drm/i915: Let panel power sequencing hardware do its job
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE    0xf
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         int panel_power_up_delay;
62         int panel_power_down_delay;
63         int panel_power_cycle_delay;
64         int backlight_on_delay;
65         int backlight_off_delay;
66         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
67         struct delayed_work panel_vdd_work;
68         bool want_panel_vdd;
69 };
70
71 /**
72  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
73  * @intel_dp: DP struct
74  *
75  * If a CPU or PCH DP output is attached to an eDP panel, this function
76  * will return true, and false otherwise.
77  */
78 static bool is_edp(struct intel_dp *intel_dp)
79 {
80         return intel_dp->base.type == INTEL_OUTPUT_EDP;
81 }
82
83 /**
84  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
85  * @intel_dp: DP struct
86  *
87  * Returns true if the given DP struct corresponds to a PCH DP port attached
88  * to an eDP panel, false otherwise.  Helpful for determining whether we
89  * may need FDI resources for a given DP output or not.
90  */
91 static bool is_pch_edp(struct intel_dp *intel_dp)
92 {
93         return intel_dp->is_pch_edp;
94 }
95
96 /**
97  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
98  * @intel_dp: DP struct
99  *
100  * Returns true if the given DP struct corresponds to a CPU eDP port.
101  */
102 static bool is_cpu_edp(struct intel_dp *intel_dp)
103 {
104         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
105 }
106
107 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
108 {
109         return container_of(encoder, struct intel_dp, base.base);
110 }
111
112 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
113 {
114         return container_of(intel_attached_encoder(connector),
115                             struct intel_dp, base);
116 }
117
118 /**
119  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
120  * @encoder: DRM encoder
121  *
122  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
123  * by intel_display.c.
124  */
125 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
126 {
127         struct intel_dp *intel_dp;
128
129         if (!encoder)
130                 return false;
131
132         intel_dp = enc_to_intel_dp(encoder);
133
134         return is_pch_edp(intel_dp);
135 }
136
137 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
138 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_link_down(struct intel_dp *intel_dp);
140
141 void
142 intel_edp_link_config(struct intel_encoder *intel_encoder,
143                        int *lane_num, int *link_bw)
144 {
145         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
146
147         *lane_num = intel_dp->lane_count;
148         if (intel_dp->link_bw == DP_LINK_BW_1_62)
149                 *link_bw = 162000;
150         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
151                 *link_bw = 270000;
152 }
153
154 static int
155 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157         int max_lane_count = 4;
158
159         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
160                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
161                 switch (max_lane_count) {
162                 case 1: case 2: case 4:
163                         break;
164                 default:
165                         max_lane_count = 4;
166                 }
167         }
168         return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176         switch (max_link_bw) {
177         case DP_LINK_BW_1_62:
178         case DP_LINK_BW_2_7:
179                 break;
180         default:
181                 max_link_bw = DP_LINK_BW_1_62;
182                 break;
183         }
184         return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190         if (link_bw == DP_LINK_BW_2_7)
191                 return 270000;
192         else
193                 return 162000;
194 }
195
196 /*
197  * The units on the numbers in the next two are... bizarre.  Examples will
198  * make it clearer; this one parallels an example in the eDP spec.
199  *
200  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201  *
202  *     270000 * 1 * 8 / 10 == 216000
203  *
204  * The actual data capacity of that configuration is 2.16Gbit/s, so the
205  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
206  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207  * 119000.  At 18bpp that's 2142000 kilobits per second.
208  *
209  * Thus the strange-looking division by 10 in intel_dp_link_required, to
210  * get the result in decakilobits instead of kilobits.
211  */
212
213 static int
214 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
215 {
216         struct drm_crtc *crtc = intel_dp->base.base.crtc;
217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218         int bpp = 24;
219
220         if (intel_crtc)
221                 bpp = intel_crtc->bpp;
222
223         return (pixel_clock * bpp + 9) / 10;
224 }
225
226 static int
227 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
228 {
229         return (max_link_clock * max_lanes * 8) / 10;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234                     struct drm_display_mode *mode)
235 {
236         struct intel_dp *intel_dp = intel_attached_dp(connector);
237         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
238         int max_lanes = intel_dp_max_lane_count(intel_dp);
239
240         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242                         return MODE_PANEL;
243
244                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245                         return MODE_PANEL;
246         }
247
248         if (intel_dp_link_required(intel_dp, mode->clock)
249             > intel_dp_max_data_rate(max_link_clock, max_lanes))
250                 return MODE_CLOCK_HIGH;
251
252         if (mode->clock < 10000)
253                 return MODE_CLOCK_LOW;
254
255         return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261         int     i;
262         uint32_t v = 0;
263
264         if (src_bytes > 4)
265                 src_bytes = 4;
266         for (i = 0; i < src_bytes; i++)
267                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268         return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274         int i;
275         if (dst_bytes > 4)
276                 dst_bytes = 4;
277         for (i = 0; i < dst_bytes; i++)
278                 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285         struct drm_i915_private *dev_priv = dev->dev_private;
286         uint32_t clkcfg;
287
288         clkcfg = I915_READ(CLKCFG);
289         switch (clkcfg & CLKCFG_FSB_MASK) {
290         case CLKCFG_FSB_400:
291                 return 100;
292         case CLKCFG_FSB_533:
293                 return 133;
294         case CLKCFG_FSB_667:
295                 return 166;
296         case CLKCFG_FSB_800:
297                 return 200;
298         case CLKCFG_FSB_1067:
299                 return 266;
300         case CLKCFG_FSB_1333:
301                 return 333;
302         /* these two are just a guess; one of them might be right */
303         case CLKCFG_FSB_1600:
304         case CLKCFG_FSB_1600_ALT:
305                 return 400;
306         default:
307                 return 133;
308         }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313         struct drm_device *dev = intel_dp->base.base.dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp->base.base.dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         if (!is_edp(intel_dp))
334                 return;
335         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338                               I915_READ(PCH_PP_STATUS),
339                               I915_READ(PCH_PP_CONTROL));
340         }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345                 uint8_t *send, int send_bytes,
346                 uint8_t *recv, int recv_size)
347 {
348         uint32_t output_reg = intel_dp->output_reg;
349         struct drm_device *dev = intel_dp->base.base.dev;
350         struct drm_i915_private *dev_priv = dev->dev_private;
351         uint32_t ch_ctl = output_reg + 0x10;
352         uint32_t ch_data = ch_ctl + 4;
353         int i;
354         int recv_bytes;
355         uint32_t status;
356         uint32_t aux_clock_divider;
357         int try, precharge;
358
359         intel_dp_check_edp(intel_dp);
360         /* The clock divider is based off the hrawclk,
361          * and would like to run at 2MHz. So, take the
362          * hrawclk value and divide by 2 and use that
363          *
364          * Note that PCH attached eDP panels should use a 125MHz input
365          * clock divider.
366          */
367         if (is_cpu_edp(intel_dp)) {
368                 if (IS_GEN6(dev))
369                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
370                 else
371                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372         } else if (HAS_PCH_SPLIT(dev))
373                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
374         else
375                 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377         if (IS_GEN6(dev))
378                 precharge = 3;
379         else
380                 precharge = 5;
381
382         /* Try to wait for any previous AUX channel activity */
383         for (try = 0; try < 3; try++) {
384                 status = I915_READ(ch_ctl);
385                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386                         break;
387                 msleep(1);
388         }
389
390         if (try == 3) {
391                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392                      I915_READ(ch_ctl));
393                 return -EBUSY;
394         }
395
396         /* Must try at least 3 times according to DP spec */
397         for (try = 0; try < 5; try++) {
398                 /* Load the send data into the aux channel data registers */
399                 for (i = 0; i < send_bytes; i += 4)
400                         I915_WRITE(ch_data + i,
401                                    pack_aux(send + i, send_bytes - i));
402
403                 /* Send the command and wait for it to complete */
404                 I915_WRITE(ch_ctl,
405                            DP_AUX_CH_CTL_SEND_BUSY |
406                            DP_AUX_CH_CTL_TIME_OUT_400us |
407                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410                            DP_AUX_CH_CTL_DONE |
411                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
412                            DP_AUX_CH_CTL_RECEIVE_ERROR);
413                 for (;;) {
414                         status = I915_READ(ch_ctl);
415                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416                                 break;
417                         udelay(100);
418                 }
419
420                 /* Clear done status and any errors */
421                 I915_WRITE(ch_ctl,
422                            status |
423                            DP_AUX_CH_CTL_DONE |
424                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
425                            DP_AUX_CH_CTL_RECEIVE_ERROR);
426                 if (status & DP_AUX_CH_CTL_DONE)
427                         break;
428         }
429
430         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
431                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
432                 return -EBUSY;
433         }
434
435         /* Check for timeout or receive error.
436          * Timeouts occur when the sink is not connected
437          */
438         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440                 return -EIO;
441         }
442
443         /* Timeouts occur when the device isn't connected, so they're
444          * "normal" -- don't fill the kernel log with these */
445         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
446                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
447                 return -ETIMEDOUT;
448         }
449
450         /* Unload any bytes sent back from the other side */
451         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
452                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
453         if (recv_bytes > recv_size)
454                 recv_bytes = recv_size;
455
456         for (i = 0; i < recv_bytes; i += 4)
457                 unpack_aux(I915_READ(ch_data + i),
458                            recv + i, recv_bytes - i);
459
460         return recv_bytes;
461 }
462
463 /* Write data to the aux channel in native mode */
464 static int
465 intel_dp_aux_native_write(struct intel_dp *intel_dp,
466                           uint16_t address, uint8_t *send, int send_bytes)
467 {
468         int ret;
469         uint8_t msg[20];
470         int msg_bytes;
471         uint8_t ack;
472
473         intel_dp_check_edp(intel_dp);
474         if (send_bytes > 16)
475                 return -1;
476         msg[0] = AUX_NATIVE_WRITE << 4;
477         msg[1] = address >> 8;
478         msg[2] = address & 0xff;
479         msg[3] = send_bytes - 1;
480         memcpy(&msg[4], send, send_bytes);
481         msg_bytes = send_bytes + 4;
482         for (;;) {
483                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
484                 if (ret < 0)
485                         return ret;
486                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
487                         break;
488                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
489                         udelay(100);
490                 else
491                         return -EIO;
492         }
493         return send_bytes;
494 }
495
496 /* Write a single byte to the aux channel in native mode */
497 static int
498 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
499                             uint16_t address, uint8_t byte)
500 {
501         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
502 }
503
504 /* read bytes from a native aux channel */
505 static int
506 intel_dp_aux_native_read(struct intel_dp *intel_dp,
507                          uint16_t address, uint8_t *recv, int recv_bytes)
508 {
509         uint8_t msg[4];
510         int msg_bytes;
511         uint8_t reply[20];
512         int reply_bytes;
513         uint8_t ack;
514         int ret;
515
516         intel_dp_check_edp(intel_dp);
517         msg[0] = AUX_NATIVE_READ << 4;
518         msg[1] = address >> 8;
519         msg[2] = address & 0xff;
520         msg[3] = recv_bytes - 1;
521
522         msg_bytes = 4;
523         reply_bytes = recv_bytes + 1;
524
525         for (;;) {
526                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
527                                       reply, reply_bytes);
528                 if (ret == 0)
529                         return -EPROTO;
530                 if (ret < 0)
531                         return ret;
532                 ack = reply[0];
533                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
534                         memcpy(recv, reply + 1, ret - 1);
535                         return ret - 1;
536                 }
537                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
538                         udelay(100);
539                 else
540                         return -EIO;
541         }
542 }
543
544 static int
545 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
546                     uint8_t write_byte, uint8_t *read_byte)
547 {
548         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
549         struct intel_dp *intel_dp = container_of(adapter,
550                                                 struct intel_dp,
551                                                 adapter);
552         uint16_t address = algo_data->address;
553         uint8_t msg[5];
554         uint8_t reply[2];
555         unsigned retry;
556         int msg_bytes;
557         int reply_bytes;
558         int ret;
559
560         intel_dp_check_edp(intel_dp);
561         /* Set up the command byte */
562         if (mode & MODE_I2C_READ)
563                 msg[0] = AUX_I2C_READ << 4;
564         else
565                 msg[0] = AUX_I2C_WRITE << 4;
566
567         if (!(mode & MODE_I2C_STOP))
568                 msg[0] |= AUX_I2C_MOT << 4;
569
570         msg[1] = address >> 8;
571         msg[2] = address;
572
573         switch (mode) {
574         case MODE_I2C_WRITE:
575                 msg[3] = 0;
576                 msg[4] = write_byte;
577                 msg_bytes = 5;
578                 reply_bytes = 1;
579                 break;
580         case MODE_I2C_READ:
581                 msg[3] = 0;
582                 msg_bytes = 4;
583                 reply_bytes = 2;
584                 break;
585         default:
586                 msg_bytes = 3;
587                 reply_bytes = 1;
588                 break;
589         }
590
591         for (retry = 0; retry < 5; retry++) {
592                 ret = intel_dp_aux_ch(intel_dp,
593                                       msg, msg_bytes,
594                                       reply, reply_bytes);
595                 if (ret < 0) {
596                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
597                         return ret;
598                 }
599
600                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
601                 case AUX_NATIVE_REPLY_ACK:
602                         /* I2C-over-AUX Reply field is only valid
603                          * when paired with AUX ACK.
604                          */
605                         break;
606                 case AUX_NATIVE_REPLY_NACK:
607                         DRM_DEBUG_KMS("aux_ch native nack\n");
608                         return -EREMOTEIO;
609                 case AUX_NATIVE_REPLY_DEFER:
610                         udelay(100);
611                         continue;
612                 default:
613                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
614                                   reply[0]);
615                         return -EREMOTEIO;
616                 }
617
618                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
619                 case AUX_I2C_REPLY_ACK:
620                         if (mode == MODE_I2C_READ) {
621                                 *read_byte = reply[1];
622                         }
623                         return reply_bytes - 1;
624                 case AUX_I2C_REPLY_NACK:
625                         DRM_DEBUG_KMS("aux_i2c nack\n");
626                         return -EREMOTEIO;
627                 case AUX_I2C_REPLY_DEFER:
628                         DRM_DEBUG_KMS("aux_i2c defer\n");
629                         udelay(100);
630                         break;
631                 default:
632                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
633                         return -EREMOTEIO;
634                 }
635         }
636
637         DRM_ERROR("too many retries, giving up\n");
638         return -EREMOTEIO;
639 }
640
641 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
642 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
643
644 static int
645 intel_dp_i2c_init(struct intel_dp *intel_dp,
646                   struct intel_connector *intel_connector, const char *name)
647 {
648         int     ret;
649
650         DRM_DEBUG_KMS("i2c_init %s\n", name);
651         intel_dp->algo.running = false;
652         intel_dp->algo.address = 0;
653         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
654
655         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
656         intel_dp->adapter.owner = THIS_MODULE;
657         intel_dp->adapter.class = I2C_CLASS_DDC;
658         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
659         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
660         intel_dp->adapter.algo_data = &intel_dp->algo;
661         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
662
663         ironlake_edp_panel_vdd_on(intel_dp);
664         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
665         ironlake_edp_panel_vdd_off(intel_dp, false);
666         return ret;
667 }
668
669 static bool
670 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
671                     struct drm_display_mode *adjusted_mode)
672 {
673         struct drm_device *dev = encoder->dev;
674         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
675         int lane_count, clock;
676         int max_lane_count = intel_dp_max_lane_count(intel_dp);
677         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
679
680         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
681                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
682                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
683                                         mode, adjusted_mode);
684                 /*
685                  * the mode->clock is used to calculate the Data&Link M/N
686                  * of the pipe. For the eDP the fixed clock should be used.
687                  */
688                 mode->clock = intel_dp->panel_fixed_mode->clock;
689         }
690
691         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
692                 for (clock = 0; clock <= max_clock; clock++) {
693                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
694
695                         if (intel_dp_link_required(intel_dp, mode->clock)
696                                         <= link_avail) {
697                                 intel_dp->link_bw = bws[clock];
698                                 intel_dp->lane_count = lane_count;
699                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
700                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
701                                                 "count %d clock %d\n",
702                                        intel_dp->link_bw, intel_dp->lane_count,
703                                        adjusted_mode->clock);
704                                 return true;
705                         }
706                 }
707         }
708
709         return false;
710 }
711
712 struct intel_dp_m_n {
713         uint32_t        tu;
714         uint32_t        gmch_m;
715         uint32_t        gmch_n;
716         uint32_t        link_m;
717         uint32_t        link_n;
718 };
719
720 static void
721 intel_reduce_ratio(uint32_t *num, uint32_t *den)
722 {
723         while (*num > 0xffffff || *den > 0xffffff) {
724                 *num >>= 1;
725                 *den >>= 1;
726         }
727 }
728
729 static void
730 intel_dp_compute_m_n(int bpp,
731                      int nlanes,
732                      int pixel_clock,
733                      int link_clock,
734                      struct intel_dp_m_n *m_n)
735 {
736         m_n->tu = 64;
737         m_n->gmch_m = (pixel_clock * bpp) >> 3;
738         m_n->gmch_n = link_clock * nlanes;
739         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
740         m_n->link_m = pixel_clock;
741         m_n->link_n = link_clock;
742         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
743 }
744
745 void
746 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
747                  struct drm_display_mode *adjusted_mode)
748 {
749         struct drm_device *dev = crtc->dev;
750         struct drm_mode_config *mode_config = &dev->mode_config;
751         struct drm_encoder *encoder;
752         struct drm_i915_private *dev_priv = dev->dev_private;
753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
754         int lane_count = 4;
755         struct intel_dp_m_n m_n;
756         int pipe = intel_crtc->pipe;
757
758         /*
759          * Find the lane count in the intel_encoder private
760          */
761         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
762                 struct intel_dp *intel_dp;
763
764                 if (encoder->crtc != crtc)
765                         continue;
766
767                 intel_dp = enc_to_intel_dp(encoder);
768                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || is_pch_edp(intel_dp)) {
769                         lane_count = intel_dp->lane_count;
770                         break;
771                 } else if (is_cpu_edp(intel_dp)) {
772                         lane_count = dev_priv->edp.lanes;
773                         break;
774                 }
775         }
776
777         /*
778          * Compute the GMCH and Link ratios. The '3' here is
779          * the number of bytes_per_pixel post-LUT, which we always
780          * set up for 8-bits of R/G/B, or 3 bytes total.
781          */
782         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
783                              mode->clock, adjusted_mode->clock, &m_n);
784
785         if (HAS_PCH_SPLIT(dev)) {
786                 I915_WRITE(TRANSDATA_M1(pipe),
787                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
788                            m_n.gmch_m);
789                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
790                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
791                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
792         } else {
793                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
794                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
795                            m_n.gmch_m);
796                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
797                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
798                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
799         }
800 }
801
802 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
803 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
804
805 static void
806 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
807                   struct drm_display_mode *adjusted_mode)
808 {
809         struct drm_device *dev = encoder->dev;
810         struct drm_i915_private *dev_priv = dev->dev_private;
811         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
812         struct drm_crtc *crtc = intel_dp->base.base.crtc;
813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
814
815         /* Turn on the eDP PLL if needed */
816         if (is_edp(intel_dp)) {
817                 if (!is_pch_edp(intel_dp))
818                         ironlake_edp_pll_on(encoder);
819                 else
820                         ironlake_edp_pll_off(encoder);
821         }
822
823         /*
824          * There are three kinds of DP registers:
825          *
826          *      IBX PCH
827          *      CPU
828          *      CPT PCH
829          *
830          * IBX PCH and CPU are the same for almost everything,
831          * except that the CPU DP PLL is configured in this
832          * register
833          *
834          * CPT PCH is quite different, having many bits moved
835          * to the TRANS_DP_CTL register instead. That
836          * configuration happens (oddly) in ironlake_pch_enable
837          */
838
839         /* Preserve the BIOS-computed detected bit. This is
840          * supposed to be read-only.
841          */
842         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845         /* Handle DP bits in common between all three register formats */
846
847         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848
849         switch (intel_dp->lane_count) {
850         case 1:
851                 intel_dp->DP |= DP_PORT_WIDTH_1;
852                 break;
853         case 2:
854                 intel_dp->DP |= DP_PORT_WIDTH_2;
855                 break;
856         case 4:
857                 intel_dp->DP |= DP_PORT_WIDTH_4;
858                 break;
859         }
860         if (intel_dp->has_audio) {
861                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862                                  pipe_name(intel_crtc->pipe));
863                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864                 intel_write_eld(encoder, adjusted_mode);
865         }
866         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
867         intel_dp->link_configuration[0] = intel_dp->link_bw;
868         intel_dp->link_configuration[1] = intel_dp->lane_count;
869         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
870         /*
871          * Check for DPCD version > 1.1 and enhanced framing support
872          */
873         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
874             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
875                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
876         }
877
878         /* Split out the IBX/CPU vs CPT settings */
879
880         if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
881                 intel_dp->DP |= intel_dp->color_range;
882
883                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884                         intel_dp->DP |= DP_SYNC_HS_HIGH;
885                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886                         intel_dp->DP |= DP_SYNC_VS_HIGH;
887                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890                         intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892                 if (intel_crtc->pipe == 1)
893                         intel_dp->DP |= DP_PIPEB_SELECT;
894
895                 if (is_cpu_edp(intel_dp)) {
896                         /* don't miss out required setting for eDP */
897                         intel_dp->DP |= DP_PLL_ENABLE;
898                         if (adjusted_mode->clock < 200000)
899                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
900                         else
901                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
902                 }
903         } else {
904                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
905         }
906 }
907
908 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
910
911 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
915 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
916
917 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
918                                        u32 mask,
919                                        u32 value)
920 {
921         struct drm_device *dev = intel_dp->base.base.dev;
922         struct drm_i915_private *dev_priv = dev->dev_private;
923
924         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
925                       mask, value,
926                       I915_READ(PCH_PP_STATUS),
927                       I915_READ(PCH_PP_CONTROL));
928
929         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
930                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
931                           I915_READ(PCH_PP_STATUS),
932                           I915_READ(PCH_PP_CONTROL));
933         }
934 }
935
936 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
937 {
938         DRM_DEBUG_KMS("Wait for panel power on\n");
939         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
940 }
941
942 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
943 {
944         DRM_DEBUG_KMS("Wait for panel power off time\n");
945         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
946 }
947
948 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
949 {
950         DRM_DEBUG_KMS("Wait for panel power cycle\n");
951         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
952 }
953
954
955 /* Read the current pp_control value, unlocking the register if it
956  * is locked
957  */
958
959 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
960 {
961         u32     control = I915_READ(PCH_PP_CONTROL);
962
963         control &= ~PANEL_UNLOCK_MASK;
964         control |= PANEL_UNLOCK_REGS;
965         return control;
966 }
967
968 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
969 {
970         struct drm_device *dev = intel_dp->base.base.dev;
971         struct drm_i915_private *dev_priv = dev->dev_private;
972         u32 pp;
973
974         if (!is_edp(intel_dp))
975                 return;
976         DRM_DEBUG_KMS("Turn eDP VDD on\n");
977
978         WARN(intel_dp->want_panel_vdd,
979              "eDP VDD already requested on\n");
980
981         intel_dp->want_panel_vdd = true;
982
983         if (ironlake_edp_have_panel_vdd(intel_dp)) {
984                 DRM_DEBUG_KMS("eDP VDD already on\n");
985                 return;
986         }
987
988         if (!ironlake_edp_have_panel_power(intel_dp))
989                 ironlake_wait_panel_power_cycle(intel_dp);
990
991         pp = ironlake_get_pp_control(dev_priv);
992         pp |= EDP_FORCE_VDD;
993         I915_WRITE(PCH_PP_CONTROL, pp);
994         POSTING_READ(PCH_PP_CONTROL);
995         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
996                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
997
998         /*
999          * If the panel wasn't on, delay before accessing aux channel
1000          */
1001         if (!ironlake_edp_have_panel_power(intel_dp)) {
1002                 DRM_DEBUG_KMS("eDP was not running\n");
1003                 msleep(intel_dp->panel_power_up_delay);
1004         }
1005 }
1006
1007 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1008 {
1009         struct drm_device *dev = intel_dp->base.base.dev;
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 pp;
1012
1013         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1014                 pp = ironlake_get_pp_control(dev_priv);
1015                 pp &= ~EDP_FORCE_VDD;
1016                 I915_WRITE(PCH_PP_CONTROL, pp);
1017                 POSTING_READ(PCH_PP_CONTROL);
1018
1019                 /* Make sure sequencer is idle before allowing subsequent activity */
1020                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023                 msleep(intel_dp->panel_power_down_delay);
1024         }
1025 }
1026
1027 static void ironlake_panel_vdd_work(struct work_struct *__work)
1028 {
1029         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1030                                                  struct intel_dp, panel_vdd_work);
1031         struct drm_device *dev = intel_dp->base.base.dev;
1032
1033         mutex_lock(&dev->mode_config.mutex);
1034         ironlake_panel_vdd_off_sync(intel_dp);
1035         mutex_unlock(&dev->mode_config.mutex);
1036 }
1037
1038 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1039 {
1040         if (!is_edp(intel_dp))
1041                 return;
1042
1043         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1044         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1045         
1046         intel_dp->want_panel_vdd = false;
1047
1048         if (sync) {
1049                 ironlake_panel_vdd_off_sync(intel_dp);
1050         } else {
1051                 /*
1052                  * Queue the timer to fire a long
1053                  * time from now (relative to the power down delay)
1054                  * to keep the panel power up across a sequence of operations
1055                  */
1056                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1057                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1058         }
1059 }
1060
1061 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1062 {
1063         struct drm_device *dev = intel_dp->base.base.dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         u32 pp;
1066
1067         if (!is_edp(intel_dp))
1068                 return;
1069
1070         DRM_DEBUG_KMS("Turn eDP power on\n");
1071
1072         if (ironlake_edp_have_panel_power(intel_dp)) {
1073                 DRM_DEBUG_KMS("eDP power already on\n");
1074                 return;
1075         }
1076
1077         ironlake_wait_panel_power_cycle(intel_dp);
1078
1079         pp = ironlake_get_pp_control(dev_priv);
1080         if (IS_GEN5(dev)) {
1081                 /* ILK workaround: disable reset around power sequence */
1082                 pp &= ~PANEL_POWER_RESET;
1083                 I915_WRITE(PCH_PP_CONTROL, pp);
1084                 POSTING_READ(PCH_PP_CONTROL);
1085         }
1086
1087         pp |= POWER_TARGET_ON;
1088         if (!IS_GEN5(dev))
1089                 pp |= PANEL_POWER_RESET;
1090
1091         I915_WRITE(PCH_PP_CONTROL, pp);
1092         POSTING_READ(PCH_PP_CONTROL);
1093
1094         ironlake_wait_panel_on(intel_dp);
1095
1096         if (IS_GEN5(dev)) {
1097                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1098                 I915_WRITE(PCH_PP_CONTROL, pp);
1099                 POSTING_READ(PCH_PP_CONTROL);
1100         }
1101 }
1102
1103 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1104 {
1105         struct drm_device *dev = intel_dp->base.base.dev;
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 pp;
1108
1109         if (!is_edp(intel_dp))
1110                 return;
1111
1112         DRM_DEBUG_KMS("Turn eDP power off\n");
1113
1114         WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1115
1116         pp = ironlake_get_pp_control(dev_priv);
1117         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1118         I915_WRITE(PCH_PP_CONTROL, pp);
1119         POSTING_READ(PCH_PP_CONTROL);
1120
1121         ironlake_wait_panel_off(intel_dp);
1122 }
1123
1124 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1125 {
1126         struct drm_device *dev = intel_dp->base.base.dev;
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         u32 pp;
1129
1130         if (!is_edp(intel_dp))
1131                 return;
1132
1133         DRM_DEBUG_KMS("\n");
1134         /*
1135          * If we enable the backlight right away following a panel power
1136          * on, we may see slight flicker as the panel syncs with the eDP
1137          * link.  So delay a bit to make sure the image is solid before
1138          * allowing it to appear.
1139          */
1140         msleep(intel_dp->backlight_on_delay);
1141         pp = ironlake_get_pp_control(dev_priv);
1142         pp |= EDP_BLC_ENABLE;
1143         I915_WRITE(PCH_PP_CONTROL, pp);
1144         POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1148 {
1149         struct drm_device *dev = intel_dp->base.base.dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151         u32 pp;
1152
1153         if (!is_edp(intel_dp))
1154                 return;
1155
1156         DRM_DEBUG_KMS("\n");
1157         pp = ironlake_get_pp_control(dev_priv);
1158         pp &= ~EDP_BLC_ENABLE;
1159         I915_WRITE(PCH_PP_CONTROL, pp);
1160         POSTING_READ(PCH_PP_CONTROL);
1161         msleep(intel_dp->backlight_off_delay);
1162 }
1163
1164 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1165 {
1166         struct drm_device *dev = encoder->dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         u32 dpa_ctl;
1169
1170         DRM_DEBUG_KMS("\n");
1171         dpa_ctl = I915_READ(DP_A);
1172         dpa_ctl |= DP_PLL_ENABLE;
1173         I915_WRITE(DP_A, dpa_ctl);
1174         POSTING_READ(DP_A);
1175         udelay(200);
1176 }
1177
1178 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1179 {
1180         struct drm_device *dev = encoder->dev;
1181         struct drm_i915_private *dev_priv = dev->dev_private;
1182         u32 dpa_ctl;
1183
1184         dpa_ctl = I915_READ(DP_A);
1185         dpa_ctl &= ~DP_PLL_ENABLE;
1186         I915_WRITE(DP_A, dpa_ctl);
1187         POSTING_READ(DP_A);
1188         udelay(200);
1189 }
1190
1191 /* If the sink supports it, try to set the power state appropriately */
1192 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1193 {
1194         int ret, i;
1195
1196         /* Should have a valid DPCD by this point */
1197         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1198                 return;
1199
1200         if (mode != DRM_MODE_DPMS_ON) {
1201                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1202                                                   DP_SET_POWER_D3);
1203                 if (ret != 1)
1204                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1205         } else {
1206                 /*
1207                  * When turning on, we need to retry for 1ms to give the sink
1208                  * time to wake up.
1209                  */
1210                 for (i = 0; i < 3; i++) {
1211                         ret = intel_dp_aux_native_write_1(intel_dp,
1212                                                           DP_SET_POWER,
1213                                                           DP_SET_POWER_D0);
1214                         if (ret == 1)
1215                                 break;
1216                         msleep(1);
1217                 }
1218         }
1219 }
1220
1221 static void intel_dp_prepare(struct drm_encoder *encoder)
1222 {
1223         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1224
1225         /* Wake up the sink first */
1226         ironlake_edp_panel_vdd_on(intel_dp);
1227         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1228         ironlake_edp_panel_vdd_off(intel_dp, false);
1229
1230         /* Make sure the panel is off before trying to
1231          * change the mode
1232          */
1233         ironlake_edp_backlight_off(intel_dp);
1234         intel_dp_link_down(intel_dp);
1235         ironlake_edp_panel_off(intel_dp);
1236 }
1237
1238 static void intel_dp_commit(struct drm_encoder *encoder)
1239 {
1240         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1241         struct drm_device *dev = encoder->dev;
1242         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1243
1244         ironlake_edp_panel_vdd_on(intel_dp);
1245         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1246         intel_dp_start_link_train(intel_dp);
1247         ironlake_edp_panel_on(intel_dp);
1248         ironlake_edp_panel_vdd_off(intel_dp, true);
1249         intel_dp_complete_link_train(intel_dp);
1250         ironlake_edp_backlight_on(intel_dp);
1251
1252         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1253
1254         if (HAS_PCH_CPT(dev))
1255                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1256 }
1257
1258 static void
1259 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1260 {
1261         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1262         struct drm_device *dev = encoder->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1265
1266         if (mode != DRM_MODE_DPMS_ON) {
1267                 ironlake_edp_panel_vdd_on(intel_dp);
1268                 if (is_edp(intel_dp))
1269                         ironlake_edp_backlight_off(intel_dp);
1270                 intel_dp_sink_dpms(intel_dp, mode);
1271                 intel_dp_link_down(intel_dp);
1272                 ironlake_edp_panel_off(intel_dp);
1273                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1274                         ironlake_edp_pll_off(encoder);
1275                 ironlake_edp_panel_vdd_off(intel_dp, false);
1276         } else {
1277                 ironlake_edp_panel_vdd_on(intel_dp);
1278                 intel_dp_sink_dpms(intel_dp, mode);
1279                 if (!(dp_reg & DP_PORT_EN)) {
1280                         intel_dp_start_link_train(intel_dp);
1281                         ironlake_edp_panel_on(intel_dp);
1282                         ironlake_edp_panel_vdd_off(intel_dp, true);
1283                         intel_dp_complete_link_train(intel_dp);
1284                         ironlake_edp_backlight_on(intel_dp);
1285                 } else
1286                         ironlake_edp_panel_vdd_off(intel_dp, false);
1287                 ironlake_edp_backlight_on(intel_dp);
1288         }
1289         intel_dp->dpms_mode = mode;
1290 }
1291
1292 /*
1293  * Native read with retry for link status and receiver capability reads for
1294  * cases where the sink may still be asleep.
1295  */
1296 static bool
1297 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1298                                uint8_t *recv, int recv_bytes)
1299 {
1300         int ret, i;
1301
1302         /*
1303          * Sinks are *supposed* to come up within 1ms from an off state,
1304          * but we're also supposed to retry 3 times per the spec.
1305          */
1306         for (i = 0; i < 3; i++) {
1307                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1308                                                recv_bytes);
1309                 if (ret == recv_bytes)
1310                         return true;
1311                 msleep(1);
1312         }
1313
1314         return false;
1315 }
1316
1317 /*
1318  * Fetch AUX CH registers 0x202 - 0x207 which contain
1319  * link status information
1320  */
1321 static bool
1322 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1323 {
1324         return intel_dp_aux_native_read_retry(intel_dp,
1325                                               DP_LANE0_1_STATUS,
1326                                               link_status,
1327                                               DP_LINK_STATUS_SIZE);
1328 }
1329
1330 static uint8_t
1331 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1332                      int r)
1333 {
1334         return link_status[r - DP_LANE0_1_STATUS];
1335 }
1336
1337 static uint8_t
1338 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1339                                  int lane)
1340 {
1341         int         s = ((lane & 1) ?
1342                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1343                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1344         uint8_t l = adjust_request[lane>>1];
1345
1346         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1347 }
1348
1349 static uint8_t
1350 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1351                                       int lane)
1352 {
1353         int         s = ((lane & 1) ?
1354                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1355                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1356         uint8_t l = adjust_request[lane>>1];
1357
1358         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1359 }
1360
1361
1362 #if 0
1363 static char     *voltage_names[] = {
1364         "0.4V", "0.6V", "0.8V", "1.2V"
1365 };
1366 static char     *pre_emph_names[] = {
1367         "0dB", "3.5dB", "6dB", "9.5dB"
1368 };
1369 static char     *link_train_names[] = {
1370         "pattern 1", "pattern 2", "idle", "off"
1371 };
1372 #endif
1373
1374 /*
1375  * These are source-specific values; current Intel hardware supports
1376  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1377  */
1378 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1379 #define I830_DP_VOLTAGE_MAX_CPT     DP_TRAIN_VOLTAGE_SWING_1200
1380
1381 static uint8_t
1382 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1383 {
1384         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385         case DP_TRAIN_VOLTAGE_SWING_400:
1386                 return DP_TRAIN_PRE_EMPHASIS_6;
1387         case DP_TRAIN_VOLTAGE_SWING_600:
1388                 return DP_TRAIN_PRE_EMPHASIS_6;
1389         case DP_TRAIN_VOLTAGE_SWING_800:
1390                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1391         case DP_TRAIN_VOLTAGE_SWING_1200:
1392         default:
1393                 return DP_TRAIN_PRE_EMPHASIS_0;
1394         }
1395 }
1396
1397 static void
1398 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400         struct drm_device *dev = intel_dp->base.base.dev;
1401         uint8_t v = 0;
1402         uint8_t p = 0;
1403         int lane;
1404         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1405         int voltage_max;
1406
1407         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1408                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1409                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1410
1411                 if (this_v > v)
1412                         v = this_v;
1413                 if (this_p > p)
1414                         p = this_p;
1415         }
1416
1417         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418                 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1419         else
1420                 voltage_max = I830_DP_VOLTAGE_MAX;
1421         if (v >= voltage_max)
1422                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1423
1424         if (p >= intel_dp_pre_emphasis_max(v))
1425                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1426
1427         for (lane = 0; lane < 4; lane++)
1428                 intel_dp->train_set[lane] = v | p;
1429 }
1430
1431 static uint32_t
1432 intel_dp_signal_levels(uint8_t train_set)
1433 {
1434         uint32_t        signal_levels = 0;
1435
1436         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437         case DP_TRAIN_VOLTAGE_SWING_400:
1438         default:
1439                 signal_levels |= DP_VOLTAGE_0_4;
1440                 break;
1441         case DP_TRAIN_VOLTAGE_SWING_600:
1442                 signal_levels |= DP_VOLTAGE_0_6;
1443                 break;
1444         case DP_TRAIN_VOLTAGE_SWING_800:
1445                 signal_levels |= DP_VOLTAGE_0_8;
1446                 break;
1447         case DP_TRAIN_VOLTAGE_SWING_1200:
1448                 signal_levels |= DP_VOLTAGE_1_2;
1449                 break;
1450         }
1451         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1452         case DP_TRAIN_PRE_EMPHASIS_0:
1453         default:
1454                 signal_levels |= DP_PRE_EMPHASIS_0;
1455                 break;
1456         case DP_TRAIN_PRE_EMPHASIS_3_5:
1457                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1458                 break;
1459         case DP_TRAIN_PRE_EMPHASIS_6:
1460                 signal_levels |= DP_PRE_EMPHASIS_6;
1461                 break;
1462         case DP_TRAIN_PRE_EMPHASIS_9_5:
1463                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1464                 break;
1465         }
1466         return signal_levels;
1467 }
1468
1469 /* Gen6's DP voltage swing and pre-emphasis control */
1470 static uint32_t
1471 intel_gen6_edp_signal_levels(uint8_t train_set)
1472 {
1473         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1474                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1475         switch (signal_levels) {
1476         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1477         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1478                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1479         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1480                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1481         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1482         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1483                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1484         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1485         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1486                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1487         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1488         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1489                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1490         default:
1491                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1492                               "0x%x\n", signal_levels);
1493                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1494         }
1495 }
1496
1497 static uint8_t
1498 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1499                       int lane)
1500 {
1501         int s = (lane & 1) * 4;
1502         uint8_t l = link_status[lane>>1];
1503
1504         return (l >> s) & 0xf;
1505 }
1506
1507 /* Check for clock recovery is done on all channels */
1508 static bool
1509 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1510 {
1511         int lane;
1512         uint8_t lane_status;
1513
1514         for (lane = 0; lane < lane_count; lane++) {
1515                 lane_status = intel_get_lane_status(link_status, lane);
1516                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1517                         return false;
1518         }
1519         return true;
1520 }
1521
1522 /* Check to see if channel eq is done on all channels */
1523 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1524                          DP_LANE_CHANNEL_EQ_DONE|\
1525                          DP_LANE_SYMBOL_LOCKED)
1526 static bool
1527 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1528 {
1529         uint8_t lane_align;
1530         uint8_t lane_status;
1531         int lane;
1532
1533         lane_align = intel_dp_link_status(link_status,
1534                                           DP_LANE_ALIGN_STATUS_UPDATED);
1535         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1536                 return false;
1537         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1538                 lane_status = intel_get_lane_status(link_status, lane);
1539                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1540                         return false;
1541         }
1542         return true;
1543 }
1544
1545 static bool
1546 intel_dp_set_link_train(struct intel_dp *intel_dp,
1547                         uint32_t dp_reg_value,
1548                         uint8_t dp_train_pat)
1549 {
1550         struct drm_device *dev = intel_dp->base.base.dev;
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         int ret;
1553
1554         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1555         POSTING_READ(intel_dp->output_reg);
1556
1557         intel_dp_aux_native_write_1(intel_dp,
1558                                     DP_TRAINING_PATTERN_SET,
1559                                     dp_train_pat);
1560
1561         ret = intel_dp_aux_native_write(intel_dp,
1562                                         DP_TRAINING_LANE0_SET,
1563                                         intel_dp->train_set, 4);
1564         if (ret != 4)
1565                 return false;
1566
1567         return true;
1568 }
1569
1570 /* Enable corresponding port and start training pattern 1 */
1571 static void
1572 intel_dp_start_link_train(struct intel_dp *intel_dp)
1573 {
1574         struct drm_device *dev = intel_dp->base.base.dev;
1575         struct drm_i915_private *dev_priv = dev->dev_private;
1576         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1577         int i;
1578         uint8_t voltage;
1579         bool clock_recovery = false;
1580         int tries;
1581         u32 reg;
1582         uint32_t DP = intel_dp->DP;
1583
1584         /*
1585          * On CPT we have to enable the port in training pattern 1, which
1586          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1587          * the port and wait for it to become active.
1588          */
1589         if (!HAS_PCH_CPT(dev)) {
1590                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1591                 POSTING_READ(intel_dp->output_reg);
1592                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1593         }
1594
1595         /* Write the link configuration data */
1596         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1597                                   intel_dp->link_configuration,
1598                                   DP_LINK_CONFIGURATION_SIZE);
1599
1600         DP |= DP_PORT_EN;
1601         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1602                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1603         else
1604                 DP &= ~DP_LINK_TRAIN_MASK;
1605         memset(intel_dp->train_set, 0, 4);
1606         voltage = 0xff;
1607         tries = 0;
1608         clock_recovery = false;
1609         for (;;) {
1610                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1611                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1612                 uint32_t    signal_levels;
1613
1614                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1615                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1616                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1617                 } else {
1618                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1619                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1620                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1621                 }
1622
1623                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1624                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1625                 else
1626                         reg = DP | DP_LINK_TRAIN_PAT_1;
1627
1628                 if (!intel_dp_set_link_train(intel_dp, reg,
1629                                              DP_TRAINING_PATTERN_1 |
1630                                              DP_LINK_SCRAMBLING_DISABLE))
1631                         break;
1632                 /* Set training pattern 1 */
1633
1634                 udelay(100);
1635                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1636                         DRM_ERROR("failed to get link status\n");
1637                         break;
1638                 }
1639
1640                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1641                         DRM_DEBUG_KMS("clock recovery OK\n");
1642                         clock_recovery = true;
1643                         break;
1644                 }
1645
1646                 /* Check to see if we've tried the max voltage */
1647                 for (i = 0; i < intel_dp->lane_count; i++)
1648                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1649                                 break;
1650                 if (i == intel_dp->lane_count)
1651                         break;
1652
1653                 /* Check to see if we've tried the same voltage 5 times */
1654                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1655                         ++tries;
1656                         if (tries == 5)
1657                                 break;
1658                 } else
1659                         tries = 0;
1660                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1661
1662                 /* Compute new intel_dp->train_set as requested by target */
1663                 intel_get_adjust_train(intel_dp, link_status);
1664         }
1665
1666         intel_dp->DP = DP;
1667 }
1668
1669 static void
1670 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1671 {
1672         struct drm_device *dev = intel_dp->base.base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         bool channel_eq = false;
1675         int tries, cr_tries;
1676         u32 reg;
1677         uint32_t DP = intel_dp->DP;
1678
1679         /* channel equalization */
1680         tries = 0;
1681         cr_tries = 0;
1682         channel_eq = false;
1683         for (;;) {
1684                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1685                 uint32_t    signal_levels;
1686                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1687
1688                 if (cr_tries > 5) {
1689                         DRM_ERROR("failed to train DP, aborting\n");
1690                         intel_dp_link_down(intel_dp);
1691                         break;
1692                 }
1693
1694                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1695                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1696                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1697                 } else {
1698                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1699                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1700                 }
1701
1702                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1703                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1704                 else
1705                         reg = DP | DP_LINK_TRAIN_PAT_2;
1706
1707                 /* channel eq pattern */
1708                 if (!intel_dp_set_link_train(intel_dp, reg,
1709                                              DP_TRAINING_PATTERN_2 |
1710                                              DP_LINK_SCRAMBLING_DISABLE))
1711                         break;
1712
1713                 udelay(400);
1714                 if (!intel_dp_get_link_status(intel_dp, link_status))
1715                         break;
1716
1717                 /* Make sure clock is still ok */
1718                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1719                         intel_dp_start_link_train(intel_dp);
1720                         cr_tries++;
1721                         continue;
1722                 }
1723
1724                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1725                         channel_eq = true;
1726                         break;
1727                 }
1728
1729                 /* Try 5 times, then try clock recovery if that fails */
1730                 if (tries > 5) {
1731                         intel_dp_link_down(intel_dp);
1732                         intel_dp_start_link_train(intel_dp);
1733                         tries = 0;
1734                         cr_tries++;
1735                         continue;
1736                 }
1737
1738                 /* Compute new intel_dp->train_set as requested by target */
1739                 intel_get_adjust_train(intel_dp, link_status);
1740                 ++tries;
1741         }
1742
1743         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1744                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1745         else
1746                 reg = DP | DP_LINK_TRAIN_OFF;
1747
1748         I915_WRITE(intel_dp->output_reg, reg);
1749         POSTING_READ(intel_dp->output_reg);
1750         intel_dp_aux_native_write_1(intel_dp,
1751                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1752 }
1753
1754 static void
1755 intel_dp_link_down(struct intel_dp *intel_dp)
1756 {
1757         struct drm_device *dev = intel_dp->base.base.dev;
1758         struct drm_i915_private *dev_priv = dev->dev_private;
1759         uint32_t DP = intel_dp->DP;
1760
1761         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1762                 return;
1763
1764         DRM_DEBUG_KMS("\n");
1765
1766         if (is_edp(intel_dp)) {
1767                 DP &= ~DP_PLL_ENABLE;
1768                 I915_WRITE(intel_dp->output_reg, DP);
1769                 POSTING_READ(intel_dp->output_reg);
1770                 udelay(100);
1771         }
1772
1773         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1774                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1775                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1776         } else {
1777                 DP &= ~DP_LINK_TRAIN_MASK;
1778                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1779         }
1780         POSTING_READ(intel_dp->output_reg);
1781
1782         msleep(17);
1783
1784         if (is_edp(intel_dp)) {
1785                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1786                         DP |= DP_LINK_TRAIN_OFF_CPT;
1787                 else
1788                         DP |= DP_LINK_TRAIN_OFF;
1789         }
1790
1791         if (!HAS_PCH_CPT(dev) &&
1792             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1793                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1794
1795                 /* Hardware workaround: leaving our transcoder select
1796                  * set to transcoder B while it's off will prevent the
1797                  * corresponding HDMI output on transcoder A.
1798                  *
1799                  * Combine this with another hardware workaround:
1800                  * transcoder select bit can only be cleared while the
1801                  * port is enabled.
1802                  */
1803                 DP &= ~DP_PIPEB_SELECT;
1804                 I915_WRITE(intel_dp->output_reg, DP);
1805
1806                 /* Changes to enable or select take place the vblank
1807                  * after being written.
1808                  */
1809                 if (crtc == NULL) {
1810                         /* We can arrive here never having been attached
1811                          * to a CRTC, for instance, due to inheriting
1812                          * random state from the BIOS.
1813                          *
1814                          * If the pipe is not running, play safe and
1815                          * wait for the clocks to stabilise before
1816                          * continuing.
1817                          */
1818                         POSTING_READ(intel_dp->output_reg);
1819                         msleep(50);
1820                 } else
1821                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1822         }
1823
1824         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1825         POSTING_READ(intel_dp->output_reg);
1826         msleep(intel_dp->panel_power_down_delay);
1827 }
1828
1829 static bool
1830 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1831 {
1832         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1833                                            sizeof(intel_dp->dpcd)) &&
1834             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1835                 return true;
1836         }
1837
1838         return false;
1839 }
1840
1841 static bool
1842 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1843 {
1844         int ret;
1845
1846         ret = intel_dp_aux_native_read_retry(intel_dp,
1847                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1848                                              sink_irq_vector, 1);
1849         if (!ret)
1850                 return false;
1851
1852         return true;
1853 }
1854
1855 static void
1856 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1857 {
1858         /* NAK by default */
1859         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1860 }
1861
1862 /*
1863  * According to DP spec
1864  * 5.1.2:
1865  *  1. Read DPCD
1866  *  2. Configure link according to Receiver Capabilities
1867  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1868  *  4. Check link status on receipt of hot-plug interrupt
1869  */
1870
1871 static void
1872 intel_dp_check_link_status(struct intel_dp *intel_dp)
1873 {
1874         u8 sink_irq_vector;
1875         u8 link_status[DP_LINK_STATUS_SIZE];
1876
1877         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1878                 return;
1879
1880         if (!intel_dp->base.base.crtc)
1881                 return;
1882
1883         /* Try to read receiver status if the link appears to be up */
1884         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1885                 intel_dp_link_down(intel_dp);
1886                 return;
1887         }
1888
1889         /* Now read the DPCD to see if it's actually running */
1890         if (!intel_dp_get_dpcd(intel_dp)) {
1891                 intel_dp_link_down(intel_dp);
1892                 return;
1893         }
1894
1895         /* Try to read the source of the interrupt */
1896         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1897             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1898                 /* Clear interrupt source */
1899                 intel_dp_aux_native_write_1(intel_dp,
1900                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
1901                                             sink_irq_vector);
1902
1903                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1904                         intel_dp_handle_test_request(intel_dp);
1905                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1906                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1907         }
1908
1909         if (!intel_channel_eq_ok(intel_dp, link_status)) {
1910                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1911                               drm_get_encoder_name(&intel_dp->base.base));
1912                 intel_dp_start_link_train(intel_dp);
1913                 intel_dp_complete_link_train(intel_dp);
1914         }
1915 }
1916
1917 static enum drm_connector_status
1918 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1919 {
1920         if (intel_dp_get_dpcd(intel_dp))
1921                 return connector_status_connected;
1922         return connector_status_disconnected;
1923 }
1924
1925 static enum drm_connector_status
1926 ironlake_dp_detect(struct intel_dp *intel_dp)
1927 {
1928         enum drm_connector_status status;
1929
1930         /* Can't disconnect eDP, but you can close the lid... */
1931         if (is_edp(intel_dp)) {
1932                 status = intel_panel_detect(intel_dp->base.base.dev);
1933                 if (status == connector_status_unknown)
1934                         status = connector_status_connected;
1935                 return status;
1936         }
1937
1938         return intel_dp_detect_dpcd(intel_dp);
1939 }
1940
1941 static enum drm_connector_status
1942 g4x_dp_detect(struct intel_dp *intel_dp)
1943 {
1944         struct drm_device *dev = intel_dp->base.base.dev;
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         uint32_t temp, bit;
1947
1948         switch (intel_dp->output_reg) {
1949         case DP_B:
1950                 bit = DPB_HOTPLUG_INT_STATUS;
1951                 break;
1952         case DP_C:
1953                 bit = DPC_HOTPLUG_INT_STATUS;
1954                 break;
1955         case DP_D:
1956                 bit = DPD_HOTPLUG_INT_STATUS;
1957                 break;
1958         default:
1959                 return connector_status_unknown;
1960         }
1961
1962         temp = I915_READ(PORT_HOTPLUG_STAT);
1963
1964         if ((temp & bit) == 0)
1965                 return connector_status_disconnected;
1966
1967         return intel_dp_detect_dpcd(intel_dp);
1968 }
1969
1970 static struct edid *
1971 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1972 {
1973         struct intel_dp *intel_dp = intel_attached_dp(connector);
1974         struct edid     *edid;
1975
1976         ironlake_edp_panel_vdd_on(intel_dp);
1977         edid = drm_get_edid(connector, adapter);
1978         ironlake_edp_panel_vdd_off(intel_dp, false);
1979         return edid;
1980 }
1981
1982 static int
1983 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1984 {
1985         struct intel_dp *intel_dp = intel_attached_dp(connector);
1986         int     ret;
1987
1988         ironlake_edp_panel_vdd_on(intel_dp);
1989         ret = intel_ddc_get_modes(connector, adapter);
1990         ironlake_edp_panel_vdd_off(intel_dp, false);
1991         return ret;
1992 }
1993
1994
1995 /**
1996  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1997  *
1998  * \return true if DP port is connected.
1999  * \return false if DP port is disconnected.
2000  */
2001 static enum drm_connector_status
2002 intel_dp_detect(struct drm_connector *connector, bool force)
2003 {
2004         struct intel_dp *intel_dp = intel_attached_dp(connector);
2005         struct drm_device *dev = intel_dp->base.base.dev;
2006         enum drm_connector_status status;
2007         struct edid *edid = NULL;
2008
2009         intel_dp->has_audio = false;
2010
2011         if (HAS_PCH_SPLIT(dev))
2012                 status = ironlake_dp_detect(intel_dp);
2013         else
2014                 status = g4x_dp_detect(intel_dp);
2015
2016         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2017                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2018                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2019                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2020
2021         if (status != connector_status_connected)
2022                 return status;
2023
2024         if (intel_dp->force_audio) {
2025                 intel_dp->has_audio = intel_dp->force_audio > 0;
2026         } else {
2027                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2028                 if (edid) {
2029                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2030                         connector->display_info.raw_edid = NULL;
2031                         kfree(edid);
2032                 }
2033         }
2034
2035         return connector_status_connected;
2036 }
2037
2038 static int intel_dp_get_modes(struct drm_connector *connector)
2039 {
2040         struct intel_dp *intel_dp = intel_attached_dp(connector);
2041         struct drm_device *dev = intel_dp->base.base.dev;
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         int ret;
2044
2045         /* We should parse the EDID data and find out if it has an audio sink
2046          */
2047
2048         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2049         if (ret) {
2050                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2051                         struct drm_display_mode *newmode;
2052                         list_for_each_entry(newmode, &connector->probed_modes,
2053                                             head) {
2054                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2055                                         intel_dp->panel_fixed_mode =
2056                                                 drm_mode_duplicate(dev, newmode);
2057                                         break;
2058                                 }
2059                         }
2060                 }
2061                 return ret;
2062         }
2063
2064         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2065         if (is_edp(intel_dp)) {
2066                 /* initialize panel mode from VBT if available for eDP */
2067                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2068                         intel_dp->panel_fixed_mode =
2069                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2070                         if (intel_dp->panel_fixed_mode) {
2071                                 intel_dp->panel_fixed_mode->type |=
2072                                         DRM_MODE_TYPE_PREFERRED;
2073                         }
2074                 }
2075                 if (intel_dp->panel_fixed_mode) {
2076                         struct drm_display_mode *mode;
2077                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2078                         drm_mode_probed_add(connector, mode);
2079                         return 1;
2080                 }
2081         }
2082         return 0;
2083 }
2084
2085 static bool
2086 intel_dp_detect_audio(struct drm_connector *connector)
2087 {
2088         struct intel_dp *intel_dp = intel_attached_dp(connector);
2089         struct edid *edid;
2090         bool has_audio = false;
2091
2092         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2093         if (edid) {
2094                 has_audio = drm_detect_monitor_audio(edid);
2095
2096                 connector->display_info.raw_edid = NULL;
2097                 kfree(edid);
2098         }
2099
2100         return has_audio;
2101 }
2102
2103 static int
2104 intel_dp_set_property(struct drm_connector *connector,
2105                       struct drm_property *property,
2106                       uint64_t val)
2107 {
2108         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2109         struct intel_dp *intel_dp = intel_attached_dp(connector);
2110         int ret;
2111
2112         ret = drm_connector_property_set_value(connector, property, val);
2113         if (ret)
2114                 return ret;
2115
2116         if (property == dev_priv->force_audio_property) {
2117                 int i = val;
2118                 bool has_audio;
2119
2120                 if (i == intel_dp->force_audio)
2121                         return 0;
2122
2123                 intel_dp->force_audio = i;
2124
2125                 if (i == 0)
2126                         has_audio = intel_dp_detect_audio(connector);
2127                 else
2128                         has_audio = i > 0;
2129
2130                 if (has_audio == intel_dp->has_audio)
2131                         return 0;
2132
2133                 intel_dp->has_audio = has_audio;
2134                 goto done;
2135         }
2136
2137         if (property == dev_priv->broadcast_rgb_property) {
2138                 if (val == !!intel_dp->color_range)
2139                         return 0;
2140
2141                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2142                 goto done;
2143         }
2144
2145         return -EINVAL;
2146
2147 done:
2148         if (intel_dp->base.base.crtc) {
2149                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2150                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2151                                          crtc->x, crtc->y,
2152                                          crtc->fb);
2153         }
2154
2155         return 0;
2156 }
2157
2158 static void
2159 intel_dp_destroy(struct drm_connector *connector)
2160 {
2161         struct drm_device *dev = connector->dev;
2162
2163         if (intel_dpd_is_edp(dev))
2164                 intel_panel_destroy_backlight(dev);
2165
2166         drm_sysfs_connector_remove(connector);
2167         drm_connector_cleanup(connector);
2168         kfree(connector);
2169 }
2170
2171 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2172 {
2173         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2174
2175         i2c_del_adapter(&intel_dp->adapter);
2176         drm_encoder_cleanup(encoder);
2177         if (is_edp(intel_dp)) {
2178                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2179                 ironlake_panel_vdd_off_sync(intel_dp);
2180         }
2181         kfree(intel_dp);
2182 }
2183
2184 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2185         .dpms = intel_dp_dpms,
2186         .mode_fixup = intel_dp_mode_fixup,
2187         .prepare = intel_dp_prepare,
2188         .mode_set = intel_dp_mode_set,
2189         .commit = intel_dp_commit,
2190 };
2191
2192 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2193         .dpms = drm_helper_connector_dpms,
2194         .detect = intel_dp_detect,
2195         .fill_modes = drm_helper_probe_single_connector_modes,
2196         .set_property = intel_dp_set_property,
2197         .destroy = intel_dp_destroy,
2198 };
2199
2200 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2201         .get_modes = intel_dp_get_modes,
2202         .mode_valid = intel_dp_mode_valid,
2203         .best_encoder = intel_best_encoder,
2204 };
2205
2206 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2207         .destroy = intel_dp_encoder_destroy,
2208 };
2209
2210 static void
2211 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2212 {
2213         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2214
2215         intel_dp_check_link_status(intel_dp);
2216 }
2217
2218 /* Return which DP Port should be selected for Transcoder DP control */
2219 int
2220 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2221 {
2222         struct drm_device *dev = crtc->dev;
2223         struct drm_mode_config *mode_config = &dev->mode_config;
2224         struct drm_encoder *encoder;
2225
2226         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2227                 struct intel_dp *intel_dp;
2228
2229                 if (encoder->crtc != crtc)
2230                         continue;
2231
2232                 intel_dp = enc_to_intel_dp(encoder);
2233                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2234                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2235                         return intel_dp->output_reg;
2236         }
2237
2238         return -1;
2239 }
2240
2241 /* check the VBT to see whether the eDP is on DP-D port */
2242 bool intel_dpd_is_edp(struct drm_device *dev)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct child_device_config *p_child;
2246         int i;
2247
2248         if (!dev_priv->child_dev_num)
2249                 return false;
2250
2251         for (i = 0; i < dev_priv->child_dev_num; i++) {
2252                 p_child = dev_priv->child_dev + i;
2253
2254                 if (p_child->dvo_port == PORT_IDPD &&
2255                     p_child->device_type == DEVICE_TYPE_eDP)
2256                         return true;
2257         }
2258         return false;
2259 }
2260
2261 static void
2262 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2263 {
2264         intel_attach_force_audio_property(connector);
2265         intel_attach_broadcast_rgb_property(connector);
2266 }
2267
2268 void
2269 intel_dp_init(struct drm_device *dev, int output_reg)
2270 {
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         struct drm_connector *connector;
2273         struct intel_dp *intel_dp;
2274         struct intel_encoder *intel_encoder;
2275         struct intel_connector *intel_connector;
2276         const char *name = NULL;
2277         int type;
2278
2279         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2280         if (!intel_dp)
2281                 return;
2282
2283         intel_dp->output_reg = output_reg;
2284         intel_dp->dpms_mode = -1;
2285
2286         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2287         if (!intel_connector) {
2288                 kfree(intel_dp);
2289                 return;
2290         }
2291         intel_encoder = &intel_dp->base;
2292
2293         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2294                 if (intel_dpd_is_edp(dev))
2295                         intel_dp->is_pch_edp = true;
2296
2297         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2298                 type = DRM_MODE_CONNECTOR_eDP;
2299                 intel_encoder->type = INTEL_OUTPUT_EDP;
2300         } else {
2301                 type = DRM_MODE_CONNECTOR_DisplayPort;
2302                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2303         }
2304
2305         connector = &intel_connector->base;
2306         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2307         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2308
2309         connector->polled = DRM_CONNECTOR_POLL_HPD;
2310
2311         if (output_reg == DP_B || output_reg == PCH_DP_B)
2312                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2313         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2314                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2315         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2316                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2317
2318         if (is_edp(intel_dp)) {
2319                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2320                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2321                                   ironlake_panel_vdd_work);
2322         }
2323
2324         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2325         connector->interlace_allowed = true;
2326         connector->doublescan_allowed = 0;
2327
2328         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2329                          DRM_MODE_ENCODER_TMDS);
2330         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2331
2332         intel_connector_attach_encoder(intel_connector, intel_encoder);
2333         drm_sysfs_connector_add(connector);
2334
2335         /* Set up the DDC bus. */
2336         switch (output_reg) {
2337                 case DP_A:
2338                         name = "DPDDC-A";
2339                         break;
2340                 case DP_B:
2341                 case PCH_DP_B:
2342                         dev_priv->hotplug_supported_mask |=
2343                                 HDMIB_HOTPLUG_INT_STATUS;
2344                         name = "DPDDC-B";
2345                         break;
2346                 case DP_C:
2347                 case PCH_DP_C:
2348                         dev_priv->hotplug_supported_mask |=
2349                                 HDMIC_HOTPLUG_INT_STATUS;
2350                         name = "DPDDC-C";
2351                         break;
2352                 case DP_D:
2353                 case PCH_DP_D:
2354                         dev_priv->hotplug_supported_mask |=
2355                                 HDMID_HOTPLUG_INT_STATUS;
2356                         name = "DPDDC-D";
2357                         break;
2358         }
2359
2360         /* Cache some DPCD data in the eDP case */
2361         if (is_edp(intel_dp)) {
2362                 bool ret;
2363                 struct edp_power_seq    cur, vbt;
2364                 u32 pp_on, pp_off, pp_div;
2365
2366                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2367                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2368                 pp_div = I915_READ(PCH_PP_DIVISOR);
2369
2370                 /* Pull timing values out of registers */
2371                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2372                         PANEL_POWER_UP_DELAY_SHIFT;
2373
2374                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2375                         PANEL_LIGHT_ON_DELAY_SHIFT;
2376                 
2377                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2378                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2379
2380                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2381                         PANEL_POWER_DOWN_DELAY_SHIFT;
2382
2383                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2384                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2385
2386                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2387                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2388
2389                 vbt = dev_priv->edp.pps;
2390
2391                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2392                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2393
2394 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2395
2396                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2397                 intel_dp->backlight_on_delay = get_delay(t8);
2398                 intel_dp->backlight_off_delay = get_delay(t9);
2399                 intel_dp->panel_power_down_delay = get_delay(t10);
2400                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2401
2402                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2403                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2404                               intel_dp->panel_power_cycle_delay);
2405
2406                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2407                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2408
2409                 ironlake_edp_panel_vdd_on(intel_dp);
2410                 ret = intel_dp_get_dpcd(intel_dp);
2411                 ironlake_edp_panel_vdd_off(intel_dp, false);
2412
2413                 if (ret) {
2414                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2415                                 dev_priv->no_aux_handshake =
2416                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2417                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2418                 } else {
2419                         /* if this fails, presume the device is a ghost */
2420                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2421                         intel_dp_encoder_destroy(&intel_dp->base.base);
2422                         intel_dp_destroy(&intel_connector->base);
2423                         return;
2424                 }
2425         }
2426
2427         intel_dp_i2c_init(intel_dp, intel_connector, name);
2428
2429         intel_encoder->hot_plug = intel_dp_hot_plug;
2430
2431         if (is_edp(intel_dp)) {
2432                 dev_priv->int_edp_connector = connector;
2433                 intel_panel_setup_backlight(dev);
2434         }
2435
2436         intel_dp_add_properties(intel_dp, connector);
2437
2438         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2439          * 0xd.  Failure to do so will result in spurious interrupts being
2440          * generated on the port when a cable is not attached.
2441          */
2442         if (IS_G4X(dev) && !IS_GM45(dev)) {
2443                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2444                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2445         }
2446 }