7a18e83623b29834b4ee2859a0fd8f2ade52d420
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217                 struct intel_context *ctx);
218
219 /**
220  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221  * @dev: DRM device.
222  * @enable_execlists: value of i915.enable_execlists module parameter.
223  *
224  * Only certain platforms support Execlists (the prerequisites being
225  * support for Logical Ring Contexts and Aliasing PPGTT or better).
226  *
227  * Return: 1 if Execlists is supported and has to be enabled.
228  */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231         WARN_ON(i915.enable_ppgtt == -1);
232
233         if (INTEL_INFO(dev)->gen >= 9)
234                 return 1;
235
236         if (enable_execlists == 0)
237                 return 0;
238
239         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240             i915.use_mmio_flip >= 0)
241                 return 1;
242
243         return 0;
244 }
245
246 /**
247  * intel_execlists_ctx_id() - get the Execlists Context ID
248  * @ctx_obj: Logical Ring Context backing object.
249  *
250  * Do not confuse with ctx->id! Unfortunately we have a name overload
251  * here: the old context ID we pass to userspace as a handler so that
252  * they can refer to a context, and the new context ID we pass to the
253  * ELSP so that the GPU can inform us of the context status via
254  * interrupts.
255  *
256  * Return: 20-bits globally unique context ID.
257  */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262         /* LRCA is required to be 4K aligned so the more significant 20 bits
263          * are globally unique */
264         return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268                                          struct drm_i915_gem_object *ctx_obj)
269 {
270         struct drm_device *dev = ring->dev;
271         uint64_t desc;
272         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276         desc = GEN8_CTX_VALID;
277         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278         if (IS_GEN8(ctx_obj->base.dev))
279                 desc |= GEN8_CTX_L3LLC_COHERENT;
280         desc |= GEN8_CTX_PRIVILEGE;
281         desc |= lrca;
282         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         if (IS_GEN9(dev) &&
290             INTEL_REVID(dev) <= SKL_REVID_B0 &&
291             (ring->id == BCS || ring->id == VCS ||
292             ring->id == VECS || ring->id == VCS2))
293                 desc |= GEN8_CTX_FORCE_RESTORE;
294
295         return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299                                  struct drm_i915_gem_object *ctx_obj0,
300                                  struct drm_i915_gem_object *ctx_obj1)
301 {
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t temp = 0;
305         uint32_t desc[4];
306
307         /* XXX: You must always write both descriptors in the order below. */
308         if (ctx_obj1)
309                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310         else
311                 temp = 0;
312         desc[1] = (u32)(temp >> 32);
313         desc[0] = (u32)temp;
314
315         temp = execlists_ctx_descriptor(ring, ctx_obj0);
316         desc[3] = (u32)(temp >> 32);
317         desc[2] = (u32)temp;
318
319         spin_lock(&dev_priv->uncore.lock);
320         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325         /* The context is automatically loaded after the following */
326         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328         /* ELSP is a wo register, so use another nearby reg for posting instead */
329         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331         spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335                                     struct drm_i915_gem_object *ring_obj,
336                                     struct i915_hw_ppgtt *ppgtt,
337                                     u32 tail)
338 {
339         struct page *page;
340         uint32_t *reg_state;
341
342         page = i915_gem_object_get_page(ctx_obj, 1);
343         reg_state = kmap_atomic(page);
344
345         reg_state[CTX_RING_TAIL+1] = tail;
346         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348         /* True PPGTT with dynamic page allocation: update PDP registers and
349          * point the unallocated PDPs to the scratch page
350          */
351         if (ppgtt) {
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356         }
357
358         kunmap_atomic(reg_state);
359
360         return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364                                       struct intel_context *to0, u32 tail0,
365                                       struct intel_context *to1, u32 tail1)
366 {
367         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369         struct drm_i915_gem_object *ctx_obj1 = NULL;
370         struct intel_ringbuffer *ringbuf1 = NULL;
371
372         BUG_ON(!ctx_obj0);
373         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378         if (to1) {
379                 ringbuf1 = to1->engine[ring->id].ringbuf;
380                 ctx_obj1 = to1->engine[ring->id].state;
381                 BUG_ON(!ctx_obj1);
382                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386         }
387
388         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396         assert_spin_locked(&ring->execlist_lock);
397
398         /*
399          * If irqs are not active generate a warning as batches that finish
400          * without the irqs may get lost and a GPU Hang may occur.
401          */
402         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404         if (list_empty(&ring->execlist_queue))
405                 return;
406
407         /* Try to read in pairs */
408         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409                                  execlist_link) {
410                 if (!req0) {
411                         req0 = cursor;
412                 } else if (req0->ctx == cursor->ctx) {
413                         /* Same ctx: ignore first request, as second request
414                          * will update tail past first request's workload */
415                         cursor->elsp_submitted = req0->elsp_submitted;
416                         list_del(&req0->execlist_link);
417                         list_add_tail(&req0->execlist_link,
418                                 &ring->execlist_retired_req_list);
419                         req0 = cursor;
420                 } else {
421                         req1 = cursor;
422                         break;
423                 }
424         }
425
426         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427                 /*
428                  * WaIdleLiteRestore: make sure we never cause a lite
429                  * restore with HEAD==TAIL
430                  */
431                 if (req0->elsp_submitted) {
432                         /*
433                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434                          * as we resubmit the request. See gen8_emit_request()
435                          * for where we prepare the padding after the end of the
436                          * request.
437                          */
438                         struct intel_ringbuffer *ringbuf;
439
440                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
441                         req0->tail += 8;
442                         req0->tail &= ringbuf->size - 1;
443                 }
444         }
445
446         WARN_ON(req1 && req1->elsp_submitted);
447
448         execlists_submit_contexts(ring, req0->ctx, req0->tail,
449                                   req1 ? req1->ctx : NULL,
450                                   req1 ? req1->tail : 0);
451
452         req0->elsp_submitted++;
453         if (req1)
454                 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458                                            u32 request_id)
459 {
460         struct drm_i915_gem_request *head_req;
461
462         assert_spin_locked(&ring->execlist_lock);
463
464         head_req = list_first_entry_or_null(&ring->execlist_queue,
465                                             struct drm_i915_gem_request,
466                                             execlist_link);
467
468         if (head_req != NULL) {
469                 struct drm_i915_gem_object *ctx_obj =
470                                 head_req->ctx->engine[ring->id].state;
471                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472                         WARN(head_req->elsp_submitted == 0,
473                              "Never submitted head request\n");
474
475                         if (--head_req->elsp_submitted <= 0) {
476                                 list_del(&head_req->execlist_link);
477                                 list_add_tail(&head_req->execlist_link,
478                                         &ring->execlist_retired_req_list);
479                                 return true;
480                         }
481                 }
482         }
483
484         return false;
485 }
486
487 /**
488  * intel_lrc_irq_handler() - handle Context Switch interrupts
489  * @ring: Engine Command Streamer to handle.
490  *
491  * Check the unread Context Status Buffers and manage the submission of new
492  * contexts to the ELSP accordingly.
493  */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496         struct drm_i915_private *dev_priv = ring->dev->dev_private;
497         u32 status_pointer;
498         u8 read_pointer;
499         u8 write_pointer;
500         u32 status;
501         u32 status_id;
502         u32 submit_contexts = 0;
503
504         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506         read_pointer = ring->next_context_status_buffer;
507         write_pointer = status_pointer & 0x07;
508         if (read_pointer > write_pointer)
509                 write_pointer += 6;
510
511         spin_lock(&ring->execlist_lock);
512
513         while (read_pointer < write_pointer) {
514                 read_pointer++;
515                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516                                 (read_pointer % 6) * 8);
517                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518                                 (read_pointer % 6) * 8 + 4);
519
520                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522                                 if (execlists_check_remove_request(ring, status_id))
523                                         WARN(1, "Lite Restored request removed from queue\n");
524                         } else
525                                 WARN(1, "Preemption without Lite Restore\n");
526                 }
527
528                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530                         if (execlists_check_remove_request(ring, status_id))
531                                 submit_contexts++;
532                 }
533         }
534
535         if (submit_contexts != 0)
536                 execlists_context_unqueue(ring);
537
538         spin_unlock(&ring->execlist_lock);
539
540         WARN(submit_contexts > 2, "More than two context complete events?\n");
541         ring->next_context_status_buffer = write_pointer % 6;
542
543         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548                                    struct intel_context *to,
549                                    u32 tail,
550                                    struct drm_i915_gem_request *request)
551 {
552         struct drm_i915_gem_request *cursor;
553         int num_elements = 0;
554
555         if (to != ring->default_context)
556                 intel_lr_context_pin(ring, to);
557
558         if (!request) {
559                 /*
560                  * If there isn't a request associated with this submission,
561                  * create one as a temporary holder.
562                  */
563                 request = kzalloc(sizeof(*request), GFP_KERNEL);
564                 if (request == NULL)
565                         return -ENOMEM;
566                 request->ring = ring;
567                 request->ctx = to;
568                 kref_init(&request->ref);
569                 i915_gem_context_reference(request->ctx);
570         } else {
571                 i915_gem_request_reference(request);
572                 WARN_ON(to != request->ctx);
573         }
574         request->tail = tail;
575
576         spin_lock_irq(&ring->execlist_lock);
577
578         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579                 if (++num_elements > 2)
580                         break;
581
582         if (num_elements > 2) {
583                 struct drm_i915_gem_request *tail_req;
584
585                 tail_req = list_last_entry(&ring->execlist_queue,
586                                            struct drm_i915_gem_request,
587                                            execlist_link);
588
589                 if (to == tail_req->ctx) {
590                         WARN(tail_req->elsp_submitted != 0,
591                                 "More than 2 already-submitted reqs queued\n");
592                         list_del(&tail_req->execlist_link);
593                         list_add_tail(&tail_req->execlist_link,
594                                 &ring->execlist_retired_req_list);
595                 }
596         }
597
598         list_add_tail(&request->execlist_link, &ring->execlist_queue);
599         if (num_elements == 0)
600                 execlists_context_unqueue(ring);
601
602         spin_unlock_irq(&ring->execlist_lock);
603
604         return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
608 {
609         struct intel_engine_cs *ring = req->ring;
610         uint32_t flush_domains;
611         int ret;
612
613         flush_domains = 0;
614         if (ring->gpu_caches_dirty)
615                 flush_domains = I915_GEM_GPU_DOMAINS;
616
617         ret = ring->emit_flush(req->ringbuf, req->ctx,
618                                I915_GEM_GPU_DOMAINS, flush_domains);
619         if (ret)
620                 return ret;
621
622         ring->gpu_caches_dirty = false;
623         return 0;
624 }
625
626 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
627                                  struct list_head *vmas)
628 {
629         const unsigned other_rings = ~intel_ring_flag(req->ring);
630         struct i915_vma *vma;
631         uint32_t flush_domains = 0;
632         bool flush_chipset = false;
633         int ret;
634
635         list_for_each_entry(vma, vmas, exec_list) {
636                 struct drm_i915_gem_object *obj = vma->obj;
637
638                 if (obj->active & other_rings) {
639                         ret = i915_gem_object_sync(obj, req->ring, &req);
640                         if (ret)
641                                 return ret;
642                 }
643
644                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
645                         flush_chipset |= i915_gem_clflush_object(obj, false);
646
647                 flush_domains |= obj->base.write_domain;
648         }
649
650         if (flush_domains & I915_GEM_DOMAIN_GTT)
651                 wmb();
652
653         /* Unconditionally invalidate gpu caches and ensure that we do flush
654          * any residual writes from the previous batch.
655          */
656         return logical_ring_invalidate_all_caches(req);
657 }
658
659 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
660 {
661         int ret;
662
663         if (request->ctx != request->ring->default_context) {
664                 ret = intel_lr_context_pin(request->ring, request->ctx);
665                 if (ret)
666                         return ret;
667         }
668
669         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
670
671         return 0;
672 }
673
674 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
675                                        struct intel_context *ctx,
676                                        int bytes)
677 {
678         struct intel_engine_cs *ring = ringbuf->ring;
679         struct drm_i915_gem_request *request;
680         unsigned space;
681         int ret;
682
683         /* The whole point of reserving space is to not wait! */
684         WARN_ON(ringbuf->reserved_in_use);
685
686         if (intel_ring_space(ringbuf) >= bytes)
687                 return 0;
688
689         list_for_each_entry(request, &ring->request_list, list) {
690                 /*
691                  * The request queue is per-engine, so can contain requests
692                  * from multiple ringbuffers. Here, we must ignore any that
693                  * aren't from the ringbuffer we're considering.
694                  */
695                 if (request->ringbuf != ringbuf)
696                         continue;
697
698                 /* Would completion of this request free enough space? */
699                 space = __intel_ring_space(request->postfix, ringbuf->tail,
700                                            ringbuf->size);
701                 if (space >= bytes)
702                         break;
703         }
704
705         if (WARN_ON(&request->list == &ring->request_list))
706                 return -ENOSPC;
707
708         ret = i915_wait_request(request);
709         if (ret)
710                 return ret;
711
712         ringbuf->space = space;
713         return 0;
714 }
715
716 /*
717  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
718  * @ringbuf: Logical Ringbuffer to advance.
719  *
720  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
721  * really happens during submission is that the context and current tail will be placed
722  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
723  * point, the tail *inside* the context is updated and the ELSP written to.
724  */
725 static void
726 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
727                                       struct intel_context *ctx,
728                                       struct drm_i915_gem_request *request)
729 {
730         struct intel_engine_cs *ring = ringbuf->ring;
731
732         intel_logical_ring_advance(ringbuf);
733
734         if (intel_ring_stopped(ring))
735                 return;
736
737         execlists_context_queue(ring, ctx, ringbuf->tail, request);
738 }
739
740 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
741                                     struct intel_context *ctx)
742 {
743         uint32_t __iomem *virt;
744         int rem = ringbuf->size - ringbuf->tail;
745
746         /* Can't wrap if space has already been reserved! */
747         WARN_ON(ringbuf->reserved_in_use);
748
749         if (ringbuf->space < rem) {
750                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
751
752                 if (ret)
753                         return ret;
754         }
755
756         virt = ringbuf->virtual_start + ringbuf->tail;
757         rem /= 4;
758         while (rem--)
759                 iowrite32(MI_NOOP, virt++);
760
761         ringbuf->tail = 0;
762         intel_ring_update_space(ringbuf);
763
764         return 0;
765 }
766
767 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
768                                 struct intel_context *ctx, int bytes)
769 {
770         int ret;
771
772         /*
773          * Add on the reserved size to the request to make sure that after
774          * the intended commands have been emitted, there is guaranteed to
775          * still be enough free space to send them to the hardware.
776          */
777         if (!ringbuf->reserved_in_use)
778                 bytes += ringbuf->reserved_size;
779
780         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
781                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
782                 if (unlikely(ret))
783                         return ret;
784
785                 if(ringbuf->reserved_size) {
786                         uint32_t size = ringbuf->reserved_size;
787
788                         intel_ring_reserved_space_cancel(ringbuf);
789                         intel_ring_reserved_space_reserve(ringbuf, size);
790                 }
791         }
792
793         if (unlikely(ringbuf->space < bytes)) {
794                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
795                 if (unlikely(ret))
796                         return ret;
797         }
798
799         return 0;
800 }
801
802 /**
803  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
804  *
805  * @ringbuf: Logical ringbuffer.
806  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
807  *
808  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
809  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
810  * and also preallocates a request (every workload submission is still mediated through
811  * requests, same as it did with legacy ringbuffer submission).
812  *
813  * Return: non-zero if the ringbuffer is not ready to be written to.
814  */
815 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
816                                     struct intel_context *ctx, int num_dwords)
817 {
818         struct drm_i915_gem_request *req;
819         struct intel_engine_cs *ring = ringbuf->ring;
820         struct drm_device *dev = ring->dev;
821         struct drm_i915_private *dev_priv = dev->dev_private;
822         int ret;
823
824         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
825                                    dev_priv->mm.interruptible);
826         if (ret)
827                 return ret;
828
829         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
830         if (ret)
831                 return ret;
832
833         /* Preallocate the olr before touching the ring */
834         ret = i915_gem_request_alloc(ring, ctx, &req);
835         if (ret)
836                 return ret;
837
838         ringbuf->space -= num_dwords * sizeof(uint32_t);
839         return 0;
840 }
841
842 /**
843  * execlists_submission() - submit a batchbuffer for execution, Execlists style
844  * @dev: DRM device.
845  * @file: DRM file.
846  * @ring: Engine Command Streamer to submit to.
847  * @ctx: Context to employ for this submission.
848  * @args: execbuffer call arguments.
849  * @vmas: list of vmas.
850  * @batch_obj: the batchbuffer to submit.
851  * @exec_start: batchbuffer start virtual address pointer.
852  * @dispatch_flags: translated execbuffer call flags.
853  *
854  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
855  * away the submission details of the execbuffer ioctl call.
856  *
857  * Return: non-zero if the submission fails.
858  */
859 int intel_execlists_submission(struct i915_execbuffer_params *params,
860                                struct drm_i915_gem_execbuffer2 *args,
861                                struct list_head *vmas)
862 {
863         struct drm_device       *dev = params->dev;
864         struct intel_engine_cs  *ring = params->ring;
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
867         u64 exec_start;
868         int instp_mode;
869         u32 instp_mask;
870         int ret;
871
872         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
873         instp_mask = I915_EXEC_CONSTANTS_MASK;
874         switch (instp_mode) {
875         case I915_EXEC_CONSTANTS_REL_GENERAL:
876         case I915_EXEC_CONSTANTS_ABSOLUTE:
877         case I915_EXEC_CONSTANTS_REL_SURFACE:
878                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
879                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
880                         return -EINVAL;
881                 }
882
883                 if (instp_mode != dev_priv->relative_constants_mode) {
884                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
885                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
886                                 return -EINVAL;
887                         }
888
889                         /* The HW changed the meaning on this bit on gen6 */
890                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
891                 }
892                 break;
893         default:
894                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
895                 return -EINVAL;
896         }
897
898         if (args->num_cliprects != 0) {
899                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
900                 return -EINVAL;
901         } else {
902                 if (args->DR4 == 0xffffffff) {
903                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
904                         args->DR4 = 0;
905                 }
906
907                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
908                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
909                         return -EINVAL;
910                 }
911         }
912
913         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
914                 DRM_DEBUG("sol reset is gen7 only\n");
915                 return -EINVAL;
916         }
917
918         ret = execlists_move_to_gpu(params->request, vmas);
919         if (ret)
920                 return ret;
921
922         if (ring == &dev_priv->ring[RCS] &&
923             instp_mode != dev_priv->relative_constants_mode) {
924                 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
925                 if (ret)
926                         return ret;
927
928                 intel_logical_ring_emit(ringbuf, MI_NOOP);
929                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
930                 intel_logical_ring_emit(ringbuf, INSTPM);
931                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
932                 intel_logical_ring_advance(ringbuf);
933
934                 dev_priv->relative_constants_mode = instp_mode;
935         }
936
937         exec_start = params->batch_obj_vm_offset +
938                      args->batch_start_offset;
939
940         ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags);
941         if (ret)
942                 return ret;
943
944         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
945
946         i915_gem_execbuffer_move_to_active(vmas, params->request);
947         i915_gem_execbuffer_retire_commands(params);
948
949         return 0;
950 }
951
952 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
953 {
954         struct drm_i915_gem_request *req, *tmp;
955         struct list_head retired_list;
956
957         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958         if (list_empty(&ring->execlist_retired_req_list))
959                 return;
960
961         INIT_LIST_HEAD(&retired_list);
962         spin_lock_irq(&ring->execlist_lock);
963         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
964         spin_unlock_irq(&ring->execlist_lock);
965
966         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
967                 struct intel_context *ctx = req->ctx;
968                 struct drm_i915_gem_object *ctx_obj =
969                                 ctx->engine[ring->id].state;
970
971                 if (ctx_obj && (ctx != ring->default_context))
972                         intel_lr_context_unpin(ring, ctx);
973                 list_del(&req->execlist_link);
974                 i915_gem_request_unreference(req);
975         }
976 }
977
978 void intel_logical_ring_stop(struct intel_engine_cs *ring)
979 {
980         struct drm_i915_private *dev_priv = ring->dev->dev_private;
981         int ret;
982
983         if (!intel_ring_initialized(ring))
984                 return;
985
986         ret = intel_ring_idle(ring);
987         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
988                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
989                           ring->name, ret);
990
991         /* TODO: Is this correct with Execlists enabled? */
992         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
993         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
994                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
995                 return;
996         }
997         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
998 }
999
1000 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1001 {
1002         struct intel_engine_cs *ring = req->ring;
1003         int ret;
1004
1005         if (!ring->gpu_caches_dirty)
1006                 return 0;
1007
1008         ret = ring->emit_flush(req->ringbuf, req->ctx, 0, I915_GEM_GPU_DOMAINS);
1009         if (ret)
1010                 return ret;
1011
1012         ring->gpu_caches_dirty = false;
1013         return 0;
1014 }
1015
1016 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1017                 struct intel_context *ctx)
1018 {
1019         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1020         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1021         int ret = 0;
1022
1023         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1024         if (ctx->engine[ring->id].pin_count++ == 0) {
1025                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1026                                 GEN8_LR_CONTEXT_ALIGN, 0);
1027                 if (ret)
1028                         goto reset_pin_count;
1029
1030                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1031                 if (ret)
1032                         goto unpin_ctx_obj;
1033         }
1034
1035         return ret;
1036
1037 unpin_ctx_obj:
1038         i915_gem_object_ggtt_unpin(ctx_obj);
1039 reset_pin_count:
1040         ctx->engine[ring->id].pin_count = 0;
1041
1042         return ret;
1043 }
1044
1045 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1046                 struct intel_context *ctx)
1047 {
1048         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1049         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1050
1051         if (ctx_obj) {
1052                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1053                 if (--ctx->engine[ring->id].pin_count == 0) {
1054                         intel_unpin_ringbuffer_obj(ringbuf);
1055                         i915_gem_object_ggtt_unpin(ctx_obj);
1056                 }
1057         }
1058 }
1059
1060 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1061 {
1062         int ret, i;
1063         struct intel_engine_cs *ring = req->ring;
1064         struct intel_ringbuffer *ringbuf = req->ringbuf;
1065         struct drm_device *dev = ring->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         struct i915_workarounds *w = &dev_priv->workarounds;
1068
1069         if (WARN_ON_ONCE(w->count == 0))
1070                 return 0;
1071
1072         ring->gpu_caches_dirty = true;
1073         ret = logical_ring_flush_all_caches(req);
1074         if (ret)
1075                 return ret;
1076
1077         ret = intel_logical_ring_begin(ringbuf, req->ctx, w->count * 2 + 2);
1078         if (ret)
1079                 return ret;
1080
1081         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1082         for (i = 0; i < w->count; i++) {
1083                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1084                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1085         }
1086         intel_logical_ring_emit(ringbuf, MI_NOOP);
1087
1088         intel_logical_ring_advance(ringbuf);
1089
1090         ring->gpu_caches_dirty = true;
1091         ret = logical_ring_flush_all_caches(req);
1092         if (ret)
1093                 return ret;
1094
1095         return 0;
1096 }
1097
1098 #define wa_ctx_emit(batch, cmd)                                         \
1099         do {                                                            \
1100                 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1101                         return -ENOSPC;                                 \
1102                 }                                                       \
1103                 batch[index++] = (cmd);                                 \
1104         } while (0)
1105
1106 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1107                                     uint32_t offset,
1108                                     uint32_t start_alignment)
1109 {
1110         return wa_ctx->offset = ALIGN(offset, start_alignment);
1111 }
1112
1113 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1114                              uint32_t offset,
1115                              uint32_t size_alignment)
1116 {
1117         wa_ctx->size = offset - wa_ctx->offset;
1118
1119         WARN(wa_ctx->size % size_alignment,
1120              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1121              wa_ctx->size, size_alignment);
1122         return 0;
1123 }
1124
1125 /**
1126  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1127  *
1128  * @ring: only applicable for RCS
1129  * @wa_ctx: structure representing wa_ctx
1130  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1131  *    with the offset value received as input.
1132  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1133  * @batch: page in which WA are loaded
1134  * @offset: This field specifies the start of the batch, it should be
1135  *  cache-aligned otherwise it is adjusted accordingly.
1136  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1137  *  initialized at the beginning and shared across all contexts but this field
1138  *  helps us to have multiple batches at different offsets and select them based
1139  *  on a criteria. At the moment this batch always start at the beginning of the page
1140  *  and at this point we don't have multiple wa_ctx batch buffers.
1141  *
1142  *  The number of WA applied are not known at the beginning; we use this field
1143  *  to return the no of DWORDS written.
1144
1145  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1146  *  so it adds NOOPs as padding to make it cacheline aligned.
1147  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1148  *  makes a complete batch buffer.
1149  *
1150  * Return: non-zero if we exceed the PAGE_SIZE limit.
1151  */
1152
1153 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1154                                     struct i915_wa_ctx_bb *wa_ctx,
1155                                     uint32_t *const batch,
1156                                     uint32_t *offset)
1157 {
1158         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1159
1160         /* WaDisableCtxRestoreArbitration:bdw,chv */
1161         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1162
1163         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1164         if (IS_BROADWELL(ring->dev)) {
1165                 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1166                 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1167                                          GEN8_LQSC_FLUSH_COHERENT_LINES);
1168
1169                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1170                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1171                 wa_ctx_emit(batch, l3sqc4_flush);
1172
1173                 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1174                 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1175                                     PIPE_CONTROL_DC_FLUSH_ENABLE));
1176                 wa_ctx_emit(batch, 0);
1177                 wa_ctx_emit(batch, 0);
1178                 wa_ctx_emit(batch, 0);
1179                 wa_ctx_emit(batch, 0);
1180
1181                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1182                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1183                 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1184         }
1185
1186         /* Pad to end of cacheline */
1187         while (index % CACHELINE_DWORDS)
1188                 wa_ctx_emit(batch, MI_NOOP);
1189
1190         /*
1191          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1192          * execution depends on the length specified in terms of cache lines
1193          * in the register CTX_RCS_INDIRECT_CTX
1194          */
1195
1196         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1197 }
1198
1199 /**
1200  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1201  *
1202  * @ring: only applicable for RCS
1203  * @wa_ctx: structure representing wa_ctx
1204  *  offset: specifies start of the batch, should be cache-aligned.
1205  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1206  * @offset: This field specifies the start of this batch.
1207  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1208  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1209  *
1210  *   The number of DWORDS written are returned using this field.
1211  *
1212  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1213  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1214  */
1215 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1216                                struct i915_wa_ctx_bb *wa_ctx,
1217                                uint32_t *const batch,
1218                                uint32_t *offset)
1219 {
1220         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1221
1222         /* WaDisableCtxRestoreArbitration:bdw,chv */
1223         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1224
1225         wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1226
1227         return wa_ctx_end(wa_ctx, *offset = index, 1);
1228 }
1229
1230 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1231 {
1232         int ret;
1233
1234         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1235         if (!ring->wa_ctx.obj) {
1236                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1237                 return -ENOMEM;
1238         }
1239
1240         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1241         if (ret) {
1242                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1243                                  ret);
1244                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1245                 return ret;
1246         }
1247
1248         return 0;
1249 }
1250
1251 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1252 {
1253         if (ring->wa_ctx.obj) {
1254                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1255                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1256                 ring->wa_ctx.obj = NULL;
1257         }
1258 }
1259
1260 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1261 {
1262         int ret;
1263         uint32_t *batch;
1264         uint32_t offset;
1265         struct page *page;
1266         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1267
1268         WARN_ON(ring->id != RCS);
1269
1270         /* some WA perform writes to scratch page, ensure it is valid */
1271         if (ring->scratch.obj == NULL) {
1272                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1273                 return -EINVAL;
1274         }
1275
1276         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1277         if (ret) {
1278                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1279                 return ret;
1280         }
1281
1282         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1283         batch = kmap_atomic(page);
1284         offset = 0;
1285
1286         if (INTEL_INFO(ring->dev)->gen == 8) {
1287                 ret = gen8_init_indirectctx_bb(ring,
1288                                                &wa_ctx->indirect_ctx,
1289                                                batch,
1290                                                &offset);
1291                 if (ret)
1292                         goto out;
1293
1294                 ret = gen8_init_perctx_bb(ring,
1295                                           &wa_ctx->per_ctx,
1296                                           batch,
1297                                           &offset);
1298                 if (ret)
1299                         goto out;
1300         } else {
1301                 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1302                      "WA batch buffer is not initialized for Gen%d\n",
1303                      INTEL_INFO(ring->dev)->gen);
1304                 lrc_destroy_wa_ctx_obj(ring);
1305         }
1306
1307 out:
1308         kunmap_atomic(batch);
1309         if (ret)
1310                 lrc_destroy_wa_ctx_obj(ring);
1311
1312         return ret;
1313 }
1314
1315 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1316 {
1317         struct drm_device *dev = ring->dev;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319
1320         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1321         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1322
1323         I915_WRITE(RING_MODE_GEN7(ring),
1324                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1325                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1326         POSTING_READ(RING_MODE_GEN7(ring));
1327         ring->next_context_status_buffer = 0;
1328         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1329
1330         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1331
1332         return 0;
1333 }
1334
1335 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1336 {
1337         struct drm_device *dev = ring->dev;
1338         struct drm_i915_private *dev_priv = dev->dev_private;
1339         int ret;
1340
1341         ret = gen8_init_common_ring(ring);
1342         if (ret)
1343                 return ret;
1344
1345         /* We need to disable the AsyncFlip performance optimisations in order
1346          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1347          * programmed to '1' on all products.
1348          *
1349          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1350          */
1351         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1352
1353         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1354
1355         return init_workarounds_ring(ring);
1356 }
1357
1358 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1359 {
1360         int ret;
1361
1362         ret = gen8_init_common_ring(ring);
1363         if (ret)
1364                 return ret;
1365
1366         return init_workarounds_ring(ring);
1367 }
1368
1369 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1370                               struct intel_context *ctx,
1371                               u64 offset, unsigned dispatch_flags)
1372 {
1373         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1374         int ret;
1375
1376         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1377         if (ret)
1378                 return ret;
1379
1380         /* FIXME(BDW): Address space and security selectors. */
1381         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1382         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1383         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1384         intel_logical_ring_emit(ringbuf, MI_NOOP);
1385         intel_logical_ring_advance(ringbuf);
1386
1387         return 0;
1388 }
1389
1390 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1391 {
1392         struct drm_device *dev = ring->dev;
1393         struct drm_i915_private *dev_priv = dev->dev_private;
1394         unsigned long flags;
1395
1396         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1397                 return false;
1398
1399         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1400         if (ring->irq_refcount++ == 0) {
1401                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1402                 POSTING_READ(RING_IMR(ring->mmio_base));
1403         }
1404         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1405
1406         return true;
1407 }
1408
1409 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1410 {
1411         struct drm_device *dev = ring->dev;
1412         struct drm_i915_private *dev_priv = dev->dev_private;
1413         unsigned long flags;
1414
1415         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1416         if (--ring->irq_refcount == 0) {
1417                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1418                 POSTING_READ(RING_IMR(ring->mmio_base));
1419         }
1420         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1421 }
1422
1423 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1424                            struct intel_context *ctx,
1425                            u32 invalidate_domains,
1426                            u32 unused)
1427 {
1428         struct intel_engine_cs *ring = ringbuf->ring;
1429         struct drm_device *dev = ring->dev;
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         uint32_t cmd;
1432         int ret;
1433
1434         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1435         if (ret)
1436                 return ret;
1437
1438         cmd = MI_FLUSH_DW + 1;
1439
1440         /* We always require a command barrier so that subsequent
1441          * commands, such as breadcrumb interrupts, are strictly ordered
1442          * wrt the contents of the write cache being flushed to memory
1443          * (and thus being coherent from the CPU).
1444          */
1445         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1446
1447         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1448                 cmd |= MI_INVALIDATE_TLB;
1449                 if (ring == &dev_priv->ring[VCS])
1450                         cmd |= MI_INVALIDATE_BSD;
1451         }
1452
1453         intel_logical_ring_emit(ringbuf, cmd);
1454         intel_logical_ring_emit(ringbuf,
1455                                 I915_GEM_HWS_SCRATCH_ADDR |
1456                                 MI_FLUSH_DW_USE_GTT);
1457         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1458         intel_logical_ring_emit(ringbuf, 0); /* value */
1459         intel_logical_ring_advance(ringbuf);
1460
1461         return 0;
1462 }
1463
1464 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1465                                   struct intel_context *ctx,
1466                                   u32 invalidate_domains,
1467                                   u32 flush_domains)
1468 {
1469         struct intel_engine_cs *ring = ringbuf->ring;
1470         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1471         bool vf_flush_wa;
1472         u32 flags = 0;
1473         int ret;
1474
1475         flags |= PIPE_CONTROL_CS_STALL;
1476
1477         if (flush_domains) {
1478                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1479                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1480         }
1481
1482         if (invalidate_domains) {
1483                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1484                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1485                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1486                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1487                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1488                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1489                 flags |= PIPE_CONTROL_QW_WRITE;
1490                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1491         }
1492
1493         /*
1494          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1495          * control.
1496          */
1497         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1498                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1499
1500         ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1501         if (ret)
1502                 return ret;
1503
1504         if (vf_flush_wa) {
1505                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1506                 intel_logical_ring_emit(ringbuf, 0);
1507                 intel_logical_ring_emit(ringbuf, 0);
1508                 intel_logical_ring_emit(ringbuf, 0);
1509                 intel_logical_ring_emit(ringbuf, 0);
1510                 intel_logical_ring_emit(ringbuf, 0);
1511         }
1512
1513         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1514         intel_logical_ring_emit(ringbuf, flags);
1515         intel_logical_ring_emit(ringbuf, scratch_addr);
1516         intel_logical_ring_emit(ringbuf, 0);
1517         intel_logical_ring_emit(ringbuf, 0);
1518         intel_logical_ring_emit(ringbuf, 0);
1519         intel_logical_ring_advance(ringbuf);
1520
1521         return 0;
1522 }
1523
1524 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1525 {
1526         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1527 }
1528
1529 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1530 {
1531         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1532 }
1533
1534 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1535                              struct drm_i915_gem_request *request)
1536 {
1537         struct intel_engine_cs *ring = ringbuf->ring;
1538         u32 cmd;
1539         int ret;
1540
1541         /*
1542          * Reserve space for 2 NOOPs at the end of each request to be
1543          * used as a workaround for not being allowed to do lite
1544          * restore with HEAD==TAIL (WaIdleLiteRestore).
1545          */
1546         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1547         if (ret)
1548                 return ret;
1549
1550         cmd = MI_STORE_DWORD_IMM_GEN4;
1551         cmd |= MI_GLOBAL_GTT;
1552
1553         intel_logical_ring_emit(ringbuf, cmd);
1554         intel_logical_ring_emit(ringbuf,
1555                                 (ring->status_page.gfx_addr +
1556                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1557         intel_logical_ring_emit(ringbuf, 0);
1558         intel_logical_ring_emit(ringbuf,
1559                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1560         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1561         intel_logical_ring_emit(ringbuf, MI_NOOP);
1562         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1563
1564         /*
1565          * Here we add two extra NOOPs as padding to avoid
1566          * lite restore of a context with HEAD==TAIL.
1567          */
1568         intel_logical_ring_emit(ringbuf, MI_NOOP);
1569         intel_logical_ring_emit(ringbuf, MI_NOOP);
1570         intel_logical_ring_advance(ringbuf);
1571
1572         return 0;
1573 }
1574
1575 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1576 {
1577         struct render_state so;
1578         int ret;
1579
1580         ret = i915_gem_render_state_prepare(req->ring, &so);
1581         if (ret)
1582                 return ret;
1583
1584         if (so.rodata == NULL)
1585                 return 0;
1586
1587         ret = req->ring->emit_bb_start(req->ringbuf,
1588                                        req->ctx,
1589                                        so.ggtt_offset,
1590                                        I915_DISPATCH_SECURE);
1591         if (ret)
1592                 goto out;
1593
1594         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1595
1596 out:
1597         i915_gem_render_state_fini(&so);
1598         return ret;
1599 }
1600
1601 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1602 {
1603         int ret;
1604
1605         ret = intel_logical_ring_workarounds_emit(req);
1606         if (ret)
1607                 return ret;
1608
1609         return intel_lr_context_render_state_init(req);
1610 }
1611
1612 /**
1613  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1614  *
1615  * @ring: Engine Command Streamer.
1616  *
1617  */
1618 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1619 {
1620         struct drm_i915_private *dev_priv;
1621
1622         if (!intel_ring_initialized(ring))
1623                 return;
1624
1625         dev_priv = ring->dev->dev_private;
1626
1627         intel_logical_ring_stop(ring);
1628         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1629         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1630
1631         if (ring->cleanup)
1632                 ring->cleanup(ring);
1633
1634         i915_cmd_parser_fini_ring(ring);
1635         i915_gem_batch_pool_fini(&ring->batch_pool);
1636
1637         if (ring->status_page.obj) {
1638                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1639                 ring->status_page.obj = NULL;
1640         }
1641
1642         lrc_destroy_wa_ctx_obj(ring);
1643 }
1644
1645 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1646 {
1647         int ret;
1648
1649         /* Intentionally left blank. */
1650         ring->buffer = NULL;
1651
1652         ring->dev = dev;
1653         INIT_LIST_HEAD(&ring->active_list);
1654         INIT_LIST_HEAD(&ring->request_list);
1655         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1656         init_waitqueue_head(&ring->irq_queue);
1657
1658         INIT_LIST_HEAD(&ring->execlist_queue);
1659         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1660         spin_lock_init(&ring->execlist_lock);
1661
1662         ret = i915_cmd_parser_init_ring(ring);
1663         if (ret)
1664                 return ret;
1665
1666         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1667
1668         return ret;
1669 }
1670
1671 static int logical_render_ring_init(struct drm_device *dev)
1672 {
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1675         int ret;
1676
1677         ring->name = "render ring";
1678         ring->id = RCS;
1679         ring->mmio_base = RENDER_RING_BASE;
1680         ring->irq_enable_mask =
1681                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1682         ring->irq_keep_mask =
1683                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1684         if (HAS_L3_DPF(dev))
1685                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1686
1687         if (INTEL_INFO(dev)->gen >= 9)
1688                 ring->init_hw = gen9_init_render_ring;
1689         else
1690                 ring->init_hw = gen8_init_render_ring;
1691         ring->init_context = gen8_init_rcs_context;
1692         ring->cleanup = intel_fini_pipe_control;
1693         ring->get_seqno = gen8_get_seqno;
1694         ring->set_seqno = gen8_set_seqno;
1695         ring->emit_request = gen8_emit_request;
1696         ring->emit_flush = gen8_emit_flush_render;
1697         ring->irq_get = gen8_logical_ring_get_irq;
1698         ring->irq_put = gen8_logical_ring_put_irq;
1699         ring->emit_bb_start = gen8_emit_bb_start;
1700
1701         ring->dev = dev;
1702
1703         ret = intel_init_pipe_control(ring);
1704         if (ret)
1705                 return ret;
1706
1707         ret = intel_init_workaround_bb(ring);
1708         if (ret) {
1709                 /*
1710                  * We continue even if we fail to initialize WA batch
1711                  * because we only expect rare glitches but nothing
1712                  * critical to prevent us from using GPU
1713                  */
1714                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1715                           ret);
1716         }
1717
1718         ret = logical_ring_init(dev, ring);
1719         if (ret) {
1720                 lrc_destroy_wa_ctx_obj(ring);
1721         }
1722
1723         return ret;
1724 }
1725
1726 static int logical_bsd_ring_init(struct drm_device *dev)
1727 {
1728         struct drm_i915_private *dev_priv = dev->dev_private;
1729         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1730
1731         ring->name = "bsd ring";
1732         ring->id = VCS;
1733         ring->mmio_base = GEN6_BSD_RING_BASE;
1734         ring->irq_enable_mask =
1735                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1736         ring->irq_keep_mask =
1737                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1738
1739         ring->init_hw = gen8_init_common_ring;
1740         ring->get_seqno = gen8_get_seqno;
1741         ring->set_seqno = gen8_set_seqno;
1742         ring->emit_request = gen8_emit_request;
1743         ring->emit_flush = gen8_emit_flush;
1744         ring->irq_get = gen8_logical_ring_get_irq;
1745         ring->irq_put = gen8_logical_ring_put_irq;
1746         ring->emit_bb_start = gen8_emit_bb_start;
1747
1748         return logical_ring_init(dev, ring);
1749 }
1750
1751 static int logical_bsd2_ring_init(struct drm_device *dev)
1752 {
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1755
1756         ring->name = "bds2 ring";
1757         ring->id = VCS2;
1758         ring->mmio_base = GEN8_BSD2_RING_BASE;
1759         ring->irq_enable_mask =
1760                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1761         ring->irq_keep_mask =
1762                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1763
1764         ring->init_hw = gen8_init_common_ring;
1765         ring->get_seqno = gen8_get_seqno;
1766         ring->set_seqno = gen8_set_seqno;
1767         ring->emit_request = gen8_emit_request;
1768         ring->emit_flush = gen8_emit_flush;
1769         ring->irq_get = gen8_logical_ring_get_irq;
1770         ring->irq_put = gen8_logical_ring_put_irq;
1771         ring->emit_bb_start = gen8_emit_bb_start;
1772
1773         return logical_ring_init(dev, ring);
1774 }
1775
1776 static int logical_blt_ring_init(struct drm_device *dev)
1777 {
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1780
1781         ring->name = "blitter ring";
1782         ring->id = BCS;
1783         ring->mmio_base = BLT_RING_BASE;
1784         ring->irq_enable_mask =
1785                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1786         ring->irq_keep_mask =
1787                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1788
1789         ring->init_hw = gen8_init_common_ring;
1790         ring->get_seqno = gen8_get_seqno;
1791         ring->set_seqno = gen8_set_seqno;
1792         ring->emit_request = gen8_emit_request;
1793         ring->emit_flush = gen8_emit_flush;
1794         ring->irq_get = gen8_logical_ring_get_irq;
1795         ring->irq_put = gen8_logical_ring_put_irq;
1796         ring->emit_bb_start = gen8_emit_bb_start;
1797
1798         return logical_ring_init(dev, ring);
1799 }
1800
1801 static int logical_vebox_ring_init(struct drm_device *dev)
1802 {
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1805
1806         ring->name = "video enhancement ring";
1807         ring->id = VECS;
1808         ring->mmio_base = VEBOX_RING_BASE;
1809         ring->irq_enable_mask =
1810                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1811         ring->irq_keep_mask =
1812                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1813
1814         ring->init_hw = gen8_init_common_ring;
1815         ring->get_seqno = gen8_get_seqno;
1816         ring->set_seqno = gen8_set_seqno;
1817         ring->emit_request = gen8_emit_request;
1818         ring->emit_flush = gen8_emit_flush;
1819         ring->irq_get = gen8_logical_ring_get_irq;
1820         ring->irq_put = gen8_logical_ring_put_irq;
1821         ring->emit_bb_start = gen8_emit_bb_start;
1822
1823         return logical_ring_init(dev, ring);
1824 }
1825
1826 /**
1827  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1828  * @dev: DRM device.
1829  *
1830  * This function inits the engines for an Execlists submission style (the equivalent in the
1831  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1832  * those engines that are present in the hardware.
1833  *
1834  * Return: non-zero if the initialization failed.
1835  */
1836 int intel_logical_rings_init(struct drm_device *dev)
1837 {
1838         struct drm_i915_private *dev_priv = dev->dev_private;
1839         int ret;
1840
1841         ret = logical_render_ring_init(dev);
1842         if (ret)
1843                 return ret;
1844
1845         if (HAS_BSD(dev)) {
1846                 ret = logical_bsd_ring_init(dev);
1847                 if (ret)
1848                         goto cleanup_render_ring;
1849         }
1850
1851         if (HAS_BLT(dev)) {
1852                 ret = logical_blt_ring_init(dev);
1853                 if (ret)
1854                         goto cleanup_bsd_ring;
1855         }
1856
1857         if (HAS_VEBOX(dev)) {
1858                 ret = logical_vebox_ring_init(dev);
1859                 if (ret)
1860                         goto cleanup_blt_ring;
1861         }
1862
1863         if (HAS_BSD2(dev)) {
1864                 ret = logical_bsd2_ring_init(dev);
1865                 if (ret)
1866                         goto cleanup_vebox_ring;
1867         }
1868
1869         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1870         if (ret)
1871                 goto cleanup_bsd2_ring;
1872
1873         return 0;
1874
1875 cleanup_bsd2_ring:
1876         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1877 cleanup_vebox_ring:
1878         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1879 cleanup_blt_ring:
1880         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1881 cleanup_bsd_ring:
1882         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1883 cleanup_render_ring:
1884         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1885
1886         return ret;
1887 }
1888
1889 static u32
1890 make_rpcs(struct drm_device *dev)
1891 {
1892         u32 rpcs = 0;
1893
1894         /*
1895          * No explicit RPCS request is needed to ensure full
1896          * slice/subslice/EU enablement prior to Gen9.
1897         */
1898         if (INTEL_INFO(dev)->gen < 9)
1899                 return 0;
1900
1901         /*
1902          * Starting in Gen9, render power gating can leave
1903          * slice/subslice/EU in a partially enabled state. We
1904          * must make an explicit request through RPCS for full
1905          * enablement.
1906         */
1907         if (INTEL_INFO(dev)->has_slice_pg) {
1908                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1909                 rpcs |= INTEL_INFO(dev)->slice_total <<
1910                         GEN8_RPCS_S_CNT_SHIFT;
1911                 rpcs |= GEN8_RPCS_ENABLE;
1912         }
1913
1914         if (INTEL_INFO(dev)->has_subslice_pg) {
1915                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1916                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1917                         GEN8_RPCS_SS_CNT_SHIFT;
1918                 rpcs |= GEN8_RPCS_ENABLE;
1919         }
1920
1921         if (INTEL_INFO(dev)->has_eu_pg) {
1922                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1923                         GEN8_RPCS_EU_MIN_SHIFT;
1924                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1925                         GEN8_RPCS_EU_MAX_SHIFT;
1926                 rpcs |= GEN8_RPCS_ENABLE;
1927         }
1928
1929         return rpcs;
1930 }
1931
1932 static int
1933 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1934                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1935 {
1936         struct drm_device *dev = ring->dev;
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1939         struct page *page;
1940         uint32_t *reg_state;
1941         int ret;
1942
1943         if (!ppgtt)
1944                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1945
1946         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1947         if (ret) {
1948                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1949                 return ret;
1950         }
1951
1952         ret = i915_gem_object_get_pages(ctx_obj);
1953         if (ret) {
1954                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1955                 return ret;
1956         }
1957
1958         i915_gem_object_pin_pages(ctx_obj);
1959
1960         /* The second page of the context object contains some fields which must
1961          * be set up prior to the first execution. */
1962         page = i915_gem_object_get_page(ctx_obj, 1);
1963         reg_state = kmap_atomic(page);
1964
1965         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1966          * commands followed by (reg, value) pairs. The values we are setting here are
1967          * only for the first context restore: on a subsequent save, the GPU will
1968          * recreate this batchbuffer with new values (including all the missing
1969          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1970         if (ring->id == RCS)
1971                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1972         else
1973                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1974         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1975         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1976         reg_state[CTX_CONTEXT_CONTROL+1] =
1977                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1978                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1979         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1980         reg_state[CTX_RING_HEAD+1] = 0;
1981         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1982         reg_state[CTX_RING_TAIL+1] = 0;
1983         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1984         /* Ring buffer start address is not known until the buffer is pinned.
1985          * It is written to the context image in execlists_update_context()
1986          */
1987         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1988         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1989                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1990         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1991         reg_state[CTX_BB_HEAD_U+1] = 0;
1992         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1993         reg_state[CTX_BB_HEAD_L+1] = 0;
1994         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1995         reg_state[CTX_BB_STATE+1] = (1<<5);
1996         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1997         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1998         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1999         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2000         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2001         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2002         if (ring->id == RCS) {
2003                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2004                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2005                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2006                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2007                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2008                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2009                 if (ring->wa_ctx.obj) {
2010                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2011                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2012
2013                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2014                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2015                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2016
2017                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2018                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2019
2020                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2021                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2022                                 0x01;
2023                 }
2024         }
2025         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2026         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2027         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2028         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2029         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2030         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2031         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2032         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2033         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2034         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2035         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2036         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2037
2038         /* With dynamic page allocation, PDPs may not be allocated at this point,
2039          * Point the unallocated PDPs to the scratch page
2040          */
2041         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2042         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2043         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2044         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2045         if (ring->id == RCS) {
2046                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2047                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2048                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2049         }
2050
2051         kunmap_atomic(reg_state);
2052
2053         ctx_obj->dirty = 1;
2054         set_page_dirty(page);
2055         i915_gem_object_unpin_pages(ctx_obj);
2056
2057         return 0;
2058 }
2059
2060 /**
2061  * intel_lr_context_free() - free the LRC specific bits of a context
2062  * @ctx: the LR context to free.
2063  *
2064  * The real context freeing is done in i915_gem_context_free: this only
2065  * takes care of the bits that are LRC related: the per-engine backing
2066  * objects and the logical ringbuffer.
2067  */
2068 void intel_lr_context_free(struct intel_context *ctx)
2069 {
2070         int i;
2071
2072         for (i = 0; i < I915_NUM_RINGS; i++) {
2073                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2074
2075                 if (ctx_obj) {
2076                         struct intel_ringbuffer *ringbuf =
2077                                         ctx->engine[i].ringbuf;
2078                         struct intel_engine_cs *ring = ringbuf->ring;
2079
2080                         if (ctx == ring->default_context) {
2081                                 intel_unpin_ringbuffer_obj(ringbuf);
2082                                 i915_gem_object_ggtt_unpin(ctx_obj);
2083                         }
2084                         WARN_ON(ctx->engine[ring->id].pin_count);
2085                         intel_destroy_ringbuffer_obj(ringbuf);
2086                         kfree(ringbuf);
2087                         drm_gem_object_unreference(&ctx_obj->base);
2088                 }
2089         }
2090 }
2091
2092 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2093 {
2094         int ret = 0;
2095
2096         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2097
2098         switch (ring->id) {
2099         case RCS:
2100                 if (INTEL_INFO(ring->dev)->gen >= 9)
2101                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2102                 else
2103                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2104                 break;
2105         case VCS:
2106         case BCS:
2107         case VECS:
2108         case VCS2:
2109                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2110                 break;
2111         }
2112
2113         return ret;
2114 }
2115
2116 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2117                 struct drm_i915_gem_object *default_ctx_obj)
2118 {
2119         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2120
2121         /* The status page is offset 0 from the default context object
2122          * in LRC mode. */
2123         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2124         ring->status_page.page_addr =
2125                         kmap(sg_page(default_ctx_obj->pages->sgl));
2126         ring->status_page.obj = default_ctx_obj;
2127
2128         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2129                         (u32)ring->status_page.gfx_addr);
2130         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2131 }
2132
2133 /**
2134  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2135  * @ctx: LR context to create.
2136  * @ring: engine to be used with the context.
2137  *
2138  * This function can be called more than once, with different engines, if we plan
2139  * to use the context with them. The context backing objects and the ringbuffers
2140  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2141  * the creation is a deferred call: it's better to make sure first that we need to use
2142  * a given ring with the context.
2143  *
2144  * Return: non-zero on error.
2145  */
2146 int intel_lr_context_deferred_create(struct intel_context *ctx,
2147                                      struct intel_engine_cs *ring)
2148 {
2149         const bool is_global_default_ctx = (ctx == ring->default_context);
2150         struct drm_device *dev = ring->dev;
2151         struct drm_i915_gem_object *ctx_obj;
2152         uint32_t context_size;
2153         struct intel_ringbuffer *ringbuf;
2154         int ret;
2155
2156         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2157         WARN_ON(ctx->engine[ring->id].state);
2158
2159         context_size = round_up(get_lr_context_size(ring), 4096);
2160
2161         ctx_obj = i915_gem_alloc_object(dev, context_size);
2162         if (!ctx_obj) {
2163                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2164                 return -ENOMEM;
2165         }
2166
2167         if (is_global_default_ctx) {
2168                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2169                 if (ret) {
2170                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2171                                         ret);
2172                         drm_gem_object_unreference(&ctx_obj->base);
2173                         return ret;
2174                 }
2175         }
2176
2177         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2178         if (!ringbuf) {
2179                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2180                                 ring->name);
2181                 ret = -ENOMEM;
2182                 goto error_unpin_ctx;
2183         }
2184
2185         ringbuf->ring = ring;
2186
2187         ringbuf->size = 32 * PAGE_SIZE;
2188         ringbuf->effective_size = ringbuf->size;
2189         ringbuf->head = 0;
2190         ringbuf->tail = 0;
2191         ringbuf->last_retired_head = -1;
2192         intel_ring_update_space(ringbuf);
2193
2194         if (ringbuf->obj == NULL) {
2195                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2196                 if (ret) {
2197                         DRM_DEBUG_DRIVER(
2198                                 "Failed to allocate ringbuffer obj %s: %d\n",
2199                                 ring->name, ret);
2200                         goto error_free_rbuf;
2201                 }
2202
2203                 if (is_global_default_ctx) {
2204                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2205                         if (ret) {
2206                                 DRM_ERROR(
2207                                         "Failed to pin and map ringbuffer %s: %d\n",
2208                                         ring->name, ret);
2209                                 goto error_destroy_rbuf;
2210                         }
2211                 }
2212
2213         }
2214
2215         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2216         if (ret) {
2217                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2218                 goto error;
2219         }
2220
2221         ctx->engine[ring->id].ringbuf = ringbuf;
2222         ctx->engine[ring->id].state = ctx_obj;
2223
2224         if (ctx == ring->default_context)
2225                 lrc_setup_hardware_status_page(ring, ctx_obj);
2226         else if (ring->id == RCS && !ctx->rcs_initialized) {
2227                 if (ring->init_context) {
2228                         struct drm_i915_gem_request *req;
2229
2230                         ret = i915_gem_request_alloc(ring, ctx, &req);
2231                         if (ret)
2232                                 return ret;
2233
2234                         ret = ring->init_context(req);
2235                         if (ret) {
2236                                 DRM_ERROR("ring init context: %d\n", ret);
2237                                 i915_gem_request_cancel(req);
2238                                 ctx->engine[ring->id].ringbuf = NULL;
2239                                 ctx->engine[ring->id].state = NULL;
2240                                 goto error;
2241                         }
2242
2243                         i915_add_request_no_flush(req);
2244                 }
2245
2246                 ctx->rcs_initialized = true;
2247         }
2248
2249         return 0;
2250
2251 error:
2252         if (is_global_default_ctx)
2253                 intel_unpin_ringbuffer_obj(ringbuf);
2254 error_destroy_rbuf:
2255         intel_destroy_ringbuffer_obj(ringbuf);
2256 error_free_rbuf:
2257         kfree(ringbuf);
2258 error_unpin_ctx:
2259         if (is_global_default_ctx)
2260                 i915_gem_object_ggtt_unpin(ctx_obj);
2261         drm_gem_object_unreference(&ctx_obj->base);
2262         return ret;
2263 }
2264
2265 void intel_lr_context_reset(struct drm_device *dev,
2266                         struct intel_context *ctx)
2267 {
2268         struct drm_i915_private *dev_priv = dev->dev_private;
2269         struct intel_engine_cs *ring;
2270         int i;
2271
2272         for_each_ring(ring, dev_priv, i) {
2273                 struct drm_i915_gem_object *ctx_obj =
2274                                 ctx->engine[ring->id].state;
2275                 struct intel_ringbuffer *ringbuf =
2276                                 ctx->engine[ring->id].ringbuf;
2277                 uint32_t *reg_state;
2278                 struct page *page;
2279
2280                 if (!ctx_obj)
2281                         continue;
2282
2283                 if (i915_gem_object_get_pages(ctx_obj)) {
2284                         WARN(1, "Failed get_pages for context obj\n");
2285                         continue;
2286                 }
2287                 page = i915_gem_object_get_page(ctx_obj, 1);
2288                 reg_state = kmap_atomic(page);
2289
2290                 reg_state[CTX_RING_HEAD+1] = 0;
2291                 reg_state[CTX_RING_TAIL+1] = 0;
2292
2293                 kunmap_atomic(reg_state);
2294
2295                 ringbuf->head = 0;
2296                 ringbuf->tail = 0;
2297         }
2298 }