9be732b4012129c451e5699ef4e5cf95c0e32d53
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217                 struct intel_context *ctx);
218
219 /**
220  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221  * @dev: DRM device.
222  * @enable_execlists: value of i915.enable_execlists module parameter.
223  *
224  * Only certain platforms support Execlists (the prerequisites being
225  * support for Logical Ring Contexts and Aliasing PPGTT or better).
226  *
227  * Return: 1 if Execlists is supported and has to be enabled.
228  */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231         WARN_ON(i915.enable_ppgtt == -1);
232
233         if (INTEL_INFO(dev)->gen >= 9)
234                 return 1;
235
236         if (enable_execlists == 0)
237                 return 0;
238
239         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240             i915.use_mmio_flip >= 0)
241                 return 1;
242
243         return 0;
244 }
245
246 /**
247  * intel_execlists_ctx_id() - get the Execlists Context ID
248  * @ctx_obj: Logical Ring Context backing object.
249  *
250  * Do not confuse with ctx->id! Unfortunately we have a name overload
251  * here: the old context ID we pass to userspace as a handler so that
252  * they can refer to a context, and the new context ID we pass to the
253  * ELSP so that the GPU can inform us of the context status via
254  * interrupts.
255  *
256  * Return: 20-bits globally unique context ID.
257  */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262         /* LRCA is required to be 4K aligned so the more significant 20 bits
263          * are globally unique */
264         return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268                                          struct drm_i915_gem_object *ctx_obj)
269 {
270         struct drm_device *dev = ring->dev;
271         uint64_t desc;
272         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276         desc = GEN8_CTX_VALID;
277         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278         if (IS_GEN8(ctx_obj->base.dev))
279                 desc |= GEN8_CTX_L3LLC_COHERENT;
280         desc |= GEN8_CTX_PRIVILEGE;
281         desc |= lrca;
282         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         if (IS_GEN9(dev) &&
290             INTEL_REVID(dev) <= SKL_REVID_B0 &&
291             (ring->id == BCS || ring->id == VCS ||
292             ring->id == VECS || ring->id == VCS2))
293                 desc |= GEN8_CTX_FORCE_RESTORE;
294
295         return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299                                  struct drm_i915_gem_object *ctx_obj0,
300                                  struct drm_i915_gem_object *ctx_obj1)
301 {
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t temp = 0;
305         uint32_t desc[4];
306
307         /* XXX: You must always write both descriptors in the order below. */
308         if (ctx_obj1)
309                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310         else
311                 temp = 0;
312         desc[1] = (u32)(temp >> 32);
313         desc[0] = (u32)temp;
314
315         temp = execlists_ctx_descriptor(ring, ctx_obj0);
316         desc[3] = (u32)(temp >> 32);
317         desc[2] = (u32)temp;
318
319         spin_lock(&dev_priv->uncore.lock);
320         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325         /* The context is automatically loaded after the following */
326         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328         /* ELSP is a wo register, so use another nearby reg for posting instead */
329         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331         spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335                                     struct drm_i915_gem_object *ring_obj,
336                                     struct i915_hw_ppgtt *ppgtt,
337                                     u32 tail)
338 {
339         struct page *page;
340         uint32_t *reg_state;
341
342         page = i915_gem_object_get_page(ctx_obj, 1);
343         reg_state = kmap_atomic(page);
344
345         reg_state[CTX_RING_TAIL+1] = tail;
346         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348         /* True PPGTT with dynamic page allocation: update PDP registers and
349          * point the unallocated PDPs to the scratch page
350          */
351         if (ppgtt) {
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356         }
357
358         kunmap_atomic(reg_state);
359
360         return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364                                       struct intel_context *to0, u32 tail0,
365                                       struct intel_context *to1, u32 tail1)
366 {
367         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369         struct drm_i915_gem_object *ctx_obj1 = NULL;
370         struct intel_ringbuffer *ringbuf1 = NULL;
371
372         BUG_ON(!ctx_obj0);
373         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378         if (to1) {
379                 ringbuf1 = to1->engine[ring->id].ringbuf;
380                 ctx_obj1 = to1->engine[ring->id].state;
381                 BUG_ON(!ctx_obj1);
382                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386         }
387
388         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396         assert_spin_locked(&ring->execlist_lock);
397
398         /*
399          * If irqs are not active generate a warning as batches that finish
400          * without the irqs may get lost and a GPU Hang may occur.
401          */
402         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404         if (list_empty(&ring->execlist_queue))
405                 return;
406
407         /* Try to read in pairs */
408         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409                                  execlist_link) {
410                 if (!req0) {
411                         req0 = cursor;
412                 } else if (req0->ctx == cursor->ctx) {
413                         /* Same ctx: ignore first request, as second request
414                          * will update tail past first request's workload */
415                         cursor->elsp_submitted = req0->elsp_submitted;
416                         list_del(&req0->execlist_link);
417                         list_add_tail(&req0->execlist_link,
418                                 &ring->execlist_retired_req_list);
419                         req0 = cursor;
420                 } else {
421                         req1 = cursor;
422                         break;
423                 }
424         }
425
426         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427                 /*
428                  * WaIdleLiteRestore: make sure we never cause a lite
429                  * restore with HEAD==TAIL
430                  */
431                 if (req0->elsp_submitted) {
432                         /*
433                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434                          * as we resubmit the request. See gen8_emit_request()
435                          * for where we prepare the padding after the end of the
436                          * request.
437                          */
438                         struct intel_ringbuffer *ringbuf;
439
440                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
441                         req0->tail += 8;
442                         req0->tail &= ringbuf->size - 1;
443                 }
444         }
445
446         WARN_ON(req1 && req1->elsp_submitted);
447
448         execlists_submit_contexts(ring, req0->ctx, req0->tail,
449                                   req1 ? req1->ctx : NULL,
450                                   req1 ? req1->tail : 0);
451
452         req0->elsp_submitted++;
453         if (req1)
454                 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458                                            u32 request_id)
459 {
460         struct drm_i915_gem_request *head_req;
461
462         assert_spin_locked(&ring->execlist_lock);
463
464         head_req = list_first_entry_or_null(&ring->execlist_queue,
465                                             struct drm_i915_gem_request,
466                                             execlist_link);
467
468         if (head_req != NULL) {
469                 struct drm_i915_gem_object *ctx_obj =
470                                 head_req->ctx->engine[ring->id].state;
471                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472                         WARN(head_req->elsp_submitted == 0,
473                              "Never submitted head request\n");
474
475                         if (--head_req->elsp_submitted <= 0) {
476                                 list_del(&head_req->execlist_link);
477                                 list_add_tail(&head_req->execlist_link,
478                                         &ring->execlist_retired_req_list);
479                                 return true;
480                         }
481                 }
482         }
483
484         return false;
485 }
486
487 /**
488  * intel_lrc_irq_handler() - handle Context Switch interrupts
489  * @ring: Engine Command Streamer to handle.
490  *
491  * Check the unread Context Status Buffers and manage the submission of new
492  * contexts to the ELSP accordingly.
493  */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496         struct drm_i915_private *dev_priv = ring->dev->dev_private;
497         u32 status_pointer;
498         u8 read_pointer;
499         u8 write_pointer;
500         u32 status;
501         u32 status_id;
502         u32 submit_contexts = 0;
503
504         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506         read_pointer = ring->next_context_status_buffer;
507         write_pointer = status_pointer & 0x07;
508         if (read_pointer > write_pointer)
509                 write_pointer += 6;
510
511         spin_lock(&ring->execlist_lock);
512
513         while (read_pointer < write_pointer) {
514                 read_pointer++;
515                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516                                 (read_pointer % 6) * 8);
517                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518                                 (read_pointer % 6) * 8 + 4);
519
520                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522                                 if (execlists_check_remove_request(ring, status_id))
523                                         WARN(1, "Lite Restored request removed from queue\n");
524                         } else
525                                 WARN(1, "Preemption without Lite Restore\n");
526                 }
527
528                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530                         if (execlists_check_remove_request(ring, status_id))
531                                 submit_contexts++;
532                 }
533         }
534
535         if (submit_contexts != 0)
536                 execlists_context_unqueue(ring);
537
538         spin_unlock(&ring->execlist_lock);
539
540         WARN(submit_contexts > 2, "More than two context complete events?\n");
541         ring->next_context_status_buffer = write_pointer % 6;
542
543         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548                                    struct intel_context *to,
549                                    u32 tail,
550                                    struct drm_i915_gem_request *request)
551 {
552         struct drm_i915_gem_request *cursor;
553         int num_elements = 0;
554
555         if (to != ring->default_context)
556                 intel_lr_context_pin(ring, to);
557
558         if (!request) {
559                 /*
560                  * If there isn't a request associated with this submission,
561                  * create one as a temporary holder.
562                  */
563                 request = kzalloc(sizeof(*request), GFP_KERNEL);
564                 if (request == NULL)
565                         return -ENOMEM;
566                 request->ring = ring;
567                 request->ctx = to;
568                 kref_init(&request->ref);
569                 i915_gem_context_reference(request->ctx);
570         } else {
571                 i915_gem_request_reference(request);
572                 WARN_ON(to != request->ctx);
573         }
574         request->tail = tail;
575
576         spin_lock_irq(&ring->execlist_lock);
577
578         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579                 if (++num_elements > 2)
580                         break;
581
582         if (num_elements > 2) {
583                 struct drm_i915_gem_request *tail_req;
584
585                 tail_req = list_last_entry(&ring->execlist_queue,
586                                            struct drm_i915_gem_request,
587                                            execlist_link);
588
589                 if (to == tail_req->ctx) {
590                         WARN(tail_req->elsp_submitted != 0,
591                                 "More than 2 already-submitted reqs queued\n");
592                         list_del(&tail_req->execlist_link);
593                         list_add_tail(&tail_req->execlist_link,
594                                 &ring->execlist_retired_req_list);
595                 }
596         }
597
598         list_add_tail(&request->execlist_link, &ring->execlist_queue);
599         if (num_elements == 0)
600                 execlists_context_unqueue(ring);
601
602         spin_unlock_irq(&ring->execlist_lock);
603
604         return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
608 {
609         struct intel_engine_cs *ring = req->ring;
610         uint32_t flush_domains;
611         int ret;
612
613         flush_domains = 0;
614         if (ring->gpu_caches_dirty)
615                 flush_domains = I915_GEM_GPU_DOMAINS;
616
617         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
618         if (ret)
619                 return ret;
620
621         ring->gpu_caches_dirty = false;
622         return 0;
623 }
624
625 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
626                                  struct list_head *vmas)
627 {
628         const unsigned other_rings = ~intel_ring_flag(req->ring);
629         struct i915_vma *vma;
630         uint32_t flush_domains = 0;
631         bool flush_chipset = false;
632         int ret;
633
634         list_for_each_entry(vma, vmas, exec_list) {
635                 struct drm_i915_gem_object *obj = vma->obj;
636
637                 if (obj->active & other_rings) {
638                         ret = i915_gem_object_sync(obj, req->ring, &req);
639                         if (ret)
640                                 return ret;
641                 }
642
643                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
644                         flush_chipset |= i915_gem_clflush_object(obj, false);
645
646                 flush_domains |= obj->base.write_domain;
647         }
648
649         if (flush_domains & I915_GEM_DOMAIN_GTT)
650                 wmb();
651
652         /* Unconditionally invalidate gpu caches and ensure that we do flush
653          * any residual writes from the previous batch.
654          */
655         return logical_ring_invalidate_all_caches(req);
656 }
657
658 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
659 {
660         int ret;
661
662         if (request->ctx != request->ring->default_context) {
663                 ret = intel_lr_context_pin(request->ring, request->ctx);
664                 if (ret)
665                         return ret;
666         }
667
668         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
669
670         return 0;
671 }
672
673 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
674                                        struct intel_context *ctx,
675                                        int bytes)
676 {
677         struct intel_engine_cs *ring = ringbuf->ring;
678         struct drm_i915_gem_request *request;
679         unsigned space;
680         int ret;
681
682         /* The whole point of reserving space is to not wait! */
683         WARN_ON(ringbuf->reserved_in_use);
684
685         if (intel_ring_space(ringbuf) >= bytes)
686                 return 0;
687
688         list_for_each_entry(request, &ring->request_list, list) {
689                 /*
690                  * The request queue is per-engine, so can contain requests
691                  * from multiple ringbuffers. Here, we must ignore any that
692                  * aren't from the ringbuffer we're considering.
693                  */
694                 if (request->ringbuf != ringbuf)
695                         continue;
696
697                 /* Would completion of this request free enough space? */
698                 space = __intel_ring_space(request->postfix, ringbuf->tail,
699                                            ringbuf->size);
700                 if (space >= bytes)
701                         break;
702         }
703
704         if (WARN_ON(&request->list == &ring->request_list))
705                 return -ENOSPC;
706
707         ret = i915_wait_request(request);
708         if (ret)
709                 return ret;
710
711         ringbuf->space = space;
712         return 0;
713 }
714
715 /*
716  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
717  * @ringbuf: Logical Ringbuffer to advance.
718  *
719  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
720  * really happens during submission is that the context and current tail will be placed
721  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
722  * point, the tail *inside* the context is updated and the ELSP written to.
723  */
724 static void
725 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
726                                       struct intel_context *ctx,
727                                       struct drm_i915_gem_request *request)
728 {
729         struct intel_engine_cs *ring = ringbuf->ring;
730
731         intel_logical_ring_advance(ringbuf);
732
733         if (intel_ring_stopped(ring))
734                 return;
735
736         execlists_context_queue(ring, ctx, ringbuf->tail, request);
737 }
738
739 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
740                                     struct intel_context *ctx)
741 {
742         uint32_t __iomem *virt;
743         int rem = ringbuf->size - ringbuf->tail;
744
745         /* Can't wrap if space has already been reserved! */
746         WARN_ON(ringbuf->reserved_in_use);
747
748         if (ringbuf->space < rem) {
749                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751                 if (ret)
752                         return ret;
753         }
754
755         virt = ringbuf->virtual_start + ringbuf->tail;
756         rem /= 4;
757         while (rem--)
758                 iowrite32(MI_NOOP, virt++);
759
760         ringbuf->tail = 0;
761         intel_ring_update_space(ringbuf);
762
763         return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767                                 struct intel_context *ctx, int bytes)
768 {
769         int ret;
770
771         /*
772          * Add on the reserved size to the request to make sure that after
773          * the intended commands have been emitted, there is guaranteed to
774          * still be enough free space to send them to the hardware.
775          */
776         if (!ringbuf->reserved_in_use)
777                 bytes += ringbuf->reserved_size;
778
779         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
780                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
781                 if (unlikely(ret))
782                         return ret;
783
784                 if(ringbuf->reserved_size) {
785                         uint32_t size = ringbuf->reserved_size;
786
787                         intel_ring_reserved_space_cancel(ringbuf);
788                         intel_ring_reserved_space_reserve(ringbuf, size);
789                 }
790         }
791
792         if (unlikely(ringbuf->space < bytes)) {
793                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
794                 if (unlikely(ret))
795                         return ret;
796         }
797
798         return 0;
799 }
800
801 /**
802  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
803  *
804  * @ringbuf: Logical ringbuffer.
805  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
806  *
807  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
808  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
809  * and also preallocates a request (every workload submission is still mediated through
810  * requests, same as it did with legacy ringbuffer submission).
811  *
812  * Return: non-zero if the ringbuffer is not ready to be written to.
813  */
814 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
815                                     struct intel_context *ctx, int num_dwords)
816 {
817         struct drm_i915_gem_request *req;
818         struct intel_engine_cs *ring = ringbuf->ring;
819         struct drm_device *dev = ring->dev;
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         int ret;
822
823         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
824                                    dev_priv->mm.interruptible);
825         if (ret)
826                 return ret;
827
828         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
829         if (ret)
830                 return ret;
831
832         /* Preallocate the olr before touching the ring */
833         ret = i915_gem_request_alloc(ring, ctx, &req);
834         if (ret)
835                 return ret;
836
837         ringbuf->space -= num_dwords * sizeof(uint32_t);
838         return 0;
839 }
840
841 /**
842  * execlists_submission() - submit a batchbuffer for execution, Execlists style
843  * @dev: DRM device.
844  * @file: DRM file.
845  * @ring: Engine Command Streamer to submit to.
846  * @ctx: Context to employ for this submission.
847  * @args: execbuffer call arguments.
848  * @vmas: list of vmas.
849  * @batch_obj: the batchbuffer to submit.
850  * @exec_start: batchbuffer start virtual address pointer.
851  * @dispatch_flags: translated execbuffer call flags.
852  *
853  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
854  * away the submission details of the execbuffer ioctl call.
855  *
856  * Return: non-zero if the submission fails.
857  */
858 int intel_execlists_submission(struct i915_execbuffer_params *params,
859                                struct drm_i915_gem_execbuffer2 *args,
860                                struct list_head *vmas)
861 {
862         struct drm_device       *dev = params->dev;
863         struct intel_engine_cs  *ring = params->ring;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
866         u64 exec_start;
867         int instp_mode;
868         u32 instp_mask;
869         int ret;
870
871         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
872         instp_mask = I915_EXEC_CONSTANTS_MASK;
873         switch (instp_mode) {
874         case I915_EXEC_CONSTANTS_REL_GENERAL:
875         case I915_EXEC_CONSTANTS_ABSOLUTE:
876         case I915_EXEC_CONSTANTS_REL_SURFACE:
877                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
878                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
879                         return -EINVAL;
880                 }
881
882                 if (instp_mode != dev_priv->relative_constants_mode) {
883                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
884                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
885                                 return -EINVAL;
886                         }
887
888                         /* The HW changed the meaning on this bit on gen6 */
889                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
890                 }
891                 break;
892         default:
893                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
894                 return -EINVAL;
895         }
896
897         if (args->num_cliprects != 0) {
898                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
899                 return -EINVAL;
900         } else {
901                 if (args->DR4 == 0xffffffff) {
902                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
903                         args->DR4 = 0;
904                 }
905
906                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
907                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
908                         return -EINVAL;
909                 }
910         }
911
912         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
913                 DRM_DEBUG("sol reset is gen7 only\n");
914                 return -EINVAL;
915         }
916
917         ret = execlists_move_to_gpu(params->request, vmas);
918         if (ret)
919                 return ret;
920
921         if (ring == &dev_priv->ring[RCS] &&
922             instp_mode != dev_priv->relative_constants_mode) {
923                 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
924                 if (ret)
925                         return ret;
926
927                 intel_logical_ring_emit(ringbuf, MI_NOOP);
928                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
929                 intel_logical_ring_emit(ringbuf, INSTPM);
930                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
931                 intel_logical_ring_advance(ringbuf);
932
933                 dev_priv->relative_constants_mode = instp_mode;
934         }
935
936         exec_start = params->batch_obj_vm_offset +
937                      args->batch_start_offset;
938
939         ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags);
940         if (ret)
941                 return ret;
942
943         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
944
945         i915_gem_execbuffer_move_to_active(vmas, params->request);
946         i915_gem_execbuffer_retire_commands(params);
947
948         return 0;
949 }
950
951 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
952 {
953         struct drm_i915_gem_request *req, *tmp;
954         struct list_head retired_list;
955
956         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
957         if (list_empty(&ring->execlist_retired_req_list))
958                 return;
959
960         INIT_LIST_HEAD(&retired_list);
961         spin_lock_irq(&ring->execlist_lock);
962         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
963         spin_unlock_irq(&ring->execlist_lock);
964
965         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
966                 struct intel_context *ctx = req->ctx;
967                 struct drm_i915_gem_object *ctx_obj =
968                                 ctx->engine[ring->id].state;
969
970                 if (ctx_obj && (ctx != ring->default_context))
971                         intel_lr_context_unpin(ring, ctx);
972                 list_del(&req->execlist_link);
973                 i915_gem_request_unreference(req);
974         }
975 }
976
977 void intel_logical_ring_stop(struct intel_engine_cs *ring)
978 {
979         struct drm_i915_private *dev_priv = ring->dev->dev_private;
980         int ret;
981
982         if (!intel_ring_initialized(ring))
983                 return;
984
985         ret = intel_ring_idle(ring);
986         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
987                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
988                           ring->name, ret);
989
990         /* TODO: Is this correct with Execlists enabled? */
991         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
992         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
993                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
994                 return;
995         }
996         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
997 }
998
999 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1000 {
1001         struct intel_engine_cs *ring = req->ring;
1002         int ret;
1003
1004         if (!ring->gpu_caches_dirty)
1005                 return 0;
1006
1007         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1008         if (ret)
1009                 return ret;
1010
1011         ring->gpu_caches_dirty = false;
1012         return 0;
1013 }
1014
1015 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1016                 struct intel_context *ctx)
1017 {
1018         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1019         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1020         int ret = 0;
1021
1022         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1023         if (ctx->engine[ring->id].pin_count++ == 0) {
1024                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1025                                 GEN8_LR_CONTEXT_ALIGN, 0);
1026                 if (ret)
1027                         goto reset_pin_count;
1028
1029                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1030                 if (ret)
1031                         goto unpin_ctx_obj;
1032         }
1033
1034         return ret;
1035
1036 unpin_ctx_obj:
1037         i915_gem_object_ggtt_unpin(ctx_obj);
1038 reset_pin_count:
1039         ctx->engine[ring->id].pin_count = 0;
1040
1041         return ret;
1042 }
1043
1044 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1045                 struct intel_context *ctx)
1046 {
1047         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1048         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1049
1050         if (ctx_obj) {
1051                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1052                 if (--ctx->engine[ring->id].pin_count == 0) {
1053                         intel_unpin_ringbuffer_obj(ringbuf);
1054                         i915_gem_object_ggtt_unpin(ctx_obj);
1055                 }
1056         }
1057 }
1058
1059 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1060 {
1061         int ret, i;
1062         struct intel_engine_cs *ring = req->ring;
1063         struct intel_ringbuffer *ringbuf = req->ringbuf;
1064         struct drm_device *dev = ring->dev;
1065         struct drm_i915_private *dev_priv = dev->dev_private;
1066         struct i915_workarounds *w = &dev_priv->workarounds;
1067
1068         if (WARN_ON_ONCE(w->count == 0))
1069                 return 0;
1070
1071         ring->gpu_caches_dirty = true;
1072         ret = logical_ring_flush_all_caches(req);
1073         if (ret)
1074                 return ret;
1075
1076         ret = intel_logical_ring_begin(ringbuf, req->ctx, w->count * 2 + 2);
1077         if (ret)
1078                 return ret;
1079
1080         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1081         for (i = 0; i < w->count; i++) {
1082                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1083                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1084         }
1085         intel_logical_ring_emit(ringbuf, MI_NOOP);
1086
1087         intel_logical_ring_advance(ringbuf);
1088
1089         ring->gpu_caches_dirty = true;
1090         ret = logical_ring_flush_all_caches(req);
1091         if (ret)
1092                 return ret;
1093
1094         return 0;
1095 }
1096
1097 #define wa_ctx_emit(batch, cmd)                                         \
1098         do {                                                            \
1099                 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1100                         return -ENOSPC;                                 \
1101                 }                                                       \
1102                 batch[index++] = (cmd);                                 \
1103         } while (0)
1104
1105 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1106                                     uint32_t offset,
1107                                     uint32_t start_alignment)
1108 {
1109         return wa_ctx->offset = ALIGN(offset, start_alignment);
1110 }
1111
1112 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1113                              uint32_t offset,
1114                              uint32_t size_alignment)
1115 {
1116         wa_ctx->size = offset - wa_ctx->offset;
1117
1118         WARN(wa_ctx->size % size_alignment,
1119              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1120              wa_ctx->size, size_alignment);
1121         return 0;
1122 }
1123
1124 /**
1125  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1126  *
1127  * @ring: only applicable for RCS
1128  * @wa_ctx: structure representing wa_ctx
1129  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1130  *    with the offset value received as input.
1131  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1132  * @batch: page in which WA are loaded
1133  * @offset: This field specifies the start of the batch, it should be
1134  *  cache-aligned otherwise it is adjusted accordingly.
1135  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1136  *  initialized at the beginning and shared across all contexts but this field
1137  *  helps us to have multiple batches at different offsets and select them based
1138  *  on a criteria. At the moment this batch always start at the beginning of the page
1139  *  and at this point we don't have multiple wa_ctx batch buffers.
1140  *
1141  *  The number of WA applied are not known at the beginning; we use this field
1142  *  to return the no of DWORDS written.
1143
1144  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1145  *  so it adds NOOPs as padding to make it cacheline aligned.
1146  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1147  *  makes a complete batch buffer.
1148  *
1149  * Return: non-zero if we exceed the PAGE_SIZE limit.
1150  */
1151
1152 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1153                                     struct i915_wa_ctx_bb *wa_ctx,
1154                                     uint32_t *const batch,
1155                                     uint32_t *offset)
1156 {
1157         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1158
1159         /* WaDisableCtxRestoreArbitration:bdw,chv */
1160         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1161
1162         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1163         if (IS_BROADWELL(ring->dev)) {
1164                 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1165                 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1166                                          GEN8_LQSC_FLUSH_COHERENT_LINES);
1167
1168                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1169                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1170                 wa_ctx_emit(batch, l3sqc4_flush);
1171
1172                 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1173                 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1174                                     PIPE_CONTROL_DC_FLUSH_ENABLE));
1175                 wa_ctx_emit(batch, 0);
1176                 wa_ctx_emit(batch, 0);
1177                 wa_ctx_emit(batch, 0);
1178                 wa_ctx_emit(batch, 0);
1179
1180                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1181                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1182                 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1183         }
1184
1185         /* Pad to end of cacheline */
1186         while (index % CACHELINE_DWORDS)
1187                 wa_ctx_emit(batch, MI_NOOP);
1188
1189         /*
1190          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1191          * execution depends on the length specified in terms of cache lines
1192          * in the register CTX_RCS_INDIRECT_CTX
1193          */
1194
1195         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1196 }
1197
1198 /**
1199  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1200  *
1201  * @ring: only applicable for RCS
1202  * @wa_ctx: structure representing wa_ctx
1203  *  offset: specifies start of the batch, should be cache-aligned.
1204  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1205  * @offset: This field specifies the start of this batch.
1206  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1207  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1208  *
1209  *   The number of DWORDS written are returned using this field.
1210  *
1211  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1212  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1213  */
1214 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1215                                struct i915_wa_ctx_bb *wa_ctx,
1216                                uint32_t *const batch,
1217                                uint32_t *offset)
1218 {
1219         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1220
1221         /* WaDisableCtxRestoreArbitration:bdw,chv */
1222         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1223
1224         wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1225
1226         return wa_ctx_end(wa_ctx, *offset = index, 1);
1227 }
1228
1229 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1230 {
1231         int ret;
1232
1233         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1234         if (!ring->wa_ctx.obj) {
1235                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1236                 return -ENOMEM;
1237         }
1238
1239         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1240         if (ret) {
1241                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1242                                  ret);
1243                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1244                 return ret;
1245         }
1246
1247         return 0;
1248 }
1249
1250 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1251 {
1252         if (ring->wa_ctx.obj) {
1253                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1254                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1255                 ring->wa_ctx.obj = NULL;
1256         }
1257 }
1258
1259 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1260 {
1261         int ret;
1262         uint32_t *batch;
1263         uint32_t offset;
1264         struct page *page;
1265         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1266
1267         WARN_ON(ring->id != RCS);
1268
1269         /* some WA perform writes to scratch page, ensure it is valid */
1270         if (ring->scratch.obj == NULL) {
1271                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1272                 return -EINVAL;
1273         }
1274
1275         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1276         if (ret) {
1277                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1278                 return ret;
1279         }
1280
1281         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1282         batch = kmap_atomic(page);
1283         offset = 0;
1284
1285         if (INTEL_INFO(ring->dev)->gen == 8) {
1286                 ret = gen8_init_indirectctx_bb(ring,
1287                                                &wa_ctx->indirect_ctx,
1288                                                batch,
1289                                                &offset);
1290                 if (ret)
1291                         goto out;
1292
1293                 ret = gen8_init_perctx_bb(ring,
1294                                           &wa_ctx->per_ctx,
1295                                           batch,
1296                                           &offset);
1297                 if (ret)
1298                         goto out;
1299         } else {
1300                 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1301                      "WA batch buffer is not initialized for Gen%d\n",
1302                      INTEL_INFO(ring->dev)->gen);
1303                 lrc_destroy_wa_ctx_obj(ring);
1304         }
1305
1306 out:
1307         kunmap_atomic(batch);
1308         if (ret)
1309                 lrc_destroy_wa_ctx_obj(ring);
1310
1311         return ret;
1312 }
1313
1314 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1315 {
1316         struct drm_device *dev = ring->dev;
1317         struct drm_i915_private *dev_priv = dev->dev_private;
1318
1319         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1320         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1321
1322         I915_WRITE(RING_MODE_GEN7(ring),
1323                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1324                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1325         POSTING_READ(RING_MODE_GEN7(ring));
1326         ring->next_context_status_buffer = 0;
1327         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1328
1329         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1330
1331         return 0;
1332 }
1333
1334 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1335 {
1336         struct drm_device *dev = ring->dev;
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         int ret;
1339
1340         ret = gen8_init_common_ring(ring);
1341         if (ret)
1342                 return ret;
1343
1344         /* We need to disable the AsyncFlip performance optimisations in order
1345          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1346          * programmed to '1' on all products.
1347          *
1348          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1349          */
1350         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1351
1352         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1353
1354         return init_workarounds_ring(ring);
1355 }
1356
1357 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1358 {
1359         int ret;
1360
1361         ret = gen8_init_common_ring(ring);
1362         if (ret)
1363                 return ret;
1364
1365         return init_workarounds_ring(ring);
1366 }
1367
1368 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1369                               struct intel_context *ctx,
1370                               u64 offset, unsigned dispatch_flags)
1371 {
1372         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1373         int ret;
1374
1375         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1376         if (ret)
1377                 return ret;
1378
1379         /* FIXME(BDW): Address space and security selectors. */
1380         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1381         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1382         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1383         intel_logical_ring_emit(ringbuf, MI_NOOP);
1384         intel_logical_ring_advance(ringbuf);
1385
1386         return 0;
1387 }
1388
1389 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1390 {
1391         struct drm_device *dev = ring->dev;
1392         struct drm_i915_private *dev_priv = dev->dev_private;
1393         unsigned long flags;
1394
1395         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1396                 return false;
1397
1398         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1399         if (ring->irq_refcount++ == 0) {
1400                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1401                 POSTING_READ(RING_IMR(ring->mmio_base));
1402         }
1403         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1404
1405         return true;
1406 }
1407
1408 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1409 {
1410         struct drm_device *dev = ring->dev;
1411         struct drm_i915_private *dev_priv = dev->dev_private;
1412         unsigned long flags;
1413
1414         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1415         if (--ring->irq_refcount == 0) {
1416                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1417                 POSTING_READ(RING_IMR(ring->mmio_base));
1418         }
1419         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1420 }
1421
1422 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1423                            u32 invalidate_domains,
1424                            u32 unused)
1425 {
1426         struct intel_ringbuffer *ringbuf = request->ringbuf;
1427         struct intel_engine_cs *ring = ringbuf->ring;
1428         struct drm_device *dev = ring->dev;
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430         uint32_t cmd;
1431         int ret;
1432
1433         ret = intel_logical_ring_begin(ringbuf, request->ctx, 4);
1434         if (ret)
1435                 return ret;
1436
1437         cmd = MI_FLUSH_DW + 1;
1438
1439         /* We always require a command barrier so that subsequent
1440          * commands, such as breadcrumb interrupts, are strictly ordered
1441          * wrt the contents of the write cache being flushed to memory
1442          * (and thus being coherent from the CPU).
1443          */
1444         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1445
1446         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1447                 cmd |= MI_INVALIDATE_TLB;
1448                 if (ring == &dev_priv->ring[VCS])
1449                         cmd |= MI_INVALIDATE_BSD;
1450         }
1451
1452         intel_logical_ring_emit(ringbuf, cmd);
1453         intel_logical_ring_emit(ringbuf,
1454                                 I915_GEM_HWS_SCRATCH_ADDR |
1455                                 MI_FLUSH_DW_USE_GTT);
1456         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1457         intel_logical_ring_emit(ringbuf, 0); /* value */
1458         intel_logical_ring_advance(ringbuf);
1459
1460         return 0;
1461 }
1462
1463 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1464                                   u32 invalidate_domains,
1465                                   u32 flush_domains)
1466 {
1467         struct intel_ringbuffer *ringbuf = request->ringbuf;
1468         struct intel_engine_cs *ring = ringbuf->ring;
1469         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1470         bool vf_flush_wa;
1471         u32 flags = 0;
1472         int ret;
1473
1474         flags |= PIPE_CONTROL_CS_STALL;
1475
1476         if (flush_domains) {
1477                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1478                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1479         }
1480
1481         if (invalidate_domains) {
1482                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1483                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1484                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1485                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1486                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1487                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1488                 flags |= PIPE_CONTROL_QW_WRITE;
1489                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1490         }
1491
1492         /*
1493          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1494          * control.
1495          */
1496         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1497                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1498
1499         ret = intel_logical_ring_begin(ringbuf, request->ctx, vf_flush_wa ? 12 : 6);
1500         if (ret)
1501                 return ret;
1502
1503         if (vf_flush_wa) {
1504                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1505                 intel_logical_ring_emit(ringbuf, 0);
1506                 intel_logical_ring_emit(ringbuf, 0);
1507                 intel_logical_ring_emit(ringbuf, 0);
1508                 intel_logical_ring_emit(ringbuf, 0);
1509                 intel_logical_ring_emit(ringbuf, 0);
1510         }
1511
1512         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1513         intel_logical_ring_emit(ringbuf, flags);
1514         intel_logical_ring_emit(ringbuf, scratch_addr);
1515         intel_logical_ring_emit(ringbuf, 0);
1516         intel_logical_ring_emit(ringbuf, 0);
1517         intel_logical_ring_emit(ringbuf, 0);
1518         intel_logical_ring_advance(ringbuf);
1519
1520         return 0;
1521 }
1522
1523 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1524 {
1525         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1526 }
1527
1528 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1529 {
1530         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1531 }
1532
1533 static int gen8_emit_request(struct drm_i915_gem_request *request)
1534 {
1535         struct intel_ringbuffer *ringbuf = request->ringbuf;
1536         struct intel_engine_cs *ring = ringbuf->ring;
1537         u32 cmd;
1538         int ret;
1539
1540         /*
1541          * Reserve space for 2 NOOPs at the end of each request to be
1542          * used as a workaround for not being allowed to do lite
1543          * restore with HEAD==TAIL (WaIdleLiteRestore).
1544          */
1545         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1546         if (ret)
1547                 return ret;
1548
1549         cmd = MI_STORE_DWORD_IMM_GEN4;
1550         cmd |= MI_GLOBAL_GTT;
1551
1552         intel_logical_ring_emit(ringbuf, cmd);
1553         intel_logical_ring_emit(ringbuf,
1554                                 (ring->status_page.gfx_addr +
1555                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1556         intel_logical_ring_emit(ringbuf, 0);
1557         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1558         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1559         intel_logical_ring_emit(ringbuf, MI_NOOP);
1560         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1561
1562         /*
1563          * Here we add two extra NOOPs as padding to avoid
1564          * lite restore of a context with HEAD==TAIL.
1565          */
1566         intel_logical_ring_emit(ringbuf, MI_NOOP);
1567         intel_logical_ring_emit(ringbuf, MI_NOOP);
1568         intel_logical_ring_advance(ringbuf);
1569
1570         return 0;
1571 }
1572
1573 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1574 {
1575         struct render_state so;
1576         int ret;
1577
1578         ret = i915_gem_render_state_prepare(req->ring, &so);
1579         if (ret)
1580                 return ret;
1581
1582         if (so.rodata == NULL)
1583                 return 0;
1584
1585         ret = req->ring->emit_bb_start(req->ringbuf,
1586                                        req->ctx,
1587                                        so.ggtt_offset,
1588                                        I915_DISPATCH_SECURE);
1589         if (ret)
1590                 goto out;
1591
1592         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1593
1594 out:
1595         i915_gem_render_state_fini(&so);
1596         return ret;
1597 }
1598
1599 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1600 {
1601         int ret;
1602
1603         ret = intel_logical_ring_workarounds_emit(req);
1604         if (ret)
1605                 return ret;
1606
1607         return intel_lr_context_render_state_init(req);
1608 }
1609
1610 /**
1611  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1612  *
1613  * @ring: Engine Command Streamer.
1614  *
1615  */
1616 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1617 {
1618         struct drm_i915_private *dev_priv;
1619
1620         if (!intel_ring_initialized(ring))
1621                 return;
1622
1623         dev_priv = ring->dev->dev_private;
1624
1625         intel_logical_ring_stop(ring);
1626         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1627         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1628
1629         if (ring->cleanup)
1630                 ring->cleanup(ring);
1631
1632         i915_cmd_parser_fini_ring(ring);
1633         i915_gem_batch_pool_fini(&ring->batch_pool);
1634
1635         if (ring->status_page.obj) {
1636                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1637                 ring->status_page.obj = NULL;
1638         }
1639
1640         lrc_destroy_wa_ctx_obj(ring);
1641 }
1642
1643 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1644 {
1645         int ret;
1646
1647         /* Intentionally left blank. */
1648         ring->buffer = NULL;
1649
1650         ring->dev = dev;
1651         INIT_LIST_HEAD(&ring->active_list);
1652         INIT_LIST_HEAD(&ring->request_list);
1653         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1654         init_waitqueue_head(&ring->irq_queue);
1655
1656         INIT_LIST_HEAD(&ring->execlist_queue);
1657         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1658         spin_lock_init(&ring->execlist_lock);
1659
1660         ret = i915_cmd_parser_init_ring(ring);
1661         if (ret)
1662                 return ret;
1663
1664         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1665
1666         return ret;
1667 }
1668
1669 static int logical_render_ring_init(struct drm_device *dev)
1670 {
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1673         int ret;
1674
1675         ring->name = "render ring";
1676         ring->id = RCS;
1677         ring->mmio_base = RENDER_RING_BASE;
1678         ring->irq_enable_mask =
1679                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1680         ring->irq_keep_mask =
1681                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1682         if (HAS_L3_DPF(dev))
1683                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1684
1685         if (INTEL_INFO(dev)->gen >= 9)
1686                 ring->init_hw = gen9_init_render_ring;
1687         else
1688                 ring->init_hw = gen8_init_render_ring;
1689         ring->init_context = gen8_init_rcs_context;
1690         ring->cleanup = intel_fini_pipe_control;
1691         ring->get_seqno = gen8_get_seqno;
1692         ring->set_seqno = gen8_set_seqno;
1693         ring->emit_request = gen8_emit_request;
1694         ring->emit_flush = gen8_emit_flush_render;
1695         ring->irq_get = gen8_logical_ring_get_irq;
1696         ring->irq_put = gen8_logical_ring_put_irq;
1697         ring->emit_bb_start = gen8_emit_bb_start;
1698
1699         ring->dev = dev;
1700
1701         ret = intel_init_pipe_control(ring);
1702         if (ret)
1703                 return ret;
1704
1705         ret = intel_init_workaround_bb(ring);
1706         if (ret) {
1707                 /*
1708                  * We continue even if we fail to initialize WA batch
1709                  * because we only expect rare glitches but nothing
1710                  * critical to prevent us from using GPU
1711                  */
1712                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1713                           ret);
1714         }
1715
1716         ret = logical_ring_init(dev, ring);
1717         if (ret) {
1718                 lrc_destroy_wa_ctx_obj(ring);
1719         }
1720
1721         return ret;
1722 }
1723
1724 static int logical_bsd_ring_init(struct drm_device *dev)
1725 {
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1728
1729         ring->name = "bsd ring";
1730         ring->id = VCS;
1731         ring->mmio_base = GEN6_BSD_RING_BASE;
1732         ring->irq_enable_mask =
1733                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1734         ring->irq_keep_mask =
1735                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1736
1737         ring->init_hw = gen8_init_common_ring;
1738         ring->get_seqno = gen8_get_seqno;
1739         ring->set_seqno = gen8_set_seqno;
1740         ring->emit_request = gen8_emit_request;
1741         ring->emit_flush = gen8_emit_flush;
1742         ring->irq_get = gen8_logical_ring_get_irq;
1743         ring->irq_put = gen8_logical_ring_put_irq;
1744         ring->emit_bb_start = gen8_emit_bb_start;
1745
1746         return logical_ring_init(dev, ring);
1747 }
1748
1749 static int logical_bsd2_ring_init(struct drm_device *dev)
1750 {
1751         struct drm_i915_private *dev_priv = dev->dev_private;
1752         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1753
1754         ring->name = "bds2 ring";
1755         ring->id = VCS2;
1756         ring->mmio_base = GEN8_BSD2_RING_BASE;
1757         ring->irq_enable_mask =
1758                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1759         ring->irq_keep_mask =
1760                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1761
1762         ring->init_hw = gen8_init_common_ring;
1763         ring->get_seqno = gen8_get_seqno;
1764         ring->set_seqno = gen8_set_seqno;
1765         ring->emit_request = gen8_emit_request;
1766         ring->emit_flush = gen8_emit_flush;
1767         ring->irq_get = gen8_logical_ring_get_irq;
1768         ring->irq_put = gen8_logical_ring_put_irq;
1769         ring->emit_bb_start = gen8_emit_bb_start;
1770
1771         return logical_ring_init(dev, ring);
1772 }
1773
1774 static int logical_blt_ring_init(struct drm_device *dev)
1775 {
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1778
1779         ring->name = "blitter ring";
1780         ring->id = BCS;
1781         ring->mmio_base = BLT_RING_BASE;
1782         ring->irq_enable_mask =
1783                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1784         ring->irq_keep_mask =
1785                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1786
1787         ring->init_hw = gen8_init_common_ring;
1788         ring->get_seqno = gen8_get_seqno;
1789         ring->set_seqno = gen8_set_seqno;
1790         ring->emit_request = gen8_emit_request;
1791         ring->emit_flush = gen8_emit_flush;
1792         ring->irq_get = gen8_logical_ring_get_irq;
1793         ring->irq_put = gen8_logical_ring_put_irq;
1794         ring->emit_bb_start = gen8_emit_bb_start;
1795
1796         return logical_ring_init(dev, ring);
1797 }
1798
1799 static int logical_vebox_ring_init(struct drm_device *dev)
1800 {
1801         struct drm_i915_private *dev_priv = dev->dev_private;
1802         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1803
1804         ring->name = "video enhancement ring";
1805         ring->id = VECS;
1806         ring->mmio_base = VEBOX_RING_BASE;
1807         ring->irq_enable_mask =
1808                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1809         ring->irq_keep_mask =
1810                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1811
1812         ring->init_hw = gen8_init_common_ring;
1813         ring->get_seqno = gen8_get_seqno;
1814         ring->set_seqno = gen8_set_seqno;
1815         ring->emit_request = gen8_emit_request;
1816         ring->emit_flush = gen8_emit_flush;
1817         ring->irq_get = gen8_logical_ring_get_irq;
1818         ring->irq_put = gen8_logical_ring_put_irq;
1819         ring->emit_bb_start = gen8_emit_bb_start;
1820
1821         return logical_ring_init(dev, ring);
1822 }
1823
1824 /**
1825  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1826  * @dev: DRM device.
1827  *
1828  * This function inits the engines for an Execlists submission style (the equivalent in the
1829  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1830  * those engines that are present in the hardware.
1831  *
1832  * Return: non-zero if the initialization failed.
1833  */
1834 int intel_logical_rings_init(struct drm_device *dev)
1835 {
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837         int ret;
1838
1839         ret = logical_render_ring_init(dev);
1840         if (ret)
1841                 return ret;
1842
1843         if (HAS_BSD(dev)) {
1844                 ret = logical_bsd_ring_init(dev);
1845                 if (ret)
1846                         goto cleanup_render_ring;
1847         }
1848
1849         if (HAS_BLT(dev)) {
1850                 ret = logical_blt_ring_init(dev);
1851                 if (ret)
1852                         goto cleanup_bsd_ring;
1853         }
1854
1855         if (HAS_VEBOX(dev)) {
1856                 ret = logical_vebox_ring_init(dev);
1857                 if (ret)
1858                         goto cleanup_blt_ring;
1859         }
1860
1861         if (HAS_BSD2(dev)) {
1862                 ret = logical_bsd2_ring_init(dev);
1863                 if (ret)
1864                         goto cleanup_vebox_ring;
1865         }
1866
1867         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1868         if (ret)
1869                 goto cleanup_bsd2_ring;
1870
1871         return 0;
1872
1873 cleanup_bsd2_ring:
1874         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1875 cleanup_vebox_ring:
1876         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1877 cleanup_blt_ring:
1878         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1879 cleanup_bsd_ring:
1880         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1881 cleanup_render_ring:
1882         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1883
1884         return ret;
1885 }
1886
1887 static u32
1888 make_rpcs(struct drm_device *dev)
1889 {
1890         u32 rpcs = 0;
1891
1892         /*
1893          * No explicit RPCS request is needed to ensure full
1894          * slice/subslice/EU enablement prior to Gen9.
1895         */
1896         if (INTEL_INFO(dev)->gen < 9)
1897                 return 0;
1898
1899         /*
1900          * Starting in Gen9, render power gating can leave
1901          * slice/subslice/EU in a partially enabled state. We
1902          * must make an explicit request through RPCS for full
1903          * enablement.
1904         */
1905         if (INTEL_INFO(dev)->has_slice_pg) {
1906                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1907                 rpcs |= INTEL_INFO(dev)->slice_total <<
1908                         GEN8_RPCS_S_CNT_SHIFT;
1909                 rpcs |= GEN8_RPCS_ENABLE;
1910         }
1911
1912         if (INTEL_INFO(dev)->has_subslice_pg) {
1913                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1914                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1915                         GEN8_RPCS_SS_CNT_SHIFT;
1916                 rpcs |= GEN8_RPCS_ENABLE;
1917         }
1918
1919         if (INTEL_INFO(dev)->has_eu_pg) {
1920                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1921                         GEN8_RPCS_EU_MIN_SHIFT;
1922                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1923                         GEN8_RPCS_EU_MAX_SHIFT;
1924                 rpcs |= GEN8_RPCS_ENABLE;
1925         }
1926
1927         return rpcs;
1928 }
1929
1930 static int
1931 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1932                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1933 {
1934         struct drm_device *dev = ring->dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1937         struct page *page;
1938         uint32_t *reg_state;
1939         int ret;
1940
1941         if (!ppgtt)
1942                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1943
1944         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1945         if (ret) {
1946                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1947                 return ret;
1948         }
1949
1950         ret = i915_gem_object_get_pages(ctx_obj);
1951         if (ret) {
1952                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1953                 return ret;
1954         }
1955
1956         i915_gem_object_pin_pages(ctx_obj);
1957
1958         /* The second page of the context object contains some fields which must
1959          * be set up prior to the first execution. */
1960         page = i915_gem_object_get_page(ctx_obj, 1);
1961         reg_state = kmap_atomic(page);
1962
1963         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1964          * commands followed by (reg, value) pairs. The values we are setting here are
1965          * only for the first context restore: on a subsequent save, the GPU will
1966          * recreate this batchbuffer with new values (including all the missing
1967          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1968         if (ring->id == RCS)
1969                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1970         else
1971                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1972         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1973         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1974         reg_state[CTX_CONTEXT_CONTROL+1] =
1975                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1976                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1977         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1978         reg_state[CTX_RING_HEAD+1] = 0;
1979         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1980         reg_state[CTX_RING_TAIL+1] = 0;
1981         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1982         /* Ring buffer start address is not known until the buffer is pinned.
1983          * It is written to the context image in execlists_update_context()
1984          */
1985         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1986         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1987                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1988         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1989         reg_state[CTX_BB_HEAD_U+1] = 0;
1990         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1991         reg_state[CTX_BB_HEAD_L+1] = 0;
1992         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1993         reg_state[CTX_BB_STATE+1] = (1<<5);
1994         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1995         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1996         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1997         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1998         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1999         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2000         if (ring->id == RCS) {
2001                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2002                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2003                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2004                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2005                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2006                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2007                 if (ring->wa_ctx.obj) {
2008                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2009                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2010
2011                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2012                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2013                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2014
2015                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2016                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2017
2018                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2019                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2020                                 0x01;
2021                 }
2022         }
2023         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2024         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2025         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2026         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2027         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2028         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2029         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2030         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2031         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2032         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2033         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2034         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2035
2036         /* With dynamic page allocation, PDPs may not be allocated at this point,
2037          * Point the unallocated PDPs to the scratch page
2038          */
2039         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2040         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2041         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2042         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2043         if (ring->id == RCS) {
2044                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2045                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2046                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2047         }
2048
2049         kunmap_atomic(reg_state);
2050
2051         ctx_obj->dirty = 1;
2052         set_page_dirty(page);
2053         i915_gem_object_unpin_pages(ctx_obj);
2054
2055         return 0;
2056 }
2057
2058 /**
2059  * intel_lr_context_free() - free the LRC specific bits of a context
2060  * @ctx: the LR context to free.
2061  *
2062  * The real context freeing is done in i915_gem_context_free: this only
2063  * takes care of the bits that are LRC related: the per-engine backing
2064  * objects and the logical ringbuffer.
2065  */
2066 void intel_lr_context_free(struct intel_context *ctx)
2067 {
2068         int i;
2069
2070         for (i = 0; i < I915_NUM_RINGS; i++) {
2071                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2072
2073                 if (ctx_obj) {
2074                         struct intel_ringbuffer *ringbuf =
2075                                         ctx->engine[i].ringbuf;
2076                         struct intel_engine_cs *ring = ringbuf->ring;
2077
2078                         if (ctx == ring->default_context) {
2079                                 intel_unpin_ringbuffer_obj(ringbuf);
2080                                 i915_gem_object_ggtt_unpin(ctx_obj);
2081                         }
2082                         WARN_ON(ctx->engine[ring->id].pin_count);
2083                         intel_destroy_ringbuffer_obj(ringbuf);
2084                         kfree(ringbuf);
2085                         drm_gem_object_unreference(&ctx_obj->base);
2086                 }
2087         }
2088 }
2089
2090 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2091 {
2092         int ret = 0;
2093
2094         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2095
2096         switch (ring->id) {
2097         case RCS:
2098                 if (INTEL_INFO(ring->dev)->gen >= 9)
2099                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2100                 else
2101                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2102                 break;
2103         case VCS:
2104         case BCS:
2105         case VECS:
2106         case VCS2:
2107                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2108                 break;
2109         }
2110
2111         return ret;
2112 }
2113
2114 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2115                 struct drm_i915_gem_object *default_ctx_obj)
2116 {
2117         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2118
2119         /* The status page is offset 0 from the default context object
2120          * in LRC mode. */
2121         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2122         ring->status_page.page_addr =
2123                         kmap(sg_page(default_ctx_obj->pages->sgl));
2124         ring->status_page.obj = default_ctx_obj;
2125
2126         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2127                         (u32)ring->status_page.gfx_addr);
2128         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2129 }
2130
2131 /**
2132  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2133  * @ctx: LR context to create.
2134  * @ring: engine to be used with the context.
2135  *
2136  * This function can be called more than once, with different engines, if we plan
2137  * to use the context with them. The context backing objects and the ringbuffers
2138  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2139  * the creation is a deferred call: it's better to make sure first that we need to use
2140  * a given ring with the context.
2141  *
2142  * Return: non-zero on error.
2143  */
2144 int intel_lr_context_deferred_create(struct intel_context *ctx,
2145                                      struct intel_engine_cs *ring)
2146 {
2147         const bool is_global_default_ctx = (ctx == ring->default_context);
2148         struct drm_device *dev = ring->dev;
2149         struct drm_i915_gem_object *ctx_obj;
2150         uint32_t context_size;
2151         struct intel_ringbuffer *ringbuf;
2152         int ret;
2153
2154         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2155         WARN_ON(ctx->engine[ring->id].state);
2156
2157         context_size = round_up(get_lr_context_size(ring), 4096);
2158
2159         ctx_obj = i915_gem_alloc_object(dev, context_size);
2160         if (!ctx_obj) {
2161                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2162                 return -ENOMEM;
2163         }
2164
2165         if (is_global_default_ctx) {
2166                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2167                 if (ret) {
2168                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2169                                         ret);
2170                         drm_gem_object_unreference(&ctx_obj->base);
2171                         return ret;
2172                 }
2173         }
2174
2175         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2176         if (!ringbuf) {
2177                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178                                 ring->name);
2179                 ret = -ENOMEM;
2180                 goto error_unpin_ctx;
2181         }
2182
2183         ringbuf->ring = ring;
2184
2185         ringbuf->size = 32 * PAGE_SIZE;
2186         ringbuf->effective_size = ringbuf->size;
2187         ringbuf->head = 0;
2188         ringbuf->tail = 0;
2189         ringbuf->last_retired_head = -1;
2190         intel_ring_update_space(ringbuf);
2191
2192         if (ringbuf->obj == NULL) {
2193                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2194                 if (ret) {
2195                         DRM_DEBUG_DRIVER(
2196                                 "Failed to allocate ringbuffer obj %s: %d\n",
2197                                 ring->name, ret);
2198                         goto error_free_rbuf;
2199                 }
2200
2201                 if (is_global_default_ctx) {
2202                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2203                         if (ret) {
2204                                 DRM_ERROR(
2205                                         "Failed to pin and map ringbuffer %s: %d\n",
2206                                         ring->name, ret);
2207                                 goto error_destroy_rbuf;
2208                         }
2209                 }
2210
2211         }
2212
2213         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2214         if (ret) {
2215                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2216                 goto error;
2217         }
2218
2219         ctx->engine[ring->id].ringbuf = ringbuf;
2220         ctx->engine[ring->id].state = ctx_obj;
2221
2222         if (ctx == ring->default_context)
2223                 lrc_setup_hardware_status_page(ring, ctx_obj);
2224         else if (ring->id == RCS && !ctx->rcs_initialized) {
2225                 if (ring->init_context) {
2226                         struct drm_i915_gem_request *req;
2227
2228                         ret = i915_gem_request_alloc(ring, ctx, &req);
2229                         if (ret)
2230                                 return ret;
2231
2232                         ret = ring->init_context(req);
2233                         if (ret) {
2234                                 DRM_ERROR("ring init context: %d\n", ret);
2235                                 i915_gem_request_cancel(req);
2236                                 ctx->engine[ring->id].ringbuf = NULL;
2237                                 ctx->engine[ring->id].state = NULL;
2238                                 goto error;
2239                         }
2240
2241                         i915_add_request_no_flush(req);
2242                 }
2243
2244                 ctx->rcs_initialized = true;
2245         }
2246
2247         return 0;
2248
2249 error:
2250         if (is_global_default_ctx)
2251                 intel_unpin_ringbuffer_obj(ringbuf);
2252 error_destroy_rbuf:
2253         intel_destroy_ringbuffer_obj(ringbuf);
2254 error_free_rbuf:
2255         kfree(ringbuf);
2256 error_unpin_ctx:
2257         if (is_global_default_ctx)
2258                 i915_gem_object_ggtt_unpin(ctx_obj);
2259         drm_gem_object_unreference(&ctx_obj->base);
2260         return ret;
2261 }
2262
2263 void intel_lr_context_reset(struct drm_device *dev,
2264                         struct intel_context *ctx)
2265 {
2266         struct drm_i915_private *dev_priv = dev->dev_private;
2267         struct intel_engine_cs *ring;
2268         int i;
2269
2270         for_each_ring(ring, dev_priv, i) {
2271                 struct drm_i915_gem_object *ctx_obj =
2272                                 ctx->engine[ring->id].state;
2273                 struct intel_ringbuffer *ringbuf =
2274                                 ctx->engine[ring->id].ringbuf;
2275                 uint32_t *reg_state;
2276                 struct page *page;
2277
2278                 if (!ctx_obj)
2279                         continue;
2280
2281                 if (i915_gem_object_get_pages(ctx_obj)) {
2282                         WARN(1, "Failed get_pages for context obj\n");
2283                         continue;
2284                 }
2285                 page = i915_gem_object_get_page(ctx_obj, 1);
2286                 reg_state = kmap_atomic(page);
2287
2288                 reg_state[CTX_RING_HEAD+1] = 0;
2289                 reg_state[CTX_RING_TAIL+1] = 0;
2290
2291                 kunmap_atomic(reg_state);
2292
2293                 ringbuf->head = 0;
2294                 ringbuf->tail = 0;
2295         }
2296 }