b31f6db5d0c0ad3fc4511e29eae84f18dcd97980
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_on(struct intel_dp *intel_dp);
96 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
97
98 static int
99 intel_dp_max_link_bw(struct intel_dp *intel_dp)
100 {
101         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
102         struct drm_device *dev = intel_dp->attached_connector->base.dev;
103
104         switch (max_link_bw) {
105         case DP_LINK_BW_1_62:
106         case DP_LINK_BW_2_7:
107                 break;
108         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
109                 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
110                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
111                         max_link_bw = DP_LINK_BW_5_4;
112                 else
113                         max_link_bw = DP_LINK_BW_2_7;
114                 break;
115         default:
116                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
117                      max_link_bw);
118                 max_link_bw = DP_LINK_BW_1_62;
119                 break;
120         }
121         return max_link_bw;
122 }
123
124 /*
125  * The units on the numbers in the next two are... bizarre.  Examples will
126  * make it clearer; this one parallels an example in the eDP spec.
127  *
128  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
129  *
130  *     270000 * 1 * 8 / 10 == 216000
131  *
132  * The actual data capacity of that configuration is 2.16Gbit/s, so the
133  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
134  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
135  * 119000.  At 18bpp that's 2142000 kilobits per second.
136  *
137  * Thus the strange-looking division by 10 in intel_dp_link_required, to
138  * get the result in decakilobits instead of kilobits.
139  */
140
141 static int
142 intel_dp_link_required(int pixel_clock, int bpp)
143 {
144         return (pixel_clock * bpp + 9) / 10;
145 }
146
147 static int
148 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
149 {
150         return (max_link_clock * max_lanes * 8) / 10;
151 }
152
153 static enum drm_mode_status
154 intel_dp_mode_valid(struct drm_connector *connector,
155                     struct drm_display_mode *mode)
156 {
157         struct intel_dp *intel_dp = intel_attached_dp(connector);
158         struct intel_connector *intel_connector = to_intel_connector(connector);
159         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
160         int target_clock = mode->clock;
161         int max_rate, mode_rate, max_lanes, max_link_clock;
162
163         if (is_edp(intel_dp) && fixed_mode) {
164                 if (mode->hdisplay > fixed_mode->hdisplay)
165                         return MODE_PANEL;
166
167                 if (mode->vdisplay > fixed_mode->vdisplay)
168                         return MODE_PANEL;
169
170                 target_clock = fixed_mode->clock;
171         }
172
173         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
174         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
175
176         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
177         mode_rate = intel_dp_link_required(target_clock, 18);
178
179         if (mode_rate > max_rate)
180                 return MODE_CLOCK_HIGH;
181
182         if (mode->clock < 10000)
183                 return MODE_CLOCK_LOW;
184
185         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
186                 return MODE_H_ILLEGAL;
187
188         return MODE_OK;
189 }
190
191 static uint32_t
192 pack_aux(uint8_t *src, int src_bytes)
193 {
194         int     i;
195         uint32_t v = 0;
196
197         if (src_bytes > 4)
198                 src_bytes = 4;
199         for (i = 0; i < src_bytes; i++)
200                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
201         return v;
202 }
203
204 static void
205 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
206 {
207         int i;
208         if (dst_bytes > 4)
209                 dst_bytes = 4;
210         for (i = 0; i < dst_bytes; i++)
211                 dst[i] = src >> ((3-i) * 8);
212 }
213
214 /* hrawclock is 1/4 the FSB frequency */
215 static int
216 intel_hrawclk(struct drm_device *dev)
217 {
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         uint32_t clkcfg;
220
221         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
222         if (IS_VALLEYVIEW(dev))
223                 return 200;
224
225         clkcfg = I915_READ(CLKCFG);
226         switch (clkcfg & CLKCFG_FSB_MASK) {
227         case CLKCFG_FSB_400:
228                 return 100;
229         case CLKCFG_FSB_533:
230                 return 133;
231         case CLKCFG_FSB_667:
232                 return 166;
233         case CLKCFG_FSB_800:
234                 return 200;
235         case CLKCFG_FSB_1067:
236                 return 266;
237         case CLKCFG_FSB_1333:
238                 return 333;
239         /* these two are just a guess; one of them might be right */
240         case CLKCFG_FSB_1600:
241         case CLKCFG_FSB_1600_ALT:
242                 return 400;
243         default:
244                 return 133;
245         }
246 }
247
248 static void
249 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
250                                     struct intel_dp *intel_dp,
251                                     struct edp_power_seq *out);
252 static void
253 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
254                                               struct intel_dp *intel_dp,
255                                               struct edp_power_seq *out);
256
257 static enum pipe
258 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
259 {
260         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
261         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
262         struct drm_device *dev = intel_dig_port->base.base.dev;
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         enum port port = intel_dig_port->port;
265         enum pipe pipe;
266
267         /* modeset should have pipe */
268         if (crtc)
269                 return to_intel_crtc(crtc)->pipe;
270
271         /* init time, try to find a pipe with this port selected */
272         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
273                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
274                         PANEL_PORT_SELECT_MASK;
275                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
276                         return pipe;
277                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
278                         return pipe;
279         }
280
281         /* shrug */
282         return PIPE_A;
283 }
284
285 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
286 {
287         struct drm_device *dev = intel_dp_to_dev(intel_dp);
288
289         if (HAS_PCH_SPLIT(dev))
290                 return PCH_PP_CONTROL;
291         else
292                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
293 }
294
295 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
296 {
297         struct drm_device *dev = intel_dp_to_dev(intel_dp);
298
299         if (HAS_PCH_SPLIT(dev))
300                 return PCH_PP_STATUS;
301         else
302                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
303 }
304
305 static bool edp_have_panel_power(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
311 }
312
313 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
314 {
315         struct drm_device *dev = intel_dp_to_dev(intel_dp);
316         struct drm_i915_private *dev_priv = dev->dev_private;
317
318         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
319 }
320
321 static void
322 intel_dp_check_edp(struct intel_dp *intel_dp)
323 {
324         struct drm_device *dev = intel_dp_to_dev(intel_dp);
325         struct drm_i915_private *dev_priv = dev->dev_private;
326
327         if (!is_edp(intel_dp))
328                 return;
329
330         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
331                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
332                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
333                               I915_READ(_pp_stat_reg(intel_dp)),
334                               I915_READ(_pp_ctrl_reg(intel_dp)));
335         }
336 }
337
338 static uint32_t
339 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
340 {
341         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
342         struct drm_device *dev = intel_dig_port->base.base.dev;
343         struct drm_i915_private *dev_priv = dev->dev_private;
344         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
345         uint32_t status;
346         bool done;
347
348 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
349         if (has_aux_irq)
350                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
351                                           msecs_to_jiffies_timeout(10));
352         else
353                 done = wait_for_atomic(C, 10) == 0;
354         if (!done)
355                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
356                           has_aux_irq);
357 #undef C
358
359         return status;
360 }
361
362 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
363 {
364         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
365         struct drm_device *dev = intel_dig_port->base.base.dev;
366
367         /*
368          * The clock divider is based off the hrawclk, and would like to run at
369          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
370          */
371         return index ? 0 : intel_hrawclk(dev) / 2;
372 }
373
374 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
375 {
376         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
377         struct drm_device *dev = intel_dig_port->base.base.dev;
378
379         if (index)
380                 return 0;
381
382         if (intel_dig_port->port == PORT_A) {
383                 if (IS_GEN6(dev) || IS_GEN7(dev))
384                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
385                 else
386                         return 225; /* eDP input clock at 450Mhz */
387         } else {
388                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
389         }
390 }
391
392 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
393 {
394         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
395         struct drm_device *dev = intel_dig_port->base.base.dev;
396         struct drm_i915_private *dev_priv = dev->dev_private;
397
398         if (intel_dig_port->port == PORT_A) {
399                 if (index)
400                         return 0;
401                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
402         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
403                 /* Workaround for non-ULT HSW */
404                 switch (index) {
405                 case 0: return 63;
406                 case 1: return 72;
407                 default: return 0;
408                 }
409         } else  {
410                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411         }
412 }
413
414 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415 {
416         return index ? 0 : 100;
417 }
418
419 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
420                                       bool has_aux_irq,
421                                       int send_bytes,
422                                       uint32_t aux_clock_divider)
423 {
424         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
425         struct drm_device *dev = intel_dig_port->base.base.dev;
426         uint32_t precharge, timeout;
427
428         if (IS_GEN6(dev))
429                 precharge = 3;
430         else
431                 precharge = 5;
432
433         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
434                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
435         else
436                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
437
438         return DP_AUX_CH_CTL_SEND_BUSY |
439                DP_AUX_CH_CTL_DONE |
440                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
441                DP_AUX_CH_CTL_TIME_OUT_ERROR |
442                timeout |
443                DP_AUX_CH_CTL_RECEIVE_ERROR |
444                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
445                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
446                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
447 }
448
449 static int
450 intel_dp_aux_ch(struct intel_dp *intel_dp,
451                 uint8_t *send, int send_bytes,
452                 uint8_t *recv, int recv_size)
453 {
454         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
455         struct drm_device *dev = intel_dig_port->base.base.dev;
456         struct drm_i915_private *dev_priv = dev->dev_private;
457         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
458         uint32_t ch_data = ch_ctl + 4;
459         uint32_t aux_clock_divider;
460         int i, ret, recv_bytes;
461         uint32_t status;
462         int try, clock = 0;
463         bool has_aux_irq = HAS_AUX_IRQ(dev);
464         bool vdd;
465
466         vdd = _edp_panel_vdd_on(intel_dp);
467
468         /* dp aux is extremely sensitive to irq latency, hence request the
469          * lowest possible wakeup latency and so prevent the cpu from going into
470          * deep sleep states.
471          */
472         pm_qos_update_request(&dev_priv->pm_qos, 0);
473
474         intel_dp_check_edp(intel_dp);
475
476         intel_aux_display_runtime_get(dev_priv);
477
478         /* Try to wait for any previous AUX channel activity */
479         for (try = 0; try < 3; try++) {
480                 status = I915_READ_NOTRACE(ch_ctl);
481                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
482                         break;
483                 msleep(1);
484         }
485
486         if (try == 3) {
487                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
488                      I915_READ(ch_ctl));
489                 ret = -EBUSY;
490                 goto out;
491         }
492
493         /* Only 5 data registers! */
494         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
495                 ret = -E2BIG;
496                 goto out;
497         }
498
499         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
500                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
501                                                           has_aux_irq,
502                                                           send_bytes,
503                                                           aux_clock_divider);
504
505                 /* Must try at least 3 times according to DP spec */
506                 for (try = 0; try < 5; try++) {
507                         /* Load the send data into the aux channel data registers */
508                         for (i = 0; i < send_bytes; i += 4)
509                                 I915_WRITE(ch_data + i,
510                                            pack_aux(send + i, send_bytes - i));
511
512                         /* Send the command and wait for it to complete */
513                         I915_WRITE(ch_ctl, send_ctl);
514
515                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
516
517                         /* Clear done status and any errors */
518                         I915_WRITE(ch_ctl,
519                                    status |
520                                    DP_AUX_CH_CTL_DONE |
521                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
522                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
523
524                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
525                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
526                                 continue;
527                         if (status & DP_AUX_CH_CTL_DONE)
528                                 break;
529                 }
530                 if (status & DP_AUX_CH_CTL_DONE)
531                         break;
532         }
533
534         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
535                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
536                 ret = -EBUSY;
537                 goto out;
538         }
539
540         /* Check for timeout or receive error.
541          * Timeouts occur when the sink is not connected
542          */
543         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
544                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
545                 ret = -EIO;
546                 goto out;
547         }
548
549         /* Timeouts occur when the device isn't connected, so they're
550          * "normal" -- don't fill the kernel log with these */
551         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
552                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
553                 ret = -ETIMEDOUT;
554                 goto out;
555         }
556
557         /* Unload any bytes sent back from the other side */
558         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
559                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
560         if (recv_bytes > recv_size)
561                 recv_bytes = recv_size;
562
563         for (i = 0; i < recv_bytes; i += 4)
564                 unpack_aux(I915_READ(ch_data + i),
565                            recv + i, recv_bytes - i);
566
567         ret = recv_bytes;
568 out:
569         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
570         intel_aux_display_runtime_put(dev_priv);
571
572         if (vdd)
573                 edp_panel_vdd_off(intel_dp, false);
574
575         return ret;
576 }
577
578 #define HEADER_SIZE     4
579 static ssize_t
580 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
581 {
582         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
583         uint8_t txbuf[20], rxbuf[20];
584         size_t txsize, rxsize;
585         int ret;
586
587         txbuf[0] = msg->request << 4;
588         txbuf[1] = msg->address >> 8;
589         txbuf[2] = msg->address & 0xff;
590         txbuf[3] = msg->size - 1;
591
592         switch (msg->request & ~DP_AUX_I2C_MOT) {
593         case DP_AUX_NATIVE_WRITE:
594         case DP_AUX_I2C_WRITE:
595                 txsize = HEADER_SIZE + msg->size;
596                 rxsize = 1;
597
598                 if (WARN_ON(txsize > 20))
599                         return -E2BIG;
600
601                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
602
603                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
604                 if (ret > 0) {
605                         msg->reply = rxbuf[0] >> 4;
606
607                         /* Return payload size. */
608                         ret = msg->size;
609                 }
610                 break;
611
612         case DP_AUX_NATIVE_READ:
613         case DP_AUX_I2C_READ:
614                 txsize = HEADER_SIZE;
615                 rxsize = msg->size + 1;
616
617                 if (WARN_ON(rxsize > 20))
618                         return -E2BIG;
619
620                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
621                 if (ret > 0) {
622                         msg->reply = rxbuf[0] >> 4;
623                         /*
624                          * Assume happy day, and copy the data. The caller is
625                          * expected to check msg->reply before touching it.
626                          *
627                          * Return payload size.
628                          */
629                         ret--;
630                         memcpy(msg->buffer, rxbuf + 1, ret);
631                 }
632                 break;
633
634         default:
635                 ret = -EINVAL;
636                 break;
637         }
638
639         return ret;
640 }
641
642 static void
643 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
644 {
645         struct drm_device *dev = intel_dp_to_dev(intel_dp);
646
647         intel_dp->aux.dev = dev->dev;
648         intel_dp->aux.transfer = intel_dp_aux_transfer;
649 }
650
651 static int
652 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
653                     uint8_t write_byte, uint8_t *read_byte)
654 {
655         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
656         struct intel_dp *intel_dp = container_of(adapter,
657                                                 struct intel_dp,
658                                                 adapter);
659         uint16_t address = algo_data->address;
660         uint8_t msg[5];
661         uint8_t reply[2];
662         unsigned retry;
663         int msg_bytes;
664         int reply_bytes;
665         int ret;
666
667         /* Set up the command byte */
668         if (mode & MODE_I2C_READ)
669                 msg[0] = DP_AUX_I2C_READ << 4;
670         else
671                 msg[0] = DP_AUX_I2C_WRITE << 4;
672
673         if (!(mode & MODE_I2C_STOP))
674                 msg[0] |= DP_AUX_I2C_MOT << 4;
675
676         msg[1] = address >> 8;
677         msg[2] = address;
678
679         switch (mode) {
680         case MODE_I2C_WRITE:
681                 msg[3] = 0;
682                 msg[4] = write_byte;
683                 msg_bytes = 5;
684                 reply_bytes = 1;
685                 break;
686         case MODE_I2C_READ:
687                 msg[3] = 0;
688                 msg_bytes = 4;
689                 reply_bytes = 2;
690                 break;
691         default:
692                 msg_bytes = 3;
693                 reply_bytes = 1;
694                 break;
695         }
696
697         /*
698          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
699          * required to retry at least seven times upon receiving AUX_DEFER
700          * before giving up the AUX transaction.
701          */
702         for (retry = 0; retry < 7; retry++) {
703                 ret = intel_dp_aux_ch(intel_dp,
704                                       msg, msg_bytes,
705                                       reply, reply_bytes);
706                 if (ret < 0) {
707                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
708                         goto out;
709                 }
710
711                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
712                 case DP_AUX_NATIVE_REPLY_ACK:
713                         /* I2C-over-AUX Reply field is only valid
714                          * when paired with AUX ACK.
715                          */
716                         break;
717                 case DP_AUX_NATIVE_REPLY_NACK:
718                         DRM_DEBUG_KMS("aux_ch native nack\n");
719                         ret = -EREMOTEIO;
720                         goto out;
721                 case DP_AUX_NATIVE_REPLY_DEFER:
722                         /*
723                          * For now, just give more slack to branch devices. We
724                          * could check the DPCD for I2C bit rate capabilities,
725                          * and if available, adjust the interval. We could also
726                          * be more careful with DP-to-Legacy adapters where a
727                          * long legacy cable may force very low I2C bit rates.
728                          */
729                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
730                             DP_DWN_STRM_PORT_PRESENT)
731                                 usleep_range(500, 600);
732                         else
733                                 usleep_range(300, 400);
734                         continue;
735                 default:
736                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
737                                   reply[0]);
738                         ret = -EREMOTEIO;
739                         goto out;
740                 }
741
742                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
743                 case DP_AUX_I2C_REPLY_ACK:
744                         if (mode == MODE_I2C_READ) {
745                                 *read_byte = reply[1];
746                         }
747                         ret = reply_bytes - 1;
748                         goto out;
749                 case DP_AUX_I2C_REPLY_NACK:
750                         DRM_DEBUG_KMS("aux_i2c nack\n");
751                         ret = -EREMOTEIO;
752                         goto out;
753                 case DP_AUX_I2C_REPLY_DEFER:
754                         DRM_DEBUG_KMS("aux_i2c defer\n");
755                         udelay(100);
756                         break;
757                 default:
758                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
759                         ret = -EREMOTEIO;
760                         goto out;
761                 }
762         }
763
764         DRM_ERROR("too many retries, giving up\n");
765         ret = -EREMOTEIO;
766
767 out:
768         return ret;
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776         sysfs_remove_link(&intel_connector->base.kdev->kobj,
777                           intel_dp->adapter.dev.kobj.name);
778         intel_connector_unregister(intel_connector);
779 }
780
781 static int
782 intel_dp_i2c_init(struct intel_dp *intel_dp,
783                   struct intel_connector *intel_connector, const char *name)
784 {
785         int     ret;
786
787         DRM_DEBUG_KMS("i2c_init %s\n", name);
788         intel_dp->algo.running = false;
789         intel_dp->algo.address = 0;
790         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
791
792         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
793         intel_dp->adapter.owner = THIS_MODULE;
794         intel_dp->adapter.class = I2C_CLASS_DDC;
795         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
796         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
797         intel_dp->adapter.algo_data = &intel_dp->algo;
798         intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
799
800         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
801         if (ret < 0)
802                 return ret;
803
804         ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
805                                 &intel_dp->adapter.dev.kobj,
806                                 intel_dp->adapter.dev.kobj.name);
807
808         if (ret < 0)
809                 i2c_del_adapter(&intel_dp->adapter);
810
811         return ret;
812 }
813
814 static void
815 intel_dp_set_clock(struct intel_encoder *encoder,
816                    struct intel_crtc_config *pipe_config, int link_bw)
817 {
818         struct drm_device *dev = encoder->base.dev;
819         const struct dp_link_dpll *divisor = NULL;
820         int i, count = 0;
821
822         if (IS_G4X(dev)) {
823                 divisor = gen4_dpll;
824                 count = ARRAY_SIZE(gen4_dpll);
825         } else if (IS_HASWELL(dev)) {
826                 /* Haswell has special-purpose DP DDI clocks. */
827         } else if (HAS_PCH_SPLIT(dev)) {
828                 divisor = pch_dpll;
829                 count = ARRAY_SIZE(pch_dpll);
830         } else if (IS_VALLEYVIEW(dev)) {
831                 divisor = vlv_dpll;
832                 count = ARRAY_SIZE(vlv_dpll);
833         }
834
835         if (divisor && count) {
836                 for (i = 0; i < count; i++) {
837                         if (link_bw == divisor[i].link_bw) {
838                                 pipe_config->dpll = divisor[i].dpll;
839                                 pipe_config->clock_set = true;
840                                 break;
841                         }
842                 }
843         }
844 }
845
846 bool
847 intel_dp_compute_config(struct intel_encoder *encoder,
848                         struct intel_crtc_config *pipe_config)
849 {
850         struct drm_device *dev = encoder->base.dev;
851         struct drm_i915_private *dev_priv = dev->dev_private;
852         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
853         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
854         enum port port = dp_to_dig_port(intel_dp)->port;
855         struct intel_crtc *intel_crtc = encoder->new_crtc;
856         struct intel_connector *intel_connector = intel_dp->attached_connector;
857         int lane_count, clock;
858         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
859         /* Conveniently, the link BW constants become indices with a shift...*/
860         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
861         int bpp, mode_rate;
862         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
863         int link_avail, link_clock;
864
865         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
866                 pipe_config->has_pch_encoder = true;
867
868         pipe_config->has_dp_encoder = true;
869
870         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
871                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
872                                        adjusted_mode);
873                 if (!HAS_PCH_SPLIT(dev))
874                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
875                                                  intel_connector->panel.fitting_mode);
876                 else
877                         intel_pch_panel_fitting(intel_crtc, pipe_config,
878                                                 intel_connector->panel.fitting_mode);
879         }
880
881         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
882                 return false;
883
884         DRM_DEBUG_KMS("DP link computation with max lane count %i "
885                       "max bw %02x pixel clock %iKHz\n",
886                       max_lane_count, bws[max_clock],
887                       adjusted_mode->crtc_clock);
888
889         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
890          * bpc in between. */
891         bpp = pipe_config->pipe_bpp;
892         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
893             dev_priv->vbt.edp_bpp < bpp) {
894                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
895                               dev_priv->vbt.edp_bpp);
896                 bpp = dev_priv->vbt.edp_bpp;
897         }
898
899         for (; bpp >= 6*3; bpp -= 2*3) {
900                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
901                                                    bpp);
902
903                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
904                         for (clock = 0; clock <= max_clock; clock++) {
905                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
906                                 link_avail = intel_dp_max_data_rate(link_clock,
907                                                                     lane_count);
908
909                                 if (mode_rate <= link_avail) {
910                                         goto found;
911                                 }
912                         }
913                 }
914         }
915
916         return false;
917
918 found:
919         if (intel_dp->color_range_auto) {
920                 /*
921                  * See:
922                  * CEA-861-E - 5.1 Default Encoding Parameters
923                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
924                  */
925                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
926                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
927                 else
928                         intel_dp->color_range = 0;
929         }
930
931         if (intel_dp->color_range)
932                 pipe_config->limited_color_range = true;
933
934         intel_dp->link_bw = bws[clock];
935         intel_dp->lane_count = lane_count;
936         pipe_config->pipe_bpp = bpp;
937         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
938
939         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
940                       intel_dp->link_bw, intel_dp->lane_count,
941                       pipe_config->port_clock, bpp);
942         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
943                       mode_rate, link_avail);
944
945         intel_link_compute_m_n(bpp, lane_count,
946                                adjusted_mode->crtc_clock,
947                                pipe_config->port_clock,
948                                &pipe_config->dp_m_n);
949
950         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
951
952         return true;
953 }
954
955 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
956 {
957         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
958         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
959         struct drm_device *dev = crtc->base.dev;
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 dpa_ctl;
962
963         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
964         dpa_ctl = I915_READ(DP_A);
965         dpa_ctl &= ~DP_PLL_FREQ_MASK;
966
967         if (crtc->config.port_clock == 162000) {
968                 /* For a long time we've carried around a ILK-DevA w/a for the
969                  * 160MHz clock. If we're really unlucky, it's still required.
970                  */
971                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
972                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
973                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
974         } else {
975                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
976                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
977         }
978
979         I915_WRITE(DP_A, dpa_ctl);
980
981         POSTING_READ(DP_A);
982         udelay(500);
983 }
984
985 static void intel_dp_mode_set(struct intel_encoder *encoder)
986 {
987         struct drm_device *dev = encoder->base.dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
990         enum port port = dp_to_dig_port(intel_dp)->port;
991         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
992         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
993
994         /*
995          * There are four kinds of DP registers:
996          *
997          *      IBX PCH
998          *      SNB CPU
999          *      IVB CPU
1000          *      CPT PCH
1001          *
1002          * IBX PCH and CPU are the same for almost everything,
1003          * except that the CPU DP PLL is configured in this
1004          * register
1005          *
1006          * CPT PCH is quite different, having many bits moved
1007          * to the TRANS_DP_CTL register instead. That
1008          * configuration happens (oddly) in ironlake_pch_enable
1009          */
1010
1011         /* Preserve the BIOS-computed detected bit. This is
1012          * supposed to be read-only.
1013          */
1014         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1015
1016         /* Handle DP bits in common between all three register formats */
1017         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1018         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1019
1020         if (intel_dp->has_audio) {
1021                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1022                                  pipe_name(crtc->pipe));
1023                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1024                 intel_write_eld(&encoder->base, adjusted_mode);
1025         }
1026
1027         /* Split out the IBX/CPU vs CPT settings */
1028
1029         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1030                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1031                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1032                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1033                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1034                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1035
1036                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1037                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1038
1039                 intel_dp->DP |= crtc->pipe << 29;
1040         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1041                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1042                         intel_dp->DP |= intel_dp->color_range;
1043
1044                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1045                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1046                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1047                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1048                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1049
1050                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1051                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1052
1053                 if (crtc->pipe == 1)
1054                         intel_dp->DP |= DP_PIPEB_SELECT;
1055         } else {
1056                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1057         }
1058
1059         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1060                 ironlake_set_pll_cpu_edp(intel_dp);
1061 }
1062
1063 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1064 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1065
1066 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1067 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1068
1069 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1070 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1071
1072 static void wait_panel_status(struct intel_dp *intel_dp,
1073                                        u32 mask,
1074                                        u32 value)
1075 {
1076         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078         u32 pp_stat_reg, pp_ctrl_reg;
1079
1080         pp_stat_reg = _pp_stat_reg(intel_dp);
1081         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1082
1083         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1084                         mask, value,
1085                         I915_READ(pp_stat_reg),
1086                         I915_READ(pp_ctrl_reg));
1087
1088         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1089                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1090                                 I915_READ(pp_stat_reg),
1091                                 I915_READ(pp_ctrl_reg));
1092         }
1093
1094         DRM_DEBUG_KMS("Wait complete\n");
1095 }
1096
1097 static void wait_panel_on(struct intel_dp *intel_dp)
1098 {
1099         DRM_DEBUG_KMS("Wait for panel power on\n");
1100         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1101 }
1102
1103 static void wait_panel_off(struct intel_dp *intel_dp)
1104 {
1105         DRM_DEBUG_KMS("Wait for panel power off time\n");
1106         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1107 }
1108
1109 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1110 {
1111         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1112
1113         /* When we disable the VDD override bit last we have to do the manual
1114          * wait. */
1115         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1116                                        intel_dp->panel_power_cycle_delay);
1117
1118         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1119 }
1120
1121 static void wait_backlight_on(struct intel_dp *intel_dp)
1122 {
1123         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1124                                        intel_dp->backlight_on_delay);
1125 }
1126
1127 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1128 {
1129         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1130                                        intel_dp->backlight_off_delay);
1131 }
1132
1133 /* Read the current pp_control value, unlocking the register if it
1134  * is locked
1135  */
1136
1137 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1138 {
1139         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         u32 control;
1142
1143         control = I915_READ(_pp_ctrl_reg(intel_dp));
1144         control &= ~PANEL_UNLOCK_MASK;
1145         control |= PANEL_UNLOCK_REGS;
1146         return control;
1147 }
1148
1149 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1150 {
1151         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1152         struct drm_i915_private *dev_priv = dev->dev_private;
1153         u32 pp;
1154         u32 pp_stat_reg, pp_ctrl_reg;
1155         bool need_to_disable = !intel_dp->want_panel_vdd;
1156
1157         if (!is_edp(intel_dp))
1158                 return false;
1159
1160         intel_dp->want_panel_vdd = true;
1161
1162         if (edp_have_panel_vdd(intel_dp))
1163                 return need_to_disable;
1164
1165         intel_runtime_pm_get(dev_priv);
1166
1167         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1168
1169         if (!edp_have_panel_power(intel_dp))
1170                 wait_panel_power_cycle(intel_dp);
1171
1172         pp = ironlake_get_pp_control(intel_dp);
1173         pp |= EDP_FORCE_VDD;
1174
1175         pp_stat_reg = _pp_stat_reg(intel_dp);
1176         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1177
1178         I915_WRITE(pp_ctrl_reg, pp);
1179         POSTING_READ(pp_ctrl_reg);
1180         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1181                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1182         /*
1183          * If the panel wasn't on, delay before accessing aux channel
1184          */
1185         if (!edp_have_panel_power(intel_dp)) {
1186                 DRM_DEBUG_KMS("eDP was not running\n");
1187                 msleep(intel_dp->panel_power_up_delay);
1188         }
1189
1190         return need_to_disable;
1191 }
1192
1193 static void edp_panel_vdd_on(struct intel_dp *intel_dp)
1194 {
1195         if (is_edp(intel_dp)) {
1196                 bool vdd = _edp_panel_vdd_on(intel_dp);
1197
1198                 WARN(!vdd, "eDP VDD already requested on\n");
1199         }
1200 }
1201
1202 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1203 {
1204         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1205         struct drm_i915_private *dev_priv = dev->dev_private;
1206         u32 pp;
1207         u32 pp_stat_reg, pp_ctrl_reg;
1208
1209         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1210
1211         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1212                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1213
1214                 pp = ironlake_get_pp_control(intel_dp);
1215                 pp &= ~EDP_FORCE_VDD;
1216
1217                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1218                 pp_stat_reg = _pp_stat_reg(intel_dp);
1219
1220                 I915_WRITE(pp_ctrl_reg, pp);
1221                 POSTING_READ(pp_ctrl_reg);
1222
1223                 /* Make sure sequencer is idle before allowing subsequent activity */
1224                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1225                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1226
1227                 if ((pp & POWER_TARGET_ON) == 0)
1228                         intel_dp->last_power_cycle = jiffies;
1229
1230                 intel_runtime_pm_put(dev_priv);
1231         }
1232 }
1233
1234 static void edp_panel_vdd_work(struct work_struct *__work)
1235 {
1236         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1237                                                  struct intel_dp, panel_vdd_work);
1238         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1239
1240         mutex_lock(&dev->mode_config.mutex);
1241         edp_panel_vdd_off_sync(intel_dp);
1242         mutex_unlock(&dev->mode_config.mutex);
1243 }
1244
1245 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1246 {
1247         if (!is_edp(intel_dp))
1248                 return;
1249
1250         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1251
1252         intel_dp->want_panel_vdd = false;
1253
1254         if (sync) {
1255                 edp_panel_vdd_off_sync(intel_dp);
1256         } else {
1257                 /*
1258                  * Queue the timer to fire a long
1259                  * time from now (relative to the power down delay)
1260                  * to keep the panel power up across a sequence of operations
1261                  */
1262                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1263                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1264         }
1265 }
1266
1267 void intel_edp_panel_on(struct intel_dp *intel_dp)
1268 {
1269         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         u32 pp;
1272         u32 pp_ctrl_reg;
1273
1274         if (!is_edp(intel_dp))
1275                 return;
1276
1277         DRM_DEBUG_KMS("Turn eDP power on\n");
1278
1279         if (edp_have_panel_power(intel_dp)) {
1280                 DRM_DEBUG_KMS("eDP power already on\n");
1281                 return;
1282         }
1283
1284         wait_panel_power_cycle(intel_dp);
1285
1286         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1287         pp = ironlake_get_pp_control(intel_dp);
1288         if (IS_GEN5(dev)) {
1289                 /* ILK workaround: disable reset around power sequence */
1290                 pp &= ~PANEL_POWER_RESET;
1291                 I915_WRITE(pp_ctrl_reg, pp);
1292                 POSTING_READ(pp_ctrl_reg);
1293         }
1294
1295         pp |= POWER_TARGET_ON;
1296         if (!IS_GEN5(dev))
1297                 pp |= PANEL_POWER_RESET;
1298
1299         I915_WRITE(pp_ctrl_reg, pp);
1300         POSTING_READ(pp_ctrl_reg);
1301
1302         wait_panel_on(intel_dp);
1303         intel_dp->last_power_on = jiffies;
1304
1305         if (IS_GEN5(dev)) {
1306                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1307                 I915_WRITE(pp_ctrl_reg, pp);
1308                 POSTING_READ(pp_ctrl_reg);
1309         }
1310 }
1311
1312 void intel_edp_panel_off(struct intel_dp *intel_dp)
1313 {
1314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         u32 pp;
1317         u32 pp_ctrl_reg;
1318
1319         if (!is_edp(intel_dp))
1320                 return;
1321
1322         DRM_DEBUG_KMS("Turn eDP power off\n");
1323
1324         edp_wait_backlight_off(intel_dp);
1325
1326         pp = ironlake_get_pp_control(intel_dp);
1327         /* We need to switch off panel power _and_ force vdd, for otherwise some
1328          * panels get very unhappy and cease to work. */
1329         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1330                 EDP_BLC_ENABLE);
1331
1332         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1333
1334         I915_WRITE(pp_ctrl_reg, pp);
1335         POSTING_READ(pp_ctrl_reg);
1336
1337         intel_dp->last_power_cycle = jiffies;
1338         wait_panel_off(intel_dp);
1339 }
1340
1341 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1342 {
1343         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1344         struct drm_device *dev = intel_dig_port->base.base.dev;
1345         struct drm_i915_private *dev_priv = dev->dev_private;
1346         u32 pp;
1347         u32 pp_ctrl_reg;
1348
1349         if (!is_edp(intel_dp))
1350                 return;
1351
1352         DRM_DEBUG_KMS("\n");
1353         /*
1354          * If we enable the backlight right away following a panel power
1355          * on, we may see slight flicker as the panel syncs with the eDP
1356          * link.  So delay a bit to make sure the image is solid before
1357          * allowing it to appear.
1358          */
1359         wait_backlight_on(intel_dp);
1360         pp = ironlake_get_pp_control(intel_dp);
1361         pp |= EDP_BLC_ENABLE;
1362
1363         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1364
1365         I915_WRITE(pp_ctrl_reg, pp);
1366         POSTING_READ(pp_ctrl_reg);
1367
1368         intel_panel_enable_backlight(intel_dp->attached_connector);
1369 }
1370
1371 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1372 {
1373         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         u32 pp;
1376         u32 pp_ctrl_reg;
1377
1378         if (!is_edp(intel_dp))
1379                 return;
1380
1381         intel_panel_disable_backlight(intel_dp->attached_connector);
1382
1383         DRM_DEBUG_KMS("\n");
1384         pp = ironlake_get_pp_control(intel_dp);
1385         pp &= ~EDP_BLC_ENABLE;
1386
1387         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389         I915_WRITE(pp_ctrl_reg, pp);
1390         POSTING_READ(pp_ctrl_reg);
1391         intel_dp->last_backlight_off = jiffies;
1392 }
1393
1394 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1395 {
1396         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1397         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1398         struct drm_device *dev = crtc->dev;
1399         struct drm_i915_private *dev_priv = dev->dev_private;
1400         u32 dpa_ctl;
1401
1402         assert_pipe_disabled(dev_priv,
1403                              to_intel_crtc(crtc)->pipe);
1404
1405         DRM_DEBUG_KMS("\n");
1406         dpa_ctl = I915_READ(DP_A);
1407         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1408         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1409
1410         /* We don't adjust intel_dp->DP while tearing down the link, to
1411          * facilitate link retraining (e.g. after hotplug). Hence clear all
1412          * enable bits here to ensure that we don't enable too much. */
1413         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1414         intel_dp->DP |= DP_PLL_ENABLE;
1415         I915_WRITE(DP_A, intel_dp->DP);
1416         POSTING_READ(DP_A);
1417         udelay(200);
1418 }
1419
1420 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1421 {
1422         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1423         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1424         struct drm_device *dev = crtc->dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         u32 dpa_ctl;
1427
1428         assert_pipe_disabled(dev_priv,
1429                              to_intel_crtc(crtc)->pipe);
1430
1431         dpa_ctl = I915_READ(DP_A);
1432         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1433              "dp pll off, should be on\n");
1434         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1435
1436         /* We can't rely on the value tracked for the DP register in
1437          * intel_dp->DP because link_down must not change that (otherwise link
1438          * re-training will fail. */
1439         dpa_ctl &= ~DP_PLL_ENABLE;
1440         I915_WRITE(DP_A, dpa_ctl);
1441         POSTING_READ(DP_A);
1442         udelay(200);
1443 }
1444
1445 /* If the sink supports it, try to set the power state appropriately */
1446 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1447 {
1448         int ret, i;
1449
1450         /* Should have a valid DPCD by this point */
1451         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1452                 return;
1453
1454         if (mode != DRM_MODE_DPMS_ON) {
1455                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1456                                          DP_SET_POWER_D3);
1457                 if (ret != 1)
1458                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1459         } else {
1460                 /*
1461                  * When turning on, we need to retry for 1ms to give the sink
1462                  * time to wake up.
1463                  */
1464                 for (i = 0; i < 3; i++) {
1465                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1466                                                  DP_SET_POWER_D0);
1467                         if (ret == 1)
1468                                 break;
1469                         msleep(1);
1470                 }
1471         }
1472 }
1473
1474 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1475                                   enum pipe *pipe)
1476 {
1477         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1478         enum port port = dp_to_dig_port(intel_dp)->port;
1479         struct drm_device *dev = encoder->base.dev;
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         enum intel_display_power_domain power_domain;
1482         u32 tmp;
1483
1484         power_domain = intel_display_port_power_domain(encoder);
1485         if (!intel_display_power_enabled(dev_priv, power_domain))
1486                 return false;
1487
1488         tmp = I915_READ(intel_dp->output_reg);
1489
1490         if (!(tmp & DP_PORT_EN))
1491                 return false;
1492
1493         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1494                 *pipe = PORT_TO_PIPE_CPT(tmp);
1495         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1496                 *pipe = PORT_TO_PIPE(tmp);
1497         } else {
1498                 u32 trans_sel;
1499                 u32 trans_dp;
1500                 int i;
1501
1502                 switch (intel_dp->output_reg) {
1503                 case PCH_DP_B:
1504                         trans_sel = TRANS_DP_PORT_SEL_B;
1505                         break;
1506                 case PCH_DP_C:
1507                         trans_sel = TRANS_DP_PORT_SEL_C;
1508                         break;
1509                 case PCH_DP_D:
1510                         trans_sel = TRANS_DP_PORT_SEL_D;
1511                         break;
1512                 default:
1513                         return true;
1514                 }
1515
1516                 for_each_pipe(i) {
1517                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1518                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1519                                 *pipe = i;
1520                                 return true;
1521                         }
1522                 }
1523
1524                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1525                               intel_dp->output_reg);
1526         }
1527
1528         return true;
1529 }
1530
1531 static void intel_dp_get_config(struct intel_encoder *encoder,
1532                                 struct intel_crtc_config *pipe_config)
1533 {
1534         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1535         u32 tmp, flags = 0;
1536         struct drm_device *dev = encoder->base.dev;
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         enum port port = dp_to_dig_port(intel_dp)->port;
1539         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1540         int dotclock;
1541
1542         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1543                 tmp = I915_READ(intel_dp->output_reg);
1544                 if (tmp & DP_SYNC_HS_HIGH)
1545                         flags |= DRM_MODE_FLAG_PHSYNC;
1546                 else
1547                         flags |= DRM_MODE_FLAG_NHSYNC;
1548
1549                 if (tmp & DP_SYNC_VS_HIGH)
1550                         flags |= DRM_MODE_FLAG_PVSYNC;
1551                 else
1552                         flags |= DRM_MODE_FLAG_NVSYNC;
1553         } else {
1554                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1555                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1556                         flags |= DRM_MODE_FLAG_PHSYNC;
1557                 else
1558                         flags |= DRM_MODE_FLAG_NHSYNC;
1559
1560                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1561                         flags |= DRM_MODE_FLAG_PVSYNC;
1562                 else
1563                         flags |= DRM_MODE_FLAG_NVSYNC;
1564         }
1565
1566         pipe_config->adjusted_mode.flags |= flags;
1567
1568         pipe_config->has_dp_encoder = true;
1569
1570         intel_dp_get_m_n(crtc, pipe_config);
1571
1572         if (port == PORT_A) {
1573                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1574                         pipe_config->port_clock = 162000;
1575                 else
1576                         pipe_config->port_clock = 270000;
1577         }
1578
1579         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1580                                             &pipe_config->dp_m_n);
1581
1582         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1583                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1584
1585         pipe_config->adjusted_mode.crtc_clock = dotclock;
1586
1587         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1588             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1589                 /*
1590                  * This is a big fat ugly hack.
1591                  *
1592                  * Some machines in UEFI boot mode provide us a VBT that has 18
1593                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1594                  * unknown we fail to light up. Yet the same BIOS boots up with
1595                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1596                  * max, not what it tells us to use.
1597                  *
1598                  * Note: This will still be broken if the eDP panel is not lit
1599                  * up by the BIOS, and thus we can't get the mode at module
1600                  * load.
1601                  */
1602                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1603                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1604                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1605         }
1606 }
1607
1608 static bool is_edp_psr(struct drm_device *dev)
1609 {
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611
1612         return dev_priv->psr.sink_support;
1613 }
1614
1615 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618
1619         if (!HAS_PSR(dev))
1620                 return false;
1621
1622         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1623 }
1624
1625 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1626                                     struct edp_vsc_psr *vsc_psr)
1627 {
1628         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1629         struct drm_device *dev = dig_port->base.base.dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1632         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1633         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1634         uint32_t *data = (uint32_t *) vsc_psr;
1635         unsigned int i;
1636
1637         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1638            the video DIP being updated before program video DIP data buffer
1639            registers for DIP being updated. */
1640         I915_WRITE(ctl_reg, 0);
1641         POSTING_READ(ctl_reg);
1642
1643         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1644                 if (i < sizeof(struct edp_vsc_psr))
1645                         I915_WRITE(data_reg + i, *data++);
1646                 else
1647                         I915_WRITE(data_reg + i, 0);
1648         }
1649
1650         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1651         POSTING_READ(ctl_reg);
1652 }
1653
1654 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1655 {
1656         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         struct edp_vsc_psr psr_vsc;
1659
1660         if (intel_dp->psr_setup_done)
1661                 return;
1662
1663         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1664         memset(&psr_vsc, 0, sizeof(psr_vsc));
1665         psr_vsc.sdp_header.HB0 = 0;
1666         psr_vsc.sdp_header.HB1 = 0x7;
1667         psr_vsc.sdp_header.HB2 = 0x2;
1668         psr_vsc.sdp_header.HB3 = 0x8;
1669         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1670
1671         /* Avoid continuous PSR exit by masking memup and hpd */
1672         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1673                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1674
1675         intel_dp->psr_setup_done = true;
1676 }
1677
1678 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1679 {
1680         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         uint32_t aux_clock_divider;
1683         int precharge = 0x3;
1684         int msg_size = 5;       /* Header(4) + Message(1) */
1685
1686         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1687
1688         /* Enable PSR in sink */
1689         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1690                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1691                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1692         else
1693                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1694                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1695
1696         /* Setup AUX registers */
1697         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1698         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1699         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1700                    DP_AUX_CH_CTL_TIME_OUT_400us |
1701                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1702                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1703                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1704 }
1705
1706 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1707 {
1708         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1709         struct drm_i915_private *dev_priv = dev->dev_private;
1710         uint32_t max_sleep_time = 0x1f;
1711         uint32_t idle_frames = 1;
1712         uint32_t val = 0x0;
1713         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1714
1715         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1716                 val |= EDP_PSR_LINK_STANDBY;
1717                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1718                 val |= EDP_PSR_TP1_TIME_0us;
1719                 val |= EDP_PSR_SKIP_AUX_EXIT;
1720         } else
1721                 val |= EDP_PSR_LINK_DISABLE;
1722
1723         I915_WRITE(EDP_PSR_CTL(dev), val |
1724                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1725                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1726                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1727                    EDP_PSR_ENABLE);
1728 }
1729
1730 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1731 {
1732         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1733         struct drm_device *dev = dig_port->base.base.dev;
1734         struct drm_i915_private *dev_priv = dev->dev_private;
1735         struct drm_crtc *crtc = dig_port->base.base.crtc;
1736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1737         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1738         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1739
1740         dev_priv->psr.source_ok = false;
1741
1742         if (!HAS_PSR(dev)) {
1743                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1744                 return false;
1745         }
1746
1747         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1748             (dig_port->port != PORT_A)) {
1749                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1750                 return false;
1751         }
1752
1753         if (!i915.enable_psr) {
1754                 DRM_DEBUG_KMS("PSR disable by flag\n");
1755                 return false;
1756         }
1757
1758         crtc = dig_port->base.base.crtc;
1759         if (crtc == NULL) {
1760                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1761                 return false;
1762         }
1763
1764         intel_crtc = to_intel_crtc(crtc);
1765         if (!intel_crtc_active(crtc)) {
1766                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1767                 return false;
1768         }
1769
1770         obj = to_intel_framebuffer(crtc->fb)->obj;
1771         if (obj->tiling_mode != I915_TILING_X ||
1772             obj->fence_reg == I915_FENCE_REG_NONE) {
1773                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1774                 return false;
1775         }
1776
1777         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1778                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1779                 return false;
1780         }
1781
1782         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1783             S3D_ENABLE) {
1784                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1785                 return false;
1786         }
1787
1788         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1789                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1790                 return false;
1791         }
1792
1793         dev_priv->psr.source_ok = true;
1794         return true;
1795 }
1796
1797 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1798 {
1799         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1800
1801         if (!intel_edp_psr_match_conditions(intel_dp) ||
1802             intel_edp_is_psr_enabled(dev))
1803                 return;
1804
1805         /* Setup PSR once */
1806         intel_edp_psr_setup(intel_dp);
1807
1808         /* Enable PSR on the panel */
1809         intel_edp_psr_enable_sink(intel_dp);
1810
1811         /* Enable PSR on the host */
1812         intel_edp_psr_enable_source(intel_dp);
1813 }
1814
1815 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1816 {
1817         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1818
1819         if (intel_edp_psr_match_conditions(intel_dp) &&
1820             !intel_edp_is_psr_enabled(dev))
1821                 intel_edp_psr_do_enable(intel_dp);
1822 }
1823
1824 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1825 {
1826         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1827         struct drm_i915_private *dev_priv = dev->dev_private;
1828
1829         if (!intel_edp_is_psr_enabled(dev))
1830                 return;
1831
1832         I915_WRITE(EDP_PSR_CTL(dev),
1833                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1834
1835         /* Wait till PSR is idle */
1836         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1837                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1838                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1839 }
1840
1841 void intel_edp_psr_update(struct drm_device *dev)
1842 {
1843         struct intel_encoder *encoder;
1844         struct intel_dp *intel_dp = NULL;
1845
1846         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1847                 if (encoder->type == INTEL_OUTPUT_EDP) {
1848                         intel_dp = enc_to_intel_dp(&encoder->base);
1849
1850                         if (!is_edp_psr(dev))
1851                                 return;
1852
1853                         if (!intel_edp_psr_match_conditions(intel_dp))
1854                                 intel_edp_psr_disable(intel_dp);
1855                         else
1856                                 if (!intel_edp_is_psr_enabled(dev))
1857                                         intel_edp_psr_do_enable(intel_dp);
1858                 }
1859 }
1860
1861 static void intel_disable_dp(struct intel_encoder *encoder)
1862 {
1863         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1864         enum port port = dp_to_dig_port(intel_dp)->port;
1865         struct drm_device *dev = encoder->base.dev;
1866
1867         /* Make sure the panel is off before trying to change the mode. But also
1868          * ensure that we have vdd while we switch off the panel. */
1869         edp_panel_vdd_on(intel_dp);
1870         intel_edp_backlight_off(intel_dp);
1871         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1872         intel_edp_panel_off(intel_dp);
1873         edp_panel_vdd_off(intel_dp, true);
1874
1875         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1876         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1877                 intel_dp_link_down(intel_dp);
1878 }
1879
1880 static void intel_post_disable_dp(struct intel_encoder *encoder)
1881 {
1882         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1883         enum port port = dp_to_dig_port(intel_dp)->port;
1884         struct drm_device *dev = encoder->base.dev;
1885
1886         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1887                 intel_dp_link_down(intel_dp);
1888                 if (!IS_VALLEYVIEW(dev))
1889                         ironlake_edp_pll_off(intel_dp);
1890         }
1891 }
1892
1893 static void intel_enable_dp(struct intel_encoder *encoder)
1894 {
1895         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1896         struct drm_device *dev = encoder->base.dev;
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1899
1900         if (WARN_ON(dp_reg & DP_PORT_EN))
1901                 return;
1902
1903         edp_panel_vdd_on(intel_dp);
1904         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1905         intel_dp_start_link_train(intel_dp);
1906         intel_edp_panel_on(intel_dp);
1907         edp_panel_vdd_off(intel_dp, true);
1908         intel_dp_complete_link_train(intel_dp);
1909         intel_dp_stop_link_train(intel_dp);
1910 }
1911
1912 static void g4x_enable_dp(struct intel_encoder *encoder)
1913 {
1914         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1915
1916         intel_enable_dp(encoder);
1917         intel_edp_backlight_on(intel_dp);
1918 }
1919
1920 static void vlv_enable_dp(struct intel_encoder *encoder)
1921 {
1922         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1923
1924         intel_edp_backlight_on(intel_dp);
1925 }
1926
1927 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1928 {
1929         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1930         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1931
1932         if (dport->port == PORT_A)
1933                 ironlake_edp_pll_on(intel_dp);
1934 }
1935
1936 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1937 {
1938         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1939         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1940         struct drm_device *dev = encoder->base.dev;
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1943         enum dpio_channel port = vlv_dport_to_channel(dport);
1944         int pipe = intel_crtc->pipe;
1945         struct edp_power_seq power_seq;
1946         u32 val;
1947
1948         mutex_lock(&dev_priv->dpio_lock);
1949
1950         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1951         val = 0;
1952         if (pipe)
1953                 val |= (1<<21);
1954         else
1955                 val &= ~(1<<21);
1956         val |= 0x001000c4;
1957         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1958         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1959         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1960
1961         mutex_unlock(&dev_priv->dpio_lock);
1962
1963         if (is_edp(intel_dp)) {
1964                 /* init power sequencer on this pipe and port */
1965                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1966                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1967                                                               &power_seq);
1968         }
1969
1970         intel_enable_dp(encoder);
1971
1972         vlv_wait_port_ready(dev_priv, dport);
1973 }
1974
1975 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1976 {
1977         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1978         struct drm_device *dev = encoder->base.dev;
1979         struct drm_i915_private *dev_priv = dev->dev_private;
1980         struct intel_crtc *intel_crtc =
1981                 to_intel_crtc(encoder->base.crtc);
1982         enum dpio_channel port = vlv_dport_to_channel(dport);
1983         int pipe = intel_crtc->pipe;
1984
1985         /* Program Tx lane resets to default */
1986         mutex_lock(&dev_priv->dpio_lock);
1987         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1988                          DPIO_PCS_TX_LANE2_RESET |
1989                          DPIO_PCS_TX_LANE1_RESET);
1990         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1991                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1992                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1993                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1994                                  DPIO_PCS_CLK_SOFT_RESET);
1995
1996         /* Fix up inter-pair skew failure */
1997         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1998         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1999         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2000         mutex_unlock(&dev_priv->dpio_lock);
2001 }
2002
2003 /*
2004  * Native read with retry for link status and receiver capability reads for
2005  * cases where the sink may still be asleep.
2006  *
2007  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2008  * supposed to retry 3 times per the spec.
2009  */
2010 static ssize_t
2011 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2012                         void *buffer, size_t size)
2013 {
2014         ssize_t ret;
2015         int i;
2016
2017         for (i = 0; i < 3; i++) {
2018                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2019                 if (ret == size)
2020                         return ret;
2021                 msleep(1);
2022         }
2023
2024         return ret;
2025 }
2026
2027 /*
2028  * Fetch AUX CH registers 0x202 - 0x207 which contain
2029  * link status information
2030  */
2031 static bool
2032 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2033 {
2034         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2035                                        DP_LANE0_1_STATUS,
2036                                        link_status,
2037                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2038 }
2039
2040 /*
2041  * These are source-specific values; current Intel hardware supports
2042  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2043  */
2044
2045 static uint8_t
2046 intel_dp_voltage_max(struct intel_dp *intel_dp)
2047 {
2048         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2049         enum port port = dp_to_dig_port(intel_dp)->port;
2050
2051         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2052                 return DP_TRAIN_VOLTAGE_SWING_1200;
2053         else if (IS_GEN7(dev) && port == PORT_A)
2054                 return DP_TRAIN_VOLTAGE_SWING_800;
2055         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2056                 return DP_TRAIN_VOLTAGE_SWING_1200;
2057         else
2058                 return DP_TRAIN_VOLTAGE_SWING_800;
2059 }
2060
2061 static uint8_t
2062 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2063 {
2064         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2065         enum port port = dp_to_dig_port(intel_dp)->port;
2066
2067         if (IS_BROADWELL(dev)) {
2068                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2069                 case DP_TRAIN_VOLTAGE_SWING_400:
2070                 case DP_TRAIN_VOLTAGE_SWING_600:
2071                         return DP_TRAIN_PRE_EMPHASIS_6;
2072                 case DP_TRAIN_VOLTAGE_SWING_800:
2073                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2074                 case DP_TRAIN_VOLTAGE_SWING_1200:
2075                 default:
2076                         return DP_TRAIN_PRE_EMPHASIS_0;
2077                 }
2078         } else if (IS_HASWELL(dev)) {
2079                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2080                 case DP_TRAIN_VOLTAGE_SWING_400:
2081                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2082                 case DP_TRAIN_VOLTAGE_SWING_600:
2083                         return DP_TRAIN_PRE_EMPHASIS_6;
2084                 case DP_TRAIN_VOLTAGE_SWING_800:
2085                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2086                 case DP_TRAIN_VOLTAGE_SWING_1200:
2087                 default:
2088                         return DP_TRAIN_PRE_EMPHASIS_0;
2089                 }
2090         } else if (IS_VALLEYVIEW(dev)) {
2091                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2092                 case DP_TRAIN_VOLTAGE_SWING_400:
2093                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2094                 case DP_TRAIN_VOLTAGE_SWING_600:
2095                         return DP_TRAIN_PRE_EMPHASIS_6;
2096                 case DP_TRAIN_VOLTAGE_SWING_800:
2097                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2098                 case DP_TRAIN_VOLTAGE_SWING_1200:
2099                 default:
2100                         return DP_TRAIN_PRE_EMPHASIS_0;
2101                 }
2102         } else if (IS_GEN7(dev) && port == PORT_A) {
2103                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2104                 case DP_TRAIN_VOLTAGE_SWING_400:
2105                         return DP_TRAIN_PRE_EMPHASIS_6;
2106                 case DP_TRAIN_VOLTAGE_SWING_600:
2107                 case DP_TRAIN_VOLTAGE_SWING_800:
2108                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2109                 default:
2110                         return DP_TRAIN_PRE_EMPHASIS_0;
2111                 }
2112         } else {
2113                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2114                 case DP_TRAIN_VOLTAGE_SWING_400:
2115                         return DP_TRAIN_PRE_EMPHASIS_6;
2116                 case DP_TRAIN_VOLTAGE_SWING_600:
2117                         return DP_TRAIN_PRE_EMPHASIS_6;
2118                 case DP_TRAIN_VOLTAGE_SWING_800:
2119                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2120                 case DP_TRAIN_VOLTAGE_SWING_1200:
2121                 default:
2122                         return DP_TRAIN_PRE_EMPHASIS_0;
2123                 }
2124         }
2125 }
2126
2127 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2128 {
2129         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2130         struct drm_i915_private *dev_priv = dev->dev_private;
2131         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2132         struct intel_crtc *intel_crtc =
2133                 to_intel_crtc(dport->base.base.crtc);
2134         unsigned long demph_reg_value, preemph_reg_value,
2135                 uniqtranscale_reg_value;
2136         uint8_t train_set = intel_dp->train_set[0];
2137         enum dpio_channel port = vlv_dport_to_channel(dport);
2138         int pipe = intel_crtc->pipe;
2139
2140         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2141         case DP_TRAIN_PRE_EMPHASIS_0:
2142                 preemph_reg_value = 0x0004000;
2143                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2144                 case DP_TRAIN_VOLTAGE_SWING_400:
2145                         demph_reg_value = 0x2B405555;
2146                         uniqtranscale_reg_value = 0x552AB83A;
2147                         break;
2148                 case DP_TRAIN_VOLTAGE_SWING_600:
2149                         demph_reg_value = 0x2B404040;
2150                         uniqtranscale_reg_value = 0x5548B83A;
2151                         break;
2152                 case DP_TRAIN_VOLTAGE_SWING_800:
2153                         demph_reg_value = 0x2B245555;
2154                         uniqtranscale_reg_value = 0x5560B83A;
2155                         break;
2156                 case DP_TRAIN_VOLTAGE_SWING_1200:
2157                         demph_reg_value = 0x2B405555;
2158                         uniqtranscale_reg_value = 0x5598DA3A;
2159                         break;
2160                 default:
2161                         return 0;
2162                 }
2163                 break;
2164         case DP_TRAIN_PRE_EMPHASIS_3_5:
2165                 preemph_reg_value = 0x0002000;
2166                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2167                 case DP_TRAIN_VOLTAGE_SWING_400:
2168                         demph_reg_value = 0x2B404040;
2169                         uniqtranscale_reg_value = 0x5552B83A;
2170                         break;
2171                 case DP_TRAIN_VOLTAGE_SWING_600:
2172                         demph_reg_value = 0x2B404848;
2173                         uniqtranscale_reg_value = 0x5580B83A;
2174                         break;
2175                 case DP_TRAIN_VOLTAGE_SWING_800:
2176                         demph_reg_value = 0x2B404040;
2177                         uniqtranscale_reg_value = 0x55ADDA3A;
2178                         break;
2179                 default:
2180                         return 0;
2181                 }
2182                 break;
2183         case DP_TRAIN_PRE_EMPHASIS_6:
2184                 preemph_reg_value = 0x0000000;
2185                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2186                 case DP_TRAIN_VOLTAGE_SWING_400:
2187                         demph_reg_value = 0x2B305555;
2188                         uniqtranscale_reg_value = 0x5570B83A;
2189                         break;
2190                 case DP_TRAIN_VOLTAGE_SWING_600:
2191                         demph_reg_value = 0x2B2B4040;
2192                         uniqtranscale_reg_value = 0x55ADDA3A;
2193                         break;
2194                 default:
2195                         return 0;
2196                 }
2197                 break;
2198         case DP_TRAIN_PRE_EMPHASIS_9_5:
2199                 preemph_reg_value = 0x0006000;
2200                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2201                 case DP_TRAIN_VOLTAGE_SWING_400:
2202                         demph_reg_value = 0x1B405555;
2203                         uniqtranscale_reg_value = 0x55ADDA3A;
2204                         break;
2205                 default:
2206                         return 0;
2207                 }
2208                 break;
2209         default:
2210                 return 0;
2211         }
2212
2213         mutex_lock(&dev_priv->dpio_lock);
2214         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2215         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2216         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2217                          uniqtranscale_reg_value);
2218         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2219         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2220         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2221         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2222         mutex_unlock(&dev_priv->dpio_lock);
2223
2224         return 0;
2225 }
2226
2227 static void
2228 intel_get_adjust_train(struct intel_dp *intel_dp,
2229                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2230 {
2231         uint8_t v = 0;
2232         uint8_t p = 0;
2233         int lane;
2234         uint8_t voltage_max;
2235         uint8_t preemph_max;
2236
2237         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2238                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2239                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2240
2241                 if (this_v > v)
2242                         v = this_v;
2243                 if (this_p > p)
2244                         p = this_p;
2245         }
2246
2247         voltage_max = intel_dp_voltage_max(intel_dp);
2248         if (v >= voltage_max)
2249                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2250
2251         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2252         if (p >= preemph_max)
2253                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2254
2255         for (lane = 0; lane < 4; lane++)
2256                 intel_dp->train_set[lane] = v | p;
2257 }
2258
2259 static uint32_t
2260 intel_gen4_signal_levels(uint8_t train_set)
2261 {
2262         uint32_t        signal_levels = 0;
2263
2264         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2265         case DP_TRAIN_VOLTAGE_SWING_400:
2266         default:
2267                 signal_levels |= DP_VOLTAGE_0_4;
2268                 break;
2269         case DP_TRAIN_VOLTAGE_SWING_600:
2270                 signal_levels |= DP_VOLTAGE_0_6;
2271                 break;
2272         case DP_TRAIN_VOLTAGE_SWING_800:
2273                 signal_levels |= DP_VOLTAGE_0_8;
2274                 break;
2275         case DP_TRAIN_VOLTAGE_SWING_1200:
2276                 signal_levels |= DP_VOLTAGE_1_2;
2277                 break;
2278         }
2279         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2280         case DP_TRAIN_PRE_EMPHASIS_0:
2281         default:
2282                 signal_levels |= DP_PRE_EMPHASIS_0;
2283                 break;
2284         case DP_TRAIN_PRE_EMPHASIS_3_5:
2285                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2286                 break;
2287         case DP_TRAIN_PRE_EMPHASIS_6:
2288                 signal_levels |= DP_PRE_EMPHASIS_6;
2289                 break;
2290         case DP_TRAIN_PRE_EMPHASIS_9_5:
2291                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2292                 break;
2293         }
2294         return signal_levels;
2295 }
2296
2297 /* Gen6's DP voltage swing and pre-emphasis control */
2298 static uint32_t
2299 intel_gen6_edp_signal_levels(uint8_t train_set)
2300 {
2301         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2302                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2303         switch (signal_levels) {
2304         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2305         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2306                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2307         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2308                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2309         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2310         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2311                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2312         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2313         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2315         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2316         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2317                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2318         default:
2319                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2320                               "0x%x\n", signal_levels);
2321                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2322         }
2323 }
2324
2325 /* Gen7's DP voltage swing and pre-emphasis control */
2326 static uint32_t
2327 intel_gen7_edp_signal_levels(uint8_t train_set)
2328 {
2329         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2330                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2331         switch (signal_levels) {
2332         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2333                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2334         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2335                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2336         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2337                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2338
2339         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2340                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2341         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2342                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2343
2344         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2345                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2346         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2347                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2348
2349         default:
2350                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2351                               "0x%x\n", signal_levels);
2352                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2353         }
2354 }
2355
2356 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2357 static uint32_t
2358 intel_hsw_signal_levels(uint8_t train_set)
2359 {
2360         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2361                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2362         switch (signal_levels) {
2363         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2364                 return DDI_BUF_EMP_400MV_0DB_HSW;
2365         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2366                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2367         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2368                 return DDI_BUF_EMP_400MV_6DB_HSW;
2369         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2370                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2371
2372         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2373                 return DDI_BUF_EMP_600MV_0DB_HSW;
2374         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2375                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2376         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2377                 return DDI_BUF_EMP_600MV_6DB_HSW;
2378
2379         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2380                 return DDI_BUF_EMP_800MV_0DB_HSW;
2381         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2382                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2383         default:
2384                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2385                               "0x%x\n", signal_levels);
2386                 return DDI_BUF_EMP_400MV_0DB_HSW;
2387         }
2388 }
2389
2390 static uint32_t
2391 intel_bdw_signal_levels(uint8_t train_set)
2392 {
2393         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2394                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2395         switch (signal_levels) {
2396         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2397                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2398         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2399                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2400         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2401                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2402
2403         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2404                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2405         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2406                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2407         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2408                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2409
2410         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2411                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2412         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2413                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2414
2415         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2416                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2417
2418         default:
2419                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2420                               "0x%x\n", signal_levels);
2421                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2422         }
2423 }
2424
2425 /* Properly updates "DP" with the correct signal levels. */
2426 static void
2427 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2428 {
2429         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2430         enum port port = intel_dig_port->port;
2431         struct drm_device *dev = intel_dig_port->base.base.dev;
2432         uint32_t signal_levels, mask;
2433         uint8_t train_set = intel_dp->train_set[0];
2434
2435         if (IS_BROADWELL(dev)) {
2436                 signal_levels = intel_bdw_signal_levels(train_set);
2437                 mask = DDI_BUF_EMP_MASK;
2438         } else if (IS_HASWELL(dev)) {
2439                 signal_levels = intel_hsw_signal_levels(train_set);
2440                 mask = DDI_BUF_EMP_MASK;
2441         } else if (IS_VALLEYVIEW(dev)) {
2442                 signal_levels = intel_vlv_signal_levels(intel_dp);
2443                 mask = 0;
2444         } else if (IS_GEN7(dev) && port == PORT_A) {
2445                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2446                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2447         } else if (IS_GEN6(dev) && port == PORT_A) {
2448                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2449                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2450         } else {
2451                 signal_levels = intel_gen4_signal_levels(train_set);
2452                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2453         }
2454
2455         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2456
2457         *DP = (*DP & ~mask) | signal_levels;
2458 }
2459
2460 static bool
2461 intel_dp_set_link_train(struct intel_dp *intel_dp,
2462                         uint32_t *DP,
2463                         uint8_t dp_train_pat)
2464 {
2465         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2466         struct drm_device *dev = intel_dig_port->base.base.dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         enum port port = intel_dig_port->port;
2469         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2470         int ret, len;
2471
2472         if (HAS_DDI(dev)) {
2473                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2474
2475                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2476                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2477                 else
2478                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2479
2480                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2481                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2482                 case DP_TRAINING_PATTERN_DISABLE:
2483                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2484
2485                         break;
2486                 case DP_TRAINING_PATTERN_1:
2487                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2488                         break;
2489                 case DP_TRAINING_PATTERN_2:
2490                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2491                         break;
2492                 case DP_TRAINING_PATTERN_3:
2493                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2494                         break;
2495                 }
2496                 I915_WRITE(DP_TP_CTL(port), temp);
2497
2498         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2499                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2500
2501                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2502                 case DP_TRAINING_PATTERN_DISABLE:
2503                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2504                         break;
2505                 case DP_TRAINING_PATTERN_1:
2506                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2507                         break;
2508                 case DP_TRAINING_PATTERN_2:
2509                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2510                         break;
2511                 case DP_TRAINING_PATTERN_3:
2512                         DRM_ERROR("DP training pattern 3 not supported\n");
2513                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2514                         break;
2515                 }
2516
2517         } else {
2518                 *DP &= ~DP_LINK_TRAIN_MASK;
2519
2520                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2521                 case DP_TRAINING_PATTERN_DISABLE:
2522                         *DP |= DP_LINK_TRAIN_OFF;
2523                         break;
2524                 case DP_TRAINING_PATTERN_1:
2525                         *DP |= DP_LINK_TRAIN_PAT_1;
2526                         break;
2527                 case DP_TRAINING_PATTERN_2:
2528                         *DP |= DP_LINK_TRAIN_PAT_2;
2529                         break;
2530                 case DP_TRAINING_PATTERN_3:
2531                         DRM_ERROR("DP training pattern 3 not supported\n");
2532                         *DP |= DP_LINK_TRAIN_PAT_2;
2533                         break;
2534                 }
2535         }
2536
2537         I915_WRITE(intel_dp->output_reg, *DP);
2538         POSTING_READ(intel_dp->output_reg);
2539
2540         buf[0] = dp_train_pat;
2541         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2542             DP_TRAINING_PATTERN_DISABLE) {
2543                 /* don't write DP_TRAINING_LANEx_SET on disable */
2544                 len = 1;
2545         } else {
2546                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2547                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2548                 len = intel_dp->lane_count + 1;
2549         }
2550
2551         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2552                                 buf, len);
2553
2554         return ret == len;
2555 }
2556
2557 static bool
2558 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2559                         uint8_t dp_train_pat)
2560 {
2561         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2562         intel_dp_set_signal_levels(intel_dp, DP);
2563         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2564 }
2565
2566 static bool
2567 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2568                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2569 {
2570         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2571         struct drm_device *dev = intel_dig_port->base.base.dev;
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573         int ret;
2574
2575         intel_get_adjust_train(intel_dp, link_status);
2576         intel_dp_set_signal_levels(intel_dp, DP);
2577
2578         I915_WRITE(intel_dp->output_reg, *DP);
2579         POSTING_READ(intel_dp->output_reg);
2580
2581         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2582                                 intel_dp->train_set, intel_dp->lane_count);
2583
2584         return ret == intel_dp->lane_count;
2585 }
2586
2587 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2588 {
2589         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2590         struct drm_device *dev = intel_dig_port->base.base.dev;
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592         enum port port = intel_dig_port->port;
2593         uint32_t val;
2594
2595         if (!HAS_DDI(dev))
2596                 return;
2597
2598         val = I915_READ(DP_TP_CTL(port));
2599         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2600         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2601         I915_WRITE(DP_TP_CTL(port), val);
2602
2603         /*
2604          * On PORT_A we can have only eDP in SST mode. There the only reason
2605          * we need to set idle transmission mode is to work around a HW issue
2606          * where we enable the pipe while not in idle link-training mode.
2607          * In this case there is requirement to wait for a minimum number of
2608          * idle patterns to be sent.
2609          */
2610         if (port == PORT_A)
2611                 return;
2612
2613         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2614                      1))
2615                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2616 }
2617
2618 /* Enable corresponding port and start training pattern 1 */
2619 void
2620 intel_dp_start_link_train(struct intel_dp *intel_dp)
2621 {
2622         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2623         struct drm_device *dev = encoder->dev;
2624         int i;
2625         uint8_t voltage;
2626         int voltage_tries, loop_tries;
2627         uint32_t DP = intel_dp->DP;
2628         uint8_t link_config[2];
2629
2630         if (HAS_DDI(dev))
2631                 intel_ddi_prepare_link_retrain(encoder);
2632
2633         /* Write the link configuration data */
2634         link_config[0] = intel_dp->link_bw;
2635         link_config[1] = intel_dp->lane_count;
2636         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2637                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2638         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2639
2640         link_config[0] = 0;
2641         link_config[1] = DP_SET_ANSI_8B10B;
2642         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2643
2644         DP |= DP_PORT_EN;
2645
2646         /* clock recovery */
2647         if (!intel_dp_reset_link_train(intel_dp, &DP,
2648                                        DP_TRAINING_PATTERN_1 |
2649                                        DP_LINK_SCRAMBLING_DISABLE)) {
2650                 DRM_ERROR("failed to enable link training\n");
2651                 return;
2652         }
2653
2654         voltage = 0xff;
2655         voltage_tries = 0;
2656         loop_tries = 0;
2657         for (;;) {
2658                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2659
2660                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2661                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2662                         DRM_ERROR("failed to get link status\n");
2663                         break;
2664                 }
2665
2666                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2667                         DRM_DEBUG_KMS("clock recovery OK\n");
2668                         break;
2669                 }
2670
2671                 /* Check to see if we've tried the max voltage */
2672                 for (i = 0; i < intel_dp->lane_count; i++)
2673                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2674                                 break;
2675                 if (i == intel_dp->lane_count) {
2676                         ++loop_tries;
2677                         if (loop_tries == 5) {
2678                                 DRM_ERROR("too many full retries, give up\n");
2679                                 break;
2680                         }
2681                         intel_dp_reset_link_train(intel_dp, &DP,
2682                                                   DP_TRAINING_PATTERN_1 |
2683                                                   DP_LINK_SCRAMBLING_DISABLE);
2684                         voltage_tries = 0;
2685                         continue;
2686                 }
2687
2688                 /* Check to see if we've tried the same voltage 5 times */
2689                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2690                         ++voltage_tries;
2691                         if (voltage_tries == 5) {
2692                                 DRM_ERROR("too many voltage retries, give up\n");
2693                                 break;
2694                         }
2695                 } else
2696                         voltage_tries = 0;
2697                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2698
2699                 /* Update training set as requested by target */
2700                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2701                         DRM_ERROR("failed to update link training\n");
2702                         break;
2703                 }
2704         }
2705
2706         intel_dp->DP = DP;
2707 }
2708
2709 void
2710 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2711 {
2712         bool channel_eq = false;
2713         int tries, cr_tries;
2714         uint32_t DP = intel_dp->DP;
2715         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2716
2717         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2718         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2719                 training_pattern = DP_TRAINING_PATTERN_3;
2720
2721         /* channel equalization */
2722         if (!intel_dp_set_link_train(intel_dp, &DP,
2723                                      training_pattern |
2724                                      DP_LINK_SCRAMBLING_DISABLE)) {
2725                 DRM_ERROR("failed to start channel equalization\n");
2726                 return;
2727         }
2728
2729         tries = 0;
2730         cr_tries = 0;
2731         channel_eq = false;
2732         for (;;) {
2733                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2734
2735                 if (cr_tries > 5) {
2736                         DRM_ERROR("failed to train DP, aborting\n");
2737                         break;
2738                 }
2739
2740                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2741                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2742                         DRM_ERROR("failed to get link status\n");
2743                         break;
2744                 }
2745
2746                 /* Make sure clock is still ok */
2747                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2748                         intel_dp_start_link_train(intel_dp);
2749                         intel_dp_set_link_train(intel_dp, &DP,
2750                                                 training_pattern |
2751                                                 DP_LINK_SCRAMBLING_DISABLE);
2752                         cr_tries++;
2753                         continue;
2754                 }
2755
2756                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2757                         channel_eq = true;
2758                         break;
2759                 }
2760
2761                 /* Try 5 times, then try clock recovery if that fails */
2762                 if (tries > 5) {
2763                         intel_dp_link_down(intel_dp);
2764                         intel_dp_start_link_train(intel_dp);
2765                         intel_dp_set_link_train(intel_dp, &DP,
2766                                                 training_pattern |
2767                                                 DP_LINK_SCRAMBLING_DISABLE);
2768                         tries = 0;
2769                         cr_tries++;
2770                         continue;
2771                 }
2772
2773                 /* Update training set as requested by target */
2774                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2775                         DRM_ERROR("failed to update link training\n");
2776                         break;
2777                 }
2778                 ++tries;
2779         }
2780
2781         intel_dp_set_idle_link_train(intel_dp);
2782
2783         intel_dp->DP = DP;
2784
2785         if (channel_eq)
2786                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2787
2788 }
2789
2790 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2791 {
2792         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2793                                 DP_TRAINING_PATTERN_DISABLE);
2794 }
2795
2796 static void
2797 intel_dp_link_down(struct intel_dp *intel_dp)
2798 {
2799         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2800         enum port port = intel_dig_port->port;
2801         struct drm_device *dev = intel_dig_port->base.base.dev;
2802         struct drm_i915_private *dev_priv = dev->dev_private;
2803         struct intel_crtc *intel_crtc =
2804                 to_intel_crtc(intel_dig_port->base.base.crtc);
2805         uint32_t DP = intel_dp->DP;
2806
2807         /*
2808          * DDI code has a strict mode set sequence and we should try to respect
2809          * it, otherwise we might hang the machine in many different ways. So we
2810          * really should be disabling the port only on a complete crtc_disable
2811          * sequence. This function is just called under two conditions on DDI
2812          * code:
2813          * - Link train failed while doing crtc_enable, and on this case we
2814          *   really should respect the mode set sequence and wait for a
2815          *   crtc_disable.
2816          * - Someone turned the monitor off and intel_dp_check_link_status
2817          *   called us. We don't need to disable the whole port on this case, so
2818          *   when someone turns the monitor on again,
2819          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2820          *   train.
2821          */
2822         if (HAS_DDI(dev))
2823                 return;
2824
2825         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2826                 return;
2827
2828         DRM_DEBUG_KMS("\n");
2829
2830         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2831                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2832                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2833         } else {
2834                 DP &= ~DP_LINK_TRAIN_MASK;
2835                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2836         }
2837         POSTING_READ(intel_dp->output_reg);
2838
2839         /* We don't really know why we're doing this */
2840         intel_wait_for_vblank(dev, intel_crtc->pipe);
2841
2842         if (HAS_PCH_IBX(dev) &&
2843             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2844                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2845
2846                 /* Hardware workaround: leaving our transcoder select
2847                  * set to transcoder B while it's off will prevent the
2848                  * corresponding HDMI output on transcoder A.
2849                  *
2850                  * Combine this with another hardware workaround:
2851                  * transcoder select bit can only be cleared while the
2852                  * port is enabled.
2853                  */
2854                 DP &= ~DP_PIPEB_SELECT;
2855                 I915_WRITE(intel_dp->output_reg, DP);
2856
2857                 /* Changes to enable or select take place the vblank
2858                  * after being written.
2859                  */
2860                 if (WARN_ON(crtc == NULL)) {
2861                         /* We should never try to disable a port without a crtc
2862                          * attached. For paranoia keep the code around for a
2863                          * bit. */
2864                         POSTING_READ(intel_dp->output_reg);
2865                         msleep(50);
2866                 } else
2867                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2868         }
2869
2870         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2871         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2872         POSTING_READ(intel_dp->output_reg);
2873         msleep(intel_dp->panel_power_down_delay);
2874 }
2875
2876 static bool
2877 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2878 {
2879         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2880         struct drm_device *dev = dig_port->base.base.dev;
2881         struct drm_i915_private *dev_priv = dev->dev_private;
2882
2883         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2884
2885         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2886                                     sizeof(intel_dp->dpcd)) < 0)
2887                 return false; /* aux transfer failed */
2888
2889         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2890                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2891         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2892
2893         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2894                 return false; /* DPCD not present */
2895
2896         /* Check if the panel supports PSR */
2897         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2898         if (is_edp(intel_dp)) {
2899                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2900                                         intel_dp->psr_dpcd,
2901                                         sizeof(intel_dp->psr_dpcd));
2902                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2903                         dev_priv->psr.sink_support = true;
2904                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2905                 }
2906         }
2907
2908         /* Training Pattern 3 support */
2909         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2910             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2911                 intel_dp->use_tps3 = true;
2912                 DRM_DEBUG_KMS("Displayport TPS3 supported");
2913         } else
2914                 intel_dp->use_tps3 = false;
2915
2916         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2917               DP_DWN_STRM_PORT_PRESENT))
2918                 return true; /* native DP sink */
2919
2920         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2921                 return true; /* no per-port downstream info */
2922
2923         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2924                                     intel_dp->downstream_ports,
2925                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
2926                 return false; /* downstream port status fetch failed */
2927
2928         return true;
2929 }
2930
2931 static void
2932 intel_dp_probe_oui(struct intel_dp *intel_dp)
2933 {
2934         u8 buf[3];
2935
2936         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2937                 return;
2938
2939         edp_panel_vdd_on(intel_dp);
2940
2941         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2942                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2943                               buf[0], buf[1], buf[2]);
2944
2945         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2946                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2947                               buf[0], buf[1], buf[2]);
2948
2949         edp_panel_vdd_off(intel_dp, false);
2950 }
2951
2952 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2953 {
2954         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2955         struct drm_device *dev = intel_dig_port->base.base.dev;
2956         struct intel_crtc *intel_crtc =
2957                 to_intel_crtc(intel_dig_port->base.base.crtc);
2958         u8 buf[1];
2959
2960         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2961                 return -EAGAIN;
2962
2963         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2964                 return -ENOTTY;
2965
2966         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2967                                DP_TEST_SINK_START) < 0)
2968                 return -EAGAIN;
2969
2970         /* Wait 2 vblanks to be sure we will have the correct CRC value */
2971         intel_wait_for_vblank(dev, intel_crtc->pipe);
2972         intel_wait_for_vblank(dev, intel_crtc->pipe);
2973
2974         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2975                 return -EAGAIN;
2976
2977         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2978         return 0;
2979 }
2980
2981 static bool
2982 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2983 {
2984         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2985                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
2986                                        sink_irq_vector, 1) == 1;
2987 }
2988
2989 static void
2990 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2991 {
2992         /* NAK by default */
2993         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2994 }
2995
2996 /*
2997  * According to DP spec
2998  * 5.1.2:
2999  *  1. Read DPCD
3000  *  2. Configure link according to Receiver Capabilities
3001  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3002  *  4. Check link status on receipt of hot-plug interrupt
3003  */
3004
3005 void
3006 intel_dp_check_link_status(struct intel_dp *intel_dp)
3007 {
3008         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3009         u8 sink_irq_vector;
3010         u8 link_status[DP_LINK_STATUS_SIZE];
3011
3012         if (!intel_encoder->connectors_active)
3013                 return;
3014
3015         if (WARN_ON(!intel_encoder->base.crtc))
3016                 return;
3017
3018         /* Try to read receiver status if the link appears to be up */
3019         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3020                 return;
3021         }
3022
3023         /* Now read the DPCD to see if it's actually running */
3024         if (!intel_dp_get_dpcd(intel_dp)) {
3025                 return;
3026         }
3027
3028         /* Try to read the source of the interrupt */
3029         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3030             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3031                 /* Clear interrupt source */
3032                 drm_dp_dpcd_writeb(&intel_dp->aux,
3033                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3034                                    sink_irq_vector);
3035
3036                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3037                         intel_dp_handle_test_request(intel_dp);
3038                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3039                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3040         }
3041
3042         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3043                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3044                               drm_get_encoder_name(&intel_encoder->base));
3045                 intel_dp_start_link_train(intel_dp);
3046                 intel_dp_complete_link_train(intel_dp);
3047                 intel_dp_stop_link_train(intel_dp);
3048         }
3049 }
3050
3051 /* XXX this is probably wrong for multiple downstream ports */
3052 static enum drm_connector_status
3053 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3054 {
3055         uint8_t *dpcd = intel_dp->dpcd;
3056         uint8_t type;
3057
3058         if (!intel_dp_get_dpcd(intel_dp))
3059                 return connector_status_disconnected;
3060
3061         /* if there's no downstream port, we're done */
3062         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3063                 return connector_status_connected;
3064
3065         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3066         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3067             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3068                 uint8_t reg;
3069
3070                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3071                                             &reg, 1) < 0)
3072                         return connector_status_unknown;
3073
3074                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3075                                               : connector_status_disconnected;
3076         }
3077
3078         /* If no HPD, poke DDC gently */
3079         if (drm_probe_ddc(&intel_dp->adapter))
3080                 return connector_status_connected;
3081
3082         /* Well we tried, say unknown for unreliable port types */
3083         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3084                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3085                 if (type == DP_DS_PORT_TYPE_VGA ||
3086                     type == DP_DS_PORT_TYPE_NON_EDID)
3087                         return connector_status_unknown;
3088         } else {
3089                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3090                         DP_DWN_STRM_PORT_TYPE_MASK;
3091                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3092                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3093                         return connector_status_unknown;
3094         }
3095
3096         /* Anything else is out of spec, warn and ignore */
3097         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3098         return connector_status_disconnected;
3099 }
3100
3101 static enum drm_connector_status
3102 ironlake_dp_detect(struct intel_dp *intel_dp)
3103 {
3104         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3107         enum drm_connector_status status;
3108
3109         /* Can't disconnect eDP, but you can close the lid... */
3110         if (is_edp(intel_dp)) {
3111                 status = intel_panel_detect(dev);
3112                 if (status == connector_status_unknown)
3113                         status = connector_status_connected;
3114                 return status;
3115         }
3116
3117         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3118                 return connector_status_disconnected;
3119
3120         return intel_dp_detect_dpcd(intel_dp);
3121 }
3122
3123 static enum drm_connector_status
3124 g4x_dp_detect(struct intel_dp *intel_dp)
3125 {
3126         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3127         struct drm_i915_private *dev_priv = dev->dev_private;
3128         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3129         uint32_t bit;
3130
3131         /* Can't disconnect eDP, but you can close the lid... */
3132         if (is_edp(intel_dp)) {
3133                 enum drm_connector_status status;
3134
3135                 status = intel_panel_detect(dev);
3136                 if (status == connector_status_unknown)
3137                         status = connector_status_connected;
3138                 return status;
3139         }
3140
3141         if (IS_VALLEYVIEW(dev)) {
3142                 switch (intel_dig_port->port) {
3143                 case PORT_B:
3144                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3145                         break;
3146                 case PORT_C:
3147                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3148                         break;
3149                 case PORT_D:
3150                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3151                         break;
3152                 default:
3153                         return connector_status_unknown;
3154                 }
3155         } else {
3156                 switch (intel_dig_port->port) {
3157                 case PORT_B:
3158                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3159                         break;
3160                 case PORT_C:
3161                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3162                         break;
3163                 case PORT_D:
3164                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3165                         break;
3166                 default:
3167                         return connector_status_unknown;
3168                 }
3169         }
3170
3171         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3172                 return connector_status_disconnected;
3173
3174         return intel_dp_detect_dpcd(intel_dp);
3175 }
3176
3177 static struct edid *
3178 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3179 {
3180         struct intel_connector *intel_connector = to_intel_connector(connector);
3181
3182         /* use cached edid if we have one */
3183         if (intel_connector->edid) {
3184                 /* invalid edid */
3185                 if (IS_ERR(intel_connector->edid))
3186                         return NULL;
3187
3188                 return drm_edid_duplicate(intel_connector->edid);
3189         }
3190
3191         return drm_get_edid(connector, adapter);
3192 }
3193
3194 static int
3195 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3196 {
3197         struct intel_connector *intel_connector = to_intel_connector(connector);
3198
3199         /* use cached edid if we have one */
3200         if (intel_connector->edid) {
3201                 /* invalid edid */
3202                 if (IS_ERR(intel_connector->edid))
3203                         return 0;
3204
3205                 return intel_connector_update_modes(connector,
3206                                                     intel_connector->edid);
3207         }
3208
3209         return intel_ddc_get_modes(connector, adapter);
3210 }
3211
3212 static enum drm_connector_status
3213 intel_dp_detect(struct drm_connector *connector, bool force)
3214 {
3215         struct intel_dp *intel_dp = intel_attached_dp(connector);
3216         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3217         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3218         struct drm_device *dev = connector->dev;
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220         enum drm_connector_status status;
3221         enum intel_display_power_domain power_domain;
3222         struct edid *edid = NULL;
3223
3224         intel_runtime_pm_get(dev_priv);
3225
3226         power_domain = intel_display_port_power_domain(intel_encoder);
3227         intel_display_power_get(dev_priv, power_domain);
3228
3229         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3230                       connector->base.id, drm_get_connector_name(connector));
3231
3232         intel_dp->has_audio = false;
3233
3234         if (HAS_PCH_SPLIT(dev))
3235                 status = ironlake_dp_detect(intel_dp);
3236         else
3237                 status = g4x_dp_detect(intel_dp);
3238
3239         if (status != connector_status_connected)
3240                 goto out;
3241
3242         intel_dp_probe_oui(intel_dp);
3243
3244         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3245                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3246         } else {
3247                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3248                 if (edid) {
3249                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3250                         kfree(edid);
3251                 }
3252         }
3253
3254         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3255                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3256         status = connector_status_connected;
3257
3258 out:
3259         intel_display_power_put(dev_priv, power_domain);
3260
3261         intel_runtime_pm_put(dev_priv);
3262
3263         return status;
3264 }
3265
3266 static int intel_dp_get_modes(struct drm_connector *connector)
3267 {
3268         struct intel_dp *intel_dp = intel_attached_dp(connector);
3269         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3270         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3271         struct intel_connector *intel_connector = to_intel_connector(connector);
3272         struct drm_device *dev = connector->dev;
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274         enum intel_display_power_domain power_domain;
3275         int ret;
3276
3277         /* We should parse the EDID data and find out if it has an audio sink
3278          */
3279
3280         power_domain = intel_display_port_power_domain(intel_encoder);
3281         intel_display_power_get(dev_priv, power_domain);
3282
3283         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3284         intel_display_power_put(dev_priv, power_domain);
3285         if (ret)
3286                 return ret;
3287
3288         /* if eDP has no EDID, fall back to fixed mode */
3289         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3290                 struct drm_display_mode *mode;
3291                 mode = drm_mode_duplicate(dev,
3292                                           intel_connector->panel.fixed_mode);
3293                 if (mode) {
3294                         drm_mode_probed_add(connector, mode);
3295                         return 1;
3296                 }
3297         }
3298         return 0;
3299 }
3300
3301 static bool
3302 intel_dp_detect_audio(struct drm_connector *connector)
3303 {
3304         struct intel_dp *intel_dp = intel_attached_dp(connector);
3305         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3306         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3307         struct drm_device *dev = connector->dev;
3308         struct drm_i915_private *dev_priv = dev->dev_private;
3309         enum intel_display_power_domain power_domain;
3310         struct edid *edid;
3311         bool has_audio = false;
3312
3313         power_domain = intel_display_port_power_domain(intel_encoder);
3314         intel_display_power_get(dev_priv, power_domain);
3315
3316         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3317         if (edid) {
3318                 has_audio = drm_detect_monitor_audio(edid);
3319                 kfree(edid);
3320         }
3321
3322         intel_display_power_put(dev_priv, power_domain);
3323
3324         return has_audio;
3325 }
3326
3327 static int
3328 intel_dp_set_property(struct drm_connector *connector,
3329                       struct drm_property *property,
3330                       uint64_t val)
3331 {
3332         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3333         struct intel_connector *intel_connector = to_intel_connector(connector);
3334         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3335         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3336         int ret;
3337
3338         ret = drm_object_property_set_value(&connector->base, property, val);
3339         if (ret)
3340                 return ret;
3341
3342         if (property == dev_priv->force_audio_property) {
3343                 int i = val;
3344                 bool has_audio;
3345
3346                 if (i == intel_dp->force_audio)
3347                         return 0;
3348
3349                 intel_dp->force_audio = i;
3350
3351                 if (i == HDMI_AUDIO_AUTO)
3352                         has_audio = intel_dp_detect_audio(connector);
3353                 else
3354                         has_audio = (i == HDMI_AUDIO_ON);
3355
3356                 if (has_audio == intel_dp->has_audio)
3357                         return 0;
3358
3359                 intel_dp->has_audio = has_audio;
3360                 goto done;
3361         }
3362
3363         if (property == dev_priv->broadcast_rgb_property) {
3364                 bool old_auto = intel_dp->color_range_auto;
3365                 uint32_t old_range = intel_dp->color_range;
3366
3367                 switch (val) {
3368                 case INTEL_BROADCAST_RGB_AUTO:
3369                         intel_dp->color_range_auto = true;
3370                         break;
3371                 case INTEL_BROADCAST_RGB_FULL:
3372                         intel_dp->color_range_auto = false;
3373                         intel_dp->color_range = 0;
3374                         break;
3375                 case INTEL_BROADCAST_RGB_LIMITED:
3376                         intel_dp->color_range_auto = false;
3377                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3378                         break;
3379                 default:
3380                         return -EINVAL;
3381                 }
3382
3383                 if (old_auto == intel_dp->color_range_auto &&
3384                     old_range == intel_dp->color_range)
3385                         return 0;
3386
3387                 goto done;
3388         }
3389
3390         if (is_edp(intel_dp) &&
3391             property == connector->dev->mode_config.scaling_mode_property) {
3392                 if (val == DRM_MODE_SCALE_NONE) {
3393                         DRM_DEBUG_KMS("no scaling not supported\n");
3394                         return -EINVAL;
3395                 }
3396
3397                 if (intel_connector->panel.fitting_mode == val) {
3398                         /* the eDP scaling property is not changed */
3399                         return 0;
3400                 }
3401                 intel_connector->panel.fitting_mode = val;
3402
3403                 goto done;
3404         }
3405
3406         return -EINVAL;
3407
3408 done:
3409         if (intel_encoder->base.crtc)
3410                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3411
3412         return 0;
3413 }
3414
3415 static void
3416 intel_dp_connector_destroy(struct drm_connector *connector)
3417 {
3418         struct intel_connector *intel_connector = to_intel_connector(connector);
3419
3420         if (!IS_ERR_OR_NULL(intel_connector->edid))
3421                 kfree(intel_connector->edid);
3422
3423         /* Can't call is_edp() since the encoder may have been destroyed
3424          * already. */
3425         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3426                 intel_panel_fini(&intel_connector->panel);
3427
3428         drm_connector_cleanup(connector);
3429         kfree(connector);
3430 }
3431
3432 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3433 {
3434         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3435         struct intel_dp *intel_dp = &intel_dig_port->dp;
3436         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3437
3438         i2c_del_adapter(&intel_dp->adapter);
3439         drm_encoder_cleanup(encoder);
3440         if (is_edp(intel_dp)) {
3441                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3442                 mutex_lock(&dev->mode_config.mutex);
3443                 edp_panel_vdd_off_sync(intel_dp);
3444                 mutex_unlock(&dev->mode_config.mutex);
3445         }
3446         kfree(intel_dig_port);
3447 }
3448
3449 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3450         .dpms = intel_connector_dpms,
3451         .detect = intel_dp_detect,
3452         .fill_modes = drm_helper_probe_single_connector_modes,
3453         .set_property = intel_dp_set_property,
3454         .destroy = intel_dp_connector_destroy,
3455 };
3456
3457 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3458         .get_modes = intel_dp_get_modes,
3459         .mode_valid = intel_dp_mode_valid,
3460         .best_encoder = intel_best_encoder,
3461 };
3462
3463 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3464         .destroy = intel_dp_encoder_destroy,
3465 };
3466
3467 static void
3468 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3469 {
3470         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3471
3472         intel_dp_check_link_status(intel_dp);
3473 }
3474
3475 /* Return which DP Port should be selected for Transcoder DP control */
3476 int
3477 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3478 {
3479         struct drm_device *dev = crtc->dev;
3480         struct intel_encoder *intel_encoder;
3481         struct intel_dp *intel_dp;
3482
3483         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3484                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3485
3486                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3487                     intel_encoder->type == INTEL_OUTPUT_EDP)
3488                         return intel_dp->output_reg;
3489         }
3490
3491         return -1;
3492 }
3493
3494 /* check the VBT to see whether the eDP is on DP-D port */
3495 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3496 {
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498         union child_device_config *p_child;
3499         int i;
3500         static const short port_mapping[] = {
3501                 [PORT_B] = PORT_IDPB,
3502                 [PORT_C] = PORT_IDPC,
3503                 [PORT_D] = PORT_IDPD,
3504         };
3505
3506         if (port == PORT_A)
3507                 return true;
3508
3509         if (!dev_priv->vbt.child_dev_num)
3510                 return false;
3511
3512         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3513                 p_child = dev_priv->vbt.child_dev + i;
3514
3515                 if (p_child->common.dvo_port == port_mapping[port] &&
3516                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3517                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3518                         return true;
3519         }
3520         return false;
3521 }
3522
3523 static void
3524 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3525 {
3526         struct intel_connector *intel_connector = to_intel_connector(connector);
3527
3528         intel_attach_force_audio_property(connector);
3529         intel_attach_broadcast_rgb_property(connector);
3530         intel_dp->color_range_auto = true;
3531
3532         if (is_edp(intel_dp)) {
3533                 drm_mode_create_scaling_mode_property(connector->dev);
3534                 drm_object_attach_property(
3535                         &connector->base,
3536                         connector->dev->mode_config.scaling_mode_property,
3537                         DRM_MODE_SCALE_ASPECT);
3538                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3539         }
3540 }
3541
3542 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3543 {
3544         intel_dp->last_power_cycle = jiffies;
3545         intel_dp->last_power_on = jiffies;
3546         intel_dp->last_backlight_off = jiffies;
3547 }
3548
3549 static void
3550 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3551                                     struct intel_dp *intel_dp,
3552                                     struct edp_power_seq *out)
3553 {
3554         struct drm_i915_private *dev_priv = dev->dev_private;
3555         struct edp_power_seq cur, vbt, spec, final;
3556         u32 pp_on, pp_off, pp_div, pp;
3557         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3558
3559         if (HAS_PCH_SPLIT(dev)) {
3560                 pp_ctrl_reg = PCH_PP_CONTROL;
3561                 pp_on_reg = PCH_PP_ON_DELAYS;
3562                 pp_off_reg = PCH_PP_OFF_DELAYS;
3563                 pp_div_reg = PCH_PP_DIVISOR;
3564         } else {
3565                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3566
3567                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3568                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3569                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3570                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3571         }
3572
3573         /* Workaround: Need to write PP_CONTROL with the unlock key as
3574          * the very first thing. */
3575         pp = ironlake_get_pp_control(intel_dp);
3576         I915_WRITE(pp_ctrl_reg, pp);
3577
3578         pp_on = I915_READ(pp_on_reg);
3579         pp_off = I915_READ(pp_off_reg);
3580         pp_div = I915_READ(pp_div_reg);
3581
3582         /* Pull timing values out of registers */
3583         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3584                 PANEL_POWER_UP_DELAY_SHIFT;
3585
3586         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3587                 PANEL_LIGHT_ON_DELAY_SHIFT;
3588
3589         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3590                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3591
3592         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3593                 PANEL_POWER_DOWN_DELAY_SHIFT;
3594
3595         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3596                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3597
3598         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3599                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3600
3601         vbt = dev_priv->vbt.edp_pps;
3602
3603         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3604          * our hw here, which are all in 100usec. */
3605         spec.t1_t3 = 210 * 10;
3606         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3607         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3608         spec.t10 = 500 * 10;
3609         /* This one is special and actually in units of 100ms, but zero
3610          * based in the hw (so we need to add 100 ms). But the sw vbt
3611          * table multiplies it with 1000 to make it in units of 100usec,
3612          * too. */
3613         spec.t11_t12 = (510 + 100) * 10;
3614
3615         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3616                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3617
3618         /* Use the max of the register settings and vbt. If both are
3619          * unset, fall back to the spec limits. */
3620 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3621                                        spec.field : \
3622                                        max(cur.field, vbt.field))
3623         assign_final(t1_t3);
3624         assign_final(t8);
3625         assign_final(t9);
3626         assign_final(t10);
3627         assign_final(t11_t12);
3628 #undef assign_final
3629
3630 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3631         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3632         intel_dp->backlight_on_delay = get_delay(t8);
3633         intel_dp->backlight_off_delay = get_delay(t9);
3634         intel_dp->panel_power_down_delay = get_delay(t10);
3635         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3636 #undef get_delay
3637
3638         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3639                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3640                       intel_dp->panel_power_cycle_delay);
3641
3642         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3643                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3644
3645         if (out)
3646                 *out = final;
3647 }
3648
3649 static void
3650 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3651                                               struct intel_dp *intel_dp,
3652                                               struct edp_power_seq *seq)
3653 {
3654         struct drm_i915_private *dev_priv = dev->dev_private;
3655         u32 pp_on, pp_off, pp_div, port_sel = 0;
3656         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3657         int pp_on_reg, pp_off_reg, pp_div_reg;
3658
3659         if (HAS_PCH_SPLIT(dev)) {
3660                 pp_on_reg = PCH_PP_ON_DELAYS;
3661                 pp_off_reg = PCH_PP_OFF_DELAYS;
3662                 pp_div_reg = PCH_PP_DIVISOR;
3663         } else {
3664                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3665
3666                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3667                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3668                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3669         }
3670
3671         /*
3672          * And finally store the new values in the power sequencer. The
3673          * backlight delays are set to 1 because we do manual waits on them. For
3674          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3675          * we'll end up waiting for the backlight off delay twice: once when we
3676          * do the manual sleep, and once when we disable the panel and wait for
3677          * the PP_STATUS bit to become zero.
3678          */
3679         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3680                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3681         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3682                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3683         /* Compute the divisor for the pp clock, simply match the Bspec
3684          * formula. */
3685         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3686         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3687                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3688
3689         /* Haswell doesn't have any port selection bits for the panel
3690          * power sequencer any more. */
3691         if (IS_VALLEYVIEW(dev)) {
3692                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3693                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3694                 else
3695                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3696         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3697                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3698                         port_sel = PANEL_PORT_SELECT_DPA;
3699                 else
3700                         port_sel = PANEL_PORT_SELECT_DPD;
3701         }
3702
3703         pp_on |= port_sel;
3704
3705         I915_WRITE(pp_on_reg, pp_on);
3706         I915_WRITE(pp_off_reg, pp_off);
3707         I915_WRITE(pp_div_reg, pp_div);
3708
3709         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3710                       I915_READ(pp_on_reg),
3711                       I915_READ(pp_off_reg),
3712                       I915_READ(pp_div_reg));
3713 }
3714
3715 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3716                                      struct intel_connector *intel_connector,
3717                                      struct edp_power_seq *power_seq)
3718 {
3719         struct drm_connector *connector = &intel_connector->base;
3720         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3721         struct drm_device *dev = intel_dig_port->base.base.dev;
3722         struct drm_i915_private *dev_priv = dev->dev_private;
3723         struct drm_display_mode *fixed_mode = NULL;
3724         bool has_dpcd;
3725         struct drm_display_mode *scan;
3726         struct edid *edid;
3727
3728         if (!is_edp(intel_dp))
3729                 return true;
3730
3731         /* Cache DPCD and EDID for edp. */
3732         edp_panel_vdd_on(intel_dp);
3733         has_dpcd = intel_dp_get_dpcd(intel_dp);
3734         edp_panel_vdd_off(intel_dp, false);
3735
3736         if (has_dpcd) {
3737                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3738                         dev_priv->no_aux_handshake =
3739                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3740                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3741         } else {
3742                 /* if this fails, presume the device is a ghost */
3743                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3744                 return false;
3745         }
3746
3747         /* We now know it's not a ghost, init power sequence regs. */
3748         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3749
3750         edid = drm_get_edid(connector, &intel_dp->adapter);
3751         if (edid) {
3752                 if (drm_add_edid_modes(connector, edid)) {
3753                         drm_mode_connector_update_edid_property(connector,
3754                                                                 edid);
3755                         drm_edid_to_eld(connector, edid);
3756                 } else {
3757                         kfree(edid);
3758                         edid = ERR_PTR(-EINVAL);
3759                 }
3760         } else {
3761                 edid = ERR_PTR(-ENOENT);
3762         }
3763         intel_connector->edid = edid;
3764
3765         /* prefer fixed mode from EDID if available */
3766         list_for_each_entry(scan, &connector->probed_modes, head) {
3767                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3768                         fixed_mode = drm_mode_duplicate(dev, scan);
3769                         break;
3770                 }
3771         }
3772
3773         /* fallback to VBT if available for eDP */
3774         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3775                 fixed_mode = drm_mode_duplicate(dev,
3776                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3777                 if (fixed_mode)
3778                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3779         }
3780
3781         intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3782         intel_panel_setup_backlight(connector);
3783
3784         return true;
3785 }
3786
3787 bool
3788 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3789                         struct intel_connector *intel_connector)
3790 {
3791         struct drm_connector *connector = &intel_connector->base;
3792         struct intel_dp *intel_dp = &intel_dig_port->dp;
3793         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3794         struct drm_device *dev = intel_encoder->base.dev;
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         enum port port = intel_dig_port->port;
3797         struct edp_power_seq power_seq = { 0 };
3798         const char *name = NULL;
3799         int type, error;
3800
3801         /* intel_dp vfuncs */
3802         if (IS_VALLEYVIEW(dev))
3803                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3804         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3805                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3806         else if (HAS_PCH_SPLIT(dev))
3807                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3808         else
3809                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3810
3811         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3812
3813         /* Preserve the current hw state. */
3814         intel_dp->DP = I915_READ(intel_dp->output_reg);
3815         intel_dp->attached_connector = intel_connector;
3816
3817         if (intel_dp_is_edp(dev, port))
3818                 type = DRM_MODE_CONNECTOR_eDP;
3819         else
3820                 type = DRM_MODE_CONNECTOR_DisplayPort;
3821
3822         /*
3823          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3824          * for DP the encoder type can be set by the caller to
3825          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3826          */
3827         if (type == DRM_MODE_CONNECTOR_eDP)
3828                 intel_encoder->type = INTEL_OUTPUT_EDP;
3829
3830         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3831                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3832                         port_name(port));
3833
3834         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3835         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3836
3837         connector->interlace_allowed = true;
3838         connector->doublescan_allowed = 0;
3839
3840         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3841                           edp_panel_vdd_work);
3842
3843         intel_connector_attach_encoder(intel_connector, intel_encoder);
3844         drm_sysfs_connector_add(connector);
3845
3846         if (HAS_DDI(dev))
3847                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3848         else
3849                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3850         intel_connector->unregister = intel_dp_connector_unregister;
3851
3852         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3853         if (HAS_DDI(dev)) {
3854                 switch (intel_dig_port->port) {
3855                 case PORT_A:
3856                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3857                         break;
3858                 case PORT_B:
3859                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3860                         break;
3861                 case PORT_C:
3862                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3863                         break;
3864                 case PORT_D:
3865                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3866                         break;
3867                 default:
3868                         BUG();
3869                 }
3870         }
3871
3872         /* Set up the DDC bus. */
3873         switch (port) {
3874         case PORT_A:
3875                 intel_encoder->hpd_pin = HPD_PORT_A;
3876                 name = "DPDDC-A";
3877                 break;
3878         case PORT_B:
3879                 intel_encoder->hpd_pin = HPD_PORT_B;
3880                 name = "DPDDC-B";
3881                 break;
3882         case PORT_C:
3883                 intel_encoder->hpd_pin = HPD_PORT_C;
3884                 name = "DPDDC-C";
3885                 break;
3886         case PORT_D:
3887                 intel_encoder->hpd_pin = HPD_PORT_D;
3888                 name = "DPDDC-D";
3889                 break;
3890         default:
3891                 BUG();
3892         }
3893
3894         if (is_edp(intel_dp)) {
3895                 intel_dp_init_panel_power_timestamps(intel_dp);
3896                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3897         }
3898
3899         intel_dp_aux_init(intel_dp, intel_connector);
3900
3901         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3902         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3903              error, port_name(port));
3904
3905         intel_dp->psr_setup_done = false;
3906
3907         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3908                 i2c_del_adapter(&intel_dp->adapter);
3909                 if (is_edp(intel_dp)) {
3910                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3911                         mutex_lock(&dev->mode_config.mutex);
3912                         edp_panel_vdd_off_sync(intel_dp);
3913                         mutex_unlock(&dev->mode_config.mutex);
3914                 }
3915                 drm_sysfs_connector_remove(connector);
3916                 drm_connector_cleanup(connector);
3917                 return false;
3918         }
3919
3920         intel_dp_add_properties(intel_dp, connector);
3921
3922         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3923          * 0xd.  Failure to do so will result in spurious interrupts being
3924          * generated on the port when a cable is not attached.
3925          */
3926         if (IS_G4X(dev) && !IS_GM45(dev)) {
3927                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3928                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3929         }
3930
3931         return true;
3932 }
3933
3934 void
3935 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3936 {
3937         struct intel_digital_port *intel_dig_port;
3938         struct intel_encoder *intel_encoder;
3939         struct drm_encoder *encoder;
3940         struct intel_connector *intel_connector;
3941
3942         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3943         if (!intel_dig_port)
3944                 return;
3945
3946         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3947         if (!intel_connector) {
3948                 kfree(intel_dig_port);
3949                 return;
3950         }
3951
3952         intel_encoder = &intel_dig_port->base;
3953         encoder = &intel_encoder->base;
3954
3955         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3956                          DRM_MODE_ENCODER_TMDS);
3957
3958         intel_encoder->compute_config = intel_dp_compute_config;
3959         intel_encoder->mode_set = intel_dp_mode_set;
3960         intel_encoder->disable = intel_disable_dp;
3961         intel_encoder->post_disable = intel_post_disable_dp;
3962         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3963         intel_encoder->get_config = intel_dp_get_config;
3964         if (IS_VALLEYVIEW(dev)) {
3965                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3966                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3967                 intel_encoder->enable = vlv_enable_dp;
3968         } else {
3969                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3970                 intel_encoder->enable = g4x_enable_dp;
3971         }
3972
3973         intel_dig_port->port = port;
3974         intel_dig_port->dp.output_reg = output_reg;
3975
3976         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3977         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3978         intel_encoder->cloneable = false;
3979         intel_encoder->hot_plug = intel_dp_hot_plug;
3980
3981         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3982                 drm_encoder_cleanup(encoder);
3983                 kfree(intel_dig_port);
3984                 kfree(intel_connector);
3985         }
3986 }