drm/i915/dp: change eDP default scaling mode to respect aspect ratio
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         return intel_dp->base.type == INTEL_OUTPUT_EDP;
51 }
52
53 /**
54  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55  * @intel_dp: DP struct
56  *
57  * Returns true if the given DP struct corresponds to a PCH DP port attached
58  * to an eDP panel, false otherwise.  Helpful for determining whether we
59  * may need FDI resources for a given DP output or not.
60  */
61 static bool is_pch_edp(struct intel_dp *intel_dp)
62 {
63         return intel_dp->is_pch_edp;
64 }
65
66 /**
67  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68  * @intel_dp: DP struct
69  *
70  * Returns true if the given DP struct corresponds to a CPU eDP port.
71  */
72 static bool is_cpu_edp(struct intel_dp *intel_dp)
73 {
74         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
75 }
76
77 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
78 {
79         return container_of(intel_attached_encoder(connector),
80                             struct intel_dp, base);
81 }
82
83 /**
84  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
85  * @encoder: DRM encoder
86  *
87  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
88  * by intel_display.c.
89  */
90 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
91 {
92         struct intel_dp *intel_dp;
93
94         if (!encoder)
95                 return false;
96
97         intel_dp = enc_to_intel_dp(encoder);
98
99         return is_pch_edp(intel_dp);
100 }
101
102 static void intel_dp_link_down(struct intel_dp *intel_dp);
103
104 void
105 intel_edp_link_config(struct intel_encoder *intel_encoder,
106                        int *lane_num, int *link_bw)
107 {
108         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
109
110         *lane_num = intel_dp->lane_count;
111         *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
112 }
113
114 int
115 intel_edp_target_clock(struct intel_encoder *intel_encoder,
116                        struct drm_display_mode *mode)
117 {
118         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119         struct intel_connector *intel_connector = intel_dp->attached_connector;
120
121         if (intel_connector->panel.fixed_mode)
122                 return intel_connector->panel.fixed_mode->clock;
123         else
124                 return mode->clock;
125 }
126
127 static int
128 intel_dp_max_link_bw(struct intel_dp *intel_dp)
129 {
130         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
131
132         switch (max_link_bw) {
133         case DP_LINK_BW_1_62:
134         case DP_LINK_BW_2_7:
135                 break;
136         default:
137                 max_link_bw = DP_LINK_BW_1_62;
138                 break;
139         }
140         return max_link_bw;
141 }
142
143 static int
144 intel_dp_link_clock(uint8_t link_bw)
145 {
146         if (link_bw == DP_LINK_BW_2_7)
147                 return 270000;
148         else
149                 return 162000;
150 }
151
152 /*
153  * The units on the numbers in the next two are... bizarre.  Examples will
154  * make it clearer; this one parallels an example in the eDP spec.
155  *
156  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
157  *
158  *     270000 * 1 * 8 / 10 == 216000
159  *
160  * The actual data capacity of that configuration is 2.16Gbit/s, so the
161  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
162  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
163  * 119000.  At 18bpp that's 2142000 kilobits per second.
164  *
165  * Thus the strange-looking division by 10 in intel_dp_link_required, to
166  * get the result in decakilobits instead of kilobits.
167  */
168
169 static int
170 intel_dp_link_required(int pixel_clock, int bpp)
171 {
172         return (pixel_clock * bpp + 9) / 10;
173 }
174
175 static int
176 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
177 {
178         return (max_link_clock * max_lanes * 8) / 10;
179 }
180
181 static bool
182 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
183                           struct drm_display_mode *mode,
184                           bool adjust_mode)
185 {
186         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
187         int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188         int max_rate, mode_rate;
189
190         mode_rate = intel_dp_link_required(mode->clock, 24);
191         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193         if (mode_rate > max_rate) {
194                 mode_rate = intel_dp_link_required(mode->clock, 18);
195                 if (mode_rate > max_rate)
196                         return false;
197
198                 if (adjust_mode)
199                         mode->private_flags
200                                 |= INTEL_MODE_DP_FORCE_6BPC;
201
202                 return true;
203         }
204
205         return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210                     struct drm_display_mode *mode)
211 {
212         struct intel_dp *intel_dp = intel_attached_dp(connector);
213         struct intel_connector *intel_connector = to_intel_connector(connector);
214         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216         if (is_edp(intel_dp) && fixed_mode) {
217                 if (mode->hdisplay > fixed_mode->hdisplay)
218                         return MODE_PANEL;
219
220                 if (mode->vdisplay > fixed_mode->vdisplay)
221                         return MODE_PANEL;
222         }
223
224         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239         int     i;
240         uint32_t v = 0;
241
242         if (src_bytes > 4)
243                 src_bytes = 4;
244         for (i = 0; i < src_bytes; i++)
245                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246         return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252         int i;
253         if (dst_bytes > 4)
254                 dst_bytes = 4;
255         for (i = 0; i < dst_bytes; i++)
256                 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         uint32_t clkcfg;
265
266         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267         if (IS_VALLEYVIEW(dev))
268                 return 200;
269
270         clkcfg = I915_READ(CLKCFG);
271         switch (clkcfg & CLKCFG_FSB_MASK) {
272         case CLKCFG_FSB_400:
273                 return 100;
274         case CLKCFG_FSB_533:
275                 return 133;
276         case CLKCFG_FSB_667:
277                 return 166;
278         case CLKCFG_FSB_800:
279                 return 200;
280         case CLKCFG_FSB_1067:
281                 return 266;
282         case CLKCFG_FSB_1333:
283                 return 333;
284         /* these two are just a guess; one of them might be right */
285         case CLKCFG_FSB_1600:
286         case CLKCFG_FSB_1600_ALT:
287                 return 400;
288         default:
289                 return 133;
290         }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295         struct drm_device *dev = intel_dp->base.base.dev;
296         struct drm_i915_private *dev_priv = dev->dev_private;
297
298         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303         struct drm_device *dev = intel_dp->base.base.dev;
304         struct drm_i915_private *dev_priv = dev->dev_private;
305
306         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp->base.base.dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         if (!is_edp(intel_dp))
316                 return;
317         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320                               I915_READ(PCH_PP_STATUS),
321                               I915_READ(PCH_PP_CONTROL));
322         }
323 }
324
325 static int
326 intel_dp_aux_ch(struct intel_dp *intel_dp,
327                 uint8_t *send, int send_bytes,
328                 uint8_t *recv, int recv_size)
329 {
330         uint32_t output_reg = intel_dp->output_reg;
331         struct drm_device *dev = intel_dp->base.base.dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333         uint32_t ch_ctl = output_reg + 0x10;
334         uint32_t ch_data = ch_ctl + 4;
335         int i;
336         int recv_bytes;
337         uint32_t status;
338         uint32_t aux_clock_divider;
339         int try, precharge;
340
341         if (IS_HASWELL(dev)) {
342                 switch (intel_dp->port) {
343                 case PORT_A:
344                         ch_ctl = DPA_AUX_CH_CTL;
345                         ch_data = DPA_AUX_CH_DATA1;
346                         break;
347                 case PORT_B:
348                         ch_ctl = PCH_DPB_AUX_CH_CTL;
349                         ch_data = PCH_DPB_AUX_CH_DATA1;
350                         break;
351                 case PORT_C:
352                         ch_ctl = PCH_DPC_AUX_CH_CTL;
353                         ch_data = PCH_DPC_AUX_CH_DATA1;
354                         break;
355                 case PORT_D:
356                         ch_ctl = PCH_DPD_AUX_CH_CTL;
357                         ch_data = PCH_DPD_AUX_CH_DATA1;
358                         break;
359                 default:
360                         BUG();
361                 }
362         }
363
364         intel_dp_check_edp(intel_dp);
365         /* The clock divider is based off the hrawclk,
366          * and would like to run at 2MHz. So, take the
367          * hrawclk value and divide by 2 and use that
368          *
369          * Note that PCH attached eDP panels should use a 125MHz input
370          * clock divider.
371          */
372         if (is_cpu_edp(intel_dp)) {
373                 if (IS_HASWELL(dev))
374                         aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
375                 else if (IS_VALLEYVIEW(dev))
376                         aux_clock_divider = 100;
377                 else if (IS_GEN6(dev) || IS_GEN7(dev))
378                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
379                 else
380                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
381         } else if (HAS_PCH_SPLIT(dev))
382                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
383         else
384                 aux_clock_divider = intel_hrawclk(dev) / 2;
385
386         if (IS_GEN6(dev))
387                 precharge = 3;
388         else
389                 precharge = 5;
390
391         /* Try to wait for any previous AUX channel activity */
392         for (try = 0; try < 3; try++) {
393                 status = I915_READ(ch_ctl);
394                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395                         break;
396                 msleep(1);
397         }
398
399         if (try == 3) {
400                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
401                      I915_READ(ch_ctl));
402                 return -EBUSY;
403         }
404
405         /* Must try at least 3 times according to DP spec */
406         for (try = 0; try < 5; try++) {
407                 /* Load the send data into the aux channel data registers */
408                 for (i = 0; i < send_bytes; i += 4)
409                         I915_WRITE(ch_data + i,
410                                    pack_aux(send + i, send_bytes - i));
411
412                 /* Send the command and wait for it to complete */
413                 I915_WRITE(ch_ctl,
414                            DP_AUX_CH_CTL_SEND_BUSY |
415                            DP_AUX_CH_CTL_TIME_OUT_400us |
416                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419                            DP_AUX_CH_CTL_DONE |
420                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
421                            DP_AUX_CH_CTL_RECEIVE_ERROR);
422                 for (;;) {
423                         status = I915_READ(ch_ctl);
424                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425                                 break;
426                         udelay(100);
427                 }
428
429                 /* Clear done status and any errors */
430                 I915_WRITE(ch_ctl,
431                            status |
432                            DP_AUX_CH_CTL_DONE |
433                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
434                            DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                               DP_AUX_CH_CTL_RECEIVE_ERROR))
438                         continue;
439                 if (status & DP_AUX_CH_CTL_DONE)
440                         break;
441         }
442
443         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445                 return -EBUSY;
446         }
447
448         /* Check for timeout or receive error.
449          * Timeouts occur when the sink is not connected
450          */
451         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453                 return -EIO;
454         }
455
456         /* Timeouts occur when the device isn't connected, so they're
457          * "normal" -- don't fill the kernel log with these */
458         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460                 return -ETIMEDOUT;
461         }
462
463         /* Unload any bytes sent back from the other side */
464         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466         if (recv_bytes > recv_size)
467                 recv_bytes = recv_size;
468
469         for (i = 0; i < recv_bytes; i += 4)
470                 unpack_aux(I915_READ(ch_data + i),
471                            recv + i, recv_bytes - i);
472
473         return recv_bytes;
474 }
475
476 /* Write data to the aux channel in native mode */
477 static int
478 intel_dp_aux_native_write(struct intel_dp *intel_dp,
479                           uint16_t address, uint8_t *send, int send_bytes)
480 {
481         int ret;
482         uint8_t msg[20];
483         int msg_bytes;
484         uint8_t ack;
485
486         intel_dp_check_edp(intel_dp);
487         if (send_bytes > 16)
488                 return -1;
489         msg[0] = AUX_NATIVE_WRITE << 4;
490         msg[1] = address >> 8;
491         msg[2] = address & 0xff;
492         msg[3] = send_bytes - 1;
493         memcpy(&msg[4], send, send_bytes);
494         msg_bytes = send_bytes + 4;
495         for (;;) {
496                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497                 if (ret < 0)
498                         return ret;
499                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500                         break;
501                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502                         udelay(100);
503                 else
504                         return -EIO;
505         }
506         return send_bytes;
507 }
508
509 /* Write a single byte to the aux channel in native mode */
510 static int
511 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512                             uint16_t address, uint8_t byte)
513 {
514         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 }
516
517 /* read bytes from a native aux channel */
518 static int
519 intel_dp_aux_native_read(struct intel_dp *intel_dp,
520                          uint16_t address, uint8_t *recv, int recv_bytes)
521 {
522         uint8_t msg[4];
523         int msg_bytes;
524         uint8_t reply[20];
525         int reply_bytes;
526         uint8_t ack;
527         int ret;
528
529         intel_dp_check_edp(intel_dp);
530         msg[0] = AUX_NATIVE_READ << 4;
531         msg[1] = address >> 8;
532         msg[2] = address & 0xff;
533         msg[3] = recv_bytes - 1;
534
535         msg_bytes = 4;
536         reply_bytes = recv_bytes + 1;
537
538         for (;;) {
539                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540                                       reply, reply_bytes);
541                 if (ret == 0)
542                         return -EPROTO;
543                 if (ret < 0)
544                         return ret;
545                 ack = reply[0];
546                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547                         memcpy(recv, reply + 1, ret - 1);
548                         return ret - 1;
549                 }
550                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551                         udelay(100);
552                 else
553                         return -EIO;
554         }
555 }
556
557 static int
558 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
559                     uint8_t write_byte, uint8_t *read_byte)
560 {
561         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
562         struct intel_dp *intel_dp = container_of(adapter,
563                                                 struct intel_dp,
564                                                 adapter);
565         uint16_t address = algo_data->address;
566         uint8_t msg[5];
567         uint8_t reply[2];
568         unsigned retry;
569         int msg_bytes;
570         int reply_bytes;
571         int ret;
572
573         intel_dp_check_edp(intel_dp);
574         /* Set up the command byte */
575         if (mode & MODE_I2C_READ)
576                 msg[0] = AUX_I2C_READ << 4;
577         else
578                 msg[0] = AUX_I2C_WRITE << 4;
579
580         if (!(mode & MODE_I2C_STOP))
581                 msg[0] |= AUX_I2C_MOT << 4;
582
583         msg[1] = address >> 8;
584         msg[2] = address;
585
586         switch (mode) {
587         case MODE_I2C_WRITE:
588                 msg[3] = 0;
589                 msg[4] = write_byte;
590                 msg_bytes = 5;
591                 reply_bytes = 1;
592                 break;
593         case MODE_I2C_READ:
594                 msg[3] = 0;
595                 msg_bytes = 4;
596                 reply_bytes = 2;
597                 break;
598         default:
599                 msg_bytes = 3;
600                 reply_bytes = 1;
601                 break;
602         }
603
604         for (retry = 0; retry < 5; retry++) {
605                 ret = intel_dp_aux_ch(intel_dp,
606                                       msg, msg_bytes,
607                                       reply, reply_bytes);
608                 if (ret < 0) {
609                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
610                         return ret;
611                 }
612
613                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
614                 case AUX_NATIVE_REPLY_ACK:
615                         /* I2C-over-AUX Reply field is only valid
616                          * when paired with AUX ACK.
617                          */
618                         break;
619                 case AUX_NATIVE_REPLY_NACK:
620                         DRM_DEBUG_KMS("aux_ch native nack\n");
621                         return -EREMOTEIO;
622                 case AUX_NATIVE_REPLY_DEFER:
623                         udelay(100);
624                         continue;
625                 default:
626                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
627                                   reply[0]);
628                         return -EREMOTEIO;
629                 }
630
631                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
632                 case AUX_I2C_REPLY_ACK:
633                         if (mode == MODE_I2C_READ) {
634                                 *read_byte = reply[1];
635                         }
636                         return reply_bytes - 1;
637                 case AUX_I2C_REPLY_NACK:
638                         DRM_DEBUG_KMS("aux_i2c nack\n");
639                         return -EREMOTEIO;
640                 case AUX_I2C_REPLY_DEFER:
641                         DRM_DEBUG_KMS("aux_i2c defer\n");
642                         udelay(100);
643                         break;
644                 default:
645                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
646                         return -EREMOTEIO;
647                 }
648         }
649
650         DRM_ERROR("too many retries, giving up\n");
651         return -EREMOTEIO;
652 }
653
654 static int
655 intel_dp_i2c_init(struct intel_dp *intel_dp,
656                   struct intel_connector *intel_connector, const char *name)
657 {
658         int     ret;
659
660         DRM_DEBUG_KMS("i2c_init %s\n", name);
661         intel_dp->algo.running = false;
662         intel_dp->algo.address = 0;
663         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
664
665         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
666         intel_dp->adapter.owner = THIS_MODULE;
667         intel_dp->adapter.class = I2C_CLASS_DDC;
668         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
669         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
670         intel_dp->adapter.algo_data = &intel_dp->algo;
671         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
672
673         ironlake_edp_panel_vdd_on(intel_dp);
674         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
675         ironlake_edp_panel_vdd_off(intel_dp, false);
676         return ret;
677 }
678
679 static bool
680 intel_dp_mode_fixup(struct drm_encoder *encoder,
681                     const struct drm_display_mode *mode,
682                     struct drm_display_mode *adjusted_mode)
683 {
684         struct drm_device *dev = encoder->dev;
685         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
686         struct intel_connector *intel_connector = intel_dp->attached_connector;
687         int lane_count, clock;
688         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
689         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
690         int bpp, mode_rate;
691         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
692
693         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
694                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
695                                        adjusted_mode);
696                 intel_pch_panel_fitting(dev,
697                                         intel_connector->panel.fitting_mode,
698                                         mode, adjusted_mode);
699         }
700
701         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
702                 return false;
703
704         DRM_DEBUG_KMS("DP link computation with max lane count %i "
705                       "max bw %02x pixel clock %iKHz\n",
706                       max_lane_count, bws[max_clock], adjusted_mode->clock);
707
708         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
709                 return false;
710
711         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
712         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
713
714         for (clock = 0; clock <= max_clock; clock++) {
715                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
716                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
717
718                         if (mode_rate <= link_avail) {
719                                 intel_dp->link_bw = bws[clock];
720                                 intel_dp->lane_count = lane_count;
721                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
722                                 DRM_DEBUG_KMS("DP link bw %02x lane "
723                                                 "count %d clock %d bpp %d\n",
724                                        intel_dp->link_bw, intel_dp->lane_count,
725                                        adjusted_mode->clock, bpp);
726                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
727                                               mode_rate, link_avail);
728                                 return true;
729                         }
730                 }
731         }
732
733         return false;
734 }
735
736 struct intel_dp_m_n {
737         uint32_t        tu;
738         uint32_t        gmch_m;
739         uint32_t        gmch_n;
740         uint32_t        link_m;
741         uint32_t        link_n;
742 };
743
744 static void
745 intel_reduce_ratio(uint32_t *num, uint32_t *den)
746 {
747         while (*num > 0xffffff || *den > 0xffffff) {
748                 *num >>= 1;
749                 *den >>= 1;
750         }
751 }
752
753 static void
754 intel_dp_compute_m_n(int bpp,
755                      int nlanes,
756                      int pixel_clock,
757                      int link_clock,
758                      struct intel_dp_m_n *m_n)
759 {
760         m_n->tu = 64;
761         m_n->gmch_m = (pixel_clock * bpp) >> 3;
762         m_n->gmch_n = link_clock * nlanes;
763         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
764         m_n->link_m = pixel_clock;
765         m_n->link_n = link_clock;
766         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
767 }
768
769 void
770 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
771                  struct drm_display_mode *adjusted_mode)
772 {
773         struct drm_device *dev = crtc->dev;
774         struct intel_encoder *encoder;
775         struct drm_i915_private *dev_priv = dev->dev_private;
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777         int lane_count = 4;
778         struct intel_dp_m_n m_n;
779         int pipe = intel_crtc->pipe;
780         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
781
782         /*
783          * Find the lane count in the intel_encoder private
784          */
785         for_each_encoder_on_crtc(dev, crtc, encoder) {
786                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
787
788                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
789                     intel_dp->base.type == INTEL_OUTPUT_EDP)
790                 {
791                         lane_count = intel_dp->lane_count;
792                         break;
793                 }
794         }
795
796         /*
797          * Compute the GMCH and Link ratios. The '3' here is
798          * the number of bytes_per_pixel post-LUT, which we always
799          * set up for 8-bits of R/G/B, or 3 bytes total.
800          */
801         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
802                              mode->clock, adjusted_mode->clock, &m_n);
803
804         if (IS_HASWELL(dev)) {
805                 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
806                            TU_SIZE(m_n.tu) | m_n.gmch_m);
807                 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
808                 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
809                 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
810         } else if (HAS_PCH_SPLIT(dev)) {
811                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
812                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
813                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
814                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
815         } else if (IS_VALLEYVIEW(dev)) {
816                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
817                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
818                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
819                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
820         } else {
821                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
822                            TU_SIZE(m_n.tu) | m_n.gmch_m);
823                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
824                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
825                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
826         }
827 }
828
829 void intel_dp_init_link_config(struct intel_dp *intel_dp)
830 {
831         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
832         intel_dp->link_configuration[0] = intel_dp->link_bw;
833         intel_dp->link_configuration[1] = intel_dp->lane_count;
834         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
835         /*
836          * Check for DPCD version > 1.1 and enhanced framing support
837          */
838         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
839             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
840                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
841         }
842 }
843
844 static void
845 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
846                   struct drm_display_mode *adjusted_mode)
847 {
848         struct drm_device *dev = encoder->dev;
849         struct drm_i915_private *dev_priv = dev->dev_private;
850         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
851         struct drm_crtc *crtc = intel_dp->base.base.crtc;
852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853
854         /*
855          * There are four kinds of DP registers:
856          *
857          *      IBX PCH
858          *      SNB CPU
859          *      IVB CPU
860          *      CPT PCH
861          *
862          * IBX PCH and CPU are the same for almost everything,
863          * except that the CPU DP PLL is configured in this
864          * register
865          *
866          * CPT PCH is quite different, having many bits moved
867          * to the TRANS_DP_CTL register instead. That
868          * configuration happens (oddly) in ironlake_pch_enable
869          */
870
871         /* Preserve the BIOS-computed detected bit. This is
872          * supposed to be read-only.
873          */
874         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
875
876         /* Handle DP bits in common between all three register formats */
877         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
878
879         switch (intel_dp->lane_count) {
880         case 1:
881                 intel_dp->DP |= DP_PORT_WIDTH_1;
882                 break;
883         case 2:
884                 intel_dp->DP |= DP_PORT_WIDTH_2;
885                 break;
886         case 4:
887                 intel_dp->DP |= DP_PORT_WIDTH_4;
888                 break;
889         }
890         if (intel_dp->has_audio) {
891                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
892                                  pipe_name(intel_crtc->pipe));
893                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
894                 intel_write_eld(encoder, adjusted_mode);
895         }
896
897         intel_dp_init_link_config(intel_dp);
898
899         /* Split out the IBX/CPU vs CPT settings */
900
901         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
902                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
903                         intel_dp->DP |= DP_SYNC_HS_HIGH;
904                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
905                         intel_dp->DP |= DP_SYNC_VS_HIGH;
906                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
907
908                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
909                         intel_dp->DP |= DP_ENHANCED_FRAMING;
910
911                 intel_dp->DP |= intel_crtc->pipe << 29;
912
913                 /* don't miss out required setting for eDP */
914                 if (adjusted_mode->clock < 200000)
915                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
916                 else
917                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
919                 intel_dp->DP |= intel_dp->color_range;
920
921                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
922                         intel_dp->DP |= DP_SYNC_HS_HIGH;
923                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
924                         intel_dp->DP |= DP_SYNC_VS_HIGH;
925                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
926
927                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
928                         intel_dp->DP |= DP_ENHANCED_FRAMING;
929
930                 if (intel_crtc->pipe == 1)
931                         intel_dp->DP |= DP_PIPEB_SELECT;
932
933                 if (is_cpu_edp(intel_dp)) {
934                         /* don't miss out required setting for eDP */
935                         if (adjusted_mode->clock < 200000)
936                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
937                         else
938                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
939                 }
940         } else {
941                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
942         }
943 }
944
945 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
946 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
947
948 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
949 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
950
951 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
952 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
953
954 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
955                                        u32 mask,
956                                        u32 value)
957 {
958         struct drm_device *dev = intel_dp->base.base.dev;
959         struct drm_i915_private *dev_priv = dev->dev_private;
960
961         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
962                       mask, value,
963                       I915_READ(PCH_PP_STATUS),
964                       I915_READ(PCH_PP_CONTROL));
965
966         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
967                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
968                           I915_READ(PCH_PP_STATUS),
969                           I915_READ(PCH_PP_CONTROL));
970         }
971 }
972
973 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
974 {
975         DRM_DEBUG_KMS("Wait for panel power on\n");
976         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
977 }
978
979 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
980 {
981         DRM_DEBUG_KMS("Wait for panel power off time\n");
982         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
983 }
984
985 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
986 {
987         DRM_DEBUG_KMS("Wait for panel power cycle\n");
988         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
989 }
990
991
992 /* Read the current pp_control value, unlocking the register if it
993  * is locked
994  */
995
996 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
997 {
998         u32     control = I915_READ(PCH_PP_CONTROL);
999
1000         control &= ~PANEL_UNLOCK_MASK;
1001         control |= PANEL_UNLOCK_REGS;
1002         return control;
1003 }
1004
1005 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1006 {
1007         struct drm_device *dev = intel_dp->base.base.dev;
1008         struct drm_i915_private *dev_priv = dev->dev_private;
1009         u32 pp;
1010
1011         if (!is_edp(intel_dp))
1012                 return;
1013         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1014
1015         WARN(intel_dp->want_panel_vdd,
1016              "eDP VDD already requested on\n");
1017
1018         intel_dp->want_panel_vdd = true;
1019
1020         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1021                 DRM_DEBUG_KMS("eDP VDD already on\n");
1022                 return;
1023         }
1024
1025         if (!ironlake_edp_have_panel_power(intel_dp))
1026                 ironlake_wait_panel_power_cycle(intel_dp);
1027
1028         pp = ironlake_get_pp_control(dev_priv);
1029         pp |= EDP_FORCE_VDD;
1030         I915_WRITE(PCH_PP_CONTROL, pp);
1031         POSTING_READ(PCH_PP_CONTROL);
1032         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1033                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1034
1035         /*
1036          * If the panel wasn't on, delay before accessing aux channel
1037          */
1038         if (!ironlake_edp_have_panel_power(intel_dp)) {
1039                 DRM_DEBUG_KMS("eDP was not running\n");
1040                 msleep(intel_dp->panel_power_up_delay);
1041         }
1042 }
1043
1044 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1045 {
1046         struct drm_device *dev = intel_dp->base.base.dev;
1047         struct drm_i915_private *dev_priv = dev->dev_private;
1048         u32 pp;
1049
1050         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1051                 pp = ironlake_get_pp_control(dev_priv);
1052                 pp &= ~EDP_FORCE_VDD;
1053                 I915_WRITE(PCH_PP_CONTROL, pp);
1054                 POSTING_READ(PCH_PP_CONTROL);
1055
1056                 /* Make sure sequencer is idle before allowing subsequent activity */
1057                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1058                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1059
1060                 msleep(intel_dp->panel_power_down_delay);
1061         }
1062 }
1063
1064 static void ironlake_panel_vdd_work(struct work_struct *__work)
1065 {
1066         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1067                                                  struct intel_dp, panel_vdd_work);
1068         struct drm_device *dev = intel_dp->base.base.dev;
1069
1070         mutex_lock(&dev->mode_config.mutex);
1071         ironlake_panel_vdd_off_sync(intel_dp);
1072         mutex_unlock(&dev->mode_config.mutex);
1073 }
1074
1075 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1076 {
1077         if (!is_edp(intel_dp))
1078                 return;
1079
1080         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1081         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1082
1083         intel_dp->want_panel_vdd = false;
1084
1085         if (sync) {
1086                 ironlake_panel_vdd_off_sync(intel_dp);
1087         } else {
1088                 /*
1089                  * Queue the timer to fire a long
1090                  * time from now (relative to the power down delay)
1091                  * to keep the panel power up across a sequence of operations
1092                  */
1093                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1094                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1095         }
1096 }
1097
1098 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1099 {
1100         struct drm_device *dev = intel_dp->base.base.dev;
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         u32 pp;
1103
1104         if (!is_edp(intel_dp))
1105                 return;
1106
1107         DRM_DEBUG_KMS("Turn eDP power on\n");
1108
1109         if (ironlake_edp_have_panel_power(intel_dp)) {
1110                 DRM_DEBUG_KMS("eDP power already on\n");
1111                 return;
1112         }
1113
1114         ironlake_wait_panel_power_cycle(intel_dp);
1115
1116         pp = ironlake_get_pp_control(dev_priv);
1117         if (IS_GEN5(dev)) {
1118                 /* ILK workaround: disable reset around power sequence */
1119                 pp &= ~PANEL_POWER_RESET;
1120                 I915_WRITE(PCH_PP_CONTROL, pp);
1121                 POSTING_READ(PCH_PP_CONTROL);
1122         }
1123
1124         pp |= POWER_TARGET_ON;
1125         if (!IS_GEN5(dev))
1126                 pp |= PANEL_POWER_RESET;
1127
1128         I915_WRITE(PCH_PP_CONTROL, pp);
1129         POSTING_READ(PCH_PP_CONTROL);
1130
1131         ironlake_wait_panel_on(intel_dp);
1132
1133         if (IS_GEN5(dev)) {
1134                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1135                 I915_WRITE(PCH_PP_CONTROL, pp);
1136                 POSTING_READ(PCH_PP_CONTROL);
1137         }
1138 }
1139
1140 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1141 {
1142         struct drm_device *dev = intel_dp->base.base.dev;
1143         struct drm_i915_private *dev_priv = dev->dev_private;
1144         u32 pp;
1145
1146         if (!is_edp(intel_dp))
1147                 return;
1148
1149         DRM_DEBUG_KMS("Turn eDP power off\n");
1150
1151         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1152
1153         pp = ironlake_get_pp_control(dev_priv);
1154         /* We need to switch off panel power _and_ force vdd, for otherwise some
1155          * panels get very unhappy and cease to work. */
1156         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1157         I915_WRITE(PCH_PP_CONTROL, pp);
1158         POSTING_READ(PCH_PP_CONTROL);
1159
1160         intel_dp->want_panel_vdd = false;
1161
1162         ironlake_wait_panel_off(intel_dp);
1163 }
1164
1165 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1166 {
1167         struct drm_device *dev = intel_dp->base.base.dev;
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         int pipe = to_intel_crtc(intel_dp->base.base.crtc)->pipe;
1170         u32 pp;
1171
1172         if (!is_edp(intel_dp))
1173                 return;
1174
1175         DRM_DEBUG_KMS("\n");
1176         /*
1177          * If we enable the backlight right away following a panel power
1178          * on, we may see slight flicker as the panel syncs with the eDP
1179          * link.  So delay a bit to make sure the image is solid before
1180          * allowing it to appear.
1181          */
1182         msleep(intel_dp->backlight_on_delay);
1183         pp = ironlake_get_pp_control(dev_priv);
1184         pp |= EDP_BLC_ENABLE;
1185         I915_WRITE(PCH_PP_CONTROL, pp);
1186         POSTING_READ(PCH_PP_CONTROL);
1187
1188         intel_panel_enable_backlight(dev, pipe);
1189 }
1190
1191 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1192 {
1193         struct drm_device *dev = intel_dp->base.base.dev;
1194         struct drm_i915_private *dev_priv = dev->dev_private;
1195         u32 pp;
1196
1197         if (!is_edp(intel_dp))
1198                 return;
1199
1200         intel_panel_disable_backlight(dev);
1201
1202         DRM_DEBUG_KMS("\n");
1203         pp = ironlake_get_pp_control(dev_priv);
1204         pp &= ~EDP_BLC_ENABLE;
1205         I915_WRITE(PCH_PP_CONTROL, pp);
1206         POSTING_READ(PCH_PP_CONTROL);
1207         msleep(intel_dp->backlight_off_delay);
1208 }
1209
1210 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1211 {
1212         struct drm_device *dev = intel_dp->base.base.dev;
1213         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1214         struct drm_i915_private *dev_priv = dev->dev_private;
1215         u32 dpa_ctl;
1216
1217         assert_pipe_disabled(dev_priv,
1218                              to_intel_crtc(crtc)->pipe);
1219
1220         DRM_DEBUG_KMS("\n");
1221         dpa_ctl = I915_READ(DP_A);
1222         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1223         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1224
1225         /* We don't adjust intel_dp->DP while tearing down the link, to
1226          * facilitate link retraining (e.g. after hotplug). Hence clear all
1227          * enable bits here to ensure that we don't enable too much. */
1228         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1229         intel_dp->DP |= DP_PLL_ENABLE;
1230         I915_WRITE(DP_A, intel_dp->DP);
1231         POSTING_READ(DP_A);
1232         udelay(200);
1233 }
1234
1235 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1236 {
1237         struct drm_device *dev = intel_dp->base.base.dev;
1238         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1239         struct drm_i915_private *dev_priv = dev->dev_private;
1240         u32 dpa_ctl;
1241
1242         assert_pipe_disabled(dev_priv,
1243                              to_intel_crtc(crtc)->pipe);
1244
1245         dpa_ctl = I915_READ(DP_A);
1246         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1247              "dp pll off, should be on\n");
1248         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1249
1250         /* We can't rely on the value tracked for the DP register in
1251          * intel_dp->DP because link_down must not change that (otherwise link
1252          * re-training will fail. */
1253         dpa_ctl &= ~DP_PLL_ENABLE;
1254         I915_WRITE(DP_A, dpa_ctl);
1255         POSTING_READ(DP_A);
1256         udelay(200);
1257 }
1258
1259 /* If the sink supports it, try to set the power state appropriately */
1260 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1261 {
1262         int ret, i;
1263
1264         /* Should have a valid DPCD by this point */
1265         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1266                 return;
1267
1268         if (mode != DRM_MODE_DPMS_ON) {
1269                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1270                                                   DP_SET_POWER_D3);
1271                 if (ret != 1)
1272                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1273         } else {
1274                 /*
1275                  * When turning on, we need to retry for 1ms to give the sink
1276                  * time to wake up.
1277                  */
1278                 for (i = 0; i < 3; i++) {
1279                         ret = intel_dp_aux_native_write_1(intel_dp,
1280                                                           DP_SET_POWER,
1281                                                           DP_SET_POWER_D0);
1282                         if (ret == 1)
1283                                 break;
1284                         msleep(1);
1285                 }
1286         }
1287 }
1288
1289 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1290                                   enum pipe *pipe)
1291 {
1292         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1293         struct drm_device *dev = encoder->base.dev;
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295         u32 tmp = I915_READ(intel_dp->output_reg);
1296
1297         if (!(tmp & DP_PORT_EN))
1298                 return false;
1299
1300         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1301                 *pipe = PORT_TO_PIPE_CPT(tmp);
1302         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1303                 *pipe = PORT_TO_PIPE(tmp);
1304         } else {
1305                 u32 trans_sel;
1306                 u32 trans_dp;
1307                 int i;
1308
1309                 switch (intel_dp->output_reg) {
1310                 case PCH_DP_B:
1311                         trans_sel = TRANS_DP_PORT_SEL_B;
1312                         break;
1313                 case PCH_DP_C:
1314                         trans_sel = TRANS_DP_PORT_SEL_C;
1315                         break;
1316                 case PCH_DP_D:
1317                         trans_sel = TRANS_DP_PORT_SEL_D;
1318                         break;
1319                 default:
1320                         return true;
1321                 }
1322
1323                 for_each_pipe(i) {
1324                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1325                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1326                                 *pipe = i;
1327                                 return true;
1328                         }
1329                 }
1330         }
1331
1332         DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1333
1334         return true;
1335 }
1336
1337 static void intel_disable_dp(struct intel_encoder *encoder)
1338 {
1339         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1340
1341         /* Make sure the panel is off before trying to change the mode. But also
1342          * ensure that we have vdd while we switch off the panel. */
1343         ironlake_edp_panel_vdd_on(intel_dp);
1344         ironlake_edp_backlight_off(intel_dp);
1345         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346         ironlake_edp_panel_off(intel_dp);
1347
1348         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1349         if (!is_cpu_edp(intel_dp))
1350                 intel_dp_link_down(intel_dp);
1351 }
1352
1353 static void intel_post_disable_dp(struct intel_encoder *encoder)
1354 {
1355         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356
1357         if (is_cpu_edp(intel_dp)) {
1358                 intel_dp_link_down(intel_dp);
1359                 ironlake_edp_pll_off(intel_dp);
1360         }
1361 }
1362
1363 static void intel_enable_dp(struct intel_encoder *encoder)
1364 {
1365         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1366         struct drm_device *dev = encoder->base.dev;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1369
1370         if (WARN_ON(dp_reg & DP_PORT_EN))
1371                 return;
1372
1373         ironlake_edp_panel_vdd_on(intel_dp);
1374         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1375         intel_dp_start_link_train(intel_dp);
1376         ironlake_edp_panel_on(intel_dp);
1377         ironlake_edp_panel_vdd_off(intel_dp, true);
1378         intel_dp_complete_link_train(intel_dp);
1379         ironlake_edp_backlight_on(intel_dp);
1380 }
1381
1382 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1383 {
1384         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1385
1386         if (is_cpu_edp(intel_dp))
1387                 ironlake_edp_pll_on(intel_dp);
1388 }
1389
1390 /*
1391  * Native read with retry for link status and receiver capability reads for
1392  * cases where the sink may still be asleep.
1393  */
1394 static bool
1395 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1396                                uint8_t *recv, int recv_bytes)
1397 {
1398         int ret, i;
1399
1400         /*
1401          * Sinks are *supposed* to come up within 1ms from an off state,
1402          * but we're also supposed to retry 3 times per the spec.
1403          */
1404         for (i = 0; i < 3; i++) {
1405                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1406                                                recv_bytes);
1407                 if (ret == recv_bytes)
1408                         return true;
1409                 msleep(1);
1410         }
1411
1412         return false;
1413 }
1414
1415 /*
1416  * Fetch AUX CH registers 0x202 - 0x207 which contain
1417  * link status information
1418  */
1419 static bool
1420 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1421 {
1422         return intel_dp_aux_native_read_retry(intel_dp,
1423                                               DP_LANE0_1_STATUS,
1424                                               link_status,
1425                                               DP_LINK_STATUS_SIZE);
1426 }
1427
1428 #if 0
1429 static char     *voltage_names[] = {
1430         "0.4V", "0.6V", "0.8V", "1.2V"
1431 };
1432 static char     *pre_emph_names[] = {
1433         "0dB", "3.5dB", "6dB", "9.5dB"
1434 };
1435 static char     *link_train_names[] = {
1436         "pattern 1", "pattern 2", "idle", "off"
1437 };
1438 #endif
1439
1440 /*
1441  * These are source-specific values; current Intel hardware supports
1442  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1443  */
1444
1445 static uint8_t
1446 intel_dp_voltage_max(struct intel_dp *intel_dp)
1447 {
1448         struct drm_device *dev = intel_dp->base.base.dev;
1449
1450         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1451                 return DP_TRAIN_VOLTAGE_SWING_800;
1452         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1453                 return DP_TRAIN_VOLTAGE_SWING_1200;
1454         else
1455                 return DP_TRAIN_VOLTAGE_SWING_800;
1456 }
1457
1458 static uint8_t
1459 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1460 {
1461         struct drm_device *dev = intel_dp->base.base.dev;
1462
1463         if (IS_HASWELL(dev)) {
1464                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1465                 case DP_TRAIN_VOLTAGE_SWING_400:
1466                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1467                 case DP_TRAIN_VOLTAGE_SWING_600:
1468                         return DP_TRAIN_PRE_EMPHASIS_6;
1469                 case DP_TRAIN_VOLTAGE_SWING_800:
1470                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1471                 case DP_TRAIN_VOLTAGE_SWING_1200:
1472                 default:
1473                         return DP_TRAIN_PRE_EMPHASIS_0;
1474                 }
1475         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1476                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1477                 case DP_TRAIN_VOLTAGE_SWING_400:
1478                         return DP_TRAIN_PRE_EMPHASIS_6;
1479                 case DP_TRAIN_VOLTAGE_SWING_600:
1480                 case DP_TRAIN_VOLTAGE_SWING_800:
1481                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1482                 default:
1483                         return DP_TRAIN_PRE_EMPHASIS_0;
1484                 }
1485         } else {
1486                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1487                 case DP_TRAIN_VOLTAGE_SWING_400:
1488                         return DP_TRAIN_PRE_EMPHASIS_6;
1489                 case DP_TRAIN_VOLTAGE_SWING_600:
1490                         return DP_TRAIN_PRE_EMPHASIS_6;
1491                 case DP_TRAIN_VOLTAGE_SWING_800:
1492                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1493                 case DP_TRAIN_VOLTAGE_SWING_1200:
1494                 default:
1495                         return DP_TRAIN_PRE_EMPHASIS_0;
1496                 }
1497         }
1498 }
1499
1500 static void
1501 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1502 {
1503         uint8_t v = 0;
1504         uint8_t p = 0;
1505         int lane;
1506         uint8_t voltage_max;
1507         uint8_t preemph_max;
1508
1509         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1510                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1511                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1512
1513                 if (this_v > v)
1514                         v = this_v;
1515                 if (this_p > p)
1516                         p = this_p;
1517         }
1518
1519         voltage_max = intel_dp_voltage_max(intel_dp);
1520         if (v >= voltage_max)
1521                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1522
1523         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1524         if (p >= preemph_max)
1525                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1526
1527         for (lane = 0; lane < 4; lane++)
1528                 intel_dp->train_set[lane] = v | p;
1529 }
1530
1531 static uint32_t
1532 intel_dp_signal_levels(uint8_t train_set)
1533 {
1534         uint32_t        signal_levels = 0;
1535
1536         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1537         case DP_TRAIN_VOLTAGE_SWING_400:
1538         default:
1539                 signal_levels |= DP_VOLTAGE_0_4;
1540                 break;
1541         case DP_TRAIN_VOLTAGE_SWING_600:
1542                 signal_levels |= DP_VOLTAGE_0_6;
1543                 break;
1544         case DP_TRAIN_VOLTAGE_SWING_800:
1545                 signal_levels |= DP_VOLTAGE_0_8;
1546                 break;
1547         case DP_TRAIN_VOLTAGE_SWING_1200:
1548                 signal_levels |= DP_VOLTAGE_1_2;
1549                 break;
1550         }
1551         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1552         case DP_TRAIN_PRE_EMPHASIS_0:
1553         default:
1554                 signal_levels |= DP_PRE_EMPHASIS_0;
1555                 break;
1556         case DP_TRAIN_PRE_EMPHASIS_3_5:
1557                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1558                 break;
1559         case DP_TRAIN_PRE_EMPHASIS_6:
1560                 signal_levels |= DP_PRE_EMPHASIS_6;
1561                 break;
1562         case DP_TRAIN_PRE_EMPHASIS_9_5:
1563                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1564                 break;
1565         }
1566         return signal_levels;
1567 }
1568
1569 /* Gen6's DP voltage swing and pre-emphasis control */
1570 static uint32_t
1571 intel_gen6_edp_signal_levels(uint8_t train_set)
1572 {
1573         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1574                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1575         switch (signal_levels) {
1576         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1577         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1578                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1579         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1580                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1581         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1582         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1583                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1584         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1586                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1587         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1588         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1589                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1590         default:
1591                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1592                               "0x%x\n", signal_levels);
1593                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1594         }
1595 }
1596
1597 /* Gen7's DP voltage swing and pre-emphasis control */
1598 static uint32_t
1599 intel_gen7_edp_signal_levels(uint8_t train_set)
1600 {
1601         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1602                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1603         switch (signal_levels) {
1604         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1605                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1606         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1607                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1608         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1609                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1610
1611         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1612                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1613         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1614                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1615
1616         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1617                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1618         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1619                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1620
1621         default:
1622                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1623                               "0x%x\n", signal_levels);
1624                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1625         }
1626 }
1627
1628 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1629 static uint32_t
1630 intel_dp_signal_levels_hsw(uint8_t train_set)
1631 {
1632         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1633                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1634         switch (signal_levels) {
1635         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1636                 return DDI_BUF_EMP_400MV_0DB_HSW;
1637         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1638                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1639         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1640                 return DDI_BUF_EMP_400MV_6DB_HSW;
1641         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1642                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1643
1644         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1645                 return DDI_BUF_EMP_600MV_0DB_HSW;
1646         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1647                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1648         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1649                 return DDI_BUF_EMP_600MV_6DB_HSW;
1650
1651         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1652                 return DDI_BUF_EMP_800MV_0DB_HSW;
1653         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1654                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1655         default:
1656                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1657                               "0x%x\n", signal_levels);
1658                 return DDI_BUF_EMP_400MV_0DB_HSW;
1659         }
1660 }
1661
1662 static bool
1663 intel_dp_set_link_train(struct intel_dp *intel_dp,
1664                         uint32_t dp_reg_value,
1665                         uint8_t dp_train_pat)
1666 {
1667         struct drm_device *dev = intel_dp->base.base.dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         int ret;
1670         uint32_t temp;
1671
1672         if (IS_HASWELL(dev)) {
1673                 temp = I915_READ(DP_TP_CTL(intel_dp->port));
1674
1675                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1676                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1677                 else
1678                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1679
1680                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1681                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1682                 case DP_TRAINING_PATTERN_DISABLE:
1683                         temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1684                         I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1685
1686                         if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1687                                       DP_TP_STATUS_IDLE_DONE), 1))
1688                                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1689
1690                         temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1691                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1692
1693                         break;
1694                 case DP_TRAINING_PATTERN_1:
1695                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1696                         break;
1697                 case DP_TRAINING_PATTERN_2:
1698                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1699                         break;
1700                 case DP_TRAINING_PATTERN_3:
1701                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1702                         break;
1703                 }
1704                 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1705
1706         } else if (HAS_PCH_CPT(dev) &&
1707                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1708                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1709
1710                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1711                 case DP_TRAINING_PATTERN_DISABLE:
1712                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1713                         break;
1714                 case DP_TRAINING_PATTERN_1:
1715                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1716                         break;
1717                 case DP_TRAINING_PATTERN_2:
1718                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1719                         break;
1720                 case DP_TRAINING_PATTERN_3:
1721                         DRM_ERROR("DP training pattern 3 not supported\n");
1722                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1723                         break;
1724                 }
1725
1726         } else {
1727                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1728
1729                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1730                 case DP_TRAINING_PATTERN_DISABLE:
1731                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1732                         break;
1733                 case DP_TRAINING_PATTERN_1:
1734                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1735                         break;
1736                 case DP_TRAINING_PATTERN_2:
1737                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1738                         break;
1739                 case DP_TRAINING_PATTERN_3:
1740                         DRM_ERROR("DP training pattern 3 not supported\n");
1741                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1742                         break;
1743                 }
1744         }
1745
1746         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1747         POSTING_READ(intel_dp->output_reg);
1748
1749         intel_dp_aux_native_write_1(intel_dp,
1750                                     DP_TRAINING_PATTERN_SET,
1751                                     dp_train_pat);
1752
1753         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1754             DP_TRAINING_PATTERN_DISABLE) {
1755                 ret = intel_dp_aux_native_write(intel_dp,
1756                                                 DP_TRAINING_LANE0_SET,
1757                                                 intel_dp->train_set,
1758                                                 intel_dp->lane_count);
1759                 if (ret != intel_dp->lane_count)
1760                         return false;
1761         }
1762
1763         return true;
1764 }
1765
1766 /* Enable corresponding port and start training pattern 1 */
1767 void
1768 intel_dp_start_link_train(struct intel_dp *intel_dp)
1769 {
1770         struct drm_encoder *encoder = &intel_dp->base.base;
1771         struct drm_device *dev = encoder->dev;
1772         int i;
1773         uint8_t voltage;
1774         bool clock_recovery = false;
1775         int voltage_tries, loop_tries;
1776         uint32_t DP = intel_dp->DP;
1777
1778         if (IS_HASWELL(dev))
1779                 intel_ddi_prepare_link_retrain(encoder);
1780
1781         /* Write the link configuration data */
1782         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1783                                   intel_dp->link_configuration,
1784                                   DP_LINK_CONFIGURATION_SIZE);
1785
1786         DP |= DP_PORT_EN;
1787
1788         memset(intel_dp->train_set, 0, 4);
1789         voltage = 0xff;
1790         voltage_tries = 0;
1791         loop_tries = 0;
1792         clock_recovery = false;
1793         for (;;) {
1794                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1795                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1796                 uint32_t    signal_levels;
1797
1798                 if (IS_HASWELL(dev)) {
1799                         signal_levels = intel_dp_signal_levels_hsw(
1800                                                         intel_dp->train_set[0]);
1801                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1802                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1803                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1804                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1805                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1806                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1807                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1808                 } else {
1809                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1810                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1811                 }
1812                 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1813                               signal_levels);
1814
1815                 /* Set training pattern 1 */
1816                 if (!intel_dp_set_link_train(intel_dp, DP,
1817                                              DP_TRAINING_PATTERN_1 |
1818                                              DP_LINK_SCRAMBLING_DISABLE))
1819                         break;
1820
1821                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1822                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1823                         DRM_ERROR("failed to get link status\n");
1824                         break;
1825                 }
1826
1827                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1828                         DRM_DEBUG_KMS("clock recovery OK\n");
1829                         clock_recovery = true;
1830                         break;
1831                 }
1832
1833                 /* Check to see if we've tried the max voltage */
1834                 for (i = 0; i < intel_dp->lane_count; i++)
1835                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1836                                 break;
1837                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1838                         if (++loop_tries == 5) {
1839                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1840                                 break;
1841                         }
1842                         memset(intel_dp->train_set, 0, 4);
1843                         voltage_tries = 0;
1844                         continue;
1845                 }
1846
1847                 /* Check to see if we've tried the same voltage 5 times */
1848                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1849                         voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1850                         voltage_tries = 0;
1851                 } else
1852                         ++voltage_tries;
1853
1854                 /* Compute new intel_dp->train_set as requested by target */
1855                 intel_get_adjust_train(intel_dp, link_status);
1856         }
1857
1858         intel_dp->DP = DP;
1859 }
1860
1861 void
1862 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1863 {
1864         struct drm_device *dev = intel_dp->base.base.dev;
1865         bool channel_eq = false;
1866         int tries, cr_tries;
1867         uint32_t DP = intel_dp->DP;
1868
1869         /* channel equalization */
1870         tries = 0;
1871         cr_tries = 0;
1872         channel_eq = false;
1873         for (;;) {
1874                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1875                 uint32_t    signal_levels;
1876                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1877
1878                 if (cr_tries > 5) {
1879                         DRM_ERROR("failed to train DP, aborting\n");
1880                         intel_dp_link_down(intel_dp);
1881                         break;
1882                 }
1883
1884                 if (IS_HASWELL(dev)) {
1885                         signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1886                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1887                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1888                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1889                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1890                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1891                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1892                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1893                 } else {
1894                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1895                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1896                 }
1897
1898                 /* channel eq pattern */
1899                 if (!intel_dp_set_link_train(intel_dp, DP,
1900                                              DP_TRAINING_PATTERN_2 |
1901                                              DP_LINK_SCRAMBLING_DISABLE))
1902                         break;
1903
1904                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1905                 if (!intel_dp_get_link_status(intel_dp, link_status))
1906                         break;
1907
1908                 /* Make sure clock is still ok */
1909                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1910                         intel_dp_start_link_train(intel_dp);
1911                         cr_tries++;
1912                         continue;
1913                 }
1914
1915                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1916                         channel_eq = true;
1917                         break;
1918                 }
1919
1920                 /* Try 5 times, then try clock recovery if that fails */
1921                 if (tries > 5) {
1922                         intel_dp_link_down(intel_dp);
1923                         intel_dp_start_link_train(intel_dp);
1924                         tries = 0;
1925                         cr_tries++;
1926                         continue;
1927                 }
1928
1929                 /* Compute new intel_dp->train_set as requested by target */
1930                 intel_get_adjust_train(intel_dp, link_status);
1931                 ++tries;
1932         }
1933
1934         if (channel_eq)
1935                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1936
1937         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1938 }
1939
1940 static void
1941 intel_dp_link_down(struct intel_dp *intel_dp)
1942 {
1943         struct drm_device *dev = intel_dp->base.base.dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         uint32_t DP = intel_dp->DP;
1946
1947         /*
1948          * DDI code has a strict mode set sequence and we should try to respect
1949          * it, otherwise we might hang the machine in many different ways. So we
1950          * really should be disabling the port only on a complete crtc_disable
1951          * sequence. This function is just called under two conditions on DDI
1952          * code:
1953          * - Link train failed while doing crtc_enable, and on this case we
1954          *   really should respect the mode set sequence and wait for a
1955          *   crtc_disable.
1956          * - Someone turned the monitor off and intel_dp_check_link_status
1957          *   called us. We don't need to disable the whole port on this case, so
1958          *   when someone turns the monitor on again,
1959          *   intel_ddi_prepare_link_retrain will take care of redoing the link
1960          *   train.
1961          */
1962         if (IS_HASWELL(dev))
1963                 return;
1964
1965         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1966                 return;
1967
1968         DRM_DEBUG_KMS("\n");
1969
1970         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1971                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1972                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1973         } else {
1974                 DP &= ~DP_LINK_TRAIN_MASK;
1975                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1976         }
1977         POSTING_READ(intel_dp->output_reg);
1978
1979         msleep(17);
1980
1981         if (HAS_PCH_IBX(dev) &&
1982             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1983                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1984
1985                 /* Hardware workaround: leaving our transcoder select
1986                  * set to transcoder B while it's off will prevent the
1987                  * corresponding HDMI output on transcoder A.
1988                  *
1989                  * Combine this with another hardware workaround:
1990                  * transcoder select bit can only be cleared while the
1991                  * port is enabled.
1992                  */
1993                 DP &= ~DP_PIPEB_SELECT;
1994                 I915_WRITE(intel_dp->output_reg, DP);
1995
1996                 /* Changes to enable or select take place the vblank
1997                  * after being written.
1998                  */
1999                 if (crtc == NULL) {
2000                         /* We can arrive here never having been attached
2001                          * to a CRTC, for instance, due to inheriting
2002                          * random state from the BIOS.
2003                          *
2004                          * If the pipe is not running, play safe and
2005                          * wait for the clocks to stabilise before
2006                          * continuing.
2007                          */
2008                         POSTING_READ(intel_dp->output_reg);
2009                         msleep(50);
2010                 } else
2011                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2012         }
2013
2014         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2015         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2016         POSTING_READ(intel_dp->output_reg);
2017         msleep(intel_dp->panel_power_down_delay);
2018 }
2019
2020 static bool
2021 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2022 {
2023         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2024                                            sizeof(intel_dp->dpcd)) == 0)
2025                 return false; /* aux transfer failed */
2026
2027         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2028                 return false; /* DPCD not present */
2029
2030         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2031               DP_DWN_STRM_PORT_PRESENT))
2032                 return true; /* native DP sink */
2033
2034         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2035                 return true; /* no per-port downstream info */
2036
2037         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2038                                            intel_dp->downstream_ports,
2039                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2040                 return false; /* downstream port status fetch failed */
2041
2042         return true;
2043 }
2044
2045 static void
2046 intel_dp_probe_oui(struct intel_dp *intel_dp)
2047 {
2048         u8 buf[3];
2049
2050         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2051                 return;
2052
2053         ironlake_edp_panel_vdd_on(intel_dp);
2054
2055         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2056                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2057                               buf[0], buf[1], buf[2]);
2058
2059         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2060                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2061                               buf[0], buf[1], buf[2]);
2062
2063         ironlake_edp_panel_vdd_off(intel_dp, false);
2064 }
2065
2066 static bool
2067 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2068 {
2069         int ret;
2070
2071         ret = intel_dp_aux_native_read_retry(intel_dp,
2072                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2073                                              sink_irq_vector, 1);
2074         if (!ret)
2075                 return false;
2076
2077         return true;
2078 }
2079
2080 static void
2081 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2082 {
2083         /* NAK by default */
2084         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2085 }
2086
2087 /*
2088  * According to DP spec
2089  * 5.1.2:
2090  *  1. Read DPCD
2091  *  2. Configure link according to Receiver Capabilities
2092  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2093  *  4. Check link status on receipt of hot-plug interrupt
2094  */
2095
2096 static void
2097 intel_dp_check_link_status(struct intel_dp *intel_dp)
2098 {
2099         u8 sink_irq_vector;
2100         u8 link_status[DP_LINK_STATUS_SIZE];
2101
2102         if (!intel_dp->base.connectors_active)
2103                 return;
2104
2105         if (WARN_ON(!intel_dp->base.base.crtc))
2106                 return;
2107
2108         /* Try to read receiver status if the link appears to be up */
2109         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2110                 intel_dp_link_down(intel_dp);
2111                 return;
2112         }
2113
2114         /* Now read the DPCD to see if it's actually running */
2115         if (!intel_dp_get_dpcd(intel_dp)) {
2116                 intel_dp_link_down(intel_dp);
2117                 return;
2118         }
2119
2120         /* Try to read the source of the interrupt */
2121         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2122             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2123                 /* Clear interrupt source */
2124                 intel_dp_aux_native_write_1(intel_dp,
2125                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2126                                             sink_irq_vector);
2127
2128                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2129                         intel_dp_handle_test_request(intel_dp);
2130                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2131                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2132         }
2133
2134         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2135                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2136                               drm_get_encoder_name(&intel_dp->base.base));
2137                 intel_dp_start_link_train(intel_dp);
2138                 intel_dp_complete_link_train(intel_dp);
2139         }
2140 }
2141
2142 /* XXX this is probably wrong for multiple downstream ports */
2143 static enum drm_connector_status
2144 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2145 {
2146         uint8_t *dpcd = intel_dp->dpcd;
2147         bool hpd;
2148         uint8_t type;
2149
2150         if (!intel_dp_get_dpcd(intel_dp))
2151                 return connector_status_disconnected;
2152
2153         /* if there's no downstream port, we're done */
2154         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2155                 return connector_status_connected;
2156
2157         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2158         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2159         if (hpd) {
2160                 uint8_t reg;
2161                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2162                                                     &reg, 1))
2163                         return connector_status_unknown;
2164                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2165                                               : connector_status_disconnected;
2166         }
2167
2168         /* If no HPD, poke DDC gently */
2169         if (drm_probe_ddc(&intel_dp->adapter))
2170                 return connector_status_connected;
2171
2172         /* Well we tried, say unknown for unreliable port types */
2173         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2174         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2175                 return connector_status_unknown;
2176
2177         /* Anything else is out of spec, warn and ignore */
2178         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2179         return connector_status_disconnected;
2180 }
2181
2182 static enum drm_connector_status
2183 ironlake_dp_detect(struct intel_dp *intel_dp)
2184 {
2185         enum drm_connector_status status;
2186
2187         /* Can't disconnect eDP, but you can close the lid... */
2188         if (is_edp(intel_dp)) {
2189                 status = intel_panel_detect(intel_dp->base.base.dev);
2190                 if (status == connector_status_unknown)
2191                         status = connector_status_connected;
2192                 return status;
2193         }
2194
2195         return intel_dp_detect_dpcd(intel_dp);
2196 }
2197
2198 static enum drm_connector_status
2199 g4x_dp_detect(struct intel_dp *intel_dp)
2200 {
2201         struct drm_device *dev = intel_dp->base.base.dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         uint32_t bit;
2204
2205         switch (intel_dp->output_reg) {
2206         case DP_B:
2207                 bit = DPB_HOTPLUG_LIVE_STATUS;
2208                 break;
2209         case DP_C:
2210                 bit = DPC_HOTPLUG_LIVE_STATUS;
2211                 break;
2212         case DP_D:
2213                 bit = DPD_HOTPLUG_LIVE_STATUS;
2214                 break;
2215         default:
2216                 return connector_status_unknown;
2217         }
2218
2219         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2220                 return connector_status_disconnected;
2221
2222         return intel_dp_detect_dpcd(intel_dp);
2223 }
2224
2225 static struct edid *
2226 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2227 {
2228         struct intel_connector *intel_connector = to_intel_connector(connector);
2229
2230         /* use cached edid if we have one */
2231         if (intel_connector->edid) {
2232                 struct edid *edid;
2233                 int size;
2234
2235                 /* invalid edid */
2236                 if (IS_ERR(intel_connector->edid))
2237                         return NULL;
2238
2239                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2240                 edid = kmalloc(size, GFP_KERNEL);
2241                 if (!edid)
2242                         return NULL;
2243
2244                 memcpy(edid, intel_connector->edid, size);
2245                 return edid;
2246         }
2247
2248         return drm_get_edid(connector, adapter);
2249 }
2250
2251 static int
2252 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2253 {
2254         struct intel_connector *intel_connector = to_intel_connector(connector);
2255
2256         /* use cached edid if we have one */
2257         if (intel_connector->edid) {
2258                 /* invalid edid */
2259                 if (IS_ERR(intel_connector->edid))
2260                         return 0;
2261
2262                 return intel_connector_update_modes(connector,
2263                                                     intel_connector->edid);
2264         }
2265
2266         return intel_ddc_get_modes(connector, adapter);
2267 }
2268
2269
2270 /**
2271  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2272  *
2273  * \return true if DP port is connected.
2274  * \return false if DP port is disconnected.
2275  */
2276 static enum drm_connector_status
2277 intel_dp_detect(struct drm_connector *connector, bool force)
2278 {
2279         struct intel_dp *intel_dp = intel_attached_dp(connector);
2280         struct drm_device *dev = intel_dp->base.base.dev;
2281         enum drm_connector_status status;
2282         struct edid *edid = NULL;
2283         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2284
2285         intel_dp->has_audio = false;
2286
2287         if (HAS_PCH_SPLIT(dev))
2288                 status = ironlake_dp_detect(intel_dp);
2289         else
2290                 status = g4x_dp_detect(intel_dp);
2291
2292         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2293                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2294         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2295
2296         if (status != connector_status_connected)
2297                 return status;
2298
2299         intel_dp_probe_oui(intel_dp);
2300
2301         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2302                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2303         } else {
2304                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2305                 if (edid) {
2306                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2307                         kfree(edid);
2308                 }
2309         }
2310
2311         return connector_status_connected;
2312 }
2313
2314 static int intel_dp_get_modes(struct drm_connector *connector)
2315 {
2316         struct intel_dp *intel_dp = intel_attached_dp(connector);
2317         struct intel_connector *intel_connector = to_intel_connector(connector);
2318         struct drm_device *dev = intel_dp->base.base.dev;
2319         int ret;
2320
2321         /* We should parse the EDID data and find out if it has an audio sink
2322          */
2323
2324         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2325         if (ret)
2326                 return ret;
2327
2328         /* if eDP has no EDID, fall back to fixed mode */
2329         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330                 struct drm_display_mode *mode;
2331                 mode = drm_mode_duplicate(dev,
2332                                           intel_connector->panel.fixed_mode);
2333                 if (mode) {
2334                         drm_mode_probed_add(connector, mode);
2335                         return 1;
2336                 }
2337         }
2338         return 0;
2339 }
2340
2341 static bool
2342 intel_dp_detect_audio(struct drm_connector *connector)
2343 {
2344         struct intel_dp *intel_dp = intel_attached_dp(connector);
2345         struct edid *edid;
2346         bool has_audio = false;
2347
2348         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2349         if (edid) {
2350                 has_audio = drm_detect_monitor_audio(edid);
2351                 kfree(edid);
2352         }
2353
2354         return has_audio;
2355 }
2356
2357 static int
2358 intel_dp_set_property(struct drm_connector *connector,
2359                       struct drm_property *property,
2360                       uint64_t val)
2361 {
2362         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2363         struct intel_connector *intel_connector = to_intel_connector(connector);
2364         struct intel_dp *intel_dp = intel_attached_dp(connector);
2365         int ret;
2366
2367         ret = drm_connector_property_set_value(connector, property, val);
2368         if (ret)
2369                 return ret;
2370
2371         if (property == dev_priv->force_audio_property) {
2372                 int i = val;
2373                 bool has_audio;
2374
2375                 if (i == intel_dp->force_audio)
2376                         return 0;
2377
2378                 intel_dp->force_audio = i;
2379
2380                 if (i == HDMI_AUDIO_AUTO)
2381                         has_audio = intel_dp_detect_audio(connector);
2382                 else
2383                         has_audio = (i == HDMI_AUDIO_ON);
2384
2385                 if (has_audio == intel_dp->has_audio)
2386                         return 0;
2387
2388                 intel_dp->has_audio = has_audio;
2389                 goto done;
2390         }
2391
2392         if (property == dev_priv->broadcast_rgb_property) {
2393                 if (val == !!intel_dp->color_range)
2394                         return 0;
2395
2396                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2397                 goto done;
2398         }
2399
2400         if (is_edp(intel_dp) &&
2401             property == connector->dev->mode_config.scaling_mode_property) {
2402                 if (val == DRM_MODE_SCALE_NONE) {
2403                         DRM_DEBUG_KMS("no scaling not supported\n");
2404                         return -EINVAL;
2405                 }
2406
2407                 if (intel_connector->panel.fitting_mode == val) {
2408                         /* the eDP scaling property is not changed */
2409                         return 0;
2410                 }
2411                 intel_connector->panel.fitting_mode = val;
2412
2413                 goto done;
2414         }
2415
2416         return -EINVAL;
2417
2418 done:
2419         if (intel_dp->base.base.crtc) {
2420                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2421                 intel_set_mode(crtc, &crtc->mode,
2422                                crtc->x, crtc->y, crtc->fb);
2423         }
2424
2425         return 0;
2426 }
2427
2428 static void
2429 intel_dp_destroy(struct drm_connector *connector)
2430 {
2431         struct drm_device *dev = connector->dev;
2432         struct intel_dp *intel_dp = intel_attached_dp(connector);
2433         struct intel_connector *intel_connector = to_intel_connector(connector);
2434
2435         if (!IS_ERR_OR_NULL(intel_connector->edid))
2436                 kfree(intel_connector->edid);
2437
2438         if (is_edp(intel_dp)) {
2439                 intel_panel_destroy_backlight(dev);
2440                 intel_panel_fini(&intel_connector->panel);
2441         }
2442
2443         drm_sysfs_connector_remove(connector);
2444         drm_connector_cleanup(connector);
2445         kfree(connector);
2446 }
2447
2448 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2449 {
2450         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2451
2452         i2c_del_adapter(&intel_dp->adapter);
2453         drm_encoder_cleanup(encoder);
2454         if (is_edp(intel_dp)) {
2455                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2456                 ironlake_panel_vdd_off_sync(intel_dp);
2457         }
2458         kfree(intel_dp);
2459 }
2460
2461 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2462         .mode_fixup = intel_dp_mode_fixup,
2463         .mode_set = intel_dp_mode_set,
2464         .disable = intel_encoder_noop,
2465 };
2466
2467 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2468         .mode_fixup = intel_dp_mode_fixup,
2469         .mode_set = intel_ddi_mode_set,
2470         .disable = intel_encoder_noop,
2471 };
2472
2473 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2474         .dpms = intel_connector_dpms,
2475         .detect = intel_dp_detect,
2476         .fill_modes = drm_helper_probe_single_connector_modes,
2477         .set_property = intel_dp_set_property,
2478         .destroy = intel_dp_destroy,
2479 };
2480
2481 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2482         .get_modes = intel_dp_get_modes,
2483         .mode_valid = intel_dp_mode_valid,
2484         .best_encoder = intel_best_encoder,
2485 };
2486
2487 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2488         .destroy = intel_dp_encoder_destroy,
2489 };
2490
2491 static void
2492 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2493 {
2494         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2495
2496         intel_dp_check_link_status(intel_dp);
2497 }
2498
2499 /* Return which DP Port should be selected for Transcoder DP control */
2500 int
2501 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2502 {
2503         struct drm_device *dev = crtc->dev;
2504         struct intel_encoder *encoder;
2505
2506         for_each_encoder_on_crtc(dev, crtc, encoder) {
2507                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508
2509                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2510                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2511                         return intel_dp->output_reg;
2512         }
2513
2514         return -1;
2515 }
2516
2517 /* check the VBT to see whether the eDP is on DP-D port */
2518 bool intel_dpd_is_edp(struct drm_device *dev)
2519 {
2520         struct drm_i915_private *dev_priv = dev->dev_private;
2521         struct child_device_config *p_child;
2522         int i;
2523
2524         if (!dev_priv->child_dev_num)
2525                 return false;
2526
2527         for (i = 0; i < dev_priv->child_dev_num; i++) {
2528                 p_child = dev_priv->child_dev + i;
2529
2530                 if (p_child->dvo_port == PORT_IDPD &&
2531                     p_child->device_type == DEVICE_TYPE_eDP)
2532                         return true;
2533         }
2534         return false;
2535 }
2536
2537 static void
2538 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2539 {
2540         struct intel_connector *intel_connector = to_intel_connector(connector);
2541
2542         intel_attach_force_audio_property(connector);
2543         intel_attach_broadcast_rgb_property(connector);
2544
2545         if (is_edp(intel_dp)) {
2546                 drm_mode_create_scaling_mode_property(connector->dev);
2547                 drm_connector_attach_property(
2548                         connector,
2549                         connector->dev->mode_config.scaling_mode_property,
2550                         DRM_MODE_SCALE_ASPECT);
2551                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2552         }
2553 }
2554
2555 static void
2556 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2557                                     struct intel_dp *intel_dp)
2558 {
2559         struct drm_i915_private *dev_priv = dev->dev_private;
2560         struct edp_power_seq cur, vbt, spec, final;
2561         u32 pp_on, pp_off, pp_div, pp;
2562
2563         /* Workaround: Need to write PP_CONTROL with the unlock key as
2564          * the very first thing. */
2565         pp = ironlake_get_pp_control(dev_priv);
2566         I915_WRITE(PCH_PP_CONTROL, pp);
2567
2568         pp_on = I915_READ(PCH_PP_ON_DELAYS);
2569         pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2570         pp_div = I915_READ(PCH_PP_DIVISOR);
2571
2572         /* Pull timing values out of registers */
2573         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2574                 PANEL_POWER_UP_DELAY_SHIFT;
2575
2576         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2577                 PANEL_LIGHT_ON_DELAY_SHIFT;
2578
2579         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2580                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2581
2582         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2583                 PANEL_POWER_DOWN_DELAY_SHIFT;
2584
2585         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2586                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2587
2588         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2589                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2590
2591         vbt = dev_priv->edp.pps;
2592
2593         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2594          * our hw here, which are all in 100usec. */
2595         spec.t1_t3 = 210 * 10;
2596         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2597         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2598         spec.t10 = 500 * 10;
2599         /* This one is special and actually in units of 100ms, but zero
2600          * based in the hw (so we need to add 100 ms). But the sw vbt
2601          * table multiplies it with 1000 to make it in units of 100usec,
2602          * too. */
2603         spec.t11_t12 = (510 + 100) * 10;
2604
2605         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2606                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2607
2608         /* Use the max of the register settings and vbt. If both are
2609          * unset, fall back to the spec limits. */
2610 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2611                                        spec.field : \
2612                                        max(cur.field, vbt.field))
2613         assign_final(t1_t3);
2614         assign_final(t8);
2615         assign_final(t9);
2616         assign_final(t10);
2617         assign_final(t11_t12);
2618 #undef assign_final
2619
2620 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2621         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2622         intel_dp->backlight_on_delay = get_delay(t8);
2623         intel_dp->backlight_off_delay = get_delay(t9);
2624         intel_dp->panel_power_down_delay = get_delay(t10);
2625         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2626 #undef get_delay
2627
2628         /* And finally store the new values in the power sequencer. */
2629         pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2630                 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2631         pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2632                  (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2633         /* Compute the divisor for the pp clock, simply match the Bspec
2634          * formula. */
2635         pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2636                         << PP_REFERENCE_DIVIDER_SHIFT;
2637         pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2638                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2639
2640         /* Haswell doesn't have any port selection bits for the panel
2641          * power sequencer any more. */
2642         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2643                 if (is_cpu_edp(intel_dp))
2644                         pp_on |= PANEL_POWER_PORT_DP_A;
2645                 else
2646                         pp_on |= PANEL_POWER_PORT_DP_D;
2647         }
2648
2649         I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2650         I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2651         I915_WRITE(PCH_PP_DIVISOR, pp_div);
2652
2653
2654         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2655                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2656                       intel_dp->panel_power_cycle_delay);
2657
2658         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2659                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2660
2661         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2662                       I915_READ(PCH_PP_ON_DELAYS),
2663                       I915_READ(PCH_PP_OFF_DELAYS),
2664                       I915_READ(PCH_PP_DIVISOR));
2665 }
2666
2667 void
2668 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2669 {
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         struct drm_connector *connector;
2672         struct intel_dp *intel_dp;
2673         struct intel_encoder *intel_encoder;
2674         struct intel_connector *intel_connector;
2675         struct drm_display_mode *fixed_mode = NULL;
2676         const char *name = NULL;
2677         int type;
2678
2679         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2680         if (!intel_dp)
2681                 return;
2682
2683         intel_dp->output_reg = output_reg;
2684         intel_dp->port = port;
2685         /* Preserve the current hw state. */
2686         intel_dp->DP = I915_READ(intel_dp->output_reg);
2687
2688         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2689         if (!intel_connector) {
2690                 kfree(intel_dp);
2691                 return;
2692         }
2693         intel_encoder = &intel_dp->base;
2694         intel_dp->attached_connector = intel_connector;
2695
2696         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2697                 if (intel_dpd_is_edp(dev))
2698                         intel_dp->is_pch_edp = true;
2699
2700         /*
2701          * FIXME : We need to initialize built-in panels before external panels.
2702          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2703          */
2704         if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2705                 type = DRM_MODE_CONNECTOR_eDP;
2706                 intel_encoder->type = INTEL_OUTPUT_EDP;
2707         } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2708                 type = DRM_MODE_CONNECTOR_eDP;
2709                 intel_encoder->type = INTEL_OUTPUT_EDP;
2710         } else {
2711                 type = DRM_MODE_CONNECTOR_DisplayPort;
2712                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2713         }
2714
2715         connector = &intel_connector->base;
2716         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2717         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2718
2719         connector->polled = DRM_CONNECTOR_POLL_HPD;
2720
2721         intel_encoder->cloneable = false;
2722
2723         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2724                           ironlake_panel_vdd_work);
2725
2726         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2727
2728         connector->interlace_allowed = true;
2729         connector->doublescan_allowed = 0;
2730
2731         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2732                          DRM_MODE_ENCODER_TMDS);
2733
2734         if (IS_HASWELL(dev))
2735                 drm_encoder_helper_add(&intel_encoder->base,
2736                                        &intel_dp_helper_funcs_hsw);
2737         else
2738                 drm_encoder_helper_add(&intel_encoder->base,
2739                                        &intel_dp_helper_funcs);
2740
2741         intel_connector_attach_encoder(intel_connector, intel_encoder);
2742         drm_sysfs_connector_add(connector);
2743
2744         if (IS_HASWELL(dev)) {
2745                 intel_encoder->enable = intel_enable_ddi;
2746                 intel_encoder->pre_enable = intel_ddi_pre_enable;
2747                 intel_encoder->disable = intel_disable_ddi;
2748                 intel_encoder->post_disable = intel_ddi_post_disable;
2749                 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2750         } else {
2751                 intel_encoder->enable = intel_enable_dp;
2752                 intel_encoder->pre_enable = intel_pre_enable_dp;
2753                 intel_encoder->disable = intel_disable_dp;
2754                 intel_encoder->post_disable = intel_post_disable_dp;
2755                 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2756         }
2757         intel_connector->get_hw_state = intel_connector_get_hw_state;
2758
2759         /* Set up the DDC bus. */
2760         switch (port) {
2761         case PORT_A:
2762                 name = "DPDDC-A";
2763                 break;
2764         case PORT_B:
2765                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2766                 name = "DPDDC-B";
2767                 break;
2768         case PORT_C:
2769                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2770                 name = "DPDDC-C";
2771                 break;
2772         case PORT_D:
2773                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2774                 name = "DPDDC-D";
2775                 break;
2776         default:
2777                 WARN(1, "Invalid port %c\n", port_name(port));
2778                 break;
2779         }
2780
2781         if (is_edp(intel_dp))
2782                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2783
2784         intel_dp_i2c_init(intel_dp, intel_connector, name);
2785
2786         /* Cache DPCD and EDID for edp. */
2787         if (is_edp(intel_dp)) {
2788                 bool ret;
2789                 struct drm_display_mode *scan;
2790                 struct edid *edid;
2791
2792                 ironlake_edp_panel_vdd_on(intel_dp);
2793                 ret = intel_dp_get_dpcd(intel_dp);
2794                 ironlake_edp_panel_vdd_off(intel_dp, false);
2795
2796                 if (ret) {
2797                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2798                                 dev_priv->no_aux_handshake =
2799                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2800                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2801                 } else {
2802                         /* if this fails, presume the device is a ghost */
2803                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2804                         intel_dp_encoder_destroy(&intel_dp->base.base);
2805                         intel_dp_destroy(&intel_connector->base);
2806                         return;
2807                 }
2808
2809                 ironlake_edp_panel_vdd_on(intel_dp);
2810                 edid = drm_get_edid(connector, &intel_dp->adapter);
2811                 if (edid) {
2812                         if (drm_add_edid_modes(connector, edid)) {
2813                                 drm_mode_connector_update_edid_property(connector, edid);
2814                                 drm_edid_to_eld(connector, edid);
2815                         } else {
2816                                 kfree(edid);
2817                                 edid = ERR_PTR(-EINVAL);
2818                         }
2819                 } else {
2820                         edid = ERR_PTR(-ENOENT);
2821                 }
2822                 intel_connector->edid = edid;
2823
2824                 /* prefer fixed mode from EDID if available */
2825                 list_for_each_entry(scan, &connector->probed_modes, head) {
2826                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2827                                 fixed_mode = drm_mode_duplicate(dev, scan);
2828                                 break;
2829                         }
2830                 }
2831
2832                 /* fallback to VBT if available for eDP */
2833                 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2834                         fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2835                         if (fixed_mode)
2836                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2837                 }
2838
2839                 ironlake_edp_panel_vdd_off(intel_dp, false);
2840         }
2841
2842         intel_encoder->hot_plug = intel_dp_hot_plug;
2843
2844         if (is_edp(intel_dp)) {
2845                 intel_panel_init(&intel_connector->panel, fixed_mode);
2846                 intel_panel_setup_backlight(connector);
2847         }
2848
2849         intel_dp_add_properties(intel_dp, connector);
2850
2851         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2852          * 0xd.  Failure to do so will result in spurious interrupts being
2853          * generated on the port when a cable is not attached.
2854          */
2855         if (IS_G4X(dev) && !IS_GM45(dev)) {
2856                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2857                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2858         }
2859 }