045d464751212bf60bb38e4d9b92dd7bbd353a0f
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static int
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
408
409         /* dp aux is extremely sensitive to irq latency, hence request the
410          * lowest possible wakeup latency and so prevent the cpu from going into
411          * deep sleep states.
412          */
413         pm_qos_update_request(&dev_priv->pm_qos, 0);
414
415         intel_dp_check_edp(intel_dp);
416
417         if (IS_GEN6(dev))
418                 precharge = 3;
419         else
420                 precharge = 5;
421
422         intel_aux_display_runtime_get(dev_priv);
423
424         /* Try to wait for any previous AUX channel activity */
425         for (try = 0; try < 3; try++) {
426                 status = I915_READ_NOTRACE(ch_ctl);
427                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428                         break;
429                 msleep(1);
430         }
431
432         if (try == 3) {
433                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
434                      I915_READ(ch_ctl));
435                 ret = -EBUSY;
436                 goto out;
437         }
438
439         /* Only 5 data registers! */
440         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
441                 ret = -E2BIG;
442                 goto out;
443         }
444
445         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
446                 /* Must try at least 3 times according to DP spec */
447                 for (try = 0; try < 5; try++) {
448                         /* Load the send data into the aux channel data registers */
449                         for (i = 0; i < send_bytes; i += 4)
450                                 I915_WRITE(ch_data + i,
451                                            pack_aux(send + i, send_bytes - i));
452
453                         /* Send the command and wait for it to complete */
454                         I915_WRITE(ch_ctl,
455                                    DP_AUX_CH_CTL_SEND_BUSY |
456                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
457                                    DP_AUX_CH_CTL_TIME_OUT_400us |
458                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
459                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
460                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
461                                    DP_AUX_CH_CTL_DONE |
462                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
463                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
464
465                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
466
467                         /* Clear done status and any errors */
468                         I915_WRITE(ch_ctl,
469                                    status |
470                                    DP_AUX_CH_CTL_DONE |
471                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
472                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
475                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
476                                 continue;
477                         if (status & DP_AUX_CH_CTL_DONE)
478                                 break;
479                 }
480                 if (status & DP_AUX_CH_CTL_DONE)
481                         break;
482         }
483
484         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
485                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
486                 ret = -EBUSY;
487                 goto out;
488         }
489
490         /* Check for timeout or receive error.
491          * Timeouts occur when the sink is not connected
492          */
493         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
494                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
495                 ret = -EIO;
496                 goto out;
497         }
498
499         /* Timeouts occur when the device isn't connected, so they're
500          * "normal" -- don't fill the kernel log with these */
501         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
502                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
503                 ret = -ETIMEDOUT;
504                 goto out;
505         }
506
507         /* Unload any bytes sent back from the other side */
508         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
509                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
510         if (recv_bytes > recv_size)
511                 recv_bytes = recv_size;
512
513         for (i = 0; i < recv_bytes; i += 4)
514                 unpack_aux(I915_READ(ch_data + i),
515                            recv + i, recv_bytes - i);
516
517         ret = recv_bytes;
518 out:
519         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
520         intel_aux_display_runtime_put(dev_priv);
521
522         return ret;
523 }
524
525 /* Write data to the aux channel in native mode */
526 static int
527 intel_dp_aux_native_write(struct intel_dp *intel_dp,
528                           uint16_t address, uint8_t *send, int send_bytes)
529 {
530         int ret;
531         uint8_t msg[20];
532         int msg_bytes;
533         uint8_t ack;
534
535         if (WARN_ON(send_bytes > 16))
536                 return -E2BIG;
537
538         intel_dp_check_edp(intel_dp);
539         msg[0] = AUX_NATIVE_WRITE << 4;
540         msg[1] = address >> 8;
541         msg[2] = address & 0xff;
542         msg[3] = send_bytes - 1;
543         memcpy(&msg[4], send, send_bytes);
544         msg_bytes = send_bytes + 4;
545         for (;;) {
546                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
547                 if (ret < 0)
548                         return ret;
549                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
550                         break;
551                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552                         udelay(100);
553                 else
554                         return -EIO;
555         }
556         return send_bytes;
557 }
558
559 /* Write a single byte to the aux channel in native mode */
560 static int
561 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
562                             uint16_t address, uint8_t byte)
563 {
564         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
565 }
566
567 /* read bytes from a native aux channel */
568 static int
569 intel_dp_aux_native_read(struct intel_dp *intel_dp,
570                          uint16_t address, uint8_t *recv, int recv_bytes)
571 {
572         uint8_t msg[4];
573         int msg_bytes;
574         uint8_t reply[20];
575         int reply_bytes;
576         uint8_t ack;
577         int ret;
578
579         if (WARN_ON(recv_bytes > 19))
580                 return -E2BIG;
581
582         intel_dp_check_edp(intel_dp);
583         msg[0] = AUX_NATIVE_READ << 4;
584         msg[1] = address >> 8;
585         msg[2] = address & 0xff;
586         msg[3] = recv_bytes - 1;
587
588         msg_bytes = 4;
589         reply_bytes = recv_bytes + 1;
590
591         for (;;) {
592                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
593                                       reply, reply_bytes);
594                 if (ret == 0)
595                         return -EPROTO;
596                 if (ret < 0)
597                         return ret;
598                 ack = reply[0];
599                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
600                         memcpy(recv, reply + 1, ret - 1);
601                         return ret - 1;
602                 }
603                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
604                         udelay(100);
605                 else
606                         return -EIO;
607         }
608 }
609
610 static int
611 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
612                     uint8_t write_byte, uint8_t *read_byte)
613 {
614         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
615         struct intel_dp *intel_dp = container_of(adapter,
616                                                 struct intel_dp,
617                                                 adapter);
618         uint16_t address = algo_data->address;
619         uint8_t msg[5];
620         uint8_t reply[2];
621         unsigned retry;
622         int msg_bytes;
623         int reply_bytes;
624         int ret;
625
626         ironlake_edp_panel_vdd_on(intel_dp);
627         intel_dp_check_edp(intel_dp);
628         /* Set up the command byte */
629         if (mode & MODE_I2C_READ)
630                 msg[0] = AUX_I2C_READ << 4;
631         else
632                 msg[0] = AUX_I2C_WRITE << 4;
633
634         if (!(mode & MODE_I2C_STOP))
635                 msg[0] |= AUX_I2C_MOT << 4;
636
637         msg[1] = address >> 8;
638         msg[2] = address;
639
640         switch (mode) {
641         case MODE_I2C_WRITE:
642                 msg[3] = 0;
643                 msg[4] = write_byte;
644                 msg_bytes = 5;
645                 reply_bytes = 1;
646                 break;
647         case MODE_I2C_READ:
648                 msg[3] = 0;
649                 msg_bytes = 4;
650                 reply_bytes = 2;
651                 break;
652         default:
653                 msg_bytes = 3;
654                 reply_bytes = 1;
655                 break;
656         }
657
658         /*
659          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
660          * required to retry at least seven times upon receiving AUX_DEFER
661          * before giving up the AUX transaction.
662          */
663         for (retry = 0; retry < 7; retry++) {
664                 ret = intel_dp_aux_ch(intel_dp,
665                                       msg, msg_bytes,
666                                       reply, reply_bytes);
667                 if (ret < 0) {
668                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
669                         goto out;
670                 }
671
672                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
673                 case AUX_NATIVE_REPLY_ACK:
674                         /* I2C-over-AUX Reply field is only valid
675                          * when paired with AUX ACK.
676                          */
677                         break;
678                 case AUX_NATIVE_REPLY_NACK:
679                         DRM_DEBUG_KMS("aux_ch native nack\n");
680                         ret = -EREMOTEIO;
681                         goto out;
682                 case AUX_NATIVE_REPLY_DEFER:
683                         /*
684                          * For now, just give more slack to branch devices. We
685                          * could check the DPCD for I2C bit rate capabilities,
686                          * and if available, adjust the interval. We could also
687                          * be more careful with DP-to-Legacy adapters where a
688                          * long legacy cable may force very low I2C bit rates.
689                          */
690                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
691                             DP_DWN_STRM_PORT_PRESENT)
692                                 usleep_range(500, 600);
693                         else
694                                 usleep_range(300, 400);
695                         continue;
696                 default:
697                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
698                                   reply[0]);
699                         ret = -EREMOTEIO;
700                         goto out;
701                 }
702
703                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
704                 case AUX_I2C_REPLY_ACK:
705                         if (mode == MODE_I2C_READ) {
706                                 *read_byte = reply[1];
707                         }
708                         ret = reply_bytes - 1;
709                         goto out;
710                 case AUX_I2C_REPLY_NACK:
711                         DRM_DEBUG_KMS("aux_i2c nack\n");
712                         ret = -EREMOTEIO;
713                         goto out;
714                 case AUX_I2C_REPLY_DEFER:
715                         DRM_DEBUG_KMS("aux_i2c defer\n");
716                         udelay(100);
717                         break;
718                 default:
719                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
720                         ret = -EREMOTEIO;
721                         goto out;
722                 }
723         }
724
725         DRM_ERROR("too many retries, giving up\n");
726         ret = -EREMOTEIO;
727
728 out:
729         ironlake_edp_panel_vdd_off(intel_dp, false);
730         return ret;
731 }
732
733 static int
734 intel_dp_i2c_init(struct intel_dp *intel_dp,
735                   struct intel_connector *intel_connector, const char *name)
736 {
737         int     ret;
738
739         DRM_DEBUG_KMS("i2c_init %s\n", name);
740         intel_dp->algo.running = false;
741         intel_dp->algo.address = 0;
742         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
743
744         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
745         intel_dp->adapter.owner = THIS_MODULE;
746         intel_dp->adapter.class = I2C_CLASS_DDC;
747         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
748         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
749         intel_dp->adapter.algo_data = &intel_dp->algo;
750         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
751
752         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
753         return ret;
754 }
755
756 static void
757 intel_dp_set_clock(struct intel_encoder *encoder,
758                    struct intel_crtc_config *pipe_config, int link_bw)
759 {
760         struct drm_device *dev = encoder->base.dev;
761         const struct dp_link_dpll *divisor = NULL;
762         int i, count = 0;
763
764         if (IS_G4X(dev)) {
765                 divisor = gen4_dpll;
766                 count = ARRAY_SIZE(gen4_dpll);
767         } else if (IS_HASWELL(dev)) {
768                 /* Haswell has special-purpose DP DDI clocks. */
769         } else if (HAS_PCH_SPLIT(dev)) {
770                 divisor = pch_dpll;
771                 count = ARRAY_SIZE(pch_dpll);
772         } else if (IS_VALLEYVIEW(dev)) {
773                 divisor = vlv_dpll;
774                 count = ARRAY_SIZE(vlv_dpll);
775         }
776
777         if (divisor && count) {
778                 for (i = 0; i < count; i++) {
779                         if (link_bw == divisor[i].link_bw) {
780                                 pipe_config->dpll = divisor[i].dpll;
781                                 pipe_config->clock_set = true;
782                                 break;
783                         }
784                 }
785         }
786 }
787
788 bool
789 intel_dp_compute_config(struct intel_encoder *encoder,
790                         struct intel_crtc_config *pipe_config)
791 {
792         struct drm_device *dev = encoder->base.dev;
793         struct drm_i915_private *dev_priv = dev->dev_private;
794         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
795         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
796         enum port port = dp_to_dig_port(intel_dp)->port;
797         struct intel_crtc *intel_crtc = encoder->new_crtc;
798         struct intel_connector *intel_connector = intel_dp->attached_connector;
799         int lane_count, clock;
800         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
801         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
802         int bpp, mode_rate;
803         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
804         int link_avail, link_clock;
805
806         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
807                 pipe_config->has_pch_encoder = true;
808
809         pipe_config->has_dp_encoder = true;
810
811         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
812                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
813                                        adjusted_mode);
814                 if (!HAS_PCH_SPLIT(dev))
815                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
816                                                  intel_connector->panel.fitting_mode);
817                 else
818                         intel_pch_panel_fitting(intel_crtc, pipe_config,
819                                                 intel_connector->panel.fitting_mode);
820         }
821
822         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
823                 return false;
824
825         DRM_DEBUG_KMS("DP link computation with max lane count %i "
826                       "max bw %02x pixel clock %iKHz\n",
827                       max_lane_count, bws[max_clock],
828                       adjusted_mode->crtc_clock);
829
830         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
831          * bpc in between. */
832         bpp = pipe_config->pipe_bpp;
833         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
834             dev_priv->vbt.edp_bpp < bpp) {
835                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
836                               dev_priv->vbt.edp_bpp);
837                 bpp = dev_priv->vbt.edp_bpp;
838         }
839
840         for (; bpp >= 6*3; bpp -= 2*3) {
841                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
842                                                    bpp);
843
844                 for (clock = 0; clock <= max_clock; clock++) {
845                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
846                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
847                                 link_avail = intel_dp_max_data_rate(link_clock,
848                                                                     lane_count);
849
850                                 if (mode_rate <= link_avail) {
851                                         goto found;
852                                 }
853                         }
854                 }
855         }
856
857         return false;
858
859 found:
860         if (intel_dp->color_range_auto) {
861                 /*
862                  * See:
863                  * CEA-861-E - 5.1 Default Encoding Parameters
864                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
865                  */
866                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
867                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
868                 else
869                         intel_dp->color_range = 0;
870         }
871
872         if (intel_dp->color_range)
873                 pipe_config->limited_color_range = true;
874
875         intel_dp->link_bw = bws[clock];
876         intel_dp->lane_count = lane_count;
877         pipe_config->pipe_bpp = bpp;
878         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
879
880         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
881                       intel_dp->link_bw, intel_dp->lane_count,
882                       pipe_config->port_clock, bpp);
883         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
884                       mode_rate, link_avail);
885
886         intel_link_compute_m_n(bpp, lane_count,
887                                adjusted_mode->crtc_clock,
888                                pipe_config->port_clock,
889                                &pipe_config->dp_m_n);
890
891         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
892
893         return true;
894 }
895
896 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
897 {
898         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
899         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
900         struct drm_device *dev = crtc->base.dev;
901         struct drm_i915_private *dev_priv = dev->dev_private;
902         u32 dpa_ctl;
903
904         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
905         dpa_ctl = I915_READ(DP_A);
906         dpa_ctl &= ~DP_PLL_FREQ_MASK;
907
908         if (crtc->config.port_clock == 162000) {
909                 /* For a long time we've carried around a ILK-DevA w/a for the
910                  * 160MHz clock. If we're really unlucky, it's still required.
911                  */
912                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
913                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
914                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
915         } else {
916                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
917                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918         }
919
920         I915_WRITE(DP_A, dpa_ctl);
921
922         POSTING_READ(DP_A);
923         udelay(500);
924 }
925
926 static void intel_dp_mode_set(struct intel_encoder *encoder)
927 {
928         struct drm_device *dev = encoder->base.dev;
929         struct drm_i915_private *dev_priv = dev->dev_private;
930         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
931         enum port port = dp_to_dig_port(intel_dp)->port;
932         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
933         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
934
935         /*
936          * There are four kinds of DP registers:
937          *
938          *      IBX PCH
939          *      SNB CPU
940          *      IVB CPU
941          *      CPT PCH
942          *
943          * IBX PCH and CPU are the same for almost everything,
944          * except that the CPU DP PLL is configured in this
945          * register
946          *
947          * CPT PCH is quite different, having many bits moved
948          * to the TRANS_DP_CTL register instead. That
949          * configuration happens (oddly) in ironlake_pch_enable
950          */
951
952         /* Preserve the BIOS-computed detected bit. This is
953          * supposed to be read-only.
954          */
955         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
956
957         /* Handle DP bits in common between all three register formats */
958         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
959         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
960
961         if (intel_dp->has_audio) {
962                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
963                                  pipe_name(crtc->pipe));
964                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
965                 intel_write_eld(&encoder->base, adjusted_mode);
966         }
967
968         /* Split out the IBX/CPU vs CPT settings */
969
970         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
971                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
972                         intel_dp->DP |= DP_SYNC_HS_HIGH;
973                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
974                         intel_dp->DP |= DP_SYNC_VS_HIGH;
975                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
976
977                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
978                         intel_dp->DP |= DP_ENHANCED_FRAMING;
979
980                 intel_dp->DP |= crtc->pipe << 29;
981         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
982                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
983                         intel_dp->DP |= intel_dp->color_range;
984
985                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
986                         intel_dp->DP |= DP_SYNC_HS_HIGH;
987                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
988                         intel_dp->DP |= DP_SYNC_VS_HIGH;
989                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
990
991                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
992                         intel_dp->DP |= DP_ENHANCED_FRAMING;
993
994                 if (crtc->pipe == 1)
995                         intel_dp->DP |= DP_PIPEB_SELECT;
996         } else {
997                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
998         }
999
1000         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1001                 ironlake_set_pll_cpu_edp(intel_dp);
1002 }
1003
1004 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1005 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1006
1007 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1008 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1009
1010 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1011 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1012
1013 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1014                                        u32 mask,
1015                                        u32 value)
1016 {
1017         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         u32 pp_stat_reg, pp_ctrl_reg;
1020
1021         pp_stat_reg = _pp_stat_reg(intel_dp);
1022         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1023
1024         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1025                         mask, value,
1026                         I915_READ(pp_stat_reg),
1027                         I915_READ(pp_ctrl_reg));
1028
1029         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1030                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1031                                 I915_READ(pp_stat_reg),
1032                                 I915_READ(pp_ctrl_reg));
1033         }
1034 }
1035
1036 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1037 {
1038         DRM_DEBUG_KMS("Wait for panel power on\n");
1039         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1040 }
1041
1042 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1043 {
1044         DRM_DEBUG_KMS("Wait for panel power off time\n");
1045         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1046 }
1047
1048 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1049 {
1050         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1051         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052 }
1053
1054
1055 /* Read the current pp_control value, unlocking the register if it
1056  * is locked
1057  */
1058
1059 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1060 {
1061         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063         u32 control;
1064
1065         control = I915_READ(_pp_ctrl_reg(intel_dp));
1066         control &= ~PANEL_UNLOCK_MASK;
1067         control |= PANEL_UNLOCK_REGS;
1068         return control;
1069 }
1070
1071 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1072 {
1073         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1074         struct drm_i915_private *dev_priv = dev->dev_private;
1075         u32 pp;
1076         u32 pp_stat_reg, pp_ctrl_reg;
1077
1078         if (!is_edp(intel_dp))
1079                 return;
1080
1081         WARN(intel_dp->want_panel_vdd,
1082              "eDP VDD already requested on\n");
1083
1084         intel_dp->want_panel_vdd = true;
1085
1086         if (ironlake_edp_have_panel_vdd(intel_dp))
1087                 return;
1088
1089         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1090
1091         if (!ironlake_edp_have_panel_power(intel_dp))
1092                 ironlake_wait_panel_power_cycle(intel_dp);
1093
1094         pp = ironlake_get_pp_control(intel_dp);
1095         pp |= EDP_FORCE_VDD;
1096
1097         pp_stat_reg = _pp_stat_reg(intel_dp);
1098         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1099
1100         I915_WRITE(pp_ctrl_reg, pp);
1101         POSTING_READ(pp_ctrl_reg);
1102         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1103                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1104         /*
1105          * If the panel wasn't on, delay before accessing aux channel
1106          */
1107         if (!ironlake_edp_have_panel_power(intel_dp)) {
1108                 DRM_DEBUG_KMS("eDP was not running\n");
1109                 msleep(intel_dp->panel_power_up_delay);
1110         }
1111 }
1112
1113 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1114 {
1115         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         u32 pp;
1118         u32 pp_stat_reg, pp_ctrl_reg;
1119
1120         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1121
1122         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1123                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1124
1125                 pp = ironlake_get_pp_control(intel_dp);
1126                 pp &= ~EDP_FORCE_VDD;
1127
1128                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1129                 pp_stat_reg = _pp_stat_reg(intel_dp);
1130
1131                 I915_WRITE(pp_ctrl_reg, pp);
1132                 POSTING_READ(pp_ctrl_reg);
1133
1134                 /* Make sure sequencer is idle before allowing subsequent activity */
1135                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1136                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1137                 msleep(intel_dp->panel_power_down_delay);
1138         }
1139 }
1140
1141 static void ironlake_panel_vdd_work(struct work_struct *__work)
1142 {
1143         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1144                                                  struct intel_dp, panel_vdd_work);
1145         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1146
1147         mutex_lock(&dev->mode_config.mutex);
1148         ironlake_panel_vdd_off_sync(intel_dp);
1149         mutex_unlock(&dev->mode_config.mutex);
1150 }
1151
1152 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1153 {
1154         if (!is_edp(intel_dp))
1155                 return;
1156
1157         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1158
1159         intel_dp->want_panel_vdd = false;
1160
1161         if (sync) {
1162                 ironlake_panel_vdd_off_sync(intel_dp);
1163         } else {
1164                 /*
1165                  * Queue the timer to fire a long
1166                  * time from now (relative to the power down delay)
1167                  * to keep the panel power up across a sequence of operations
1168                  */
1169                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1170                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1171         }
1172 }
1173
1174 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1175 {
1176         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177         struct drm_i915_private *dev_priv = dev->dev_private;
1178         u32 pp;
1179         u32 pp_ctrl_reg;
1180
1181         if (!is_edp(intel_dp))
1182                 return;
1183
1184         DRM_DEBUG_KMS("Turn eDP power on\n");
1185
1186         if (ironlake_edp_have_panel_power(intel_dp)) {
1187                 DRM_DEBUG_KMS("eDP power already on\n");
1188                 return;
1189         }
1190
1191         ironlake_wait_panel_power_cycle(intel_dp);
1192
1193         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1194         pp = ironlake_get_pp_control(intel_dp);
1195         if (IS_GEN5(dev)) {
1196                 /* ILK workaround: disable reset around power sequence */
1197                 pp &= ~PANEL_POWER_RESET;
1198                 I915_WRITE(pp_ctrl_reg, pp);
1199                 POSTING_READ(pp_ctrl_reg);
1200         }
1201
1202         pp |= POWER_TARGET_ON;
1203         if (!IS_GEN5(dev))
1204                 pp |= PANEL_POWER_RESET;
1205
1206         I915_WRITE(pp_ctrl_reg, pp);
1207         POSTING_READ(pp_ctrl_reg);
1208
1209         ironlake_wait_panel_on(intel_dp);
1210
1211         if (IS_GEN5(dev)) {
1212                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1213                 I915_WRITE(pp_ctrl_reg, pp);
1214                 POSTING_READ(pp_ctrl_reg);
1215         }
1216 }
1217
1218 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1219 {
1220         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         u32 pp;
1223         u32 pp_ctrl_reg;
1224
1225         if (!is_edp(intel_dp))
1226                 return;
1227
1228         DRM_DEBUG_KMS("Turn eDP power off\n");
1229
1230         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1231
1232         pp = ironlake_get_pp_control(intel_dp);
1233         /* We need to switch off panel power _and_ force vdd, for otherwise some
1234          * panels get very unhappy and cease to work. */
1235         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1236
1237         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1238
1239         I915_WRITE(pp_ctrl_reg, pp);
1240         POSTING_READ(pp_ctrl_reg);
1241
1242         intel_dp->want_panel_vdd = false;
1243
1244         ironlake_wait_panel_off(intel_dp);
1245 }
1246
1247 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1248 {
1249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1250         struct drm_device *dev = intel_dig_port->base.base.dev;
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         u32 pp;
1253         u32 pp_ctrl_reg;
1254
1255         if (!is_edp(intel_dp))
1256                 return;
1257
1258         DRM_DEBUG_KMS("\n");
1259         /*
1260          * If we enable the backlight right away following a panel power
1261          * on, we may see slight flicker as the panel syncs with the eDP
1262          * link.  So delay a bit to make sure the image is solid before
1263          * allowing it to appear.
1264          */
1265         msleep(intel_dp->backlight_on_delay);
1266         pp = ironlake_get_pp_control(intel_dp);
1267         pp |= EDP_BLC_ENABLE;
1268
1269         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1270
1271         I915_WRITE(pp_ctrl_reg, pp);
1272         POSTING_READ(pp_ctrl_reg);
1273
1274         intel_panel_enable_backlight(intel_dp->attached_connector);
1275 }
1276
1277 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1278 {
1279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1280         struct drm_i915_private *dev_priv = dev->dev_private;
1281         u32 pp;
1282         u32 pp_ctrl_reg;
1283
1284         if (!is_edp(intel_dp))
1285                 return;
1286
1287         intel_panel_disable_backlight(intel_dp->attached_connector);
1288
1289         DRM_DEBUG_KMS("\n");
1290         pp = ironlake_get_pp_control(intel_dp);
1291         pp &= ~EDP_BLC_ENABLE;
1292
1293         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1294
1295         I915_WRITE(pp_ctrl_reg, pp);
1296         POSTING_READ(pp_ctrl_reg);
1297         msleep(intel_dp->backlight_off_delay);
1298 }
1299
1300 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1301 {
1302         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1303         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1304         struct drm_device *dev = crtc->dev;
1305         struct drm_i915_private *dev_priv = dev->dev_private;
1306         u32 dpa_ctl;
1307
1308         assert_pipe_disabled(dev_priv,
1309                              to_intel_crtc(crtc)->pipe);
1310
1311         DRM_DEBUG_KMS("\n");
1312         dpa_ctl = I915_READ(DP_A);
1313         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1314         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1315
1316         /* We don't adjust intel_dp->DP while tearing down the link, to
1317          * facilitate link retraining (e.g. after hotplug). Hence clear all
1318          * enable bits here to ensure that we don't enable too much. */
1319         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1320         intel_dp->DP |= DP_PLL_ENABLE;
1321         I915_WRITE(DP_A, intel_dp->DP);
1322         POSTING_READ(DP_A);
1323         udelay(200);
1324 }
1325
1326 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1327 {
1328         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1329         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1330         struct drm_device *dev = crtc->dev;
1331         struct drm_i915_private *dev_priv = dev->dev_private;
1332         u32 dpa_ctl;
1333
1334         assert_pipe_disabled(dev_priv,
1335                              to_intel_crtc(crtc)->pipe);
1336
1337         dpa_ctl = I915_READ(DP_A);
1338         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1339              "dp pll off, should be on\n");
1340         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1341
1342         /* We can't rely on the value tracked for the DP register in
1343          * intel_dp->DP because link_down must not change that (otherwise link
1344          * re-training will fail. */
1345         dpa_ctl &= ~DP_PLL_ENABLE;
1346         I915_WRITE(DP_A, dpa_ctl);
1347         POSTING_READ(DP_A);
1348         udelay(200);
1349 }
1350
1351 /* If the sink supports it, try to set the power state appropriately */
1352 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1353 {
1354         int ret, i;
1355
1356         /* Should have a valid DPCD by this point */
1357         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1358                 return;
1359
1360         if (mode != DRM_MODE_DPMS_ON) {
1361                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1362                                                   DP_SET_POWER_D3);
1363                 if (ret != 1)
1364                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1365         } else {
1366                 /*
1367                  * When turning on, we need to retry for 1ms to give the sink
1368                  * time to wake up.
1369                  */
1370                 for (i = 0; i < 3; i++) {
1371                         ret = intel_dp_aux_native_write_1(intel_dp,
1372                                                           DP_SET_POWER,
1373                                                           DP_SET_POWER_D0);
1374                         if (ret == 1)
1375                                 break;
1376                         msleep(1);
1377                 }
1378         }
1379 }
1380
1381 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1382                                   enum pipe *pipe)
1383 {
1384         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1385         enum port port = dp_to_dig_port(intel_dp)->port;
1386         struct drm_device *dev = encoder->base.dev;
1387         struct drm_i915_private *dev_priv = dev->dev_private;
1388         u32 tmp = I915_READ(intel_dp->output_reg);
1389
1390         if (!(tmp & DP_PORT_EN))
1391                 return false;
1392
1393         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1394                 *pipe = PORT_TO_PIPE_CPT(tmp);
1395         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1396                 *pipe = PORT_TO_PIPE(tmp);
1397         } else {
1398                 u32 trans_sel;
1399                 u32 trans_dp;
1400                 int i;
1401
1402                 switch (intel_dp->output_reg) {
1403                 case PCH_DP_B:
1404                         trans_sel = TRANS_DP_PORT_SEL_B;
1405                         break;
1406                 case PCH_DP_C:
1407                         trans_sel = TRANS_DP_PORT_SEL_C;
1408                         break;
1409                 case PCH_DP_D:
1410                         trans_sel = TRANS_DP_PORT_SEL_D;
1411                         break;
1412                 default:
1413                         return true;
1414                 }
1415
1416                 for_each_pipe(i) {
1417                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1418                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1419                                 *pipe = i;
1420                                 return true;
1421                         }
1422                 }
1423
1424                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1425                               intel_dp->output_reg);
1426         }
1427
1428         return true;
1429 }
1430
1431 static void intel_dp_get_config(struct intel_encoder *encoder,
1432                                 struct intel_crtc_config *pipe_config)
1433 {
1434         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1435         u32 tmp, flags = 0;
1436         struct drm_device *dev = encoder->base.dev;
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         enum port port = dp_to_dig_port(intel_dp)->port;
1439         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1440         int dotclock;
1441
1442         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1443                 tmp = I915_READ(intel_dp->output_reg);
1444                 if (tmp & DP_SYNC_HS_HIGH)
1445                         flags |= DRM_MODE_FLAG_PHSYNC;
1446                 else
1447                         flags |= DRM_MODE_FLAG_NHSYNC;
1448
1449                 if (tmp & DP_SYNC_VS_HIGH)
1450                         flags |= DRM_MODE_FLAG_PVSYNC;
1451                 else
1452                         flags |= DRM_MODE_FLAG_NVSYNC;
1453         } else {
1454                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1455                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1456                         flags |= DRM_MODE_FLAG_PHSYNC;
1457                 else
1458                         flags |= DRM_MODE_FLAG_NHSYNC;
1459
1460                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1461                         flags |= DRM_MODE_FLAG_PVSYNC;
1462                 else
1463                         flags |= DRM_MODE_FLAG_NVSYNC;
1464         }
1465
1466         pipe_config->adjusted_mode.flags |= flags;
1467
1468         pipe_config->has_dp_encoder = true;
1469
1470         intel_dp_get_m_n(crtc, pipe_config);
1471
1472         if (port == PORT_A) {
1473                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1474                         pipe_config->port_clock = 162000;
1475                 else
1476                         pipe_config->port_clock = 270000;
1477         }
1478
1479         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1480                                             &pipe_config->dp_m_n);
1481
1482         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1483                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1484
1485         pipe_config->adjusted_mode.crtc_clock = dotclock;
1486
1487         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1488             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1489                 /*
1490                  * This is a big fat ugly hack.
1491                  *
1492                  * Some machines in UEFI boot mode provide us a VBT that has 18
1493                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1494                  * unknown we fail to light up. Yet the same BIOS boots up with
1495                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1496                  * max, not what it tells us to use.
1497                  *
1498                  * Note: This will still be broken if the eDP panel is not lit
1499                  * up by the BIOS, and thus we can't get the mode at module
1500                  * load.
1501                  */
1502                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1503                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1504                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1505         }
1506 }
1507
1508 static bool is_edp_psr(struct drm_device *dev)
1509 {
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511
1512         return dev_priv->psr.sink_support;
1513 }
1514
1515 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1516 {
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519         if (!HAS_PSR(dev))
1520                 return false;
1521
1522         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1523 }
1524
1525 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1526                                     struct edp_vsc_psr *vsc_psr)
1527 {
1528         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1529         struct drm_device *dev = dig_port->base.base.dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1532         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1533         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1534         uint32_t *data = (uint32_t *) vsc_psr;
1535         unsigned int i;
1536
1537         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1538            the video DIP being updated before program video DIP data buffer
1539            registers for DIP being updated. */
1540         I915_WRITE(ctl_reg, 0);
1541         POSTING_READ(ctl_reg);
1542
1543         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1544                 if (i < sizeof(struct edp_vsc_psr))
1545                         I915_WRITE(data_reg + i, *data++);
1546                 else
1547                         I915_WRITE(data_reg + i, 0);
1548         }
1549
1550         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1551         POSTING_READ(ctl_reg);
1552 }
1553
1554 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1555 {
1556         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1557         struct drm_i915_private *dev_priv = dev->dev_private;
1558         struct edp_vsc_psr psr_vsc;
1559
1560         if (intel_dp->psr_setup_done)
1561                 return;
1562
1563         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1564         memset(&psr_vsc, 0, sizeof(psr_vsc));
1565         psr_vsc.sdp_header.HB0 = 0;
1566         psr_vsc.sdp_header.HB1 = 0x7;
1567         psr_vsc.sdp_header.HB2 = 0x2;
1568         psr_vsc.sdp_header.HB3 = 0x8;
1569         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1570
1571         /* Avoid continuous PSR exit by masking memup and hpd */
1572         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1573                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1574
1575         intel_dp->psr_setup_done = true;
1576 }
1577
1578 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1579 {
1580         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1583         int precharge = 0x3;
1584         int msg_size = 5;       /* Header(4) + Message(1) */
1585
1586         /* Enable PSR in sink */
1587         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1588                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1589                                             DP_PSR_ENABLE &
1590                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1591         else
1592                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1593                                             DP_PSR_ENABLE |
1594                                             DP_PSR_MAIN_LINK_ACTIVE);
1595
1596         /* Setup AUX registers */
1597         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1598         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1599         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1600                    DP_AUX_CH_CTL_TIME_OUT_400us |
1601                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1602                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1603                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1604 }
1605
1606 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1607 {
1608         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610         uint32_t max_sleep_time = 0x1f;
1611         uint32_t idle_frames = 1;
1612         uint32_t val = 0x0;
1613
1614         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1615                 val |= EDP_PSR_LINK_STANDBY;
1616                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1617                 val |= EDP_PSR_TP1_TIME_0us;
1618                 val |= EDP_PSR_SKIP_AUX_EXIT;
1619         } else
1620                 val |= EDP_PSR_LINK_DISABLE;
1621
1622         I915_WRITE(EDP_PSR_CTL(dev), val |
1623                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1624                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1625                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1626                    EDP_PSR_ENABLE);
1627 }
1628
1629 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1630 {
1631         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1632         struct drm_device *dev = dig_port->base.base.dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         struct drm_crtc *crtc = dig_port->base.base.crtc;
1635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1637         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1638
1639         dev_priv->psr.source_ok = false;
1640
1641         if (!HAS_PSR(dev)) {
1642                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1643                 return false;
1644         }
1645
1646         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1647             (dig_port->port != PORT_A)) {
1648                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1649                 return false;
1650         }
1651
1652         if (!i915_enable_psr) {
1653                 DRM_DEBUG_KMS("PSR disable by flag\n");
1654                 return false;
1655         }
1656
1657         crtc = dig_port->base.base.crtc;
1658         if (crtc == NULL) {
1659                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1660                 return false;
1661         }
1662
1663         intel_crtc = to_intel_crtc(crtc);
1664         if (!intel_crtc_active(crtc)) {
1665                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1666                 return false;
1667         }
1668
1669         obj = to_intel_framebuffer(crtc->fb)->obj;
1670         if (obj->tiling_mode != I915_TILING_X ||
1671             obj->fence_reg == I915_FENCE_REG_NONE) {
1672                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1673                 return false;
1674         }
1675
1676         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1677                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1678                 return false;
1679         }
1680
1681         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1682             S3D_ENABLE) {
1683                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1684                 return false;
1685         }
1686
1687         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1688                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1689                 return false;
1690         }
1691
1692         dev_priv->psr.source_ok = true;
1693         return true;
1694 }
1695
1696 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1697 {
1698         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1699
1700         if (!intel_edp_psr_match_conditions(intel_dp) ||
1701             intel_edp_is_psr_enabled(dev))
1702                 return;
1703
1704         /* Setup PSR once */
1705         intel_edp_psr_setup(intel_dp);
1706
1707         /* Enable PSR on the panel */
1708         intel_edp_psr_enable_sink(intel_dp);
1709
1710         /* Enable PSR on the host */
1711         intel_edp_psr_enable_source(intel_dp);
1712 }
1713
1714 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1715 {
1716         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1717
1718         if (intel_edp_psr_match_conditions(intel_dp) &&
1719             !intel_edp_is_psr_enabled(dev))
1720                 intel_edp_psr_do_enable(intel_dp);
1721 }
1722
1723 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1724 {
1725         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727
1728         if (!intel_edp_is_psr_enabled(dev))
1729                 return;
1730
1731         I915_WRITE(EDP_PSR_CTL(dev),
1732                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1733
1734         /* Wait till PSR is idle */
1735         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1736                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1737                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1738 }
1739
1740 void intel_edp_psr_update(struct drm_device *dev)
1741 {
1742         struct intel_encoder *encoder;
1743         struct intel_dp *intel_dp = NULL;
1744
1745         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1746                 if (encoder->type == INTEL_OUTPUT_EDP) {
1747                         intel_dp = enc_to_intel_dp(&encoder->base);
1748
1749                         if (!is_edp_psr(dev))
1750                                 return;
1751
1752                         if (!intel_edp_psr_match_conditions(intel_dp))
1753                                 intel_edp_psr_disable(intel_dp);
1754                         else
1755                                 if (!intel_edp_is_psr_enabled(dev))
1756                                         intel_edp_psr_do_enable(intel_dp);
1757                 }
1758 }
1759
1760 static void intel_disable_dp(struct intel_encoder *encoder)
1761 {
1762         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1763         enum port port = dp_to_dig_port(intel_dp)->port;
1764         struct drm_device *dev = encoder->base.dev;
1765
1766         /* Make sure the panel is off before trying to change the mode. But also
1767          * ensure that we have vdd while we switch off the panel. */
1768         ironlake_edp_panel_vdd_on(intel_dp);
1769         ironlake_edp_backlight_off(intel_dp);
1770         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1771         ironlake_edp_panel_off(intel_dp);
1772
1773         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1774         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1775                 intel_dp_link_down(intel_dp);
1776 }
1777
1778 static void intel_post_disable_dp(struct intel_encoder *encoder)
1779 {
1780         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1781         enum port port = dp_to_dig_port(intel_dp)->port;
1782         struct drm_device *dev = encoder->base.dev;
1783
1784         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1785                 intel_dp_link_down(intel_dp);
1786                 if (!IS_VALLEYVIEW(dev))
1787                         ironlake_edp_pll_off(intel_dp);
1788         }
1789 }
1790
1791 static void intel_enable_dp(struct intel_encoder *encoder)
1792 {
1793         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1794         struct drm_device *dev = encoder->base.dev;
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1797
1798         if (WARN_ON(dp_reg & DP_PORT_EN))
1799                 return;
1800
1801         ironlake_edp_panel_vdd_on(intel_dp);
1802         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1803         intel_dp_start_link_train(intel_dp);
1804         ironlake_edp_panel_on(intel_dp);
1805         ironlake_edp_panel_vdd_off(intel_dp, true);
1806         intel_dp_complete_link_train(intel_dp);
1807         intel_dp_stop_link_train(intel_dp);
1808 }
1809
1810 static void g4x_enable_dp(struct intel_encoder *encoder)
1811 {
1812         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1813
1814         intel_enable_dp(encoder);
1815         ironlake_edp_backlight_on(intel_dp);
1816 }
1817
1818 static void vlv_enable_dp(struct intel_encoder *encoder)
1819 {
1820         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1821
1822         ironlake_edp_backlight_on(intel_dp);
1823 }
1824
1825 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1826 {
1827         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1828         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1829
1830         if (dport->port == PORT_A)
1831                 ironlake_edp_pll_on(intel_dp);
1832 }
1833
1834 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1835 {
1836         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1837         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1838         struct drm_device *dev = encoder->base.dev;
1839         struct drm_i915_private *dev_priv = dev->dev_private;
1840         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1841         int port = vlv_dport_to_channel(dport);
1842         int pipe = intel_crtc->pipe;
1843         struct edp_power_seq power_seq;
1844         u32 val;
1845
1846         mutex_lock(&dev_priv->dpio_lock);
1847
1848         val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1849         val = 0;
1850         if (pipe)
1851                 val |= (1<<21);
1852         else
1853                 val &= ~(1<<21);
1854         val |= 0x001000c4;
1855         vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1856         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1857         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1858
1859         mutex_unlock(&dev_priv->dpio_lock);
1860
1861         /* init power sequencer on this pipe and port */
1862         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1863         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1864                                                       &power_seq);
1865
1866         intel_enable_dp(encoder);
1867
1868         vlv_wait_port_ready(dev_priv, port);
1869 }
1870
1871 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1872 {
1873         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1874         struct drm_device *dev = encoder->base.dev;
1875         struct drm_i915_private *dev_priv = dev->dev_private;
1876         struct intel_crtc *intel_crtc =
1877                 to_intel_crtc(encoder->base.crtc);
1878         int port = vlv_dport_to_channel(dport);
1879         int pipe = intel_crtc->pipe;
1880
1881         /* Program Tx lane resets to default */
1882         mutex_lock(&dev_priv->dpio_lock);
1883         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1884                          DPIO_PCS_TX_LANE2_RESET |
1885                          DPIO_PCS_TX_LANE1_RESET);
1886         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1887                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1888                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1889                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1890                                  DPIO_PCS_CLK_SOFT_RESET);
1891
1892         /* Fix up inter-pair skew failure */
1893         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1894         vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1895         vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1896         mutex_unlock(&dev_priv->dpio_lock);
1897 }
1898
1899 /*
1900  * Native read with retry for link status and receiver capability reads for
1901  * cases where the sink may still be asleep.
1902  */
1903 static bool
1904 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1905                                uint8_t *recv, int recv_bytes)
1906 {
1907         int ret, i;
1908
1909         /*
1910          * Sinks are *supposed* to come up within 1ms from an off state,
1911          * but we're also supposed to retry 3 times per the spec.
1912          */
1913         for (i = 0; i < 3; i++) {
1914                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1915                                                recv_bytes);
1916                 if (ret == recv_bytes)
1917                         return true;
1918                 msleep(1);
1919         }
1920
1921         return false;
1922 }
1923
1924 /*
1925  * Fetch AUX CH registers 0x202 - 0x207 which contain
1926  * link status information
1927  */
1928 static bool
1929 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1930 {
1931         return intel_dp_aux_native_read_retry(intel_dp,
1932                                               DP_LANE0_1_STATUS,
1933                                               link_status,
1934                                               DP_LINK_STATUS_SIZE);
1935 }
1936
1937 #if 0
1938 static char     *voltage_names[] = {
1939         "0.4V", "0.6V", "0.8V", "1.2V"
1940 };
1941 static char     *pre_emph_names[] = {
1942         "0dB", "3.5dB", "6dB", "9.5dB"
1943 };
1944 static char     *link_train_names[] = {
1945         "pattern 1", "pattern 2", "idle", "off"
1946 };
1947 #endif
1948
1949 /*
1950  * These are source-specific values; current Intel hardware supports
1951  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1952  */
1953
1954 static uint8_t
1955 intel_dp_voltage_max(struct intel_dp *intel_dp)
1956 {
1957         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1958         enum port port = dp_to_dig_port(intel_dp)->port;
1959
1960         if (IS_VALLEYVIEW(dev))
1961                 return DP_TRAIN_VOLTAGE_SWING_1200;
1962         else if (IS_GEN7(dev) && port == PORT_A)
1963                 return DP_TRAIN_VOLTAGE_SWING_800;
1964         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1965                 return DP_TRAIN_VOLTAGE_SWING_1200;
1966         else
1967                 return DP_TRAIN_VOLTAGE_SWING_800;
1968 }
1969
1970 static uint8_t
1971 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1972 {
1973         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1974         enum port port = dp_to_dig_port(intel_dp)->port;
1975
1976         if (HAS_DDI(dev)) {
1977                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1978                 case DP_TRAIN_VOLTAGE_SWING_400:
1979                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1980                 case DP_TRAIN_VOLTAGE_SWING_600:
1981                         return DP_TRAIN_PRE_EMPHASIS_6;
1982                 case DP_TRAIN_VOLTAGE_SWING_800:
1983                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1984                 case DP_TRAIN_VOLTAGE_SWING_1200:
1985                 default:
1986                         return DP_TRAIN_PRE_EMPHASIS_0;
1987                 }
1988         } else if (IS_VALLEYVIEW(dev)) {
1989                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1990                 case DP_TRAIN_VOLTAGE_SWING_400:
1991                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1992                 case DP_TRAIN_VOLTAGE_SWING_600:
1993                         return DP_TRAIN_PRE_EMPHASIS_6;
1994                 case DP_TRAIN_VOLTAGE_SWING_800:
1995                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1996                 case DP_TRAIN_VOLTAGE_SWING_1200:
1997                 default:
1998                         return DP_TRAIN_PRE_EMPHASIS_0;
1999                 }
2000         } else if (IS_GEN7(dev) && port == PORT_A) {
2001                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2002                 case DP_TRAIN_VOLTAGE_SWING_400:
2003                         return DP_TRAIN_PRE_EMPHASIS_6;
2004                 case DP_TRAIN_VOLTAGE_SWING_600:
2005                 case DP_TRAIN_VOLTAGE_SWING_800:
2006                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2007                 default:
2008                         return DP_TRAIN_PRE_EMPHASIS_0;
2009                 }
2010         } else {
2011                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2012                 case DP_TRAIN_VOLTAGE_SWING_400:
2013                         return DP_TRAIN_PRE_EMPHASIS_6;
2014                 case DP_TRAIN_VOLTAGE_SWING_600:
2015                         return DP_TRAIN_PRE_EMPHASIS_6;
2016                 case DP_TRAIN_VOLTAGE_SWING_800:
2017                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2018                 case DP_TRAIN_VOLTAGE_SWING_1200:
2019                 default:
2020                         return DP_TRAIN_PRE_EMPHASIS_0;
2021                 }
2022         }
2023 }
2024
2025 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2026 {
2027         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2030         struct intel_crtc *intel_crtc =
2031                 to_intel_crtc(dport->base.base.crtc);
2032         unsigned long demph_reg_value, preemph_reg_value,
2033                 uniqtranscale_reg_value;
2034         uint8_t train_set = intel_dp->train_set[0];
2035         int port = vlv_dport_to_channel(dport);
2036         int pipe = intel_crtc->pipe;
2037
2038         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2039         case DP_TRAIN_PRE_EMPHASIS_0:
2040                 preemph_reg_value = 0x0004000;
2041                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2042                 case DP_TRAIN_VOLTAGE_SWING_400:
2043                         demph_reg_value = 0x2B405555;
2044                         uniqtranscale_reg_value = 0x552AB83A;
2045                         break;
2046                 case DP_TRAIN_VOLTAGE_SWING_600:
2047                         demph_reg_value = 0x2B404040;
2048                         uniqtranscale_reg_value = 0x5548B83A;
2049                         break;
2050                 case DP_TRAIN_VOLTAGE_SWING_800:
2051                         demph_reg_value = 0x2B245555;
2052                         uniqtranscale_reg_value = 0x5560B83A;
2053                         break;
2054                 case DP_TRAIN_VOLTAGE_SWING_1200:
2055                         demph_reg_value = 0x2B405555;
2056                         uniqtranscale_reg_value = 0x5598DA3A;
2057                         break;
2058                 default:
2059                         return 0;
2060                 }
2061                 break;
2062         case DP_TRAIN_PRE_EMPHASIS_3_5:
2063                 preemph_reg_value = 0x0002000;
2064                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2065                 case DP_TRAIN_VOLTAGE_SWING_400:
2066                         demph_reg_value = 0x2B404040;
2067                         uniqtranscale_reg_value = 0x5552B83A;
2068                         break;
2069                 case DP_TRAIN_VOLTAGE_SWING_600:
2070                         demph_reg_value = 0x2B404848;
2071                         uniqtranscale_reg_value = 0x5580B83A;
2072                         break;
2073                 case DP_TRAIN_VOLTAGE_SWING_800:
2074                         demph_reg_value = 0x2B404040;
2075                         uniqtranscale_reg_value = 0x55ADDA3A;
2076                         break;
2077                 default:
2078                         return 0;
2079                 }
2080                 break;
2081         case DP_TRAIN_PRE_EMPHASIS_6:
2082                 preemph_reg_value = 0x0000000;
2083                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2084                 case DP_TRAIN_VOLTAGE_SWING_400:
2085                         demph_reg_value = 0x2B305555;
2086                         uniqtranscale_reg_value = 0x5570B83A;
2087                         break;
2088                 case DP_TRAIN_VOLTAGE_SWING_600:
2089                         demph_reg_value = 0x2B2B4040;
2090                         uniqtranscale_reg_value = 0x55ADDA3A;
2091                         break;
2092                 default:
2093                         return 0;
2094                 }
2095                 break;
2096         case DP_TRAIN_PRE_EMPHASIS_9_5:
2097                 preemph_reg_value = 0x0006000;
2098                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2099                 case DP_TRAIN_VOLTAGE_SWING_400:
2100                         demph_reg_value = 0x1B405555;
2101                         uniqtranscale_reg_value = 0x55ADDA3A;
2102                         break;
2103                 default:
2104                         return 0;
2105                 }
2106                 break;
2107         default:
2108                 return 0;
2109         }
2110
2111         mutex_lock(&dev_priv->dpio_lock);
2112         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2113         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2114         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2115                          uniqtranscale_reg_value);
2116         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2117         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2118         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2119         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2120         mutex_unlock(&dev_priv->dpio_lock);
2121
2122         return 0;
2123 }
2124
2125 static void
2126 intel_get_adjust_train(struct intel_dp *intel_dp,
2127                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2128 {
2129         uint8_t v = 0;
2130         uint8_t p = 0;
2131         int lane;
2132         uint8_t voltage_max;
2133         uint8_t preemph_max;
2134
2135         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2136                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2137                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2138
2139                 if (this_v > v)
2140                         v = this_v;
2141                 if (this_p > p)
2142                         p = this_p;
2143         }
2144
2145         voltage_max = intel_dp_voltage_max(intel_dp);
2146         if (v >= voltage_max)
2147                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2148
2149         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2150         if (p >= preemph_max)
2151                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2152
2153         for (lane = 0; lane < 4; lane++)
2154                 intel_dp->train_set[lane] = v | p;
2155 }
2156
2157 static uint32_t
2158 intel_gen4_signal_levels(uint8_t train_set)
2159 {
2160         uint32_t        signal_levels = 0;
2161
2162         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2163         case DP_TRAIN_VOLTAGE_SWING_400:
2164         default:
2165                 signal_levels |= DP_VOLTAGE_0_4;
2166                 break;
2167         case DP_TRAIN_VOLTAGE_SWING_600:
2168                 signal_levels |= DP_VOLTAGE_0_6;
2169                 break;
2170         case DP_TRAIN_VOLTAGE_SWING_800:
2171                 signal_levels |= DP_VOLTAGE_0_8;
2172                 break;
2173         case DP_TRAIN_VOLTAGE_SWING_1200:
2174                 signal_levels |= DP_VOLTAGE_1_2;
2175                 break;
2176         }
2177         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2178         case DP_TRAIN_PRE_EMPHASIS_0:
2179         default:
2180                 signal_levels |= DP_PRE_EMPHASIS_0;
2181                 break;
2182         case DP_TRAIN_PRE_EMPHASIS_3_5:
2183                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2184                 break;
2185         case DP_TRAIN_PRE_EMPHASIS_6:
2186                 signal_levels |= DP_PRE_EMPHASIS_6;
2187                 break;
2188         case DP_TRAIN_PRE_EMPHASIS_9_5:
2189                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2190                 break;
2191         }
2192         return signal_levels;
2193 }
2194
2195 /* Gen6's DP voltage swing and pre-emphasis control */
2196 static uint32_t
2197 intel_gen6_edp_signal_levels(uint8_t train_set)
2198 {
2199         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2200                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2201         switch (signal_levels) {
2202         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2203         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2204                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2205         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2206                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2207         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2208         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2209                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2210         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2211         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2212                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2213         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2214         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2215                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2216         default:
2217                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2218                               "0x%x\n", signal_levels);
2219                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2220         }
2221 }
2222
2223 /* Gen7's DP voltage swing and pre-emphasis control */
2224 static uint32_t
2225 intel_gen7_edp_signal_levels(uint8_t train_set)
2226 {
2227         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2228                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2229         switch (signal_levels) {
2230         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2231                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2232         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2233                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2234         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2235                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2236
2237         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2238                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2239         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2240                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2241
2242         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2243                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2244         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2245                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2246
2247         default:
2248                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2249                               "0x%x\n", signal_levels);
2250                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2251         }
2252 }
2253
2254 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2255 static uint32_t
2256 intel_hsw_signal_levels(uint8_t train_set)
2257 {
2258         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2259                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2260         switch (signal_levels) {
2261         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2262                 return DDI_BUF_EMP_400MV_0DB_HSW;
2263         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2264                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2265         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2266                 return DDI_BUF_EMP_400MV_6DB_HSW;
2267         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2268                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2269
2270         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2271                 return DDI_BUF_EMP_600MV_0DB_HSW;
2272         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2273                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2274         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2275                 return DDI_BUF_EMP_600MV_6DB_HSW;
2276
2277         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2278                 return DDI_BUF_EMP_800MV_0DB_HSW;
2279         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2280                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2281         default:
2282                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2283                               "0x%x\n", signal_levels);
2284                 return DDI_BUF_EMP_400MV_0DB_HSW;
2285         }
2286 }
2287
2288 /* Properly updates "DP" with the correct signal levels. */
2289 static void
2290 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2291 {
2292         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2293         enum port port = intel_dig_port->port;
2294         struct drm_device *dev = intel_dig_port->base.base.dev;
2295         uint32_t signal_levels, mask;
2296         uint8_t train_set = intel_dp->train_set[0];
2297
2298         if (HAS_DDI(dev)) {
2299                 signal_levels = intel_hsw_signal_levels(train_set);
2300                 mask = DDI_BUF_EMP_MASK;
2301         } else if (IS_VALLEYVIEW(dev)) {
2302                 signal_levels = intel_vlv_signal_levels(intel_dp);
2303                 mask = 0;
2304         } else if (IS_GEN7(dev) && port == PORT_A) {
2305                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2306                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2307         } else if (IS_GEN6(dev) && port == PORT_A) {
2308                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2309                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2310         } else {
2311                 signal_levels = intel_gen4_signal_levels(train_set);
2312                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2313         }
2314
2315         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2316
2317         *DP = (*DP & ~mask) | signal_levels;
2318 }
2319
2320 static bool
2321 intel_dp_set_link_train(struct intel_dp *intel_dp,
2322                         uint32_t *DP,
2323                         uint8_t dp_train_pat)
2324 {
2325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2326         struct drm_device *dev = intel_dig_port->base.base.dev;
2327         struct drm_i915_private *dev_priv = dev->dev_private;
2328         enum port port = intel_dig_port->port;
2329         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2330         int ret, len;
2331
2332         if (HAS_DDI(dev)) {
2333                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2334
2335                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2336                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2337                 else
2338                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2339
2340                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2341                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2342                 case DP_TRAINING_PATTERN_DISABLE:
2343                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2344
2345                         break;
2346                 case DP_TRAINING_PATTERN_1:
2347                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2348                         break;
2349                 case DP_TRAINING_PATTERN_2:
2350                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2351                         break;
2352                 case DP_TRAINING_PATTERN_3:
2353                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2354                         break;
2355                 }
2356                 I915_WRITE(DP_TP_CTL(port), temp);
2357
2358         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2359                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2360
2361                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2362                 case DP_TRAINING_PATTERN_DISABLE:
2363                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2364                         break;
2365                 case DP_TRAINING_PATTERN_1:
2366                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2367                         break;
2368                 case DP_TRAINING_PATTERN_2:
2369                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2370                         break;
2371                 case DP_TRAINING_PATTERN_3:
2372                         DRM_ERROR("DP training pattern 3 not supported\n");
2373                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2374                         break;
2375                 }
2376
2377         } else {
2378                 *DP &= ~DP_LINK_TRAIN_MASK;
2379
2380                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2381                 case DP_TRAINING_PATTERN_DISABLE:
2382                         *DP |= DP_LINK_TRAIN_OFF;
2383                         break;
2384                 case DP_TRAINING_PATTERN_1:
2385                         *DP |= DP_LINK_TRAIN_PAT_1;
2386                         break;
2387                 case DP_TRAINING_PATTERN_2:
2388                         *DP |= DP_LINK_TRAIN_PAT_2;
2389                         break;
2390                 case DP_TRAINING_PATTERN_3:
2391                         DRM_ERROR("DP training pattern 3 not supported\n");
2392                         *DP |= DP_LINK_TRAIN_PAT_2;
2393                         break;
2394                 }
2395         }
2396
2397         I915_WRITE(intel_dp->output_reg, *DP);
2398         POSTING_READ(intel_dp->output_reg);
2399
2400         buf[0] = dp_train_pat;
2401         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2402             DP_TRAINING_PATTERN_DISABLE) {
2403                 /* don't write DP_TRAINING_LANEx_SET on disable */
2404                 len = 1;
2405         } else {
2406                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2407                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2408                 len = intel_dp->lane_count + 1;
2409         }
2410
2411         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2412                                         buf, len);
2413
2414         return ret == len;
2415 }
2416
2417 static bool
2418 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2419                         uint8_t dp_train_pat)
2420 {
2421         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2422         intel_dp_set_signal_levels(intel_dp, DP);
2423         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2424 }
2425
2426 static bool
2427 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2428                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2429 {
2430         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2431         struct drm_device *dev = intel_dig_port->base.base.dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         int ret;
2434
2435         intel_get_adjust_train(intel_dp, link_status);
2436         intel_dp_set_signal_levels(intel_dp, DP);
2437
2438         I915_WRITE(intel_dp->output_reg, *DP);
2439         POSTING_READ(intel_dp->output_reg);
2440
2441         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2442                                         intel_dp->train_set,
2443                                         intel_dp->lane_count);
2444
2445         return ret == intel_dp->lane_count;
2446 }
2447
2448 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2449 {
2450         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2451         struct drm_device *dev = intel_dig_port->base.base.dev;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         enum port port = intel_dig_port->port;
2454         uint32_t val;
2455
2456         if (!HAS_DDI(dev))
2457                 return;
2458
2459         val = I915_READ(DP_TP_CTL(port));
2460         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2461         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2462         I915_WRITE(DP_TP_CTL(port), val);
2463
2464         /*
2465          * On PORT_A we can have only eDP in SST mode. There the only reason
2466          * we need to set idle transmission mode is to work around a HW issue
2467          * where we enable the pipe while not in idle link-training mode.
2468          * In this case there is requirement to wait for a minimum number of
2469          * idle patterns to be sent.
2470          */
2471         if (port == PORT_A)
2472                 return;
2473
2474         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2475                      1))
2476                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2477 }
2478
2479 /* Enable corresponding port and start training pattern 1 */
2480 void
2481 intel_dp_start_link_train(struct intel_dp *intel_dp)
2482 {
2483         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2484         struct drm_device *dev = encoder->dev;
2485         int i;
2486         uint8_t voltage;
2487         int voltage_tries, loop_tries;
2488         uint32_t DP = intel_dp->DP;
2489         uint8_t link_config[2];
2490
2491         if (HAS_DDI(dev))
2492                 intel_ddi_prepare_link_retrain(encoder);
2493
2494         /* Write the link configuration data */
2495         link_config[0] = intel_dp->link_bw;
2496         link_config[1] = intel_dp->lane_count;
2497         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2498                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2499         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2500
2501         link_config[0] = 0;
2502         link_config[1] = DP_SET_ANSI_8B10B;
2503         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2504
2505         DP |= DP_PORT_EN;
2506
2507         /* clock recovery */
2508         if (!intel_dp_reset_link_train(intel_dp, &DP,
2509                                        DP_TRAINING_PATTERN_1 |
2510                                        DP_LINK_SCRAMBLING_DISABLE)) {
2511                 DRM_ERROR("failed to enable link training\n");
2512                 return;
2513         }
2514
2515         voltage = 0xff;
2516         voltage_tries = 0;
2517         loop_tries = 0;
2518         for (;;) {
2519                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2520
2521                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2522                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2523                         DRM_ERROR("failed to get link status\n");
2524                         break;
2525                 }
2526
2527                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2528                         DRM_DEBUG_KMS("clock recovery OK\n");
2529                         break;
2530                 }
2531
2532                 /* Check to see if we've tried the max voltage */
2533                 for (i = 0; i < intel_dp->lane_count; i++)
2534                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2535                                 break;
2536                 if (i == intel_dp->lane_count) {
2537                         ++loop_tries;
2538                         if (loop_tries == 5) {
2539                                 DRM_ERROR("too many full retries, give up\n");
2540                                 break;
2541                         }
2542                         intel_dp_reset_link_train(intel_dp, &DP,
2543                                                   DP_TRAINING_PATTERN_1 |
2544                                                   DP_LINK_SCRAMBLING_DISABLE);
2545                         voltage_tries = 0;
2546                         continue;
2547                 }
2548
2549                 /* Check to see if we've tried the same voltage 5 times */
2550                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2551                         ++voltage_tries;
2552                         if (voltage_tries == 5) {
2553                                 DRM_ERROR("too many voltage retries, give up\n");
2554                                 break;
2555                         }
2556                 } else
2557                         voltage_tries = 0;
2558                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2559
2560                 /* Update training set as requested by target */
2561                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2562                         DRM_ERROR("failed to update link training\n");
2563                         break;
2564                 }
2565         }
2566
2567         intel_dp->DP = DP;
2568 }
2569
2570 void
2571 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2572 {
2573         bool channel_eq = false;
2574         int tries, cr_tries;
2575         uint32_t DP = intel_dp->DP;
2576
2577         /* channel equalization */
2578         if (!intel_dp_set_link_train(intel_dp, &DP,
2579                                      DP_TRAINING_PATTERN_2 |
2580                                      DP_LINK_SCRAMBLING_DISABLE)) {
2581                 DRM_ERROR("failed to start channel equalization\n");
2582                 return;
2583         }
2584
2585         tries = 0;
2586         cr_tries = 0;
2587         channel_eq = false;
2588         for (;;) {
2589                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2590
2591                 if (cr_tries > 5) {
2592                         DRM_ERROR("failed to train DP, aborting\n");
2593                         intel_dp_link_down(intel_dp);
2594                         break;
2595                 }
2596
2597                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2598                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2599                         DRM_ERROR("failed to get link status\n");
2600                         break;
2601                 }
2602
2603                 /* Make sure clock is still ok */
2604                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2605                         intel_dp_start_link_train(intel_dp);
2606                         intel_dp_set_link_train(intel_dp, &DP,
2607                                                 DP_TRAINING_PATTERN_2 |
2608                                                 DP_LINK_SCRAMBLING_DISABLE);
2609                         cr_tries++;
2610                         continue;
2611                 }
2612
2613                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2614                         channel_eq = true;
2615                         break;
2616                 }
2617
2618                 /* Try 5 times, then try clock recovery if that fails */
2619                 if (tries > 5) {
2620                         intel_dp_link_down(intel_dp);
2621                         intel_dp_start_link_train(intel_dp);
2622                         intel_dp_set_link_train(intel_dp, &DP,
2623                                                 DP_TRAINING_PATTERN_2 |
2624                                                 DP_LINK_SCRAMBLING_DISABLE);
2625                         tries = 0;
2626                         cr_tries++;
2627                         continue;
2628                 }
2629
2630                 /* Update training set as requested by target */
2631                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2632                         DRM_ERROR("failed to update link training\n");
2633                         break;
2634                 }
2635                 ++tries;
2636         }
2637
2638         intel_dp_set_idle_link_train(intel_dp);
2639
2640         intel_dp->DP = DP;
2641
2642         if (channel_eq)
2643                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2644
2645 }
2646
2647 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2648 {
2649         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2650                                 DP_TRAINING_PATTERN_DISABLE);
2651 }
2652
2653 static void
2654 intel_dp_link_down(struct intel_dp *intel_dp)
2655 {
2656         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2657         enum port port = intel_dig_port->port;
2658         struct drm_device *dev = intel_dig_port->base.base.dev;
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         struct intel_crtc *intel_crtc =
2661                 to_intel_crtc(intel_dig_port->base.base.crtc);
2662         uint32_t DP = intel_dp->DP;
2663
2664         /*
2665          * DDI code has a strict mode set sequence and we should try to respect
2666          * it, otherwise we might hang the machine in many different ways. So we
2667          * really should be disabling the port only on a complete crtc_disable
2668          * sequence. This function is just called under two conditions on DDI
2669          * code:
2670          * - Link train failed while doing crtc_enable, and on this case we
2671          *   really should respect the mode set sequence and wait for a
2672          *   crtc_disable.
2673          * - Someone turned the monitor off and intel_dp_check_link_status
2674          *   called us. We don't need to disable the whole port on this case, so
2675          *   when someone turns the monitor on again,
2676          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2677          *   train.
2678          */
2679         if (HAS_DDI(dev))
2680                 return;
2681
2682         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2683                 return;
2684
2685         DRM_DEBUG_KMS("\n");
2686
2687         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2688                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2689                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2690         } else {
2691                 DP &= ~DP_LINK_TRAIN_MASK;
2692                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2693         }
2694         POSTING_READ(intel_dp->output_reg);
2695
2696         /* We don't really know why we're doing this */
2697         intel_wait_for_vblank(dev, intel_crtc->pipe);
2698
2699         if (HAS_PCH_IBX(dev) &&
2700             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2701                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2702
2703                 /* Hardware workaround: leaving our transcoder select
2704                  * set to transcoder B while it's off will prevent the
2705                  * corresponding HDMI output on transcoder A.
2706                  *
2707                  * Combine this with another hardware workaround:
2708                  * transcoder select bit can only be cleared while the
2709                  * port is enabled.
2710                  */
2711                 DP &= ~DP_PIPEB_SELECT;
2712                 I915_WRITE(intel_dp->output_reg, DP);
2713
2714                 /* Changes to enable or select take place the vblank
2715                  * after being written.
2716                  */
2717                 if (WARN_ON(crtc == NULL)) {
2718                         /* We should never try to disable a port without a crtc
2719                          * attached. For paranoia keep the code around for a
2720                          * bit. */
2721                         POSTING_READ(intel_dp->output_reg);
2722                         msleep(50);
2723                 } else
2724                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2725         }
2726
2727         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2728         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2729         POSTING_READ(intel_dp->output_reg);
2730         msleep(intel_dp->panel_power_down_delay);
2731 }
2732
2733 static bool
2734 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2735 {
2736         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2737         struct drm_device *dev = dig_port->base.base.dev;
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739
2740         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2741
2742         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2743                                            sizeof(intel_dp->dpcd)) == 0)
2744                 return false; /* aux transfer failed */
2745
2746         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2747                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2748         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2749
2750         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2751                 return false; /* DPCD not present */
2752
2753         /* Check if the panel supports PSR */
2754         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2755         if (is_edp(intel_dp)) {
2756                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2757                                                intel_dp->psr_dpcd,
2758                                                sizeof(intel_dp->psr_dpcd));
2759                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2760                         dev_priv->psr.sink_support = true;
2761                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2762                 }
2763         }
2764
2765         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2766               DP_DWN_STRM_PORT_PRESENT))
2767                 return true; /* native DP sink */
2768
2769         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2770                 return true; /* no per-port downstream info */
2771
2772         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2773                                            intel_dp->downstream_ports,
2774                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2775                 return false; /* downstream port status fetch failed */
2776
2777         return true;
2778 }
2779
2780 static void
2781 intel_dp_probe_oui(struct intel_dp *intel_dp)
2782 {
2783         u8 buf[3];
2784
2785         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2786                 return;
2787
2788         ironlake_edp_panel_vdd_on(intel_dp);
2789
2790         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2791                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2792                               buf[0], buf[1], buf[2]);
2793
2794         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2795                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2796                               buf[0], buf[1], buf[2]);
2797
2798         ironlake_edp_panel_vdd_off(intel_dp, false);
2799 }
2800
2801 static bool
2802 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2803 {
2804         int ret;
2805
2806         ret = intel_dp_aux_native_read_retry(intel_dp,
2807                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2808                                              sink_irq_vector, 1);
2809         if (!ret)
2810                 return false;
2811
2812         return true;
2813 }
2814
2815 static void
2816 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2817 {
2818         /* NAK by default */
2819         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2820 }
2821
2822 /*
2823  * According to DP spec
2824  * 5.1.2:
2825  *  1. Read DPCD
2826  *  2. Configure link according to Receiver Capabilities
2827  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2828  *  4. Check link status on receipt of hot-plug interrupt
2829  */
2830
2831 void
2832 intel_dp_check_link_status(struct intel_dp *intel_dp)
2833 {
2834         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2835         u8 sink_irq_vector;
2836         u8 link_status[DP_LINK_STATUS_SIZE];
2837
2838         if (!intel_encoder->connectors_active)
2839                 return;
2840
2841         if (WARN_ON(!intel_encoder->base.crtc))
2842                 return;
2843
2844         /* Try to read receiver status if the link appears to be up */
2845         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2846                 intel_dp_link_down(intel_dp);
2847                 return;
2848         }
2849
2850         /* Now read the DPCD to see if it's actually running */
2851         if (!intel_dp_get_dpcd(intel_dp)) {
2852                 intel_dp_link_down(intel_dp);
2853                 return;
2854         }
2855
2856         /* Try to read the source of the interrupt */
2857         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2858             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2859                 /* Clear interrupt source */
2860                 intel_dp_aux_native_write_1(intel_dp,
2861                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2862                                             sink_irq_vector);
2863
2864                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2865                         intel_dp_handle_test_request(intel_dp);
2866                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2867                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2868         }
2869
2870         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2871                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2872                               drm_get_encoder_name(&intel_encoder->base));
2873                 intel_dp_start_link_train(intel_dp);
2874                 intel_dp_complete_link_train(intel_dp);
2875                 intel_dp_stop_link_train(intel_dp);
2876         }
2877 }
2878
2879 /* XXX this is probably wrong for multiple downstream ports */
2880 static enum drm_connector_status
2881 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2882 {
2883         uint8_t *dpcd = intel_dp->dpcd;
2884         uint8_t type;
2885
2886         if (!intel_dp_get_dpcd(intel_dp))
2887                 return connector_status_disconnected;
2888
2889         /* if there's no downstream port, we're done */
2890         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2891                 return connector_status_connected;
2892
2893         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2894         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2895             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2896                 uint8_t reg;
2897                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2898                                                     &reg, 1))
2899                         return connector_status_unknown;
2900                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2901                                               : connector_status_disconnected;
2902         }
2903
2904         /* If no HPD, poke DDC gently */
2905         if (drm_probe_ddc(&intel_dp->adapter))
2906                 return connector_status_connected;
2907
2908         /* Well we tried, say unknown for unreliable port types */
2909         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2910                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2911                 if (type == DP_DS_PORT_TYPE_VGA ||
2912                     type == DP_DS_PORT_TYPE_NON_EDID)
2913                         return connector_status_unknown;
2914         } else {
2915                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2916                         DP_DWN_STRM_PORT_TYPE_MASK;
2917                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2918                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2919                         return connector_status_unknown;
2920         }
2921
2922         /* Anything else is out of spec, warn and ignore */
2923         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2924         return connector_status_disconnected;
2925 }
2926
2927 static enum drm_connector_status
2928 ironlake_dp_detect(struct intel_dp *intel_dp)
2929 {
2930         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2933         enum drm_connector_status status;
2934
2935         /* Can't disconnect eDP, but you can close the lid... */
2936         if (is_edp(intel_dp)) {
2937                 status = intel_panel_detect(dev);
2938                 if (status == connector_status_unknown)
2939                         status = connector_status_connected;
2940                 return status;
2941         }
2942
2943         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2944                 return connector_status_disconnected;
2945
2946         return intel_dp_detect_dpcd(intel_dp);
2947 }
2948
2949 static enum drm_connector_status
2950 g4x_dp_detect(struct intel_dp *intel_dp)
2951 {
2952         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2955         uint32_t bit;
2956
2957         /* Can't disconnect eDP, but you can close the lid... */
2958         if (is_edp(intel_dp)) {
2959                 enum drm_connector_status status;
2960
2961                 status = intel_panel_detect(dev);
2962                 if (status == connector_status_unknown)
2963                         status = connector_status_connected;
2964                 return status;
2965         }
2966
2967         switch (intel_dig_port->port) {
2968         case PORT_B:
2969                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2970                 break;
2971         case PORT_C:
2972                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2973                 break;
2974         case PORT_D:
2975                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2976                 break;
2977         default:
2978                 return connector_status_unknown;
2979         }
2980
2981         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2982                 return connector_status_disconnected;
2983
2984         return intel_dp_detect_dpcd(intel_dp);
2985 }
2986
2987 static struct edid *
2988 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2989 {
2990         struct intel_connector *intel_connector = to_intel_connector(connector);
2991
2992         /* use cached edid if we have one */
2993         if (intel_connector->edid) {
2994                 /* invalid edid */
2995                 if (IS_ERR(intel_connector->edid))
2996                         return NULL;
2997
2998                 return drm_edid_duplicate(intel_connector->edid);
2999         }
3000
3001         return drm_get_edid(connector, adapter);
3002 }
3003
3004 static int
3005 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3006 {
3007         struct intel_connector *intel_connector = to_intel_connector(connector);
3008
3009         /* use cached edid if we have one */
3010         if (intel_connector->edid) {
3011                 /* invalid edid */
3012                 if (IS_ERR(intel_connector->edid))
3013                         return 0;
3014
3015                 return intel_connector_update_modes(connector,
3016                                                     intel_connector->edid);
3017         }
3018
3019         return intel_ddc_get_modes(connector, adapter);
3020 }
3021
3022 static enum drm_connector_status
3023 intel_dp_detect(struct drm_connector *connector, bool force)
3024 {
3025         struct intel_dp *intel_dp = intel_attached_dp(connector);
3026         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3027         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3028         struct drm_device *dev = connector->dev;
3029         enum drm_connector_status status;
3030         struct edid *edid = NULL;
3031
3032         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3033                       connector->base.id, drm_get_connector_name(connector));
3034
3035         intel_dp->has_audio = false;
3036
3037         if (HAS_PCH_SPLIT(dev))
3038                 status = ironlake_dp_detect(intel_dp);
3039         else
3040                 status = g4x_dp_detect(intel_dp);
3041
3042         if (status != connector_status_connected)
3043                 return status;
3044
3045         intel_dp_probe_oui(intel_dp);
3046
3047         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3048                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3049         } else {
3050                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3051                 if (edid) {
3052                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3053                         kfree(edid);
3054                 }
3055         }
3056
3057         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3058                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3059         return connector_status_connected;
3060 }
3061
3062 static int intel_dp_get_modes(struct drm_connector *connector)
3063 {
3064         struct intel_dp *intel_dp = intel_attached_dp(connector);
3065         struct intel_connector *intel_connector = to_intel_connector(connector);
3066         struct drm_device *dev = connector->dev;
3067         int ret;
3068
3069         /* We should parse the EDID data and find out if it has an audio sink
3070          */
3071
3072         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3073         if (ret)
3074                 return ret;
3075
3076         /* if eDP has no EDID, fall back to fixed mode */
3077         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3078                 struct drm_display_mode *mode;
3079                 mode = drm_mode_duplicate(dev,
3080                                           intel_connector->panel.fixed_mode);
3081                 if (mode) {
3082                         drm_mode_probed_add(connector, mode);
3083                         return 1;
3084                 }
3085         }
3086         return 0;
3087 }
3088
3089 static bool
3090 intel_dp_detect_audio(struct drm_connector *connector)
3091 {
3092         struct intel_dp *intel_dp = intel_attached_dp(connector);
3093         struct edid *edid;
3094         bool has_audio = false;
3095
3096         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3097         if (edid) {
3098                 has_audio = drm_detect_monitor_audio(edid);
3099                 kfree(edid);
3100         }
3101
3102         return has_audio;
3103 }
3104
3105 static int
3106 intel_dp_set_property(struct drm_connector *connector,
3107                       struct drm_property *property,
3108                       uint64_t val)
3109 {
3110         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3111         struct intel_connector *intel_connector = to_intel_connector(connector);
3112         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3113         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3114         int ret;
3115
3116         ret = drm_object_property_set_value(&connector->base, property, val);
3117         if (ret)
3118                 return ret;
3119
3120         if (property == dev_priv->force_audio_property) {
3121                 int i = val;
3122                 bool has_audio;
3123
3124                 if (i == intel_dp->force_audio)
3125                         return 0;
3126
3127                 intel_dp->force_audio = i;
3128
3129                 if (i == HDMI_AUDIO_AUTO)
3130                         has_audio = intel_dp_detect_audio(connector);
3131                 else
3132                         has_audio = (i == HDMI_AUDIO_ON);
3133
3134                 if (has_audio == intel_dp->has_audio)
3135                         return 0;
3136
3137                 intel_dp->has_audio = has_audio;
3138                 goto done;
3139         }
3140
3141         if (property == dev_priv->broadcast_rgb_property) {
3142                 bool old_auto = intel_dp->color_range_auto;
3143                 uint32_t old_range = intel_dp->color_range;
3144
3145                 switch (val) {
3146                 case INTEL_BROADCAST_RGB_AUTO:
3147                         intel_dp->color_range_auto = true;
3148                         break;
3149                 case INTEL_BROADCAST_RGB_FULL:
3150                         intel_dp->color_range_auto = false;
3151                         intel_dp->color_range = 0;
3152                         break;
3153                 case INTEL_BROADCAST_RGB_LIMITED:
3154                         intel_dp->color_range_auto = false;
3155                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3156                         break;
3157                 default:
3158                         return -EINVAL;
3159                 }
3160
3161                 if (old_auto == intel_dp->color_range_auto &&
3162                     old_range == intel_dp->color_range)
3163                         return 0;
3164
3165                 goto done;
3166         }
3167
3168         if (is_edp(intel_dp) &&
3169             property == connector->dev->mode_config.scaling_mode_property) {
3170                 if (val == DRM_MODE_SCALE_NONE) {
3171                         DRM_DEBUG_KMS("no scaling not supported\n");
3172                         return -EINVAL;
3173                 }
3174
3175                 if (intel_connector->panel.fitting_mode == val) {
3176                         /* the eDP scaling property is not changed */
3177                         return 0;
3178                 }
3179                 intel_connector->panel.fitting_mode = val;
3180
3181                 goto done;
3182         }
3183
3184         return -EINVAL;
3185
3186 done:
3187         if (intel_encoder->base.crtc)
3188                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3189
3190         return 0;
3191 }
3192
3193 static void
3194 intel_dp_connector_destroy(struct drm_connector *connector)
3195 {
3196         struct intel_connector *intel_connector = to_intel_connector(connector);
3197
3198         if (!IS_ERR_OR_NULL(intel_connector->edid))
3199                 kfree(intel_connector->edid);
3200
3201         /* Can't call is_edp() since the encoder may have been destroyed
3202          * already. */
3203         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3204                 intel_panel_fini(&intel_connector->panel);
3205
3206         drm_connector_cleanup(connector);
3207         kfree(connector);
3208 }
3209
3210 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3211 {
3212         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3213         struct intel_dp *intel_dp = &intel_dig_port->dp;
3214         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3215
3216         i2c_del_adapter(&intel_dp->adapter);
3217         drm_encoder_cleanup(encoder);
3218         if (is_edp(intel_dp)) {
3219                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3220                 mutex_lock(&dev->mode_config.mutex);
3221                 ironlake_panel_vdd_off_sync(intel_dp);
3222                 mutex_unlock(&dev->mode_config.mutex);
3223         }
3224         kfree(intel_dig_port);
3225 }
3226
3227 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3228         .dpms = intel_connector_dpms,
3229         .detect = intel_dp_detect,
3230         .fill_modes = drm_helper_probe_single_connector_modes,
3231         .set_property = intel_dp_set_property,
3232         .destroy = intel_dp_connector_destroy,
3233 };
3234
3235 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3236         .get_modes = intel_dp_get_modes,
3237         .mode_valid = intel_dp_mode_valid,
3238         .best_encoder = intel_best_encoder,
3239 };
3240
3241 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3242         .destroy = intel_dp_encoder_destroy,
3243 };
3244
3245 static void
3246 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3247 {
3248         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3249
3250         intel_dp_check_link_status(intel_dp);
3251 }
3252
3253 /* Return which DP Port should be selected for Transcoder DP control */
3254 int
3255 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3256 {
3257         struct drm_device *dev = crtc->dev;
3258         struct intel_encoder *intel_encoder;
3259         struct intel_dp *intel_dp;
3260
3261         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3262                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3263
3264                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3265                     intel_encoder->type == INTEL_OUTPUT_EDP)
3266                         return intel_dp->output_reg;
3267         }
3268
3269         return -1;
3270 }
3271
3272 /* check the VBT to see whether the eDP is on DP-D port */
3273 bool intel_dpd_is_edp(struct drm_device *dev)
3274 {
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         union child_device_config *p_child;
3277         int i;
3278
3279         if (!dev_priv->vbt.child_dev_num)
3280                 return false;
3281
3282         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3283                 p_child = dev_priv->vbt.child_dev + i;
3284
3285                 if (p_child->common.dvo_port == PORT_IDPD &&
3286                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3287                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3288                         return true;
3289         }
3290         return false;
3291 }
3292
3293 static void
3294 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3295 {
3296         struct intel_connector *intel_connector = to_intel_connector(connector);
3297
3298         intel_attach_force_audio_property(connector);
3299         intel_attach_broadcast_rgb_property(connector);
3300         intel_dp->color_range_auto = true;
3301
3302         if (is_edp(intel_dp)) {
3303                 drm_mode_create_scaling_mode_property(connector->dev);
3304                 drm_object_attach_property(
3305                         &connector->base,
3306                         connector->dev->mode_config.scaling_mode_property,
3307                         DRM_MODE_SCALE_ASPECT);
3308                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3309         }
3310 }
3311
3312 static void
3313 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3314                                     struct intel_dp *intel_dp,
3315                                     struct edp_power_seq *out)
3316 {
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         struct edp_power_seq cur, vbt, spec, final;
3319         u32 pp_on, pp_off, pp_div, pp;
3320         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3321
3322         if (HAS_PCH_SPLIT(dev)) {
3323                 pp_ctrl_reg = PCH_PP_CONTROL;
3324                 pp_on_reg = PCH_PP_ON_DELAYS;
3325                 pp_off_reg = PCH_PP_OFF_DELAYS;
3326                 pp_div_reg = PCH_PP_DIVISOR;
3327         } else {
3328                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3329
3330                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3331                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3332                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3333                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3334         }
3335
3336         /* Workaround: Need to write PP_CONTROL with the unlock key as
3337          * the very first thing. */
3338         pp = ironlake_get_pp_control(intel_dp);
3339         I915_WRITE(pp_ctrl_reg, pp);
3340
3341         pp_on = I915_READ(pp_on_reg);
3342         pp_off = I915_READ(pp_off_reg);
3343         pp_div = I915_READ(pp_div_reg);
3344
3345         /* Pull timing values out of registers */
3346         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3347                 PANEL_POWER_UP_DELAY_SHIFT;
3348
3349         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3350                 PANEL_LIGHT_ON_DELAY_SHIFT;
3351
3352         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3353                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3354
3355         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3356                 PANEL_POWER_DOWN_DELAY_SHIFT;
3357
3358         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3359                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3360
3361         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3362                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3363
3364         vbt = dev_priv->vbt.edp_pps;
3365
3366         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3367          * our hw here, which are all in 100usec. */
3368         spec.t1_t3 = 210 * 10;
3369         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3370         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3371         spec.t10 = 500 * 10;
3372         /* This one is special and actually in units of 100ms, but zero
3373          * based in the hw (so we need to add 100 ms). But the sw vbt
3374          * table multiplies it with 1000 to make it in units of 100usec,
3375          * too. */
3376         spec.t11_t12 = (510 + 100) * 10;
3377
3378         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3379                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3380
3381         /* Use the max of the register settings and vbt. If both are
3382          * unset, fall back to the spec limits. */
3383 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3384                                        spec.field : \
3385                                        max(cur.field, vbt.field))
3386         assign_final(t1_t3);
3387         assign_final(t8);
3388         assign_final(t9);
3389         assign_final(t10);
3390         assign_final(t11_t12);
3391 #undef assign_final
3392
3393 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3394         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3395         intel_dp->backlight_on_delay = get_delay(t8);
3396         intel_dp->backlight_off_delay = get_delay(t9);
3397         intel_dp->panel_power_down_delay = get_delay(t10);
3398         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3399 #undef get_delay
3400
3401         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3402                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3403                       intel_dp->panel_power_cycle_delay);
3404
3405         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3406                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3407
3408         if (out)
3409                 *out = final;
3410 }
3411
3412 static void
3413 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3414                                               struct intel_dp *intel_dp,
3415                                               struct edp_power_seq *seq)
3416 {
3417         struct drm_i915_private *dev_priv = dev->dev_private;
3418         u32 pp_on, pp_off, pp_div, port_sel = 0;
3419         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3420         int pp_on_reg, pp_off_reg, pp_div_reg;
3421
3422         if (HAS_PCH_SPLIT(dev)) {
3423                 pp_on_reg = PCH_PP_ON_DELAYS;
3424                 pp_off_reg = PCH_PP_OFF_DELAYS;
3425                 pp_div_reg = PCH_PP_DIVISOR;
3426         } else {
3427                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3428
3429                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3430                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3431                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3432         }
3433
3434         /* And finally store the new values in the power sequencer. */
3435         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3436                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3437         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3438                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3439         /* Compute the divisor for the pp clock, simply match the Bspec
3440          * formula. */
3441         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3442         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3443                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3444
3445         /* Haswell doesn't have any port selection bits for the panel
3446          * power sequencer any more. */
3447         if (IS_VALLEYVIEW(dev)) {
3448                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3449                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3450                 else
3451                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3452         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3453                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3454                         port_sel = PANEL_PORT_SELECT_DPA;
3455                 else
3456                         port_sel = PANEL_PORT_SELECT_DPD;
3457         }
3458
3459         pp_on |= port_sel;
3460
3461         I915_WRITE(pp_on_reg, pp_on);
3462         I915_WRITE(pp_off_reg, pp_off);
3463         I915_WRITE(pp_div_reg, pp_div);
3464
3465         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3466                       I915_READ(pp_on_reg),
3467                       I915_READ(pp_off_reg),
3468                       I915_READ(pp_div_reg));
3469 }
3470
3471 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3472                                      struct intel_connector *intel_connector)
3473 {
3474         struct drm_connector *connector = &intel_connector->base;
3475         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3476         struct drm_device *dev = intel_dig_port->base.base.dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         struct drm_display_mode *fixed_mode = NULL;
3479         struct edp_power_seq power_seq = { 0 };
3480         bool has_dpcd;
3481         struct drm_display_mode *scan;
3482         struct edid *edid;
3483
3484         if (!is_edp(intel_dp))
3485                 return true;
3486
3487         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3488
3489         /* Cache DPCD and EDID for edp. */
3490         ironlake_edp_panel_vdd_on(intel_dp);
3491         has_dpcd = intel_dp_get_dpcd(intel_dp);
3492         ironlake_edp_panel_vdd_off(intel_dp, false);
3493
3494         if (has_dpcd) {
3495                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3496                         dev_priv->no_aux_handshake =
3497                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3498                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3499         } else {
3500                 /* if this fails, presume the device is a ghost */
3501                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3502                 return false;
3503         }
3504
3505         /* We now know it's not a ghost, init power sequence regs. */
3506         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3507                                                       &power_seq);
3508
3509         edid = drm_get_edid(connector, &intel_dp->adapter);
3510         if (edid) {
3511                 if (drm_add_edid_modes(connector, edid)) {
3512                         drm_mode_connector_update_edid_property(connector,
3513                                                                 edid);
3514                         drm_edid_to_eld(connector, edid);
3515                 } else {
3516                         kfree(edid);
3517                         edid = ERR_PTR(-EINVAL);
3518                 }
3519         } else {
3520                 edid = ERR_PTR(-ENOENT);
3521         }
3522         intel_connector->edid = edid;
3523
3524         /* prefer fixed mode from EDID if available */
3525         list_for_each_entry(scan, &connector->probed_modes, head) {
3526                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3527                         fixed_mode = drm_mode_duplicate(dev, scan);
3528                         break;
3529                 }
3530         }
3531
3532         /* fallback to VBT if available for eDP */
3533         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3534                 fixed_mode = drm_mode_duplicate(dev,
3535                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3536                 if (fixed_mode)
3537                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3538         }
3539
3540         intel_panel_init(&intel_connector->panel, fixed_mode);
3541         intel_panel_setup_backlight(connector);
3542
3543         return true;
3544 }
3545
3546 bool
3547 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3548                         struct intel_connector *intel_connector)
3549 {
3550         struct drm_connector *connector = &intel_connector->base;
3551         struct intel_dp *intel_dp = &intel_dig_port->dp;
3552         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3553         struct drm_device *dev = intel_encoder->base.dev;
3554         struct drm_i915_private *dev_priv = dev->dev_private;
3555         enum port port = intel_dig_port->port;
3556         const char *name = NULL;
3557         int type, error;
3558
3559         /* Preserve the current hw state. */
3560         intel_dp->DP = I915_READ(intel_dp->output_reg);
3561         intel_dp->attached_connector = intel_connector;
3562
3563         type = DRM_MODE_CONNECTOR_DisplayPort;
3564         /*
3565          * FIXME : We need to initialize built-in panels before external panels.
3566          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3567          */
3568         switch (port) {
3569         case PORT_A:
3570                 type = DRM_MODE_CONNECTOR_eDP;
3571                 break;
3572         case PORT_C:
3573                 if (IS_VALLEYVIEW(dev))
3574                         type = DRM_MODE_CONNECTOR_eDP;
3575                 break;
3576         case PORT_D:
3577                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3578                         type = DRM_MODE_CONNECTOR_eDP;
3579                 break;
3580         default:        /* silence GCC warning */
3581                 break;
3582         }
3583
3584         /*
3585          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3586          * for DP the encoder type can be set by the caller to
3587          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3588          */
3589         if (type == DRM_MODE_CONNECTOR_eDP)
3590                 intel_encoder->type = INTEL_OUTPUT_EDP;
3591
3592         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3593                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3594                         port_name(port));
3595
3596         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3597         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3598
3599         connector->interlace_allowed = true;
3600         connector->doublescan_allowed = 0;
3601
3602         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3603                           ironlake_panel_vdd_work);
3604
3605         intel_connector_attach_encoder(intel_connector, intel_encoder);
3606         drm_sysfs_connector_add(connector);
3607
3608         if (HAS_DDI(dev))
3609                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3610         else
3611                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3612
3613         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3614         if (HAS_DDI(dev)) {
3615                 switch (intel_dig_port->port) {
3616                 case PORT_A:
3617                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3618                         break;
3619                 case PORT_B:
3620                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3621                         break;
3622                 case PORT_C:
3623                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3624                         break;
3625                 case PORT_D:
3626                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3627                         break;
3628                 default:
3629                         BUG();
3630                 }
3631         }
3632
3633         /* Set up the DDC bus. */
3634         switch (port) {
3635         case PORT_A:
3636                 intel_encoder->hpd_pin = HPD_PORT_A;
3637                 name = "DPDDC-A";
3638                 break;
3639         case PORT_B:
3640                 intel_encoder->hpd_pin = HPD_PORT_B;
3641                 name = "DPDDC-B";
3642                 break;
3643         case PORT_C:
3644                 intel_encoder->hpd_pin = HPD_PORT_C;
3645                 name = "DPDDC-C";
3646                 break;
3647         case PORT_D:
3648                 intel_encoder->hpd_pin = HPD_PORT_D;
3649                 name = "DPDDC-D";
3650                 break;
3651         default:
3652                 BUG();
3653         }
3654
3655         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3656         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3657              error, port_name(port));
3658
3659         intel_dp->psr_setup_done = false;
3660
3661         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3662                 i2c_del_adapter(&intel_dp->adapter);
3663                 if (is_edp(intel_dp)) {
3664                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3665                         mutex_lock(&dev->mode_config.mutex);
3666                         ironlake_panel_vdd_off_sync(intel_dp);
3667                         mutex_unlock(&dev->mode_config.mutex);
3668                 }
3669                 drm_sysfs_connector_remove(connector);
3670                 drm_connector_cleanup(connector);
3671                 return false;
3672         }
3673
3674         intel_dp_add_properties(intel_dp, connector);
3675
3676         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3677          * 0xd.  Failure to do so will result in spurious interrupts being
3678          * generated on the port when a cable is not attached.
3679          */
3680         if (IS_G4X(dev) && !IS_GM45(dev)) {
3681                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3682                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3683         }
3684
3685         return true;
3686 }
3687
3688 void
3689 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3690 {
3691         struct intel_digital_port *intel_dig_port;
3692         struct intel_encoder *intel_encoder;
3693         struct drm_encoder *encoder;
3694         struct intel_connector *intel_connector;
3695
3696         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3697         if (!intel_dig_port)
3698                 return;
3699
3700         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3701         if (!intel_connector) {
3702                 kfree(intel_dig_port);
3703                 return;
3704         }
3705
3706         intel_encoder = &intel_dig_port->base;
3707         encoder = &intel_encoder->base;
3708
3709         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3710                          DRM_MODE_ENCODER_TMDS);
3711
3712         intel_encoder->compute_config = intel_dp_compute_config;
3713         intel_encoder->mode_set = intel_dp_mode_set;
3714         intel_encoder->disable = intel_disable_dp;
3715         intel_encoder->post_disable = intel_post_disable_dp;
3716         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3717         intel_encoder->get_config = intel_dp_get_config;
3718         if (IS_VALLEYVIEW(dev)) {
3719                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3720                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3721                 intel_encoder->enable = vlv_enable_dp;
3722         } else {
3723                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3724                 intel_encoder->enable = g4x_enable_dp;
3725         }
3726
3727         intel_dig_port->port = port;
3728         intel_dig_port->dp.output_reg = output_reg;
3729
3730         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3731         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3732         intel_encoder->cloneable = false;
3733         intel_encoder->hot_plug = intel_dp_hot_plug;
3734
3735         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3736                 drm_encoder_cleanup(encoder);
3737                 kfree(intel_dig_port);
3738                 kfree(intel_connector);
3739         }
3740 }