drm/i915: Initiate DP link training only on the lanes we'll be using
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE    0xf
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         int panel_power_up_delay;
62         int panel_power_down_delay;
63         int panel_power_cycle_delay;
64         int backlight_on_delay;
65         int backlight_off_delay;
66         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
67         struct delayed_work panel_vdd_work;
68         bool want_panel_vdd;
69 };
70
71 /**
72  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
73  * @intel_dp: DP struct
74  *
75  * If a CPU or PCH DP output is attached to an eDP panel, this function
76  * will return true, and false otherwise.
77  */
78 static bool is_edp(struct intel_dp *intel_dp)
79 {
80         return intel_dp->base.type == INTEL_OUTPUT_EDP;
81 }
82
83 /**
84  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
85  * @intel_dp: DP struct
86  *
87  * Returns true if the given DP struct corresponds to a PCH DP port attached
88  * to an eDP panel, false otherwise.  Helpful for determining whether we
89  * may need FDI resources for a given DP output or not.
90  */
91 static bool is_pch_edp(struct intel_dp *intel_dp)
92 {
93         return intel_dp->is_pch_edp;
94 }
95
96 /**
97  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
98  * @intel_dp: DP struct
99  *
100  * Returns true if the given DP struct corresponds to a CPU eDP port.
101  */
102 static bool is_cpu_edp(struct intel_dp *intel_dp)
103 {
104         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
105 }
106
107 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
108 {
109         return container_of(encoder, struct intel_dp, base.base);
110 }
111
112 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
113 {
114         return container_of(intel_attached_encoder(connector),
115                             struct intel_dp, base);
116 }
117
118 /**
119  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
120  * @encoder: DRM encoder
121  *
122  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
123  * by intel_display.c.
124  */
125 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
126 {
127         struct intel_dp *intel_dp;
128
129         if (!encoder)
130                 return false;
131
132         intel_dp = enc_to_intel_dp(encoder);
133
134         return is_pch_edp(intel_dp);
135 }
136
137 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
138 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_link_down(struct intel_dp *intel_dp);
140
141 void
142 intel_edp_link_config(struct intel_encoder *intel_encoder,
143                        int *lane_num, int *link_bw)
144 {
145         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
146
147         *lane_num = intel_dp->lane_count;
148         if (intel_dp->link_bw == DP_LINK_BW_1_62)
149                 *link_bw = 162000;
150         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
151                 *link_bw = 270000;
152 }
153
154 static int
155 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157         int max_lane_count = 4;
158
159         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
160                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
161                 switch (max_lane_count) {
162                 case 1: case 2: case 4:
163                         break;
164                 default:
165                         max_lane_count = 4;
166                 }
167         }
168         return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176         switch (max_link_bw) {
177         case DP_LINK_BW_1_62:
178         case DP_LINK_BW_2_7:
179                 break;
180         default:
181                 max_link_bw = DP_LINK_BW_1_62;
182                 break;
183         }
184         return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190         if (link_bw == DP_LINK_BW_2_7)
191                 return 270000;
192         else
193                 return 162000;
194 }
195
196 /*
197  * The units on the numbers in the next two are... bizarre.  Examples will
198  * make it clearer; this one parallels an example in the eDP spec.
199  *
200  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201  *
202  *     270000 * 1 * 8 / 10 == 216000
203  *
204  * The actual data capacity of that configuration is 2.16Gbit/s, so the
205  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
206  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207  * 119000.  At 18bpp that's 2142000 kilobits per second.
208  *
209  * Thus the strange-looking division by 10 in intel_dp_link_required, to
210  * get the result in decakilobits instead of kilobits.
211  */
212
213 static int
214 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
215 {
216         struct drm_crtc *crtc = intel_dp->base.base.crtc;
217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218         int bpp = 24;
219
220         if (intel_crtc)
221                 bpp = intel_crtc->bpp;
222
223         return (pixel_clock * bpp + 9) / 10;
224 }
225
226 static int
227 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
228 {
229         return (max_link_clock * max_lanes * 8) / 10;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234                     struct drm_display_mode *mode)
235 {
236         struct intel_dp *intel_dp = intel_attached_dp(connector);
237         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
238         int max_lanes = intel_dp_max_lane_count(intel_dp);
239
240         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242                         return MODE_PANEL;
243
244                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245                         return MODE_PANEL;
246         }
247
248         if (intel_dp_link_required(intel_dp, mode->clock)
249             > intel_dp_max_data_rate(max_link_clock, max_lanes))
250                 return MODE_CLOCK_HIGH;
251
252         if (mode->clock < 10000)
253                 return MODE_CLOCK_LOW;
254
255         return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261         int     i;
262         uint32_t v = 0;
263
264         if (src_bytes > 4)
265                 src_bytes = 4;
266         for (i = 0; i < src_bytes; i++)
267                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268         return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274         int i;
275         if (dst_bytes > 4)
276                 dst_bytes = 4;
277         for (i = 0; i < dst_bytes; i++)
278                 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285         struct drm_i915_private *dev_priv = dev->dev_private;
286         uint32_t clkcfg;
287
288         clkcfg = I915_READ(CLKCFG);
289         switch (clkcfg & CLKCFG_FSB_MASK) {
290         case CLKCFG_FSB_400:
291                 return 100;
292         case CLKCFG_FSB_533:
293                 return 133;
294         case CLKCFG_FSB_667:
295                 return 166;
296         case CLKCFG_FSB_800:
297                 return 200;
298         case CLKCFG_FSB_1067:
299                 return 266;
300         case CLKCFG_FSB_1333:
301                 return 333;
302         /* these two are just a guess; one of them might be right */
303         case CLKCFG_FSB_1600:
304         case CLKCFG_FSB_1600_ALT:
305                 return 400;
306         default:
307                 return 133;
308         }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313         struct drm_device *dev = intel_dp->base.base.dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp->base.base.dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         if (!is_edp(intel_dp))
334                 return;
335         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338                               I915_READ(PCH_PP_STATUS),
339                               I915_READ(PCH_PP_CONTROL));
340         }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345                 uint8_t *send, int send_bytes,
346                 uint8_t *recv, int recv_size)
347 {
348         uint32_t output_reg = intel_dp->output_reg;
349         struct drm_device *dev = intel_dp->base.base.dev;
350         struct drm_i915_private *dev_priv = dev->dev_private;
351         uint32_t ch_ctl = output_reg + 0x10;
352         uint32_t ch_data = ch_ctl + 4;
353         int i;
354         int recv_bytes;
355         uint32_t status;
356         uint32_t aux_clock_divider;
357         int try, precharge;
358
359         intel_dp_check_edp(intel_dp);
360         /* The clock divider is based off the hrawclk,
361          * and would like to run at 2MHz. So, take the
362          * hrawclk value and divide by 2 and use that
363          *
364          * Note that PCH attached eDP panels should use a 125MHz input
365          * clock divider.
366          */
367         if (is_cpu_edp(intel_dp)) {
368                 if (IS_GEN6(dev))
369                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
370                 else
371                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372         } else if (HAS_PCH_SPLIT(dev))
373                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
374         else
375                 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377         if (IS_GEN6(dev))
378                 precharge = 3;
379         else
380                 precharge = 5;
381
382         /* Try to wait for any previous AUX channel activity */
383         for (try = 0; try < 3; try++) {
384                 status = I915_READ(ch_ctl);
385                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386                         break;
387                 msleep(1);
388         }
389
390         if (try == 3) {
391                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392                      I915_READ(ch_ctl));
393                 return -EBUSY;
394         }
395
396         /* Must try at least 3 times according to DP spec */
397         for (try = 0; try < 5; try++) {
398                 /* Load the send data into the aux channel data registers */
399                 for (i = 0; i < send_bytes; i += 4)
400                         I915_WRITE(ch_data + i,
401                                    pack_aux(send + i, send_bytes - i));
402
403                 /* Send the command and wait for it to complete */
404                 I915_WRITE(ch_ctl,
405                            DP_AUX_CH_CTL_SEND_BUSY |
406                            DP_AUX_CH_CTL_TIME_OUT_400us |
407                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410                            DP_AUX_CH_CTL_DONE |
411                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
412                            DP_AUX_CH_CTL_RECEIVE_ERROR);
413                 for (;;) {
414                         status = I915_READ(ch_ctl);
415                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416                                 break;
417                         udelay(100);
418                 }
419
420                 /* Clear done status and any errors */
421                 I915_WRITE(ch_ctl,
422                            status |
423                            DP_AUX_CH_CTL_DONE |
424                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
425                            DP_AUX_CH_CTL_RECEIVE_ERROR);
426                 if (status & DP_AUX_CH_CTL_DONE)
427                         break;
428         }
429
430         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
431                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
432                 return -EBUSY;
433         }
434
435         /* Check for timeout or receive error.
436          * Timeouts occur when the sink is not connected
437          */
438         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440                 return -EIO;
441         }
442
443         /* Timeouts occur when the device isn't connected, so they're
444          * "normal" -- don't fill the kernel log with these */
445         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
446                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
447                 return -ETIMEDOUT;
448         }
449
450         /* Unload any bytes sent back from the other side */
451         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
452                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
453         if (recv_bytes > recv_size)
454                 recv_bytes = recv_size;
455
456         for (i = 0; i < recv_bytes; i += 4)
457                 unpack_aux(I915_READ(ch_data + i),
458                            recv + i, recv_bytes - i);
459
460         return recv_bytes;
461 }
462
463 /* Write data to the aux channel in native mode */
464 static int
465 intel_dp_aux_native_write(struct intel_dp *intel_dp,
466                           uint16_t address, uint8_t *send, int send_bytes)
467 {
468         int ret;
469         uint8_t msg[20];
470         int msg_bytes;
471         uint8_t ack;
472
473         intel_dp_check_edp(intel_dp);
474         if (send_bytes > 16)
475                 return -1;
476         msg[0] = AUX_NATIVE_WRITE << 4;
477         msg[1] = address >> 8;
478         msg[2] = address & 0xff;
479         msg[3] = send_bytes - 1;
480         memcpy(&msg[4], send, send_bytes);
481         msg_bytes = send_bytes + 4;
482         for (;;) {
483                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
484                 if (ret < 0)
485                         return ret;
486                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
487                         break;
488                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
489                         udelay(100);
490                 else
491                         return -EIO;
492         }
493         return send_bytes;
494 }
495
496 /* Write a single byte to the aux channel in native mode */
497 static int
498 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
499                             uint16_t address, uint8_t byte)
500 {
501         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
502 }
503
504 /* read bytes from a native aux channel */
505 static int
506 intel_dp_aux_native_read(struct intel_dp *intel_dp,
507                          uint16_t address, uint8_t *recv, int recv_bytes)
508 {
509         uint8_t msg[4];
510         int msg_bytes;
511         uint8_t reply[20];
512         int reply_bytes;
513         uint8_t ack;
514         int ret;
515
516         intel_dp_check_edp(intel_dp);
517         msg[0] = AUX_NATIVE_READ << 4;
518         msg[1] = address >> 8;
519         msg[2] = address & 0xff;
520         msg[3] = recv_bytes - 1;
521
522         msg_bytes = 4;
523         reply_bytes = recv_bytes + 1;
524
525         for (;;) {
526                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
527                                       reply, reply_bytes);
528                 if (ret == 0)
529                         return -EPROTO;
530                 if (ret < 0)
531                         return ret;
532                 ack = reply[0];
533                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
534                         memcpy(recv, reply + 1, ret - 1);
535                         return ret - 1;
536                 }
537                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
538                         udelay(100);
539                 else
540                         return -EIO;
541         }
542 }
543
544 static int
545 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
546                     uint8_t write_byte, uint8_t *read_byte)
547 {
548         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
549         struct intel_dp *intel_dp = container_of(adapter,
550                                                 struct intel_dp,
551                                                 adapter);
552         uint16_t address = algo_data->address;
553         uint8_t msg[5];
554         uint8_t reply[2];
555         unsigned retry;
556         int msg_bytes;
557         int reply_bytes;
558         int ret;
559
560         intel_dp_check_edp(intel_dp);
561         /* Set up the command byte */
562         if (mode & MODE_I2C_READ)
563                 msg[0] = AUX_I2C_READ << 4;
564         else
565                 msg[0] = AUX_I2C_WRITE << 4;
566
567         if (!(mode & MODE_I2C_STOP))
568                 msg[0] |= AUX_I2C_MOT << 4;
569
570         msg[1] = address >> 8;
571         msg[2] = address;
572
573         switch (mode) {
574         case MODE_I2C_WRITE:
575                 msg[3] = 0;
576                 msg[4] = write_byte;
577                 msg_bytes = 5;
578                 reply_bytes = 1;
579                 break;
580         case MODE_I2C_READ:
581                 msg[3] = 0;
582                 msg_bytes = 4;
583                 reply_bytes = 2;
584                 break;
585         default:
586                 msg_bytes = 3;
587                 reply_bytes = 1;
588                 break;
589         }
590
591         for (retry = 0; retry < 5; retry++) {
592                 ret = intel_dp_aux_ch(intel_dp,
593                                       msg, msg_bytes,
594                                       reply, reply_bytes);
595                 if (ret < 0) {
596                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
597                         return ret;
598                 }
599
600                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
601                 case AUX_NATIVE_REPLY_ACK:
602                         /* I2C-over-AUX Reply field is only valid
603                          * when paired with AUX ACK.
604                          */
605                         break;
606                 case AUX_NATIVE_REPLY_NACK:
607                         DRM_DEBUG_KMS("aux_ch native nack\n");
608                         return -EREMOTEIO;
609                 case AUX_NATIVE_REPLY_DEFER:
610                         udelay(100);
611                         continue;
612                 default:
613                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
614                                   reply[0]);
615                         return -EREMOTEIO;
616                 }
617
618                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
619                 case AUX_I2C_REPLY_ACK:
620                         if (mode == MODE_I2C_READ) {
621                                 *read_byte = reply[1];
622                         }
623                         return reply_bytes - 1;
624                 case AUX_I2C_REPLY_NACK:
625                         DRM_DEBUG_KMS("aux_i2c nack\n");
626                         return -EREMOTEIO;
627                 case AUX_I2C_REPLY_DEFER:
628                         DRM_DEBUG_KMS("aux_i2c defer\n");
629                         udelay(100);
630                         break;
631                 default:
632                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
633                         return -EREMOTEIO;
634                 }
635         }
636
637         DRM_ERROR("too many retries, giving up\n");
638         return -EREMOTEIO;
639 }
640
641 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
642 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
643
644 static int
645 intel_dp_i2c_init(struct intel_dp *intel_dp,
646                   struct intel_connector *intel_connector, const char *name)
647 {
648         int     ret;
649
650         DRM_DEBUG_KMS("i2c_init %s\n", name);
651         intel_dp->algo.running = false;
652         intel_dp->algo.address = 0;
653         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
654
655         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
656         intel_dp->adapter.owner = THIS_MODULE;
657         intel_dp->adapter.class = I2C_CLASS_DDC;
658         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
659         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
660         intel_dp->adapter.algo_data = &intel_dp->algo;
661         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
662
663         ironlake_edp_panel_vdd_on(intel_dp);
664         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
665         ironlake_edp_panel_vdd_off(intel_dp, false);
666         return ret;
667 }
668
669 static bool
670 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
671                     struct drm_display_mode *adjusted_mode)
672 {
673         struct drm_device *dev = encoder->dev;
674         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
675         int lane_count, clock;
676         int max_lane_count = intel_dp_max_lane_count(intel_dp);
677         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
679
680         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
681                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
682                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
683                                         mode, adjusted_mode);
684                 /*
685                  * the mode->clock is used to calculate the Data&Link M/N
686                  * of the pipe. For the eDP the fixed clock should be used.
687                  */
688                 mode->clock = intel_dp->panel_fixed_mode->clock;
689         }
690
691         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
692                 for (clock = 0; clock <= max_clock; clock++) {
693                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
694
695                         if (intel_dp_link_required(intel_dp, mode->clock)
696                                         <= link_avail) {
697                                 intel_dp->link_bw = bws[clock];
698                                 intel_dp->lane_count = lane_count;
699                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
700                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
701                                                 "count %d clock %d\n",
702                                        intel_dp->link_bw, intel_dp->lane_count,
703                                        adjusted_mode->clock);
704                                 return true;
705                         }
706                 }
707         }
708
709         return false;
710 }
711
712 struct intel_dp_m_n {
713         uint32_t        tu;
714         uint32_t        gmch_m;
715         uint32_t        gmch_n;
716         uint32_t        link_m;
717         uint32_t        link_n;
718 };
719
720 static void
721 intel_reduce_ratio(uint32_t *num, uint32_t *den)
722 {
723         while (*num > 0xffffff || *den > 0xffffff) {
724                 *num >>= 1;
725                 *den >>= 1;
726         }
727 }
728
729 static void
730 intel_dp_compute_m_n(int bpp,
731                      int nlanes,
732                      int pixel_clock,
733                      int link_clock,
734                      struct intel_dp_m_n *m_n)
735 {
736         m_n->tu = 64;
737         m_n->gmch_m = (pixel_clock * bpp) >> 3;
738         m_n->gmch_n = link_clock * nlanes;
739         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
740         m_n->link_m = pixel_clock;
741         m_n->link_n = link_clock;
742         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
743 }
744
745 void
746 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
747                  struct drm_display_mode *adjusted_mode)
748 {
749         struct drm_device *dev = crtc->dev;
750         struct drm_mode_config *mode_config = &dev->mode_config;
751         struct drm_encoder *encoder;
752         struct drm_i915_private *dev_priv = dev->dev_private;
753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
754         int lane_count = 4;
755         struct intel_dp_m_n m_n;
756         int pipe = intel_crtc->pipe;
757
758         /*
759          * Find the lane count in the intel_encoder private
760          */
761         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
762                 struct intel_dp *intel_dp;
763
764                 if (encoder->crtc != crtc)
765                         continue;
766
767                 intel_dp = enc_to_intel_dp(encoder);
768                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || is_pch_edp(intel_dp)) {
769                         lane_count = intel_dp->lane_count;
770                         break;
771                 } else if (is_cpu_edp(intel_dp)) {
772                         lane_count = dev_priv->edp.lanes;
773                         break;
774                 }
775         }
776
777         /*
778          * Compute the GMCH and Link ratios. The '3' here is
779          * the number of bytes_per_pixel post-LUT, which we always
780          * set up for 8-bits of R/G/B, or 3 bytes total.
781          */
782         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
783                              mode->clock, adjusted_mode->clock, &m_n);
784
785         if (HAS_PCH_SPLIT(dev)) {
786                 I915_WRITE(TRANSDATA_M1(pipe),
787                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
788                            m_n.gmch_m);
789                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
790                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
791                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
792         } else {
793                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
794                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
795                            m_n.gmch_m);
796                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
797                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
798                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
799         }
800 }
801
802 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
803 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
804
805 static void
806 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
807                   struct drm_display_mode *adjusted_mode)
808 {
809         struct drm_device *dev = encoder->dev;
810         struct drm_i915_private *dev_priv = dev->dev_private;
811         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
812         struct drm_crtc *crtc = intel_dp->base.base.crtc;
813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
814
815         /* Turn on the eDP PLL if needed */
816         if (is_edp(intel_dp)) {
817                 if (!is_pch_edp(intel_dp))
818                         ironlake_edp_pll_on(encoder);
819                 else
820                         ironlake_edp_pll_off(encoder);
821         }
822
823         /*
824          * There are three kinds of DP registers:
825          *
826          *      IBX PCH
827          *      CPU
828          *      CPT PCH
829          *
830          * IBX PCH and CPU are the same for almost everything,
831          * except that the CPU DP PLL is configured in this
832          * register
833          *
834          * CPT PCH is quite different, having many bits moved
835          * to the TRANS_DP_CTL register instead. That
836          * configuration happens (oddly) in ironlake_pch_enable
837          */
838
839         /* Preserve the BIOS-computed detected bit. This is
840          * supposed to be read-only.
841          */
842         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845         /* Handle DP bits in common between all three register formats */
846
847         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848
849         switch (intel_dp->lane_count) {
850         case 1:
851                 intel_dp->DP |= DP_PORT_WIDTH_1;
852                 break;
853         case 2:
854                 intel_dp->DP |= DP_PORT_WIDTH_2;
855                 break;
856         case 4:
857                 intel_dp->DP |= DP_PORT_WIDTH_4;
858                 break;
859         }
860         if (intel_dp->has_audio) {
861                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862                                  pipe_name(intel_crtc->pipe));
863                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864                 intel_write_eld(encoder, adjusted_mode);
865         }
866         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
867         intel_dp->link_configuration[0] = intel_dp->link_bw;
868         intel_dp->link_configuration[1] = intel_dp->lane_count;
869         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
870         /*
871          * Check for DPCD version > 1.1 and enhanced framing support
872          */
873         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
874             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
875                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
876         }
877
878         /* Split out the IBX/CPU vs CPT settings */
879
880         if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
881                 intel_dp->DP |= intel_dp->color_range;
882
883                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884                         intel_dp->DP |= DP_SYNC_HS_HIGH;
885                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886                         intel_dp->DP |= DP_SYNC_VS_HIGH;
887                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890                         intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892                 if (intel_crtc->pipe == 1)
893                         intel_dp->DP |= DP_PIPEB_SELECT;
894
895                 if (is_cpu_edp(intel_dp)) {
896                         /* don't miss out required setting for eDP */
897                         intel_dp->DP |= DP_PLL_ENABLE;
898                         if (adjusted_mode->clock < 200000)
899                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
900                         else
901                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
902                 }
903         } else {
904                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
905         }
906 }
907
908 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
910
911 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
915 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
916
917 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
918                                        u32 mask,
919                                        u32 value)
920 {
921         struct drm_device *dev = intel_dp->base.base.dev;
922         struct drm_i915_private *dev_priv = dev->dev_private;
923
924         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
925                       mask, value,
926                       I915_READ(PCH_PP_STATUS),
927                       I915_READ(PCH_PP_CONTROL));
928
929         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
930                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
931                           I915_READ(PCH_PP_STATUS),
932                           I915_READ(PCH_PP_CONTROL));
933         }
934 }
935
936 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
937 {
938         DRM_DEBUG_KMS("Wait for panel power on\n");
939         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
940 }
941
942 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
943 {
944         DRM_DEBUG_KMS("Wait for panel power off time\n");
945         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
946 }
947
948 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
949 {
950         DRM_DEBUG_KMS("Wait for panel power cycle\n");
951         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
952 }
953
954
955 /* Read the current pp_control value, unlocking the register if it
956  * is locked
957  */
958
959 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
960 {
961         u32     control = I915_READ(PCH_PP_CONTROL);
962
963         control &= ~PANEL_UNLOCK_MASK;
964         control |= PANEL_UNLOCK_REGS;
965         return control;
966 }
967
968 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
969 {
970         struct drm_device *dev = intel_dp->base.base.dev;
971         struct drm_i915_private *dev_priv = dev->dev_private;
972         u32 pp;
973
974         if (!is_edp(intel_dp))
975                 return;
976         DRM_DEBUG_KMS("Turn eDP VDD on\n");
977
978         WARN(intel_dp->want_panel_vdd,
979              "eDP VDD already requested on\n");
980
981         intel_dp->want_panel_vdd = true;
982
983         if (ironlake_edp_have_panel_vdd(intel_dp)) {
984                 DRM_DEBUG_KMS("eDP VDD already on\n");
985                 return;
986         }
987
988         if (!ironlake_edp_have_panel_power(intel_dp))
989                 ironlake_wait_panel_power_cycle(intel_dp);
990
991         pp = ironlake_get_pp_control(dev_priv);
992         pp |= EDP_FORCE_VDD;
993         I915_WRITE(PCH_PP_CONTROL, pp);
994         POSTING_READ(PCH_PP_CONTROL);
995         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
996                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
997
998         /*
999          * If the panel wasn't on, delay before accessing aux channel
1000          */
1001         if (!ironlake_edp_have_panel_power(intel_dp)) {
1002                 DRM_DEBUG_KMS("eDP was not running\n");
1003                 msleep(intel_dp->panel_power_up_delay);
1004         }
1005 }
1006
1007 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1008 {
1009         struct drm_device *dev = intel_dp->base.base.dev;
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 pp;
1012
1013         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1014                 pp = ironlake_get_pp_control(dev_priv);
1015                 pp &= ~EDP_FORCE_VDD;
1016                 I915_WRITE(PCH_PP_CONTROL, pp);
1017                 POSTING_READ(PCH_PP_CONTROL);
1018
1019                 /* Make sure sequencer is idle before allowing subsequent activity */
1020                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023                 msleep(intel_dp->panel_power_down_delay);
1024         }
1025 }
1026
1027 static void ironlake_panel_vdd_work(struct work_struct *__work)
1028 {
1029         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1030                                                  struct intel_dp, panel_vdd_work);
1031         struct drm_device *dev = intel_dp->base.base.dev;
1032
1033         mutex_lock(&dev->mode_config.mutex);
1034         ironlake_panel_vdd_off_sync(intel_dp);
1035         mutex_unlock(&dev->mode_config.mutex);
1036 }
1037
1038 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1039 {
1040         if (!is_edp(intel_dp))
1041                 return;
1042
1043         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1044         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1045
1046         intel_dp->want_panel_vdd = false;
1047
1048         if (sync) {
1049                 ironlake_panel_vdd_off_sync(intel_dp);
1050         } else {
1051                 /*
1052                  * Queue the timer to fire a long
1053                  * time from now (relative to the power down delay)
1054                  * to keep the panel power up across a sequence of operations
1055                  */
1056                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1057                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1058         }
1059 }
1060
1061 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1062 {
1063         struct drm_device *dev = intel_dp->base.base.dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         u32 pp;
1066
1067         if (!is_edp(intel_dp))
1068                 return;
1069
1070         DRM_DEBUG_KMS("Turn eDP power on\n");
1071
1072         if (ironlake_edp_have_panel_power(intel_dp)) {
1073                 DRM_DEBUG_KMS("eDP power already on\n");
1074                 return;
1075         }
1076
1077         ironlake_wait_panel_power_cycle(intel_dp);
1078
1079         pp = ironlake_get_pp_control(dev_priv);
1080         if (IS_GEN5(dev)) {
1081                 /* ILK workaround: disable reset around power sequence */
1082                 pp &= ~PANEL_POWER_RESET;
1083                 I915_WRITE(PCH_PP_CONTROL, pp);
1084                 POSTING_READ(PCH_PP_CONTROL);
1085         }
1086
1087         pp |= POWER_TARGET_ON;
1088         if (!IS_GEN5(dev))
1089                 pp |= PANEL_POWER_RESET;
1090
1091         I915_WRITE(PCH_PP_CONTROL, pp);
1092         POSTING_READ(PCH_PP_CONTROL);
1093
1094         ironlake_wait_panel_on(intel_dp);
1095
1096         if (IS_GEN5(dev)) {
1097                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1098                 I915_WRITE(PCH_PP_CONTROL, pp);
1099                 POSTING_READ(PCH_PP_CONTROL);
1100         }
1101 }
1102
1103 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1104 {
1105         struct drm_device *dev = intel_dp->base.base.dev;
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 pp;
1108
1109         if (!is_edp(intel_dp))
1110                 return;
1111
1112         DRM_DEBUG_KMS("Turn eDP power off\n");
1113
1114         WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1115
1116         pp = ironlake_get_pp_control(dev_priv);
1117         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1118         I915_WRITE(PCH_PP_CONTROL, pp);
1119         POSTING_READ(PCH_PP_CONTROL);
1120
1121         ironlake_wait_panel_off(intel_dp);
1122 }
1123
1124 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1125 {
1126         struct drm_device *dev = intel_dp->base.base.dev;
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         u32 pp;
1129
1130         if (!is_edp(intel_dp))
1131                 return;
1132
1133         DRM_DEBUG_KMS("\n");
1134         /*
1135          * If we enable the backlight right away following a panel power
1136          * on, we may see slight flicker as the panel syncs with the eDP
1137          * link.  So delay a bit to make sure the image is solid before
1138          * allowing it to appear.
1139          */
1140         msleep(intel_dp->backlight_on_delay);
1141         pp = ironlake_get_pp_control(dev_priv);
1142         pp |= EDP_BLC_ENABLE;
1143         I915_WRITE(PCH_PP_CONTROL, pp);
1144         POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1148 {
1149         struct drm_device *dev = intel_dp->base.base.dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151         u32 pp;
1152
1153         if (!is_edp(intel_dp))
1154                 return;
1155
1156         DRM_DEBUG_KMS("\n");
1157         pp = ironlake_get_pp_control(dev_priv);
1158         pp &= ~EDP_BLC_ENABLE;
1159         I915_WRITE(PCH_PP_CONTROL, pp);
1160         POSTING_READ(PCH_PP_CONTROL);
1161         msleep(intel_dp->backlight_off_delay);
1162 }
1163
1164 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1165 {
1166         struct drm_device *dev = encoder->dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         u32 dpa_ctl;
1169
1170         DRM_DEBUG_KMS("\n");
1171         dpa_ctl = I915_READ(DP_A);
1172         dpa_ctl |= DP_PLL_ENABLE;
1173         I915_WRITE(DP_A, dpa_ctl);
1174         POSTING_READ(DP_A);
1175         udelay(200);
1176 }
1177
1178 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1179 {
1180         struct drm_device *dev = encoder->dev;
1181         struct drm_i915_private *dev_priv = dev->dev_private;
1182         u32 dpa_ctl;
1183
1184         dpa_ctl = I915_READ(DP_A);
1185         dpa_ctl &= ~DP_PLL_ENABLE;
1186         I915_WRITE(DP_A, dpa_ctl);
1187         POSTING_READ(DP_A);
1188         udelay(200);
1189 }
1190
1191 /* If the sink supports it, try to set the power state appropriately */
1192 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1193 {
1194         int ret, i;
1195
1196         /* Should have a valid DPCD by this point */
1197         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1198                 return;
1199
1200         if (mode != DRM_MODE_DPMS_ON) {
1201                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1202                                                   DP_SET_POWER_D3);
1203                 if (ret != 1)
1204                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1205         } else {
1206                 /*
1207                  * When turning on, we need to retry for 1ms to give the sink
1208                  * time to wake up.
1209                  */
1210                 for (i = 0; i < 3; i++) {
1211                         ret = intel_dp_aux_native_write_1(intel_dp,
1212                                                           DP_SET_POWER,
1213                                                           DP_SET_POWER_D0);
1214                         if (ret == 1)
1215                                 break;
1216                         msleep(1);
1217                 }
1218         }
1219 }
1220
1221 static void intel_dp_prepare(struct drm_encoder *encoder)
1222 {
1223         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1224
1225         ironlake_edp_backlight_off(intel_dp);
1226         ironlake_edp_panel_off(intel_dp);
1227
1228         /* Wake up the sink first */
1229         ironlake_edp_panel_vdd_on(intel_dp);
1230         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1231         intel_dp_link_down(intel_dp);
1232         ironlake_edp_panel_vdd_off(intel_dp, false);
1233
1234         /* Make sure the panel is off before trying to
1235          * change the mode
1236          */
1237 }
1238
1239 static void intel_dp_commit(struct drm_encoder *encoder)
1240 {
1241         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1242         struct drm_device *dev = encoder->dev;
1243         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1244
1245         ironlake_edp_panel_vdd_on(intel_dp);
1246         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1247         intel_dp_start_link_train(intel_dp);
1248         ironlake_edp_panel_on(intel_dp);
1249         ironlake_edp_panel_vdd_off(intel_dp, true);
1250         intel_dp_complete_link_train(intel_dp);
1251         ironlake_edp_backlight_on(intel_dp);
1252
1253         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1254
1255         if (HAS_PCH_CPT(dev))
1256                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1257 }
1258
1259 static void
1260 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1261 {
1262         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1263         struct drm_device *dev = encoder->dev;
1264         struct drm_i915_private *dev_priv = dev->dev_private;
1265         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1266
1267         if (mode != DRM_MODE_DPMS_ON) {
1268                 ironlake_edp_backlight_off(intel_dp);
1269                 ironlake_edp_panel_off(intel_dp);
1270
1271                 ironlake_edp_panel_vdd_on(intel_dp);
1272                 intel_dp_sink_dpms(intel_dp, mode);
1273                 intel_dp_link_down(intel_dp);
1274                 ironlake_edp_panel_vdd_off(intel_dp, false);
1275
1276                 if (is_cpu_edp(intel_dp))
1277                         ironlake_edp_pll_off(encoder);
1278         } else {
1279                 if (is_cpu_edp(intel_dp))
1280                         ironlake_edp_pll_on(encoder);
1281
1282                 ironlake_edp_panel_vdd_on(intel_dp);
1283                 intel_dp_sink_dpms(intel_dp, mode);
1284                 if (!(dp_reg & DP_PORT_EN)) {
1285                         intel_dp_start_link_train(intel_dp);
1286                         ironlake_edp_panel_on(intel_dp);
1287                         ironlake_edp_panel_vdd_off(intel_dp, true);
1288                         intel_dp_complete_link_train(intel_dp);
1289                 } else
1290                         ironlake_edp_panel_vdd_off(intel_dp, false);
1291                 ironlake_edp_backlight_on(intel_dp);
1292         }
1293         intel_dp->dpms_mode = mode;
1294 }
1295
1296 /*
1297  * Native read with retry for link status and receiver capability reads for
1298  * cases where the sink may still be asleep.
1299  */
1300 static bool
1301 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1302                                uint8_t *recv, int recv_bytes)
1303 {
1304         int ret, i;
1305
1306         /*
1307          * Sinks are *supposed* to come up within 1ms from an off state,
1308          * but we're also supposed to retry 3 times per the spec.
1309          */
1310         for (i = 0; i < 3; i++) {
1311                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1312                                                recv_bytes);
1313                 if (ret == recv_bytes)
1314                         return true;
1315                 msleep(1);
1316         }
1317
1318         return false;
1319 }
1320
1321 /*
1322  * Fetch AUX CH registers 0x202 - 0x207 which contain
1323  * link status information
1324  */
1325 static bool
1326 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1327 {
1328         return intel_dp_aux_native_read_retry(intel_dp,
1329                                               DP_LANE0_1_STATUS,
1330                                               link_status,
1331                                               DP_LINK_STATUS_SIZE);
1332 }
1333
1334 static uint8_t
1335 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336                      int r)
1337 {
1338         return link_status[r - DP_LANE0_1_STATUS];
1339 }
1340
1341 static uint8_t
1342 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1343                                  int lane)
1344 {
1345         int         s = ((lane & 1) ?
1346                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1347                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1348         uint8_t l = adjust_request[lane>>1];
1349
1350         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1351 }
1352
1353 static uint8_t
1354 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1355                                       int lane)
1356 {
1357         int         s = ((lane & 1) ?
1358                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1359                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1360         uint8_t l = adjust_request[lane>>1];
1361
1362         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1363 }
1364
1365
1366 #if 0
1367 static char     *voltage_names[] = {
1368         "0.4V", "0.6V", "0.8V", "1.2V"
1369 };
1370 static char     *pre_emph_names[] = {
1371         "0dB", "3.5dB", "6dB", "9.5dB"
1372 };
1373 static char     *link_train_names[] = {
1374         "pattern 1", "pattern 2", "idle", "off"
1375 };
1376 #endif
1377
1378 /*
1379  * These are source-specific values; current Intel hardware supports
1380  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1381  */
1382 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1383 #define I830_DP_VOLTAGE_MAX_CPT     DP_TRAIN_VOLTAGE_SWING_1200
1384
1385 static uint8_t
1386 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1387 {
1388         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1389         case DP_TRAIN_VOLTAGE_SWING_400:
1390                 return DP_TRAIN_PRE_EMPHASIS_6;
1391         case DP_TRAIN_VOLTAGE_SWING_600:
1392                 return DP_TRAIN_PRE_EMPHASIS_6;
1393         case DP_TRAIN_VOLTAGE_SWING_800:
1394                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1395         case DP_TRAIN_VOLTAGE_SWING_1200:
1396         default:
1397                 return DP_TRAIN_PRE_EMPHASIS_0;
1398         }
1399 }
1400
1401 static void
1402 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1403 {
1404         struct drm_device *dev = intel_dp->base.base.dev;
1405         uint8_t v = 0;
1406         uint8_t p = 0;
1407         int lane;
1408         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1409         int voltage_max;
1410
1411         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1412                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1413                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1414
1415                 if (this_v > v)
1416                         v = this_v;
1417                 if (this_p > p)
1418                         p = this_p;
1419         }
1420
1421         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1422                 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1423         else
1424                 voltage_max = I830_DP_VOLTAGE_MAX;
1425         if (v >= voltage_max)
1426                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1427
1428         if (p >= intel_dp_pre_emphasis_max(v))
1429                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1430
1431         for (lane = 0; lane < 4; lane++)
1432                 intel_dp->train_set[lane] = v | p;
1433 }
1434
1435 static uint32_t
1436 intel_dp_signal_levels(uint8_t train_set)
1437 {
1438         uint32_t        signal_levels = 0;
1439
1440         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1441         case DP_TRAIN_VOLTAGE_SWING_400:
1442         default:
1443                 signal_levels |= DP_VOLTAGE_0_4;
1444                 break;
1445         case DP_TRAIN_VOLTAGE_SWING_600:
1446                 signal_levels |= DP_VOLTAGE_0_6;
1447                 break;
1448         case DP_TRAIN_VOLTAGE_SWING_800:
1449                 signal_levels |= DP_VOLTAGE_0_8;
1450                 break;
1451         case DP_TRAIN_VOLTAGE_SWING_1200:
1452                 signal_levels |= DP_VOLTAGE_1_2;
1453                 break;
1454         }
1455         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1456         case DP_TRAIN_PRE_EMPHASIS_0:
1457         default:
1458                 signal_levels |= DP_PRE_EMPHASIS_0;
1459                 break;
1460         case DP_TRAIN_PRE_EMPHASIS_3_5:
1461                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1462                 break;
1463         case DP_TRAIN_PRE_EMPHASIS_6:
1464                 signal_levels |= DP_PRE_EMPHASIS_6;
1465                 break;
1466         case DP_TRAIN_PRE_EMPHASIS_9_5:
1467                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1468                 break;
1469         }
1470         return signal_levels;
1471 }
1472
1473 /* Gen6's DP voltage swing and pre-emphasis control */
1474 static uint32_t
1475 intel_gen6_edp_signal_levels(uint8_t train_set)
1476 {
1477         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1478                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1479         switch (signal_levels) {
1480         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1481         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1482                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1483         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1484                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1485         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1486         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1487                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1488         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1489         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1490                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1491         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1492         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1493                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1494         default:
1495                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1496                               "0x%x\n", signal_levels);
1497                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1498         }
1499 }
1500
1501 static uint8_t
1502 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1503                       int lane)
1504 {
1505         int s = (lane & 1) * 4;
1506         uint8_t l = link_status[lane>>1];
1507
1508         return (l >> s) & 0xf;
1509 }
1510
1511 /* Check for clock recovery is done on all channels */
1512 static bool
1513 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1514 {
1515         int lane;
1516         uint8_t lane_status;
1517
1518         for (lane = 0; lane < lane_count; lane++) {
1519                 lane_status = intel_get_lane_status(link_status, lane);
1520                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1521                         return false;
1522         }
1523         return true;
1524 }
1525
1526 /* Check to see if channel eq is done on all channels */
1527 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1528                          DP_LANE_CHANNEL_EQ_DONE|\
1529                          DP_LANE_SYMBOL_LOCKED)
1530 static bool
1531 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1532 {
1533         uint8_t lane_align;
1534         uint8_t lane_status;
1535         int lane;
1536
1537         lane_align = intel_dp_link_status(link_status,
1538                                           DP_LANE_ALIGN_STATUS_UPDATED);
1539         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1540                 return false;
1541         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1542                 lane_status = intel_get_lane_status(link_status, lane);
1543                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1544                         return false;
1545         }
1546         return true;
1547 }
1548
1549 static bool
1550 intel_dp_set_link_train(struct intel_dp *intel_dp,
1551                         uint32_t dp_reg_value,
1552                         uint8_t dp_train_pat)
1553 {
1554         struct drm_device *dev = intel_dp->base.base.dev;
1555         struct drm_i915_private *dev_priv = dev->dev_private;
1556         int ret;
1557
1558         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1559         POSTING_READ(intel_dp->output_reg);
1560
1561         intel_dp_aux_native_write_1(intel_dp,
1562                                     DP_TRAINING_PATTERN_SET,
1563                                     dp_train_pat);
1564
1565         ret = intel_dp_aux_native_write(intel_dp,
1566                                         DP_TRAINING_LANE0_SET,
1567                                         intel_dp->train_set,
1568                                         intel_dp->lane_count);
1569         if (ret != intel_dp->lane_count)
1570                 return false;
1571
1572         return true;
1573 }
1574
1575 /* Enable corresponding port and start training pattern 1 */
1576 static void
1577 intel_dp_start_link_train(struct intel_dp *intel_dp)
1578 {
1579         struct drm_device *dev = intel_dp->base.base.dev;
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1582         int i;
1583         uint8_t voltage;
1584         bool clock_recovery = false;
1585         int voltage_tries, loop_tries;
1586         u32 reg;
1587         uint32_t DP = intel_dp->DP;
1588
1589         /*
1590          * On CPT we have to enable the port in training pattern 1, which
1591          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1592          * the port and wait for it to become active.
1593          */
1594         if (!HAS_PCH_CPT(dev)) {
1595                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1596                 POSTING_READ(intel_dp->output_reg);
1597                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1598         }
1599
1600         /* Write the link configuration data */
1601         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1602                                   intel_dp->link_configuration,
1603                                   DP_LINK_CONFIGURATION_SIZE);
1604
1605         DP |= DP_PORT_EN;
1606         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1607                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1608         else
1609                 DP &= ~DP_LINK_TRAIN_MASK;
1610         memset(intel_dp->train_set, 0, 4);
1611         voltage = 0xff;
1612         voltage_tries = 0;
1613         loop_tries = 0;
1614         clock_recovery = false;
1615         for (;;) {
1616                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1617                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1618                 uint32_t    signal_levels;
1619
1620                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1621                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1622                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1623                 } else {
1624                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1625                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1626                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1627                 }
1628
1629                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1630                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1631                 else
1632                         reg = DP | DP_LINK_TRAIN_PAT_1;
1633
1634                 if (!intel_dp_set_link_train(intel_dp, reg,
1635                                              DP_TRAINING_PATTERN_1 |
1636                                              DP_LINK_SCRAMBLING_DISABLE))
1637                         break;
1638                 /* Set training pattern 1 */
1639
1640                 udelay(100);
1641                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1642                         DRM_ERROR("failed to get link status\n");
1643                         break;
1644                 }
1645
1646                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1647                         DRM_DEBUG_KMS("clock recovery OK\n");
1648                         clock_recovery = true;
1649                         break;
1650                 }
1651
1652                 /* Check to see if we've tried the max voltage */
1653                 for (i = 0; i < intel_dp->lane_count; i++)
1654                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1655                                 break;
1656                 if (i == intel_dp->lane_count) {
1657                         ++loop_tries;
1658                         if (loop_tries == 5) {
1659                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1660                                 break;
1661                         }
1662                         memset(intel_dp->train_set, 0, 4);
1663                         voltage_tries = 0;
1664                         continue;
1665                 }
1666
1667                 /* Check to see if we've tried the same voltage 5 times */
1668                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1669                         ++voltage_tries;
1670                         if (voltage_tries == 5) {
1671                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1672                                 break;
1673                         }
1674                 } else
1675                         voltage_tries = 0;
1676                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1677
1678                 /* Compute new intel_dp->train_set as requested by target */
1679                 intel_get_adjust_train(intel_dp, link_status);
1680         }
1681
1682         intel_dp->DP = DP;
1683 }
1684
1685 static void
1686 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1687 {
1688         struct drm_device *dev = intel_dp->base.base.dev;
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         bool channel_eq = false;
1691         int tries, cr_tries;
1692         u32 reg;
1693         uint32_t DP = intel_dp->DP;
1694
1695         /* channel equalization */
1696         tries = 0;
1697         cr_tries = 0;
1698         channel_eq = false;
1699         for (;;) {
1700                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1701                 uint32_t    signal_levels;
1702                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1703
1704                 if (cr_tries > 5) {
1705                         DRM_ERROR("failed to train DP, aborting\n");
1706                         intel_dp_link_down(intel_dp);
1707                         break;
1708                 }
1709
1710                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1711                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1712                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1713                 } else {
1714                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1715                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1716                 }
1717
1718                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1719                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1720                 else
1721                         reg = DP | DP_LINK_TRAIN_PAT_2;
1722
1723                 /* channel eq pattern */
1724                 if (!intel_dp_set_link_train(intel_dp, reg,
1725                                              DP_TRAINING_PATTERN_2 |
1726                                              DP_LINK_SCRAMBLING_DISABLE))
1727                         break;
1728
1729                 udelay(400);
1730                 if (!intel_dp_get_link_status(intel_dp, link_status))
1731                         break;
1732
1733                 /* Make sure clock is still ok */
1734                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1735                         intel_dp_start_link_train(intel_dp);
1736                         cr_tries++;
1737                         continue;
1738                 }
1739
1740                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1741                         channel_eq = true;
1742                         break;
1743                 }
1744
1745                 /* Try 5 times, then try clock recovery if that fails */
1746                 if (tries > 5) {
1747                         intel_dp_link_down(intel_dp);
1748                         intel_dp_start_link_train(intel_dp);
1749                         tries = 0;
1750                         cr_tries++;
1751                         continue;
1752                 }
1753
1754                 /* Compute new intel_dp->train_set as requested by target */
1755                 intel_get_adjust_train(intel_dp, link_status);
1756                 ++tries;
1757         }
1758
1759         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1760                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1761         else
1762                 reg = DP | DP_LINK_TRAIN_OFF;
1763
1764         I915_WRITE(intel_dp->output_reg, reg);
1765         POSTING_READ(intel_dp->output_reg);
1766         intel_dp_aux_native_write_1(intel_dp,
1767                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1768 }
1769
1770 static void
1771 intel_dp_link_down(struct intel_dp *intel_dp)
1772 {
1773         struct drm_device *dev = intel_dp->base.base.dev;
1774         struct drm_i915_private *dev_priv = dev->dev_private;
1775         uint32_t DP = intel_dp->DP;
1776
1777         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1778                 return;
1779
1780         DRM_DEBUG_KMS("\n");
1781
1782         if (is_edp(intel_dp)) {
1783                 DP &= ~DP_PLL_ENABLE;
1784                 I915_WRITE(intel_dp->output_reg, DP);
1785                 POSTING_READ(intel_dp->output_reg);
1786                 udelay(100);
1787         }
1788
1789         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1790                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1791                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1792         } else {
1793                 DP &= ~DP_LINK_TRAIN_MASK;
1794                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1795         }
1796         POSTING_READ(intel_dp->output_reg);
1797
1798         msleep(17);
1799
1800         if (is_edp(intel_dp)) {
1801                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1802                         DP |= DP_LINK_TRAIN_OFF_CPT;
1803                 else
1804                         DP |= DP_LINK_TRAIN_OFF;
1805         }
1806
1807         if (!HAS_PCH_CPT(dev) &&
1808             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1809                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1810
1811                 /* Hardware workaround: leaving our transcoder select
1812                  * set to transcoder B while it's off will prevent the
1813                  * corresponding HDMI output on transcoder A.
1814                  *
1815                  * Combine this with another hardware workaround:
1816                  * transcoder select bit can only be cleared while the
1817                  * port is enabled.
1818                  */
1819                 DP &= ~DP_PIPEB_SELECT;
1820                 I915_WRITE(intel_dp->output_reg, DP);
1821
1822                 /* Changes to enable or select take place the vblank
1823                  * after being written.
1824                  */
1825                 if (crtc == NULL) {
1826                         /* We can arrive here never having been attached
1827                          * to a CRTC, for instance, due to inheriting
1828                          * random state from the BIOS.
1829                          *
1830                          * If the pipe is not running, play safe and
1831                          * wait for the clocks to stabilise before
1832                          * continuing.
1833                          */
1834                         POSTING_READ(intel_dp->output_reg);
1835                         msleep(50);
1836                 } else
1837                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1838         }
1839
1840         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1841         POSTING_READ(intel_dp->output_reg);
1842         msleep(intel_dp->panel_power_down_delay);
1843 }
1844
1845 static bool
1846 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1847 {
1848         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1849                                            sizeof(intel_dp->dpcd)) &&
1850             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1851                 return true;
1852         }
1853
1854         return false;
1855 }
1856
1857 static bool
1858 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1859 {
1860         int ret;
1861
1862         ret = intel_dp_aux_native_read_retry(intel_dp,
1863                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1864                                              sink_irq_vector, 1);
1865         if (!ret)
1866                 return false;
1867
1868         return true;
1869 }
1870
1871 static void
1872 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1873 {
1874         /* NAK by default */
1875         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1876 }
1877
1878 /*
1879  * According to DP spec
1880  * 5.1.2:
1881  *  1. Read DPCD
1882  *  2. Configure link according to Receiver Capabilities
1883  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1884  *  4. Check link status on receipt of hot-plug interrupt
1885  */
1886
1887 static void
1888 intel_dp_check_link_status(struct intel_dp *intel_dp)
1889 {
1890         u8 sink_irq_vector;
1891         u8 link_status[DP_LINK_STATUS_SIZE];
1892
1893         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1894                 return;
1895
1896         if (!intel_dp->base.base.crtc)
1897                 return;
1898
1899         /* Try to read receiver status if the link appears to be up */
1900         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1901                 intel_dp_link_down(intel_dp);
1902                 return;
1903         }
1904
1905         /* Now read the DPCD to see if it's actually running */
1906         if (!intel_dp_get_dpcd(intel_dp)) {
1907                 intel_dp_link_down(intel_dp);
1908                 return;
1909         }
1910
1911         /* Try to read the source of the interrupt */
1912         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1913             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1914                 /* Clear interrupt source */
1915                 intel_dp_aux_native_write_1(intel_dp,
1916                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
1917                                             sink_irq_vector);
1918
1919                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1920                         intel_dp_handle_test_request(intel_dp);
1921                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1922                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1923         }
1924
1925         if (!intel_channel_eq_ok(intel_dp, link_status)) {
1926                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1927                               drm_get_encoder_name(&intel_dp->base.base));
1928                 intel_dp_start_link_train(intel_dp);
1929                 intel_dp_complete_link_train(intel_dp);
1930         }
1931 }
1932
1933 static enum drm_connector_status
1934 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1935 {
1936         if (intel_dp_get_dpcd(intel_dp))
1937                 return connector_status_connected;
1938         return connector_status_disconnected;
1939 }
1940
1941 static enum drm_connector_status
1942 ironlake_dp_detect(struct intel_dp *intel_dp)
1943 {
1944         enum drm_connector_status status;
1945
1946         /* Can't disconnect eDP, but you can close the lid... */
1947         if (is_edp(intel_dp)) {
1948                 status = intel_panel_detect(intel_dp->base.base.dev);
1949                 if (status == connector_status_unknown)
1950                         status = connector_status_connected;
1951                 return status;
1952         }
1953
1954         return intel_dp_detect_dpcd(intel_dp);
1955 }
1956
1957 static enum drm_connector_status
1958 g4x_dp_detect(struct intel_dp *intel_dp)
1959 {
1960         struct drm_device *dev = intel_dp->base.base.dev;
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         uint32_t temp, bit;
1963
1964         switch (intel_dp->output_reg) {
1965         case DP_B:
1966                 bit = DPB_HOTPLUG_INT_STATUS;
1967                 break;
1968         case DP_C:
1969                 bit = DPC_HOTPLUG_INT_STATUS;
1970                 break;
1971         case DP_D:
1972                 bit = DPD_HOTPLUG_INT_STATUS;
1973                 break;
1974         default:
1975                 return connector_status_unknown;
1976         }
1977
1978         temp = I915_READ(PORT_HOTPLUG_STAT);
1979
1980         if ((temp & bit) == 0)
1981                 return connector_status_disconnected;
1982
1983         return intel_dp_detect_dpcd(intel_dp);
1984 }
1985
1986 static struct edid *
1987 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1988 {
1989         struct intel_dp *intel_dp = intel_attached_dp(connector);
1990         struct edid     *edid;
1991
1992         ironlake_edp_panel_vdd_on(intel_dp);
1993         edid = drm_get_edid(connector, adapter);
1994         ironlake_edp_panel_vdd_off(intel_dp, false);
1995         return edid;
1996 }
1997
1998 static int
1999 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2000 {
2001         struct intel_dp *intel_dp = intel_attached_dp(connector);
2002         int     ret;
2003
2004         ironlake_edp_panel_vdd_on(intel_dp);
2005         ret = intel_ddc_get_modes(connector, adapter);
2006         ironlake_edp_panel_vdd_off(intel_dp, false);
2007         return ret;
2008 }
2009
2010
2011 /**
2012  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2013  *
2014  * \return true if DP port is connected.
2015  * \return false if DP port is disconnected.
2016  */
2017 static enum drm_connector_status
2018 intel_dp_detect(struct drm_connector *connector, bool force)
2019 {
2020         struct intel_dp *intel_dp = intel_attached_dp(connector);
2021         struct drm_device *dev = intel_dp->base.base.dev;
2022         enum drm_connector_status status;
2023         struct edid *edid = NULL;
2024
2025         intel_dp->has_audio = false;
2026
2027         if (HAS_PCH_SPLIT(dev))
2028                 status = ironlake_dp_detect(intel_dp);
2029         else
2030                 status = g4x_dp_detect(intel_dp);
2031
2032         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2033                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2034                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2035                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2036
2037         if (status != connector_status_connected)
2038                 return status;
2039
2040         if (intel_dp->force_audio) {
2041                 intel_dp->has_audio = intel_dp->force_audio > 0;
2042         } else {
2043                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2044                 if (edid) {
2045                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2046                         connector->display_info.raw_edid = NULL;
2047                         kfree(edid);
2048                 }
2049         }
2050
2051         return connector_status_connected;
2052 }
2053
2054 static int intel_dp_get_modes(struct drm_connector *connector)
2055 {
2056         struct intel_dp *intel_dp = intel_attached_dp(connector);
2057         struct drm_device *dev = intel_dp->base.base.dev;
2058         struct drm_i915_private *dev_priv = dev->dev_private;
2059         int ret;
2060
2061         /* We should parse the EDID data and find out if it has an audio sink
2062          */
2063
2064         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2065         if (ret) {
2066                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2067                         struct drm_display_mode *newmode;
2068                         list_for_each_entry(newmode, &connector->probed_modes,
2069                                             head) {
2070                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2071                                         intel_dp->panel_fixed_mode =
2072                                                 drm_mode_duplicate(dev, newmode);
2073                                         break;
2074                                 }
2075                         }
2076                 }
2077                 return ret;
2078         }
2079
2080         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2081         if (is_edp(intel_dp)) {
2082                 /* initialize panel mode from VBT if available for eDP */
2083                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2084                         intel_dp->panel_fixed_mode =
2085                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2086                         if (intel_dp->panel_fixed_mode) {
2087                                 intel_dp->panel_fixed_mode->type |=
2088                                         DRM_MODE_TYPE_PREFERRED;
2089                         }
2090                 }
2091                 if (intel_dp->panel_fixed_mode) {
2092                         struct drm_display_mode *mode;
2093                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2094                         drm_mode_probed_add(connector, mode);
2095                         return 1;
2096                 }
2097         }
2098         return 0;
2099 }
2100
2101 static bool
2102 intel_dp_detect_audio(struct drm_connector *connector)
2103 {
2104         struct intel_dp *intel_dp = intel_attached_dp(connector);
2105         struct edid *edid;
2106         bool has_audio = false;
2107
2108         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2109         if (edid) {
2110                 has_audio = drm_detect_monitor_audio(edid);
2111
2112                 connector->display_info.raw_edid = NULL;
2113                 kfree(edid);
2114         }
2115
2116         return has_audio;
2117 }
2118
2119 static int
2120 intel_dp_set_property(struct drm_connector *connector,
2121                       struct drm_property *property,
2122                       uint64_t val)
2123 {
2124         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2125         struct intel_dp *intel_dp = intel_attached_dp(connector);
2126         int ret;
2127
2128         ret = drm_connector_property_set_value(connector, property, val);
2129         if (ret)
2130                 return ret;
2131
2132         if (property == dev_priv->force_audio_property) {
2133                 int i = val;
2134                 bool has_audio;
2135
2136                 if (i == intel_dp->force_audio)
2137                         return 0;
2138
2139                 intel_dp->force_audio = i;
2140
2141                 if (i == 0)
2142                         has_audio = intel_dp_detect_audio(connector);
2143                 else
2144                         has_audio = i > 0;
2145
2146                 if (has_audio == intel_dp->has_audio)
2147                         return 0;
2148
2149                 intel_dp->has_audio = has_audio;
2150                 goto done;
2151         }
2152
2153         if (property == dev_priv->broadcast_rgb_property) {
2154                 if (val == !!intel_dp->color_range)
2155                         return 0;
2156
2157                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2158                 goto done;
2159         }
2160
2161         return -EINVAL;
2162
2163 done:
2164         if (intel_dp->base.base.crtc) {
2165                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2166                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2167                                          crtc->x, crtc->y,
2168                                          crtc->fb);
2169         }
2170
2171         return 0;
2172 }
2173
2174 static void
2175 intel_dp_destroy(struct drm_connector *connector)
2176 {
2177         struct drm_device *dev = connector->dev;
2178
2179         if (intel_dpd_is_edp(dev))
2180                 intel_panel_destroy_backlight(dev);
2181
2182         drm_sysfs_connector_remove(connector);
2183         drm_connector_cleanup(connector);
2184         kfree(connector);
2185 }
2186
2187 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2188 {
2189         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2190
2191         i2c_del_adapter(&intel_dp->adapter);
2192         drm_encoder_cleanup(encoder);
2193         if (is_edp(intel_dp)) {
2194                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2195                 ironlake_panel_vdd_off_sync(intel_dp);
2196         }
2197         kfree(intel_dp);
2198 }
2199
2200 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2201         .dpms = intel_dp_dpms,
2202         .mode_fixup = intel_dp_mode_fixup,
2203         .prepare = intel_dp_prepare,
2204         .mode_set = intel_dp_mode_set,
2205         .commit = intel_dp_commit,
2206 };
2207
2208 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2209         .dpms = drm_helper_connector_dpms,
2210         .detect = intel_dp_detect,
2211         .fill_modes = drm_helper_probe_single_connector_modes,
2212         .set_property = intel_dp_set_property,
2213         .destroy = intel_dp_destroy,
2214 };
2215
2216 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2217         .get_modes = intel_dp_get_modes,
2218         .mode_valid = intel_dp_mode_valid,
2219         .best_encoder = intel_best_encoder,
2220 };
2221
2222 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2223         .destroy = intel_dp_encoder_destroy,
2224 };
2225
2226 static void
2227 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2228 {
2229         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2230
2231         intel_dp_check_link_status(intel_dp);
2232 }
2233
2234 /* Return which DP Port should be selected for Transcoder DP control */
2235 int
2236 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2237 {
2238         struct drm_device *dev = crtc->dev;
2239         struct drm_mode_config *mode_config = &dev->mode_config;
2240         struct drm_encoder *encoder;
2241
2242         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2243                 struct intel_dp *intel_dp;
2244
2245                 if (encoder->crtc != crtc)
2246                         continue;
2247
2248                 intel_dp = enc_to_intel_dp(encoder);
2249                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2250                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2251                         return intel_dp->output_reg;
2252         }
2253
2254         return -1;
2255 }
2256
2257 /* check the VBT to see whether the eDP is on DP-D port */
2258 bool intel_dpd_is_edp(struct drm_device *dev)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct child_device_config *p_child;
2262         int i;
2263
2264         if (!dev_priv->child_dev_num)
2265                 return false;
2266
2267         for (i = 0; i < dev_priv->child_dev_num; i++) {
2268                 p_child = dev_priv->child_dev + i;
2269
2270                 if (p_child->dvo_port == PORT_IDPD &&
2271                     p_child->device_type == DEVICE_TYPE_eDP)
2272                         return true;
2273         }
2274         return false;
2275 }
2276
2277 static void
2278 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2279 {
2280         intel_attach_force_audio_property(connector);
2281         intel_attach_broadcast_rgb_property(connector);
2282 }
2283
2284 void
2285 intel_dp_init(struct drm_device *dev, int output_reg)
2286 {
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct drm_connector *connector;
2289         struct intel_dp *intel_dp;
2290         struct intel_encoder *intel_encoder;
2291         struct intel_connector *intel_connector;
2292         const char *name = NULL;
2293         int type;
2294
2295         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2296         if (!intel_dp)
2297                 return;
2298
2299         intel_dp->output_reg = output_reg;
2300         intel_dp->dpms_mode = -1;
2301
2302         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2303         if (!intel_connector) {
2304                 kfree(intel_dp);
2305                 return;
2306         }
2307         intel_encoder = &intel_dp->base;
2308
2309         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2310                 if (intel_dpd_is_edp(dev))
2311                         intel_dp->is_pch_edp = true;
2312
2313         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2314                 type = DRM_MODE_CONNECTOR_eDP;
2315                 intel_encoder->type = INTEL_OUTPUT_EDP;
2316         } else {
2317                 type = DRM_MODE_CONNECTOR_DisplayPort;
2318                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2319         }
2320
2321         connector = &intel_connector->base;
2322         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2323         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2324
2325         connector->polled = DRM_CONNECTOR_POLL_HPD;
2326
2327         if (output_reg == DP_B || output_reg == PCH_DP_B)
2328                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2329         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2330                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2331         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2332                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2333
2334         if (is_edp(intel_dp)) {
2335                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2336                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2337                                   ironlake_panel_vdd_work);
2338         }
2339
2340         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2341         connector->interlace_allowed = true;
2342         connector->doublescan_allowed = 0;
2343
2344         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2345                          DRM_MODE_ENCODER_TMDS);
2346         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2347
2348         intel_connector_attach_encoder(intel_connector, intel_encoder);
2349         drm_sysfs_connector_add(connector);
2350
2351         /* Set up the DDC bus. */
2352         switch (output_reg) {
2353                 case DP_A:
2354                         name = "DPDDC-A";
2355                         break;
2356                 case DP_B:
2357                 case PCH_DP_B:
2358                         dev_priv->hotplug_supported_mask |=
2359                                 HDMIB_HOTPLUG_INT_STATUS;
2360                         name = "DPDDC-B";
2361                         break;
2362                 case DP_C:
2363                 case PCH_DP_C:
2364                         dev_priv->hotplug_supported_mask |=
2365                                 HDMIC_HOTPLUG_INT_STATUS;
2366                         name = "DPDDC-C";
2367                         break;
2368                 case DP_D:
2369                 case PCH_DP_D:
2370                         dev_priv->hotplug_supported_mask |=
2371                                 HDMID_HOTPLUG_INT_STATUS;
2372                         name = "DPDDC-D";
2373                         break;
2374         }
2375
2376         /* Cache some DPCD data in the eDP case */
2377         if (is_edp(intel_dp)) {
2378                 bool ret;
2379                 struct edp_power_seq    cur, vbt;
2380                 u32 pp_on, pp_off, pp_div;
2381
2382                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2383                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2384                 pp_div = I915_READ(PCH_PP_DIVISOR);
2385
2386                 /* Pull timing values out of registers */
2387                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2388                         PANEL_POWER_UP_DELAY_SHIFT;
2389
2390                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2391                         PANEL_LIGHT_ON_DELAY_SHIFT;
2392
2393                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2394                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2395
2396                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2397                         PANEL_POWER_DOWN_DELAY_SHIFT;
2398
2399                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2400                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2401
2402                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2403                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2404
2405                 vbt = dev_priv->edp.pps;
2406
2407                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2408                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2409
2410 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2411
2412                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2413                 intel_dp->backlight_on_delay = get_delay(t8);
2414                 intel_dp->backlight_off_delay = get_delay(t9);
2415                 intel_dp->panel_power_down_delay = get_delay(t10);
2416                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2417
2418                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2419                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2420                               intel_dp->panel_power_cycle_delay);
2421
2422                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2423                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2424
2425                 ironlake_edp_panel_vdd_on(intel_dp);
2426                 ret = intel_dp_get_dpcd(intel_dp);
2427                 ironlake_edp_panel_vdd_off(intel_dp, false);
2428
2429                 if (ret) {
2430                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2431                                 dev_priv->no_aux_handshake =
2432                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2433                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2434                 } else {
2435                         /* if this fails, presume the device is a ghost */
2436                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2437                         intel_dp_encoder_destroy(&intel_dp->base.base);
2438                         intel_dp_destroy(&intel_connector->base);
2439                         return;
2440                 }
2441         }
2442
2443         intel_dp_i2c_init(intel_dp, intel_connector, name);
2444
2445         intel_encoder->hot_plug = intel_dp_hot_plug;
2446
2447         if (is_edp(intel_dp)) {
2448                 dev_priv->int_edp_connector = connector;
2449                 intel_panel_setup_backlight(dev);
2450         }
2451
2452         intel_dp_add_properties(intel_dp, connector);
2453
2454         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2455          * 0xd.  Failure to do so will result in spurious interrupts being
2456          * generated on the port when a cable is not attached.
2457          */
2458         if (IS_G4X(dev) && !IS_GM45(dev)) {
2459                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2460                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2461         }
2462 }