private *dev_priv = dev->dev_private;
6551         u32 val, base, offset;
6552         int pipe = crtc->pipe, plane = crtc->plane;
6553         int fourcc, pixel_format;
6554         int aligned_height;
6555
6556         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6557         if (!crtc->base.primary->fb) {
6558                 DRM_DEBUG_KMS("failed to alloc fb\n");
6559                 return;
6560         }
6561
6562         val = I915_READ(DSPCNTR(plane));
6563
6564         if (INTEL_INFO(dev)->gen >= 4)
6565                 if (val & DISPPLANE_TILED)
6566                         plane_config->tiled = true;
6567
6568         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6569         fourcc = intel_format_to_fourcc(pixel_format);
6570         crtc->base.primary->fb->pixel_format = fourcc;
6571         crtc->base.primary->fb->bits_per_pixel =
6572                 drm_format_plane_cpp(fourcc, 0) * 8;
6573
6574         if (INTEL_INFO(dev)->gen >= 4) {
6575                 if (plane_config->tiled)
6576                         offset = I915_READ(DSPTILEOFF(plane));
6577                 else
6578                         offset = I915_READ(DSPLINOFF(plane));
6579                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6580         } else {
6581                 base = I915_READ(DSPADDR(plane));
6582         }
6583         plane_config->base = base;
6584
6585         val = I915_READ(PIPESRC(pipe));
6586         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6587         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6588
6589         val = I915_READ(DSPSTRIDE(pipe));
6590         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6591
6592         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6593                                             plane_config->tiled);
6594
6595         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6596                                         aligned_height);
6597
6598         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6599                       pipe, plane, crtc->base.primary->fb->width,
6600                       crtc->base.primary->fb->height,
6601                       crtc->base.primary->fb->bits_per_pixel, base,
6602                       crtc->base.primary->fb->pitches[0],
6603                       plane_config->size);
6604
6605 }
6606
6607 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6608                                struct intel_crtc_config *pipe_config)
6609 {
6610         struct drm_device *dev = crtc->base.dev;
6611         struct drm_i915_private *dev_priv = dev->dev_private;
6612         int pipe = pipe_config->cpu_transcoder;
6613         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6614         intel_clock_t clock;
6615         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6616         int refclk = 100000;
6617
6618         mutex_lock(&dev_priv->dpio_lock);
6619         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6620         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6621         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6622         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6623         mutex_unlock(&dev_priv->dpio_lock);
6624
6625         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6626         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6627         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6628         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6629         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6630
6631         chv_clock(refclk, &clock);
6632
6633         /* clock.dot is the fast clock */
6634         pipe_config->port_clock = clock.dot / 5;
6635 }
6636
6637 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6638                                  struct intel_crtc_config *pipe_config)
6639 {
6640         struct drm_device *dev = crtc->base.dev;
6641         struct drm_i915_private *dev_priv = dev->dev_private;
6642         uint32_t tmp;
6643
6644         if (!intel_display_power_is_enabled(dev_priv,
6645                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6646                 return false;
6647
6648         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6649         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6650
6651         tmp = I915_READ(PIPECONF(crtc->pipe));
6652         if (!(tmp & PIPECONF_ENABLE))
6653                 return false;
6654
6655         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6656                 switch (tmp & PIPECONF_BPC_MASK) {
6657                 case PIPECONF_6BPC:
6658                         pipe_config->pipe_bpp = 18;
6659                         break;
6660                 case PIPECONF_8BPC:
6661                         pipe_config->pipe_bpp = 24;
6662                         break;
6663                 case PIPECONF_10BPC:
6664                         pipe_config->pipe_bpp = 30;
6665                         break;
6666                 default:
6667                         break;
6668                 }
6669         }
6670
6671         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6672                 pipe_config->limited_color_range = true;
6673
6674         if (INTEL_INFO(dev)->gen < 4)
6675                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6676
6677         intel_get_pipe_timings(crtc, pipe_config);
6678
6679         i9xx_get_pfit_config(crtc, pipe_config);
6680
6681         if (INTEL_INFO(dev)->gen >= 4) {
6682                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6683                 pipe_config->pixel_multiplier =
6684                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6685                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6686                 pipe_config->dpll_hw_state.dpll_md = tmp;
6687         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6688                 tmp = I915_READ(DPLL(crtc->pipe));
6689                 pipe_config->pixel_multiplier =
6690                         ((tmp & SDVO_MULTIPLIER_MASK)
6691                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6692         } else {
6693                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6694                  * port and will be fixed up in the encoder->get_config
6695                  * function. */
6696                 pipe_config->pixel_multiplier = 1;
6697         }
6698         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6699         if (!IS_VALLEYVIEW(dev)) {
6700                 /*
6701                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6702                  * on 830. Filter it out here so that we don't
6703                  * report errors due to that.
6704                  */
6705                 if (IS_I830(dev))
6706                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6707
6708                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6709                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6710         } else {
6711                 /* Mask out read-only status bits. */
6712                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6713                                                      DPLL_PORTC_READY_MASK |
6714                                                      DPLL_PORTB_READY_MASK);
6715         }
6716
6717         if (IS_CHERRYVIEW(dev))
6718                 chv_crtc_clock_get(crtc, pipe_config);
6719         else if (IS_VALLEYVIEW(dev))
6720                 vlv_crtc_clock_get(crtc, pipe_config);
6721         else
6722                 i9xx_crtc_clock_get(crtc, pipe_config);
6723
6724         return true;
6725 }
6726
6727 static void ironlake_init_pch_refclk(struct drm_device *dev)
6728 {
6729         struct drm_i915_private *dev_priv = dev->dev_private;
6730         struct intel_encoder *encoder;
6731         u32 val, final;
6732         bool has_lvds = false;
6733         bool has_cpu_edp = false;
6734         bool has_panel = false;
6735         bool has_ck505 = false;
6736         bool can_ssc = false;
6737
6738         /* We need to take the global config into account */
6739         for_each_intel_encoder(dev, encoder) {
6740                 switch (encoder->type) {
6741                 case INTEL_OUTPUT_LVDS:
6742                         has_panel = true;
6743                         has_lvds = true;
6744                         break;
6745                 case INTEL_OUTPUT_EDP:
6746                         has_panel = true;
6747                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6748                                 has_cpu_edp = true;
6749                         break;
6750                 default:
6751                         break;
6752                 }
6753         }
6754
6755         if (HAS_PCH_IBX(dev)) {
6756                 has_ck505 = dev_priv->vbt.display_clock_mode;
6757                 can_ssc = has_ck505;
6758         } else {
6759                 has_ck505 = false;
6760                 can_ssc = true;
6761         }
6762
6763         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6764                       has_panel, has_lvds, has_ck505);
6765
6766         /* Ironlake: try to setup display ref clock before DPLL
6767          * enabling. This is only under driver's control after
6768          * PCH B stepping, previous chipset stepping should be
6769          * ignoring this setting.
6770          */
6771         val = I915_READ(PCH_DREF_CONTROL);
6772
6773         /* As we must carefully and slowly disable/enable each source in turn,
6774          * compute the final state we want first and check if we need to
6775          * make any changes at all.
6776          */
6777         final = val;
6778         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6779         if (has_ck505)
6780                 final |= DREF_NONSPREAD_CK505_ENABLE;
6781         else
6782                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6783
6784         final &= ~DREF_SSC_SOURCE_MASK;
6785         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6786         final &= ~DREF_SSC1_ENABLE;
6787
6788         if (has_panel) {
6789                 final |= DREF_SSC_SOURCE_ENABLE;
6790
6791                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6792                         final |= DREF_SSC1_ENABLE;
6793
6794                 if (has_cpu_edp) {
6795                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6796                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6797                         else
6798                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6799                 } else
6800                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6801         } else {
6802                 final |= DREF_SSC_SOURCE_DISABLE;
6803                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6804         }
6805
6806         if (final == val)
6807                 return;
6808
6809         /* Always enable nonspread source */
6810         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6811
6812         if (has_ck505)
6813                 val |= DREF_NONSPREAD_CK505_ENABLE;
6814         else
6815                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6816
6817         if (has_panel) {
6818                 val &= ~DREF_SSC_SOURCE_MASK;
6819                 val |= DREF_SSC_SOURCE_ENABLE;
6820
6821                 /* SSC must be turned on before enabling the CPU output  */
6822                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6823                         DRM_DEBUG_KMS("Using SSC on panel\n");
6824                         val |= DREF_SSC1_ENABLE;
6825                 } else
6826                         val &= ~DREF_SSC1_ENABLE;
6827
6828                 /* Get SSC going before enabling the outputs */
6829                 I915_WRITE(PCH_DREF_CONTROL, val);
6830                 POSTING_READ(PCH_DREF_CONTROL);
6831                 udelay(200);
6832
6833                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6834
6835                 /* Enable CPU source on CPU attached eDP */
6836                 if (has_cpu_edp) {
6837                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6838                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6839                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6840                         } else
6841                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6842                 } else
6843                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6844
6845                 I915_WRITE(PCH_DREF_CONTROL, val);
6846                 POSTING_READ(PCH_DREF_CONTROL);
6847                 udelay(200);
6848         } else {
6849                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6850
6851                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6852
6853                 /* Turn off CPU output */
6854                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6855
6856                 I915_WRITE(PCH_DREF_CONTROL, val);
6857                 POSTING_READ(PCH_DREF_CONTROL);
6858                 udelay(200);
6859
6860                 /* Turn off the SSC source */
6861                 val &= ~DREF_SSC_SOURCE_MASK;
6862                 val |= DREF_SSC_SOURCE_DISABLE;
6863
6864                 /* Turn off SSC1 */
6865                 val &= ~DREF_SSC1_ENABLE;
6866
6867                 I915_WRITE(PCH_DREF_CONTROL, val);
6868                 POSTING_READ(PCH_DREF_CONTROL);
6869                 udelay(200);
6870         }
6871
6872         BUG_ON(val != final);
6873 }
6874
6875 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6876 {
6877         uint32_t tmp;
6878
6879         tmp = I915_READ(SOUTH_CHICKEN2);
6880         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6881         I915_WRITE(SOUTH_CHICKEN2, tmp);
6882
6883         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6884                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6885                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6886
6887         tmp = I915_READ(SOUTH_CHICKEN2);
6888         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6889         I915_WRITE(SOUTH_CHICKEN2, tmp);
6890
6891         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6892                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6893                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6894 }
6895
6896 /* WaMPhyProgramming:hsw */
6897 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6898 {
6899         uint32_t tmp;
6900
6901         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6902         tmp &= ~(0xFF << 24);
6903         tmp |= (0x12 << 24);
6904         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6905
6906         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6907         tmp |= (1 << 11);
6908         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6909
6910         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6911         tmp |= (1 << 11);
6912         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6913
6914         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6915         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6916         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6917
6918         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6919         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6920         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6921
6922         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6923         tmp &= ~(7 << 13);
6924         tmp |= (5 << 13);
6925         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6926
6927         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6928         tmp &= ~(7 << 13);
6929         tmp |= (5 << 13);
6930         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6931
6932         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6933         tmp &= ~0xFF;
6934         tmp |= 0x1C;
6935         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6936
6937         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6938         tmp &= ~0xFF;
6939         tmp |= 0x1C;
6940         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6941
6942         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6943         tmp &= ~(0xFF << 16);
6944         tmp |= (0x1C << 16);
6945         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6946
6947         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6948         tmp &= ~(0xFF << 16);
6949         tmp |= (0x1C << 16);
6950         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6951
6952         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6953         tmp |= (1 << 27);
6954         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6955
6956         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6957         tmp |= (1 << 27);
6958         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6959
6960         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6961         tmp &= ~(0xF << 28);
6962         tmp |= (4 << 28);
6963         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6964
6965         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6966         tmp &= ~(0xF << 28);
6967         tmp |= (4 << 28);
6968         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6969 }
6970
6971 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6972  * Programming" based on the parameters passed:
6973  * - Sequence to enable CLKOUT_DP
6974  * - Sequence to enable CLKOUT_DP without spread
6975  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6976  */
6977 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6978                                  bool with_fdi)
6979 {
6980         struct drm_i915_private *dev_priv = dev->dev_private;
6981         uint32_t reg, tmp;
6982
6983         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6984                 with_spread = true;
6985         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6986                  with_fdi, "LP PCH doesn't have FDI\n"))
6987                 with_fdi = false;
6988
6989         mutex_lock(&dev_priv->dpio_lock);
6990
6991         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6992         tmp &= ~SBI_SSCCTL_DISABLE;
6993         tmp |= SBI_SSCCTL_PATHALT;
6994         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6995
6996         udelay(24);
6997
6998         if (with_spread) {
6999                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7000                 tmp &= ~SBI_SSCCTL_PATHALT;
7001                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7002
7003                 if (with_fdi) {
7004                         lpt_reset_fdi_mphy(dev_priv);
7005                         lpt_program_fdi_mphy(dev_priv);
7006                 }
7007         }
7008
7009         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7010                SBI_GEN0 : SBI_DBUFF0;
7011         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7012         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7013         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7014
7015         mutex_unlock(&dev_priv->dpio_lock);
7016 }
7017
7018 /* Sequence to disable CLKOUT_DP */
7019 static void lpt_disable_clkout_dp(struct drm_device *dev)
7020 {
7021         struct drm_i915_private *dev_priv = dev->dev_private;
7022         uint32_t reg, tmp;
7023
7024         mutex_lock(&dev_priv->dpio_lock);
7025
7026         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7027                SBI_GEN0 : SBI_DBUFF0;
7028         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7029         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7030         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7031
7032         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7033         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7034                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7035                         tmp |= SBI_SSCCTL_PATHALT;
7036                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7037                         udelay(32);
7038                 }
7039                 tmp |= SBI_SSCCTL_DISABLE;
7040                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7041         }
7042
7043         mutex_unlock(&dev_priv->dpio_lock);
7044 }
7045
7046 static void lpt_init_pch_refclk(struct drm_device *dev)
7047 {
7048         struct intel_encoder *encoder;
7049         bool has_vga = false;
7050
7051         for_each_intel_encoder(dev, encoder) {
7052                 switch (encoder->type) {
7053                 case INTEL_OUTPUT_ANALOG:
7054                         has_vga = true;
7055                         break;
7056                 default:
7057                         break;
7058                 }
7059         }
7060
7061         if (has_vga)
7062                 lpt_enable_clkout_dp(dev, true, true);
7063         else
7064                 lpt_disable_clkout_dp(dev);
7065 }
7066
7067 /*
7068  * Initialize reference clocks when the driver loads
7069  */
7070 void intel_init_pch_refclk(struct drm_device *dev)
7071 {
7072         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7073                 ironlake_init_pch_refclk(dev);
7074         else if (HAS_PCH_LPT(dev))
7075                 lpt_init_pch_refclk(dev);
7076 }
7077
7078 static int ironlake_get_refclk(struct drm_crtc *crtc)
7079 {
7080         struct drm_device *dev = crtc->dev;
7081         struct drm_i915_private *dev_priv = dev->dev_private;
7082         struct intel_encoder *encoder;
7083         int num_connectors = 0;
7084         bool is_lvds = false;
7085
7086         for_each_intel_encoder(dev, encoder) {
7087                 if (encoder->new_crtc != to_intel_crtc(crtc))
7088                         continue;
7089
7090                 switch (encoder->type) {
7091                 case INTEL_OUTPUT_LVDS:
7092                         is_lvds = true;
7093                         break;
7094                 default:
7095                         break;
7096                 }
7097                 num_connectors++;
7098         }
7099
7100         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7101                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7102                               dev_priv->vbt.lvds_ssc_freq);
7103                 return dev_priv->vbt.lvds_ssc_freq;
7104         }
7105
7106         return 120000;
7107 }
7108
7109 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7110 {
7111         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7113         int pipe = intel_crtc->pipe;
7114         uint32_t val;
7115
7116         val = 0;
7117
7118         switch (intel_crtc->config.pipe_bpp) {
7119         case 18:
7120                 val |= PIPECONF_6BPC;
7121                 break;
7122         case 24:
7123                 val |= PIPECONF_8BPC;
7124                 break;
7125         case 30:
7126                 val |= PIPECONF_10BPC;
7127                 break;
7128         case 36:
7129                 val |= PIPECONF_12BPC;
7130                 break;
7131         default:
7132                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7133                 BUG();
7134         }
7135
7136         if (intel_crtc->config.dither)
7137                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7138
7139         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7140                 val |= PIPECONF_INTERLACED_ILK;
7141         else
7142                 val |= PIPECONF_PROGRESSIVE;
7143
7144         if (intel_crtc->config.limited_color_range)
7145                 val |= PIPECONF_COLOR_RANGE_SELECT;
7146
7147         I915_WRITE(PIPECONF(pipe), val);
7148         POSTING_READ(PIPECONF(pipe));
7149 }
7150
7151 /*
7152  * Set up the pipe CSC unit.
7153  *
7154  * Currently only full range RGB to limited range RGB conversion
7155  * is supported, but eventually this should handle various
7156  * RGB<->YCbCr scenarios as well.
7157  */
7158 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7159 {
7160         struct drm_device *dev = crtc->dev;
7161         struct drm_i915_private *dev_priv = dev->dev_private;
7162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163         int pipe = intel_crtc->pipe;
7164         uint16_t coeff = 0x7800; /* 1.0 */
7165
7166         /*
7167          * TODO: Check what kind of values actually come out of the pipe
7168          * with these coeff/postoff values and adjust to get the best
7169          * accuracy. Perhaps we even need to take the bpc value into
7170          * consideration.
7171          */
7172
7173         if (intel_crtc->config.limited_color_range)
7174                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7175
7176         /*
7177          * GY/GU and RY/RU should be the other way around according
7178          * to BSpec, but reality doesn't agree. Just set them up in
7179          * a way that results in the correct picture.
7180          */
7181         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7182         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7183
7184         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7185         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7186
7187         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7188         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7189
7190         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7191         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7192         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7193
7194         if (INTEL_INFO(dev)->gen > 6) {
7195                 uint16_t postoff = 0;
7196
7197                 if (intel_crtc->config.limited_color_range)
7198                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7199
7200                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7201                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7202                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7203
7204                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7205         } else {
7206                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7207
7208                 if (intel_crtc->config.limited_color_range)
7209                         mode |= CSC_BLACK_SCREEN_OFFSET;
7210
7211                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7212         }
7213 }
7214
7215 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7216 {
7217         struct drm_device *dev = crtc->dev;
7218         struct drm_i915_private *dev_priv = dev->dev_private;
7219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7220         enum pipe pipe = intel_crtc->pipe;
7221         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7222         uint32_t val;
7223
7224         val = 0;
7225
7226         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7227                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7228
7229         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7230                 val |= PIPECONF_INTERLACED_ILK;
7231         else
7232                 val |= PIPECONF_PROGRESSIVE;
7233
7234         I915_WRITE(PIPECONF(cpu_transcoder), val);
7235         POSTING_READ(PIPECONF(cpu_transcoder));
7236
7237         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7238         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7239
7240         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7241                 val = 0;
7242
7243                 switch (intel_crtc->config.pipe_bpp) {
7244                 case 18:
7245                         val |= PIPEMISC_DITHER_6_BPC;
7246                         break;
7247                 case 24:
7248                         val |= PIPEMISC_DITHER_8_BPC;
7249                         break;
7250                 case 30:
7251                         val |= PIPEMISC_DITHER_10_BPC;
7252                         break;
7253                 case 36:
7254                         val |= PIPEMISC_DITHER_12_BPC;
7255                         break;
7256                 default:
7257                         /* Case prevented by pipe_config_set_bpp. */
7258                         BUG();
7259                 }
7260
7261                 if (intel_crtc->config.dither)
7262                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7263
7264                 I915_WRITE(PIPEMISC(pipe), val);
7265         }
7266 }
7267
7268 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7269                                     intel_clock_t *clock,
7270                                     bool *has_reduced_clock,
7271                                     intel_clock_t *reduced_clock)
7272 {
7273         struct drm_device *dev = crtc->dev;
7274         struct drm_i915_private *dev_priv = dev->dev_private;
7275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7276         int refclk;
7277         const intel_limit_t *limit;
7278         bool ret, is_lvds = false;
7279
7280         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7281
7282         refclk = ironlake_get_refclk(crtc);
7283
7284         /*
7285          * Returns a set of divisors for the desired target clock with the given
7286          * refclk, or FALSE.  The returned values represent the clock equation:
7287          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7288          */
7289         limit = intel_limit(intel_crtc, refclk);
7290         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7291                                           intel_crtc->new_config->port_clock,
7292                                           refclk, NULL, clock);
7293         if (!ret)
7294                 return false;
7295
7296         if (is_lvds && dev_priv->lvds_downclock_avail) {
7297                 /*
7298                  * Ensure we match the reduced clock's P to the target clock.
7299                  * If the clocks don't match, we can't switch the display clock
7300                  * by using the FP0/FP1. In such case we will disable the LVDS
7301                  * downclock feature.
7302                 */
7303                 *has_reduced_clock =
7304                         dev_priv->display.find_dpll(limit, intel_crtc,
7305                                                     dev_priv->lvds_downclock,
7306                                                     refclk, clock,
7307                                                     reduced_clock);
7308         }
7309
7310         return true;
7311 }
7312
7313 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7314 {
7315         /*
7316          * Account for spread spectrum to avoid
7317          * oversubscribing the link. Max center spread
7318          * is 2.5%; use 5% for safety's sake.
7319          */
7320         u32 bps = target_clock * bpp * 21 / 20;
7321         return DIV_ROUND_UP(bps, link_bw * 8);
7322 }
7323
7324 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7325 {
7326         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7327 }
7328
7329 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7330                                       u32 *fp,
7331                                       intel_clock_t *reduced_clock, u32 *fp2)
7332 {
7333         struct drm_crtc *crtc = &intel_crtc->base;
7334         struct drm_device *dev = crtc->dev;
7335         struct drm_i915_private *dev_priv = dev->dev_private;
7336         struct intel_encoder *intel_encoder;
7337         uint32_t dpll;
7338         int factor, num_connectors = 0;
7339         bool is_lvds = false, is_sdvo = false;
7340
7341         for_each_intel_encoder(dev, intel_encoder) {
7342                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7343                         continue;
7344
7345                 switch (intel_encoder->type) {
7346                 case INTEL_OUTPUT_LVDS:
7347                         is_lvds = true;
7348                         break;
7349                 case INTEL_OUTPUT_SDVO:
7350                 case INTEL_OUTPUT_HDMI:
7351                         is_sdvo = true;
7352                         break;
7353                 default:
7354                         break;
7355                 }
7356
7357                 num_connectors++;
7358         }
7359
7360         /* Enable autotuning of the PLL clock (if permissible) */
7361         factor = 21;
7362         if (is_lvds) {
7363                 if ((intel_panel_use_ssc(dev_priv) &&
7364                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7365                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7366                         factor = 25;
7367         } else if (intel_crtc->new_config->sdvo_tv_clock)
7368                 factor = 20;
7369
7370         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7371                 *fp |= FP_CB_TUNE;
7372
7373         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7374                 *fp2 |= FP_CB_TUNE;
7375
7376         dpll = 0;
7377
7378         if (is_lvds)
7379                 dpll |= DPLLB_MODE_LVDS;
7380         else
7381                 dpll |= DPLLB_MODE_DAC_SERIAL;
7382
7383         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7384                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7385
7386         if (is_sdvo)
7387                 dpll |= DPLL_SDVO_HIGH_SPEED;
7388         if (intel_crtc->new_config->has_dp_encoder)
7389                 dpll |= DPLL_SDVO_HIGH_SPEED;
7390
7391         /* compute bitmask from p1 value */
7392         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7393         /* also FPA1 */
7394         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7395
7396         switch (intel_crtc->new_config->dpll.p2) {
7397         case 5:
7398                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7399                 break;
7400         case 7:
7401                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7402                 break;
7403         case 10:
7404                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7405                 break;
7406         case 14:
7407                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7408                 break;
7409         }
7410
7411         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7412                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7413         else
7414                 dpll |= PLL_REF_INPUT_DREFCLK;
7415
7416         return dpll | DPLL_VCO_ENABLE;
7417 }
7418
7419 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7420 {
7421         struct drm_device *dev = crtc->base.dev;
7422         intel_clock_t clock, reduced_clock;
7423         u32 dpll = 0, fp = 0, fp2 = 0;
7424         bool ok, has_reduced_clock = false;
7425         bool is_lvds = false;
7426         struct intel_shared_dpll *pll;
7427
7428         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7429
7430         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7431              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7432
7433         ok = ironlake_compute_clocks(&crtc->base, &clock,
7434                                      &has_reduced_clock, &reduced_clock);
7435         if (!ok && !crtc->new_config->clock_set) {
7436                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7437                 return -EINVAL;
7438         }
7439         /* Compat-code for transition, will disappear. */
7440         if (!crtc->new_config->clock_set) {
7441                 crtc->new_config->dpll.n = clock.n;
7442                 crtc->new_config->dpll.m1 = clock.m1;
7443                 crtc->new_config->dpll.m2 = clock.m2;
7444                 crtc->new_config->dpll.p1 = clock.p1;
7445                 crtc->new_config->dpll.p2 = clock.p2;
7446         }
7447
7448         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7449         if (crtc->new_config->has_pch_encoder) {
7450                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7451                 if (has_reduced_clock)
7452                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7453
7454                 dpll = ironlake_compute_dpll(crtc,
7455                                              &fp, &reduced_clock,
7456                                              has_reduced_clock ? &fp2 : NULL);
7457
7458                 crtc->new_config->dpll_hw_state.dpll = dpll;
7459                 crtc->new_config->dpll_hw_state.fp0 = fp;
7460                 if (has_reduced_clock)
7461                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7462                 else
7463                         crtc->new_config->dpll_hw_state.fp1 = fp;
7464
7465                 pll = intel_get_shared_dpll(crtc);
7466                 if (pll == NULL) {
7467                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7468                                          pipe_name(crtc->pipe));
7469                         return -EINVAL;
7470                 }
7471         }
7472
7473         if (is_lvds && has_reduced_clock && i915.powersave)
7474                 crtc->lowfreq_avail = true;
7475         else
7476                 crtc->lowfreq_avail = false;
7477
7478         return 0;
7479 }
7480
7481 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7482                                          struct intel_link_m_n *m_n)
7483 {
7484         struct drm_device *dev = crtc->base.dev;
7485         struct drm_i915_private *dev_priv = dev->dev_private;
7486         enum pipe pipe = crtc->pipe;
7487
7488         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7489         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7490         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7491                 & ~TU_SIZE_MASK;
7492         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7493         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7494                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7495 }
7496
7497 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7498                                          enum transcoder transcoder,
7499                                          struct intel_link_m_n *m_n,
7500                                          struct intel_link_m_n *m2_n2)
7501 {
7502         struct drm_device *dev = crtc->base.dev;
7503         struct drm_i915_private *dev_priv = dev->dev_private;
7504         enum pipe pipe = crtc->pipe;
7505
7506         if (INTEL_INFO(dev)->gen >= 5) {
7507                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7508                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7509                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7510                         & ~TU_SIZE_MASK;
7511                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7512                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7513                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7514                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7515                  * gen < 8) and if DRRS is supported (to make sure the
7516                  * registers are not unnecessarily read).
7517                  */
7518                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7519                         crtc->config.has_drrs) {
7520                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7521                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7522                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7523                                         & ~TU_SIZE_MASK;
7524                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7525                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7526                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7527                 }
7528         } else {
7529                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7530                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7531                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7532                         & ~TU_SIZE_MASK;
7533                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7534                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7535                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7536         }
7537 }
7538
7539 void intel_dp_get_m_n(struct intel_crtc *crtc,
7540                       struct intel_crtc_config *pipe_config)
7541 {
7542         if (crtc->config.has_pch_encoder)
7543                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7544         else
7545                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7546                                              &pipe_config->dp_m_n,
7547                                              &pipe_config->dp_m2_n2);
7548 }
7549
7550 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7551                                         struct intel_crtc_config *pipe_config)
7552 {
7553         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7554                                      &pipe_config->fdi_m_n, NULL);
7555 }
7556
7557 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7558                                      struct intel_crtc_config *pipe_config)
7559 {
7560         struct drm_device *dev = crtc->base.dev;
7561         struct drm_i915_private *dev_priv = dev->dev_private;
7562         uint32_t tmp;
7563
7564         tmp = I915_READ(PF_CTL(crtc->pipe));
7565
7566         if (tmp & PF_ENABLE) {
7567                 pipe_config->pch_pfit.enabled = true;
7568                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7569                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7570
7571                 /* We currently do not free assignements of panel fitters on
7572                  * ivb/hsw (since we don't use the higher upscaling modes which
7573                  * differentiates them) so just WARN about this case for now. */
7574                 if (IS_GEN7(dev)) {
7575                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7576                                 PF_PIPE_SEL_IVB(crtc->pipe));
7577                 }
7578         }
7579 }
7580
7581 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7582                                       struct intel_plane_config *plane_config)
7583 {
7584         struct drm_device *dev = crtc->base.dev;
7585         struct drm_i915_private *dev_priv = dev->dev_private;
7586         u32 val, base, offset;
7587         int pipe = crtc->pipe, plane = crtc->plane;
7588         int fourcc, pixel_format;
7589         int aligned_height;
7590
7591         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7592         if (!crtc->base.primary->fb) {
7593                 DRM_DEBUG_KMS("failed to alloc fb\n");
7594                 return;
7595         }
7596
7597         val = I915_READ(DSPCNTR(plane));
7598
7599         if (INTEL_INFO(dev)->gen >= 4)
7600                 if (val & DISPPLANE_TILED)
7601                         plane_config->tiled = true;
7602
7603         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7604         fourcc = intel_format_to_fourcc(pixel_format);
7605         crtc->base.primary->fb->pixel_format = fourcc;
7606         crtc->base.primary->fb->bits_per_pixel =
7607                 drm_format_plane_cpp(fourcc, 0) * 8;
7608
7609         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7610         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7611                 offset = I915_READ(DSPOFFSET(plane));
7612         } else {
7613                 if (plane_config->tiled)
7614                         offset = I915_READ(DSPTILEOFF(plane));
7615                 else
7616                         offset = I915_READ(DSPLINOFF(plane));
7617         }
7618         plane_config->base = base;
7619
7620         val = I915_READ(PIPESRC(pipe));
7621         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7622         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7623
7624         val = I915_READ(DSPSTRIDE(pipe));
7625         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7626
7627         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7628                                             plane_config->tiled);
7629
7630         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7631                                         aligned_height);
7632
7633         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7634                       pipe, plane, crtc->base.primary->fb->width,
7635                       crtc->base.primary->fb->height,
7636                       crtc->base.primary->fb->bits_per_pixel, base,
7637                       crtc->base.primary->fb->pitches[0],
7638                       plane_config->size);
7639 }
7640
7641 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7642                                      struct intel_crtc_config *pipe_config)
7643 {
7644         struct drm_device *dev = crtc->base.dev;
7645         struct drm_i915_private *dev_priv = dev->dev_private;
7646         uint32_t tmp;
7647
7648         if (!intel_display_power_is_enabled(dev_priv,
7649                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7650                 return false;
7651
7652         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7653         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7654
7655         tmp = I915_READ(PIPECONF(crtc->pipe));
7656         if (!(tmp & PIPECONF_ENABLE))
7657                 return false;
7658
7659         switch (tmp & PIPECONF_BPC_MASK) {
7660         case PIPECONF_6BPC:
7661                 pipe_config->pipe_bpp = 18;
7662                 break;
7663         case PIPECONF_8BPC:
7664                 pipe_config->pipe_bpp = 24;
7665                 break;
7666         case PIPECONF_10BPC:
7667                 pipe_config->pipe_bpp = 30;
7668                 break;
7669         case PIPECONF_12BPC:
7670                 pipe_config->pipe_bpp = 36;
7671                 break;
7672         default:
7673                 break;
7674         }
7675
7676         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7677                 pipe_config->limited_color_range = true;
7678
7679         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7680                 struct intel_shared_dpll *pll;
7681
7682                 pipe_config->has_pch_encoder = true;
7683
7684                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7685                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7686                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7687
7688                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7689
7690                 if (HAS_PCH_IBX(dev_priv->dev)) {
7691                         pipe_config->shared_dpll =
7692                                 (enum intel_dpll_id) crtc->pipe;
7693                 } else {
7694                         tmp = I915_READ(PCH_DPLL_SEL);
7695                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7696                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7697                         else
7698                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7699                 }
7700
7701                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7702
7703                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7704                                            &pipe_config->dpll_hw_state));
7705
7706                 tmp = pipe_config->dpll_hw_state.dpll;
7707                 pipe_config->pixel_multiplier =
7708                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7709                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7710
7711                 ironlake_pch_clock_get(crtc, pipe_config);
7712         } else {
7713                 pipe_config->pixel_multiplier = 1;
7714         }
7715
7716         intel_get_pipe_timings(crtc, pipe_config);
7717
7718         ironlake_get_pfit_config(crtc, pipe_config);
7719
7720         return true;
7721 }
7722
7723 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7724 {
7725         struct drm_device *dev = dev_priv->dev;
7726         struct intel_crtc *crtc;
7727
7728         for_each_intel_crtc(dev, crtc)
7729                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7730                      pipe_name(crtc->pipe));
7731
7732         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7733         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7734         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7735         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7736         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7737         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7738              "CPU PWM1 enabled\n");
7739         if (IS_HASWELL(dev))
7740                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7741                      "CPU PWM2 enabled\n");
7742         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7743              "PCH PWM1 enabled\n");
7744         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7745              "Utility pin enabled\n");
7746         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7747
7748         /*
7749          * In theory we can still leave IRQs enabled, as long as only the HPD
7750          * interrupts remain enabled. We used to check for that, but since it's
7751          * gen-specific and since we only disable LCPLL after we fully disable
7752          * the interrupts, the check below should be enough.
7753          */
7754         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7755 }
7756
7757 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7758 {
7759         struct drm_device *dev = dev_priv->dev;
7760
7761         if (IS_HASWELL(dev))
7762                 return I915_READ(D_COMP_HSW);
7763         else
7764                 return I915_READ(D_COMP_BDW);
7765 }
7766
7767 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7768 {
7769         struct drm_device *dev = dev_priv->dev;
7770
7771         if (IS_HASWELL(dev)) {
7772                 mutex_lock(&dev_priv->rps.hw_lock);
7773                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7774                                             val))
7775                         DRM_ERROR("Failed to write to D_COMP\n");
7776                 mutex_unlock(&dev_priv->rps.hw_lock);
7777         } else {
7778                 I915_WRITE(D_COMP_BDW, val);
7779                 POSTING_READ(D_COMP_BDW);
7780         }
7781 }
7782
7783 /*
7784  * This function implements pieces of two sequences from BSpec:
7785  * - Sequence for display software to disable LCPLL
7786  * - Sequence for display software to allow package C8+
7787  * The steps implemented here are just the steps that actually touch the LCPLL
7788  * register. Callers should take care of disabling all the display engine
7789  * functions, doing the mode unset, fixing interrupts, etc.
7790  */
7791 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7792                               bool switch_to_fclk, bool allow_power_down)
7793 {
7794         uint32_t val;
7795
7796         assert_can_disable_lcpll(dev_priv);
7797
7798         val = I915_READ(LCPLL_CTL);
7799
7800         if (switch_to_fclk) {
7801                 val |= LCPLL_CD_SOURCE_FCLK;
7802                 I915_WRITE(LCPLL_CTL, val);
7803
7804                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7805                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7806                         DRM_ERROR("Switching to FCLK failed\n");
7807
7808                 val = I915_READ(LCPLL_CTL);
7809         }
7810
7811         val |= LCPLL_PLL_DISABLE;
7812         I915_WRITE(LCPLL_CTL, val);
7813         POSTING_READ(LCPLL_CTL);
7814
7815         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7816                 DRM_ERROR("LCPLL still locked\n");
7817
7818         val = hsw_read_dcomp(dev_priv);
7819         val |= D_COMP_COMP_DISABLE;
7820         hsw_write_dcomp(dev_priv, val);
7821         ndelay(100);
7822
7823         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7824                      1))
7825                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7826
7827         if (allow_power_down) {
7828                 val = I915_READ(LCPLL_CTL);
7829                 val |= LCPLL_POWER_DOWN_ALLOW;
7830                 I915_WRITE(LCPLL_CTL, val);
7831                 POSTING_READ(LCPLL_CTL);
7832         }
7833 }
7834
7835 /*
7836  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7837  * source.
7838  */
7839 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7840 {
7841         uint32_t val;
7842
7843         val = I915_READ(LCPLL_CTL);
7844
7845         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7846                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7847                 return;
7848
7849         /*
7850          * Make sure we're not on PC8 state before disabling PC8, otherwise
7851          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7852          *
7853          * The other problem is that hsw_restore_lcpll() is called as part of
7854          * the runtime PM resume sequence, so we can't just call
7855          * gen6_gt_force_wake_get() because that function calls
7856          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7857          * while we are on the resume sequence. So to solve this problem we have
7858          * to call special forcewake code that doesn't touch runtime PM and
7859          * doesn't enable the forcewake delayed work.
7860          */
7861         spin_lock_irq(&dev_priv->uncore.lock);
7862         if (dev_priv->uncore.forcewake_count++ == 0)
7863                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7864         spin_unlock_irq(&dev_priv->uncore.lock);
7865
7866         if (val & LCPLL_POWER_DOWN_ALLOW) {
7867                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7868                 I915_WRITE(LCPLL_CTL, val);
7869                 POSTING_READ(LCPLL_CTL);
7870         }
7871
7872         val = hsw_read_dcomp(dev_priv);
7873         val |= D_COMP_COMP_FORCE;
7874         val &= ~D_COMP_COMP_DISABLE;
7875         hsw_write_dcomp(dev_priv, val);
7876
7877         val = I915_READ(LCPLL_CTL);
7878         val &= ~LCPLL_PLL_DISABLE;
7879         I915_WRITE(LCPLL_CTL, val);
7880
7881         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7882                 DRM_ERROR("LCPLL not locked yet\n");
7883
7884         if (val & LCPLL_CD_SOURCE_FCLK) {
7885                 val = I915_READ(LCPLL_CTL);
7886                 val &= ~LCPLL_CD_SOURCE_FCLK;
7887                 I915_WRITE(LCPLL_CTL, val);
7888
7889                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7890                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7891                         DRM_ERROR("Switching back to LCPLL failed\n");
7892         }
7893
7894         /* See the big comment above. */
7895         spin_lock_irq(&dev_priv->uncore.lock);
7896         if (--dev_priv->uncore.forcewake_count == 0)
7897                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7898         spin_unlock_irq(&dev_priv->uncore.lock);
7899 }
7900
7901 /*
7902  * Package states C8 and deeper are really deep PC states that can only be
7903  * reached when all the devices on the system allow it, so even if the graphics
7904  * device allows PC8+, it doesn't mean the system will actually get to these
7905  * states. Our driver only allows PC8+ when going into runtime PM.
7906  *
7907  * The requirements for PC8+ are that all the outputs are disabled, the power
7908  * well is disabled and most interrupts are disabled, and these are also
7909  * requirements for runtime PM. When these conditions are met, we manually do
7910  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7911  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7912  * hang the machine.
7913  *
7914  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7915  * the state of some registers, so when we come back from PC8+ we need to
7916  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7917  * need to take care of the registers kept by RC6. Notice that this happens even
7918  * if we don't put the device in PCI D3 state (which is what currently happens
7919  * because of the runtime PM support).
7920  *
7921  * For more, read "Display Sequences for Package C8" on the hardware
7922  * documentation.
7923  */
7924 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7925 {
7926         struct drm_device *dev = dev_priv->dev;
7927         uint32_t val;
7928
7929         DRM_DEBUG_KMS("Enabling package C8+\n");
7930
7931         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7932                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7933                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7934                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7935         }
7936
7937         lpt_disable_clkout_dp(dev);
7938         hsw_disable_lcpll(dev_priv, true, true);
7939 }
7940
7941 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7942 {
7943         struct drm_device *dev = dev_priv->dev;
7944         uint32_t val;
7945
7946         DRM_DEBUG_KMS("Disabling package C8+\n");
7947
7948         hsw_restore_lcpll(dev_priv);
7949         lpt_init_pch_refclk(dev);
7950
7951         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7952                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7953                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7954                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7955         }
7956
7957         intel_prepare_ddi(dev);
7958 }
7959
7960 static void snb_modeset_global_resources(struct drm_device *dev)
7961 {
7962         modeset_update_crtc_power_domains(dev);
7963 }
7964
7965 static void haswell_modeset_global_resources(struct drm_device *dev)
7966 {
7967         modeset_update_crtc_power_domains(dev);
7968 }
7969
7970 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7971 {
7972         if (!intel_ddi_pll_select(crtc))
7973                 return -EINVAL;
7974
7975         crtc->lowfreq_avail = false;
7976
7977         return 0;
7978 }
7979
7980 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7981                                 enum port port,
7982                                 struct intel_crtc_config *pipe_config)
7983 {
7984         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7985
7986         switch (pipe_config->ddi_pll_sel) {
7987         case PORT_CLK_SEL_WRPLL1:
7988                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7989                 break;
7990         case PORT_CLK_SEL_WRPLL2:
7991                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7992                 break;
7993         }
7994 }
7995
7996 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7997                                        struct intel_crtc_config *pipe_config)
7998 {
7999         struct drm_device *dev = crtc->base.dev;
8000         struct drm_i915_private *dev_priv = dev->dev_private;
8001         struct intel_shared_dpll *pll;
8002         enum port port;
8003         uint32_t tmp;
8004
8005         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8006
8007         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8008
8009         haswell_get_ddi_pll(dev_priv, port, pipe_config);
8010
8011         if (pipe_config->shared_dpll >= 0) {
8012                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8013
8014                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8015                                            &pipe_config->dpll_hw_state));
8016         }
8017
8018         /*
8019          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8020          * DDI E. So just check whether this pipe is wired to DDI E and whether
8021          * the PCH transcoder is on.
8022          */
8023         if (INTEL_INFO(dev)->gen < 9 &&
8024             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8025                 pipe_config->has_pch_encoder = true;
8026
8027                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8028                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8029                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8030
8031                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8032         }
8033 }
8034
8035 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8036                                     struct intel_crtc_config *pipe_config)
8037 {
8038         struct drm_device *dev = crtc->base.dev;
8039         struct drm_i915_private *dev_priv = dev->dev_private;
8040         enum intel_display_power_domain pfit_domain;
8041         uint32_t tmp;
8042
8043         if (!intel_display_power_is_enabled(dev_priv,
8044                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8045                 return false;
8046
8047         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8048         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8049
8050         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8051         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8052                 enum pipe trans_edp_pipe;
8053                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8054                 default:
8055                         WARN(1, "unknown pipe linked to edp transcoder\n");
8056                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8057                 case TRANS_DDI_EDP_INPUT_A_ON:
8058                         trans_edp_pipe = PIPE_A;
8059                         break;
8060                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8061                         trans_edp_pipe = PIPE_B;
8062                         break;
8063                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8064                         trans_edp_pipe = PIPE_C;
8065                         break;
8066                 }
8067
8068                 if (trans_edp_pipe == crtc->pipe)
8069                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8070         }
8071
8072         if (!intel_display_power_is_enabled(dev_priv,
8073                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8074                 return false;
8075
8076         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8077         if (!(tmp & PIPECONF_ENABLE))
8078                 return false;
8079
8080         haswell_get_ddi_port_state(crtc, pipe_config);
8081
8082         intel_get_pipe_timings(crtc, pipe_config);
8083
8084         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8085         if (intel_display_power_is_enabled(dev_priv, pfit_domain))
8086                 ironlake_get_pfit_config(crtc, pipe_config);
8087
8088         if (IS_HASWELL(dev))
8089                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8090                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8091
8092         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8093                 pipe_config->pixel_multiplier =
8094                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8095         } else {
8096                 pipe_config->pixel_multiplier = 1;
8097         }
8098
8099         return true;
8100 }
8101
8102 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8103 {
8104         struct drm_device *dev = crtc->dev;
8105         struct drm_i915_private *dev_priv = dev->dev_private;
8106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8107         uint32_t cntl = 0, size = 0;
8108
8109         if (base) {
8110                 unsigned int width = intel_crtc->cursor_width;
8111                 unsigned int height = intel_crtc->cursor_height;
8112                 unsigned int stride = roundup_pow_of_two(width) * 4;
8113
8114                 switch (stride) {
8115                 default:
8116                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8117                                   width, stride);
8118                         stride = 256;
8119                         /* fallthrough */
8120                 case 256:
8121                 case 512:
8122                 case 1024:
8123                 case 2048:
8124                         break;
8125                 }
8126
8127                 cntl |= CURSOR_ENABLE |
8128                         CURSOR_GAMMA_ENABLE |
8129                         CURSOR_FORMAT_ARGB |
8130                         CURSOR_STRIDE(stride);
8131
8132                 size = (height << 12) | width;
8133         }
8134
8135         if (intel_crtc->cursor_cntl != 0 &&
8136             (intel_crtc->cursor_base != base ||
8137              intel_crtc->cursor_size != size ||
8138              intel_crtc->cursor_cntl != cntl)) {
8139                 /* On these chipsets we can only modify the base/size/stride
8140                  * whilst the cursor is disabled.
8141                  */
8142                 I915_WRITE(_CURACNTR, 0);
8143                 POSTING_READ(_CURACNTR);
8144                 intel_crtc->cursor_cntl = 0;
8145         }
8146
8147         if (intel_crtc->cursor_base != base) {
8148                 I915_WRITE(_CURABASE, base);
8149                 intel_crtc->cursor_base = base;
8150         }
8151
8152         if (intel_crtc->cursor_size != size) {
8153                 I915_WRITE(CURSIZE, size);
8154                 intel_crtc->cursor_size = size;
8155         }
8156
8157         if (intel_crtc->cursor_cntl != cntl) {
8158                 I915_WRITE(_CURACNTR, cntl);
8159                 POSTING_READ(_CURACNTR);
8160                 intel_crtc->cursor_cntl = cntl;
8161         }
8162 }
8163
8164 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8165 {
8166         struct drm_device *dev = crtc->dev;
8167         struct drm_i915_private *dev_priv = dev->dev_private;
8168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8169         int pipe = intel_crtc->pipe;
8170         uint32_t cntl;
8171
8172         cntl = 0;
8173         if (base) {
8174                 cntl = MCURSOR_GAMMA_ENABLE;
8175                 switch (intel_crtc->cursor_width) {
8176                         case 64:
8177                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8178                                 break;
8179                         case 128:
8180                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8181                                 break;
8182                         case 256:
8183                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8184                                 break;
8185                         default:
8186                                 WARN_ON(1);
8187                                 return;
8188                 }
8189                 cntl |= pipe << 28; /* Connect to correct pipe */
8190
8191                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8192                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8193         }
8194
8195         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8196                 cntl |= CURSOR_ROTATE_180;
8197
8198         if (intel_crtc->cursor_cntl != cntl) {
8199                 I915_WRITE(CURCNTR(pipe), cntl);
8200                 POSTING_READ(CURCNTR(pipe));
8201                 intel_crtc->cursor_cntl = cntl;
8202         }
8203
8204         /* and commit changes on next vblank */
8205         I915_WRITE(CURBASE(pipe), base);
8206         POSTING_READ(CURBASE(pipe));
8207
8208         intel_crtc->cursor_base = base;
8209 }
8210
8211 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8212 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8213                                      bool on)
8214 {
8215         struct drm_device *dev = crtc->dev;
8216         struct drm_i915_private *dev_priv = dev->dev_private;
8217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8218         int pipe = intel_crtc->pipe;
8219         int x = crtc->cursor_x;
8220         int y = crtc->cursor_y;
8221         u32 base = 0, pos = 0;
8222
8223         if (on)
8224                 base = intel_crtc->cursor_addr;
8225
8226         if (x >= intel_crtc->config.pipe_src_w)
8227                 base = 0;
8228
8229         if (y >= intel_crtc->config.pipe_src_h)
8230                 base = 0;
8231
8232         if (x < 0) {
8233                 if (x + intel_crtc->cursor_width <= 0)
8234                         base = 0;
8235
8236                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8237                 x = -x;
8238         }
8239         pos |= x << CURSOR_X_SHIFT;
8240
8241         if (y < 0) {
8242                 if (y + intel_crtc->cursor_height <= 0)
8243                         base = 0;
8244
8245                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8246                 y = -y;
8247         }
8248         pos |= y << CURSOR_Y_SHIFT;
8249
8250         if (base == 0 && intel_crtc->cursor_base == 0)
8251                 return;
8252
8253         I915_WRITE(CURPOS(pipe), pos);
8254
8255         /* ILK+ do this automagically */
8256         if (HAS_GMCH_DISPLAY(dev) &&
8257                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8258                 base += (intel_crtc->cursor_height *
8259                         intel_crtc->cursor_width - 1) * 4;
8260         }
8261
8262         if (IS_845G(dev) || IS_I865G(dev))
8263                 i845_update_cursor(crtc, base);
8264         else
8265                 i9xx_update_cursor(crtc, base);
8266 }
8267
8268 static bool cursor_size_ok(struct drm_device *dev,
8269                            uint32_t width, uint32_t height)
8270 {
8271         if (width == 0 || height == 0)
8272                 return false;
8273
8274         /*
8275          * 845g/865g are special in that they are only limited by
8276          * the width of their cursors, the height is arbitrary up to
8277          * the precision of the register. Everything else requires
8278          * square cursors, limited to a few power-of-two sizes.
8279          */
8280         if (IS_845G(dev) || IS_I865G(dev)) {
8281                 if ((width & 63) != 0)
8282                         return false;
8283
8284                 if (width > (IS_845G(dev) ? 64 : 512))
8285                         return false;
8286
8287                 if (height > 1023)
8288                         return false;
8289         } else {
8290                 switch (width | height) {
8291                 case 256:
8292                 case 128:
8293                         if (IS_GEN2(dev))
8294                                 return false;
8295                 case 64:
8296                         break;
8297                 default:
8298                         return false;
8299                 }
8300         }
8301
8302         return true;
8303 }
8304
8305 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8306                                      struct drm_i915_gem_object *obj,
8307                                      uint32_t width, uint32_t height)
8308 {
8309         struct drm_device *dev = crtc->dev;
8310         struct drm_i915_private *dev_priv = dev->dev_private;
8311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8312         enum pipe pipe = intel_crtc->pipe;
8313         unsigned old_width;
8314         uint32_t addr;
8315         int ret;
8316
8317         /* if we want to turn off the cursor ignore width and height */
8318         if (!obj) {
8319                 DRM_DEBUG_KMS("cursor off\n");
8320                 addr = 0;
8321                 mutex_lock(&dev->struct_mutex);
8322                 goto finish;
8323         }
8324
8325         /* we only need to pin inside GTT if cursor is non-phy */
8326         mutex_lock(&dev->struct_mutex);
8327         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8328                 unsigned alignment;
8329
8330                 /*
8331                  * Global gtt pte registers are special registers which actually
8332                  * forward writes to a chunk of system memory. Which means that
8333                  * there is no risk that the register values disappear as soon
8334                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8335                  * only the pin/unpin/fence and not more.
8336                  */
8337                 intel_runtime_pm_get(dev_priv);
8338
8339                 /* Note that the w/a also requires 2 PTE of padding following
8340                  * the bo. We currently fill all unused PTE with the shadow
8341                  * page and so we should always have valid PTE following the
8342                  * cursor preventing the VT-d warning.
8343                  */
8344                 alignment = 0;
8345                 if (need_vtd_wa(dev))
8346                         alignment = 64*1024;
8347
8348                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8349                 if (ret) {
8350                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8351                         intel_runtime_pm_put(dev_priv);
8352                         goto fail_locked;
8353                 }
8354
8355                 ret = i915_gem_object_put_fence(obj);
8356                 if (ret) {
8357                         DRM_DEBUG_KMS("failed to release fence for cursor");
8358                         intel_runtime_pm_put(dev_priv);
8359                         goto fail_unpin;
8360                 }
8361
8362                 addr = i915_gem_obj_ggtt_offset(obj);
8363
8364                 intel_runtime_pm_put(dev_priv);
8365         } else {
8366                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8367                 ret = i915_gem_object_attach_phys(obj, align);
8368                 if (ret) {
8369                         DRM_DEBUG_KMS("failed to attach phys object\n");
8370                         goto fail_locked;
8371                 }
8372                 addr = obj->phys_handle->busaddr;
8373         }
8374
8375  finish:
8376         if (intel_crtc->cursor_bo) {
8377                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8378                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8379         }
8380
8381         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8382                           INTEL_FRONTBUFFER_CURSOR(pipe));
8383         mutex_unlock(&dev->struct_mutex);
8384
8385         old_width = intel_crtc->cursor_width;
8386
8387         intel_crtc->cursor_addr = addr;
8388         intel_crtc->cursor_bo = obj;
8389         intel_crtc->cursor_width = width;
8390         intel_crtc->cursor_height = height;
8391
8392         if (intel_crtc->active) {
8393                 if (old_width != width)
8394                         intel_update_watermarks(crtc);
8395                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8396
8397                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8398         }
8399
8400         return 0;
8401 fail_unpin:
8402         i915_gem_object_unpin_from_display_plane(obj);
8403 fail_locked:
8404         mutex_unlock(&dev->struct_mutex);
8405         return ret;
8406 }
8407
8408 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8409                                  u16 *blue, uint32_t start, uint32_t size)
8410 {
8411         int end = (start + size > 256) ? 256 : start + size, i;
8412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8413
8414         for (i = start; i < end; i++) {
8415                 intel_crtc->lut_r[i] = red[i] >> 8;
8416                 intel_crtc->lut_g[i] = green[i] >> 8;
8417                 intel_crtc->lut_b[i] = blue[i] >> 8;
8418         }
8419
8420         intel_crtc_load_lut(crtc);
8421 }
8422
8423 /* VESA 640x480x72Hz mode to set on the pipe */
8424 static struct drm_display_mode load_detect_mode = {
8425         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8426                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8427 };
8428
8429 struct drm_framebuffer *
8430 __intel_framebuffer_create(struct drm_device *dev,
8431                            struct drm_mode_fb_cmd2 *mode_cmd,
8432                            struct drm_i915_gem_object *obj)
8433 {
8434         struct intel_framebuffer *intel_fb;
8435         int ret;
8436
8437         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8438         if (!intel_fb) {
8439                 drm_gem_object_unreference_unlocked(&obj->base);
8440                 return ERR_PTR(-ENOMEM);
8441         }
8442
8443         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8444         if (ret)
8445                 goto err;
8446
8447         return &intel_fb->base;
8448 err:
8449         drm_gem_object_unreference_unlocked(&obj->base);
8450         kfree(intel_fb);
8451
8452         return ERR_PTR(ret);
8453 }
8454
8455 static struct drm_framebuffer *
8456 intel_framebuffer_create(struct drm_device *dev,
8457                          struct drm_mode_fb_cmd2 *mode_cmd,
8458                          struct drm_i915_gem_object *obj)
8459 {
8460         struct drm_framebuffer *fb;
8461         int ret;
8462
8463         ret = i915_mutex_lock_interruptible(dev);
8464         if (ret)
8465                 return ERR_PTR(ret);
8466         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8467         mutex_unlock(&dev->struct_mutex);
8468
8469         return fb;
8470 }
8471
8472 static u32
8473 intel_framebuffer_pitch_for_width(int width, int bpp)
8474 {
8475         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8476         return ALIGN(pitch, 64);
8477 }
8478
8479 static u32
8480 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8481 {
8482         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8483         return PAGE_ALIGN(pitch * mode->vdisplay);
8484 }
8485
8486 static struct drm_framebuffer *
8487 intel_framebuffer_create_for_mode(struct drm_device *dev,
8488                                   struct drm_display_mode *mode,
8489                                   int depth, int bpp)
8490 {
8491         struct drm_i915_gem_object *obj;
8492         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8493
8494         obj = i915_gem_alloc_object(dev,
8495                                     intel_framebuffer_size_for_mode(mode, bpp));
8496         if (obj == NULL)
8497                 return ERR_PTR(-ENOMEM);
8498
8499         mode_cmd.width = mode->hdisplay;
8500         mode_cmd.height = mode->vdisplay;
8501         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8502                                                                 bpp);
8503         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8504
8505         return intel_framebuffer_create(dev, &mode_cmd, obj);
8506 }
8507
8508 static struct drm_framebuffer *
8509 mode_fits_in_fbdev(struct drm_device *dev,
8510                    struct drm_display_mode *mode)
8511 {
8512 #ifdef CONFIG_DRM_I915_FBDEV
8513         struct drm_i915_private *dev_priv = dev->dev_private;
8514         struct drm_i915_gem_object *obj;
8515         struct drm_framebuffer *fb;
8516
8517         if (!dev_priv->fbdev)
8518                 return NULL;
8519
8520         if (!dev_priv->fbdev->fb)
8521                 return NULL;
8522
8523         obj = dev_priv->fbdev->fb->obj;
8524         BUG_ON(!obj);
8525
8526         fb = &dev_priv->fbdev->fb->base;
8527         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8528                                                                fb->bits_per_pixel))
8529                 return NULL;
8530
8531         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8532                 return NULL;
8533
8534         return fb;
8535 #else
8536         return NULL;
8537 #endif
8538 }
8539
8540 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8541                                 struct drm_display_mode *mode,
8542                                 struct intel_load_detect_pipe *old,
8543                                 struct drm_modeset_acquire_ctx *ctx)
8544 {
8545         struct intel_crtc *intel_crtc;
8546         struct intel_encoder *intel_encoder =
8547                 intel_attached_encoder(connector);
8548         struct drm_crtc *possible_crtc;
8549         struct drm_encoder *encoder = &intel_encoder->base;
8550         struct drm_crtc *crtc = NULL;
8551         struct drm_device *dev = encoder->dev;
8552         struct drm_framebuffer *fb;
8553         struct drm_mode_config *config = &dev->mode_config;
8554         int ret, i = -1;
8555
8556         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8557                       connector->base.id, connector->name,
8558                       encoder->base.id, encoder->name);
8559
8560 retry:
8561         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8562         if (ret)
8563                 goto fail_unlock;
8564
8565         /*
8566          * Algorithm gets a little messy:
8567          *
8568          *   - if the connector already has an assigned crtc, use it (but make
8569          *     sure it's on first)
8570          *
8571          *   - try to find the first unused crtc that can drive this connector,
8572          *     and use that if we find one
8573          */
8574
8575         /* See if we already have a CRTC for this connector */
8576         if (encoder->crtc) {
8577                 crtc = encoder->crtc;
8578
8579                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8580                 if (ret)
8581                         goto fail_unlock;
8582
8583                 old->dpms_mode = connector->dpms;
8584                 old->load_detect_temp = false;
8585
8586                 /* Make sure the crtc and connector are running */
8587                 if (connector->dpms != DRM_MODE_DPMS_ON)
8588                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8589
8590                 return true;
8591         }
8592
8593         /* Find an unused one (if possible) */
8594         for_each_crtc(dev, possible_crtc) {
8595                 i++;
8596                 if (!(encoder->possible_crtcs & (1 << i)))
8597                         continue;
8598                 if (possible_crtc->enabled)
8599                         continue;
8600                 /* This can occur when applying the pipe A quirk on resume. */
8601                 if (to_intel_crtc(possible_crtc)->new_enabled)
8602                         continue;
8603
8604                 crtc = possible_crtc;
8605                 break;
8606         }
8607
8608         /*
8609          * If we didn't find an unused CRTC, don't use any.
8610          */
8611         if (!crtc) {
8612                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8613                 goto fail_unlock;
8614         }
8615
8616         ret = drm_modeset_lock(&crtc->mutex, ctx);
8617         if (ret)
8618                 goto fail_unlock;
8619         intel_encoder->new_crtc = to_intel_crtc(crtc);
8620         to_intel_connector(connector)->new_encoder = intel_encoder;
8621
8622         intel_crtc = to_intel_crtc(crtc);
8623         intel_crtc->new_enabled = true;
8624         intel_crtc->new_config = &intel_crtc->config;
8625         old->dpms_mode = connector->dpms;
8626         old->load_detect_temp = true;
8627         old->release_fb = NULL;
8628
8629         if (!mode)
8630                 mode = &load_detect_mode;
8631
8632         /* We need a framebuffer large enough to accommodate all accesses
8633          * that the plane may generate whilst we perform load detection.
8634          * We can not rely on the fbcon either being present (we get called
8635          * during its initialisation to detect all boot displays, or it may
8636          * not even exist) or that it is large enough to satisfy the
8637          * requested mode.
8638          */
8639         fb = mode_fits_in_fbdev(dev, mode);
8640         if (fb == NULL) {
8641                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8642                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8643                 old->release_fb = fb;
8644         } else
8645                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8646         if (IS_ERR(fb)) {
8647                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8648                 goto fail;
8649         }
8650
8651         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8652                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8653                 if (old->release_fb)
8654                         old->release_fb->funcs->destroy(old->release_fb);
8655                 goto fail;
8656         }
8657
8658         /* let the connector get through one full cycle before testing */
8659         intel_wait_for_vblank(dev, intel_crtc->pipe);
8660         return true;
8661
8662  fail:
8663         intel_crtc->new_enabled = crtc->enabled;
8664         if (intel_crtc->new_enabled)
8665                 intel_crtc->new_config = &intel_crtc->config;
8666         else
8667                 intel_crtc->new_config = NULL;
8668 fail_unlock:
8669         if (ret == -EDEADLK) {
8670                 drm_modeset_backoff(ctx);
8671                 goto retry;
8672         }
8673
8674         return false;
8675 }
8676
8677 void intel_release_load_detect_pipe(struct drm_connector *connector,
8678                                     struct intel_load_detect_pipe *old)
8679 {
8680         struct intel_encoder *intel_encoder =
8681                 intel_attached_encoder(connector);
8682         struct drm_encoder *encoder = &intel_encoder->base;
8683         struct drm_crtc *crtc = encoder->crtc;
8684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8685
8686         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8687                       connector->base.id, connector->name,
8688                       encoder->base.id, encoder->name);
8689
8690         if (old->load_detect_temp) {
8691                 to_intel_connector(connector)->new_encoder = NULL;
8692                 intel_encoder->new_crtc = NULL;
8693                 intel_crtc->new_enabled = false;
8694                 intel_crtc->new_config = NULL;
8695                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8696
8697                 if (old->release_fb) {
8698                         drm_framebuffer_unregister_private(old->release_fb);
8699                         drm_framebuffer_unreference(old->release_fb);
8700                 }
8701
8702                 return;
8703         }
8704
8705         /* Switch crtc and encoder back off if necessary */
8706         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8707                 connector->funcs->dpms(connector, old->dpms_mode);
8708 }
8709
8710 static int i9xx_pll_refclk(struct drm_device *dev,
8711                            const struct intel_crtc_config *pipe_config)
8712 {
8713         struct drm_i915_private *dev_priv = dev->dev_private;
8714         u32 dpll = pipe_config->dpll_hw_state.dpll;
8715
8716         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8717                 return dev_priv->vbt.lvds_ssc_freq;
8718         else if (HAS_PCH_SPLIT(dev))
8719                 return 120000;
8720         else if (!IS_GEN2(dev))
8721                 return 96000;
8722         else
8723                 return 48000;
8724 }
8725
8726 /* Returns the clock of the currently programmed mode of the given pipe. */
8727 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8728                                 struct intel_crtc_config *pipe_config)
8729 {
8730         struct drm_device *dev = crtc->base.dev;
8731         struct drm_i915_private *dev_priv = dev->dev_private;
8732         int pipe = pipe_config->cpu_transcoder;
8733         u32 dpll = pipe_config->dpll_hw_state.dpll;
8734         u32 fp;
8735         intel_clock_t clock;
8736         int refclk = i9xx_pll_refclk(dev, pipe_config);
8737
8738         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8739                 fp = pipe_config->dpll_hw_state.fp0;
8740         else
8741                 fp = pipe_config->dpll_hw_state.fp1;
8742
8743         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8744         if (IS_PINEVIEW(dev)) {
8745                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8746                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8747         } else {
8748                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8749                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8750         }
8751
8752         if (!IS_GEN2(dev)) {
8753                 if (IS_PINEVIEW(dev))
8754                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8755                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8756                 else
8757                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8758                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8759
8760                 switch (dpll & DPLL_MODE_MASK) {
8761                 case DPLLB_MODE_DAC_SERIAL:
8762                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8763                                 5 : 10;
8764                         break;
8765                 case DPLLB_MODE_LVDS:
8766                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8767                                 7 : 14;
8768                         break;
8769                 default:
8770                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8771                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8772                         return;
8773                 }
8774
8775                 if (IS_PINEVIEW(dev))
8776                         pineview_clock(refclk, &clock);
8777                 else
8778                         i9xx_clock(refclk, &clock);
8779         } else {
8780                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8781                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8782
8783                 if (is_lvds) {
8784                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8785                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8786
8787                         if (lvds & LVDS_CLKB_POWER_UP)
8788                                 clock.p2 = 7;
8789                         else
8790                                 clock.p2 = 14;
8791                 } else {
8792                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8793                                 clock.p1 = 2;
8794                         else {
8795                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8796                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8797                         }
8798                         if (dpll & PLL_P2_DIVIDE_BY_4)
8799                                 clock.p2 = 4;
8800                         else
8801                                 clock.p2 = 2;
8802                 }
8803
8804                 i9xx_clock(refclk, &clock);
8805         }
8806
8807         /*
8808          * This value includes pixel_multiplier. We will use
8809          * port_clock to compute adjusted_mode.crtc_clock in the
8810          * encoder's get_config() function.
8811          */
8812         pipe_config->port_clock = clock.dot;
8813 }
8814
8815 int intel_dotclock_calculate(int link_freq,
8816                              const struct intel_link_m_n *m_n)
8817 {
8818         /*
8819          * The calculation for the data clock is:
8820          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8821          * But we want to avoid losing precison if possible, so:
8822          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8823          *
8824          * and the link clock is simpler:
8825          * link_clock = (m * link_clock) / n
8826          */
8827
8828         if (!m_n->link_n)
8829                 return 0;
8830
8831         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8832 }
8833
8834 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8835                                    struct intel_crtc_config *pipe_config)
8836 {
8837         struct drm_device *dev = crtc->base.dev;
8838
8839         /* read out port_clock from the DPLL */
8840         i9xx_crtc_clock_get(crtc, pipe_config);
8841
8842         /*
8843          * This value does not include pixel_multiplier.
8844          * We will check that port_clock and adjusted_mode.crtc_clock
8845          * agree once we know their relationship in the encoder's
8846          * get_config() function.
8847          */
8848         pipe_config->adjusted_mode.crtc_clock =
8849                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8850                                          &pipe_config->fdi_m_n);
8851 }
8852
8853 /** Returns the currently programmed mode of the given pipe. */
8854 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8855                                              struct drm_crtc *crtc)
8856 {
8857         struct drm_i915_private *dev_priv = dev->dev_private;
8858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8859         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8860         struct drm_display_mode *mode;
8861         struct intel_crtc_config pipe_config;
8862         int htot = I915_READ(HTOTAL(cpu_transcoder));
8863         int hsync = I915_READ(HSYNC(cpu_transcoder));
8864         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8865         int vsync = I915_READ(VSYNC(cpu_transcoder));
8866         enum pipe pipe = intel_crtc->pipe;
8867
8868         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8869         if (!mode)
8870                 return NULL;
8871
8872         /*
8873          * Construct a pipe_config sufficient for getting the clock info
8874          * back out of crtc_clock_get.
8875          *
8876          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8877          * to use a real value here instead.
8878          */
8879         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8880         pipe_config.pixel_multiplier = 1;
8881         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8882         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8883         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8884         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8885
8886         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8887         mode->hdisplay = (htot & 0xffff) + 1;
8888         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8889         mode->hsync_start = (hsync & 0xffff) + 1;
8890         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8891         mode->vdisplay = (vtot & 0xffff) + 1;
8892         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8893         mode->vsync_start = (vsync & 0xffff) + 1;
8894         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8895
8896         drm_mode_set_name(mode);
8897
8898         return mode;
8899 }
8900
8901 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8902 {
8903         struct drm_device *dev = crtc->dev;
8904         struct drm_i915_private *dev_priv = dev->dev_private;
8905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8906
8907         if (!HAS_GMCH_DISPLAY(dev))
8908                 return;
8909
8910         if (!dev_priv->lvds_downclock_avail)
8911                 return;
8912
8913         /*
8914          * Since this is called by a timer, we should never get here in
8915          * the manual case.
8916          */
8917         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8918                 int pipe = intel_crtc->pipe;
8919                 int dpll_reg = DPLL(pipe);
8920                 int dpll;
8921
8922                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8923
8924                 assert_panel_unlocked(dev_priv, pipe);
8925
8926                 dpll = I915_READ(dpll_reg);
8927                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8928                 I915_WRITE(dpll_reg, dpll);
8929                 intel_wait_for_vblank(dev, pipe);
8930                 dpll = I915_READ(dpll_reg);
8931                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8932                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8933         }
8934
8935 }
8936
8937 void intel_mark_busy(struct drm_device *dev)
8938 {
8939         struct drm_i915_private *dev_priv = dev->dev_private;
8940
8941         if (dev_priv->mm.busy)
8942                 return;
8943
8944         intel_runtime_pm_get(dev_priv);
8945         i915_update_gfx_val(dev_priv);
8946         dev_priv->mm.busy = true;
8947 }
8948
8949 void intel_mark_idle(struct drm_device *dev)
8950 {
8951         struct drm_i915_private *dev_priv = dev->dev_private;
8952         struct drm_crtc *crtc;
8953
8954         if (!dev_priv->mm.busy)
8955                 return;
8956
8957         dev_priv->mm.busy = false;
8958
8959         if (!i915.powersave)
8960                 goto out;
8961
8962         for_each_crtc(dev, crtc) {
8963                 if (!crtc->primary->fb)
8964                         continue;
8965
8966                 intel_decrease_pllclock(crtc);
8967         }
8968
8969         if (INTEL_INFO(dev)->gen >= 6)
8970                 gen6_rps_idle(dev->dev_private);
8971
8972 out:
8973         intel_runtime_pm_put(dev_priv);
8974 }
8975
8976 static void intel_crtc_destroy(struct drm_crtc *crtc)
8977 {
8978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8979         struct drm_device *dev = crtc->dev;
8980         struct intel_unpin_work *work;
8981
8982         spin_lock_irq(&dev->event_lock);
8983         work = intel_crtc->unpin_work;
8984         intel_crtc->unpin_work = NULL;
8985         spin_unlock_irq(&dev->event_lock);
8986
8987         if (work) {
8988                 cancel_work_sync(&work->work);
8989                 kfree(work);
8990         }
8991
8992         drm_crtc_cleanup(crtc);
8993
8994         kfree(intel_crtc);
8995 }
8996
8997 static void intel_unpin_work_fn(struct work_struct *__work)
8998 {
8999         struct intel_unpin_work *work =
9000                 container_of(__work, struct intel_unpin_work, work);
9001         struct drm_device *dev = work->crtc->dev;
9002         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9003
9004         mutex_lock(&dev->struct_mutex);
9005         intel_unpin_fb_obj(work->old_fb_obj);
9006         drm_gem_object_unreference(&work->pending_flip_obj->base);
9007         drm_gem_object_unreference(&work->old_fb_obj->base);
9008
9009         intel_update_fbc(dev);
9010         mutex_unlock(&dev->struct_mutex);
9011
9012         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9013
9014         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9015         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9016
9017         kfree(work);
9018 }
9019
9020 static void do_intel_finish_page_flip(struct drm_device *dev,
9021                                       struct drm_crtc *crtc)
9022 {
9023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9024         struct intel_unpin_work *work;
9025         unsigned long flags;
9026
9027         /* Ignore early vblank irqs */
9028         if (intel_crtc == NULL)
9029                 return;
9030
9031         /*
9032          * This is called both by irq handlers and the reset code (to complete
9033          * lost pageflips) so needs the full irqsave spinlocks.
9034          */
9035         spin_lock_irqsave(&dev->event_lock, flags);
9036         work = intel_crtc->unpin_work;
9037
9038         /* Ensure we don't miss a work->pending update ... */
9039         smp_rmb();
9040
9041         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9042                 spin_unlock_irqrestore(&dev->event_lock, flags);
9043                 return;
9044         }
9045
9046         page_flip_completed(intel_crtc);
9047
9048         spin_unlock_irqrestore(&dev->event_lock, flags);
9049 }
9050
9051 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9052 {
9053         struct drm_i915_private *dev_priv = dev->dev_private;
9054         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9055
9056         do_intel_finish_page_flip(dev, crtc);
9057 }
9058
9059 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9060 {
9061         struct drm_i915_private *dev_priv = dev->dev_private;
9062         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9063
9064         do_intel_finish_page_flip(dev, crtc);
9065 }
9066
9067 /* Is 'a' after or equal to 'b'? */
9068 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9069 {
9070         return !((a - b) & 0x80000000);
9071 }
9072
9073 static bool page_flip_finished(struct intel_crtc *crtc)
9074 {
9075         struct drm_device *dev = crtc->base.dev;
9076         struct drm_i915_private *dev_priv = dev->dev_private;
9077
9078         /*
9079          * The relevant registers doen't exist on pre-ctg.
9080          * As the flip done interrupt doesn't trigger for mmio
9081          * flips on gmch platforms, a flip count check isn't
9082          * really needed there. But since ctg has the registers,
9083          * include it in the check anyway.
9084          */
9085         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9086                 return true;
9087
9088         /*
9089          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9090          * used the same base address. In that case the mmio flip might
9091          * have completed, but the CS hasn't even executed the flip yet.
9092          *
9093          * A flip count check isn't enough as the CS might have updated
9094          * the base address just after start of vblank, but before we
9095          * managed to process the interrupt. This means we'd complete the
9096          * CS flip too soon.
9097          *
9098          * Combining both checks should get us a good enough result. It may
9099          * still happen that the CS flip has been executed, but has not
9100          * yet actually completed. But in case the base address is the same
9101          * anyway, we don't really care.
9102          */
9103         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9104                 crtc->unpin_work->gtt_offset &&
9105                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9106                                     crtc->unpin_work->flip_count);
9107 }
9108
9109 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9110 {
9111         struct drm_i915_private *dev_priv = dev->dev_private;
9112         struct intel_crtc *intel_crtc =
9113                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9114         unsigned long flags;
9115
9116
9117         /*
9118          * This is called both by irq handlers and the reset code (to complete
9119          * lost pageflips) so needs the full irqsave spinlocks.
9120          *
9121          * NB: An MMIO update of the plane base pointer will also
9122          * generate a page-flip completion irq, i.e. every modeset
9123          * is also accompanied by a spurious intel_prepare_page_flip().
9124          */
9125         spin_lock_irqsave(&dev->event_lock, flags);
9126         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9127                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9128         spin_unlock_irqrestore(&dev->event_lock, flags);
9129 }
9130
9131 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9132 {
9133         /* Ensure that the work item is consistent when activating it ... */
9134         smp_wmb();
9135         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9136         /* and that it is marked active as soon as the irq could fire. */
9137         smp_wmb();
9138 }
9139
9140 static int intel_gen2_queue_flip(struct drm_device *dev,
9141                                  struct drm_crtc *crtc,
9142                                  struct drm_framebuffer *fb,
9143                                  struct drm_i915_gem_object *obj,
9144                                  struct intel_engine_cs *ring,
9145                                  uint32_t flags)
9146 {
9147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9148         u32 flip_mask;
9149         int ret;
9150
9151         ret = intel_ring_begin(ring, 6);
9152         if (ret)
9153                 return ret;
9154
9155         /* Can't queue multiple flips, so wait for the previous
9156          * one to finish before executing the next.
9157          */
9158         if (intel_crtc->plane)
9159                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9160         else
9161                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9162         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9163         intel_ring_emit(ring, MI_NOOP);
9164         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9165                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9166         intel_ring_emit(ring, fb->pitches[0]);
9167         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9168         intel_ring_emit(ring, 0); /* aux display base address, unused */
9169
9170         intel_mark_page_flip_active(intel_crtc);
9171         __intel_ring_advance(ring);
9172         return 0;
9173 }
9174
9175 static int intel_gen3_queue_flip(struct drm_device *dev,
9176                                  struct drm_crtc *crtc,
9177                                  struct drm_framebuffer *fb,
9178                                  struct drm_i915_gem_object *obj,
9179                                  struct intel_engine_cs *ring,
9180                                  uint32_t flags)
9181 {
9182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9183         u32 flip_mask;
9184         int ret;
9185
9186         ret = intel_ring_begin(ring, 6);
9187         if (ret)
9188                 return ret;
9189
9190         if (intel_crtc->plane)
9191                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9192         else
9193                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9194         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9195         intel_ring_emit(ring, MI_NOOP);
9196         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9197                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9198         intel_ring_emit(ring, fb->pitches[0]);
9199         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9200         intel_ring_emit(ring, MI_NOOP);
9201
9202         intel_mark_page_flip_active(intel_crtc);
9203         __intel_ring_advance(ring);
9204         return 0;
9205 }
9206
9207 static int intel_gen4_queue_flip(struct drm_device *dev,
9208                                  struct drm_crtc *crtc,
9209                                  struct drm_framebuffer *fb,
9210                                  struct drm_i915_gem_object *obj,
9211                                  struct intel_engine_cs *ring,
9212                                  uint32_t flags)
9213 {
9214         struct drm_i915_private *dev_priv = dev->dev_private;
9215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9216         uint32_t pf, pipesrc;
9217         int ret;
9218
9219         ret = intel_ring_begin(ring, 4);
9220         if (ret)
9221                 return ret;
9222
9223         /* i965+ uses the linear or tiled offsets from the
9224          * Display Registers (which do not change across a page-flip)
9225          * so we need only reprogram the base address.
9226          */
9227         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9228                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9229         intel_ring_emit(ring, fb->pitches[0]);
9230         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9231                         obj->tiling_mode);
9232
9233         /* XXX Enabling the panel-fitter across page-flip is so far
9234          * untested on non-native modes, so ignore it for now.
9235          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9236          */
9237         pf = 0;
9238         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9239         intel_ring_emit(ring, pf | pipesrc);
9240
9241         intel_mark_page_flip_active(intel_crtc);
9242         __intel_ring_advance(ring);
9243         return 0;
9244 }
9245
9246 static int intel_gen6_queue_flip(struct drm_device *dev,
9247                                  struct drm_crtc *crtc,
9248                                  struct drm_framebuffer *fb,
9249                                  struct drm_i915_gem_object *obj,
9250                                  struct intel_engine_cs *ring,
9251                                  uint32_t flags)
9252 {
9253         struct drm_i915_private *dev_priv = dev->dev_private;
9254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9255         uint32_t pf, pipesrc;
9256         int ret;
9257
9258         ret = intel_ring_begin(ring, 4);
9259         if (ret)
9260                 return ret;
9261
9262         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9263                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9264         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9265         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9266
9267         /* Contrary to the suggestions in the documentation,
9268          * "Enable Panel Fitter" does not seem to be required when page
9269          * flipping with a non-native mode, and worse causes a normal
9270          * modeset to fail.
9271          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9272          */
9273         pf = 0;
9274         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9275         intel_ring_emit(ring, pf | pipesrc);
9276
9277         intel_mark_page_flip_active(intel_crtc);
9278         __intel_ring_advance(ring);
9279         return 0;
9280 }
9281
9282 static int intel_gen7_queue_flip(struct drm_device *dev,
9283                                  struct drm_crtc *crtc,
9284                                  struct drm_framebuffer *fb,
9285                                  struct drm_i915_gem_object *obj,
9286                                  struct intel_engine_cs *ring,
9287                                  uint32_t flags)
9288 {
9289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9290         uint32_t plane_bit = 0;
9291         int len, ret;
9292
9293         switch (intel_crtc->plane) {
9294         case PLANE_A:
9295                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9296                 break;
9297         case PLANE_B:
9298                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9299                 break;
9300         case PLANE_C:
9301                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9302                 break;
9303         default:
9304                 WARN_ONCE(1, "unknown plane in flip command\n");
9305                 return -ENODEV;
9306         }
9307
9308         len = 4;
9309         if (ring->id == RCS) {
9310                 len += 6;
9311                 /*
9312                  * On Gen 8, SRM is now taking an extra dword to accommodate
9313                  * 48bits addresses, and we need a NOOP for the batch size to
9314                  * stay even.
9315                  */
9316                 if (IS_GEN8(dev))
9317                         len += 2;
9318         }
9319
9320         /*
9321          * BSpec MI_DISPLAY_FLIP for IVB:
9322          * "The full packet must be contained within the same cache line."
9323          *
9324          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9325          * cacheline, if we ever start emitting more commands before
9326          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9327          * then do the cacheline alignment, and finally emit the
9328          * MI_DISPLAY_FLIP.
9329          */
9330         ret = intel_ring_cacheline_align(ring);
9331         if (ret)
9332                 return ret;
9333
9334         ret = intel_ring_begin(ring, len);
9335         if (ret)
9336                 return ret;
9337
9338         /* Unmask the flip-done completion message. Note that the bspec says that
9339          * we should do this for both the BCS and RCS, and that we must not unmask
9340          * more than one flip event at any time (or ensure that one flip message
9341          * can be sent by waiting for flip-done prior to queueing new flips).
9342          * Experimentation says that BCS works despite DERRMR masking all
9343          * flip-done completion events and that unmasking all planes at once
9344          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9345          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9346          */
9347         if (ring->id == RCS) {
9348                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9349                 intel_ring_emit(ring, DERRMR);
9350                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9351                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9352                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9353                 if (IS_GEN8(dev))
9354                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9355                                               MI_SRM_LRM_GLOBAL_GTT);
9356                 else
9357                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9358                                               MI_SRM_LRM_GLOBAL_GTT);
9359                 intel_ring_emit(ring, DERRMR);
9360                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9361                 if (IS_GEN8(dev)) {
9362                         intel_ring_emit(ring, 0);
9363                         intel_ring_emit(ring, MI_NOOP);
9364                 }
9365         }
9366
9367         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9368         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9369         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9370         intel_ring_emit(ring, (MI_NOOP));
9371
9372         intel_mark_page_flip_active(intel_crtc);
9373         __intel_ring_advance(ring);
9374         return 0;
9375 }
9376
9377 static bool use_mmio_flip(struct intel_engine_cs *ring,
9378                           struct drm_i915_gem_object *obj)
9379 {
9380         /*
9381          * This is not being used for older platforms, because
9382          * non-availability of flip done interrupt forces us to use
9383          * CS flips. Older platforms derive flip done using some clever
9384          * tricks involving the flip_pending status bits and vblank irqs.
9385          * So using MMIO flips there would disrupt this mechanism.
9386          */
9387
9388         if (ring == NULL)
9389                 return true;
9390
9391         if (INTEL_INFO(ring->dev)->gen < 5)
9392                 return false;
9393
9394         if (i915.use_mmio_flip < 0)
9395                 return false;
9396         else if (i915.use_mmio_flip > 0)
9397                 return true;
9398         else if (i915.enable_execlists)
9399                 return true;
9400         else
9401                 return ring != obj->ring;
9402 }
9403
9404 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9405 {
9406         struct drm_device *dev = intel_crtc->base.dev;
9407         struct drm_i915_private *dev_priv = dev->dev_private;
9408         struct intel_framebuffer *intel_fb =
9409                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9410         struct drm_i915_gem_object *obj = intel_fb->obj;
9411         u32 dspcntr;
9412         u32 reg;
9413
9414         intel_mark_page_flip_active(intel_crtc);
9415
9416         reg = DSPCNTR(intel_crtc->plane);
9417         dspcntr = I915_READ(reg);
9418
9419         if (obj->tiling_mode != I915_TILING_NONE)
9420                 dspcntr |= DISPPLANE_TILED;
9421         else
9422                 dspcntr &= ~DISPPLANE_TILED;
9423
9424         I915_WRITE(reg, dspcntr);
9425
9426         I915_WRITE(DSPSURF(intel_crtc->plane),
9427                    intel_crtc->unpin_work->gtt_offset);
9428         POSTING_READ(DSPSURF(intel_crtc->plane));
9429 }
9430
9431 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9432 {
9433         struct intel_engine_cs *ring;
9434         int ret;
9435
9436         lockdep_assert_held(&obj->base.dev->struct_mutex);
9437
9438         if (!obj->last_write_seqno)
9439                 return 0;
9440
9441         ring = obj->ring;
9442
9443         if (i915_seqno_passed(ring->get_seqno(ring, true),
9444                               obj->last_write_seqno))
9445                 return 0;
9446
9447         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9448         if (ret)
9449                 return ret;
9450
9451         if (WARN_ON(!ring->irq_get(ring)))
9452                 return 0;
9453
9454         return 1;
9455 }
9456
9457 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9458 {
9459         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9460         struct intel_crtc *intel_crtc;
9461         unsigned long irq_flags;
9462         u32 seqno;
9463
9464         seqno = ring->get_seqno(ring, false);
9465
9466         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9467         for_each_intel_crtc(ring->dev, intel_crtc) {
9468                 struct intel_mmio_flip *mmio_flip;
9469
9470                 mmio_flip = &intel_crtc->mmio_flip;
9471                 if (mmio_flip->seqno == 0)
9472                         continue;
9473
9474                 if (ring->id != mmio_flip->ring_id)
9475                         continue;
9476
9477                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9478                         intel_do_mmio_flip(intel_crtc);
9479                         mmio_flip->seqno = 0;
9480                         ring->irq_put(ring);
9481                 }
9482         }
9483         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9484 }
9485
9486 static int intel_queue_mmio_flip(struct drm_device *dev,
9487                                  struct drm_crtc *crtc,
9488                                  struct drm_framebuffer *fb,
9489                                  struct drm_i915_gem_object *obj,
9490                                  struct intel_engine_cs *ring,
9491                                  uint32_t flags)
9492 {
9493         struct drm_i915_private *dev_priv = dev->dev_private;
9494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9495         int ret;
9496
9497         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9498                 return -EBUSY;
9499
9500         ret = intel_postpone_flip(obj);
9501         if (ret < 0)
9502                 return ret;
9503         if (ret == 0) {
9504                 intel_do_mmio_flip(intel_crtc);
9505                 return 0;
9506         }
9507
9508         spin_lock_irq(&dev_priv->mmio_flip_lock);
9509         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9510         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9511         spin_unlock_irq(&dev_priv->mmio_flip_lock);
9512
9513         /*
9514          * Double check to catch cases where irq fired before
9515          * mmio flip data was ready
9516          */
9517         intel_notify_mmio_flip(obj->ring);
9518         return 0;
9519 }
9520
9521 static int intel_default_queue_flip(struct drm_device *dev,
9522                                     struct drm_crtc *crtc,
9523                                     struct drm_framebuffer *fb,
9524                                     struct drm_i915_gem_object *obj,
9525                                     struct intel_engine_cs *ring,
9526                                     uint32_t flags)
9527 {
9528         return -ENODEV;
9529 }
9530
9531 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9532                                          struct drm_crtc *crtc)
9533 {
9534         struct drm_i915_private *dev_priv = dev->dev_private;
9535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9536         struct intel_unpin_work *work = intel_crtc->unpin_work;
9537         u32 addr;
9538
9539         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9540                 return true;
9541
9542         if (!work->enable_stall_check)
9543                 return false;
9544
9545         if (work->flip_ready_vblank == 0) {
9546                 if (work->flip_queued_ring &&
9547                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9548                                        work->flip_queued_seqno))
9549                         return false;
9550
9551                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9552         }
9553
9554         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9555                 return false;
9556
9557         /* Potential stall - if we see that the flip has happened,
9558          * assume a missed interrupt. */
9559         if (INTEL_INFO(dev)->gen >= 4)
9560                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9561         else
9562                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9563
9564         /* There is a potential issue here with a false positive after a flip
9565          * to the same address. We could address this by checking for a
9566          * non-incrementing frame counter.
9567          */
9568         return addr == work->gtt_offset;
9569 }
9570
9571 void intel_check_page_flip(struct drm_device *dev, int pipe)
9572 {
9573         struct drm_i915_private *dev_priv = dev->dev_private;
9574         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576
9577         WARN_ON(!in_irq());
9578
9579         if (crtc == NULL)
9580                 return;
9581
9582         spin_lock(&dev->event_lock);
9583         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9584                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9585                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9586                 page_flip_completed(intel_crtc);
9587         }
9588         spin_unlock(&dev->event_lock);
9589 }
9590
9591 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9592                                 struct drm_framebuffer *fb,
9593                                 struct drm_pending_vblank_event *event,
9594                                 uint32_t page_flip_flags)
9595 {
9596         struct drm_device *dev = crtc->dev;
9597         struct drm_i915_private *dev_priv = dev->dev_private;
9598         struct drm_framebuffer *old_fb = crtc->primary->fb;
9599         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9601         enum pipe pipe = intel_crtc->pipe;
9602         struct intel_unpin_work *work;
9603         struct intel_engine_cs *ring;
9604         int ret;
9605
9606         /*
9607          * drm_mode_page_flip_ioctl() should already catch this, but double
9608          * check to be safe.  In the future we may enable pageflipping from
9609          * a disabled primary plane.
9610          */
9611         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9612                 return -EBUSY;
9613
9614         /* Can't change pixel format via MI display flips. */
9615         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9616                 return -EINVAL;
9617
9618         /*
9619          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9620          * Note that pitch changes could also affect these register.
9621          */
9622         if (INTEL_INFO(dev)->gen > 3 &&
9623             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9624              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9625                 return -EINVAL;
9626
9627         if (i915_terminally_wedged(&dev_priv->gpu_error))
9628                 goto out_hang;
9629
9630         work = kzalloc(sizeof(*work), GFP_KERNEL);
9631         if (work == NULL)
9632                 return -ENOMEM;
9633
9634         work->event = event;
9635         work->crtc = crtc;
9636         work->old_fb_obj = intel_fb_obj(old_fb);
9637         INIT_WORK(&work->work, intel_unpin_work_fn);
9638
9639         ret = drm_crtc_vblank_get(crtc);
9640         if (ret)
9641                 goto free_work;
9642
9643         /* We borrow the event spin lock for protecting unpin_work */
9644         spin_lock_irq(&dev->event_lock);
9645         if (intel_crtc->unpin_work) {
9646                 /* Before declaring the flip queue wedged, check if
9647                  * the hardware completed the operation behind our backs.
9648                  */
9649                 if (__intel_pageflip_stall_check(dev, crtc)) {
9650                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9651                         page_flip_completed(intel_crtc);
9652                 } else {
9653                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9654                         spin_unlock_irq(&dev->event_lock);
9655
9656                         drm_crtc_vblank_put(crtc);
9657                         kfree(work);
9658                         return -EBUSY;
9659                 }
9660         }
9661         intel_crtc->unpin_work = work;
9662         spin_unlock_irq(&dev->event_lock);
9663
9664         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9665                 flush_workqueue(dev_priv->wq);
9666
9667         ret = i915_mutex_lock_interruptible(dev);
9668         if (ret)
9669                 goto cleanup;
9670
9671         /* Reference the objects for the scheduled work. */
9672         drm_gem_object_reference(&work->old_fb_obj->base);
9673         drm_gem_object_reference(&obj->base);
9674
9675         crtc->primary->fb = fb;
9676
9677         work->pending_flip_obj = obj;
9678
9679         atomic_inc(&intel_crtc->unpin_work_count);
9680         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9681
9682         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9683                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9684
9685         if (IS_VALLEYVIEW(dev)) {
9686                 ring = &dev_priv->ring[BCS];
9687                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9688                         /* vlv: DISPLAY_FLIP fails to change tiling */
9689                         ring = NULL;
9690         } else if (IS_IVYBRIDGE(dev)) {
9691                 ring = &dev_priv->ring[BCS];
9692         } else if (INTEL_INFO(dev)->gen >= 7) {
9693                 ring = obj->ring;
9694                 if (ring == NULL || ring->id != RCS)
9695                         ring = &dev_priv->ring[BCS];
9696         } else {
9697                 ring = &dev_priv->ring[RCS];
9698         }
9699
9700         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9701         if (ret)
9702                 goto cleanup_pending;
9703
9704         work->gtt_offset =
9705                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9706
9707         if (use_mmio_flip(ring, obj)) {
9708                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9709                                             page_flip_flags);
9710                 if (ret)
9711                         goto cleanup_unpin;
9712
9713                 work->flip_queued_seqno = obj->last_write_seqno;
9714                 work->flip_queued_ring = obj->ring;
9715         } else {
9716                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9717                                                    page_flip_flags);
9718                 if (ret)
9719                         goto cleanup_unpin;
9720
9721                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9722                 work->flip_queued_ring = ring;
9723         }
9724
9725         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9726         work->enable_stall_check = true;
9727
9728         i915_gem_track_fb(work->old_fb_obj, obj,
9729                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9730
9731         intel_disable_fbc(dev);
9732         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9733         mutex_unlock(&dev->struct_mutex);
9734
9735         trace_i915_flip_request(intel_crtc->plane, obj);
9736
9737         return 0;
9738
9739 cleanup_unpin:
9740         intel_unpin_fb_obj(obj);
9741 cleanup_pending:
9742         atomic_dec(&intel_crtc->unpin_work_count);
9743         crtc->primary->fb = old_fb;
9744         drm_gem_object_unreference(&work->old_fb_obj->base);
9745         drm_gem_object_unreference(&obj->base);
9746         mutex_unlock(&dev->struct_mutex);
9747
9748 cleanup:
9749         spin_lock_irq(&dev->event_lock);
9750         intel_crtc->unpin_work = NULL;
9751         spin_unlock_irq(&dev->event_lock);
9752
9753         drm_crtc_vblank_put(crtc);
9754 free_work:
9755         kfree(work);
9756
9757         if (ret == -EIO) {
9758 out_hang:
9759                 intel_crtc_wait_for_pending_flips(crtc);
9760                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9761                 if (ret == 0 && event) {
9762                         spin_lock_irq(&dev->event_lock);
9763                         drm_send_vblank_event(dev, pipe, event);
9764                         spin_unlock_irq(&dev->event_lock);
9765                 }
9766         }
9767         return ret;
9768 }
9769
9770 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9771         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9772         .load_lut = intel_crtc_load_lut,
9773 };
9774
9775 /**
9776  * intel_modeset_update_staged_output_state
9777  *
9778  * Updates the staged output configuration state, e.g. after we've read out the
9779  * current hw state.
9780  */
9781 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9782 {
9783         struct intel_crtc *crtc;
9784         struct intel_encoder *encoder;
9785         struct intel_connector *connector;
9786
9787         list_for_each_entry(connector, &dev->mode_config.connector_list,
9788                             base.head) {
9789                 connector->new_encoder =
9790                         to_intel_encoder(connector->base.encoder);
9791         }
9792
9793         for_each_intel_encoder(dev, encoder) {
9794                 encoder->new_crtc =
9795                         to_intel_crtc(encoder->base.crtc);
9796         }
9797
9798         for_each_intel_crtc(dev, crtc) {
9799                 crtc->new_enabled = crtc->base.enabled;
9800
9801                 if (crtc->new_enabled)
9802                         crtc->new_config = &crtc->config;
9803                 else
9804                         crtc->new_config = NULL;
9805         }
9806 }
9807
9808 /**
9809  * intel_modeset_commit_output_state
9810  *
9811  * This function copies the stage display pipe configuration to the real one.
9812  */
9813 static void intel_modeset_commit_output_state(struct drm_device *dev)
9814 {
9815         struct intel_crtc *crtc;
9816         struct intel_encoder *encoder;
9817         struct intel_connector *connector;
9818
9819         list_for_each_entry(connector, &dev->mode_config.connector_list,
9820                             base.head) {
9821                 connector->base.encoder = &connector->new_encoder->base;
9822         }
9823
9824         for_each_intel_encoder(dev, encoder) {
9825                 encoder->base.crtc = &encoder->new_crtc->base;
9826         }
9827
9828         for_each_intel_crtc(dev, crtc) {
9829                 crtc->base.enabled = crtc->new_enabled;
9830         }
9831 }
9832
9833 static void
9834 connected_sink_compute_bpp(struct intel_connector *connector,
9835                            struct intel_crtc_config *pipe_config)
9836 {
9837         int bpp = pipe_config->pipe_bpp;
9838
9839         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9840                 connector->base.base.id,
9841                 connector->base.name);
9842
9843         /* Don't use an invalid EDID bpc value */
9844         if (connector->base.display_info.bpc &&
9845             connector->base.display_info.bpc * 3 < bpp) {
9846                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9847                               bpp, connector->base.display_info.bpc*3);
9848                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9849         }
9850
9851         /* Clamp bpp to 8 on screens without EDID 1.4 */
9852         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9853                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9854                               bpp);
9855                 pipe_config->pipe_bpp = 24;
9856         }
9857 }
9858
9859 static int
9860 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9861                           struct drm_framebuffer *fb,
9862                           struct intel_crtc_config *pipe_config)
9863 {
9864         struct drm_device *dev = crtc->base.dev;
9865         struct intel_connector *connector;
9866         int bpp;
9867
9868         switch (fb->pixel_format) {
9869         case DRM_FORMAT_C8:
9870                 bpp = 8*3; /* since we go through a colormap */
9871                 break;
9872         case DRM_FORMAT_XRGB1555:
9873         case DRM_FORMAT_ARGB1555:
9874                 /* checked in intel_framebuffer_init already */
9875                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9876                         return -EINVAL;
9877         case DRM_FORMAT_RGB565:
9878                 bpp = 6*3; /* min is 18bpp */
9879                 break;
9880         case DRM_FORMAT_XBGR8888:
9881         case DRM_FORMAT_ABGR8888:
9882                 /* checked in intel_framebuffer_init already */
9883                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9884                         return -EINVAL;
9885         case DRM_FORMAT_XRGB8888:
9886         case DRM_FORMAT_ARGB8888:
9887                 bpp = 8*3;
9888                 break;
9889         case DRM_FORMAT_XRGB2101010:
9890         case DRM_FORMAT_ARGB2101010:
9891         case DRM_FORMAT_XBGR2101010:
9892         case DRM_FORMAT_ABGR2101010:
9893                 /* checked in intel_framebuffer_init already */
9894                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9895                         return -EINVAL;
9896                 bpp = 10*3;
9897                 break;
9898         /* TODO: gen4+ supports 16 bpc floating point, too. */
9899         default:
9900                 DRM_DEBUG_KMS("unsupported depth\n");
9901                 return -EINVAL;
9902         }
9903
9904         pipe_config->pipe_bpp = bpp;
9905
9906         /* Clamp display bpp to EDID value */
9907         list_for_each_entry(connector, &dev->mode_config.connector_list,
9908                             base.head) {
9909                 if (!connector->new_encoder ||
9910                     connector->new_encoder->new_crtc != crtc)
9911                         continue;
9912
9913                 connected_sink_compute_bpp(connector, pipe_config);
9914         }
9915
9916         return bpp;
9917 }
9918
9919 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9920 {
9921         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9922                         "type: 0x%x flags: 0x%x\n",
9923                 mode->crtc_clock,
9924                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9925                 mode->crtc_hsync_end, mode->crtc_htotal,
9926                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9927                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9928 }
9929
9930 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9931                                    struct intel_crtc_config *pipe_config,
9932                                    const char *context)
9933 {
9934         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9935                       context, pipe_name(crtc->pipe));
9936
9937         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9938         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9939                       pipe_config->pipe_bpp, pipe_config->dither);
9940         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9941                       pipe_config->has_pch_encoder,
9942                       pipe_config->fdi_lanes,
9943                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9944                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9945                       pipe_config->fdi_m_n.tu);
9946         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9947                       pipe_config->has_dp_encoder,
9948                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9949                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9950                       pipe_config->dp_m_n.tu);
9951
9952         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9953                       pipe_config->has_dp_encoder,
9954                       pipe_config->dp_m2_n2.gmch_m,
9955                       pipe_config->dp_m2_n2.gmch_n,
9956                       pipe_config->dp_m2_n2.link_m,
9957                       pipe_config->dp_m2_n2.link_n,
9958                       pipe_config->dp_m2_n2.tu);
9959
9960         DRM_DEBUG_KMS("requested mode:\n");
9961         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9962         DRM_DEBUG_KMS("adjusted mode:\n");
9963         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9964         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9965         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9966         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9967                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9968         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9969                       pipe_config->gmch_pfit.control,
9970                       pipe_config->gmch_pfit.pgm_ratios,
9971                       pipe_config->gmch_pfit.lvds_border_bits);
9972         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9973                       pipe_config->pch_pfit.pos,
9974                       pipe_config->pch_pfit.size,
9975                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9976         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9977         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9978 }
9979
9980 static bool encoders_cloneable(const struct intel_encoder *a,
9981                                const struct intel_encoder *b)
9982 {
9983         /* masks could be asymmetric, so check both ways */
9984         return a == b || (a->cloneable & (1 << b->type) &&
9985                           b->cloneable & (1 << a->type));
9986 }
9987
9988 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9989                                          struct intel_encoder *encoder)
9990 {
9991         struct drm_device *dev = crtc->base.dev;
9992         struct intel_encoder *source_encoder;
9993
9994         for_each_intel_encoder(dev, source_encoder) {
9995                 if (source_encoder->new_crtc != crtc)
9996                         continue;
9997
9998                 if (!encoders_cloneable(encoder, source_encoder))
9999                         return false;
10000         }
10001
10002         return true;
10003 }
10004
10005 static bool check_encoder_cloning(struct intel_crtc *crtc)
10006 {
10007         struct drm_device *dev = crtc->base.dev;
10008         struct intel_encoder *encoder;
10009
10010         for_each_intel_encoder(dev, encoder) {
10011                 if (encoder->new_crtc != crtc)
10012                         continue;
10013
10014                 if (!check_single_encoder_cloning(crtc, encoder))
10015                         return false;
10016         }
10017
10018         return true;
10019 }
10020
10021 static struct intel_crtc_config *
10022 intel_modeset_pipe_config(struct drm_crtc *crtc,
10023                           struct drm_framebuffer *fb,
10024                           struct drm_display_mode *mode)
10025 {
10026         struct drm_device *dev = crtc->dev;
10027         struct intel_encoder *encoder;
10028         struct intel_crtc_config *pipe_config;
10029         int plane_bpp, ret = -EINVAL;
10030         bool retry = true;
10031
10032         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10033                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10034                 return ERR_PTR(-EINVAL);
10035         }
10036
10037         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10038         if (!pipe_config)
10039                 return ERR_PTR(-ENOMEM);
10040
10041         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10042         drm_mode_copy(&pipe_config->requested_mode, mode);
10043
10044         pipe_config->cpu_transcoder =
10045                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10046         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10047
10048         /*
10049          * Sanitize sync polarity flags based on requested ones. If neither
10050          * positive or negative polarity is requested, treat this as meaning
10051          * negative polarity.
10052          */
10053         if (!(pipe_config->adjusted_mode.flags &
10054               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10055                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10056
10057         if (!(pipe_config->adjusted_mode.flags &
10058               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10059                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10060
10061         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10062          * plane pixel format and any sink constraints into account. Returns the
10063          * source plane bpp so that dithering can be selected on mismatches
10064          * after encoders and crtc also have had their say. */
10065         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10066                                               fb, pipe_config);
10067         if (plane_bpp < 0)
10068                 goto fail;
10069
10070         /*
10071          * Determine the real pipe dimensions. Note that stereo modes can
10072          * increase the actual pipe size due to the frame doubling and
10073          * insertion of additional space for blanks between the frame. This
10074          * is stored in the crtc timings. We use the requested mode to do this
10075          * computation to clearly distinguish it from the adjusted mode, which
10076          * can be changed by the connectors in the below retry loop.
10077          */
10078         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10079         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10080         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10081
10082 encoder_retry:
10083         /* Ensure the port clock defaults are reset when retrying. */
10084         pipe_config->port_clock = 0;
10085         pipe_config->pixel_multiplier = 1;
10086
10087         /* Fill in default crtc timings, allow encoders to overwrite them. */
10088         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10089
10090         /* Pass our mode to the connectors and the CRTC to give them a chance to
10091          * adjust it according to limitations or connector properties, and also
10092          * a chance to reject the mode entirely.
10093          */
10094         for_each_intel_encoder(dev, encoder) {
10095
10096                 if (&encoder->new_crtc->base != crtc)
10097                         continue;
10098
10099                 if (!(encoder->compute_config(encoder, pipe_config))) {
10100                         DRM_DEBUG_KMS("Encoder config failure\n");
10101                         goto fail;
10102                 }
10103         }
10104
10105         /* Set default port clock if not overwritten by the encoder. Needs to be
10106          * done afterwards in case the encoder adjusts the mode. */
10107         if (!pipe_config->port_clock)
10108                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10109                         * pipe_config->pixel_multiplier;
10110
10111         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10112         if (ret < 0) {
10113                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10114                 goto fail;
10115         }
10116
10117         if (ret == RETRY) {
10118                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10119                         ret = -EINVAL;
10120                         goto fail;
10121                 }
10122
10123                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10124                 retry = false;
10125                 goto encoder_retry;
10126         }
10127
10128         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10129         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10130                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10131
10132         return pipe_config;
10133 fail:
10134         kfree(pipe_config);
10135         return ERR_PTR(ret);
10136 }
10137
10138 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10139  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10140 static void
10141 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10142                              unsigned *prepare_pipes, unsigned *disable_pipes)
10143 {
10144         struct intel_crtc *intel_crtc;
10145         struct drm_device *dev = crtc->dev;
10146         struct intel_encoder *encoder;
10147         struct intel_connector *connector;
10148         struct drm_crtc *tmp_crtc;
10149
10150         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10151
10152         /* Check which crtcs have changed outputs connected to them, these need
10153          * to be part of the prepare_pipes mask. We don't (yet) support global
10154          * modeset across multiple crtcs, so modeset_pipes will only have one
10155          * bit set at most. */
10156         list_for_each_entry(connector, &dev->mode_config.connector_list,
10157                             base.head) {
10158                 if (connector->base.encoder == &connector->new_encoder->base)
10159                         continue;
10160
10161                 if (connector->base.encoder) {
10162                         tmp_crtc = connector->base.encoder->crtc;
10163
10164                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10165                 }
10166
10167                 if (connector->new_encoder)
10168                         *prepare_pipes |=
10169                                 1 << connector->new_encoder->new_crtc->pipe;
10170         }
10171
10172         for_each_intel_encoder(dev, encoder) {
10173                 if (encoder->base.crtc == &encoder->new_crtc->base)
10174                         continue;
10175
10176                 if (encoder->base.crtc) {
10177                         tmp_crtc = encoder->base.crtc;
10178
10179                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10180                 }
10181
10182                 if (encoder->new_crtc)
10183                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10184         }
10185
10186         /* Check for pipes that will be enabled/disabled ... */
10187         for_each_intel_crtc(dev, intel_crtc) {
10188                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10189                         continue;
10190
10191                 if (!intel_crtc->new_enabled)
10192                         *disable_pipes |= 1 << intel_crtc->pipe;
10193                 else
10194                         *prepare_pipes |= 1 << intel_crtc->pipe;
10195         }
10196
10197
10198         /* set_mode is also used to update properties on life display pipes. */
10199         intel_crtc = to_intel_crtc(crtc);
10200         if (intel_crtc->new_enabled)
10201                 *prepare_pipes |= 1 << intel_crtc->pipe;
10202
10203         /*
10204          * For simplicity do a full modeset on any pipe where the output routing
10205          * changed. We could be more clever, but that would require us to be
10206          * more careful with calling the relevant encoder->mode_set functions.
10207          */
10208         if (*prepare_pipes)
10209                 *modeset_pipes = *prepare_pipes;
10210
10211         /* ... and mask these out. */
10212         *modeset_pipes &= ~(*disable_pipes);
10213         *prepare_pipes &= ~(*disable_pipes);
10214
10215         /*
10216          * HACK: We don't (yet) fully support global modesets. intel_set_config
10217          * obies this rule, but the modeset restore mode of
10218          * intel_modeset_setup_hw_state does not.
10219          */
10220         *modeset_pipes &= 1 << intel_crtc->pipe;
10221         *prepare_pipes &= 1 << intel_crtc->pipe;
10222
10223         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10224                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10225 }
10226
10227 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10228 {
10229         struct drm_encoder *encoder;
10230         struct drm_device *dev = crtc->dev;
10231
10232         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10233                 if (encoder->crtc == crtc)
10234                         return true;
10235
10236         return false;
10237 }
10238
10239 static void
10240 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10241 {
10242         struct intel_encoder *intel_encoder;
10243         struct intel_crtc *intel_crtc;
10244         struct drm_connector *connector;
10245
10246         for_each_intel_encoder(dev, intel_encoder) {
10247                 if (!intel_encoder->base.crtc)
10248                         continue;
10249
10250                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10251
10252                 if (prepare_pipes & (1 << intel_crtc->pipe))
10253                         intel_encoder->connectors_active = false;
10254         }
10255
10256         intel_modeset_commit_output_state(dev);
10257
10258         /* Double check state. */
10259         for_each_intel_crtc(dev, intel_crtc) {
10260                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10261                 WARN_ON(intel_crtc->new_config &&
10262                         intel_crtc->new_config != &intel_crtc->config);
10263                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10264         }
10265
10266         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10267                 if (!connector->encoder || !connector->encoder->crtc)
10268                         continue;
10269
10270                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10271
10272                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10273                         struct drm_property *dpms_property =
10274                                 dev->mode_config.dpms_property;
10275
10276                         connector->dpms = DRM_MODE_DPMS_ON;
10277                         drm_object_property_set_value(&connector->base,
10278                                                          dpms_property,
10279                                                          DRM_MODE_DPMS_ON);
10280
10281                         intel_encoder = to_intel_encoder(connector->encoder);
10282                         intel_encoder->connectors_active = true;
10283                 }
10284         }
10285
10286 }
10287
10288 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10289 {
10290         int diff;
10291
10292         if (clock1 == clock2)
10293                 return true;
10294
10295         if (!clock1 || !clock2)
10296                 return false;
10297
10298         diff = abs(clock1 - clock2);
10299
10300         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10301                 return true;
10302
10303         return false;
10304 }
10305
10306 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10307         list_for_each_entry((intel_crtc), \
10308                             &(dev)->mode_config.crtc_list, \
10309                             base.head) \
10310                 if (mask & (1 <<(intel_crtc)->pipe))
10311
10312 static bool
10313 intel_pipe_config_compare(struct drm_device *dev,
10314                           struct intel_crtc_config *current_config,
10315                           struct intel_crtc_config *pipe_config)
10316 {
10317 #define PIPE_CONF_CHECK_X(name) \
10318         if (current_config->name != pipe_config->name) { \
10319                 DRM_ERROR("mismatch in " #name " " \
10320                           "(expected 0x%08x, found 0x%08x)\n", \
10321                           current_config->name, \
10322                           pipe_config->name); \
10323                 return false; \
10324         }
10325
10326 #define PIPE_CONF_CHECK_I(name) \
10327         if (current_config->name != pipe_config->name) { \
10328                 DRM_ERROR("mismatch in " #name " " \
10329                           "(expected %i, found %i)\n", \
10330                           current_config->name, \
10331                           pipe_config->name); \
10332                 return false; \
10333         }
10334
10335 /* This is required for BDW+ where there is only one set of registers for
10336  * switching between high and low RR.
10337  * This macro can be used whenever a comparison has to be made between one
10338  * hw state and multiple sw state variables.
10339  */
10340 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10341         if ((current_config->name != pipe_config->name) && \
10342                 (current_config->alt_name != pipe_config->name)) { \
10343                         DRM_ERROR("mismatch in " #name " " \
10344                                   "(expected %i or %i, found %i)\n", \
10345                                   current_config->name, \
10346                                   current_config->alt_name, \
10347                                   pipe_config->name); \
10348                         return false; \
10349         }
10350
10351 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10352         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10353                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10354                           "(expected %i, found %i)\n", \
10355                           current_config->name & (mask), \
10356                           pipe_config->name & (mask)); \
10357                 return false; \
10358         }
10359
10360 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10361         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10362                 DRM_ERROR("mismatch in " #name " " \
10363                           "(expected %i, found %i)\n", \
10364                           current_config->name, \
10365                           pipe_config->name); \
10366                 return false; \
10367         }
10368
10369 #define PIPE_CONF_QUIRK(quirk)  \
10370         ((current_config->quirks | pipe_config->quirks) & (quirk))
10371
10372         PIPE_CONF_CHECK_I(cpu_transcoder);
10373
10374         PIPE_CONF_CHECK_I(has_pch_encoder);
10375         PIPE_CONF_CHECK_I(fdi_lanes);
10376         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10377         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10378         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10379         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10380         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10381
10382         PIPE_CONF_CHECK_I(has_dp_encoder);
10383
10384         if (INTEL_INFO(dev)->gen < 8) {
10385                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10386                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10387                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10388                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10389                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10390
10391                 if (current_config->has_drrs) {
10392                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10393                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10394                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10395                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10396                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10397                 }
10398         } else {
10399                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10400                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10401                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10402                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10403                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10404         }
10405
10406         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10407         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10408         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10409         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10410         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10411         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10412
10413         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10414         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10415         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10416         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10417         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10418         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10419
10420         PIPE_CONF_CHECK_I(pixel_multiplier);
10421         PIPE_CONF_CHECK_I(has_hdmi_sink);
10422         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10423             IS_VALLEYVIEW(dev))
10424                 PIPE_CONF_CHECK_I(limited_color_range);
10425
10426         PIPE_CONF_CHECK_I(has_audio);
10427
10428         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10429                               DRM_MODE_FLAG_INTERLACE);
10430
10431         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10432                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10433                                       DRM_MODE_FLAG_PHSYNC);
10434                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10435                                       DRM_MODE_FLAG_NHSYNC);
10436                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10437                                       DRM_MODE_FLAG_PVSYNC);
10438                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10439                                       DRM_MODE_FLAG_NVSYNC);
10440         }
10441
10442         PIPE_CONF_CHECK_I(pipe_src_w);
10443         PIPE_CONF_CHECK_I(pipe_src_h);
10444
10445         /*
10446          * FIXME: BIOS likes to set up a cloned config with lvds+external
10447          * screen. Since we don't yet re-compute the pipe config when moving
10448          * just the lvds port away to another pipe the sw tracking won't match.
10449          *
10450          * Proper atomic modesets with recomputed global state will fix this.
10451          * Until then just don't check gmch state for inherited modes.
10452          */
10453         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10454                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10455                 /* pfit ratios are autocomputed by the hw on gen4+ */
10456                 if (INTEL_INFO(dev)->gen < 4)
10457                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10458                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10459         }
10460
10461         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10462         if (current_config->pch_pfit.enabled) {
10463                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10464                 PIPE_CONF_CHECK_I(pch_pfit.size);
10465         }
10466
10467         /* BDW+ don't expose a synchronous way to read the state */
10468         if (IS_HASWELL(dev))
10469                 PIPE_CONF_CHECK_I(ips_enabled);
10470
10471         PIPE_CONF_CHECK_I(double_wide);
10472
10473         PIPE_CONF_CHECK_X(ddi_pll_sel);
10474
10475         PIPE_CONF_CHECK_I(shared_dpll);
10476         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10477         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10478         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10479         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10480         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10481
10482         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10483                 PIPE_CONF_CHECK_I(pipe_bpp);
10484
10485         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10486         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10487
10488 #undef PIPE_CONF_CHECK_X
10489 #undef PIPE_CONF_CHECK_I
10490 #undef PIPE_CONF_CHECK_I_ALT
10491 #undef PIPE_CONF_CHECK_FLAGS
10492 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10493 #undef PIPE_CONF_QUIRK
10494
10495         return true;
10496 }
10497
10498 static void
10499 check_connector_state(struct drm_device *dev)
10500 {
10501         struct intel_connector *connector;
10502
10503         list_for_each_entry(connector, &dev->mode_config.connector_list,
10504                             base.head) {
10505                 /* This also checks the encoder/connector hw state with the
10506                  * ->get_hw_state callbacks. */
10507                 intel_connector_check_state(connector);
10508
10509                 WARN(&connector->new_encoder->base != connector->base.encoder,
10510                      "connector's staged encoder doesn't match current encoder\n");
10511         }
10512 }
10513
10514 static void
10515 check_encoder_state(struct drm_device *dev)
10516 {
10517         struct intel_encoder *encoder;
10518         struct intel_connector *connector;
10519
10520         for_each_intel_encoder(dev, encoder) {
10521                 bool enabled = false;
10522                 bool active = false;
10523                 enum pipe pipe, tracked_pipe;
10524
10525                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10526                               encoder->base.base.id,
10527                               encoder->base.name);
10528
10529                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10530                      "encoder's stage crtc doesn't match current crtc\n");
10531                 WARN(encoder->connectors_active && !encoder->base.crtc,
10532                      "encoder's active_connectors set, but no crtc\n");
10533
10534                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10535                                     base.head) {
10536                         if (connector->base.encoder != &encoder->base)
10537                                 continue;
10538                         enabled = true;
10539                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10540                                 active = true;
10541                 }
10542                 /*
10543                  * for MST connectors if we unplug the connector is gone
10544                  * away but the encoder is still connected to a crtc
10545                  * until a modeset happens in response to the hotplug.
10546                  */
10547                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10548                         continue;
10549
10550                 WARN(!!encoder->base.crtc != enabled,
10551                      "encoder's enabled state mismatch "
10552                      "(expected %i, found %i)\n",
10553                      !!encoder->base.crtc, enabled);
10554                 WARN(active && !encoder->base.crtc,
10555                      "active encoder with no crtc\n");
10556
10557                 WARN(encoder->connectors_active != active,
10558                      "encoder's computed active state doesn't match tracked active state "
10559                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10560
10561                 active = encoder->get_hw_state(encoder, &pipe);
10562                 WARN(active != encoder->connectors_active,
10563                      "encoder's hw state doesn't match sw tracking "
10564                      "(expected %i, found %i)\n",
10565                      encoder->connectors_active, active);
10566
10567                 if (!encoder->base.crtc)
10568                         continue;
10569
10570                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10571                 WARN(active && pipe != tracked_pipe,
10572                      "active encoder's pipe doesn't match"
10573                      "(expected %i, found %i)\n",
10574                      tracked_pipe, pipe);
10575
10576         }
10577 }
10578
10579 static void
10580 check_crtc_state(struct drm_device *dev)
10581 {
10582         struct drm_i915_private *dev_priv = dev->dev_private;
10583         struct intel_crtc *crtc;
10584         struct intel_encoder *encoder;
10585         struct intel_crtc_config pipe_config;
10586
10587         for_each_intel_crtc(dev, crtc) {
10588                 bool enabled = false;
10589                 bool active = false;
10590
10591                 memset(&pipe_config, 0, sizeof(pipe_config));
10592
10593                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10594                               crtc->base.base.id);
10595
10596                 WARN(crtc->active && !crtc->base.enabled,
10597                      "active crtc, but not enabled in sw tracking\n");
10598
10599                 for_each_intel_encoder(dev, encoder) {
10600                         if (encoder->base.crtc != &crtc->base)
10601                                 continue;
10602                         enabled = true;
10603                         if (encoder->connectors_active)
10604                                 active = true;
10605                 }
10606
10607                 WARN(active != crtc->active,
10608                      "crtc's computed active state doesn't match tracked active state "
10609                      "(expected %i, found %i)\n", active, crtc->active);
10610                 WARN(enabled != crtc->base.enabled,
10611                      "crtc's computed enabled state doesn't match tracked enabled state "
10612                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10613
10614                 active = dev_priv->display.get_pipe_config(crtc,
10615                                                            &pipe_config);
10616
10617                 /* hw state is inconsistent with the pipe quirk */
10618                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10619                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10620                         active = crtc->active;
10621
10622                 for_each_intel_encoder(dev, encoder) {
10623                         enum pipe pipe;
10624                         if (encoder->base.crtc != &crtc->base)
10625                                 continue;
10626                         if (encoder->get_hw_state(encoder, &pipe))
10627                                 encoder->get_config(encoder, &pipe_config);
10628                 }
10629
10630                 WARN(crtc->active != active,
10631                      "crtc active state doesn't match with hw state "
10632                      "(expected %i, found %i)\n", crtc->active, active);
10633
10634                 if (active &&
10635                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10636                         WARN(1, "pipe state doesn't match!\n");
10637                         intel_dump_pipe_config(crtc, &pipe_config,
10638                                                "[hw state]");
10639                         intel_dump_pipe_config(crtc, &crtc->config,
10640                                                "[sw state]");
10641                 }
10642         }
10643 }
10644
10645 static void
10646 check_shared_dpll_state(struct drm_device *dev)
10647 {
10648         struct drm_i915_private *dev_priv = dev->dev_private;
10649         struct intel_crtc *crtc;
10650         struct intel_dpll_hw_state dpll_hw_state;
10651         int i;
10652
10653         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10654                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10655                 int enabled_crtcs = 0, active_crtcs = 0;
10656                 bool active;
10657
10658                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10659
10660                 DRM_DEBUG_KMS("%s\n", pll->name);
10661
10662                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10663
10664                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10665                      "more active pll users than references: %i vs %i\n",
10666                      pll->active, hweight32(pll->config.crtc_mask));
10667                 WARN(pll->active && !pll->on,
10668                      "pll in active use but not on in sw tracking\n");
10669                 WARN(pll->on && !pll->active,
10670                      "pll in on but not on in use in sw tracking\n");
10671                 WARN(pll->on != active,
10672                      "pll on state mismatch (expected %i, found %i)\n",
10673                      pll->on, active);
10674
10675                 for_each_intel_crtc(dev, crtc) {
10676                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10677                                 enabled_crtcs++;
10678                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10679                                 active_crtcs++;
10680                 }
10681                 WARN(pll->active != active_crtcs,
10682                      "pll active crtcs mismatch (expected %i, found %i)\n",
10683                      pll->active, active_crtcs);
10684                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10685                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10686                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10687
10688                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10689                                        sizeof(dpll_hw_state)),
10690                      "pll hw state mismatch\n");
10691         }
10692 }
10693
10694 void
10695 intel_modeset_check_state(struct drm_device *dev)
10696 {
10697         check_connector_state(dev);
10698         check_encoder_state(dev);
10699         check_crtc_state(dev);
10700         check_shared_dpll_state(dev);
10701 }
10702
10703 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10704                                      int dotclock)
10705 {
10706         /*
10707          * FDI already provided one idea for the dotclock.
10708          * Yell if the encoder disagrees.
10709          */
10710         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10711              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10712              pipe_config->adjusted_mode.crtc_clock, dotclock);
10713 }
10714
10715 static void update_scanline_offset(struct intel_crtc *crtc)
10716 {
10717         struct drm_device *dev = crtc->base.dev;
10718
10719         /*
10720          * The scanline counter increments at the leading edge of hsync.
10721          *
10722          * On most platforms it starts counting from vtotal-1 on the
10723          * first active line. That means the scanline counter value is
10724          * always one less than what we would expect. Ie. just after
10725          * start of vblank, which also occurs at start of hsync (on the
10726          * last active line), the scanline counter will read vblank_start-1.
10727          *
10728          * On gen2 the scanline counter starts counting from 1 instead
10729          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10730          * to keep the value positive), instead of adding one.
10731          *
10732          * On HSW+ the behaviour of the scanline counter depends on the output
10733          * type. For DP ports it behaves like most other platforms, but on HDMI
10734          * there's an extra 1 line difference. So we need to add two instead of
10735          * one to the value.
10736          */
10737         if (IS_GEN2(dev)) {
10738                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10739                 int vtotal;
10740
10741                 vtotal = mode->crtc_vtotal;
10742                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10743                         vtotal /= 2;
10744
10745                 crtc->scanline_offset = vtotal - 1;
10746         } else if (HAS_DDI(dev) &&
10747                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10748                 crtc->scanline_offset = 2;
10749         } else
10750                 crtc->scanline_offset = 1;
10751 }
10752
10753 static int __intel_set_mode(struct drm_crtc *crtc,
10754                             struct drm_display_mode *mode,
10755                             int x, int y, struct drm_framebuffer *fb)
10756 {
10757         struct drm_device *dev = crtc->dev;
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         struct drm_display_mode *saved_mode;
10760         struct intel_crtc_config *pipe_config = NULL;
10761         struct intel_crtc *intel_crtc;
10762         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10763         int ret = 0;
10764
10765         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10766         if (!saved_mode)
10767                 return -ENOMEM;
10768
10769         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10770                                      &prepare_pipes, &disable_pipes);
10771
10772         *saved_mode = crtc->mode;
10773
10774         /* Hack: Because we don't (yet) support global modeset on multiple
10775          * crtcs, we don't keep track of the new mode for more than one crtc.
10776          * Hence simply check whether any bit is set in modeset_pipes in all the
10777          * pieces of code that are not yet converted to deal with mutliple crtcs
10778          * changing their mode at the same time. */
10779         if (modeset_pipes) {
10780                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10781                 if (IS_ERR(pipe_config)) {
10782                         ret = PTR_ERR(pipe_config);
10783                         pipe_config = NULL;
10784
10785                         goto out;
10786                 }
10787                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10788                                        "[modeset]");
10789                 to_intel_crtc(crtc)->new_config = pipe_config;
10790         }
10791
10792         /*
10793          * See if the config requires any additional preparation, e.g.
10794          * to adjust global state with pipes off.  We need to do this
10795          * here so we can get the modeset_pipe updated config for the new
10796          * mode set on this crtc.  For other crtcs we need to use the
10797          * adjusted_mode bits in the crtc directly.
10798          */
10799         if (IS_VALLEYVIEW(dev)) {
10800                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10801
10802                 /* may have added more to prepare_pipes than we should */
10803                 prepare_pipes &= ~disable_pipes;
10804         }
10805
10806         if (dev_priv->display.crtc_compute_clock) {
10807                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10808
10809                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10810                 if (ret)
10811                         goto done;
10812
10813                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10814                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10815                         if (ret) {
10816                                 intel_shared_dpll_abort_config(dev_priv);
10817                                 goto done;
10818                         }
10819                 }
10820         }
10821
10822         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10823                 intel_crtc_disable(&intel_crtc->base);
10824
10825         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10826                 if (intel_crtc->base.enabled)
10827                         dev_priv->display.crtc_disable(&intel_crtc->base);
10828         }
10829
10830         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10831          * to set it here already despite that we pass it down the callchain.
10832          */
10833         if (modeset_pipes) {
10834                 crtc->mode = *mode;
10835                 /* mode_set/enable/disable functions rely on a correct pipe
10836                  * config. */
10837                 to_intel_crtc(crtc)->config = *pipe_config;
10838                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10839
10840                 /*
10841                  * Calculate and store various constants which
10842                  * are later needed by vblank and swap-completion
10843                  * timestamping. They are derived from true hwmode.
10844                  */
10845                 drm_calc_timestamping_constants(crtc,
10846                                                 &pipe_config->adjusted_mode);
10847         }
10848
10849         if (dev_priv->display.crtc_compute_clock)
10850                 intel_shared_dpll_commit(dev_priv);
10851
10852         /* Only after disabling all output pipelines that will be changed can we
10853          * update the the output configuration. */
10854         intel_modeset_update_state(dev, prepare_pipes);
10855
10856         if (dev_priv->display.modeset_global_resources)
10857                 dev_priv->display.modeset_global_resources(dev);
10858
10859         /* Set up the DPLL and any encoders state that needs to adjust or depend
10860          * on the DPLL.
10861          */
10862         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10863                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10864                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10865                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10866
10867                 mutex_lock(&dev->struct_mutex);
10868                 ret = intel_pin_and_fence_fb_obj(dev,
10869                                                  obj,
10870                                                  NULL);
10871                 if (ret != 0) {
10872                         DRM_ERROR("pin & fence failed\n");
10873                         mutex_unlock(&dev->struct_mutex);
10874                         goto done;
10875                 }
10876                 if (old_fb)
10877                         intel_unpin_fb_obj(old_obj);
10878                 i915_gem_track_fb(old_obj, obj,
10879                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10880                 mutex_unlock(&dev->struct_mutex);
10881
10882                 crtc->primary->fb = fb;
10883                 crtc->x = x;
10884                 crtc->y = y;
10885         }
10886
10887         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10888         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10889                 update_scanline_offset(intel_crtc);
10890
10891                 dev_priv->display.crtc_enable(&intel_crtc->base);
10892         }
10893
10894         /* FIXME: add subpixel order */
10895 done:
10896         if (ret && crtc->enabled)
10897                 crtc->mode = *saved_mode;
10898
10899 out:
10900         kfree(pipe_config);
10901         kfree(saved_mode);
10902         return ret;
10903 }
10904
10905 static int intel_set_mode(struct drm_crtc *crtc,
10906                           struct drm_display_mode *mode,
10907                           int x, int y, struct drm_framebuffer *fb)
10908 {
10909         int ret;
10910
10911         ret = __intel_set_mode(crtc, mode, x, y, fb);
10912
10913         if (ret == 0)
10914                 intel_modeset_check_state(crtc->dev);
10915
10916         return ret;
10917 }
10918
10919 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10920 {
10921         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10922 }
10923
10924 #undef for_each_intel_crtc_masked
10925
10926 static void intel_set_config_free(struct intel_set_config *config)
10927 {
10928         if (!config)
10929                 return;
10930
10931         kfree(config->save_connector_encoders);
10932         kfree(config->save_encoder_crtcs);
10933         kfree(config->save_crtc_enabled);
10934         kfree(config);
10935 }
10936
10937 static int intel_set_config_save_state(struct drm_device *dev,
10938                                        struct intel_set_config *config)
10939 {
10940         struct drm_crtc *crtc;
10941         struct drm_encoder *encoder;
10942         struct drm_connector *connector;
10943         int count;
10944
10945         config->save_crtc_enabled =
10946                 kcalloc(dev->mode_config.num_crtc,
10947                         sizeof(bool), GFP_KERNEL);
10948         if (!config->save_crtc_enabled)
10949                 return -ENOMEM;
10950
10951         config->save_encoder_crtcs =
10952                 kcalloc(dev->mode_config.num_encoder,
10953                         sizeof(struct drm_crtc *), GFP_KERNEL);
10954         if (!config->save_encoder_crtcs)
10955                 return -ENOMEM;
10956
10957         config->save_connector_encoders =
10958                 kcalloc(dev->mode_config.num_connector,
10959                         sizeof(struct drm_encoder *), GFP_KERNEL);
10960         if (!config->save_connector_encoders)
10961                 return -ENOMEM;
10962
10963         /* Copy data. Note that driver private data is not affected.
10964          * Should anything bad happen only the expected state is
10965          * restored, not the drivers personal bookkeeping.
10966          */
10967         count = 0;
10968         for_each_crtc(dev, crtc) {
10969                 config->save_crtc_enabled[count++] = crtc->enabled;
10970         }
10971
10972         count = 0;
10973         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10974                 config->save_encoder_crtcs[count++] = encoder->crtc;
10975         }
10976
10977         count = 0;
10978         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10979                 config->save_connector_encoders[count++] = connector->encoder;
10980         }
10981
10982         return 0;
10983 }
10984
10985 static void intel_set_config_restore_state(struct drm_device *dev,
10986                                            struct intel_set_config *config)
10987 {
10988         struct intel_crtc *crtc;
10989         struct intel_encoder *encoder;
10990         struct intel_connector *connector;
10991         int count;
10992
10993         count = 0;
10994         for_each_intel_crtc(dev, crtc) {
10995                 crtc->new_enabled = config->save_crtc_enabled[count++];
10996
10997                 if (crtc->new_enabled)
10998                         crtc->new_config = &crtc->config;
10999                 else
11000                         crtc->new_config = NULL;
11001         }
11002
11003         count = 0;
11004         for_each_intel_encoder(dev, encoder) {
11005                 encoder->new_crtc =
11006                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11007         }
11008
11009         count = 0;
11010         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11011                 connector->new_encoder =
11012                         to_intel_encoder(config->save_connector_encoders[count++]);
11013         }
11014 }
11015
11016 static bool
11017 is_crtc_connector_off(struct drm_mode_set *set)
11018 {
11019         int i;
11020
11021         if (set->num_connectors == 0)
11022                 return false;
11023
11024         if (WARN_ON(set->connectors == NULL))
11025                 return false;
11026
11027         for (i = 0; i < set->num_connectors; i++)
11028                 if (set->connectors[i]->encoder &&
11029                     set->connectors[i]->encoder->crtc == set->crtc &&
11030                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11031                         return true;
11032
11033         return false;
11034 }
11035
11036 static void
11037 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11038                                       struct intel_set_config *config)
11039 {
11040
11041         /* We should be able to check here if the fb has the same properties
11042          * and then just flip_or_move it */
11043         if (is_crtc_connector_off(set)) {
11044                 config->mode_changed = true;
11045         } else if (set->crtc->primary->fb != set->fb) {
11046                 /*
11047                  * If we have no fb, we can only flip as long as the crtc is
11048                  * active, otherwise we need a full mode set.  The crtc may
11049                  * be active if we've only disabled the primary plane, or
11050                  * in fastboot situations.
11051                  */
11052                 if (set->crtc->primary->fb == NULL) {
11053                         struct intel_crtc *intel_crtc =
11054                                 to_intel_crtc(set->crtc);
11055
11056                         if (intel_crtc->active) {
11057                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11058                                 config->fb_changed = true;
11059                         } else {
11060                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11061                                 config->mode_changed = true;
11062                         }
11063                 } else if (set->fb == NULL) {
11064                         config->mode_changed = true;
11065                 } else if (set->fb->pixel_format !=
11066                            set->crtc->primary->fb->pixel_format) {
11067                         config->mode_changed = true;
11068                 } else {
11069                         config->fb_changed = true;
11070                 }
11071         }
11072
11073         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11074                 config->fb_changed = true;
11075
11076         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11077                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11078                 drm_mode_debug_printmodeline(&set->crtc->mode);
11079                 drm_mode_debug_printmodeline(set->mode);
11080                 config->mode_changed = true;
11081         }
11082
11083         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11084                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11085 }
11086
11087 static int
11088 intel_modeset_stage_output_state(struct drm_device *dev,
11089                                  struct drm_mode_set *set,
11090                                  struct intel_set_config *config)
11091 {
11092         struct intel_connector *connector;
11093         struct intel_encoder *encoder;
11094         struct intel_crtc *crtc;
11095         int ro;
11096
11097         /* The upper layers ensure that we either disable a crtc or have a list
11098          * of connectors. For paranoia, double-check this. */
11099         WARN_ON(!set->fb && (set->num_connectors != 0));
11100         WARN_ON(set->fb && (set->num_connectors == 0));
11101
11102         list_for_each_entry(connector, &dev->mode_config.connector_list,
11103                             base.head) {
11104                 /* Otherwise traverse passed in connector list and get encoders
11105                  * for them. */
11106                 for (ro = 0; ro < set->num_connectors; ro++) {
11107                         if (set->connectors[ro] == &connector->base) {
11108                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11109                                 break;
11110                         }
11111                 }
11112
11113                 /* If we disable the crtc, disable all its connectors. Also, if
11114                  * the connector is on the changing crtc but not on the new
11115                  * connector list, disable it. */
11116                 if ((!set->fb || ro == set->num_connectors) &&
11117                     connector->base.encoder &&
11118                     connector->base.encoder->crtc == set->crtc) {
11119                         connector->new_encoder = NULL;
11120
11121                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11122                                 connector->base.base.id,
11123                                 connector->base.name);
11124                 }
11125
11126
11127                 if (&connector->new_encoder->base != connector->base.encoder) {
11128                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11129                         config->mode_changed = true;
11130                 }
11131         }
11132         /* connector->new_encoder is now updated for all connectors. */
11133
11134         /* Update crtc of enabled connectors. */
11135         list_for_each_entry(connector, &dev->mode_config.connector_list,
11136                             base.head) {
11137                 struct drm_crtc *new_crtc;
11138
11139                 if (!connector->new_encoder)
11140                         continue;
11141
11142                 new_crtc = connector->new_encoder->base.crtc;
11143
11144                 for (ro = 0; ro < set->num_connectors; ro++) {
11145                         if (set->connectors[ro] == &connector->base)
11146                                 new_crtc = set->crtc;
11147                 }
11148
11149                 /* Make sure the new CRTC will work with the encoder */
11150                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11151                                          new_crtc)) {
11152                         return -EINVAL;
11153                 }
11154                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11155
11156                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11157                         connector->base.base.id,
11158                         connector->base.name,
11159                         new_crtc->base.id);
11160         }
11161
11162         /* Check for any encoders that needs to be disabled. */
11163         for_each_intel_encoder(dev, encoder) {
11164                 int num_connectors = 0;
11165                 list_for_each_entry(connector,
11166                                     &dev->mode_config.connector_list,
11167                                     base.head) {
11168                         if (connector->new_encoder == encoder) {
11169                                 WARN_ON(!connector->new_encoder->new_crtc);
11170                                 num_connectors++;
11171                         }
11172                 }
11173
11174                 if (num_connectors == 0)
11175                         encoder->new_crtc = NULL;
11176                 else if (num_connectors > 1)
11177                         return -EINVAL;
11178
11179                 /* Only now check for crtc changes so we don't miss encoders
11180                  * that will be disabled. */
11181                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11182                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11183                         config->mode_changed = true;
11184                 }
11185         }
11186         /* Now we've also updated encoder->new_crtc for all encoders. */
11187         list_for_each_entry(connector, &dev->mode_config.connector_list,
11188                             base.head) {
11189                 if (connector->new_encoder)
11190                         if (connector->new_encoder != connector->encoder)
11191                                 connector->encoder = connector->new_encoder;
11192         }
11193         for_each_intel_crtc(dev, crtc) {
11194                 crtc->new_enabled = false;
11195
11196                 for_each_intel_encoder(dev, encoder) {
11197                         if (encoder->new_crtc == crtc) {
11198                                 crtc->new_enabled = true;
11199                                 break;
11200                         }
11201                 }
11202
11203                 if (crtc->new_enabled != crtc->base.enabled) {
11204                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11205                                       crtc->new_enabled ? "en" : "dis");
11206                         config->mode_changed = true;
11207                 }
11208
11209                 if (crtc->new_enabled)
11210                         crtc->new_config = &crtc->config;
11211                 else
11212                         crtc->new_config = NULL;
11213         }
11214
11215         return 0;
11216 }
11217
11218 static void disable_crtc_nofb(struct intel_crtc *crtc)
11219 {
11220         struct drm_device *dev = crtc->base.dev;
11221         struct intel_encoder *encoder;
11222         struct intel_connector *connector;
11223
11224         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11225                       pipe_name(crtc->pipe));
11226
11227         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11228                 if (connector->new_encoder &&
11229                     connector->new_encoder->new_crtc == crtc)
11230                         connector->new_encoder = NULL;
11231         }
11232
11233         for_each_intel_encoder(dev, encoder) {
11234                 if (encoder->new_crtc == crtc)
11235                         encoder->new_crtc = NULL;
11236         }
11237
11238         crtc->new_enabled = false;
11239         crtc->new_config = NULL;
11240 }
11241
11242 static int intel_crtc_set_config(struct drm_mode_set *set)
11243 {
11244         struct drm_device *dev;
11245         struct drm_mode_set save_set;
11246         struct intel_set_config *config;
11247         int ret;
11248
11249         BUG_ON(!set);
11250         BUG_ON(!set->crtc);
11251         BUG_ON(!set->crtc->helper_private);
11252
11253         /* Enforce sane interface api - has been abused by the fb helper. */
11254         BUG_ON(!set->mode && set->fb);
11255         BUG_ON(set->fb && set->num_connectors == 0);
11256
11257         if (set->fb) {
11258                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11259                                 set->crtc->base.id, set->fb->base.id,
11260                                 (int)set->num_connectors, set->x, set->y);
11261         } else {
11262                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11263         }
11264
11265         dev = set->crtc->dev;
11266
11267         ret = -ENOMEM;
11268         config = kzalloc(sizeof(*config), GFP_KERNEL);
11269         if (!config)
11270                 goto out_config;
11271
11272         ret = intel_set_config_save_state(dev, config);
11273         if (ret)
11274                 goto out_config;
11275
11276         save_set.crtc = set->crtc;
11277         save_set.mode = &set->crtc->mode;
11278         save_set.x = set->crtc->x;
11279         save_set.y = set->crtc->y;
11280         save_set.fb = set->crtc->primary->fb;
11281
11282         /* Compute whether we need a full modeset, only an fb base update or no
11283          * change at all. In the future we might also check whether only the
11284          * mode changed, e.g. for LVDS where we only change the panel fitter in
11285          * such cases. */
11286         intel_set_config_compute_mode_changes(set, config);
11287
11288         ret = intel_modeset_stage_output_state(dev, set, config);
11289         if (ret)
11290                 goto fail;
11291
11292         if (config->mode_changed) {
11293                 ret = intel_set_mode(set->crtc, set->mode,
11294                                      set->x, set->y, set->fb);
11295         } else if (config->fb_changed) {
11296                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11297
11298                 intel_crtc_wait_for_pending_flips(set->crtc);
11299
11300                 ret = intel_pipe_set_base(set->crtc,
11301                                           set->x, set->y, set->fb);
11302
11303                 /*
11304                  * We need to make sure the primary plane is re-enabled if it
11305                  * has previously been turned off.
11306                  */
11307                 if (!intel_crtc->primary_enabled && ret == 0) {
11308                         WARN_ON(!intel_crtc->active);
11309                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11310                 }
11311
11312                 /*
11313                  * In the fastboot case this may be our only check of the
11314                  * state after boot.  It would be better to only do it on
11315                  * the first update, but we don't have a nice way of doing that
11316                  * (and really, set_config isn't used much for high freq page
11317                  * flipping, so increasing its cost here shouldn't be a big
11318                  * deal).
11319                  */
11320                 if (i915.fastboot && ret == 0)
11321                         intel_modeset_check_state(set->crtc->dev);
11322         }
11323
11324         if (ret) {
11325                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11326                               set->crtc->base.id, ret);
11327 fail:
11328                 intel_set_config_restore_state(dev, config);
11329
11330                 /*
11331                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11332                  * force the pipe off to avoid oopsing in the modeset code
11333                  * due to fb==NULL. This should only happen during boot since
11334                  * we don't yet reconstruct the FB from the hardware state.
11335                  */
11336                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11337                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11338
11339                 /* Try to restore the config */
11340                 if (config->mode_changed &&
11341                     intel_set_mode(save_set.crtc, save_set.mode,
11342                                    save_set.x, save_set.y, save_set.fb))
11343                         DRM_ERROR("failed to restore config after modeset failure\n");
11344         }
11345
11346 out_config:
11347         intel_set_config_free(config);
11348         return ret;
11349 }
11350
11351 static const struct drm_crtc_funcs intel_crtc_funcs = {
11352         .gamma_set = intel_crtc_gamma_set,
11353         .set_config = intel_crtc_set_config,
11354         .destroy = intel_crtc_destroy,
11355         .page_flip = intel_crtc_page_flip,
11356 };
11357
11358 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11359                                       struct intel_shared_dpll *pll,
11360                                       struct intel_dpll_hw_state *hw_state)
11361 {
11362         uint32_t val;
11363
11364         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11365                 return false;
11366
11367         val = I915_READ(PCH_DPLL(pll->id));
11368         hw_state->dpll = val;
11369         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11370         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11371
11372         return val & DPLL_VCO_ENABLE;
11373 }
11374
11375 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11376                                   struct intel_shared_dpll *pll)
11377 {
11378         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11379         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11380 }
11381
11382 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11383                                 struct intel_shared_dpll *pll)
11384 {
11385         /* PCH refclock must be enabled first */
11386         ibx_assert_pch_refclk_enabled(dev_priv);
11387
11388         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11389
11390         /* Wait for the clocks to stabilize. */
11391         POSTING_READ(PCH_DPLL(pll->id));
11392         udelay(150);
11393
11394         /* The pixel multiplier can only be updated once the
11395          * DPLL is enabled and the clocks are stable.
11396          *
11397          * So write it again.
11398          */
11399         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11400         POSTING_READ(PCH_DPLL(pll->id));
11401         udelay(200);
11402 }
11403
11404 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11405                                  struct intel_shared_dpll *pll)
11406 {
11407         struct drm_device *dev = dev_priv->dev;
11408         struct intel_crtc *crtc;
11409
11410         /* Make sure no transcoder isn't still depending on us. */
11411         for_each_intel_crtc(dev, crtc) {
11412                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11413                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11414         }
11415
11416         I915_WRITE(PCH_DPLL(pll->id), 0);
11417         POSTING_READ(PCH_DPLL(pll->id));
11418         udelay(200);
11419 }
11420
11421 static char *ibx_pch_dpll_names[] = {
11422         "PCH DPLL A",
11423         "PCH DPLL B",
11424 };
11425
11426 static void ibx_pch_dpll_init(struct drm_device *dev)
11427 {
11428         struct drm_i915_private *dev_priv = dev->dev_private;
11429         int i;
11430
11431         dev_priv->num_shared_dpll = 2;
11432
11433         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11434                 dev_priv->shared_dplls[i].id = i;
11435                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11436                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11437                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11438                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11439                 dev_priv->shared_dplls[i].get_hw_state =
11440                         ibx_pch_dpll_get_hw_state;
11441         }
11442 }
11443
11444 static void intel_shared_dpll_init(struct drm_device *dev)
11445 {
11446         struct drm_i915_private *dev_priv = dev->dev_private;
11447
11448         if (HAS_DDI(dev))
11449                 intel_ddi_pll_init(dev);
11450         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11451                 ibx_pch_dpll_init(dev);
11452         else
11453                 dev_priv->num_shared_dpll = 0;
11454
11455         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11456 }
11457
11458 static int
11459 intel_primary_plane_disable(struct drm_plane *plane)
11460 {
11461         struct drm_device *dev = plane->dev;
11462         struct intel_crtc *intel_crtc;
11463
11464         if (!plane->fb)
11465                 return 0;
11466
11467         BUG_ON(!plane->crtc);
11468
11469         intel_crtc = to_intel_crtc(plane->crtc);
11470
11471         /*
11472          * Even though we checked plane->fb above, it's still possible that
11473          * the primary plane has been implicitly disabled because the crtc
11474          * coordinates given weren't visible, or because we detected
11475          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11476          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11477          * In either case, we need to unpin the FB and let the fb pointer get
11478          * updated, but otherwise we don't need to touch the hardware.
11479          */
11480         if (!intel_crtc->primary_enabled)
11481                 goto disable_unpin;
11482
11483         intel_crtc_wait_for_pending_flips(plane->crtc);
11484         intel_disable_primary_hw_plane(plane, plane->crtc);
11485
11486 disable_unpin:
11487         mutex_lock(&dev->struct_mutex);
11488         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11489                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11490         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11491         mutex_unlock(&dev->struct_mutex);
11492         plane->fb = NULL;
11493
11494         return 0;
11495 }
11496
11497 static int
11498 intel_check_primary_plane(struct drm_plane *plane,
11499                           struct intel_plane_state *state)
11500 {
11501         struct drm_crtc *crtc = state->crtc;
11502         struct drm_framebuffer *fb = state->fb;
11503         struct drm_rect *dest = &state->dst;
11504         struct drm_rect *src = &state->src;
11505         const struct drm_rect *clip = &state->clip;
11506
11507         return drm_plane_helper_check_update(plane, crtc, fb,
11508                                              src, dest, clip,
11509                                              DRM_PLANE_HELPER_NO_SCALING,
11510                                              DRM_PLANE_HELPER_NO_SCALING,
11511                                              false, true, &state->visible);
11512 }
11513
11514 static int
11515 intel_prepare_primary_plane(struct drm_plane *plane,
11516                             struct intel_plane_state *state)
11517 {
11518         struct drm_crtc *crtc = state->crtc;
11519         struct drm_framebuffer *fb = state->fb;
11520         struct drm_device *dev = crtc->dev;
11521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11522         enum pipe pipe = intel_crtc->pipe;
11523         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11524         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11525         int ret;
11526
11527         intel_crtc_wait_for_pending_flips(crtc);
11528
11529         if (intel_crtc_has_pending_flip(crtc)) {
11530                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11531                 return -EBUSY;
11532         }
11533
11534         if (old_obj != obj) {
11535                 mutex_lock(&dev->struct_mutex);
11536                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11537                 if (ret == 0)
11538                         i915_gem_track_fb(old_obj, obj,
11539                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11540                 mutex_unlock(&dev->struct_mutex);
11541                 if (ret != 0) {
11542                         DRM_DEBUG_KMS("pin & fence failed\n");
11543                         return ret;
11544                 }
11545         }
11546
11547         return 0;
11548 }
11549
11550 static void
11551 intel_commit_primary_plane(struct drm_plane *plane,
11552                            struct intel_plane_state *state)
11553 {
11554         struct drm_crtc *crtc = state->crtc;
11555         struct drm_framebuffer *fb = state->fb;
11556         struct drm_device *dev = crtc->dev;
11557         struct drm_i915_private *dev_priv = dev->dev_private;
11558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11559         enum pipe pipe = intel_crtc->pipe;
11560         struct drm_framebuffer *old_fb = plane->fb;
11561         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11562         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11563         struct intel_plane *intel_plane = to_intel_plane(plane);
11564         struct drm_rect *src = &state->src;
11565
11566         crtc->primary->fb = fb;
11567         crtc->x = src->x1;
11568         crtc->y = src->y1;
11569
11570         intel_plane->crtc_x = state->orig_dst.x1;
11571         intel_plane->crtc_y = state->orig_dst.y1;
11572         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11573         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11574         intel_plane->src_x = state->orig_src.x1;
11575         intel_plane->src_y = state->orig_src.y1;
11576         intel_plane->src_w = drm_rect_width(&state->orig_src);
11577         intel_plane->src_h = drm_rect_height(&state->orig_src);
11578         intel_plane->obj = obj;
11579
11580         if (intel_crtc->active) {
11581                 /*
11582                  * FBC does not work on some platforms for rotated
11583                  * planes, so disable it when rotation is not 0 and
11584                  * update it when rotation is set back to 0.
11585                  *
11586                  * FIXME: This is redundant with the fbc update done in
11587                  * the primary plane enable function except that that
11588                  * one is done too late. We eventually need to unify
11589                  * this.
11590                  */
11591                 if (intel_crtc->primary_enabled &&
11592                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11593                     dev_priv->fbc.plane == intel_crtc->plane &&
11594                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11595                         intel_disable_fbc(dev);
11596                 }
11597
11598                 if (state->visible) {
11599                         bool was_enabled = intel_crtc->primary_enabled;
11600
11601                         /* FIXME: kill this fastboot hack */
11602                         intel_update_pipe_size(intel_crtc);
11603
11604                         intel_crtc->primary_enabled = true;
11605
11606                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11607                                         crtc->x, crtc->y);
11608
11609                         /*
11610                          * BDW signals flip done immediately if the plane
11611                          * is disabled, even if the plane enable is already
11612                          * armed to occur at the next vblank :(
11613                          */
11614                         if (IS_BROADWELL(dev) && !was_enabled)
11615                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11616                 } else {
11617                         /*
11618                          * If clipping results in a non-visible primary plane,
11619                          * we'll disable the primary plane.  Note that this is
11620                          * a bit different than what happens if userspace
11621                          * explicitly disables the plane by passing fb=0
11622                          * because plane->fb still gets set and pinned.
11623                          */
11624                         intel_disable_primary_hw_plane(plane, crtc);
11625                 }
11626
11627                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11628
11629                 mutex_lock(&dev->struct_mutex);
11630                 intel_update_fbc(dev);
11631                 mutex_unlock(&dev->struct_mutex);
11632         }
11633
11634         if (old_fb && old_fb != fb) {
11635                 if (intel_crtc->active)
11636                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11637
11638                 mutex_lock(&dev->struct_mutex);
11639                 intel_unpin_fb_obj(old_obj);
11640                 mutex_unlock(&dev->struct_mutex);
11641         }
11642 }
11643
11644 static int
11645 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11646                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11647                              unsigned int crtc_w, unsigned int crtc_h,
11648                              uint32_t src_x, uint32_t src_y,
11649                              uint32_t src_w, uint32_t src_h)
11650 {
11651         struct intel_plane_state state;
11652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11653         int ret;
11654
11655         state.crtc = crtc;
11656         state.fb = fb;
11657
11658         /* sample coordinates in 16.16 fixed point */
11659         state.src.x1 = src_x;
11660         state.src.x2 = src_x + src_w;
11661         state.src.y1 = src_y;
11662         state.src.y2 = src_y + src_h;
11663
11664         /* integer pixels */
11665         state.dst.x1 = crtc_x;
11666         state.dst.x2 = crtc_x + crtc_w;
11667         state.dst.y1 = crtc_y;
11668         state.dst.y2 = crtc_y + crtc_h;
11669
11670         state.clip.x1 = 0;
11671         state.clip.y1 = 0;
11672         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11673         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11674
11675         state.orig_src = state.src;
11676         state.orig_dst = state.dst;
11677
11678         ret = intel_check_primary_plane(plane, &state);
11679         if (ret)
11680                 return ret;
11681
11682         ret = intel_prepare_primary_plane(plane, &state);
11683         if (ret)
11684                 return ret;
11685
11686         intel_commit_primary_plane(plane, &state);
11687
11688         return 0;
11689 }
11690
11691 /* Common destruction function for both primary and cursor planes */
11692 static void intel_plane_destroy(struct drm_plane *plane)
11693 {
11694         struct intel_plane *intel_plane = to_intel_plane(plane);
11695         drm_plane_cleanup(plane);
11696         kfree(intel_plane);
11697 }
11698
11699 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11700         .update_plane = intel_primary_plane_setplane,
11701         .disable_plane = intel_primary_plane_disable,
11702         .destroy = intel_plane_destroy,
11703         .set_property = intel_plane_set_property
11704 };
11705
11706 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11707                                                     int pipe)
11708 {
11709         struct intel_plane *primary;
11710         const uint32_t *intel_primary_formats;
11711         int num_formats;
11712
11713         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11714         if (primary == NULL)
11715                 return NULL;
11716
11717         primary->can_scale = false;
11718         primary->max_downscale = 1;
11719         primary->pipe = pipe;
11720         primary->plane = pipe;
11721         primary->rotation = BIT(DRM_ROTATE_0);
11722         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11723                 primary->plane = !pipe;
11724
11725         if (INTEL_INFO(dev)->gen <= 3) {
11726                 intel_primary_formats = intel_primary_formats_gen2;
11727                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11728         } else {
11729                 intel_primary_formats = intel_primary_formats_gen4;
11730                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11731         }
11732
11733         drm_universal_plane_init(dev, &primary->base, 0,
11734                                  &intel_primary_plane_funcs,
11735                                  intel_primary_formats, num_formats,
11736                                  DRM_PLANE_TYPE_PRIMARY);
11737
11738         if (INTEL_INFO(dev)->gen >= 4) {
11739                 if (!dev->mode_config.rotation_property)
11740                         dev->mode_config.rotation_property =
11741                                 drm_mode_create_rotation_property(dev,
11742                                                         BIT(DRM_ROTATE_0) |
11743                                                         BIT(DRM_ROTATE_180));
11744                 if (dev->mode_config.rotation_property)
11745                         drm_object_attach_property(&primary->base.base,
11746                                 dev->mode_config.rotation_property,
11747                                 primary->rotation);
11748         }
11749
11750         return &primary->base;
11751 }
11752
11753 static int
11754 intel_cursor_plane_disable(struct drm_plane *plane)
11755 {
11756         if (!plane->fb)
11757                 return 0;
11758
11759         BUG_ON(!plane->crtc);
11760
11761         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11762 }
11763
11764 static int
11765 intel_check_cursor_plane(struct drm_plane *plane,
11766                          struct intel_plane_state *state)
11767 {
11768         struct drm_crtc *crtc = state->crtc;
11769         struct drm_device *dev = crtc->dev;
11770         struct drm_framebuffer *fb = state->fb;
11771         struct drm_rect *dest = &state->dst;
11772         struct drm_rect *src = &state->src;
11773         const struct drm_rect *clip = &state->clip;
11774         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11775         int crtc_w, crtc_h;
11776         unsigned stride;
11777         int ret;
11778
11779         ret = drm_plane_helper_check_update(plane, crtc, fb,
11780                                             src, dest, clip,
11781                                             DRM_PLANE_HELPER_NO_SCALING,
11782                                             DRM_PLANE_HELPER_NO_SCALING,
11783                                             true, true, &state->visible);
11784         if (ret)
11785                 return ret;
11786
11787
11788         /* if we want to turn off the cursor ignore width and height */
11789         if (!obj)
11790                 return 0;
11791
11792         /* Check for which cursor types we support */
11793         crtc_w = drm_rect_width(&state->orig_dst);
11794         crtc_h = drm_rect_height(&state->orig_dst);
11795         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11796                 DRM_DEBUG("Cursor dimension not supported\n");
11797                 return -EINVAL;
11798         }
11799
11800         stride = roundup_pow_of_two(crtc_w) * 4;
11801         if (obj->base.size < stride * crtc_h) {
11802                 DRM_DEBUG_KMS("buffer is too small\n");
11803                 return -ENOMEM;
11804         }
11805
11806         if (fb == crtc->cursor->fb)
11807                 return 0;
11808
11809         /* we only need to pin inside GTT if cursor is non-phy */
11810         mutex_lock(&dev->struct_mutex);
11811         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11812                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11813                 ret = -EINVAL;
11814         }
11815         mutex_unlock(&dev->struct_mutex);
11816
11817         return ret;
11818 }
11819
11820 static int
11821 intel_commit_cursor_plane(struct drm_plane *plane,
11822                           struct intel_plane_state *state)
11823 {
11824         struct drm_crtc *crtc = state->crtc;
11825         struct drm_framebuffer *fb = state->fb;
11826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11827         struct intel_plane *intel_plane = to_intel_plane(plane);
11828         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11829         struct drm_i915_gem_object *obj = intel_fb->obj;
11830         int crtc_w, crtc_h;
11831
11832         crtc->cursor_x = state->orig_dst.x1;
11833         crtc->cursor_y = state->orig_dst.y1;
11834
11835         intel_plane->crtc_x = state->orig_dst.x1;
11836         intel_plane->crtc_y = state->orig_dst.y1;
11837         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11838         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11839         intel_plane->src_x = state->orig_src.x1;
11840         intel_plane->src_y = state->orig_src.y1;
11841         intel_plane->src_w = drm_rect_width(&state->orig_src);
11842         intel_plane->src_h = drm_rect_height(&state->orig_src);
11843         intel_plane->obj = obj;
11844
11845         if (fb != crtc->cursor->fb) {
11846                 crtc_w = drm_rect_width(&state->orig_dst);
11847                 crtc_h = drm_rect_height(&state->orig_dst);
11848                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11849         } else {
11850                 intel_crtc_update_cursor(crtc, state->visible);
11851
11852                 intel_frontbuffer_flip(crtc->dev,
11853                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11854
11855                 return 0;
11856         }
11857 }
11858
11859 static int
11860 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11861                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11862                           unsigned int crtc_w, unsigned int crtc_h,
11863                           uint32_t src_x, uint32_t src_y,
11864                           uint32_t src_w, uint32_t src_h)
11865 {
11866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11867         struct intel_plane_state state;
11868         int ret;
11869
11870         state.crtc = crtc;
11871         state.fb = fb;
11872
11873         /* sample coordinates in 16.16 fixed point */
11874         state.src.x1 = src_x;
11875         state.src.x2 = src_x + src_w;
11876         state.src.y1 = src_y;
11877         state.src.y2 = src_y + src_h;
11878
11879         /* integer pixels */
11880         state.dst.x1 = crtc_x;
11881         state.dst.x2 = crtc_x + crtc_w;
11882         state.dst.y1 = crtc_y;
11883         state.dst.y2 = crtc_y + crtc_h;
11884
11885         state.clip.x1 = 0;
11886         state.clip.y1 = 0;
11887         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11888         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11889
11890         state.orig_src = state.src;
11891         state.orig_dst = state.dst;
11892
11893         ret = intel_check_cursor_plane(plane, &state);
11894         if (ret)
11895                 return ret;
11896
11897         return intel_commit_cursor_plane(plane, &state);
11898 }
11899
11900 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11901         .update_plane = intel_cursor_plane_update,
11902         .disable_plane = intel_cursor_plane_disable,
11903         .destroy = intel_plane_destroy,
11904         .set_property = intel_plane_set_property,
11905 };
11906
11907 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11908                                                    int pipe)
11909 {
11910         struct intel_plane *cursor;
11911
11912         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11913         if (cursor == NULL)
11914                 return NULL;
11915
11916         cursor->can_scale = false;
11917         cursor->max_downscale = 1;
11918         cursor->pipe = pipe;
11919         cursor->plane = pipe;
11920         cursor->rotation = BIT(DRM_ROTATE_0);
11921
11922         drm_universal_plane_init(dev, &cursor->base, 0,
11923                                  &intel_cursor_plane_funcs,
11924                                  intel_cursor_formats,
11925                                  ARRAY_SIZE(intel_cursor_formats),
11926                                  DRM_PLANE_TYPE_CURSOR);
11927
11928         if (INTEL_INFO(dev)->gen >= 4) {
11929                 if (!dev->mode_config.rotation_property)
11930                         dev->mode_config.rotation_property =
11931                                 drm_mode_create_rotation_property(dev,
11932                                                         BIT(DRM_ROTATE_0) |
11933                                                         BIT(DRM_ROTATE_180));
11934                 if (dev->mode_config.rotation_property)
11935                         drm_object_attach_property(&cursor->base.base,
11936                                 dev->mode_config.rotation_property,
11937                                 cursor->rotation);
11938         }
11939
11940         return &cursor->base;
11941 }
11942
11943 static void intel_crtc_init(struct drm_device *dev, int pipe)
11944 {
11945         struct drm_i915_private *dev_priv = dev->dev_private;
11946         struct intel_crtc *intel_crtc;
11947         struct drm_plane *primary = NULL;
11948         struct drm_plane *cursor = NULL;
11949         int i, ret;
11950
11951         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11952         if (intel_crtc == NULL)
11953                 return;
11954
11955         primary = intel_primary_plane_create(dev, pipe);
11956         if (!primary)
11957                 goto fail;
11958
11959         cursor = intel_cursor_plane_create(dev, pipe);
11960         if (!cursor)
11961                 goto fail;
11962
11963         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11964                                         cursor, &intel_crtc_funcs);
11965         if (ret)
11966                 goto fail;
11967
11968         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11969         for (i = 0; i < 256; i++) {
11970                 intel_crtc->lut_r[i] = i;
11971                 intel_crtc->lut_g[i] = i;
11972                 intel_crtc->lut_b[i] = i;
11973         }
11974
11975         /*
11976          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11977          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11978          */
11979         intel_crtc->pipe = pipe;
11980         intel_crtc->plane = pipe;
11981         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11982                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11983                 intel_crtc->plane = !pipe;
11984         }
11985
11986         intel_crtc->cursor_base = ~0;
11987         intel_crtc->cursor_cntl = ~0;
11988         intel_crtc->cursor_size = ~0;
11989
11990         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11991                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11992         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11993         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11994
11995         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11996
11997         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11998         return;
11999
12000 fail:
12001         if (primary)
12002                 drm_plane_cleanup(primary);
12003         if (cursor)
12004                 drm_plane_cleanup(cursor);
12005         kfree(intel_crtc);
12006 }
12007
12008 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12009 {
12010         struct drm_encoder *encoder = connector->base.encoder;
12011         struct drm_device *dev = connector->base.dev;
12012
12013         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12014
12015         if (!encoder)
12016                 return INVALID_PIPE;
12017
12018         return to_intel_crtc(encoder->crtc)->pipe;
12019 }
12020
12021 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12022                                 struct drm_file *file)
12023 {
12024         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12025         struct drm_crtc *drmmode_crtc;
12026         struct intel_crtc *crtc;
12027
12028         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12029                 return -ENODEV;
12030
12031         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12032
12033         if (!drmmode_crtc) {
12034                 DRM_ERROR("no such CRTC id\n");
12035                 return -ENOENT;
12036         }
12037
12038         crtc = to_intel_crtc(drmmode_crtc);
12039         pipe_from_crtc_id->pipe = crtc->pipe;
12040
12041         return 0;
12042 }
12043
12044 static int intel_encoder_clones(struct intel_encoder *encoder)
12045 {
12046         struct drm_device *dev = encoder->base.dev;
12047         struct intel_encoder *source_encoder;
12048         int index_mask = 0;
12049         int entry = 0;
12050
12051         for_each_intel_encoder(dev, source_encoder) {
12052                 if (encoders_cloneable(encoder, source_encoder))
12053                         index_mask |= (1 << entry);
12054
12055                 entry++;
12056         }
12057
12058         return index_mask;
12059 }
12060
12061 static bool has_edp_a(struct drm_device *dev)
12062 {
12063         struct drm_i915_private *dev_priv = dev->dev_private;
12064
12065         if (!IS_MOBILE(dev))
12066                 return false;
12067
12068         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12069                 return false;
12070
12071         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12072                 return false;
12073
12074         return true;
12075 }
12076
12077 const char *intel_output_name(int output)
12078 {
12079         static const char *names[] = {
12080                 [INTEL_OUTPUT_UNUSED] = "Unused",
12081                 [INTEL_OUTPUT_ANALOG] = "Analog",
12082                 [INTEL_OUTPUT_DVO] = "DVO",
12083                 [INTEL_OUTPUT_SDVO] = "SDVO",
12084                 [INTEL_OUTPUT_LVDS] = "LVDS",
12085                 [INTEL_OUTPUT_TVOUT] = "TV",
12086                 [INTEL_OUTPUT_HDMI] = "HDMI",
12087                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12088                 [INTEL_OUTPUT_EDP] = "eDP",
12089                 [INTEL_OUTPUT_DSI] = "DSI",
12090                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12091         };
12092
12093         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12094                 return "Invalid";
12095
12096         return names[output];
12097 }
12098
12099 static bool intel_crt_present(struct drm_device *dev)
12100 {
12101         struct drm_i915_private *dev_priv = dev->dev_private;
12102
12103         if (INTEL_INFO(dev)->gen >= 9)
12104                 return false;
12105
12106         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12107                 return false;
12108
12109         if (IS_CHERRYVIEW(dev))
12110                 return false;
12111
12112         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12113                 return false;
12114
12115         return true;
12116 }
12117
12118 static void intel_setup_outputs(struct drm_device *dev)
12119 {
12120         struct drm_i915_private *dev_priv = dev->dev_private;
12121         struct intel_encoder *encoder;
12122         bool dpd_is_edp = false;
12123
12124         intel_lvds_init(dev);
12125
12126         if (intel_crt_present(dev))
12127                 intel_crt_init(dev);
12128
12129         if (HAS_DDI(dev)) {
12130                 int found;
12131
12132                 /* Haswell uses DDI functions to detect digital outputs */
12133                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12134                 /* DDI A only supports eDP */
12135                 if (found)
12136                         intel_ddi_init(dev, PORT_A);
12137
12138                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12139                  * register */
12140                 found = I915_READ(SFUSE_STRAP);
12141
12142                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12143                         intel_ddi_init(dev, PORT_B);
12144                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12145                         intel_ddi_init(dev, PORT_C);
12146                 if (found & SFUSE_STRAP_DDID_DETECTED)
12147                         intel_ddi_init(dev, PORT_D);
12148         } else if (HAS_PCH_SPLIT(dev)) {
12149                 int found;
12150                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12151
12152                 if (has_edp_a(dev))
12153                         intel_dp_init(dev, DP_A, PORT_A);
12154
12155                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12156                         /* PCH SDVOB multiplex with HDMIB */
12157                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12158                         if (!found)
12159                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12160                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12161                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12162                 }
12163
12164                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12165                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12166
12167                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12168                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12169
12170                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12171                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12172
12173                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12174                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12175         } else if (IS_VALLEYVIEW(dev)) {
12176                 /*
12177                  * The DP_DETECTED bit is the latched state of the DDC
12178                  * SDA pin at boot. However since eDP doesn't require DDC
12179                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12180                  * eDP ports may have been muxed to an alternate function.
12181                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12182                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12183                  * detect eDP ports.
12184                  */
12185                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12186                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12187                                         PORT_B);
12188                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12189                     intel_dp_is_edp(dev, PORT_B))
12190                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12191
12192                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12193                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12194                                         PORT_C);
12195                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12196                     intel_dp_is_edp(dev, PORT_C))
12197                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12198
12199                 if (IS_CHERRYVIEW(dev)) {
12200                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12201                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12202                                                 PORT_D);
12203                         /* eDP not supported on port D, so don't check VBT */
12204                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12205                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12206                 }
12207
12208                 intel_dsi_init(dev);
12209         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12210                 bool found = false;
12211
12212                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12213                         DRM_DEBUG_KMS("probing SDVOB\n");
12214                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12215                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12216                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12217                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12218                         }
12219
12220                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12221                                 intel_dp_init(dev, DP_B, PORT_B);
12222                 }
12223
12224                 /* Before G4X SDVOC doesn't have its own detect register */
12225
12226                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12227                         DRM_DEBUG_KMS("probing SDVOC\n");
12228                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12229                 }
12230
12231                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12232
12233                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12234                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12235                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12236                         }
12237                         if (SUPPORTS_INTEGRATED_DP(dev))
12238                                 intel_dp_init(dev, DP_C, PORT_C);
12239                 }
12240
12241                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12242                     (I915_READ(DP_D) & DP_DETECTED))
12243                         intel_dp_init(dev, DP_D, PORT_D);
12244         } else if (IS_GEN2(dev))
12245                 intel_dvo_init(dev);
12246
12247         if (SUPPORTS_TV(dev))
12248                 intel_tv_init(dev);
12249
12250         intel_edp_psr_init(dev);
12251
12252         for_each_intel_encoder(dev, encoder) {
12253                 encoder->base.possible_crtcs = encoder->crtc_mask;
12254                 encoder->base.possible_clones =
12255                         intel_encoder_clones(encoder);
12256         }
12257
12258         intel_init_pch_refclk(dev);
12259
12260         drm_helper_move_panel_connectors_to_head(dev);
12261 }
12262
12263 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12264 {
12265         struct drm_device *dev = fb->dev;
12266         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12267
12268         drm_framebuffer_cleanup(fb);
12269         mutex_lock(&dev->struct_mutex);
12270         WARN_ON(!intel_fb->obj->framebuffer_references--);
12271         drm_gem_object_unreference(&intel_fb->obj->base);
12272         mutex_unlock(&dev->struct_mutex);
12273         kfree(intel_fb);
12274 }
12275
12276 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12277                                                 struct drm_file *file,
12278                                                 unsigned int *handle)
12279 {
12280         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12281         struct drm_i915_gem_object *obj = intel_fb->obj;
12282
12283         return drm_gem_handle_create(file, &obj->base, handle);
12284 }
12285
12286 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12287         .destroy = intel_user_framebuffer_destroy,
12288         .create_handle = intel_user_framebuffer_create_handle,
12289 };
12290
12291 static int intel_framebuffer_init(struct drm_device *dev,
12292                                   struct intel_framebuffer *intel_fb,
12293                                   struct drm_mode_fb_cmd2 *mode_cmd,
12294                                   struct drm_i915_gem_object *obj)
12295 {
12296         int aligned_height;
12297         int pitch_limit;
12298         int ret;
12299
12300         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12301
12302         if (obj->tiling_mode == I915_TILING_Y) {
12303                 DRM_DEBUG("hardware does not support tiling Y\n");
12304                 return -EINVAL;
12305         }
12306
12307         if (mode_cmd->pitches[0] & 63) {
12308                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12309                           mode_cmd->pitches[0]);
12310                 return -EINVAL;
12311         }
12312
12313         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12314                 pitch_limit = 32*1024;
12315         } else if (INTEL_INFO(dev)->gen >= 4) {
12316                 if (obj->tiling_mode)
12317                         pitch_limit = 16*1024;
12318                 else
12319                         pitch_limit = 32*1024;
12320         } else if (INTEL_INFO(dev)->gen >= 3) {
12321                 if (obj->tiling_mode)
12322                         pitch_limit = 8*1024;
12323                 else
12324                         pitch_limit = 16*1024;
12325         } else
12326                 /* XXX DSPC is limited to 4k tiled */
12327                 pitch_limit = 8*1024;
12328
12329         if (mode_cmd->pitches[0] > pitch_limit) {
12330                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12331                           obj->tiling_mode ? "tiled" : "linear",
12332                           mode_cmd->pitches[0], pitch_limit);
12333                 return -EINVAL;
12334         }
12335
12336         if (obj->tiling_mode != I915_TILING_NONE &&
12337             mode_cmd->pitches[0] != obj->stride) {
12338                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12339                           mode_cmd->pitches[0], obj->stride);
12340                 return -EINVAL;
12341         }
12342
12343         /* Reject formats not supported by any plane early. */
12344         switch (mode_cmd->pixel_format) {
12345         case DRM_FORMAT_C8:
12346         case DRM_FORMAT_RGB565:
12347         case DRM_FORMAT_XRGB8888:
12348         case DRM_FORMAT_ARGB8888:
12349                 break;
12350         case DRM_FORMAT_XRGB1555:
12351         case DRM_FORMAT_ARGB1555:
12352                 if (INTEL_INFO(dev)->gen > 3) {
12353                         DRM_DEBUG("unsupported pixel format: %s\n",
12354                                   drm_get_format_name(mode_cmd->pixel_format));
12355                         return -EINVAL;
12356                 }
12357                 break;
12358         case DRM_FORMAT_XBGR8888:
12359         case DRM_FORMAT_ABGR8888:
12360         case DRM_FORMAT_XRGB2101010:
12361         case DRM_FORMAT_ARGB2101010:
12362         case DRM_FORMAT_XBGR2101010:
12363         case DRM_FORMAT_ABGR2101010:
12364                 if (INTEL_INFO(dev)->gen < 4) {
12365                         DRM_DEBUG("unsupported pixel format: %s\n",
12366                                   drm_get_format_name(mode_cmd->pixel_format));
12367                         return -EINVAL;
12368                 }
12369                 break;
12370         case DRM_FORMAT_YUYV:
12371         case DRM_FORMAT_UYVY:
12372         case DRM_FORMAT_YVYU:
12373         case DRM_FORMAT_VYUY:
12374                 if (INTEL_INFO(dev)->gen < 5) {
12375                         DRM_DEBUG("unsupported pixel format: %s\n",
12376                                   drm_get_format_name(mode_cmd->pixel_format));
12377                         return -EINVAL;
12378                 }
12379                 break;
12380         default:
12381                 DRM_DEBUG("unsupported pixel format: %s\n",
12382                           drm_get_format_name(mode_cmd->pixel_format));
12383                 return -EINVAL;
12384         }
12385
12386         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12387         if (mode_cmd->offsets[0] != 0)
12388                 return -EINVAL;
12389
12390         aligned_height = intel_align_height(dev, mode_cmd->height,
12391                                             obj->tiling_mode);
12392         /* FIXME drm helper for size checks (especially planar formats)? */
12393         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12394                 return -EINVAL;
12395
12396         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12397         intel_fb->obj = obj;
12398         intel_fb->obj->framebuffer_references++;
12399
12400         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12401         if (ret) {
12402                 DRM_ERROR("framebuffer init failed %d\n", ret);
12403                 return ret;
12404         }
12405
12406         return 0;
12407 }
12408
12409 static struct drm_framebuffer *
12410 intel_user_framebuffer_create(struct drm_device *dev,
12411                               struct drm_file *filp,
12412                               struct drm_mode_fb_cmd2 *mode_cmd)
12413 {
12414         struct drm_i915_gem_object *obj;
12415
12416         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12417                                                 mode_cmd->handles[0]));
12418         if (&obj->base == NULL)
12419                 return ERR_PTR(-ENOENT);
12420
12421         return intel_framebuffer_create(dev, mode_cmd, obj);
12422 }
12423
12424 #ifndef CONFIG_DRM_I915_FBDEV
12425 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12426 {
12427 }
12428 #endif
12429
12430 static const struct drm_mode_config_funcs intel_mode_funcs = {
12431         .fb_create = intel_user_framebuffer_create,
12432         .output_poll_changed = intel_fbdev_output_poll_changed,
12433 };
12434
12435 /* Set up chip specific display functions */
12436 static void intel_init_display(struct drm_device *dev)
12437 {
12438         struct drm_i915_private *dev_priv = dev->dev_private;
12439
12440         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12441                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12442         else if (IS_CHERRYVIEW(dev))
12443                 dev_priv->display.find_dpll = chv_find_best_dpll;
12444         else if (IS_VALLEYVIEW(dev))
12445                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12446         else if (IS_PINEVIEW(dev))
12447                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12448         else
12449                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12450
12451         if (HAS_DDI(dev)) {
12452                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12453                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12454                 dev_priv->display.crtc_compute_clock =
12455                         haswell_crtc_compute_clock;
12456                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12457                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12458                 dev_priv->display.off = ironlake_crtc_off;
12459                 if (INTEL_INFO(dev)->gen >= 9)
12460                         dev_priv->display.update_primary_plane =
12461                                 skylake_update_primary_plane;
12462                 else
12463                         dev_priv->display.update_primary_plane =
12464                                 ironlake_update_primary_plane;
12465         } else if (HAS_PCH_SPLIT(dev)) {
12466                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12467                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12468                 dev_priv->display.crtc_compute_clock =
12469                         ironlake_crtc_compute_clock;
12470                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12471                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12472                 dev_priv->display.off = ironlake_crtc_off;
12473                 dev_priv->display.update_primary_plane =
12474                         ironlake_update_primary_plane;
12475         } else if (IS_VALLEYVIEW(dev)) {
12476                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12477                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12478                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12479                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12480                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12481                 dev_priv->display.off = i9xx_crtc_off;
12482                 dev_priv->display.update_primary_plane =
12483                         i9xx_update_primary_plane;
12484         } else {
12485                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12486                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12487                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12488                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12489                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12490                 dev_priv->display.off = i9xx_crtc_off;
12491                 dev_priv->display.update_primary_plane =
12492                         i9xx_update_primary_plane;
12493         }
12494
12495         /* Returns the core display clock speed */
12496         if (IS_VALLEYVIEW(dev))
12497                 dev_priv->display.get_display_clock_speed =
12498                         valleyview_get_display_clock_speed;
12499         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12500                 dev_priv->display.get_display_clock_speed =
12501                         i945_get_display_clock_speed;
12502         else if (IS_I915G(dev))
12503                 dev_priv->display.get_display_clock_speed =
12504                         i915_get_display_clock_speed;
12505         else if (IS_I945GM(dev) || IS_845G(dev))
12506                 dev_priv->display.get_display_clock_speed =
12507                         i9xx_misc_get_display_clock_speed;
12508         else if (IS_PINEVIEW(dev))
12509                 dev_priv->display.get_display_clock_speed =
12510                         pnv_get_display_clock_speed;
12511         else if (IS_I915GM(dev))
12512                 dev_priv->display.get_display_clock_speed =
12513                         i915gm_get_display_clock_speed;
12514         else if (IS_I865G(dev))
12515                 dev_priv->display.get_display_clock_speed =
12516                         i865_get_display_clock_speed;
12517         else if (IS_I85X(dev))
12518                 dev_priv->display.get_display_clock_speed =
12519                         i855_get_display_clock_speed;
12520         else /* 852, 830 */
12521                 dev_priv->display.get_display_clock_speed =
12522                         i830_get_display_clock_speed;
12523
12524         if (IS_GEN5(dev)) {
12525                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12526         } else if (IS_GEN6(dev)) {
12527                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12528                 dev_priv->display.modeset_global_resources =
12529                         snb_modeset_global_resources;
12530         } else if (IS_IVYBRIDGE(dev)) {
12531                 /* FIXME: detect B0+ stepping and use auto training */
12532                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12533                 dev_priv->display.modeset_global_resources =
12534                         ivb_modeset_global_resources;
12535         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12536                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12537                 dev_priv->display.modeset_global_resources =
12538                         haswell_modeset_global_resources;
12539         } else if (IS_VALLEYVIEW(dev)) {
12540                 dev_priv->display.modeset_global_resources =
12541                         valleyview_modeset_global_resources;
12542         } else if (INTEL_INFO(dev)->gen >= 9) {
12543                 dev_priv->display.modeset_global_resources =
12544                         haswell_modeset_global_resources;
12545         }
12546
12547         /* Default just returns -ENODEV to indicate unsupported */
12548         dev_priv->display.queue_flip = intel_default_queue_flip;
12549
12550         switch (INTEL_INFO(dev)->gen) {
12551         case 2:
12552                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12553                 break;
12554
12555         case 3:
12556                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12557                 break;
12558
12559         case 4:
12560         case 5:
12561                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12562                 break;
12563
12564         case 6:
12565                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12566                 break;
12567         case 7:
12568         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12569                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12570                 break;
12571         }
12572
12573         intel_panel_init_backlight_funcs(dev);
12574
12575         mutex_init(&dev_priv->pps_mutex);
12576 }
12577
12578 /*
12579  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12580  * resume, or other times.  This quirk makes sure that's the case for
12581  * affected systems.
12582  */
12583 static void quirk_pipea_force(struct drm_device *dev)
12584 {
12585         struct drm_i915_private *dev_priv = dev->dev_private;
12586
12587         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12588         DRM_INFO("applying pipe a force quirk\n");
12589 }
12590
12591 static void quirk_pipeb_force(struct drm_device *dev)
12592 {
12593         struct drm_i915_private *dev_priv = dev->dev_private;
12594
12595         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12596         DRM_INFO("applying pipe b force quirk\n");
12597 }
12598
12599 /*
12600  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12601  */
12602 static void quirk_ssc_force_disable(struct drm_device *dev)
12603 {
12604         struct drm_i915_private *dev_priv = dev->dev_private;
12605         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12606         DRM_INFO("applying lvds SSC disable quirk\n");
12607 }
12608
12609 /*
12610  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12611  * brightness value
12612  */
12613 static void quirk_invert_brightness(struct drm_device *dev)
12614 {
12615         struct drm_i915_private *dev_priv = dev->dev_private;
12616         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12617         DRM_INFO("applying inverted panel brightness quirk\n");
12618 }
12619
12620 /* Some VBT's incorrectly indicate no backlight is present */
12621 static void quirk_backlight_present(struct drm_device *dev)
12622 {
12623         struct drm_i915_private *dev_priv = dev->dev_private;
12624         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12625         DRM_INFO("applying backlight present quirk\n");
12626 }
12627
12628 struct intel_quirk {
12629         int device;
12630         int subsystem_vendor;
12631         int subsystem_device;
12632         void (*hook)(struct drm_device *dev);
12633 };
12634
12635 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12636 struct intel_dmi_quirk {
12637         void (*hook)(struct drm_device *dev);
12638         const struct dmi_system_id (*dmi_id_list)[];
12639 };
12640
12641 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12642 {
12643         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12644         return 1;
12645 }
12646
12647 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12648         {
12649                 .dmi_id_list = &(const struct dmi_system_id[]) {
12650                         {
12651                                 .callback = intel_dmi_reverse_brightness,
12652                                 .ident = "NCR Corporation",
12653                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12654                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12655                                 },
12656                         },
12657                         { }  /* terminating entry */
12658                 },
12659                 .hook = quirk_invert_brightness,
12660         },
12661 };
12662
12663 static struct intel_quirk intel_quirks[] = {
12664         /* HP Mini needs pipe A force quirk (LP: #322104) */
12665         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12666
12667         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12668         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12669
12670         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12671         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12672
12673         /* 830 needs to leave pipe A & dpll A up */
12674         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12675
12676         /* 830 needs to leave pipe B & dpll B up */
12677         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12678
12679         /* Lenovo U160 cannot use SSC on LVDS */
12680         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12681
12682         /* Sony Vaio Y cannot use SSC on LVDS */
12683         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12684
12685         /* Acer Aspire 5734Z must invert backlight brightness */
12686         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12687
12688         /* Acer/eMachines G725 */
12689         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12690
12691         /* Acer/eMachines e725 */
12692         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12693
12694         /* Acer/Packard Bell NCL20 */
12695         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12696
12697         /* Acer Aspire 4736Z */
12698         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12699
12700         /* Acer Aspire 5336 */
12701         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12702
12703         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12704         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12705
12706         /* Acer C720 Chromebook (Core i3 4005U) */
12707         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12708
12709         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12710         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12711
12712         /* HP Chromebook 14 (Celeron 2955U) */
12713         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12714 };
12715
12716 static void intel_init_quirks(struct drm_device *dev)
12717 {
12718         struct pci_dev *d = dev->pdev;
12719         int i;
12720
12721         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12722                 struct intel_quirk *q = &intel_quirks[i];
12723
12724                 if (d->device == q->device &&
12725                     (d->subsystem_vendor == q->subsystem_vendor ||
12726                      q->subsystem_vendor == PCI_ANY_ID) &&
12727                     (d->subsystem_device == q->subsystem_device ||
12728                      q->subsystem_device == PCI_ANY_ID))
12729                         q->hook(dev);
12730         }
12731         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12732                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12733                         intel_dmi_quirks[i].hook(dev);
12734         }
12735 }
12736
12737 /* Disable the VGA plane that we never use */
12738 static void i915_disable_vga(struct drm_device *dev)
12739 {
12740         struct drm_i915_private *dev_priv = dev->dev_private;
12741         u8 sr1;
12742         u32 vga_reg = i915_vgacntrl_reg(dev);
12743
12744         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12745         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12746         outb(SR01, VGA_SR_INDEX);
12747         sr1 = inb(VGA_SR_DATA);
12748         outb(sr1 | 1<<5, VGA_SR_DATA);
12749         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12750         udelay(300);
12751
12752         /*
12753          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12754          * from S3 without preserving (some of?) the other bits.
12755          */
12756         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12757         POSTING_READ(vga_reg);
12758 }
12759
12760 void intel_modeset_init_hw(struct drm_device *dev)
12761 {
12762         intel_prepare_ddi(dev);
12763
12764         if (IS_VALLEYVIEW(dev))
12765                 vlv_update_cdclk(dev);
12766
12767         intel_init_clock_gating(dev);
12768
12769         intel_enable_gt_powersave(dev);
12770 }
12771
12772 void intel_modeset_init(struct drm_device *dev)
12773 {
12774         struct drm_i915_private *dev_priv = dev->dev_private;
12775         int sprite, ret;
12776         enum pipe pipe;
12777         struct intel_crtc *crtc;
12778
12779         drm_mode_config_init(dev);
12780
12781         dev->mode_config.min_width = 0;
12782         dev->mode_config.min_height = 0;
12783
12784         dev->mode_config.preferred_depth = 24;
12785         dev->mode_config.prefer_shadow = 1;
12786
12787         dev->mode_config.funcs = &intel_mode_funcs;
12788
12789         intel_init_quirks(dev);
12790
12791         intel_init_pm(dev);
12792
12793         if (INTEL_INFO(dev)->num_pipes == 0)
12794                 return;
12795
12796         intel_init_display(dev);
12797         intel_init_audio(dev);
12798
12799         if (IS_GEN2(dev)) {
12800                 dev->mode_config.max_width = 2048;
12801                 dev->mode_config.max_height = 2048;
12802         } else if (IS_GEN3(dev)) {
12803                 dev->mode_config.max_width = 4096;
12804                 dev->mode_config.max_height = 4096;
12805         } else {
12806                 dev->mode_config.max_width = 8192;
12807                 dev->mode_config.max_height = 8192;
12808         }
12809
12810         if (IS_845G(dev) || IS_I865G(dev)) {
12811                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12812                 dev->mode_config.cursor_height = 1023;
12813         } else if (IS_GEN2(dev)) {
12814                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12815                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12816         } else {
12817                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12818                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12819         }
12820
12821         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12822
12823         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12824                       INTEL_INFO(dev)->num_pipes,
12825                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12826
12827         for_each_pipe(dev_priv, pipe) {
12828                 intel_crtc_init(dev, pipe);
12829                 for_each_sprite(pipe, sprite) {
12830                         ret = intel_plane_init(dev, pipe, sprite);
12831                         if (ret)
12832                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12833                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12834                 }
12835         }
12836
12837         intel_init_dpio(dev);
12838
12839         intel_shared_dpll_init(dev);
12840
12841         /* save the BIOS value before clobbering it */
12842         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12843         /* Just disable it once at startup */
12844         i915_disable_vga(dev);
12845         intel_setup_outputs(dev);
12846
12847         /* Just in case the BIOS is doing something questionable. */
12848         intel_disable_fbc(dev);
12849
12850         drm_modeset_lock_all(dev);
12851         intel_modeset_setup_hw_state(dev, false);
12852         drm_modeset_unlock_all(dev);
12853
12854         for_each_intel_crtc(dev, crtc) {
12855                 if (!crtc->active)
12856                         continue;
12857
12858                 /*
12859                  * Note that reserving the BIOS fb up front prevents us
12860                  * from stuffing other stolen allocations like the ring
12861                  * on top.  This prevents some ugliness at boot time, and
12862                  * can even allow for smooth boot transitions if the BIOS
12863                  * fb is large enough for the active pipe configuration.
12864                  */
12865                 if (dev_priv->display.get_plane_config) {
12866                         dev_priv->display.get_plane_config(crtc,
12867                                                            &crtc->plane_config);
12868                         /*
12869                          * If the fb is shared between multiple heads, we'll
12870                          * just get the first one.
12871                          */
12872                         intel_find_plane_obj(crtc, &crtc->plane_config);
12873                 }
12874         }
12875 }
12876
12877 static void intel_enable_pipe_a(struct drm_device *dev)
12878 {
12879         struct intel_connector *connector;
12880         struct drm_connector *crt = NULL;
12881         struct intel_load_detect_pipe load_detect_temp;
12882         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12883
12884         /* We can't just switch on the pipe A, we need to set things up with a
12885          * proper mode and output configuration. As a gross hack, enable pipe A
12886          * by enabling the load detect pipe once. */
12887         list_for_each_entry(connector,
12888                             &dev->mode_config.connector_list,
12889                             base.head) {
12890                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12891                         crt = &connector->base;
12892                         break;
12893                 }
12894         }
12895
12896         if (!crt)
12897                 return;
12898
12899         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12900                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12901 }
12902
12903 static bool
12904 intel_check_plane_mapping(struct intel_crtc *crtc)
12905 {
12906         struct drm_device *dev = crtc->base.dev;
12907         struct drm_i915_private *dev_priv = dev->dev_private;
12908         u32 reg, val;
12909
12910         if (INTEL_INFO(dev)->num_pipes == 1)
12911                 return true;
12912
12913         reg = DSPCNTR(!crtc->plane);
12914         val = I915_READ(reg);
12915
12916         if ((val & DISPLAY_PLANE_ENABLE) &&
12917             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12918                 return false;
12919
12920         return true;
12921 }
12922
12923 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12924 {
12925         struct drm_device *dev = crtc->base.dev;
12926         struct drm_i915_private *dev_priv = dev->dev_private;
12927         u32 reg;
12928
12929         /* Clear any frame start delays used for debugging left by the BIOS */
12930         reg = PIPECONF(crtc->config.cpu_transcoder);
12931         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12932
12933         /* restore vblank interrupts to correct state */
12934         if (crtc->active) {
12935                 update_scanline_offset(crtc);
12936                 drm_vblank_on(dev, crtc->pipe);
12937         } else
12938                 drm_vblank_off(dev, crtc->pipe);
12939
12940         /* We need to sanitize the plane -> pipe mapping first because this will
12941          * disable the crtc (and hence change the state) if it is wrong. Note
12942          * that gen4+ has a fixed plane -> pipe mapping.  */
12943         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12944                 struct intel_connector *connector;
12945                 bool plane;
12946
12947                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12948                               crtc->base.base.id);
12949
12950                 /* Pipe has the wrong plane attached and the plane is active.
12951                  * Temporarily change the plane mapping and disable everything
12952                  * ...  */
12953                 plane = crtc->plane;
12954                 crtc->plane = !plane;
12955                 crtc->primary_enabled = true;
12956                 dev_priv->display.crtc_disable(&crtc->base);
12957                 crtc->plane = plane;
12958
12959                 /* ... and break all links. */
12960                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12961                                     base.head) {
12962                         if (connector->encoder->base.crtc != &crtc->base)
12963                                 continue;
12964
12965                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12966                         connector->base.encoder = NULL;
12967                 }
12968                 /* multiple connectors may have the same encoder:
12969                  *  handle them and break crtc link separately */
12970                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12971                                     base.head)
12972                         if (connector->encoder->base.crtc == &crtc->base) {
12973                                 connector->encoder->base.crtc = NULL;
12974                                 connector->encoder->connectors_active = false;
12975                         }
12976
12977                 WARN_ON(crtc->active);
12978                 crtc->base.enabled = false;
12979         }
12980
12981         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12982             crtc->pipe == PIPE_A && !crtc->active) {
12983                 /* BIOS forgot to enable pipe A, this mostly happens after
12984                  * resume. Force-enable the pipe to fix this, the update_dpms
12985                  * call below we restore the pipe to the right state, but leave
12986                  * the required bits on. */
12987                 intel_enable_pipe_a(dev);
12988         }
12989
12990         /* Adjust the state of the output pipe according to whether we
12991          * have active connectors/encoders. */
12992         intel_crtc_update_dpms(&crtc->base);
12993
12994         if (crtc->active != crtc->base.enabled) {
12995                 struct intel_encoder *encoder;
12996
12997                 /* This can happen either due to bugs in the get_hw_state
12998                  * functions or because the pipe is force-enabled due to the
12999                  * pipe A quirk. */
13000                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13001                               crtc->base.base.id,
13002                               crtc->base.enabled ? "enabled" : "disabled",
13003                               crtc->active ? "enabled" : "disabled");
13004
13005                 crtc->base.enabled = crtc->active;
13006
13007                 /* Because we only establish the connector -> encoder ->
13008                  * crtc links if something is active, this means the
13009                  * crtc is now deactivated. Break the links. connector
13010                  * -> encoder links are only establish when things are
13011                  *  actually up, hence no need to break them. */
13012                 WARN_ON(crtc->active);
13013
13014                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13015                         WARN_ON(encoder->connectors_active);
13016                         encoder->base.crtc = NULL;
13017                 }
13018         }
13019
13020         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13021                 /*
13022                  * We start out with underrun reporting disabled to avoid races.
13023                  * For correct bookkeeping mark this on active crtcs.
13024                  *
13025                  * Also on gmch platforms we dont have any hardware bits to
13026                  * disable the underrun reporting. Which means we need to start
13027                  * out with underrun reporting disabled also on inactive pipes,
13028                  * since otherwise we'll complain about the garbage we read when
13029                  * e.g. coming up after runtime pm.
13030                  *
13031                  * No protection against concurrent access is required - at
13032                  * worst a fifo underrun happens which also sets this to false.
13033                  */
13034                 crtc->cpu_fifo_underrun_disabled = true;
13035                 crtc->pch_fifo_underrun_disabled = true;
13036         }
13037 }
13038
13039 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13040 {
13041         struct intel_connector *connector;
13042         struct drm_device *dev = encoder->base.dev;
13043
13044         /* We need to check both for a crtc link (meaning that the
13045          * encoder is active and trying to read from a pipe) and the
13046          * pipe itself being active. */
13047         bool has_active_crtc = encoder->base.crtc &&
13048                 to_intel_crtc(encoder->base.crtc)->active;
13049
13050         if (encoder->connectors_active && !has_active_crtc) {
13051                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13052                               encoder->base.base.id,
13053                               encoder->base.name);
13054
13055                 /* Connector is active, but has no active pipe. This is
13056                  * fallout from our resume register restoring. Disable
13057                  * the encoder manually again. */
13058                 if (encoder->base.crtc) {
13059                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13060                                       encoder->base.base.id,
13061                                       encoder->base.name);
13062                         encoder->disable(encoder);
13063                         if (encoder->post_disable)
13064                                 encoder->post_disable(encoder);
13065                 }
13066                 encoder->base.crtc = NULL;
13067                 encoder->connectors_active = false;
13068
13069                 /* Inconsistent output/port/pipe state happens presumably due to
13070                  * a bug in one of the get_hw_state functions. Or someplace else
13071                  * in our code, like the register restore mess on resume. Clamp
13072                  * things to off as a safer default. */
13073                 list_for_each_entry(connector,
13074                                     &dev->mode_config.connector_list,
13075                                     base.head) {
13076                         if (connector->encoder != encoder)
13077                                 continue;
13078                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13079                         connector->base.encoder = NULL;
13080                 }
13081         }
13082         /* Enabled encoders without active connectors will be fixed in
13083          * the crtc fixup. */
13084 }
13085
13086 void i915_redisable_vga_power_on(struct drm_device *dev)
13087 {
13088         struct drm_i915_private *dev_priv = dev->dev_private;
13089         u32 vga_reg = i915_vgacntrl_reg(dev);
13090
13091         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13092                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13093                 i915_disable_vga(dev);
13094         }
13095 }
13096
13097 void i915_redisable_vga(struct drm_device *dev)
13098 {
13099         struct drm_i915_private *dev_priv = dev->dev_private;
13100
13101         /* This function can be called both from intel_modeset_setup_hw_state or
13102          * at a very early point in our resume sequence, where the power well
13103          * structures are not yet restored. Since this function is at a very
13104          * paranoid "someone might have enabled VGA while we were not looking"
13105          * level, just check if the power well is enabled instead of trying to
13106          * follow the "don't touch the power well if we don't need it" policy
13107          * the rest of the driver uses. */
13108         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13109                 return;
13110
13111         i915_redisable_vga_power_on(dev);
13112 }
13113
13114 static bool primary_get_hw_state(struct intel_crtc *crtc)
13115 {
13116         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13117
13118         if (!crtc->active)
13119                 return false;
13120
13121         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13122 }
13123
13124 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13125 {
13126         struct drm_i915_private *dev_priv = dev->dev_private;
13127         enum pipe pipe;
13128         struct intel_crtc *crtc;
13129         struct intel_encoder *encoder;
13130         struct intel_connector *connector;
13131         int i;
13132
13133         for_each_intel_crtc(dev, crtc) {
13134                 memset(&crtc->config, 0, sizeof(crtc->config));
13135
13136                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13137
13138                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13139                                                                  &crtc->config);
13140
13141                 crtc->base.enabled = crtc->active;
13142                 crtc->primary_enabled = primary_get_hw_state(crtc);
13143
13144                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13145                               crtc->base.base.id,
13146                               crtc->active ? "enabled" : "disabled");
13147         }
13148
13149         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13150                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13151
13152                 pll->on = pll->get_hw_state(dev_priv, pll,
13153                                             &pll->config.hw_state);
13154                 pll->active = 0;
13155                 pll->config.crtc_mask = 0;
13156                 for_each_intel_crtc(dev, crtc) {
13157                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13158                                 pll->active++;
13159                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13160                         }
13161                 }
13162
13163                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13164                               pll->name, pll->config.crtc_mask, pll->on);
13165
13166                 if (pll->config.crtc_mask)
13167                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13168         }
13169
13170         for_each_intel_encoder(dev, encoder) {
13171                 pipe = 0;
13172
13173                 if (encoder->get_hw_state(encoder, &pipe)) {
13174                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13175                         encoder->base.crtc = &crtc->base;
13176                         encoder->get_config(encoder, &crtc->config);
13177                 } else {
13178                         encoder->base.crtc = NULL;
13179                 }
13180
13181                 encoder->connectors_active = false;
13182                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13183                               encoder->base.base.id,
13184                               encoder->base.name,
13185                               encoder->base.crtc ? "enabled" : "disabled",
13186                               pipe_name(pipe));
13187         }
13188
13189         list_for_each_entry(connector, &dev->mode_config.connector_list,
13190                             base.head) {
13191                 if (connector->get_hw_state(connector)) {
13192                         connector->base.dpms = DRM_MODE_DPMS_ON;
13193                         connector->encoder->connectors_active = true;
13194                         connector->base.encoder = &connector->encoder->base;
13195                 } else {
13196                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13197                         connector->base.encoder = NULL;
13198                 }
13199                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13200                               connector->base.base.id,
13201                               connector->base.name,
13202                               connector->base.encoder ? "enabled" : "disabled");
13203         }
13204 }
13205
13206 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13207  * and i915 state tracking structures. */
13208 void intel_modeset_setup_hw_state(struct drm_device *dev,
13209                                   bool force_restore)
13210 {
13211         struct drm_i915_private *dev_priv = dev->dev_private;
13212         enum pipe pipe;
13213         struct intel_crtc *crtc;
13214         struct intel_encoder *encoder;
13215         int i;
13216
13217         intel_modeset_readout_hw_state(dev);
13218
13219         /*
13220          * Now that we have the config, copy it to each CRTC struct
13221          * Note that this could go away if we move to using crtc_config
13222          * checking everywhere.
13223          */
13224         for_each_intel_crtc(dev, crtc) {
13225                 if (crtc->active && i915.fastboot) {
13226                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13227                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13228                                       crtc->base.base.id);
13229                         drm_mode_debug_printmodeline(&crtc->base.mode);
13230                 }
13231         }
13232
13233         /* HW state is read out, now we need to sanitize this mess. */
13234         for_each_intel_encoder(dev, encoder) {
13235                 intel_sanitize_encoder(encoder);
13236         }
13237
13238         for_each_pipe(dev_priv, pipe) {
13239                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13240                 intel_sanitize_crtc(crtc);
13241                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13242         }
13243
13244         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13245                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13246
13247                 if (!pll->on || pll->active)
13248                         continue;
13249
13250                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13251
13252                 pll->disable(dev_priv, pll);
13253                 pll->on = false;
13254         }
13255
13256         if (HAS_PCH_SPLIT(dev))
13257                 ilk_wm_get_hw_state(dev);
13258
13259         if (force_restore) {
13260                 i915_redisable_vga(dev);
13261
13262                 /*
13263                  * We need to use raw interfaces for restoring state to avoid
13264                  * checking (bogus) intermediate states.
13265                  */
13266                 for_each_pipe(dev_priv, pipe) {
13267                         struct drm_crtc *crtc =
13268                                 dev_priv->pipe_to_crtc_mapping[pipe];
13269
13270                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13271                                          crtc->primary->fb);
13272                 }
13273         } else {
13274                 intel_modeset_update_staged_output_state(dev);
13275         }
13276
13277         intel_modeset_check_state(dev);
13278 }
13279
13280 void intel_modeset_gem_init(struct drm_device *dev)
13281 {
13282         struct drm_crtc *c;
13283         struct drm_i915_gem_object *obj;
13284
13285         mutex_lock(&dev->struct_mutex);
13286         intel_init_gt_powersave(dev);
13287         mutex_unlock(&dev->struct_mutex);
13288
13289         intel_modeset_init_hw(dev);
13290
13291         intel_setup_overlay(dev);
13292
13293         /*
13294          * Make sure any fbs we allocated at startup are properly
13295          * pinned & fenced.  When we do the allocation it's too early
13296          * for this.
13297          */
13298         mutex_lock(&dev->struct_mutex);
13299         for_each_crtc(dev, c) {
13300                 obj = intel_fb_obj(c->primary->fb);
13301                 if (obj == NULL)
13302                         continue;
13303
13304                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13305                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13306                                   to_intel_crtc(c)->pipe);
13307                         drm_framebuffer_unreference(c->primary->fb);
13308                         c->primary->fb = NULL;
13309                 }
13310         }
13311         mutex_unlock(&dev->struct_mutex);
13312 }
13313
13314 void intel_connector_unregister(struct intel_connector *intel_connector)
13315 {
13316         struct drm_connector *connector = &intel_connector->base;
13317
13318         intel_panel_destroy_backlight(connector);
13319         drm_connector_unregister(connector);
13320 }
13321
13322 void intel_modeset_cleanup(struct drm_device *dev)
13323 {
13324         struct drm_i915_private *dev_priv = dev->dev_private;
13325         struct drm_connector *connector;
13326
13327         /*
13328          * Interrupts and polling as the first thing to avoid creating havoc.
13329          * Too much stuff here (turning of rps, connectors, ...) would
13330          * experience fancy races otherwise.
13331          */
13332         intel_irq_uninstall(dev_priv);
13333
13334         /*
13335          * Due to the hpd irq storm handling the hotplug work can re-arm the
13336          * poll handlers. Hence disable polling after hpd handling is shut down.
13337          */
13338         drm_kms_helper_poll_fini(dev);
13339
13340         mutex_lock(&dev->struct_mutex);
13341
13342         intel_unregister_dsm_handler();
13343
13344         intel_disable_fbc(dev);
13345
13346         intel_disable_gt_powersave(dev);
13347
13348         ironlake_teardown_rc6(dev);
13349
13350         mutex_unlock(&dev->struct_mutex);
13351
13352         /* flush any delayed tasks or pending work */
13353         flush_scheduled_work();
13354
13355         /* destroy the backlight and sysfs files before encoders/connectors */
13356         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13357                 struct intel_connector *intel_connector;
13358
13359                 intel_connector = to_intel_connector(connector);
13360                 intel_connector->unregister(intel_connector);
13361         }
13362
13363         drm_mode_config_cleanup(dev);
13364
13365         intel_cleanup_overlay(dev);
13366
13367         mutex_lock(&dev->struct_mutex);
13368         intel_cleanup_gt_powersave(dev);
13369         mutex_unlock(&dev->struct_mutex);
13370 }
13371
13372 /*
13373  * Return which encoder is currently attached for connector.
13374  */
13375 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13376 {
13377         return &intel_attached_encoder(connector)->base;
13378 }
13379
13380 void intel_connector_attach_encoder(struct intel_connector *connector,
13381                                     struct intel_encoder *encoder)
13382 {
13383         connector->encoder = encoder;
13384         drm_mode_connector_attach_encoder(&connector->base,
13385                                           &encoder->base);
13386 }
13387
13388 /*
13389  * set vga decode state - true == enable VGA decode
13390  */
13391 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13392 {
13393         struct drm_i915_private *dev_priv = dev->dev_private;
13394         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13395         u16 gmch_ctrl;
13396
13397         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13398                 DRM_ERROR("failed to read control word\n");
13399                 return -EIO;
13400         }
13401
13402         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13403                 return 0;
13404
13405         if (state)
13406                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13407         else
13408                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13409
13410         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13411                 DRM_ERROR("failed to write control word\n");
13412                 return -EIO;
13413         }
13414
13415         return 0;
13416 }
13417
13418 struct intel_display_error_state {
13419
13420         u32 power_well_driver;
13421
13422         int num_transcoders;
13423
13424         struct intel_cursor_error_state {
13425                 u32 control;
13426                 u32 position;
13427                 u32 base;
13428                 u32 size;
13429         } cursor[I915_MAX_PIPES];
13430
13431         struct intel_pipe_error_state {
13432                 bool power_domain_on;
13433                 u32 source;
13434                 u32 stat;
13435         } pipe[I915_MAX_PIPES];
13436
13437         struct intel_plane_error_state {
13438                 u32 control;
13439                 u32 stride;
13440                 u32 size;
13441                 u32 pos;
13442                 u32 addr;
13443                 u32 surface;
13444                 u32 tile_offset;
13445         } plane[I915_MAX_PIPES];
13446
13447         struct intel_transcoder_error_state {
13448                 bool power_domain_on;
13449                 enum transcoder cpu_transcoder;
13450
13451                 u32 conf;
13452
13453                 u32 htotal;
13454                 u32 hblank;
13455                 u32 hsync;
13456                 u32 vtotal;
13457                 u32 vblank;
13458                 u32 vsync;
13459         } transcoder[4];
13460 };
13461
13462 struct intel_display_error_state *
13463 intel_display_capture_error_state(struct drm_device *dev)
13464 {
13465         struct drm_i915_private *dev_priv = dev->dev_private;
13466         struct intel_display_error_state *error;
13467         int transcoders[] = {
13468                 TRANSCODER_A,
13469                 TRANSCODER_B,
13470                 TRANSCODER_C,
13471                 TRANSCODER_EDP,
13472         };
13473         int i;
13474
13475         if (INTEL_INFO(dev)->num_pipes == 0)
13476                 return NULL;
13477
13478         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13479         if (error == NULL)
13480                 return NULL;
13481
13482         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13483                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13484
13485         for_each_pipe(dev_priv, i) {
13486                 error->pipe[i].power_domain_on =
13487                         __intel_display_power_is_enabled(dev_priv,
13488                                                          POWER_DOMAIN_PIPE(i));
13489                 if (!error->pipe[i].power_domain_on)
13490                         continue;
13491
13492                 error->cursor[i].control = I915_READ(CURCNTR(i));
13493                 error->cursor[i].position = I915_READ(CURPOS(i));
13494                 error->cursor[i].base = I915_READ(CURBASE(i));
13495
13496                 error->plane[i].control = I915_READ(DSPCNTR(i));
13497                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13498                 if (INTEL_INFO(dev)->gen <= 3) {
13499                         error->plane[i].size = I915_READ(DSPSIZE(i));
13500                         error->plane[i].pos = I915_READ(DSPPOS(i));
13501                 }
13502                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13503                         error->plane[i].addr = I915_READ(DSPADDR(i));
13504                 if (INTEL_INFO(dev)->gen >= 4) {
13505                         error->plane[i].surface = I915_READ(DSPSURF(i));
13506                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13507                 }
13508
13509                 error->pipe[i].source = I915_READ(PIPESRC(i));
13510
13511                 if (HAS_GMCH_DISPLAY(dev))
13512                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13513         }
13514
13515         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13516         if (HAS_DDI(dev_priv->dev))
13517                 error->num_transcoders++; /* Account for eDP. */
13518
13519         for (i = 0; i < error->num_transcoders; i++) {
13520                 enum transcoder cpu_transcoder = transcoders[i];
13521
13522                 error->transcoder[i].power_domain_on =
13523                         __intel_display_power_is_enabled(dev_priv,
13524                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13525                 if (!error->transcoder[i].power_domain_on)
13526                         continue;
13527
13528                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13529
13530                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13531                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13532                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13533                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13534                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13535                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13536                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13537         }
13538
13539         return error;
13540 }
13541
13542 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13543
13544 void
13545 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13546                                 struct drm_device *dev,
13547                                 struct intel_display_error_state *error)
13548 {
13549         struct drm_i915_private *dev_priv = dev->dev_private;
13550         int i;
13551
13552         if (!error)
13553                 return;
13554
13555         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13556         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13557                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13558                            error->power_well_driver);
13559         for_each_pipe(dev_priv, i) {
13560                 err_printf(m, "Pipe [%d]:\n", i);
13561                 err_printf(m, "  Power: %s\n",
13562                            error->pipe[i].power_domain_on ? "on" : "off");
13563                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13564                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13565
13566                 err_printf(m, "Plane [%d]:\n", i);
13567                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13568                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13569                 if (INTEL_INFO(dev)->gen <= 3) {
13570                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13571                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13572                 }
13573                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13574                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13575                 if (INTEL_INFO(dev)->gen >= 4) {
13576                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13577                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13578                 }
13579
13580                 err_printf(m, "Cursor [%d]:\n", i);
13581                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13582                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13583                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13584         }
13585
13586         for (i = 0; i < error->num_transcoders; i++) {
13587                 err_printf(m, "CPU transcoder: %c\n",
13588                            transcoder_name(error->transcoder[i].cpu_transcoder));
13589                 err_printf(m, "  Power: %s\n",
13590                            error->transcoder[i].power_domain_on ? "on" : "off");
13591                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13592                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13593                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13594                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13595                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13596                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13597                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13598         }
13599 }
13600
13601 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13602 {
13603         struct intel_crtc *crtc;
13604
13605         for_each_intel_crtc(dev, crtc) {
13606                 struct intel_unpin_work *work;
13607
13608                 spin_lock_irq(&dev->event_lock);
13609
13610                 work = crtc->unpin_work;
13611
13612                 if (work && work->event &&
13613                     work->event->base.file_priv == file) {
13614                         kfree(work->event);
13615                         work->event = NULL;
13616                 }
13617
13618                 spin_unlock_irq(&dev->event_lock);
13619         }
13620 }