aa12a595a309e696a40cb482ff8ff37f2714e273
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215
216 static int intel_lr_context_pin(struct intel_engine_cs *ring,
217                 struct intel_context *ctx);
218
219 /**
220  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
221  * @dev: DRM device.
222  * @enable_execlists: value of i915.enable_execlists module parameter.
223  *
224  * Only certain platforms support Execlists (the prerequisites being
225  * support for Logical Ring Contexts and Aliasing PPGTT or better).
226  *
227  * Return: 1 if Execlists is supported and has to be enabled.
228  */
229 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
230 {
231         WARN_ON(i915.enable_ppgtt == -1);
232
233         if (INTEL_INFO(dev)->gen >= 9)
234                 return 1;
235
236         if (enable_execlists == 0)
237                 return 0;
238
239         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
240             i915.use_mmio_flip >= 0)
241                 return 1;
242
243         return 0;
244 }
245
246 /**
247  * intel_execlists_ctx_id() - get the Execlists Context ID
248  * @ctx_obj: Logical Ring Context backing object.
249  *
250  * Do not confuse with ctx->id! Unfortunately we have a name overload
251  * here: the old context ID we pass to userspace as a handler so that
252  * they can refer to a context, and the new context ID we pass to the
253  * ELSP so that the GPU can inform us of the context status via
254  * interrupts.
255  *
256  * Return: 20-bits globally unique context ID.
257  */
258 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
259 {
260         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
261
262         /* LRCA is required to be 4K aligned so the more significant 20 bits
263          * are globally unique */
264         return lrca >> 12;
265 }
266
267 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
268                                          struct drm_i915_gem_object *ctx_obj)
269 {
270         struct drm_device *dev = ring->dev;
271         uint64_t desc;
272         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276         desc = GEN8_CTX_VALID;
277         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278         if (IS_GEN8(ctx_obj->base.dev))
279                 desc |= GEN8_CTX_L3LLC_COHERENT;
280         desc |= GEN8_CTX_PRIVILEGE;
281         desc |= lrca;
282         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         if (IS_GEN9(dev) &&
290             INTEL_REVID(dev) <= SKL_REVID_B0 &&
291             (ring->id == BCS || ring->id == VCS ||
292             ring->id == VECS || ring->id == VCS2))
293                 desc |= GEN8_CTX_FORCE_RESTORE;
294
295         return desc;
296 }
297
298 static void execlists_elsp_write(struct intel_engine_cs *ring,
299                                  struct drm_i915_gem_object *ctx_obj0,
300                                  struct drm_i915_gem_object *ctx_obj1)
301 {
302         struct drm_device *dev = ring->dev;
303         struct drm_i915_private *dev_priv = dev->dev_private;
304         uint64_t temp = 0;
305         uint32_t desc[4];
306
307         /* XXX: You must always write both descriptors in the order below. */
308         if (ctx_obj1)
309                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
310         else
311                 temp = 0;
312         desc[1] = (u32)(temp >> 32);
313         desc[0] = (u32)temp;
314
315         temp = execlists_ctx_descriptor(ring, ctx_obj0);
316         desc[3] = (u32)(temp >> 32);
317         desc[2] = (u32)temp;
318
319         spin_lock(&dev_priv->uncore.lock);
320         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
321         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
323         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
324
325         /* The context is automatically loaded after the following */
326         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
327
328         /* ELSP is a wo register, so use another nearby reg for posting instead */
329         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
330         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
331         spin_unlock(&dev_priv->uncore.lock);
332 }
333
334 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
335                                     struct drm_i915_gem_object *ring_obj,
336                                     struct i915_hw_ppgtt *ppgtt,
337                                     u32 tail)
338 {
339         struct page *page;
340         uint32_t *reg_state;
341
342         page = i915_gem_object_get_page(ctx_obj, 1);
343         reg_state = kmap_atomic(page);
344
345         reg_state[CTX_RING_TAIL+1] = tail;
346         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
347
348         /* True PPGTT with dynamic page allocation: update PDP registers and
349          * point the unallocated PDPs to the scratch page
350          */
351         if (ppgtt) {
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
355                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
356         }
357
358         kunmap_atomic(reg_state);
359
360         return 0;
361 }
362
363 static void execlists_submit_contexts(struct intel_engine_cs *ring,
364                                       struct intel_context *to0, u32 tail0,
365                                       struct intel_context *to1, u32 tail1)
366 {
367         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
368         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
369         struct drm_i915_gem_object *ctx_obj1 = NULL;
370         struct intel_ringbuffer *ringbuf1 = NULL;
371
372         BUG_ON(!ctx_obj0);
373         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
374         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
375
376         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
377
378         if (to1) {
379                 ringbuf1 = to1->engine[ring->id].ringbuf;
380                 ctx_obj1 = to1->engine[ring->id].state;
381                 BUG_ON(!ctx_obj1);
382                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
383                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
384
385                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
386         }
387
388         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
389 }
390
391 static void execlists_context_unqueue(struct intel_engine_cs *ring)
392 {
393         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
394         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
395
396         assert_spin_locked(&ring->execlist_lock);
397
398         /*
399          * If irqs are not active generate a warning as batches that finish
400          * without the irqs may get lost and a GPU Hang may occur.
401          */
402         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
403
404         if (list_empty(&ring->execlist_queue))
405                 return;
406
407         /* Try to read in pairs */
408         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
409                                  execlist_link) {
410                 if (!req0) {
411                         req0 = cursor;
412                 } else if (req0->ctx == cursor->ctx) {
413                         /* Same ctx: ignore first request, as second request
414                          * will update tail past first request's workload */
415                         cursor->elsp_submitted = req0->elsp_submitted;
416                         list_del(&req0->execlist_link);
417                         list_add_tail(&req0->execlist_link,
418                                 &ring->execlist_retired_req_list);
419                         req0 = cursor;
420                 } else {
421                         req1 = cursor;
422                         break;
423                 }
424         }
425
426         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
427                 /*
428                  * WaIdleLiteRestore: make sure we never cause a lite
429                  * restore with HEAD==TAIL
430                  */
431                 if (req0->elsp_submitted) {
432                         /*
433                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
434                          * as we resubmit the request. See gen8_emit_request()
435                          * for where we prepare the padding after the end of the
436                          * request.
437                          */
438                         struct intel_ringbuffer *ringbuf;
439
440                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
441                         req0->tail += 8;
442                         req0->tail &= ringbuf->size - 1;
443                 }
444         }
445
446         WARN_ON(req1 && req1->elsp_submitted);
447
448         execlists_submit_contexts(ring, req0->ctx, req0->tail,
449                                   req1 ? req1->ctx : NULL,
450                                   req1 ? req1->tail : 0);
451
452         req0->elsp_submitted++;
453         if (req1)
454                 req1->elsp_submitted++;
455 }
456
457 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
458                                            u32 request_id)
459 {
460         struct drm_i915_gem_request *head_req;
461
462         assert_spin_locked(&ring->execlist_lock);
463
464         head_req = list_first_entry_or_null(&ring->execlist_queue,
465                                             struct drm_i915_gem_request,
466                                             execlist_link);
467
468         if (head_req != NULL) {
469                 struct drm_i915_gem_object *ctx_obj =
470                                 head_req->ctx->engine[ring->id].state;
471                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
472                         WARN(head_req->elsp_submitted == 0,
473                              "Never submitted head request\n");
474
475                         if (--head_req->elsp_submitted <= 0) {
476                                 list_del(&head_req->execlist_link);
477                                 list_add_tail(&head_req->execlist_link,
478                                         &ring->execlist_retired_req_list);
479                                 return true;
480                         }
481                 }
482         }
483
484         return false;
485 }
486
487 /**
488  * intel_lrc_irq_handler() - handle Context Switch interrupts
489  * @ring: Engine Command Streamer to handle.
490  *
491  * Check the unread Context Status Buffers and manage the submission of new
492  * contexts to the ELSP accordingly.
493  */
494 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
495 {
496         struct drm_i915_private *dev_priv = ring->dev->dev_private;
497         u32 status_pointer;
498         u8 read_pointer;
499         u8 write_pointer;
500         u32 status;
501         u32 status_id;
502         u32 submit_contexts = 0;
503
504         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
505
506         read_pointer = ring->next_context_status_buffer;
507         write_pointer = status_pointer & 0x07;
508         if (read_pointer > write_pointer)
509                 write_pointer += 6;
510
511         spin_lock(&ring->execlist_lock);
512
513         while (read_pointer < write_pointer) {
514                 read_pointer++;
515                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516                                 (read_pointer % 6) * 8);
517                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
518                                 (read_pointer % 6) * 8 + 4);
519
520                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
521                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
522                                 if (execlists_check_remove_request(ring, status_id))
523                                         WARN(1, "Lite Restored request removed from queue\n");
524                         } else
525                                 WARN(1, "Preemption without Lite Restore\n");
526                 }
527
528                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
529                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
530                         if (execlists_check_remove_request(ring, status_id))
531                                 submit_contexts++;
532                 }
533         }
534
535         if (submit_contexts != 0)
536                 execlists_context_unqueue(ring);
537
538         spin_unlock(&ring->execlist_lock);
539
540         WARN(submit_contexts > 2, "More than two context complete events?\n");
541         ring->next_context_status_buffer = write_pointer % 6;
542
543         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
544                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
545 }
546
547 static int execlists_context_queue(struct intel_engine_cs *ring,
548                                    struct intel_context *to,
549                                    u32 tail,
550                                    struct drm_i915_gem_request *request)
551 {
552         struct drm_i915_gem_request *cursor;
553         int num_elements = 0;
554
555         if (to != ring->default_context)
556                 intel_lr_context_pin(ring, to);
557
558         if (!request) {
559                 /*
560                  * If there isn't a request associated with this submission,
561                  * create one as a temporary holder.
562                  */
563                 request = kzalloc(sizeof(*request), GFP_KERNEL);
564                 if (request == NULL)
565                         return -ENOMEM;
566                 request->ring = ring;
567                 request->ctx = to;
568                 kref_init(&request->ref);
569                 i915_gem_context_reference(request->ctx);
570         } else {
571                 i915_gem_request_reference(request);
572                 WARN_ON(to != request->ctx);
573         }
574         request->tail = tail;
575
576         spin_lock_irq(&ring->execlist_lock);
577
578         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
579                 if (++num_elements > 2)
580                         break;
581
582         if (num_elements > 2) {
583                 struct drm_i915_gem_request *tail_req;
584
585                 tail_req = list_last_entry(&ring->execlist_queue,
586                                            struct drm_i915_gem_request,
587                                            execlist_link);
588
589                 if (to == tail_req->ctx) {
590                         WARN(tail_req->elsp_submitted != 0,
591                                 "More than 2 already-submitted reqs queued\n");
592                         list_del(&tail_req->execlist_link);
593                         list_add_tail(&tail_req->execlist_link,
594                                 &ring->execlist_retired_req_list);
595                 }
596         }
597
598         list_add_tail(&request->execlist_link, &ring->execlist_queue);
599         if (num_elements == 0)
600                 execlists_context_unqueue(ring);
601
602         spin_unlock_irq(&ring->execlist_lock);
603
604         return 0;
605 }
606
607 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
608                                               struct intel_context *ctx)
609 {
610         struct intel_engine_cs *ring = ringbuf->ring;
611         uint32_t flush_domains;
612         int ret;
613
614         flush_domains = 0;
615         if (ring->gpu_caches_dirty)
616                 flush_domains = I915_GEM_GPU_DOMAINS;
617
618         ret = ring->emit_flush(ringbuf, ctx,
619                                I915_GEM_GPU_DOMAINS, flush_domains);
620         if (ret)
621                 return ret;
622
623         ring->gpu_caches_dirty = false;
624         return 0;
625 }
626
627 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
628                                  struct list_head *vmas)
629 {
630         const unsigned other_rings = ~intel_ring_flag(req->ring);
631         struct i915_vma *vma;
632         uint32_t flush_domains = 0;
633         bool flush_chipset = false;
634         int ret;
635
636         list_for_each_entry(vma, vmas, exec_list) {
637                 struct drm_i915_gem_object *obj = vma->obj;
638
639                 if (obj->active & other_rings) {
640                         ret = i915_gem_object_sync(obj, req->ring);
641                         if (ret)
642                                 return ret;
643                 }
644
645                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
646                         flush_chipset |= i915_gem_clflush_object(obj, false);
647
648                 flush_domains |= obj->base.write_domain;
649         }
650
651         if (flush_domains & I915_GEM_DOMAIN_GTT)
652                 wmb();
653
654         /* Unconditionally invalidate gpu caches and ensure that we do flush
655          * any residual writes from the previous batch.
656          */
657         return logical_ring_invalidate_all_caches(req->ringbuf, req->ctx);
658 }
659
660 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
661 {
662         int ret;
663
664         if (request->ctx != request->ring->default_context) {
665                 ret = intel_lr_context_pin(request->ring, request->ctx);
666                 if (ret)
667                         return ret;
668         }
669
670         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
671
672         return 0;
673 }
674
675 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
676                                        struct intel_context *ctx,
677                                        int bytes)
678 {
679         struct intel_engine_cs *ring = ringbuf->ring;
680         struct drm_i915_gem_request *request;
681         unsigned space;
682         int ret;
683
684         /* The whole point of reserving space is to not wait! */
685         WARN_ON(ringbuf->reserved_in_use);
686
687         if (intel_ring_space(ringbuf) >= bytes)
688                 return 0;
689
690         list_for_each_entry(request, &ring->request_list, list) {
691                 /*
692                  * The request queue is per-engine, so can contain requests
693                  * from multiple ringbuffers. Here, we must ignore any that
694                  * aren't from the ringbuffer we're considering.
695                  */
696                 if (request->ringbuf != ringbuf)
697                         continue;
698
699                 /* Would completion of this request free enough space? */
700                 space = __intel_ring_space(request->postfix, ringbuf->tail,
701                                            ringbuf->size);
702                 if (space >= bytes)
703                         break;
704         }
705
706         if (WARN_ON(&request->list == &ring->request_list))
707                 return -ENOSPC;
708
709         ret = i915_wait_request(request);
710         if (ret)
711                 return ret;
712
713         ringbuf->space = space;
714         return 0;
715 }
716
717 /*
718  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
719  * @ringbuf: Logical Ringbuffer to advance.
720  *
721  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
722  * really happens during submission is that the context and current tail will be placed
723  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
724  * point, the tail *inside* the context is updated and the ELSP written to.
725  */
726 static void
727 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
728                                       struct intel_context *ctx,
729                                       struct drm_i915_gem_request *request)
730 {
731         struct intel_engine_cs *ring = ringbuf->ring;
732
733         intel_logical_ring_advance(ringbuf);
734
735         if (intel_ring_stopped(ring))
736                 return;
737
738         execlists_context_queue(ring, ctx, ringbuf->tail, request);
739 }
740
741 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
742                                     struct intel_context *ctx)
743 {
744         uint32_t __iomem *virt;
745         int rem = ringbuf->size - ringbuf->tail;
746
747         /* Can't wrap if space has already been reserved! */
748         WARN_ON(ringbuf->reserved_in_use);
749
750         if (ringbuf->space < rem) {
751                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
752
753                 if (ret)
754                         return ret;
755         }
756
757         virt = ringbuf->virtual_start + ringbuf->tail;
758         rem /= 4;
759         while (rem--)
760                 iowrite32(MI_NOOP, virt++);
761
762         ringbuf->tail = 0;
763         intel_ring_update_space(ringbuf);
764
765         return 0;
766 }
767
768 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
769                                 struct intel_context *ctx, int bytes)
770 {
771         int ret;
772
773         /*
774          * Add on the reserved size to the request to make sure that after
775          * the intended commands have been emitted, there is guaranteed to
776          * still be enough free space to send them to the hardware.
777          */
778         if (!ringbuf->reserved_in_use)
779                 bytes += ringbuf->reserved_size;
780
781         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
782                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
783                 if (unlikely(ret))
784                         return ret;
785
786                 if(ringbuf->reserved_size) {
787                         uint32_t size = ringbuf->reserved_size;
788
789                         intel_ring_reserved_space_cancel(ringbuf);
790                         intel_ring_reserved_space_reserve(ringbuf, size);
791                 }
792         }
793
794         if (unlikely(ringbuf->space < bytes)) {
795                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
796                 if (unlikely(ret))
797                         return ret;
798         }
799
800         return 0;
801 }
802
803 /**
804  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
805  *
806  * @ringbuf: Logical ringbuffer.
807  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
808  *
809  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
810  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
811  * and also preallocates a request (every workload submission is still mediated through
812  * requests, same as it did with legacy ringbuffer submission).
813  *
814  * Return: non-zero if the ringbuffer is not ready to be written to.
815  */
816 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
817                                     struct intel_context *ctx, int num_dwords)
818 {
819         struct drm_i915_gem_request *req;
820         struct intel_engine_cs *ring = ringbuf->ring;
821         struct drm_device *dev = ring->dev;
822         struct drm_i915_private *dev_priv = dev->dev_private;
823         int ret;
824
825         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
826                                    dev_priv->mm.interruptible);
827         if (ret)
828                 return ret;
829
830         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
831         if (ret)
832                 return ret;
833
834         /* Preallocate the olr before touching the ring */
835         ret = i915_gem_request_alloc(ring, ctx, &req);
836         if (ret)
837                 return ret;
838
839         ringbuf->space -= num_dwords * sizeof(uint32_t);
840         return 0;
841 }
842
843 /**
844  * execlists_submission() - submit a batchbuffer for execution, Execlists style
845  * @dev: DRM device.
846  * @file: DRM file.
847  * @ring: Engine Command Streamer to submit to.
848  * @ctx: Context to employ for this submission.
849  * @args: execbuffer call arguments.
850  * @vmas: list of vmas.
851  * @batch_obj: the batchbuffer to submit.
852  * @exec_start: batchbuffer start virtual address pointer.
853  * @dispatch_flags: translated execbuffer call flags.
854  *
855  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
856  * away the submission details of the execbuffer ioctl call.
857  *
858  * Return: non-zero if the submission fails.
859  */
860 int intel_execlists_submission(struct i915_execbuffer_params *params,
861                                struct drm_i915_gem_execbuffer2 *args,
862                                struct list_head *vmas)
863 {
864         struct drm_device       *dev = params->dev;
865         struct intel_engine_cs  *ring = params->ring;
866         struct drm_i915_private *dev_priv = dev->dev_private;
867         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
868         u64 exec_start;
869         int instp_mode;
870         u32 instp_mask;
871         int ret;
872
873         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
874         instp_mask = I915_EXEC_CONSTANTS_MASK;
875         switch (instp_mode) {
876         case I915_EXEC_CONSTANTS_REL_GENERAL:
877         case I915_EXEC_CONSTANTS_ABSOLUTE:
878         case I915_EXEC_CONSTANTS_REL_SURFACE:
879                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
880                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
881                         return -EINVAL;
882                 }
883
884                 if (instp_mode != dev_priv->relative_constants_mode) {
885                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
886                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
887                                 return -EINVAL;
888                         }
889
890                         /* The HW changed the meaning on this bit on gen6 */
891                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
892                 }
893                 break;
894         default:
895                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
896                 return -EINVAL;
897         }
898
899         if (args->num_cliprects != 0) {
900                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
901                 return -EINVAL;
902         } else {
903                 if (args->DR4 == 0xffffffff) {
904                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
905                         args->DR4 = 0;
906                 }
907
908                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
909                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
910                         return -EINVAL;
911                 }
912         }
913
914         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
915                 DRM_DEBUG("sol reset is gen7 only\n");
916                 return -EINVAL;
917         }
918
919         ret = execlists_move_to_gpu(params->request, vmas);
920         if (ret)
921                 return ret;
922
923         if (ring == &dev_priv->ring[RCS] &&
924             instp_mode != dev_priv->relative_constants_mode) {
925                 ret = intel_logical_ring_begin(ringbuf, params->ctx, 4);
926                 if (ret)
927                         return ret;
928
929                 intel_logical_ring_emit(ringbuf, MI_NOOP);
930                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
931                 intel_logical_ring_emit(ringbuf, INSTPM);
932                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
933                 intel_logical_ring_advance(ringbuf);
934
935                 dev_priv->relative_constants_mode = instp_mode;
936         }
937
938         exec_start = params->batch_obj_vm_offset +
939                      args->batch_start_offset;
940
941         ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags);
942         if (ret)
943                 return ret;
944
945         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
946
947         i915_gem_execbuffer_move_to_active(vmas, ring);
948         i915_gem_execbuffer_retire_commands(params);
949
950         return 0;
951 }
952
953 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
954 {
955         struct drm_i915_gem_request *req, *tmp;
956         struct list_head retired_list;
957
958         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959         if (list_empty(&ring->execlist_retired_req_list))
960                 return;
961
962         INIT_LIST_HEAD(&retired_list);
963         spin_lock_irq(&ring->execlist_lock);
964         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
965         spin_unlock_irq(&ring->execlist_lock);
966
967         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
968                 struct intel_context *ctx = req->ctx;
969                 struct drm_i915_gem_object *ctx_obj =
970                                 ctx->engine[ring->id].state;
971
972                 if (ctx_obj && (ctx != ring->default_context))
973                         intel_lr_context_unpin(ring, ctx);
974                 list_del(&req->execlist_link);
975                 i915_gem_request_unreference(req);
976         }
977 }
978
979 void intel_logical_ring_stop(struct intel_engine_cs *ring)
980 {
981         struct drm_i915_private *dev_priv = ring->dev->dev_private;
982         int ret;
983
984         if (!intel_ring_initialized(ring))
985                 return;
986
987         ret = intel_ring_idle(ring);
988         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
989                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
990                           ring->name, ret);
991
992         /* TODO: Is this correct with Execlists enabled? */
993         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
994         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
995                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
996                 return;
997         }
998         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
999 }
1000
1001 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1002                                   struct intel_context *ctx)
1003 {
1004         struct intel_engine_cs *ring = ringbuf->ring;
1005         int ret;
1006
1007         if (!ring->gpu_caches_dirty)
1008                 return 0;
1009
1010         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
1011         if (ret)
1012                 return ret;
1013
1014         ring->gpu_caches_dirty = false;
1015         return 0;
1016 }
1017
1018 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1019                 struct intel_context *ctx)
1020 {
1021         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1022         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1023         int ret = 0;
1024
1025         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1026         if (ctx->engine[ring->id].pin_count++ == 0) {
1027                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1028                                 GEN8_LR_CONTEXT_ALIGN, 0);
1029                 if (ret)
1030                         goto reset_pin_count;
1031
1032                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1033                 if (ret)
1034                         goto unpin_ctx_obj;
1035         }
1036
1037         return ret;
1038
1039 unpin_ctx_obj:
1040         i915_gem_object_ggtt_unpin(ctx_obj);
1041 reset_pin_count:
1042         ctx->engine[ring->id].pin_count = 0;
1043
1044         return ret;
1045 }
1046
1047 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1048                 struct intel_context *ctx)
1049 {
1050         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1051         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1052
1053         if (ctx_obj) {
1054                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1055                 if (--ctx->engine[ring->id].pin_count == 0) {
1056                         intel_unpin_ringbuffer_obj(ringbuf);
1057                         i915_gem_object_ggtt_unpin(ctx_obj);
1058                 }
1059         }
1060 }
1061
1062 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1063                                                struct intel_context *ctx)
1064 {
1065         int ret, i;
1066         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1067         struct drm_device *dev = ring->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct i915_workarounds *w = &dev_priv->workarounds;
1070
1071         if (WARN_ON_ONCE(w->count == 0))
1072                 return 0;
1073
1074         ring->gpu_caches_dirty = true;
1075         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1076         if (ret)
1077                 return ret;
1078
1079         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1080         if (ret)
1081                 return ret;
1082
1083         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1084         for (i = 0; i < w->count; i++) {
1085                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1086                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1087         }
1088         intel_logical_ring_emit(ringbuf, MI_NOOP);
1089
1090         intel_logical_ring_advance(ringbuf);
1091
1092         ring->gpu_caches_dirty = true;
1093         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1094         if (ret)
1095                 return ret;
1096
1097         return 0;
1098 }
1099
1100 #define wa_ctx_emit(batch, cmd)                                         \
1101         do {                                                            \
1102                 if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1103                         return -ENOSPC;                                 \
1104                 }                                                       \
1105                 batch[index++] = (cmd);                                 \
1106         } while (0)
1107
1108 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1109                                     uint32_t offset,
1110                                     uint32_t start_alignment)
1111 {
1112         return wa_ctx->offset = ALIGN(offset, start_alignment);
1113 }
1114
1115 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1116                              uint32_t offset,
1117                              uint32_t size_alignment)
1118 {
1119         wa_ctx->size = offset - wa_ctx->offset;
1120
1121         WARN(wa_ctx->size % size_alignment,
1122              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1123              wa_ctx->size, size_alignment);
1124         return 0;
1125 }
1126
1127 /**
1128  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1129  *
1130  * @ring: only applicable for RCS
1131  * @wa_ctx: structure representing wa_ctx
1132  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1133  *    with the offset value received as input.
1134  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1135  * @batch: page in which WA are loaded
1136  * @offset: This field specifies the start of the batch, it should be
1137  *  cache-aligned otherwise it is adjusted accordingly.
1138  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1139  *  initialized at the beginning and shared across all contexts but this field
1140  *  helps us to have multiple batches at different offsets and select them based
1141  *  on a criteria. At the moment this batch always start at the beginning of the page
1142  *  and at this point we don't have multiple wa_ctx batch buffers.
1143  *
1144  *  The number of WA applied are not known at the beginning; we use this field
1145  *  to return the no of DWORDS written.
1146
1147  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1148  *  so it adds NOOPs as padding to make it cacheline aligned.
1149  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1150  *  makes a complete batch buffer.
1151  *
1152  * Return: non-zero if we exceed the PAGE_SIZE limit.
1153  */
1154
1155 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1156                                     struct i915_wa_ctx_bb *wa_ctx,
1157                                     uint32_t *const batch,
1158                                     uint32_t *offset)
1159 {
1160         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1161
1162         /* WaDisableCtxRestoreArbitration:bdw,chv */
1163         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1164
1165         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1166         if (IS_BROADWELL(ring->dev)) {
1167                 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1168                 uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) |
1169                                          GEN8_LQSC_FLUSH_COHERENT_LINES);
1170
1171                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1172                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1173                 wa_ctx_emit(batch, l3sqc4_flush);
1174
1175                 wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6));
1176                 wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL |
1177                                     PIPE_CONTROL_DC_FLUSH_ENABLE));
1178                 wa_ctx_emit(batch, 0);
1179                 wa_ctx_emit(batch, 0);
1180                 wa_ctx_emit(batch, 0);
1181                 wa_ctx_emit(batch, 0);
1182
1183                 wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1));
1184                 wa_ctx_emit(batch, GEN8_L3SQCREG4);
1185                 wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES);
1186         }
1187
1188         /* Pad to end of cacheline */
1189         while (index % CACHELINE_DWORDS)
1190                 wa_ctx_emit(batch, MI_NOOP);
1191
1192         /*
1193          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1194          * execution depends on the length specified in terms of cache lines
1195          * in the register CTX_RCS_INDIRECT_CTX
1196          */
1197
1198         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1199 }
1200
1201 /**
1202  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1203  *
1204  * @ring: only applicable for RCS
1205  * @wa_ctx: structure representing wa_ctx
1206  *  offset: specifies start of the batch, should be cache-aligned.
1207  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1208  * @offset: This field specifies the start of this batch.
1209  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1210  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1211  *
1212  *   The number of DWORDS written are returned using this field.
1213  *
1214  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1215  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1216  */
1217 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1218                                struct i915_wa_ctx_bb *wa_ctx,
1219                                uint32_t *const batch,
1220                                uint32_t *offset)
1221 {
1222         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1223
1224         /* WaDisableCtxRestoreArbitration:bdw,chv */
1225         wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1226
1227         wa_ctx_emit(batch, MI_BATCH_BUFFER_END);
1228
1229         return wa_ctx_end(wa_ctx, *offset = index, 1);
1230 }
1231
1232 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1233 {
1234         int ret;
1235
1236         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1237         if (!ring->wa_ctx.obj) {
1238                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1239                 return -ENOMEM;
1240         }
1241
1242         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1243         if (ret) {
1244                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1245                                  ret);
1246                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1247                 return ret;
1248         }
1249
1250         return 0;
1251 }
1252
1253 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1254 {
1255         if (ring->wa_ctx.obj) {
1256                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1257                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1258                 ring->wa_ctx.obj = NULL;
1259         }
1260 }
1261
1262 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1263 {
1264         int ret;
1265         uint32_t *batch;
1266         uint32_t offset;
1267         struct page *page;
1268         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1269
1270         WARN_ON(ring->id != RCS);
1271
1272         /* some WA perform writes to scratch page, ensure it is valid */
1273         if (ring->scratch.obj == NULL) {
1274                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1275                 return -EINVAL;
1276         }
1277
1278         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1279         if (ret) {
1280                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1281                 return ret;
1282         }
1283
1284         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1285         batch = kmap_atomic(page);
1286         offset = 0;
1287
1288         if (INTEL_INFO(ring->dev)->gen == 8) {
1289                 ret = gen8_init_indirectctx_bb(ring,
1290                                                &wa_ctx->indirect_ctx,
1291                                                batch,
1292                                                &offset);
1293                 if (ret)
1294                         goto out;
1295
1296                 ret = gen8_init_perctx_bb(ring,
1297                                           &wa_ctx->per_ctx,
1298                                           batch,
1299                                           &offset);
1300                 if (ret)
1301                         goto out;
1302         } else {
1303                 WARN(INTEL_INFO(ring->dev)->gen >= 8,
1304                      "WA batch buffer is not initialized for Gen%d\n",
1305                      INTEL_INFO(ring->dev)->gen);
1306                 lrc_destroy_wa_ctx_obj(ring);
1307         }
1308
1309 out:
1310         kunmap_atomic(batch);
1311         if (ret)
1312                 lrc_destroy_wa_ctx_obj(ring);
1313
1314         return ret;
1315 }
1316
1317 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1318 {
1319         struct drm_device *dev = ring->dev;
1320         struct drm_i915_private *dev_priv = dev->dev_private;
1321
1322         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1323         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1324
1325         I915_WRITE(RING_MODE_GEN7(ring),
1326                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1327                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1328         POSTING_READ(RING_MODE_GEN7(ring));
1329         ring->next_context_status_buffer = 0;
1330         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1331
1332         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1333
1334         return 0;
1335 }
1336
1337 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1338 {
1339         struct drm_device *dev = ring->dev;
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         int ret;
1342
1343         ret = gen8_init_common_ring(ring);
1344         if (ret)
1345                 return ret;
1346
1347         /* We need to disable the AsyncFlip performance optimisations in order
1348          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1349          * programmed to '1' on all products.
1350          *
1351          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1352          */
1353         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1354
1355         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1356
1357         return init_workarounds_ring(ring);
1358 }
1359
1360 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1361 {
1362         int ret;
1363
1364         ret = gen8_init_common_ring(ring);
1365         if (ret)
1366                 return ret;
1367
1368         return init_workarounds_ring(ring);
1369 }
1370
1371 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1372                               struct intel_context *ctx,
1373                               u64 offset, unsigned dispatch_flags)
1374 {
1375         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1376         int ret;
1377
1378         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1379         if (ret)
1380                 return ret;
1381
1382         /* FIXME(BDW): Address space and security selectors. */
1383         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1384         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1385         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1386         intel_logical_ring_emit(ringbuf, MI_NOOP);
1387         intel_logical_ring_advance(ringbuf);
1388
1389         return 0;
1390 }
1391
1392 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1393 {
1394         struct drm_device *dev = ring->dev;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         unsigned long flags;
1397
1398         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1399                 return false;
1400
1401         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1402         if (ring->irq_refcount++ == 0) {
1403                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1404                 POSTING_READ(RING_IMR(ring->mmio_base));
1405         }
1406         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1407
1408         return true;
1409 }
1410
1411 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1412 {
1413         struct drm_device *dev = ring->dev;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         unsigned long flags;
1416
1417         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1418         if (--ring->irq_refcount == 0) {
1419                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1420                 POSTING_READ(RING_IMR(ring->mmio_base));
1421         }
1422         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1423 }
1424
1425 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1426                            struct intel_context *ctx,
1427                            u32 invalidate_domains,
1428                            u32 unused)
1429 {
1430         struct intel_engine_cs *ring = ringbuf->ring;
1431         struct drm_device *dev = ring->dev;
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433         uint32_t cmd;
1434         int ret;
1435
1436         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1437         if (ret)
1438                 return ret;
1439
1440         cmd = MI_FLUSH_DW + 1;
1441
1442         /* We always require a command barrier so that subsequent
1443          * commands, such as breadcrumb interrupts, are strictly ordered
1444          * wrt the contents of the write cache being flushed to memory
1445          * (and thus being coherent from the CPU).
1446          */
1447         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1448
1449         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1450                 cmd |= MI_INVALIDATE_TLB;
1451                 if (ring == &dev_priv->ring[VCS])
1452                         cmd |= MI_INVALIDATE_BSD;
1453         }
1454
1455         intel_logical_ring_emit(ringbuf, cmd);
1456         intel_logical_ring_emit(ringbuf,
1457                                 I915_GEM_HWS_SCRATCH_ADDR |
1458                                 MI_FLUSH_DW_USE_GTT);
1459         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1460         intel_logical_ring_emit(ringbuf, 0); /* value */
1461         intel_logical_ring_advance(ringbuf);
1462
1463         return 0;
1464 }
1465
1466 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1467                                   struct intel_context *ctx,
1468                                   u32 invalidate_domains,
1469                                   u32 flush_domains)
1470 {
1471         struct intel_engine_cs *ring = ringbuf->ring;
1472         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1473         bool vf_flush_wa;
1474         u32 flags = 0;
1475         int ret;
1476
1477         flags |= PIPE_CONTROL_CS_STALL;
1478
1479         if (flush_domains) {
1480                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1481                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1482         }
1483
1484         if (invalidate_domains) {
1485                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1486                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1487                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1488                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1489                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1490                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1491                 flags |= PIPE_CONTROL_QW_WRITE;
1492                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1493         }
1494
1495         /*
1496          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1497          * control.
1498          */
1499         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1500                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1501
1502         ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1503         if (ret)
1504                 return ret;
1505
1506         if (vf_flush_wa) {
1507                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1508                 intel_logical_ring_emit(ringbuf, 0);
1509                 intel_logical_ring_emit(ringbuf, 0);
1510                 intel_logical_ring_emit(ringbuf, 0);
1511                 intel_logical_ring_emit(ringbuf, 0);
1512                 intel_logical_ring_emit(ringbuf, 0);
1513         }
1514
1515         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1516         intel_logical_ring_emit(ringbuf, flags);
1517         intel_logical_ring_emit(ringbuf, scratch_addr);
1518         intel_logical_ring_emit(ringbuf, 0);
1519         intel_logical_ring_emit(ringbuf, 0);
1520         intel_logical_ring_emit(ringbuf, 0);
1521         intel_logical_ring_advance(ringbuf);
1522
1523         return 0;
1524 }
1525
1526 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1527 {
1528         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529 }
1530
1531 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1532 {
1533         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1534 }
1535
1536 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1537                              struct drm_i915_gem_request *request)
1538 {
1539         struct intel_engine_cs *ring = ringbuf->ring;
1540         u32 cmd;
1541         int ret;
1542
1543         /*
1544          * Reserve space for 2 NOOPs at the end of each request to be
1545          * used as a workaround for not being allowed to do lite
1546          * restore with HEAD==TAIL (WaIdleLiteRestore).
1547          */
1548         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1549         if (ret)
1550                 return ret;
1551
1552         cmd = MI_STORE_DWORD_IMM_GEN4;
1553         cmd |= MI_GLOBAL_GTT;
1554
1555         intel_logical_ring_emit(ringbuf, cmd);
1556         intel_logical_ring_emit(ringbuf,
1557                                 (ring->status_page.gfx_addr +
1558                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1559         intel_logical_ring_emit(ringbuf, 0);
1560         intel_logical_ring_emit(ringbuf,
1561                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1562         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1563         intel_logical_ring_emit(ringbuf, MI_NOOP);
1564         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1565
1566         /*
1567          * Here we add two extra NOOPs as padding to avoid
1568          * lite restore of a context with HEAD==TAIL.
1569          */
1570         intel_logical_ring_emit(ringbuf, MI_NOOP);
1571         intel_logical_ring_emit(ringbuf, MI_NOOP);
1572         intel_logical_ring_advance(ringbuf);
1573
1574         return 0;
1575 }
1576
1577 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1578                                               struct intel_context *ctx)
1579 {
1580         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1581         struct render_state so;
1582         struct drm_i915_file_private *file_priv = ctx->file_priv;
1583         struct drm_file *file = file_priv ? file_priv->file : NULL;
1584         int ret;
1585
1586         ret = i915_gem_render_state_prepare(ring, &so);
1587         if (ret)
1588                 return ret;
1589
1590         if (so.rodata == NULL)
1591                 return 0;
1592
1593         ret = ring->emit_bb_start(ringbuf,
1594                         ctx,
1595                         so.ggtt_offset,
1596                         I915_DISPATCH_SECURE);
1597         if (ret)
1598                 goto out;
1599
1600         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1601
1602         __i915_add_request(ring, file, so.obj);
1603         /* intel_logical_ring_add_request moves object to inactive if it
1604          * fails */
1605 out:
1606         i915_gem_render_state_fini(&so);
1607         return ret;
1608 }
1609
1610 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1611                        struct intel_context *ctx)
1612 {
1613         int ret;
1614
1615         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1616         if (ret)
1617                 return ret;
1618
1619         return intel_lr_context_render_state_init(ring, ctx);
1620 }
1621
1622 /**
1623  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1624  *
1625  * @ring: Engine Command Streamer.
1626  *
1627  */
1628 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1629 {
1630         struct drm_i915_private *dev_priv;
1631
1632         if (!intel_ring_initialized(ring))
1633                 return;
1634
1635         dev_priv = ring->dev->dev_private;
1636
1637         intel_logical_ring_stop(ring);
1638         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1639         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1640
1641         if (ring->cleanup)
1642                 ring->cleanup(ring);
1643
1644         i915_cmd_parser_fini_ring(ring);
1645         i915_gem_batch_pool_fini(&ring->batch_pool);
1646
1647         if (ring->status_page.obj) {
1648                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1649                 ring->status_page.obj = NULL;
1650         }
1651
1652         lrc_destroy_wa_ctx_obj(ring);
1653 }
1654
1655 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1656 {
1657         int ret;
1658
1659         /* Intentionally left blank. */
1660         ring->buffer = NULL;
1661
1662         ring->dev = dev;
1663         INIT_LIST_HEAD(&ring->active_list);
1664         INIT_LIST_HEAD(&ring->request_list);
1665         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1666         init_waitqueue_head(&ring->irq_queue);
1667
1668         INIT_LIST_HEAD(&ring->execlist_queue);
1669         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1670         spin_lock_init(&ring->execlist_lock);
1671
1672         ret = i915_cmd_parser_init_ring(ring);
1673         if (ret)
1674                 return ret;
1675
1676         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1677
1678         return ret;
1679 }
1680
1681 static int logical_render_ring_init(struct drm_device *dev)
1682 {
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1685         int ret;
1686
1687         ring->name = "render ring";
1688         ring->id = RCS;
1689         ring->mmio_base = RENDER_RING_BASE;
1690         ring->irq_enable_mask =
1691                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1692         ring->irq_keep_mask =
1693                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1694         if (HAS_L3_DPF(dev))
1695                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1696
1697         if (INTEL_INFO(dev)->gen >= 9)
1698                 ring->init_hw = gen9_init_render_ring;
1699         else
1700                 ring->init_hw = gen8_init_render_ring;
1701         ring->init_context = gen8_init_rcs_context;
1702         ring->cleanup = intel_fini_pipe_control;
1703         ring->get_seqno = gen8_get_seqno;
1704         ring->set_seqno = gen8_set_seqno;
1705         ring->emit_request = gen8_emit_request;
1706         ring->emit_flush = gen8_emit_flush_render;
1707         ring->irq_get = gen8_logical_ring_get_irq;
1708         ring->irq_put = gen8_logical_ring_put_irq;
1709         ring->emit_bb_start = gen8_emit_bb_start;
1710
1711         ring->dev = dev;
1712
1713         ret = intel_init_pipe_control(ring);
1714         if (ret)
1715                 return ret;
1716
1717         ret = intel_init_workaround_bb(ring);
1718         if (ret) {
1719                 /*
1720                  * We continue even if we fail to initialize WA batch
1721                  * because we only expect rare glitches but nothing
1722                  * critical to prevent us from using GPU
1723                  */
1724                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1725                           ret);
1726         }
1727
1728         ret = logical_ring_init(dev, ring);
1729         if (ret) {
1730                 lrc_destroy_wa_ctx_obj(ring);
1731         }
1732
1733         return ret;
1734 }
1735
1736 static int logical_bsd_ring_init(struct drm_device *dev)
1737 {
1738         struct drm_i915_private *dev_priv = dev->dev_private;
1739         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1740
1741         ring->name = "bsd ring";
1742         ring->id = VCS;
1743         ring->mmio_base = GEN6_BSD_RING_BASE;
1744         ring->irq_enable_mask =
1745                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1746         ring->irq_keep_mask =
1747                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1748
1749         ring->init_hw = gen8_init_common_ring;
1750         ring->get_seqno = gen8_get_seqno;
1751         ring->set_seqno = gen8_set_seqno;
1752         ring->emit_request = gen8_emit_request;
1753         ring->emit_flush = gen8_emit_flush;
1754         ring->irq_get = gen8_logical_ring_get_irq;
1755         ring->irq_put = gen8_logical_ring_put_irq;
1756         ring->emit_bb_start = gen8_emit_bb_start;
1757
1758         return logical_ring_init(dev, ring);
1759 }
1760
1761 static int logical_bsd2_ring_init(struct drm_device *dev)
1762 {
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1765
1766         ring->name = "bds2 ring";
1767         ring->id = VCS2;
1768         ring->mmio_base = GEN8_BSD2_RING_BASE;
1769         ring->irq_enable_mask =
1770                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1771         ring->irq_keep_mask =
1772                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1773
1774         ring->init_hw = gen8_init_common_ring;
1775         ring->get_seqno = gen8_get_seqno;
1776         ring->set_seqno = gen8_set_seqno;
1777         ring->emit_request = gen8_emit_request;
1778         ring->emit_flush = gen8_emit_flush;
1779         ring->irq_get = gen8_logical_ring_get_irq;
1780         ring->irq_put = gen8_logical_ring_put_irq;
1781         ring->emit_bb_start = gen8_emit_bb_start;
1782
1783         return logical_ring_init(dev, ring);
1784 }
1785
1786 static int logical_blt_ring_init(struct drm_device *dev)
1787 {
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1790
1791         ring->name = "blitter ring";
1792         ring->id = BCS;
1793         ring->mmio_base = BLT_RING_BASE;
1794         ring->irq_enable_mask =
1795                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1796         ring->irq_keep_mask =
1797                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1798
1799         ring->init_hw = gen8_init_common_ring;
1800         ring->get_seqno = gen8_get_seqno;
1801         ring->set_seqno = gen8_set_seqno;
1802         ring->emit_request = gen8_emit_request;
1803         ring->emit_flush = gen8_emit_flush;
1804         ring->irq_get = gen8_logical_ring_get_irq;
1805         ring->irq_put = gen8_logical_ring_put_irq;
1806         ring->emit_bb_start = gen8_emit_bb_start;
1807
1808         return logical_ring_init(dev, ring);
1809 }
1810
1811 static int logical_vebox_ring_init(struct drm_device *dev)
1812 {
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1815
1816         ring->name = "video enhancement ring";
1817         ring->id = VECS;
1818         ring->mmio_base = VEBOX_RING_BASE;
1819         ring->irq_enable_mask =
1820                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1821         ring->irq_keep_mask =
1822                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1823
1824         ring->init_hw = gen8_init_common_ring;
1825         ring->get_seqno = gen8_get_seqno;
1826         ring->set_seqno = gen8_set_seqno;
1827         ring->emit_request = gen8_emit_request;
1828         ring->emit_flush = gen8_emit_flush;
1829         ring->irq_get = gen8_logical_ring_get_irq;
1830         ring->irq_put = gen8_logical_ring_put_irq;
1831         ring->emit_bb_start = gen8_emit_bb_start;
1832
1833         return logical_ring_init(dev, ring);
1834 }
1835
1836 /**
1837  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1838  * @dev: DRM device.
1839  *
1840  * This function inits the engines for an Execlists submission style (the equivalent in the
1841  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1842  * those engines that are present in the hardware.
1843  *
1844  * Return: non-zero if the initialization failed.
1845  */
1846 int intel_logical_rings_init(struct drm_device *dev)
1847 {
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         int ret;
1850
1851         ret = logical_render_ring_init(dev);
1852         if (ret)
1853                 return ret;
1854
1855         if (HAS_BSD(dev)) {
1856                 ret = logical_bsd_ring_init(dev);
1857                 if (ret)
1858                         goto cleanup_render_ring;
1859         }
1860
1861         if (HAS_BLT(dev)) {
1862                 ret = logical_blt_ring_init(dev);
1863                 if (ret)
1864                         goto cleanup_bsd_ring;
1865         }
1866
1867         if (HAS_VEBOX(dev)) {
1868                 ret = logical_vebox_ring_init(dev);
1869                 if (ret)
1870                         goto cleanup_blt_ring;
1871         }
1872
1873         if (HAS_BSD2(dev)) {
1874                 ret = logical_bsd2_ring_init(dev);
1875                 if (ret)
1876                         goto cleanup_vebox_ring;
1877         }
1878
1879         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1880         if (ret)
1881                 goto cleanup_bsd2_ring;
1882
1883         return 0;
1884
1885 cleanup_bsd2_ring:
1886         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1887 cleanup_vebox_ring:
1888         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1889 cleanup_blt_ring:
1890         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1891 cleanup_bsd_ring:
1892         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1893 cleanup_render_ring:
1894         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1895
1896         return ret;
1897 }
1898
1899 static u32
1900 make_rpcs(struct drm_device *dev)
1901 {
1902         u32 rpcs = 0;
1903
1904         /*
1905          * No explicit RPCS request is needed to ensure full
1906          * slice/subslice/EU enablement prior to Gen9.
1907         */
1908         if (INTEL_INFO(dev)->gen < 9)
1909                 return 0;
1910
1911         /*
1912          * Starting in Gen9, render power gating can leave
1913          * slice/subslice/EU in a partially enabled state. We
1914          * must make an explicit request through RPCS for full
1915          * enablement.
1916         */
1917         if (INTEL_INFO(dev)->has_slice_pg) {
1918                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1919                 rpcs |= INTEL_INFO(dev)->slice_total <<
1920                         GEN8_RPCS_S_CNT_SHIFT;
1921                 rpcs |= GEN8_RPCS_ENABLE;
1922         }
1923
1924         if (INTEL_INFO(dev)->has_subslice_pg) {
1925                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1926                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1927                         GEN8_RPCS_SS_CNT_SHIFT;
1928                 rpcs |= GEN8_RPCS_ENABLE;
1929         }
1930
1931         if (INTEL_INFO(dev)->has_eu_pg) {
1932                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1933                         GEN8_RPCS_EU_MIN_SHIFT;
1934                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1935                         GEN8_RPCS_EU_MAX_SHIFT;
1936                 rpcs |= GEN8_RPCS_ENABLE;
1937         }
1938
1939         return rpcs;
1940 }
1941
1942 static int
1943 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1944                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1945 {
1946         struct drm_device *dev = ring->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1949         struct page *page;
1950         uint32_t *reg_state;
1951         int ret;
1952
1953         if (!ppgtt)
1954                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1955
1956         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1957         if (ret) {
1958                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1959                 return ret;
1960         }
1961
1962         ret = i915_gem_object_get_pages(ctx_obj);
1963         if (ret) {
1964                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1965                 return ret;
1966         }
1967
1968         i915_gem_object_pin_pages(ctx_obj);
1969
1970         /* The second page of the context object contains some fields which must
1971          * be set up prior to the first execution. */
1972         page = i915_gem_object_get_page(ctx_obj, 1);
1973         reg_state = kmap_atomic(page);
1974
1975         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1976          * commands followed by (reg, value) pairs. The values we are setting here are
1977          * only for the first context restore: on a subsequent save, the GPU will
1978          * recreate this batchbuffer with new values (including all the missing
1979          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1980         if (ring->id == RCS)
1981                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1982         else
1983                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1984         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1985         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1986         reg_state[CTX_CONTEXT_CONTROL+1] =
1987                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1988                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1989         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1990         reg_state[CTX_RING_HEAD+1] = 0;
1991         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1992         reg_state[CTX_RING_TAIL+1] = 0;
1993         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1994         /* Ring buffer start address is not known until the buffer is pinned.
1995          * It is written to the context image in execlists_update_context()
1996          */
1997         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1998         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1999                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2000         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2001         reg_state[CTX_BB_HEAD_U+1] = 0;
2002         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2003         reg_state[CTX_BB_HEAD_L+1] = 0;
2004         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2005         reg_state[CTX_BB_STATE+1] = (1<<5);
2006         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2007         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2008         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2009         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2010         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2011         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2012         if (ring->id == RCS) {
2013                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2014                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2015                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2016                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2017                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2018                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2019                 if (ring->wa_ctx.obj) {
2020                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2021                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2022
2023                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2024                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2025                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2026
2027                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2028                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2029
2030                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2031                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2032                                 0x01;
2033                 }
2034         }
2035         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2036         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2037         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2038         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2039         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2040         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2041         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2042         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2043         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2044         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2045         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2046         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2047
2048         /* With dynamic page allocation, PDPs may not be allocated at this point,
2049          * Point the unallocated PDPs to the scratch page
2050          */
2051         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2052         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2053         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2054         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2055         if (ring->id == RCS) {
2056                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2057                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2058                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2059         }
2060
2061         kunmap_atomic(reg_state);
2062
2063         ctx_obj->dirty = 1;
2064         set_page_dirty(page);
2065         i915_gem_object_unpin_pages(ctx_obj);
2066
2067         return 0;
2068 }
2069
2070 /**
2071  * intel_lr_context_free() - free the LRC specific bits of a context
2072  * @ctx: the LR context to free.
2073  *
2074  * The real context freeing is done in i915_gem_context_free: this only
2075  * takes care of the bits that are LRC related: the per-engine backing
2076  * objects and the logical ringbuffer.
2077  */
2078 void intel_lr_context_free(struct intel_context *ctx)
2079 {
2080         int i;
2081
2082         for (i = 0; i < I915_NUM_RINGS; i++) {
2083                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2084
2085                 if (ctx_obj) {
2086                         struct intel_ringbuffer *ringbuf =
2087                                         ctx->engine[i].ringbuf;
2088                         struct intel_engine_cs *ring = ringbuf->ring;
2089
2090                         if (ctx == ring->default_context) {
2091                                 intel_unpin_ringbuffer_obj(ringbuf);
2092                                 i915_gem_object_ggtt_unpin(ctx_obj);
2093                         }
2094                         WARN_ON(ctx->engine[ring->id].pin_count);
2095                         intel_destroy_ringbuffer_obj(ringbuf);
2096                         kfree(ringbuf);
2097                         drm_gem_object_unreference(&ctx_obj->base);
2098                 }
2099         }
2100 }
2101
2102 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2103 {
2104         int ret = 0;
2105
2106         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2107
2108         switch (ring->id) {
2109         case RCS:
2110                 if (INTEL_INFO(ring->dev)->gen >= 9)
2111                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2112                 else
2113                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2114                 break;
2115         case VCS:
2116         case BCS:
2117         case VECS:
2118         case VCS2:
2119                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2120                 break;
2121         }
2122
2123         return ret;
2124 }
2125
2126 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2127                 struct drm_i915_gem_object *default_ctx_obj)
2128 {
2129         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2130
2131         /* The status page is offset 0 from the default context object
2132          * in LRC mode. */
2133         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2134         ring->status_page.page_addr =
2135                         kmap(sg_page(default_ctx_obj->pages->sgl));
2136         ring->status_page.obj = default_ctx_obj;
2137
2138         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2139                         (u32)ring->status_page.gfx_addr);
2140         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2141 }
2142
2143 /**
2144  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2145  * @ctx: LR context to create.
2146  * @ring: engine to be used with the context.
2147  *
2148  * This function can be called more than once, with different engines, if we plan
2149  * to use the context with them. The context backing objects and the ringbuffers
2150  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2151  * the creation is a deferred call: it's better to make sure first that we need to use
2152  * a given ring with the context.
2153  *
2154  * Return: non-zero on error.
2155  */
2156 int intel_lr_context_deferred_create(struct intel_context *ctx,
2157                                      struct intel_engine_cs *ring)
2158 {
2159         const bool is_global_default_ctx = (ctx == ring->default_context);
2160         struct drm_device *dev = ring->dev;
2161         struct drm_i915_gem_object *ctx_obj;
2162         uint32_t context_size;
2163         struct intel_ringbuffer *ringbuf;
2164         int ret;
2165
2166         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2167         WARN_ON(ctx->engine[ring->id].state);
2168
2169         context_size = round_up(get_lr_context_size(ring), 4096);
2170
2171         ctx_obj = i915_gem_alloc_object(dev, context_size);
2172         if (!ctx_obj) {
2173                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2174                 return -ENOMEM;
2175         }
2176
2177         if (is_global_default_ctx) {
2178                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2179                 if (ret) {
2180                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2181                                         ret);
2182                         drm_gem_object_unreference(&ctx_obj->base);
2183                         return ret;
2184                 }
2185         }
2186
2187         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2188         if (!ringbuf) {
2189                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2190                                 ring->name);
2191                 ret = -ENOMEM;
2192                 goto error_unpin_ctx;
2193         }
2194
2195         ringbuf->ring = ring;
2196
2197         ringbuf->size = 32 * PAGE_SIZE;
2198         ringbuf->effective_size = ringbuf->size;
2199         ringbuf->head = 0;
2200         ringbuf->tail = 0;
2201         ringbuf->last_retired_head = -1;
2202         intel_ring_update_space(ringbuf);
2203
2204         if (ringbuf->obj == NULL) {
2205                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2206                 if (ret) {
2207                         DRM_DEBUG_DRIVER(
2208                                 "Failed to allocate ringbuffer obj %s: %d\n",
2209                                 ring->name, ret);
2210                         goto error_free_rbuf;
2211                 }
2212
2213                 if (is_global_default_ctx) {
2214                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2215                         if (ret) {
2216                                 DRM_ERROR(
2217                                         "Failed to pin and map ringbuffer %s: %d\n",
2218                                         ring->name, ret);
2219                                 goto error_destroy_rbuf;
2220                         }
2221                 }
2222
2223         }
2224
2225         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2226         if (ret) {
2227                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2228                 goto error;
2229         }
2230
2231         ctx->engine[ring->id].ringbuf = ringbuf;
2232         ctx->engine[ring->id].state = ctx_obj;
2233
2234         if (ctx == ring->default_context)
2235                 lrc_setup_hardware_status_page(ring, ctx_obj);
2236         else if (ring->id == RCS && !ctx->rcs_initialized) {
2237                 if (ring->init_context) {
2238                         ret = ring->init_context(ring, ctx);
2239                         if (ret) {
2240                                 DRM_ERROR("ring init context: %d\n", ret);
2241                                 ctx->engine[ring->id].ringbuf = NULL;
2242                                 ctx->engine[ring->id].state = NULL;
2243                                 goto error;
2244                         }
2245                 }
2246
2247                 ctx->rcs_initialized = true;
2248         }
2249
2250         return 0;
2251
2252 error:
2253         if (is_global_default_ctx)
2254                 intel_unpin_ringbuffer_obj(ringbuf);
2255 error_destroy_rbuf:
2256         intel_destroy_ringbuffer_obj(ringbuf);
2257 error_free_rbuf:
2258         kfree(ringbuf);
2259 error_unpin_ctx:
2260         if (is_global_default_ctx)
2261                 i915_gem_object_ggtt_unpin(ctx_obj);
2262         drm_gem_object_unreference(&ctx_obj->base);
2263         return ret;
2264 }
2265
2266 void intel_lr_context_reset(struct drm_device *dev,
2267                         struct intel_context *ctx)
2268 {
2269         struct drm_i915_private *dev_priv = dev->dev_private;
2270         struct intel_engine_cs *ring;
2271         int i;
2272
2273         for_each_ring(ring, dev_priv, i) {
2274                 struct drm_i915_gem_object *ctx_obj =
2275                                 ctx->engine[ring->id].state;
2276                 struct intel_ringbuffer *ringbuf =
2277                                 ctx->engine[ring->id].ringbuf;
2278                 uint32_t *reg_state;
2279                 struct page *page;
2280
2281                 if (!ctx_obj)
2282                         continue;
2283
2284                 if (i915_gem_object_get_pages(ctx_obj)) {
2285                         WARN(1, "Failed get_pages for context obj\n");
2286                         continue;
2287                 }
2288                 page = i915_gem_object_get_page(ctx_obj, 1);
2289                 reg_state = kmap_atomic(page);
2290
2291                 reg_state[CTX_RING_HEAD+1] = 0;
2292                 reg_state[CTX_RING_TAIL+1] = 0;
2293
2294                 kunmap_atomic(reg_state);
2295
2296                 ringbuf->head = 0;
2297                 ringbuf->tail = 0;
2298         }
2299 }