drm/i915: use runtime irq suspend/resume in freeze/thaw
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         for_each_crtc(dev, tmp_crtc) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
534                 max_width = 4096;
535                 max_height = 4096;
536         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
537                 max_width = 4096;
538                 max_height = 2048;
539         } else {
540                 max_width = 2048;
541                 max_height = 1536;
542         }
543         if (intel_crtc->config.pipe_src_w > max_width ||
544             intel_crtc->config.pipe_src_h > max_height) {
545                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
546                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
547                 goto out_disable;
548         }
549         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
550             intel_crtc->plane != PLANE_A) {
551                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
552                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
553                 goto out_disable;
554         }
555
556         /* The use of a CPU fence is mandatory in order to detect writes
557          * by the CPU to the scanout and trigger updates to the FBC.
558          */
559         if (obj->tiling_mode != I915_TILING_X ||
560             obj->fence_reg == I915_FENCE_REG_NONE) {
561                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
562                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
563                 goto out_disable;
564         }
565
566         /* If the kernel debugger is active, always disable compression */
567         if (in_dbg_master())
568                 goto out_disable;
569
570         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
571                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
572                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
573                 goto out_disable;
574         }
575
576         /* If the scanout has not changed, don't modify the FBC settings.
577          * Note that we make the fundamental assumption that the fb->obj
578          * cannot be unpinned (and have its GTT offset and fence revoked)
579          * without first being decoupled from the scanout and FBC disabled.
580          */
581         if (dev_priv->fbc.plane == intel_crtc->plane &&
582             dev_priv->fbc.fb_id == fb->base.id &&
583             dev_priv->fbc.y == crtc->y)
584                 return;
585
586         if (intel_fbc_enabled(dev)) {
587                 /* We update FBC along two paths, after changing fb/crtc
588                  * configuration (modeswitching) and after page-flipping
589                  * finishes. For the latter, we know that not only did
590                  * we disable the FBC at the start of the page-flip
591                  * sequence, but also more than one vblank has passed.
592                  *
593                  * For the former case of modeswitching, it is possible
594                  * to switch between two FBC valid configurations
595                  * instantaneously so we do need to disable the FBC
596                  * before we can modify its control registers. We also
597                  * have to wait for the next vblank for that to take
598                  * effect. However, since we delay enabling FBC we can
599                  * assume that a vblank has passed since disabling and
600                  * that we can safely alter the registers in the deferred
601                  * callback.
602                  *
603                  * In the scenario that we go from a valid to invalid
604                  * and then back to valid FBC configuration we have
605                  * no strict enforcement that a vblank occurred since
606                  * disabling the FBC. However, along all current pipe
607                  * disabling paths we do need to wait for a vblank at
608                  * some point. And we wait before enabling FBC anyway.
609                  */
610                 DRM_DEBUG_KMS("disabling active FBC for update\n");
611                 intel_disable_fbc(dev);
612         }
613
614         intel_enable_fbc(crtc);
615         dev_priv->fbc.no_fbc_reason = FBC_OK;
616         return;
617
618 out_disable:
619         /* Multiple disables should be harmless */
620         if (intel_fbc_enabled(dev)) {
621                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
622                 intel_disable_fbc(dev);
623         }
624         i915_gem_stolen_cleanup_compression(dev);
625 }
626
627 static void i915_pineview_get_mem_freq(struct drm_device *dev)
628 {
629         struct drm_i915_private *dev_priv = dev->dev_private;
630         u32 tmp;
631
632         tmp = I915_READ(CLKCFG);
633
634         switch (tmp & CLKCFG_FSB_MASK) {
635         case CLKCFG_FSB_533:
636                 dev_priv->fsb_freq = 533; /* 133*4 */
637                 break;
638         case CLKCFG_FSB_800:
639                 dev_priv->fsb_freq = 800; /* 200*4 */
640                 break;
641         case CLKCFG_FSB_667:
642                 dev_priv->fsb_freq =  667; /* 167*4 */
643                 break;
644         case CLKCFG_FSB_400:
645                 dev_priv->fsb_freq = 400; /* 100*4 */
646                 break;
647         }
648
649         switch (tmp & CLKCFG_MEM_MASK) {
650         case CLKCFG_MEM_533:
651                 dev_priv->mem_freq = 533;
652                 break;
653         case CLKCFG_MEM_667:
654                 dev_priv->mem_freq = 667;
655                 break;
656         case CLKCFG_MEM_800:
657                 dev_priv->mem_freq = 800;
658                 break;
659         }
660
661         /* detect pineview DDR3 setting */
662         tmp = I915_READ(CSHRDDR3CTL);
663         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
664 }
665
666 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
667 {
668         struct drm_i915_private *dev_priv = dev->dev_private;
669         u16 ddrpll, csipll;
670
671         ddrpll = I915_READ16(DDRMPLL1);
672         csipll = I915_READ16(CSIPLL0);
673
674         switch (ddrpll & 0xff) {
675         case 0xc:
676                 dev_priv->mem_freq = 800;
677                 break;
678         case 0x10:
679                 dev_priv->mem_freq = 1066;
680                 break;
681         case 0x14:
682                 dev_priv->mem_freq = 1333;
683                 break;
684         case 0x18:
685                 dev_priv->mem_freq = 1600;
686                 break;
687         default:
688                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
689                                  ddrpll & 0xff);
690                 dev_priv->mem_freq = 0;
691                 break;
692         }
693
694         dev_priv->ips.r_t = dev_priv->mem_freq;
695
696         switch (csipll & 0x3ff) {
697         case 0x00c:
698                 dev_priv->fsb_freq = 3200;
699                 break;
700         case 0x00e:
701                 dev_priv->fsb_freq = 3733;
702                 break;
703         case 0x010:
704                 dev_priv->fsb_freq = 4266;
705                 break;
706         case 0x012:
707                 dev_priv->fsb_freq = 4800;
708                 break;
709         case 0x014:
710                 dev_priv->fsb_freq = 5333;
711                 break;
712         case 0x016:
713                 dev_priv->fsb_freq = 5866;
714                 break;
715         case 0x018:
716                 dev_priv->fsb_freq = 6400;
717                 break;
718         default:
719                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
720                                  csipll & 0x3ff);
721                 dev_priv->fsb_freq = 0;
722                 break;
723         }
724
725         if (dev_priv->fsb_freq == 3200) {
726                 dev_priv->ips.c_m = 0;
727         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
728                 dev_priv->ips.c_m = 1;
729         } else {
730                 dev_priv->ips.c_m = 2;
731         }
732 }
733
734 static const struct cxsr_latency cxsr_latency_table[] = {
735         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
736         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
737         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
738         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
739         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
740
741         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
742         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
743         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
744         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
745         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
746
747         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
748         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
749         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
750         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
751         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
752
753         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
754         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
755         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
756         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
757         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
758
759         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
760         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
761         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
762         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
763         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
764
765         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
766         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
767         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
768         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
769         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
770 };
771
772 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
773                                                          int is_ddr3,
774                                                          int fsb,
775                                                          int mem)
776 {
777         const struct cxsr_latency *latency;
778         int i;
779
780         if (fsb == 0 || mem == 0)
781                 return NULL;
782
783         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
784                 latency = &cxsr_latency_table[i];
785                 if (is_desktop == latency->is_desktop &&
786                     is_ddr3 == latency->is_ddr3 &&
787                     fsb == latency->fsb_freq && mem == latency->mem_freq)
788                         return latency;
789         }
790
791         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
792
793         return NULL;
794 }
795
796 static void pineview_disable_cxsr(struct drm_device *dev)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799
800         /* deactivate cxsr */
801         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
802 }
803
804 /*
805  * Latency for FIFO fetches is dependent on several factors:
806  *   - memory configuration (speed, channels)
807  *   - chipset
808  *   - current MCH state
809  * It can be fairly high in some situations, so here we assume a fairly
810  * pessimal value.  It's a tradeoff between extra memory fetches (if we
811  * set this value too high, the FIFO will fetch frequently to stay full)
812  * and power consumption (set it too low to save power and we might see
813  * FIFO underruns and display "flicker").
814  *
815  * A value of 5us seems to be a good balance; safe for very low end
816  * platforms but not overly aggressive on lower latency configs.
817  */
818 static const int latency_ns = 5000;
819
820 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
821 {
822         struct drm_i915_private *dev_priv = dev->dev_private;
823         uint32_t dsparb = I915_READ(DSPARB);
824         int size;
825
826         size = dsparb & 0x7f;
827         if (plane)
828                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
829
830         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
831                       plane ? "B" : "A", size);
832
833         return size;
834 }
835
836 static int i830_get_fifo_size(struct drm_device *dev, int plane)
837 {
838         struct drm_i915_private *dev_priv = dev->dev_private;
839         uint32_t dsparb = I915_READ(DSPARB);
840         int size;
841
842         size = dsparb & 0x1ff;
843         if (plane)
844                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
845         size >>= 1; /* Convert to cachelines */
846
847         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
848                       plane ? "B" : "A", size);
849
850         return size;
851 }
852
853 static int i845_get_fifo_size(struct drm_device *dev, int plane)
854 {
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         uint32_t dsparb = I915_READ(DSPARB);
857         int size;
858
859         size = dsparb & 0x7f;
860         size >>= 2; /* Convert to cachelines */
861
862         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
863                       plane ? "B" : "A",
864                       size);
865
866         return size;
867 }
868
869 /* Pineview has different values for various configs */
870 static const struct intel_watermark_params pineview_display_wm = {
871         .fifo_size = PINEVIEW_DISPLAY_FIFO,
872         .max_wm = PINEVIEW_MAX_WM,
873         .default_wm = PINEVIEW_DFT_WM,
874         .guard_size = PINEVIEW_GUARD_WM,
875         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
876 };
877 static const struct intel_watermark_params pineview_display_hplloff_wm = {
878         .fifo_size = PINEVIEW_DISPLAY_FIFO,
879         .max_wm = PINEVIEW_MAX_WM,
880         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
881         .guard_size = PINEVIEW_GUARD_WM,
882         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
883 };
884 static const struct intel_watermark_params pineview_cursor_wm = {
885         .fifo_size = PINEVIEW_CURSOR_FIFO,
886         .max_wm = PINEVIEW_CURSOR_MAX_WM,
887         .default_wm = PINEVIEW_CURSOR_DFT_WM,
888         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
889         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
890 };
891 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
892         .fifo_size = PINEVIEW_CURSOR_FIFO,
893         .max_wm = PINEVIEW_CURSOR_MAX_WM,
894         .default_wm = PINEVIEW_CURSOR_DFT_WM,
895         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
896         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
897 };
898 static const struct intel_watermark_params g4x_wm_info = {
899         .fifo_size = G4X_FIFO_SIZE,
900         .max_wm = G4X_MAX_WM,
901         .default_wm = G4X_MAX_WM,
902         .guard_size = 2,
903         .cacheline_size = G4X_FIFO_LINE_SIZE,
904 };
905 static const struct intel_watermark_params g4x_cursor_wm_info = {
906         .fifo_size = I965_CURSOR_FIFO,
907         .max_wm = I965_CURSOR_MAX_WM,
908         .default_wm = I965_CURSOR_DFT_WM,
909         .guard_size = 2,
910         .cacheline_size = G4X_FIFO_LINE_SIZE,
911 };
912 static const struct intel_watermark_params valleyview_wm_info = {
913         .fifo_size = VALLEYVIEW_FIFO_SIZE,
914         .max_wm = VALLEYVIEW_MAX_WM,
915         .default_wm = VALLEYVIEW_MAX_WM,
916         .guard_size = 2,
917         .cacheline_size = G4X_FIFO_LINE_SIZE,
918 };
919 static const struct intel_watermark_params valleyview_cursor_wm_info = {
920         .fifo_size = I965_CURSOR_FIFO,
921         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
922         .default_wm = I965_CURSOR_DFT_WM,
923         .guard_size = 2,
924         .cacheline_size = G4X_FIFO_LINE_SIZE,
925 };
926 static const struct intel_watermark_params i965_cursor_wm_info = {
927         .fifo_size = I965_CURSOR_FIFO,
928         .max_wm = I965_CURSOR_MAX_WM,
929         .default_wm = I965_CURSOR_DFT_WM,
930         .guard_size = 2,
931         .cacheline_size = I915_FIFO_LINE_SIZE,
932 };
933 static const struct intel_watermark_params i945_wm_info = {
934         .fifo_size = I945_FIFO_SIZE,
935         .max_wm = I915_MAX_WM,
936         .default_wm = 1,
937         .guard_size = 2,
938         .cacheline_size = I915_FIFO_LINE_SIZE,
939 };
940 static const struct intel_watermark_params i915_wm_info = {
941         .fifo_size = I915_FIFO_SIZE,
942         .max_wm = I915_MAX_WM,
943         .default_wm = 1,
944         .guard_size = 2,
945         .cacheline_size = I915_FIFO_LINE_SIZE,
946 };
947 static const struct intel_watermark_params i830_wm_info = {
948         .fifo_size = I855GM_FIFO_SIZE,
949         .max_wm = I915_MAX_WM,
950         .default_wm = 1,
951         .guard_size = 2,
952         .cacheline_size = I830_FIFO_LINE_SIZE,
953 };
954 static const struct intel_watermark_params i845_wm_info = {
955         .fifo_size = I830_FIFO_SIZE,
956         .max_wm = I915_MAX_WM,
957         .default_wm = 1,
958         .guard_size = 2,
959         .cacheline_size = I830_FIFO_LINE_SIZE,
960 };
961
962 /**
963  * intel_calculate_wm - calculate watermark level
964  * @clock_in_khz: pixel clock
965  * @wm: chip FIFO params
966  * @pixel_size: display pixel size
967  * @latency_ns: memory latency for the platform
968  *
969  * Calculate the watermark level (the level at which the display plane will
970  * start fetching from memory again).  Each chip has a different display
971  * FIFO size and allocation, so the caller needs to figure that out and pass
972  * in the correct intel_watermark_params structure.
973  *
974  * As the pixel clock runs, the FIFO will be drained at a rate that depends
975  * on the pixel size.  When it reaches the watermark level, it'll start
976  * fetching FIFO line sized based chunks from memory until the FIFO fills
977  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
978  * will occur, and a display engine hang could result.
979  */
980 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
981                                         const struct intel_watermark_params *wm,
982                                         int fifo_size,
983                                         int pixel_size,
984                                         unsigned long latency_ns)
985 {
986         long entries_required, wm_size;
987
988         /*
989          * Note: we need to make sure we don't overflow for various clock &
990          * latency values.
991          * clocks go from a few thousand to several hundred thousand.
992          * latency is usually a few thousand
993          */
994         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
995                 1000;
996         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
997
998         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
999
1000         wm_size = fifo_size - (entries_required + wm->guard_size);
1001
1002         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1003
1004         /* Don't promote wm_size to unsigned... */
1005         if (wm_size > (long)wm->max_wm)
1006                 wm_size = wm->max_wm;
1007         if (wm_size <= 0)
1008                 wm_size = wm->default_wm;
1009         return wm_size;
1010 }
1011
1012 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1013 {
1014         struct drm_crtc *crtc, *enabled = NULL;
1015
1016         for_each_crtc(dev, crtc) {
1017                 if (intel_crtc_active(crtc)) {
1018                         if (enabled)
1019                                 return NULL;
1020                         enabled = crtc;
1021                 }
1022         }
1023
1024         return enabled;
1025 }
1026
1027 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1028 {
1029         struct drm_device *dev = unused_crtc->dev;
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_crtc *crtc;
1032         const struct cxsr_latency *latency;
1033         u32 reg;
1034         unsigned long wm;
1035
1036         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1037                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1038         if (!latency) {
1039                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1040                 pineview_disable_cxsr(dev);
1041                 return;
1042         }
1043
1044         crtc = single_enabled_crtc(dev);
1045         if (crtc) {
1046                 const struct drm_display_mode *adjusted_mode;
1047                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1048                 int clock;
1049
1050                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1051                 clock = adjusted_mode->crtc_clock;
1052
1053                 /* Display SR */
1054                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1055                                         pineview_display_wm.fifo_size,
1056                                         pixel_size, latency->display_sr);
1057                 reg = I915_READ(DSPFW1);
1058                 reg &= ~DSPFW_SR_MASK;
1059                 reg |= wm << DSPFW_SR_SHIFT;
1060                 I915_WRITE(DSPFW1, reg);
1061                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1062
1063                 /* cursor SR */
1064                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1065                                         pineview_display_wm.fifo_size,
1066                                         pixel_size, latency->cursor_sr);
1067                 reg = I915_READ(DSPFW3);
1068                 reg &= ~DSPFW_CURSOR_SR_MASK;
1069                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1070                 I915_WRITE(DSPFW3, reg);
1071
1072                 /* Display HPLL off SR */
1073                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1074                                         pineview_display_hplloff_wm.fifo_size,
1075                                         pixel_size, latency->display_hpll_disable);
1076                 reg = I915_READ(DSPFW3);
1077                 reg &= ~DSPFW_HPLL_SR_MASK;
1078                 reg |= wm & DSPFW_HPLL_SR_MASK;
1079                 I915_WRITE(DSPFW3, reg);
1080
1081                 /* cursor HPLL off SR */
1082                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1083                                         pineview_display_hplloff_wm.fifo_size,
1084                                         pixel_size, latency->cursor_hpll_disable);
1085                 reg = I915_READ(DSPFW3);
1086                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1087                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1088                 I915_WRITE(DSPFW3, reg);
1089                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1090
1091                 /* activate cxsr */
1092                 I915_WRITE(DSPFW3,
1093                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1094                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1095         } else {
1096                 pineview_disable_cxsr(dev);
1097                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1098         }
1099 }
1100
1101 static bool g4x_compute_wm0(struct drm_device *dev,
1102                             int plane,
1103                             const struct intel_watermark_params *display,
1104                             int display_latency_ns,
1105                             const struct intel_watermark_params *cursor,
1106                             int cursor_latency_ns,
1107                             int *plane_wm,
1108                             int *cursor_wm)
1109 {
1110         struct drm_crtc *crtc;
1111         const struct drm_display_mode *adjusted_mode;
1112         int htotal, hdisplay, clock, pixel_size;
1113         int line_time_us, line_count;
1114         int entries, tlb_miss;
1115
1116         crtc = intel_get_crtc_for_plane(dev, plane);
1117         if (!intel_crtc_active(crtc)) {
1118                 *cursor_wm = cursor->guard_size;
1119                 *plane_wm = display->guard_size;
1120                 return false;
1121         }
1122
1123         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1124         clock = adjusted_mode->crtc_clock;
1125         htotal = adjusted_mode->crtc_htotal;
1126         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1127         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1128
1129         /* Use the small buffer method to calculate plane watermark */
1130         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1131         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1132         if (tlb_miss > 0)
1133                 entries += tlb_miss;
1134         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1135         *plane_wm = entries + display->guard_size;
1136         if (*plane_wm > (int)display->max_wm)
1137                 *plane_wm = display->max_wm;
1138
1139         /* Use the large buffer method to calculate cursor watermark */
1140         line_time_us = max(htotal * 1000 / clock, 1);
1141         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1142         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1143         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1144         if (tlb_miss > 0)
1145                 entries += tlb_miss;
1146         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1147         *cursor_wm = entries + cursor->guard_size;
1148         if (*cursor_wm > (int)cursor->max_wm)
1149                 *cursor_wm = (int)cursor->max_wm;
1150
1151         return true;
1152 }
1153
1154 /*
1155  * Check the wm result.
1156  *
1157  * If any calculated watermark values is larger than the maximum value that
1158  * can be programmed into the associated watermark register, that watermark
1159  * must be disabled.
1160  */
1161 static bool g4x_check_srwm(struct drm_device *dev,
1162                            int display_wm, int cursor_wm,
1163                            const struct intel_watermark_params *display,
1164                            const struct intel_watermark_params *cursor)
1165 {
1166         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1167                       display_wm, cursor_wm);
1168
1169         if (display_wm > display->max_wm) {
1170                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1171                               display_wm, display->max_wm);
1172                 return false;
1173         }
1174
1175         if (cursor_wm > cursor->max_wm) {
1176                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1177                               cursor_wm, cursor->max_wm);
1178                 return false;
1179         }
1180
1181         if (!(display_wm || cursor_wm)) {
1182                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1183                 return false;
1184         }
1185
1186         return true;
1187 }
1188
1189 static bool g4x_compute_srwm(struct drm_device *dev,
1190                              int plane,
1191                              int latency_ns,
1192                              const struct intel_watermark_params *display,
1193                              const struct intel_watermark_params *cursor,
1194                              int *display_wm, int *cursor_wm)
1195 {
1196         struct drm_crtc *crtc;
1197         const struct drm_display_mode *adjusted_mode;
1198         int hdisplay, htotal, pixel_size, clock;
1199         unsigned long line_time_us;
1200         int line_count, line_size;
1201         int small, large;
1202         int entries;
1203
1204         if (!latency_ns) {
1205                 *display_wm = *cursor_wm = 0;
1206                 return false;
1207         }
1208
1209         crtc = intel_get_crtc_for_plane(dev, plane);
1210         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1211         clock = adjusted_mode->crtc_clock;
1212         htotal = adjusted_mode->crtc_htotal;
1213         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1214         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1215
1216         line_time_us = max(htotal * 1000 / clock, 1);
1217         line_count = (latency_ns / line_time_us + 1000) / 1000;
1218         line_size = hdisplay * pixel_size;
1219
1220         /* Use the minimum of the small and large buffer method for primary */
1221         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1222         large = line_count * line_size;
1223
1224         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1225         *display_wm = entries + display->guard_size;
1226
1227         /* calculate the self-refresh watermark for display cursor */
1228         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1229         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1230         *cursor_wm = entries + cursor->guard_size;
1231
1232         return g4x_check_srwm(dev,
1233                               *display_wm, *cursor_wm,
1234                               display, cursor);
1235 }
1236
1237 static bool vlv_compute_drain_latency(struct drm_device *dev,
1238                                      int plane,
1239                                      int *plane_prec_mult,
1240                                      int *plane_dl,
1241                                      int *cursor_prec_mult,
1242                                      int *cursor_dl)
1243 {
1244         struct drm_crtc *crtc;
1245         int clock, pixel_size;
1246         int entries;
1247
1248         crtc = intel_get_crtc_for_plane(dev, plane);
1249         if (!intel_crtc_active(crtc))
1250                 return false;
1251
1252         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1253         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1254
1255         entries = (clock / 1000) * pixel_size;
1256         *plane_prec_mult = (entries > 256) ?
1257                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1258         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1259                                                      pixel_size);
1260
1261         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1262         *cursor_prec_mult = (entries > 256) ?
1263                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1264         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1265
1266         return true;
1267 }
1268
1269 /*
1270  * Update drain latency registers of memory arbiter
1271  *
1272  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1273  * to be programmed. Each plane has a drain latency multiplier and a drain
1274  * latency value.
1275  */
1276
1277 static void vlv_update_drain_latency(struct drm_device *dev)
1278 {
1279         struct drm_i915_private *dev_priv = dev->dev_private;
1280         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1281         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1282         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1283                                                         either 16 or 32 */
1284
1285         /* For plane A, Cursor A */
1286         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1287                                       &cursor_prec_mult, &cursora_dl)) {
1288                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1289                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1290                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1291                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1292
1293                 I915_WRITE(VLV_DDL1, cursora_prec |
1294                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1295                                 planea_prec | planea_dl);
1296         }
1297
1298         /* For plane B, Cursor B */
1299         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1300                                       &cursor_prec_mult, &cursorb_dl)) {
1301                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1302                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1303                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1304                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1305
1306                 I915_WRITE(VLV_DDL2, cursorb_prec |
1307                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1308                                 planeb_prec | planeb_dl);
1309         }
1310 }
1311
1312 #define single_plane_enabled(mask) is_power_of_2(mask)
1313
1314 static void valleyview_update_wm(struct drm_crtc *crtc)
1315 {
1316         struct drm_device *dev = crtc->dev;
1317         static const int sr_latency_ns = 12000;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1320         int plane_sr, cursor_sr;
1321         int ignore_plane_sr, ignore_cursor_sr;
1322         unsigned int enabled = 0;
1323
1324         vlv_update_drain_latency(dev);
1325
1326         if (g4x_compute_wm0(dev, PIPE_A,
1327                             &valleyview_wm_info, latency_ns,
1328                             &valleyview_cursor_wm_info, latency_ns,
1329                             &planea_wm, &cursora_wm))
1330                 enabled |= 1 << PIPE_A;
1331
1332         if (g4x_compute_wm0(dev, PIPE_B,
1333                             &valleyview_wm_info, latency_ns,
1334                             &valleyview_cursor_wm_info, latency_ns,
1335                             &planeb_wm, &cursorb_wm))
1336                 enabled |= 1 << PIPE_B;
1337
1338         if (single_plane_enabled(enabled) &&
1339             g4x_compute_srwm(dev, ffs(enabled) - 1,
1340                              sr_latency_ns,
1341                              &valleyview_wm_info,
1342                              &valleyview_cursor_wm_info,
1343                              &plane_sr, &ignore_cursor_sr) &&
1344             g4x_compute_srwm(dev, ffs(enabled) - 1,
1345                              2*sr_latency_ns,
1346                              &valleyview_wm_info,
1347                              &valleyview_cursor_wm_info,
1348                              &ignore_plane_sr, &cursor_sr)) {
1349                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1350         } else {
1351                 I915_WRITE(FW_BLC_SELF_VLV,
1352                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1353                 plane_sr = cursor_sr = 0;
1354         }
1355
1356         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1357                       planea_wm, cursora_wm,
1358                       planeb_wm, cursorb_wm,
1359                       plane_sr, cursor_sr);
1360
1361         I915_WRITE(DSPFW1,
1362                    (plane_sr << DSPFW_SR_SHIFT) |
1363                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1364                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1365                    planea_wm);
1366         I915_WRITE(DSPFW2,
1367                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1368                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1369         I915_WRITE(DSPFW3,
1370                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1371                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1372 }
1373
1374 static void g4x_update_wm(struct drm_crtc *crtc)
1375 {
1376         struct drm_device *dev = crtc->dev;
1377         static const int sr_latency_ns = 12000;
1378         struct drm_i915_private *dev_priv = dev->dev_private;
1379         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1380         int plane_sr, cursor_sr;
1381         unsigned int enabled = 0;
1382
1383         if (g4x_compute_wm0(dev, PIPE_A,
1384                             &g4x_wm_info, latency_ns,
1385                             &g4x_cursor_wm_info, latency_ns,
1386                             &planea_wm, &cursora_wm))
1387                 enabled |= 1 << PIPE_A;
1388
1389         if (g4x_compute_wm0(dev, PIPE_B,
1390                             &g4x_wm_info, latency_ns,
1391                             &g4x_cursor_wm_info, latency_ns,
1392                             &planeb_wm, &cursorb_wm))
1393                 enabled |= 1 << PIPE_B;
1394
1395         if (single_plane_enabled(enabled) &&
1396             g4x_compute_srwm(dev, ffs(enabled) - 1,
1397                              sr_latency_ns,
1398                              &g4x_wm_info,
1399                              &g4x_cursor_wm_info,
1400                              &plane_sr, &cursor_sr)) {
1401                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1402         } else {
1403                 I915_WRITE(FW_BLC_SELF,
1404                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1405                 plane_sr = cursor_sr = 0;
1406         }
1407
1408         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1409                       planea_wm, cursora_wm,
1410                       planeb_wm, cursorb_wm,
1411                       plane_sr, cursor_sr);
1412
1413         I915_WRITE(DSPFW1,
1414                    (plane_sr << DSPFW_SR_SHIFT) |
1415                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1416                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1417                    planea_wm);
1418         I915_WRITE(DSPFW2,
1419                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1420                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1421         /* HPLL off in SR has some issues on G4x... disable it */
1422         I915_WRITE(DSPFW3,
1423                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1424                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void i965_update_wm(struct drm_crtc *unused_crtc)
1428 {
1429         struct drm_device *dev = unused_crtc->dev;
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         struct drm_crtc *crtc;
1432         int srwm = 1;
1433         int cursor_sr = 16;
1434
1435         /* Calc sr entries for one plane configs */
1436         crtc = single_enabled_crtc(dev);
1437         if (crtc) {
1438                 /* self-refresh has much higher latency */
1439                 static const int sr_latency_ns = 12000;
1440                 const struct drm_display_mode *adjusted_mode =
1441                         &to_intel_crtc(crtc)->config.adjusted_mode;
1442                 int clock = adjusted_mode->crtc_clock;
1443                 int htotal = adjusted_mode->crtc_htotal;
1444                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1445                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1446                 unsigned long line_time_us;
1447                 int entries;
1448
1449                 line_time_us = max(htotal * 1000 / clock, 1);
1450
1451                 /* Use ns/us then divide to preserve precision */
1452                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1453                         pixel_size * hdisplay;
1454                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1455                 srwm = I965_FIFO_SIZE - entries;
1456                 if (srwm < 0)
1457                         srwm = 1;
1458                 srwm &= 0x1ff;
1459                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1460                               entries, srwm);
1461
1462                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1463                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1464                 entries = DIV_ROUND_UP(entries,
1465                                           i965_cursor_wm_info.cacheline_size);
1466                 cursor_sr = i965_cursor_wm_info.fifo_size -
1467                         (entries + i965_cursor_wm_info.guard_size);
1468
1469                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1470                         cursor_sr = i965_cursor_wm_info.max_wm;
1471
1472                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1473                               "cursor %d\n", srwm, cursor_sr);
1474
1475                 if (IS_CRESTLINE(dev))
1476                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1477         } else {
1478                 /* Turn off self refresh if both pipes are enabled */
1479                 if (IS_CRESTLINE(dev))
1480                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1481                                    & ~FW_BLC_SELF_EN);
1482         }
1483
1484         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1485                       srwm);
1486
1487         /* 965 has limitations... */
1488         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1489                    (8 << 16) | (8 << 8) | (8 << 0));
1490         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1491         /* update cursor SR watermark */
1492         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1493 }
1494
1495 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1496 {
1497         struct drm_device *dev = unused_crtc->dev;
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499         const struct intel_watermark_params *wm_info;
1500         uint32_t fwater_lo;
1501         uint32_t fwater_hi;
1502         int cwm, srwm = 1;
1503         int fifo_size;
1504         int planea_wm, planeb_wm;
1505         struct drm_crtc *crtc, *enabled = NULL;
1506
1507         if (IS_I945GM(dev))
1508                 wm_info = &i945_wm_info;
1509         else if (!IS_GEN2(dev))
1510                 wm_info = &i915_wm_info;
1511         else
1512                 wm_info = &i830_wm_info;
1513
1514         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1515         crtc = intel_get_crtc_for_plane(dev, 0);
1516         if (intel_crtc_active(crtc)) {
1517                 const struct drm_display_mode *adjusted_mode;
1518                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1519                 if (IS_GEN2(dev))
1520                         cpp = 4;
1521
1522                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1523                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1524                                                wm_info, fifo_size, cpp,
1525                                                latency_ns);
1526                 enabled = crtc;
1527         } else
1528                 planea_wm = fifo_size - wm_info->guard_size;
1529
1530         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1531         crtc = intel_get_crtc_for_plane(dev, 1);
1532         if (intel_crtc_active(crtc)) {
1533                 const struct drm_display_mode *adjusted_mode;
1534                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1535                 if (IS_GEN2(dev))
1536                         cpp = 4;
1537
1538                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1539                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1540                                                wm_info, fifo_size, cpp,
1541                                                latency_ns);
1542                 if (enabled == NULL)
1543                         enabled = crtc;
1544                 else
1545                         enabled = NULL;
1546         } else
1547                 planeb_wm = fifo_size - wm_info->guard_size;
1548
1549         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1550
1551         if (IS_I915GM(dev) && enabled) {
1552                 struct intel_framebuffer *fb;
1553
1554                 fb = to_intel_framebuffer(enabled->primary->fb);
1555
1556                 /* self-refresh seems busted with untiled */
1557                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1558                         enabled = NULL;
1559         }
1560
1561         /*
1562          * Overlay gets an aggressive default since video jitter is bad.
1563          */
1564         cwm = 2;
1565
1566         /* Play safe and disable self-refresh before adjusting watermarks. */
1567         if (IS_I945G(dev) || IS_I945GM(dev))
1568                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1569         else if (IS_I915GM(dev))
1570                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1571
1572         /* Calc sr entries for one plane configs */
1573         if (HAS_FW_BLC(dev) && enabled) {
1574                 /* self-refresh has much higher latency */
1575                 static const int sr_latency_ns = 6000;
1576                 const struct drm_display_mode *adjusted_mode =
1577                         &to_intel_crtc(enabled)->config.adjusted_mode;
1578                 int clock = adjusted_mode->crtc_clock;
1579                 int htotal = adjusted_mode->crtc_htotal;
1580                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1581                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1582                 unsigned long line_time_us;
1583                 int entries;
1584
1585                 line_time_us = max(htotal * 1000 / clock, 1);
1586
1587                 /* Use ns/us then divide to preserve precision */
1588                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1589                         pixel_size * hdisplay;
1590                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1591                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1592                 srwm = wm_info->fifo_size - entries;
1593                 if (srwm < 0)
1594                         srwm = 1;
1595
1596                 if (IS_I945G(dev) || IS_I945GM(dev))
1597                         I915_WRITE(FW_BLC_SELF,
1598                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1599                 else if (IS_I915GM(dev))
1600                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1601         }
1602
1603         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1604                       planea_wm, planeb_wm, cwm, srwm);
1605
1606         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1607         fwater_hi = (cwm & 0x1f);
1608
1609         /* Set request length to 8 cachelines per fetch */
1610         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1611         fwater_hi = fwater_hi | (1 << 8);
1612
1613         I915_WRITE(FW_BLC, fwater_lo);
1614         I915_WRITE(FW_BLC2, fwater_hi);
1615
1616         if (HAS_FW_BLC(dev)) {
1617                 if (enabled) {
1618                         if (IS_I945G(dev) || IS_I945GM(dev))
1619                                 I915_WRITE(FW_BLC_SELF,
1620                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1621                         else if (IS_I915GM(dev))
1622                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1623                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1624                 } else
1625                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1626         }
1627 }
1628
1629 static void i845_update_wm(struct drm_crtc *unused_crtc)
1630 {
1631         struct drm_device *dev = unused_crtc->dev;
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633         struct drm_crtc *crtc;
1634         const struct drm_display_mode *adjusted_mode;
1635         uint32_t fwater_lo;
1636         int planea_wm;
1637
1638         crtc = single_enabled_crtc(dev);
1639         if (crtc == NULL)
1640                 return;
1641
1642         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1643         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1644                                        &i845_wm_info,
1645                                        dev_priv->display.get_fifo_size(dev, 0),
1646                                        4, latency_ns);
1647         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1648         fwater_lo |= (3<<8) | planea_wm;
1649
1650         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1651
1652         I915_WRITE(FW_BLC, fwater_lo);
1653 }
1654
1655 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1656                                     struct drm_crtc *crtc)
1657 {
1658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1659         uint32_t pixel_rate;
1660
1661         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1662
1663         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1664          * adjust the pixel_rate here. */
1665
1666         if (intel_crtc->config.pch_pfit.enabled) {
1667                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1668                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1669
1670                 pipe_w = intel_crtc->config.pipe_src_w;
1671                 pipe_h = intel_crtc->config.pipe_src_h;
1672                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1673                 pfit_h = pfit_size & 0xFFFF;
1674                 if (pipe_w < pfit_w)
1675                         pipe_w = pfit_w;
1676                 if (pipe_h < pfit_h)
1677                         pipe_h = pfit_h;
1678
1679                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680                                      pfit_w * pfit_h);
1681         }
1682
1683         return pixel_rate;
1684 }
1685
1686 /* latency must be in 0.1us units. */
1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1688                                uint32_t latency)
1689 {
1690         uint64_t ret;
1691
1692         if (WARN(latency == 0, "Latency value missing\n"))
1693                 return UINT_MAX;
1694
1695         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1696         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1697
1698         return ret;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1703                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1704                                uint32_t latency)
1705 {
1706         uint32_t ret;
1707
1708         if (WARN(latency == 0, "Latency value missing\n"))
1709                 return UINT_MAX;
1710
1711         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1712         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1713         ret = DIV_ROUND_UP(ret, 64) + 2;
1714         return ret;
1715 }
1716
1717 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1718                            uint8_t bytes_per_pixel)
1719 {
1720         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1721 }
1722
1723 struct ilk_pipe_wm_parameters {
1724         bool active;
1725         uint32_t pipe_htotal;
1726         uint32_t pixel_rate;
1727         struct intel_plane_wm_parameters pri;
1728         struct intel_plane_wm_parameters spr;
1729         struct intel_plane_wm_parameters cur;
1730 };
1731
1732 struct ilk_wm_maximums {
1733         uint16_t pri;
1734         uint16_t spr;
1735         uint16_t cur;
1736         uint16_t fbc;
1737 };
1738
1739 /* used in computing the new watermarks state */
1740 struct intel_wm_config {
1741         unsigned int num_pipes_active;
1742         bool sprites_enabled;
1743         bool sprites_scaled;
1744 };
1745
1746 /*
1747  * For both WM_PIPE and WM_LP.
1748  * mem_value must be in 0.1us units.
1749  */
1750 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1751                                    uint32_t mem_value,
1752                                    bool is_lp)
1753 {
1754         uint32_t method1, method2;
1755
1756         if (!params->active || !params->pri.enabled)
1757                 return 0;
1758
1759         method1 = ilk_wm_method1(params->pixel_rate,
1760                                  params->pri.bytes_per_pixel,
1761                                  mem_value);
1762
1763         if (!is_lp)
1764                 return method1;
1765
1766         method2 = ilk_wm_method2(params->pixel_rate,
1767                                  params->pipe_htotal,
1768                                  params->pri.horiz_pixels,
1769                                  params->pri.bytes_per_pixel,
1770                                  mem_value);
1771
1772         return min(method1, method2);
1773 }
1774
1775 /*
1776  * For both WM_PIPE and WM_LP.
1777  * mem_value must be in 0.1us units.
1778  */
1779 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1780                                    uint32_t mem_value)
1781 {
1782         uint32_t method1, method2;
1783
1784         if (!params->active || !params->spr.enabled)
1785                 return 0;
1786
1787         method1 = ilk_wm_method1(params->pixel_rate,
1788                                  params->spr.bytes_per_pixel,
1789                                  mem_value);
1790         method2 = ilk_wm_method2(params->pixel_rate,
1791                                  params->pipe_htotal,
1792                                  params->spr.horiz_pixels,
1793                                  params->spr.bytes_per_pixel,
1794                                  mem_value);
1795         return min(method1, method2);
1796 }
1797
1798 /*
1799  * For both WM_PIPE and WM_LP.
1800  * mem_value must be in 0.1us units.
1801  */
1802 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1803                                    uint32_t mem_value)
1804 {
1805         if (!params->active || !params->cur.enabled)
1806                 return 0;
1807
1808         return ilk_wm_method2(params->pixel_rate,
1809                               params->pipe_htotal,
1810                               params->cur.horiz_pixels,
1811                               params->cur.bytes_per_pixel,
1812                               mem_value);
1813 }
1814
1815 /* Only for WM_LP. */
1816 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1817                                    uint32_t pri_val)
1818 {
1819         if (!params->active || !params->pri.enabled)
1820                 return 0;
1821
1822         return ilk_wm_fbc(pri_val,
1823                           params->pri.horiz_pixels,
1824                           params->pri.bytes_per_pixel);
1825 }
1826
1827 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1828 {
1829         if (INTEL_INFO(dev)->gen >= 8)
1830                 return 3072;
1831         else if (INTEL_INFO(dev)->gen >= 7)
1832                 return 768;
1833         else
1834                 return 512;
1835 }
1836
1837 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1838                                          int level, bool is_sprite)
1839 {
1840         if (INTEL_INFO(dev)->gen >= 8)
1841                 /* BDW primary/sprite plane watermarks */
1842                 return level == 0 ? 255 : 2047;
1843         else if (INTEL_INFO(dev)->gen >= 7)
1844                 /* IVB/HSW primary/sprite plane watermarks */
1845                 return level == 0 ? 127 : 1023;
1846         else if (!is_sprite)
1847                 /* ILK/SNB primary plane watermarks */
1848                 return level == 0 ? 127 : 511;
1849         else
1850                 /* ILK/SNB sprite plane watermarks */
1851                 return level == 0 ? 63 : 255;
1852 }
1853
1854 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1855                                           int level)
1856 {
1857         if (INTEL_INFO(dev)->gen >= 7)
1858                 return level == 0 ? 63 : 255;
1859         else
1860                 return level == 0 ? 31 : 63;
1861 }
1862
1863 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1864 {
1865         if (INTEL_INFO(dev)->gen >= 8)
1866                 return 31;
1867         else
1868                 return 15;
1869 }
1870
1871 /* Calculate the maximum primary/sprite plane watermark */
1872 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1873                                      int level,
1874                                      const struct intel_wm_config *config,
1875                                      enum intel_ddb_partitioning ddb_partitioning,
1876                                      bool is_sprite)
1877 {
1878         unsigned int fifo_size = ilk_display_fifo_size(dev);
1879
1880         /* if sprites aren't enabled, sprites get nothing */
1881         if (is_sprite && !config->sprites_enabled)
1882                 return 0;
1883
1884         /* HSW allows LP1+ watermarks even with multiple pipes */
1885         if (level == 0 || config->num_pipes_active > 1) {
1886                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1887
1888                 /*
1889                  * For some reason the non self refresh
1890                  * FIFO size is only half of the self
1891                  * refresh FIFO size on ILK/SNB.
1892                  */
1893                 if (INTEL_INFO(dev)->gen <= 6)
1894                         fifo_size /= 2;
1895         }
1896
1897         if (config->sprites_enabled) {
1898                 /* level 0 is always calculated with 1:1 split */
1899                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1900                         if (is_sprite)
1901                                 fifo_size *= 5;
1902                         fifo_size /= 6;
1903                 } else {
1904                         fifo_size /= 2;
1905                 }
1906         }
1907
1908         /* clamp to max that the registers can hold */
1909         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1910 }
1911
1912 /* Calculate the maximum cursor plane watermark */
1913 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1914                                       int level,
1915                                       const struct intel_wm_config *config)
1916 {
1917         /* HSW LP1+ watermarks w/ multiple pipes */
1918         if (level > 0 && config->num_pipes_active > 1)
1919                 return 64;
1920
1921         /* otherwise just report max that registers can hold */
1922         return ilk_cursor_wm_reg_max(dev, level);
1923 }
1924
1925 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1926                                     int level,
1927                                     const struct intel_wm_config *config,
1928                                     enum intel_ddb_partitioning ddb_partitioning,
1929                                     struct ilk_wm_maximums *max)
1930 {
1931         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1932         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1933         max->cur = ilk_cursor_wm_max(dev, level, config);
1934         max->fbc = ilk_fbc_wm_reg_max(dev);
1935 }
1936
1937 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1938                                         int level,
1939                                         struct ilk_wm_maximums *max)
1940 {
1941         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1942         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1943         max->cur = ilk_cursor_wm_reg_max(dev, level);
1944         max->fbc = ilk_fbc_wm_reg_max(dev);
1945 }
1946
1947 static bool ilk_validate_wm_level(int level,
1948                                   const struct ilk_wm_maximums *max,
1949                                   struct intel_wm_level *result)
1950 {
1951         bool ret;
1952
1953         /* already determined to be invalid? */
1954         if (!result->enable)
1955                 return false;
1956
1957         result->enable = result->pri_val <= max->pri &&
1958                          result->spr_val <= max->spr &&
1959                          result->cur_val <= max->cur;
1960
1961         ret = result->enable;
1962
1963         /*
1964          * HACK until we can pre-compute everything,
1965          * and thus fail gracefully if LP0 watermarks
1966          * are exceeded...
1967          */
1968         if (level == 0 && !result->enable) {
1969                 if (result->pri_val > max->pri)
1970                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1971                                       level, result->pri_val, max->pri);
1972                 if (result->spr_val > max->spr)
1973                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1974                                       level, result->spr_val, max->spr);
1975                 if (result->cur_val > max->cur)
1976                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1977                                       level, result->cur_val, max->cur);
1978
1979                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1980                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1981                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1982                 result->enable = true;
1983         }
1984
1985         return ret;
1986 }
1987
1988 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1989                                  int level,
1990                                  const struct ilk_pipe_wm_parameters *p,
1991                                  struct intel_wm_level *result)
1992 {
1993         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1994         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1995         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1996
1997         /* WM1+ latency values stored in 0.5us units */
1998         if (level > 0) {
1999                 pri_latency *= 5;
2000                 spr_latency *= 5;
2001                 cur_latency *= 5;
2002         }
2003
2004         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2005         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2006         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2007         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2008         result->enable = true;
2009 }
2010
2011 static uint32_t
2012 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2013 {
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2016         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2017         u32 linetime, ips_linetime;
2018
2019         if (!intel_crtc_active(crtc))
2020                 return 0;
2021
2022         /* The WM are computed with base on how long it takes to fill a single
2023          * row at the given clock rate, multiplied by 8.
2024          * */
2025         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2026                                      mode->crtc_clock);
2027         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2028                                          intel_ddi_get_cdclk_freq(dev_priv));
2029
2030         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2031                PIPE_WM_LINETIME_TIME(linetime);
2032 }
2033
2034 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2035 {
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037
2038         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2039                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2040
2041                 wm[0] = (sskpd >> 56) & 0xFF;
2042                 if (wm[0] == 0)
2043                         wm[0] = sskpd & 0xF;
2044                 wm[1] = (sskpd >> 4) & 0xFF;
2045                 wm[2] = (sskpd >> 12) & 0xFF;
2046                 wm[3] = (sskpd >> 20) & 0x1FF;
2047                 wm[4] = (sskpd >> 32) & 0x1FF;
2048         } else if (INTEL_INFO(dev)->gen >= 6) {
2049                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2050
2051                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2052                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2053                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2054                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2055         } else if (INTEL_INFO(dev)->gen >= 5) {
2056                 uint32_t mltr = I915_READ(MLTR_ILK);
2057
2058                 /* ILK primary LP0 latency is 700 ns */
2059                 wm[0] = 7;
2060                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2061                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2062         }
2063 }
2064
2065 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2066 {
2067         /* ILK sprite LP0 latency is 1300 ns */
2068         if (INTEL_INFO(dev)->gen == 5)
2069                 wm[0] = 13;
2070 }
2071
2072 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2073 {
2074         /* ILK cursor LP0 latency is 1300 ns */
2075         if (INTEL_INFO(dev)->gen == 5)
2076                 wm[0] = 13;
2077
2078         /* WaDoubleCursorLP3Latency:ivb */
2079         if (IS_IVYBRIDGE(dev))
2080                 wm[3] *= 2;
2081 }
2082
2083 int ilk_wm_max_level(const struct drm_device *dev)
2084 {
2085         /* how many WM levels are we expecting */
2086         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2087                 return 4;
2088         else if (INTEL_INFO(dev)->gen >= 6)
2089                 return 3;
2090         else
2091                 return 2;
2092 }
2093
2094 static void intel_print_wm_latency(struct drm_device *dev,
2095                                    const char *name,
2096                                    const uint16_t wm[5])
2097 {
2098         int level, max_level = ilk_wm_max_level(dev);
2099
2100         for (level = 0; level <= max_level; level++) {
2101                 unsigned int latency = wm[level];
2102
2103                 if (latency == 0) {
2104                         DRM_ERROR("%s WM%d latency not provided\n",
2105                                   name, level);
2106                         continue;
2107                 }
2108
2109                 /* WM1+ latency values in 0.5us units */
2110                 if (level > 0)
2111                         latency *= 5;
2112
2113                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2114                               name, level, wm[level],
2115                               latency / 10, latency % 10);
2116         }
2117 }
2118
2119 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2120                                     uint16_t wm[5], uint16_t min)
2121 {
2122         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2123
2124         if (wm[0] >= min)
2125                 return false;
2126
2127         wm[0] = max(wm[0], min);
2128         for (level = 1; level <= max_level; level++)
2129                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2130
2131         return true;
2132 }
2133
2134 static void snb_wm_latency_quirk(struct drm_device *dev)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         bool changed;
2138
2139         /*
2140          * The BIOS provided WM memory latency values are often
2141          * inadequate for high resolution displays. Adjust them.
2142          */
2143         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2144                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2145                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2146
2147         if (!changed)
2148                 return;
2149
2150         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2151         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2152         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2153         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2154 }
2155
2156 static void ilk_setup_wm_latency(struct drm_device *dev)
2157 {
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159
2160         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2161
2162         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2163                sizeof(dev_priv->wm.pri_latency));
2164         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2165                sizeof(dev_priv->wm.pri_latency));
2166
2167         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2168         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2169
2170         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2171         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2172         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2173
2174         if (IS_GEN6(dev))
2175                 snb_wm_latency_quirk(dev);
2176 }
2177
2178 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2179                                       struct ilk_pipe_wm_parameters *p)
2180 {
2181         struct drm_device *dev = crtc->dev;
2182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183         enum pipe pipe = intel_crtc->pipe;
2184         struct drm_plane *plane;
2185
2186         if (!intel_crtc_active(crtc))
2187                 return;
2188
2189         p->active = true;
2190         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2191         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2192         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2193         p->cur.bytes_per_pixel = 4;
2194         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2195         p->cur.horiz_pixels = intel_crtc->cursor_width;
2196         /* TODO: for now, assume primary and cursor planes are always enabled. */
2197         p->pri.enabled = true;
2198         p->cur.enabled = true;
2199
2200         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2201                 struct intel_plane *intel_plane = to_intel_plane(plane);
2202
2203                 if (intel_plane->pipe == pipe) {
2204                         p->spr = intel_plane->wm;
2205                         break;
2206                 }
2207         }
2208 }
2209
2210 static void ilk_compute_wm_config(struct drm_device *dev,
2211                                   struct intel_wm_config *config)
2212 {
2213         struct intel_crtc *intel_crtc;
2214
2215         /* Compute the currently _active_ config */
2216         for_each_intel_crtc(dev, intel_crtc) {
2217                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2218
2219                 if (!wm->pipe_enabled)
2220                         continue;
2221
2222                 config->sprites_enabled |= wm->sprites_enabled;
2223                 config->sprites_scaled |= wm->sprites_scaled;
2224                 config->num_pipes_active++;
2225         }
2226 }
2227
2228 /* Compute new watermarks for the pipe */
2229 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2230                                   const struct ilk_pipe_wm_parameters *params,
2231                                   struct intel_pipe_wm *pipe_wm)
2232 {
2233         struct drm_device *dev = crtc->dev;
2234         const struct drm_i915_private *dev_priv = dev->dev_private;
2235         int level, max_level = ilk_wm_max_level(dev);
2236         /* LP0 watermark maximums depend on this pipe alone */
2237         struct intel_wm_config config = {
2238                 .num_pipes_active = 1,
2239                 .sprites_enabled = params->spr.enabled,
2240                 .sprites_scaled = params->spr.scaled,
2241         };
2242         struct ilk_wm_maximums max;
2243
2244         pipe_wm->pipe_enabled = params->active;
2245         pipe_wm->sprites_enabled = params->spr.enabled;
2246         pipe_wm->sprites_scaled = params->spr.scaled;
2247
2248         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2249         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2250                 max_level = 1;
2251
2252         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2253         if (params->spr.scaled)
2254                 max_level = 0;
2255
2256         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2257
2258         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2259                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2260
2261         /* LP0 watermarks always use 1/2 DDB partitioning */
2262         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2263
2264         /* At least LP0 must be valid */
2265         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2266                 return false;
2267
2268         ilk_compute_wm_reg_maximums(dev, 1, &max);
2269
2270         for (level = 1; level <= max_level; level++) {
2271                 struct intel_wm_level wm = {};
2272
2273                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2274
2275                 /*
2276                  * Disable any watermark level that exceeds the
2277                  * register maximums since such watermarks are
2278                  * always invalid.
2279                  */
2280                 if (!ilk_validate_wm_level(level, &max, &wm))
2281                         break;
2282
2283                 pipe_wm->wm[level] = wm;
2284         }
2285
2286         return true;
2287 }
2288
2289 /*
2290  * Merge the watermarks from all active pipes for a specific level.
2291  */
2292 static void ilk_merge_wm_level(struct drm_device *dev,
2293                                int level,
2294                                struct intel_wm_level *ret_wm)
2295 {
2296         const struct intel_crtc *intel_crtc;
2297
2298         ret_wm->enable = true;
2299
2300         for_each_intel_crtc(dev, intel_crtc) {
2301                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2302                 const struct intel_wm_level *wm = &active->wm[level];
2303
2304                 if (!active->pipe_enabled)
2305                         continue;
2306
2307                 /*
2308                  * The watermark values may have been used in the past,
2309                  * so we must maintain them in the registers for some
2310                  * time even if the level is now disabled.
2311                  */
2312                 if (!wm->enable)
2313                         ret_wm->enable = false;
2314
2315                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2316                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2317                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2318                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2319         }
2320 }
2321
2322 /*
2323  * Merge all low power watermarks for all active pipes.
2324  */
2325 static void ilk_wm_merge(struct drm_device *dev,
2326                          const struct intel_wm_config *config,
2327                          const struct ilk_wm_maximums *max,
2328                          struct intel_pipe_wm *merged)
2329 {
2330         int level, max_level = ilk_wm_max_level(dev);
2331         int last_enabled_level = max_level;
2332
2333         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2334         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2335             config->num_pipes_active > 1)
2336                 return;
2337
2338         /* ILK: FBC WM must be disabled always */
2339         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2340
2341         /* merge each WM1+ level */
2342         for (level = 1; level <= max_level; level++) {
2343                 struct intel_wm_level *wm = &merged->wm[level];
2344
2345                 ilk_merge_wm_level(dev, level, wm);
2346
2347                 if (level > last_enabled_level)
2348                         wm->enable = false;
2349                 else if (!ilk_validate_wm_level(level, max, wm))
2350                         /* make sure all following levels get disabled */
2351                         last_enabled_level = level - 1;
2352
2353                 /*
2354                  * The spec says it is preferred to disable
2355                  * FBC WMs instead of disabling a WM level.
2356                  */
2357                 if (wm->fbc_val > max->fbc) {
2358                         if (wm->enable)
2359                                 merged->fbc_wm_enabled = false;
2360                         wm->fbc_val = 0;
2361                 }
2362         }
2363
2364         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2365         /*
2366          * FIXME this is racy. FBC might get enabled later.
2367          * What we should check here is whether FBC can be
2368          * enabled sometime later.
2369          */
2370         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2371                 for (level = 2; level <= max_level; level++) {
2372                         struct intel_wm_level *wm = &merged->wm[level];
2373
2374                         wm->enable = false;
2375                 }
2376         }
2377 }
2378
2379 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2380 {
2381         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2382         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2383 }
2384
2385 /* The value we need to program into the WM_LPx latency field */
2386 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389
2390         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2391                 return 2 * level;
2392         else
2393                 return dev_priv->wm.pri_latency[level];
2394 }
2395
2396 static void ilk_compute_wm_results(struct drm_device *dev,
2397                                    const struct intel_pipe_wm *merged,
2398                                    enum intel_ddb_partitioning partitioning,
2399                                    struct ilk_wm_values *results)
2400 {
2401         struct intel_crtc *intel_crtc;
2402         int level, wm_lp;
2403
2404         results->enable_fbc_wm = merged->fbc_wm_enabled;
2405         results->partitioning = partitioning;
2406
2407         /* LP1+ register values */
2408         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2409                 const struct intel_wm_level *r;
2410
2411                 level = ilk_wm_lp_to_level(wm_lp, merged);
2412
2413                 r = &merged->wm[level];
2414
2415                 /*
2416                  * Maintain the watermark values even if the level is
2417                  * disabled. Doing otherwise could cause underruns.
2418                  */
2419                 results->wm_lp[wm_lp - 1] =
2420                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2421                         (r->pri_val << WM1_LP_SR_SHIFT) |
2422                         r->cur_val;
2423
2424                 if (r->enable)
2425                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2426
2427                 if (INTEL_INFO(dev)->gen >= 8)
2428                         results->wm_lp[wm_lp - 1] |=
2429                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2430                 else
2431                         results->wm_lp[wm_lp - 1] |=
2432                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2433
2434                 /*
2435                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2436                  * level is disabled. Doing otherwise could cause underruns.
2437                  */
2438                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2439                         WARN_ON(wm_lp != 1);
2440                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2441                 } else
2442                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2443         }
2444
2445         /* LP0 register values */
2446         for_each_intel_crtc(dev, intel_crtc) {
2447                 enum pipe pipe = intel_crtc->pipe;
2448                 const struct intel_wm_level *r =
2449                         &intel_crtc->wm.active.wm[0];
2450
2451                 if (WARN_ON(!r->enable))
2452                         continue;
2453
2454                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2455
2456                 results->wm_pipe[pipe] =
2457                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2458                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2459                         r->cur_val;
2460         }
2461 }
2462
2463 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2464  * case both are at the same level. Prefer r1 in case they're the same. */
2465 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2466                                                   struct intel_pipe_wm *r1,
2467                                                   struct intel_pipe_wm *r2)
2468 {
2469         int level, max_level = ilk_wm_max_level(dev);
2470         int level1 = 0, level2 = 0;
2471
2472         for (level = 1; level <= max_level; level++) {
2473                 if (r1->wm[level].enable)
2474                         level1 = level;
2475                 if (r2->wm[level].enable)
2476                         level2 = level;
2477         }
2478
2479         if (level1 == level2) {
2480                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2481                         return r2;
2482                 else
2483                         return r1;
2484         } else if (level1 > level2) {
2485                 return r1;
2486         } else {
2487                 return r2;
2488         }
2489 }
2490
2491 /* dirty bits used to track which watermarks need changes */
2492 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2493 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2494 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2495 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2496 #define WM_DIRTY_FBC (1 << 24)
2497 #define WM_DIRTY_DDB (1 << 25)
2498
2499 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2500                                          const struct ilk_wm_values *old,
2501                                          const struct ilk_wm_values *new)
2502 {
2503         unsigned int dirty = 0;
2504         enum pipe pipe;
2505         int wm_lp;
2506
2507         for_each_pipe(pipe) {
2508                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2509                         dirty |= WM_DIRTY_LINETIME(pipe);
2510                         /* Must disable LP1+ watermarks too */
2511                         dirty |= WM_DIRTY_LP_ALL;
2512                 }
2513
2514                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2515                         dirty |= WM_DIRTY_PIPE(pipe);
2516                         /* Must disable LP1+ watermarks too */
2517                         dirty |= WM_DIRTY_LP_ALL;
2518                 }
2519         }
2520
2521         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2522                 dirty |= WM_DIRTY_FBC;
2523                 /* Must disable LP1+ watermarks too */
2524                 dirty |= WM_DIRTY_LP_ALL;
2525         }
2526
2527         if (old->partitioning != new->partitioning) {
2528                 dirty |= WM_DIRTY_DDB;
2529                 /* Must disable LP1+ watermarks too */
2530                 dirty |= WM_DIRTY_LP_ALL;
2531         }
2532
2533         /* LP1+ watermarks already deemed dirty, no need to continue */
2534         if (dirty & WM_DIRTY_LP_ALL)
2535                 return dirty;
2536
2537         /* Find the lowest numbered LP1+ watermark in need of an update... */
2538         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2539                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2540                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2541                         break;
2542         }
2543
2544         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2545         for (; wm_lp <= 3; wm_lp++)
2546                 dirty |= WM_DIRTY_LP(wm_lp);
2547
2548         return dirty;
2549 }
2550
2551 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2552                                unsigned int dirty)
2553 {
2554         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2555         bool changed = false;
2556
2557         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2558                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2559                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2560                 changed = true;
2561         }
2562         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2563                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2564                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2565                 changed = true;
2566         }
2567         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2568                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2569                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2570                 changed = true;
2571         }
2572
2573         /*
2574          * Don't touch WM1S_LP_EN here.
2575          * Doing so could cause underruns.
2576          */
2577
2578         return changed;
2579 }
2580
2581 /*
2582  * The spec says we shouldn't write when we don't need, because every write
2583  * causes WMs to be re-evaluated, expending some power.
2584  */
2585 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2586                                 struct ilk_wm_values *results)
2587 {
2588         struct drm_device *dev = dev_priv->dev;
2589         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2590         unsigned int dirty;
2591         uint32_t val;
2592
2593         dirty = ilk_compute_wm_dirty(dev, previous, results);
2594         if (!dirty)
2595                 return;
2596
2597         _ilk_disable_lp_wm(dev_priv, dirty);
2598
2599         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2600                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2601         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2602                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2603         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2604                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2605
2606         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2607                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2608         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2609                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2610         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2611                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2612
2613         if (dirty & WM_DIRTY_DDB) {
2614                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2615                         val = I915_READ(WM_MISC);
2616                         if (results->partitioning == INTEL_DDB_PART_1_2)
2617                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2618                         else
2619                                 val |= WM_MISC_DATA_PARTITION_5_6;
2620                         I915_WRITE(WM_MISC, val);
2621                 } else {
2622                         val = I915_READ(DISP_ARB_CTL2);
2623                         if (results->partitioning == INTEL_DDB_PART_1_2)
2624                                 val &= ~DISP_DATA_PARTITION_5_6;
2625                         else
2626                                 val |= DISP_DATA_PARTITION_5_6;
2627                         I915_WRITE(DISP_ARB_CTL2, val);
2628                 }
2629         }
2630
2631         if (dirty & WM_DIRTY_FBC) {
2632                 val = I915_READ(DISP_ARB_CTL);
2633                 if (results->enable_fbc_wm)
2634                         val &= ~DISP_FBC_WM_DIS;
2635                 else
2636                         val |= DISP_FBC_WM_DIS;
2637                 I915_WRITE(DISP_ARB_CTL, val);
2638         }
2639
2640         if (dirty & WM_DIRTY_LP(1) &&
2641             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2642                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2643
2644         if (INTEL_INFO(dev)->gen >= 7) {
2645                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2646                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2647                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2648                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2649         }
2650
2651         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2652                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2653         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2654                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2655         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2656                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2657
2658         dev_priv->wm.hw = *results;
2659 }
2660
2661 static bool ilk_disable_lp_wm(struct drm_device *dev)
2662 {
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664
2665         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2666 }
2667
2668 static void ilk_update_wm(struct drm_crtc *crtc)
2669 {
2670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671         struct drm_device *dev = crtc->dev;
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         struct ilk_wm_maximums max;
2674         struct ilk_pipe_wm_parameters params = {};
2675         struct ilk_wm_values results = {};
2676         enum intel_ddb_partitioning partitioning;
2677         struct intel_pipe_wm pipe_wm = {};
2678         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2679         struct intel_wm_config config = {};
2680
2681         ilk_compute_wm_parameters(crtc, &params);
2682
2683         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2684
2685         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2686                 return;
2687
2688         intel_crtc->wm.active = pipe_wm;
2689
2690         ilk_compute_wm_config(dev, &config);
2691
2692         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2693         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2694
2695         /* 5/6 split only in single pipe config on IVB+ */
2696         if (INTEL_INFO(dev)->gen >= 7 &&
2697             config.num_pipes_active == 1 && config.sprites_enabled) {
2698                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2699                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2700
2701                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2702         } else {
2703                 best_lp_wm = &lp_wm_1_2;
2704         }
2705
2706         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2707                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2708
2709         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2710
2711         ilk_write_wm_values(dev_priv, &results);
2712 }
2713
2714 static void ilk_update_sprite_wm(struct drm_plane *plane,
2715                                      struct drm_crtc *crtc,
2716                                      uint32_t sprite_width, int pixel_size,
2717                                      bool enabled, bool scaled)
2718 {
2719         struct drm_device *dev = plane->dev;
2720         struct intel_plane *intel_plane = to_intel_plane(plane);
2721
2722         intel_plane->wm.enabled = enabled;
2723         intel_plane->wm.scaled = scaled;
2724         intel_plane->wm.horiz_pixels = sprite_width;
2725         intel_plane->wm.bytes_per_pixel = pixel_size;
2726
2727         /*
2728          * IVB workaround: must disable low power watermarks for at least
2729          * one frame before enabling scaling.  LP watermarks can be re-enabled
2730          * when scaling is disabled.
2731          *
2732          * WaCxSRDisabledForSpriteScaling:ivb
2733          */
2734         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2735                 intel_wait_for_vblank(dev, intel_plane->pipe);
2736
2737         ilk_update_wm(crtc);
2738 }
2739
2740 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2741 {
2742         struct drm_device *dev = crtc->dev;
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2746         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2747         enum pipe pipe = intel_crtc->pipe;
2748         static const unsigned int wm0_pipe_reg[] = {
2749                 [PIPE_A] = WM0_PIPEA_ILK,
2750                 [PIPE_B] = WM0_PIPEB_ILK,
2751                 [PIPE_C] = WM0_PIPEC_IVB,
2752         };
2753
2754         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2755         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2756                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2757
2758         active->pipe_enabled = intel_crtc_active(crtc);
2759
2760         if (active->pipe_enabled) {
2761                 u32 tmp = hw->wm_pipe[pipe];
2762
2763                 /*
2764                  * For active pipes LP0 watermark is marked as
2765                  * enabled, and LP1+ watermaks as disabled since
2766                  * we can't really reverse compute them in case
2767                  * multiple pipes are active.
2768                  */
2769                 active->wm[0].enable = true;
2770                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2771                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2772                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2773                 active->linetime = hw->wm_linetime[pipe];
2774         } else {
2775                 int level, max_level = ilk_wm_max_level(dev);
2776
2777                 /*
2778                  * For inactive pipes, all watermark levels
2779                  * should be marked as enabled but zeroed,
2780                  * which is what we'd compute them to.
2781                  */
2782                 for (level = 0; level <= max_level; level++)
2783                         active->wm[level].enable = true;
2784         }
2785 }
2786
2787 void ilk_wm_get_hw_state(struct drm_device *dev)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2791         struct drm_crtc *crtc;
2792
2793         for_each_crtc(dev, crtc)
2794                 ilk_pipe_wm_get_hw_state(crtc);
2795
2796         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2797         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2798         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2799
2800         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2801         if (INTEL_INFO(dev)->gen >= 7) {
2802                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2803                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2804         }
2805
2806         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2807                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2808                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2809         else if (IS_IVYBRIDGE(dev))
2810                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2811                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2812
2813         hw->enable_fbc_wm =
2814                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2815 }
2816
2817 /**
2818  * intel_update_watermarks - update FIFO watermark values based on current modes
2819  *
2820  * Calculate watermark values for the various WM regs based on current mode
2821  * and plane configuration.
2822  *
2823  * There are several cases to deal with here:
2824  *   - normal (i.e. non-self-refresh)
2825  *   - self-refresh (SR) mode
2826  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2827  *   - lines are small relative to FIFO size (buffer can hold more than 2
2828  *     lines), so need to account for TLB latency
2829  *
2830  *   The normal calculation is:
2831  *     watermark = dotclock * bytes per pixel * latency
2832  *   where latency is platform & configuration dependent (we assume pessimal
2833  *   values here).
2834  *
2835  *   The SR calculation is:
2836  *     watermark = (trunc(latency/line time)+1) * surface width *
2837  *       bytes per pixel
2838  *   where
2839  *     line time = htotal / dotclock
2840  *     surface width = hdisplay for normal plane and 64 for cursor
2841  *   and latency is assumed to be high, as above.
2842  *
2843  * The final value programmed to the register should always be rounded up,
2844  * and include an extra 2 entries to account for clock crossings.
2845  *
2846  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2847  * to set the non-SR watermarks to 8.
2848  */
2849 void intel_update_watermarks(struct drm_crtc *crtc)
2850 {
2851         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2852
2853         if (dev_priv->display.update_wm)
2854                 dev_priv->display.update_wm(crtc);
2855 }
2856
2857 void intel_update_sprite_watermarks(struct drm_plane *plane,
2858                                     struct drm_crtc *crtc,
2859                                     uint32_t sprite_width, int pixel_size,
2860                                     bool enabled, bool scaled)
2861 {
2862         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2863
2864         if (dev_priv->display.update_sprite_wm)
2865                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2866                                                    pixel_size, enabled, scaled);
2867 }
2868
2869 static struct drm_i915_gem_object *
2870 intel_alloc_context_page(struct drm_device *dev)
2871 {
2872         struct drm_i915_gem_object *ctx;
2873         int ret;
2874
2875         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2876
2877         ctx = i915_gem_alloc_object(dev, 4096);
2878         if (!ctx) {
2879                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2880                 return NULL;
2881         }
2882
2883         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2884         if (ret) {
2885                 DRM_ERROR("failed to pin power context: %d\n", ret);
2886                 goto err_unref;
2887         }
2888
2889         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2890         if (ret) {
2891                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2892                 goto err_unpin;
2893         }
2894
2895         return ctx;
2896
2897 err_unpin:
2898         i915_gem_object_ggtt_unpin(ctx);
2899 err_unref:
2900         drm_gem_object_unreference(&ctx->base);
2901         return NULL;
2902 }
2903
2904 /**
2905  * Lock protecting IPS related data structures
2906  */
2907 DEFINE_SPINLOCK(mchdev_lock);
2908
2909 /* Global for IPS driver to get at the current i915 device. Protected by
2910  * mchdev_lock. */
2911 static struct drm_i915_private *i915_mch_dev;
2912
2913 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2914 {
2915         struct drm_i915_private *dev_priv = dev->dev_private;
2916         u16 rgvswctl;
2917
2918         assert_spin_locked(&mchdev_lock);
2919
2920         rgvswctl = I915_READ16(MEMSWCTL);
2921         if (rgvswctl & MEMCTL_CMD_STS) {
2922                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2923                 return false; /* still busy with another command */
2924         }
2925
2926         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2927                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2928         I915_WRITE16(MEMSWCTL, rgvswctl);
2929         POSTING_READ16(MEMSWCTL);
2930
2931         rgvswctl |= MEMCTL_CMD_STS;
2932         I915_WRITE16(MEMSWCTL, rgvswctl);
2933
2934         return true;
2935 }
2936
2937 static void ironlake_enable_drps(struct drm_device *dev)
2938 {
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         u32 rgvmodectl = I915_READ(MEMMODECTL);
2941         u8 fmax, fmin, fstart, vstart;
2942
2943         spin_lock_irq(&mchdev_lock);
2944
2945         /* Enable temp reporting */
2946         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2947         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2948
2949         /* 100ms RC evaluation intervals */
2950         I915_WRITE(RCUPEI, 100000);
2951         I915_WRITE(RCDNEI, 100000);
2952
2953         /* Set max/min thresholds to 90ms and 80ms respectively */
2954         I915_WRITE(RCBMAXAVG, 90000);
2955         I915_WRITE(RCBMINAVG, 80000);
2956
2957         I915_WRITE(MEMIHYST, 1);
2958
2959         /* Set up min, max, and cur for interrupt handling */
2960         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2961         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2962         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2963                 MEMMODE_FSTART_SHIFT;
2964
2965         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2966                 PXVFREQ_PX_SHIFT;
2967
2968         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2969         dev_priv->ips.fstart = fstart;
2970
2971         dev_priv->ips.max_delay = fstart;
2972         dev_priv->ips.min_delay = fmin;
2973         dev_priv->ips.cur_delay = fstart;
2974
2975         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2976                          fmax, fmin, fstart);
2977
2978         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2979
2980         /*
2981          * Interrupts will be enabled in ironlake_irq_postinstall
2982          */
2983
2984         I915_WRITE(VIDSTART, vstart);
2985         POSTING_READ(VIDSTART);
2986
2987         rgvmodectl |= MEMMODE_SWMODE_EN;
2988         I915_WRITE(MEMMODECTL, rgvmodectl);
2989
2990         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2991                 DRM_ERROR("stuck trying to change perf mode\n");
2992         mdelay(1);
2993
2994         ironlake_set_drps(dev, fstart);
2995
2996         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2997                 I915_READ(0x112e0);
2998         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2999         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3000         getrawmonotonic(&dev_priv->ips.last_time2);
3001
3002         spin_unlock_irq(&mchdev_lock);
3003 }
3004
3005 static void ironlake_disable_drps(struct drm_device *dev)
3006 {
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         u16 rgvswctl;
3009
3010         spin_lock_irq(&mchdev_lock);
3011
3012         rgvswctl = I915_READ16(MEMSWCTL);
3013
3014         /* Ack interrupts, disable EFC interrupt */
3015         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3016         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3017         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3018         I915_WRITE(DEIIR, DE_PCU_EVENT);
3019         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3020
3021         /* Go back to the starting frequency */
3022         ironlake_set_drps(dev, dev_priv->ips.fstart);
3023         mdelay(1);
3024         rgvswctl |= MEMCTL_CMD_STS;
3025         I915_WRITE(MEMSWCTL, rgvswctl);
3026         mdelay(1);
3027
3028         spin_unlock_irq(&mchdev_lock);
3029 }
3030
3031 /* There's a funny hw issue where the hw returns all 0 when reading from
3032  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3033  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3034  * all limits and the gpu stuck at whatever frequency it is at atm).
3035  */
3036 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3037 {
3038         u32 limits;
3039
3040         /* Only set the down limit when we've reached the lowest level to avoid
3041          * getting more interrupts, otherwise leave this clear. This prevents a
3042          * race in the hw when coming out of rc6: There's a tiny window where
3043          * the hw runs at the minimal clock before selecting the desired
3044          * frequency, if the down threshold expires in that window we will not
3045          * receive a down interrupt. */
3046         limits = dev_priv->rps.max_freq_softlimit << 24;
3047         if (val <= dev_priv->rps.min_freq_softlimit)
3048                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3049
3050         return limits;
3051 }
3052
3053 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3054 {
3055         int new_power;
3056
3057         new_power = dev_priv->rps.power;
3058         switch (dev_priv->rps.power) {
3059         case LOW_POWER:
3060                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3061                         new_power = BETWEEN;
3062                 break;
3063
3064         case BETWEEN:
3065                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3066                         new_power = LOW_POWER;
3067                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3068                         new_power = HIGH_POWER;
3069                 break;
3070
3071         case HIGH_POWER:
3072                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3073                         new_power = BETWEEN;
3074                 break;
3075         }
3076         /* Max/min bins are special */
3077         if (val == dev_priv->rps.min_freq_softlimit)
3078                 new_power = LOW_POWER;
3079         if (val == dev_priv->rps.max_freq_softlimit)
3080                 new_power = HIGH_POWER;
3081         if (new_power == dev_priv->rps.power)
3082                 return;
3083
3084         /* Note the units here are not exactly 1us, but 1280ns. */
3085         switch (new_power) {
3086         case LOW_POWER:
3087                 /* Upclock if more than 95% busy over 16ms */
3088                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3089                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3090
3091                 /* Downclock if less than 85% busy over 32ms */
3092                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3093                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3094
3095                 I915_WRITE(GEN6_RP_CONTROL,
3096                            GEN6_RP_MEDIA_TURBO |
3097                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3098                            GEN6_RP_MEDIA_IS_GFX |
3099                            GEN6_RP_ENABLE |
3100                            GEN6_RP_UP_BUSY_AVG |
3101                            GEN6_RP_DOWN_IDLE_AVG);
3102                 break;
3103
3104         case BETWEEN:
3105                 /* Upclock if more than 90% busy over 13ms */
3106                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3107                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3108
3109                 /* Downclock if less than 75% busy over 32ms */
3110                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3111                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3112
3113                 I915_WRITE(GEN6_RP_CONTROL,
3114                            GEN6_RP_MEDIA_TURBO |
3115                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3116                            GEN6_RP_MEDIA_IS_GFX |
3117                            GEN6_RP_ENABLE |
3118                            GEN6_RP_UP_BUSY_AVG |
3119                            GEN6_RP_DOWN_IDLE_AVG);
3120                 break;
3121
3122         case HIGH_POWER:
3123                 /* Upclock if more than 85% busy over 10ms */
3124                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3125                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3126
3127                 /* Downclock if less than 60% busy over 32ms */
3128                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3130
3131                 I915_WRITE(GEN6_RP_CONTROL,
3132                            GEN6_RP_MEDIA_TURBO |
3133                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134                            GEN6_RP_MEDIA_IS_GFX |
3135                            GEN6_RP_ENABLE |
3136                            GEN6_RP_UP_BUSY_AVG |
3137                            GEN6_RP_DOWN_IDLE_AVG);
3138                 break;
3139         }
3140
3141         dev_priv->rps.power = new_power;
3142         dev_priv->rps.last_adj = 0;
3143 }
3144
3145 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3146 {
3147         u32 mask = 0;
3148
3149         if (val > dev_priv->rps.min_freq_softlimit)
3150                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3151         if (val < dev_priv->rps.max_freq_softlimit)
3152                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3153
3154         /* IVB and SNB hard hangs on looping batchbuffer
3155          * if GEN6_PM_UP_EI_EXPIRED is masked.
3156          */
3157         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3158                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3159
3160         if (IS_GEN8(dev_priv->dev))
3161                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3162
3163         return ~mask;
3164 }
3165
3166 /* gen6_set_rps is called to update the frequency request, but should also be
3167  * called when the range (min_delay and max_delay) is modified so that we can
3168  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3169 void gen6_set_rps(struct drm_device *dev, u8 val)
3170 {
3171         struct drm_i915_private *dev_priv = dev->dev_private;
3172
3173         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3174         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3175         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3176
3177         /* min/max delay may still have been modified so be sure to
3178          * write the limits value.
3179          */
3180         if (val != dev_priv->rps.cur_freq) {
3181                 gen6_set_rps_thresholds(dev_priv, val);
3182
3183                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3184                         I915_WRITE(GEN6_RPNSWREQ,
3185                                    HSW_FREQUENCY(val));
3186                 else
3187                         I915_WRITE(GEN6_RPNSWREQ,
3188                                    GEN6_FREQUENCY(val) |
3189                                    GEN6_OFFSET(0) |
3190                                    GEN6_AGGRESSIVE_TURBO);
3191         }
3192
3193         /* Make sure we continue to get interrupts
3194          * until we hit the minimum or maximum frequencies.
3195          */
3196         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3197         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3198
3199         POSTING_READ(GEN6_RPNSWREQ);
3200
3201         dev_priv->rps.cur_freq = val;
3202         trace_intel_gpu_freq_change(val * 50);
3203 }
3204
3205 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3206  *
3207  * * If Gfx is Idle, then
3208  * 1. Mask Turbo interrupts
3209  * 2. Bring up Gfx clock
3210  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3211  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3212  * 5. Unmask Turbo interrupts
3213 */
3214 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3215 {
3216         /*
3217          * When we are idle.  Drop to min voltage state.
3218          */
3219
3220         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3221                 return;
3222
3223         /* Mask turbo interrupt so that they will not come in between */
3224         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3225
3226         vlv_force_gfx_clock(dev_priv, true);
3227
3228         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3229
3230         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3231                                         dev_priv->rps.min_freq_softlimit);
3232
3233         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3234                                 & GENFREQSTATUS) == 0, 5))
3235                 DRM_ERROR("timed out waiting for Punit\n");
3236
3237         vlv_force_gfx_clock(dev_priv, false);
3238
3239         I915_WRITE(GEN6_PMINTRMSK,
3240                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3241 }
3242
3243 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3244 {
3245         struct drm_device *dev = dev_priv->dev;
3246
3247         mutex_lock(&dev_priv->rps.hw_lock);
3248         if (dev_priv->rps.enabled) {
3249                 if (IS_VALLEYVIEW(dev))
3250                         vlv_set_rps_idle(dev_priv);
3251                 else
3252                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3253                 dev_priv->rps.last_adj = 0;
3254         }
3255         mutex_unlock(&dev_priv->rps.hw_lock);
3256 }
3257
3258 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3259 {
3260         struct drm_device *dev = dev_priv->dev;
3261
3262         mutex_lock(&dev_priv->rps.hw_lock);
3263         if (dev_priv->rps.enabled) {
3264                 if (IS_VALLEYVIEW(dev))
3265                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3266                 else
3267                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3268                 dev_priv->rps.last_adj = 0;
3269         }
3270         mutex_unlock(&dev_priv->rps.hw_lock);
3271 }
3272
3273 void valleyview_set_rps(struct drm_device *dev, u8 val)
3274 {
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276
3277         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3278         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3279         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3280
3281         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3282                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3283                          dev_priv->rps.cur_freq,
3284                          vlv_gpu_freq(dev_priv, val), val);
3285
3286         if (val != dev_priv->rps.cur_freq)
3287                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3288
3289         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3290
3291         dev_priv->rps.cur_freq = val;
3292         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3293 }
3294
3295 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3296 {
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298
3299         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3300         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3301                                    ~dev_priv->pm_rps_events);
3302         /* Complete PM interrupt masking here doesn't race with the rps work
3303          * item again unmasking PM interrupts because that is using a different
3304          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3305          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3306          * gen8_enable_rps will clean up. */
3307
3308         spin_lock_irq(&dev_priv->irq_lock);
3309         dev_priv->rps.pm_iir = 0;
3310         spin_unlock_irq(&dev_priv->irq_lock);
3311
3312         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3313 }
3314
3315 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3316 {
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318
3319         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3320         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3321                                 ~dev_priv->pm_rps_events);
3322         /* Complete PM interrupt masking here doesn't race with the rps work
3323          * item again unmasking PM interrupts because that is using a different
3324          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3325          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3326
3327         spin_lock_irq(&dev_priv->irq_lock);
3328         dev_priv->rps.pm_iir = 0;
3329         spin_unlock_irq(&dev_priv->irq_lock);
3330
3331         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3332 }
3333
3334 static void gen6_disable_rps(struct drm_device *dev)
3335 {
3336         struct drm_i915_private *dev_priv = dev->dev_private;
3337
3338         I915_WRITE(GEN6_RC_CONTROL, 0);
3339         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3340
3341         if (IS_BROADWELL(dev))
3342                 gen8_disable_rps_interrupts(dev);
3343         else
3344                 gen6_disable_rps_interrupts(dev);
3345 }
3346
3347 static void cherryview_disable_rps(struct drm_device *dev)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351         I915_WRITE(GEN6_RC_CONTROL, 0);
3352 }
3353
3354 static void valleyview_disable_rps(struct drm_device *dev)
3355 {
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357
3358         I915_WRITE(GEN6_RC_CONTROL, 0);
3359
3360         gen6_disable_rps_interrupts(dev);
3361 }
3362
3363 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3364 {
3365         if (IS_VALLEYVIEW(dev)) {
3366                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3367                         mode = GEN6_RC_CTL_RC6_ENABLE;
3368                 else
3369                         mode = 0;
3370         }
3371         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3372                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3373                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3374                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3375 }
3376
3377 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3378 {
3379         /* No RC6 before Ironlake */
3380         if (INTEL_INFO(dev)->gen < 5)
3381                 return 0;
3382
3383         /* RC6 is only on Ironlake mobile not on desktop */
3384         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3385                 return 0;
3386
3387         /* Respect the kernel parameter if it is set */
3388         if (enable_rc6 >= 0) {
3389                 int mask;
3390
3391                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3392                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3393                                INTEL_RC6pp_ENABLE;
3394                 else
3395                         mask = INTEL_RC6_ENABLE;
3396
3397                 if ((enable_rc6 & mask) != enable_rc6)
3398                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3399                                  enable_rc6 & mask, enable_rc6, mask);
3400
3401                 return enable_rc6 & mask;
3402         }
3403
3404         /* Disable RC6 on Ironlake */
3405         if (INTEL_INFO(dev)->gen == 5)
3406                 return 0;
3407
3408         if (IS_IVYBRIDGE(dev))
3409                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3410
3411         return INTEL_RC6_ENABLE;
3412 }
3413
3414 int intel_enable_rc6(const struct drm_device *dev)
3415 {
3416         return i915.enable_rc6;
3417 }
3418
3419 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3420 {
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423         spin_lock_irq(&dev_priv->irq_lock);
3424         WARN_ON(dev_priv->rps.pm_iir);
3425         bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3426         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3427         spin_unlock_irq(&dev_priv->irq_lock);
3428 }
3429
3430 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3431 {
3432         struct drm_i915_private *dev_priv = dev->dev_private;
3433
3434         spin_lock_irq(&dev_priv->irq_lock);
3435         WARN_ON(dev_priv->rps.pm_iir);
3436         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3437         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3438         spin_unlock_irq(&dev_priv->irq_lock);
3439 }
3440
3441 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3442 {
3443         /* All of these values are in units of 50MHz */
3444         dev_priv->rps.cur_freq          = 0;
3445         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3446         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3447         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3448         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3449         /* XXX: only BYT has a special efficient freq */
3450         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3451         /* hw_max = RP0 until we check for overclocking */
3452         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3453
3454         /* Preserve min/max settings in case of re-init */
3455         if (dev_priv->rps.max_freq_softlimit == 0)
3456                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3457
3458         if (dev_priv->rps.min_freq_softlimit == 0)
3459                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3460 }
3461
3462 static void gen8_enable_rps(struct drm_device *dev)
3463 {
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         struct intel_engine_cs *ring;
3466         uint32_t rc6_mask = 0, rp_state_cap;
3467         int unused;
3468
3469         /* 1a: Software RC state - RC0 */
3470         I915_WRITE(GEN6_RC_STATE, 0);
3471
3472         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3473          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3474         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3475
3476         /* 2a: Disable RC states. */
3477         I915_WRITE(GEN6_RC_CONTROL, 0);
3478
3479         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3480         parse_rp_state_cap(dev_priv, rp_state_cap);
3481
3482         /* 2b: Program RC6 thresholds.*/
3483         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3484         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3485         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3486         for_each_ring(ring, dev_priv, unused)
3487                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3488         I915_WRITE(GEN6_RC_SLEEP, 0);
3489         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3490
3491         /* 3: Enable RC6 */
3492         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3493                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3494         intel_print_rc6_info(dev, rc6_mask);
3495         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3496                                     GEN6_RC_CTL_EI_MODE(1) |
3497                                     rc6_mask);
3498
3499         /* 4 Program defaults and thresholds for RPS*/
3500         I915_WRITE(GEN6_RPNSWREQ,
3501                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3502         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3503                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3504         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3505         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3506
3507         /* Docs recommend 900MHz, and 300 MHz respectively */
3508         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3509                    dev_priv->rps.max_freq_softlimit << 24 |
3510                    dev_priv->rps.min_freq_softlimit << 16);
3511
3512         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3513         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3514         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3515         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3516
3517         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3518
3519         /* 5: Enable RPS */
3520         I915_WRITE(GEN6_RP_CONTROL,
3521                    GEN6_RP_MEDIA_TURBO |
3522                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3523                    GEN6_RP_MEDIA_IS_GFX |
3524                    GEN6_RP_ENABLE |
3525                    GEN6_RP_UP_BUSY_AVG |
3526                    GEN6_RP_DOWN_IDLE_AVG);
3527
3528         /* 6: Ring frequency + overclocking (our driver does this later */
3529
3530         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3531
3532         gen8_enable_rps_interrupts(dev);
3533
3534         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3535 }
3536
3537 static void gen6_enable_rps(struct drm_device *dev)
3538 {
3539         struct drm_i915_private *dev_priv = dev->dev_private;
3540         struct intel_engine_cs *ring;
3541         u32 rp_state_cap;
3542         u32 gt_perf_status;
3543         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3544         u32 gtfifodbg;
3545         int rc6_mode;
3546         int i, ret;
3547
3548         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3549
3550         /* Here begins a magic sequence of register writes to enable
3551          * auto-downclocking.
3552          *
3553          * Perhaps there might be some value in exposing these to
3554          * userspace...
3555          */
3556         I915_WRITE(GEN6_RC_STATE, 0);
3557
3558         /* Clear the DBG now so we don't confuse earlier errors */
3559         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3560                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3561                 I915_WRITE(GTFIFODBG, gtfifodbg);
3562         }
3563
3564         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3565
3566         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3567         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3568
3569         parse_rp_state_cap(dev_priv, rp_state_cap);
3570
3571         /* disable the counters and set deterministic thresholds */
3572         I915_WRITE(GEN6_RC_CONTROL, 0);
3573
3574         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3575         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3576         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3577         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3578         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3579
3580         for_each_ring(ring, dev_priv, i)
3581                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3582
3583         I915_WRITE(GEN6_RC_SLEEP, 0);
3584         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3585         if (IS_IVYBRIDGE(dev))
3586                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3587         else
3588                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3589         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3590         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3591
3592         /* Check if we are enabling RC6 */
3593         rc6_mode = intel_enable_rc6(dev_priv->dev);
3594         if (rc6_mode & INTEL_RC6_ENABLE)
3595                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3596
3597         /* We don't use those on Haswell */
3598         if (!IS_HASWELL(dev)) {
3599                 if (rc6_mode & INTEL_RC6p_ENABLE)
3600                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3601
3602                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3603                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3604         }
3605
3606         intel_print_rc6_info(dev, rc6_mask);
3607
3608         I915_WRITE(GEN6_RC_CONTROL,
3609                    rc6_mask |
3610                    GEN6_RC_CTL_EI_MODE(1) |
3611                    GEN6_RC_CTL_HW_ENABLE);
3612
3613         /* Power down if completely idle for over 50ms */
3614         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3615         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3616
3617         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3618         if (ret)
3619                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3620
3621         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3622         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3623                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3624                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3625                                  (pcu_mbox & 0xff) * 50);
3626                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3627         }
3628
3629         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3630         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3631
3632         gen6_enable_rps_interrupts(dev);
3633
3634         rc6vids = 0;
3635         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3636         if (IS_GEN6(dev) && ret) {
3637                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3638         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3639                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3640                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3641                 rc6vids &= 0xffff00;
3642                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3643                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3644                 if (ret)
3645                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3646         }
3647
3648         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3649 }
3650
3651 static void __gen6_update_ring_freq(struct drm_device *dev)
3652 {
3653         struct drm_i915_private *dev_priv = dev->dev_private;
3654         int min_freq = 15;
3655         unsigned int gpu_freq;
3656         unsigned int max_ia_freq, min_ring_freq;
3657         int scaling_factor = 180;
3658         struct cpufreq_policy *policy;
3659
3660         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3661
3662         policy = cpufreq_cpu_get(0);
3663         if (policy) {
3664                 max_ia_freq = policy->cpuinfo.max_freq;
3665                 cpufreq_cpu_put(policy);
3666         } else {
3667                 /*
3668                  * Default to measured freq if none found, PCU will ensure we
3669                  * don't go over
3670                  */
3671                 max_ia_freq = tsc_khz;
3672         }
3673
3674         /* Convert from kHz to MHz */
3675         max_ia_freq /= 1000;
3676
3677         min_ring_freq = I915_READ(DCLK) & 0xf;
3678         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3679         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3680
3681         /*
3682          * For each potential GPU frequency, load a ring frequency we'd like
3683          * to use for memory access.  We do this by specifying the IA frequency
3684          * the PCU should use as a reference to determine the ring frequency.
3685          */
3686         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3687              gpu_freq--) {
3688                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3689                 unsigned int ia_freq = 0, ring_freq = 0;
3690
3691                 if (INTEL_INFO(dev)->gen >= 8) {
3692                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3693                         ring_freq = max(min_ring_freq, gpu_freq);
3694                 } else if (IS_HASWELL(dev)) {
3695                         ring_freq = mult_frac(gpu_freq, 5, 4);
3696                         ring_freq = max(min_ring_freq, ring_freq);
3697                         /* leave ia_freq as the default, chosen by cpufreq */
3698                 } else {
3699                         /* On older processors, there is no separate ring
3700                          * clock domain, so in order to boost the bandwidth
3701                          * of the ring, we need to upclock the CPU (ia_freq).
3702                          *
3703                          * For GPU frequencies less than 750MHz,
3704                          * just use the lowest ring freq.
3705                          */
3706                         if (gpu_freq < min_freq)
3707                                 ia_freq = 800;
3708                         else
3709                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3710                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3711                 }
3712
3713                 sandybridge_pcode_write(dev_priv,
3714                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3715                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3716                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3717                                         gpu_freq);
3718         }
3719 }
3720
3721 void gen6_update_ring_freq(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3726                 return;
3727
3728         mutex_lock(&dev_priv->rps.hw_lock);
3729         __gen6_update_ring_freq(dev);
3730         mutex_unlock(&dev_priv->rps.hw_lock);
3731 }
3732
3733 int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3734 {
3735         u32 val, rp0;
3736
3737         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3738         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3739
3740         return rp0;
3741 }
3742
3743 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3744 {
3745         u32 val, rpe;
3746
3747         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3748         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3749
3750         return rpe;
3751 }
3752
3753 int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3754 {
3755         u32 val, rpn;
3756
3757         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3758         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3759         return rpn;
3760 }
3761
3762 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3763 {
3764         u32 val, rp0;
3765
3766         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3767
3768         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3769         /* Clamp to max */
3770         rp0 = min_t(u32, rp0, 0xea);
3771
3772         return rp0;
3773 }
3774
3775 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3776 {
3777         u32 val, rpe;
3778
3779         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3780         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3781         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3782         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3783
3784         return rpe;
3785 }
3786
3787 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3788 {
3789         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3790 }
3791
3792 /* Check that the pctx buffer wasn't move under us. */
3793 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3794 {
3795         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3796
3797         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3798                              dev_priv->vlv_pctx->stolen->start);
3799 }
3800
3801
3802 /* Check that the pcbr address is not empty. */
3803 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3804 {
3805         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3806
3807         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3808 }
3809
3810 static void cherryview_setup_pctx(struct drm_device *dev)
3811 {
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         unsigned long pctx_paddr, paddr;
3814         struct i915_gtt *gtt = &dev_priv->gtt;
3815         u32 pcbr;
3816         int pctx_size = 32*1024;
3817
3818         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3819
3820         pcbr = I915_READ(VLV_PCBR);
3821         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3822                 paddr = (dev_priv->mm.stolen_base +
3823                          (gtt->stolen_size - pctx_size));
3824
3825                 pctx_paddr = (paddr & (~4095));
3826                 I915_WRITE(VLV_PCBR, pctx_paddr);
3827         }
3828 }
3829
3830 static void valleyview_setup_pctx(struct drm_device *dev)
3831 {
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         struct drm_i915_gem_object *pctx;
3834         unsigned long pctx_paddr;
3835         u32 pcbr;
3836         int pctx_size = 24*1024;
3837
3838         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3839
3840         pcbr = I915_READ(VLV_PCBR);
3841         if (pcbr) {
3842                 /* BIOS set it up already, grab the pre-alloc'd space */
3843                 int pcbr_offset;
3844
3845                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3846                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3847                                                                       pcbr_offset,
3848                                                                       I915_GTT_OFFSET_NONE,
3849                                                                       pctx_size);
3850                 goto out;
3851         }
3852
3853         /*
3854          * From the Gunit register HAS:
3855          * The Gfx driver is expected to program this register and ensure
3856          * proper allocation within Gfx stolen memory.  For example, this
3857          * register should be programmed such than the PCBR range does not
3858          * overlap with other ranges, such as the frame buffer, protected
3859          * memory, or any other relevant ranges.
3860          */
3861         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3862         if (!pctx) {
3863                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3864                 return;
3865         }
3866
3867         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3868         I915_WRITE(VLV_PCBR, pctx_paddr);
3869
3870 out:
3871         dev_priv->vlv_pctx = pctx;
3872 }
3873
3874 static void valleyview_cleanup_pctx(struct drm_device *dev)
3875 {
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878         if (WARN_ON(!dev_priv->vlv_pctx))
3879                 return;
3880
3881         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3882         dev_priv->vlv_pctx = NULL;
3883 }
3884
3885 static void valleyview_init_gt_powersave(struct drm_device *dev)
3886 {
3887         struct drm_i915_private *dev_priv = dev->dev_private;
3888
3889         valleyview_setup_pctx(dev);
3890
3891         mutex_lock(&dev_priv->rps.hw_lock);
3892
3893         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3894         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3895         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3896                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3897                          dev_priv->rps.max_freq);
3898
3899         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3900         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3901                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3902                          dev_priv->rps.efficient_freq);
3903
3904         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3905         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3906                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3907                          dev_priv->rps.min_freq);
3908
3909         /* Preserve min/max settings in case of re-init */
3910         if (dev_priv->rps.max_freq_softlimit == 0)
3911                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3912
3913         if (dev_priv->rps.min_freq_softlimit == 0)
3914                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3915
3916         mutex_unlock(&dev_priv->rps.hw_lock);
3917 }
3918
3919 static void cherryview_init_gt_powersave(struct drm_device *dev)
3920 {
3921         struct drm_i915_private *dev_priv = dev->dev_private;
3922
3923         cherryview_setup_pctx(dev);
3924
3925         mutex_lock(&dev_priv->rps.hw_lock);
3926
3927         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
3928         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3929         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3930                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3931                          dev_priv->rps.max_freq);
3932
3933         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
3934         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3935                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3936                          dev_priv->rps.efficient_freq);
3937
3938         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
3939         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3940                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3941                          dev_priv->rps.min_freq);
3942
3943         /* Preserve min/max settings in case of re-init */
3944         if (dev_priv->rps.max_freq_softlimit == 0)
3945                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3946
3947         if (dev_priv->rps.min_freq_softlimit == 0)
3948                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3949
3950         mutex_unlock(&dev_priv->rps.hw_lock);
3951 }
3952
3953 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3954 {
3955         valleyview_cleanup_pctx(dev);
3956 }
3957
3958 static void cherryview_enable_rps(struct drm_device *dev)
3959 {
3960         struct drm_i915_private *dev_priv = dev->dev_private;
3961         struct intel_engine_cs *ring;
3962         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
3963         int i;
3964
3965         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3966
3967         gtfifodbg = I915_READ(GTFIFODBG);
3968         if (gtfifodbg) {
3969                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3970                                  gtfifodbg);
3971                 I915_WRITE(GTFIFODBG, gtfifodbg);
3972         }
3973
3974         cherryview_check_pctx(dev_priv);
3975
3976         /* 1a & 1b: Get forcewake during program sequence. Although the driver
3977          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3978         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3979
3980         /* 2a: Program RC6 thresholds.*/
3981         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3982         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3983         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3984
3985         for_each_ring(ring, dev_priv, i)
3986                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3987         I915_WRITE(GEN6_RC_SLEEP, 0);
3988
3989         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3990
3991         /* allows RC6 residency counter to work */
3992         I915_WRITE(VLV_COUNTER_CONTROL,
3993                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3994                                       VLV_MEDIA_RC6_COUNT_EN |
3995                                       VLV_RENDER_RC6_COUNT_EN));
3996
3997         /* For now we assume BIOS is allocating and populating the PCBR  */
3998         pcbr = I915_READ(VLV_PCBR);
3999
4000         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4001
4002         /* 3: Enable RC6 */
4003         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4004                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4005                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4006
4007         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4008
4009         /* 4 Program defaults and thresholds for RPS*/
4010         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4011         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4012         I915_WRITE(GEN6_RP_UP_EI, 66000);
4013         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4014
4015         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4016
4017         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4018         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4019         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4020
4021         /* 5: Enable RPS */
4022         I915_WRITE(GEN6_RP_CONTROL,
4023                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4024                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4025                    GEN6_RP_ENABLE |
4026                    GEN6_RP_UP_BUSY_AVG |
4027                    GEN6_RP_DOWN_IDLE_AVG);
4028
4029         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4030
4031         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4032         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4033
4034         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4035         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4036                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4037                          dev_priv->rps.cur_freq);
4038
4039         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4040                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4041                          dev_priv->rps.efficient_freq);
4042
4043         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4044
4045         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4046 }
4047
4048 static void valleyview_enable_rps(struct drm_device *dev)
4049 {
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         struct intel_engine_cs *ring;
4052         u32 gtfifodbg, val, rc6_mode = 0;
4053         int i;
4054
4055         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4056
4057         valleyview_check_pctx(dev_priv);
4058
4059         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4060                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4061                                  gtfifodbg);
4062                 I915_WRITE(GTFIFODBG, gtfifodbg);
4063         }
4064
4065         /* If VLV, Forcewake all wells, else re-direct to regular path */
4066         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4067
4068         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4069         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4070         I915_WRITE(GEN6_RP_UP_EI, 66000);
4071         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4072
4073         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4074
4075         I915_WRITE(GEN6_RP_CONTROL,
4076                    GEN6_RP_MEDIA_TURBO |
4077                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4078                    GEN6_RP_MEDIA_IS_GFX |
4079                    GEN6_RP_ENABLE |
4080                    GEN6_RP_UP_BUSY_AVG |
4081                    GEN6_RP_DOWN_IDLE_CONT);
4082
4083         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4084         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4085         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4086
4087         for_each_ring(ring, dev_priv, i)
4088                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4089
4090         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4091
4092         /* allows RC6 residency counter to work */
4093         I915_WRITE(VLV_COUNTER_CONTROL,
4094                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4095                                       VLV_MEDIA_RC6_COUNT_EN |
4096                                       VLV_RENDER_RC6_COUNT_EN));
4097         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4098                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4099
4100         intel_print_rc6_info(dev, rc6_mode);
4101
4102         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4103
4104         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4105
4106         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4107         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4108
4109         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4110         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4111                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4112                          dev_priv->rps.cur_freq);
4113
4114         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4115                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4116                          dev_priv->rps.efficient_freq);
4117
4118         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4119
4120         gen6_enable_rps_interrupts(dev);
4121
4122         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4123 }
4124
4125 void ironlake_teardown_rc6(struct drm_device *dev)
4126 {
4127         struct drm_i915_private *dev_priv = dev->dev_private;
4128
4129         if (dev_priv->ips.renderctx) {
4130                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4131                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4132                 dev_priv->ips.renderctx = NULL;
4133         }
4134
4135         if (dev_priv->ips.pwrctx) {
4136                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4137                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4138                 dev_priv->ips.pwrctx = NULL;
4139         }
4140 }
4141
4142 static void ironlake_disable_rc6(struct drm_device *dev)
4143 {
4144         struct drm_i915_private *dev_priv = dev->dev_private;
4145
4146         if (I915_READ(PWRCTXA)) {
4147                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4148                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4149                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4150                          50);
4151
4152                 I915_WRITE(PWRCTXA, 0);
4153                 POSTING_READ(PWRCTXA);
4154
4155                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4156                 POSTING_READ(RSTDBYCTL);
4157         }
4158 }
4159
4160 static int ironlake_setup_rc6(struct drm_device *dev)
4161 {
4162         struct drm_i915_private *dev_priv = dev->dev_private;
4163
4164         if (dev_priv->ips.renderctx == NULL)
4165                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4166         if (!dev_priv->ips.renderctx)
4167                 return -ENOMEM;
4168
4169         if (dev_priv->ips.pwrctx == NULL)
4170                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4171         if (!dev_priv->ips.pwrctx) {
4172                 ironlake_teardown_rc6(dev);
4173                 return -ENOMEM;
4174         }
4175
4176         return 0;
4177 }
4178
4179 static void ironlake_enable_rc6(struct drm_device *dev)
4180 {
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4183         bool was_interruptible;
4184         int ret;
4185
4186         /* rc6 disabled by default due to repeated reports of hanging during
4187          * boot and resume.
4188          */
4189         if (!intel_enable_rc6(dev))
4190                 return;
4191
4192         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4193
4194         ret = ironlake_setup_rc6(dev);
4195         if (ret)
4196                 return;
4197
4198         was_interruptible = dev_priv->mm.interruptible;
4199         dev_priv->mm.interruptible = false;
4200
4201         /*
4202          * GPU can automatically power down the render unit if given a page
4203          * to save state.
4204          */
4205         ret = intel_ring_begin(ring, 6);
4206         if (ret) {
4207                 ironlake_teardown_rc6(dev);
4208                 dev_priv->mm.interruptible = was_interruptible;
4209                 return;
4210         }
4211
4212         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4213         intel_ring_emit(ring, MI_SET_CONTEXT);
4214         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4215                         MI_MM_SPACE_GTT |
4216                         MI_SAVE_EXT_STATE_EN |
4217                         MI_RESTORE_EXT_STATE_EN |
4218                         MI_RESTORE_INHIBIT);
4219         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4220         intel_ring_emit(ring, MI_NOOP);
4221         intel_ring_emit(ring, MI_FLUSH);
4222         intel_ring_advance(ring);
4223
4224         /*
4225          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4226          * does an implicit flush, combined with MI_FLUSH above, it should be
4227          * safe to assume that renderctx is valid
4228          */
4229         ret = intel_ring_idle(ring);
4230         dev_priv->mm.interruptible = was_interruptible;
4231         if (ret) {
4232                 DRM_ERROR("failed to enable ironlake power savings\n");
4233                 ironlake_teardown_rc6(dev);
4234                 return;
4235         }
4236
4237         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4238         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4239
4240         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4241 }
4242
4243 static unsigned long intel_pxfreq(u32 vidfreq)
4244 {
4245         unsigned long freq;
4246         int div = (vidfreq & 0x3f0000) >> 16;
4247         int post = (vidfreq & 0x3000) >> 12;
4248         int pre = (vidfreq & 0x7);
4249
4250         if (!pre)
4251                 return 0;
4252
4253         freq = ((div * 133333) / ((1<<post) * pre));
4254
4255         return freq;
4256 }
4257
4258 static const struct cparams {
4259         u16 i;
4260         u16 t;
4261         u16 m;
4262         u16 c;
4263 } cparams[] = {
4264         { 1, 1333, 301, 28664 },
4265         { 1, 1066, 294, 24460 },
4266         { 1, 800, 294, 25192 },
4267         { 0, 1333, 276, 27605 },
4268         { 0, 1066, 276, 27605 },
4269         { 0, 800, 231, 23784 },
4270 };
4271
4272 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4273 {
4274         u64 total_count, diff, ret;
4275         u32 count1, count2, count3, m = 0, c = 0;
4276         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4277         int i;
4278
4279         assert_spin_locked(&mchdev_lock);
4280
4281         diff1 = now - dev_priv->ips.last_time1;
4282
4283         /* Prevent division-by-zero if we are asking too fast.
4284          * Also, we don't get interesting results if we are polling
4285          * faster than once in 10ms, so just return the saved value
4286          * in such cases.
4287          */
4288         if (diff1 <= 10)
4289                 return dev_priv->ips.chipset_power;
4290
4291         count1 = I915_READ(DMIEC);
4292         count2 = I915_READ(DDREC);
4293         count3 = I915_READ(CSIEC);
4294
4295         total_count = count1 + count2 + count3;
4296
4297         /* FIXME: handle per-counter overflow */
4298         if (total_count < dev_priv->ips.last_count1) {
4299                 diff = ~0UL - dev_priv->ips.last_count1;
4300                 diff += total_count;
4301         } else {
4302                 diff = total_count - dev_priv->ips.last_count1;
4303         }
4304
4305         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4306                 if (cparams[i].i == dev_priv->ips.c_m &&
4307                     cparams[i].t == dev_priv->ips.r_t) {
4308                         m = cparams[i].m;
4309                         c = cparams[i].c;
4310                         break;
4311                 }
4312         }
4313
4314         diff = div_u64(diff, diff1);
4315         ret = ((m * diff) + c);
4316         ret = div_u64(ret, 10);
4317
4318         dev_priv->ips.last_count1 = total_count;
4319         dev_priv->ips.last_time1 = now;
4320
4321         dev_priv->ips.chipset_power = ret;
4322
4323         return ret;
4324 }
4325
4326 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4327 {
4328         struct drm_device *dev = dev_priv->dev;
4329         unsigned long val;
4330
4331         if (INTEL_INFO(dev)->gen != 5)
4332                 return 0;
4333
4334         spin_lock_irq(&mchdev_lock);
4335
4336         val = __i915_chipset_val(dev_priv);
4337
4338         spin_unlock_irq(&mchdev_lock);
4339
4340         return val;
4341 }
4342
4343 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4344 {
4345         unsigned long m, x, b;
4346         u32 tsfs;
4347
4348         tsfs = I915_READ(TSFS);
4349
4350         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4351         x = I915_READ8(TR1);
4352
4353         b = tsfs & TSFS_INTR_MASK;
4354
4355         return ((m * x) / 127) - b;
4356 }
4357
4358 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4359 {
4360         struct drm_device *dev = dev_priv->dev;
4361         static const struct v_table {
4362                 u16 vd; /* in .1 mil */
4363                 u16 vm; /* in .1 mil */
4364         } v_table[] = {
4365                 { 0, 0, },
4366                 { 375, 0, },
4367                 { 500, 0, },
4368                 { 625, 0, },
4369                 { 750, 0, },
4370                 { 875, 0, },
4371                 { 1000, 0, },
4372                 { 1125, 0, },
4373                 { 4125, 3000, },
4374                 { 4125, 3000, },
4375                 { 4125, 3000, },
4376                 { 4125, 3000, },
4377                 { 4125, 3000, },
4378                 { 4125, 3000, },
4379                 { 4125, 3000, },
4380                 { 4125, 3000, },
4381                 { 4125, 3000, },
4382                 { 4125, 3000, },
4383                 { 4125, 3000, },
4384                 { 4125, 3000, },
4385                 { 4125, 3000, },
4386                 { 4125, 3000, },
4387                 { 4125, 3000, },
4388                 { 4125, 3000, },
4389                 { 4125, 3000, },
4390                 { 4125, 3000, },
4391                 { 4125, 3000, },
4392                 { 4125, 3000, },
4393                 { 4125, 3000, },
4394                 { 4125, 3000, },
4395                 { 4125, 3000, },
4396                 { 4125, 3000, },
4397                 { 4250, 3125, },
4398                 { 4375, 3250, },
4399                 { 4500, 3375, },
4400                 { 4625, 3500, },
4401                 { 4750, 3625, },
4402                 { 4875, 3750, },
4403                 { 5000, 3875, },
4404                 { 5125, 4000, },
4405                 { 5250, 4125, },
4406                 { 5375, 4250, },
4407                 { 5500, 4375, },
4408                 { 5625, 4500, },
4409                 { 5750, 4625, },
4410                 { 5875, 4750, },
4411                 { 6000, 4875, },
4412                 { 6125, 5000, },
4413                 { 6250, 5125, },
4414                 { 6375, 5250, },
4415                 { 6500, 5375, },
4416                 { 6625, 5500, },
4417                 { 6750, 5625, },
4418                 { 6875, 5750, },
4419                 { 7000, 5875, },
4420                 { 7125, 6000, },
4421                 { 7250, 6125, },
4422                 { 7375, 6250, },
4423                 { 7500, 6375, },
4424                 { 7625, 6500, },
4425                 { 7750, 6625, },
4426                 { 7875, 6750, },
4427                 { 8000, 6875, },
4428                 { 8125, 7000, },
4429                 { 8250, 7125, },
4430                 { 8375, 7250, },
4431                 { 8500, 7375, },
4432                 { 8625, 7500, },
4433                 { 8750, 7625, },
4434                 { 8875, 7750, },
4435                 { 9000, 7875, },
4436                 { 9125, 8000, },
4437                 { 9250, 8125, },
4438                 { 9375, 8250, },
4439                 { 9500, 8375, },
4440                 { 9625, 8500, },
4441                 { 9750, 8625, },
4442                 { 9875, 8750, },
4443                 { 10000, 8875, },
4444                 { 10125, 9000, },
4445                 { 10250, 9125, },
4446                 { 10375, 9250, },
4447                 { 10500, 9375, },
4448                 { 10625, 9500, },
4449                 { 10750, 9625, },
4450                 { 10875, 9750, },
4451                 { 11000, 9875, },
4452                 { 11125, 10000, },
4453                 { 11250, 10125, },
4454                 { 11375, 10250, },
4455                 { 11500, 10375, },
4456                 { 11625, 10500, },
4457                 { 11750, 10625, },
4458                 { 11875, 10750, },
4459                 { 12000, 10875, },
4460                 { 12125, 11000, },
4461                 { 12250, 11125, },
4462                 { 12375, 11250, },
4463                 { 12500, 11375, },
4464                 { 12625, 11500, },
4465                 { 12750, 11625, },
4466                 { 12875, 11750, },
4467                 { 13000, 11875, },
4468                 { 13125, 12000, },
4469                 { 13250, 12125, },
4470                 { 13375, 12250, },
4471                 { 13500, 12375, },
4472                 { 13625, 12500, },
4473                 { 13750, 12625, },
4474                 { 13875, 12750, },
4475                 { 14000, 12875, },
4476                 { 14125, 13000, },
4477                 { 14250, 13125, },
4478                 { 14375, 13250, },
4479                 { 14500, 13375, },
4480                 { 14625, 13500, },
4481                 { 14750, 13625, },
4482                 { 14875, 13750, },
4483                 { 15000, 13875, },
4484                 { 15125, 14000, },
4485                 { 15250, 14125, },
4486                 { 15375, 14250, },
4487                 { 15500, 14375, },
4488                 { 15625, 14500, },
4489                 { 15750, 14625, },
4490                 { 15875, 14750, },
4491                 { 16000, 14875, },
4492                 { 16125, 15000, },
4493         };
4494         if (INTEL_INFO(dev)->is_mobile)
4495                 return v_table[pxvid].vm;
4496         else
4497                 return v_table[pxvid].vd;
4498 }
4499
4500 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4501 {
4502         struct timespec now, diff1;
4503         u64 diff;
4504         unsigned long diffms;
4505         u32 count;
4506
4507         assert_spin_locked(&mchdev_lock);
4508
4509         getrawmonotonic(&now);
4510         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4511
4512         /* Don't divide by 0 */
4513         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4514         if (!diffms)
4515                 return;
4516
4517         count = I915_READ(GFXEC);
4518
4519         if (count < dev_priv->ips.last_count2) {
4520                 diff = ~0UL - dev_priv->ips.last_count2;
4521                 diff += count;
4522         } else {
4523                 diff = count - dev_priv->ips.last_count2;
4524         }
4525
4526         dev_priv->ips.last_count2 = count;
4527         dev_priv->ips.last_time2 = now;
4528
4529         /* More magic constants... */
4530         diff = diff * 1181;
4531         diff = div_u64(diff, diffms * 10);
4532         dev_priv->ips.gfx_power = diff;
4533 }
4534
4535 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4536 {
4537         struct drm_device *dev = dev_priv->dev;
4538
4539         if (INTEL_INFO(dev)->gen != 5)
4540                 return;
4541
4542         spin_lock_irq(&mchdev_lock);
4543
4544         __i915_update_gfx_val(dev_priv);
4545
4546         spin_unlock_irq(&mchdev_lock);
4547 }
4548
4549 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4550 {
4551         unsigned long t, corr, state1, corr2, state2;
4552         u32 pxvid, ext_v;
4553
4554         assert_spin_locked(&mchdev_lock);
4555
4556         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4557         pxvid = (pxvid >> 24) & 0x7f;
4558         ext_v = pvid_to_extvid(dev_priv, pxvid);
4559
4560         state1 = ext_v;
4561
4562         t = i915_mch_val(dev_priv);
4563
4564         /* Revel in the empirically derived constants */
4565
4566         /* Correction factor in 1/100000 units */
4567         if (t > 80)
4568                 corr = ((t * 2349) + 135940);
4569         else if (t >= 50)
4570                 corr = ((t * 964) + 29317);
4571         else /* < 50 */
4572                 corr = ((t * 301) + 1004);
4573
4574         corr = corr * ((150142 * state1) / 10000 - 78642);
4575         corr /= 100000;
4576         corr2 = (corr * dev_priv->ips.corr);
4577
4578         state2 = (corr2 * state1) / 10000;
4579         state2 /= 100; /* convert to mW */
4580
4581         __i915_update_gfx_val(dev_priv);
4582
4583         return dev_priv->ips.gfx_power + state2;
4584 }
4585
4586 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4587 {
4588         struct drm_device *dev = dev_priv->dev;
4589         unsigned long val;
4590
4591         if (INTEL_INFO(dev)->gen != 5)
4592                 return 0;
4593
4594         spin_lock_irq(&mchdev_lock);
4595
4596         val = __i915_gfx_val(dev_priv);
4597
4598         spin_unlock_irq(&mchdev_lock);
4599
4600         return val;
4601 }
4602
4603 /**
4604  * i915_read_mch_val - return value for IPS use
4605  *
4606  * Calculate and return a value for the IPS driver to use when deciding whether
4607  * we have thermal and power headroom to increase CPU or GPU power budget.
4608  */
4609 unsigned long i915_read_mch_val(void)
4610 {
4611         struct drm_i915_private *dev_priv;
4612         unsigned long chipset_val, graphics_val, ret = 0;
4613
4614         spin_lock_irq(&mchdev_lock);
4615         if (!i915_mch_dev)
4616                 goto out_unlock;
4617         dev_priv = i915_mch_dev;
4618
4619         chipset_val = __i915_chipset_val(dev_priv);
4620         graphics_val = __i915_gfx_val(dev_priv);
4621
4622         ret = chipset_val + graphics_val;
4623
4624 out_unlock:
4625         spin_unlock_irq(&mchdev_lock);
4626
4627         return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4630
4631 /**
4632  * i915_gpu_raise - raise GPU frequency limit
4633  *
4634  * Raise the limit; IPS indicates we have thermal headroom.
4635  */
4636 bool i915_gpu_raise(void)
4637 {
4638         struct drm_i915_private *dev_priv;
4639         bool ret = true;
4640
4641         spin_lock_irq(&mchdev_lock);
4642         if (!i915_mch_dev) {
4643                 ret = false;
4644                 goto out_unlock;
4645         }
4646         dev_priv = i915_mch_dev;
4647
4648         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4649                 dev_priv->ips.max_delay--;
4650
4651 out_unlock:
4652         spin_unlock_irq(&mchdev_lock);
4653
4654         return ret;
4655 }
4656 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4657
4658 /**
4659  * i915_gpu_lower - lower GPU frequency limit
4660  *
4661  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4662  * frequency maximum.
4663  */
4664 bool i915_gpu_lower(void)
4665 {
4666         struct drm_i915_private *dev_priv;
4667         bool ret = true;
4668
4669         spin_lock_irq(&mchdev_lock);
4670         if (!i915_mch_dev) {
4671                 ret = false;
4672                 goto out_unlock;
4673         }
4674         dev_priv = i915_mch_dev;
4675
4676         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4677                 dev_priv->ips.max_delay++;
4678
4679 out_unlock:
4680         spin_unlock_irq(&mchdev_lock);
4681
4682         return ret;
4683 }
4684 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4685
4686 /**
4687  * i915_gpu_busy - indicate GPU business to IPS
4688  *
4689  * Tell the IPS driver whether or not the GPU is busy.
4690  */
4691 bool i915_gpu_busy(void)
4692 {
4693         struct drm_i915_private *dev_priv;
4694         struct intel_engine_cs *ring;
4695         bool ret = false;
4696         int i;
4697
4698         spin_lock_irq(&mchdev_lock);
4699         if (!i915_mch_dev)
4700                 goto out_unlock;
4701         dev_priv = i915_mch_dev;
4702
4703         for_each_ring(ring, dev_priv, i)
4704                 ret |= !list_empty(&ring->request_list);
4705
4706 out_unlock:
4707         spin_unlock_irq(&mchdev_lock);
4708
4709         return ret;
4710 }
4711 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4712
4713 /**
4714  * i915_gpu_turbo_disable - disable graphics turbo
4715  *
4716  * Disable graphics turbo by resetting the max frequency and setting the
4717  * current frequency to the default.
4718  */
4719 bool i915_gpu_turbo_disable(void)
4720 {
4721         struct drm_i915_private *dev_priv;
4722         bool ret = true;
4723
4724         spin_lock_irq(&mchdev_lock);
4725         if (!i915_mch_dev) {
4726                 ret = false;
4727                 goto out_unlock;
4728         }
4729         dev_priv = i915_mch_dev;
4730
4731         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4732
4733         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4734                 ret = false;
4735
4736 out_unlock:
4737         spin_unlock_irq(&mchdev_lock);
4738
4739         return ret;
4740 }
4741 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4742
4743 /**
4744  * Tells the intel_ips driver that the i915 driver is now loaded, if
4745  * IPS got loaded first.
4746  *
4747  * This awkward dance is so that neither module has to depend on the
4748  * other in order for IPS to do the appropriate communication of
4749  * GPU turbo limits to i915.
4750  */
4751 static void
4752 ips_ping_for_i915_load(void)
4753 {
4754         void (*link)(void);
4755
4756         link = symbol_get(ips_link_to_i915_driver);
4757         if (link) {
4758                 link();
4759                 symbol_put(ips_link_to_i915_driver);
4760         }
4761 }
4762
4763 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4764 {
4765         /* We only register the i915 ips part with intel-ips once everything is
4766          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4767         spin_lock_irq(&mchdev_lock);
4768         i915_mch_dev = dev_priv;
4769         spin_unlock_irq(&mchdev_lock);
4770
4771         ips_ping_for_i915_load();
4772 }
4773
4774 void intel_gpu_ips_teardown(void)
4775 {
4776         spin_lock_irq(&mchdev_lock);
4777         i915_mch_dev = NULL;
4778         spin_unlock_irq(&mchdev_lock);
4779 }
4780
4781 static void intel_init_emon(struct drm_device *dev)
4782 {
4783         struct drm_i915_private *dev_priv = dev->dev_private;
4784         u32 lcfuse;
4785         u8 pxw[16];
4786         int i;
4787
4788         /* Disable to program */
4789         I915_WRITE(ECR, 0);
4790         POSTING_READ(ECR);
4791
4792         /* Program energy weights for various events */
4793         I915_WRITE(SDEW, 0x15040d00);
4794         I915_WRITE(CSIEW0, 0x007f0000);
4795         I915_WRITE(CSIEW1, 0x1e220004);
4796         I915_WRITE(CSIEW2, 0x04000004);
4797
4798         for (i = 0; i < 5; i++)
4799                 I915_WRITE(PEW + (i * 4), 0);
4800         for (i = 0; i < 3; i++)
4801                 I915_WRITE(DEW + (i * 4), 0);
4802
4803         /* Program P-state weights to account for frequency power adjustment */
4804         for (i = 0; i < 16; i++) {
4805                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4806                 unsigned long freq = intel_pxfreq(pxvidfreq);
4807                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4808                         PXVFREQ_PX_SHIFT;
4809                 unsigned long val;
4810
4811                 val = vid * vid;
4812                 val *= (freq / 1000);
4813                 val *= 255;
4814                 val /= (127*127*900);
4815                 if (val > 0xff)
4816                         DRM_ERROR("bad pxval: %ld\n", val);
4817                 pxw[i] = val;
4818         }
4819         /* Render standby states get 0 weight */
4820         pxw[14] = 0;
4821         pxw[15] = 0;
4822
4823         for (i = 0; i < 4; i++) {
4824                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4825                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4826                 I915_WRITE(PXW + (i * 4), val);
4827         }
4828
4829         /* Adjust magic regs to magic values (more experimental results) */
4830         I915_WRITE(OGW0, 0);
4831         I915_WRITE(OGW1, 0);
4832         I915_WRITE(EG0, 0x00007f00);
4833         I915_WRITE(EG1, 0x0000000e);
4834         I915_WRITE(EG2, 0x000e0000);
4835         I915_WRITE(EG3, 0x68000300);
4836         I915_WRITE(EG4, 0x42000000);
4837         I915_WRITE(EG5, 0x00140031);
4838         I915_WRITE(EG6, 0);
4839         I915_WRITE(EG7, 0);
4840
4841         for (i = 0; i < 8; i++)
4842                 I915_WRITE(PXWL + (i * 4), 0);
4843
4844         /* Enable PMON + select events */
4845         I915_WRITE(ECR, 0x80000019);
4846
4847         lcfuse = I915_READ(LCFUSE02);
4848
4849         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4850 }
4851
4852 void intel_init_gt_powersave(struct drm_device *dev)
4853 {
4854         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4855
4856         if (IS_CHERRYVIEW(dev))
4857                 cherryview_init_gt_powersave(dev);
4858         else if (IS_VALLEYVIEW(dev))
4859                 valleyview_init_gt_powersave(dev);
4860 }
4861
4862 void intel_cleanup_gt_powersave(struct drm_device *dev)
4863 {
4864         if (IS_CHERRYVIEW(dev))
4865                 return;
4866         else if (IS_VALLEYVIEW(dev))
4867                 valleyview_cleanup_gt_powersave(dev);
4868 }
4869
4870 /**
4871  * intel_suspend_gt_powersave - suspend PM work and helper threads
4872  * @dev: drm device
4873  *
4874  * We don't want to disable RC6 or other features here, we just want
4875  * to make sure any work we've queued has finished and won't bother
4876  * us while we're suspended.
4877  */
4878 void intel_suspend_gt_powersave(struct drm_device *dev)
4879 {
4880         struct drm_i915_private *dev_priv = dev->dev_private;
4881
4882         /* Interrupts should be disabled already to avoid re-arming. */
4883         WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
4884
4885         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4886
4887         cancel_work_sync(&dev_priv->rps.work);
4888 }
4889
4890 void intel_disable_gt_powersave(struct drm_device *dev)
4891 {
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893
4894         /* Interrupts should be disabled already to avoid re-arming. */
4895         WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
4896
4897         if (IS_IRONLAKE_M(dev)) {
4898                 ironlake_disable_drps(dev);
4899                 ironlake_disable_rc6(dev);
4900         } else if (INTEL_INFO(dev)->gen >= 6) {
4901                 intel_suspend_gt_powersave(dev);
4902
4903                 mutex_lock(&dev_priv->rps.hw_lock);
4904                 if (IS_CHERRYVIEW(dev))
4905                         cherryview_disable_rps(dev);
4906                 else if (IS_VALLEYVIEW(dev))
4907                         valleyview_disable_rps(dev);
4908                 else
4909                         gen6_disable_rps(dev);
4910                 dev_priv->rps.enabled = false;
4911                 mutex_unlock(&dev_priv->rps.hw_lock);
4912         }
4913 }
4914
4915 static void intel_gen6_powersave_work(struct work_struct *work)
4916 {
4917         struct drm_i915_private *dev_priv =
4918                 container_of(work, struct drm_i915_private,
4919                              rps.delayed_resume_work.work);
4920         struct drm_device *dev = dev_priv->dev;
4921
4922         mutex_lock(&dev_priv->rps.hw_lock);
4923
4924         if (IS_CHERRYVIEW(dev)) {
4925                 cherryview_enable_rps(dev);
4926         } else if (IS_VALLEYVIEW(dev)) {
4927                 valleyview_enable_rps(dev);
4928         } else if (IS_BROADWELL(dev)) {
4929                 gen8_enable_rps(dev);
4930                 __gen6_update_ring_freq(dev);
4931         } else {
4932                 gen6_enable_rps(dev);
4933                 __gen6_update_ring_freq(dev);
4934         }
4935         dev_priv->rps.enabled = true;
4936         mutex_unlock(&dev_priv->rps.hw_lock);
4937
4938         intel_runtime_pm_put(dev_priv);
4939 }
4940
4941 void intel_enable_gt_powersave(struct drm_device *dev)
4942 {
4943         struct drm_i915_private *dev_priv = dev->dev_private;
4944
4945         if (IS_IRONLAKE_M(dev)) {
4946                 mutex_lock(&dev->struct_mutex);
4947                 ironlake_enable_drps(dev);
4948                 ironlake_enable_rc6(dev);
4949                 intel_init_emon(dev);
4950                 mutex_unlock(&dev->struct_mutex);
4951         } else if (INTEL_INFO(dev)->gen >= 6) {
4952                 /*
4953                  * PCU communication is slow and this doesn't need to be
4954                  * done at any specific time, so do this out of our fast path
4955                  * to make resume and init faster.
4956                  *
4957                  * We depend on the HW RC6 power context save/restore
4958                  * mechanism when entering D3 through runtime PM suspend. So
4959                  * disable RPM until RPS/RC6 is properly setup. We can only
4960                  * get here via the driver load/system resume/runtime resume
4961                  * paths, so the _noresume version is enough (and in case of
4962                  * runtime resume it's necessary).
4963                  */
4964                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4965                                            round_jiffies_up_relative(HZ)))
4966                         intel_runtime_pm_get_noresume(dev_priv);
4967         }
4968 }
4969
4970 void intel_reset_gt_powersave(struct drm_device *dev)
4971 {
4972         struct drm_i915_private *dev_priv = dev->dev_private;
4973
4974         dev_priv->rps.enabled = false;
4975         intel_enable_gt_powersave(dev);
4976 }
4977
4978 static void ibx_init_clock_gating(struct drm_device *dev)
4979 {
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981
4982         /*
4983          * On Ibex Peak and Cougar Point, we need to disable clock
4984          * gating for the panel power sequencer or it will fail to
4985          * start up when no ports are active.
4986          */
4987         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4988 }
4989
4990 static void g4x_disable_trickle_feed(struct drm_device *dev)
4991 {
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         int pipe;
4994
4995         for_each_pipe(pipe) {
4996                 I915_WRITE(DSPCNTR(pipe),
4997                            I915_READ(DSPCNTR(pipe)) |
4998                            DISPPLANE_TRICKLE_FEED_DISABLE);
4999                 intel_flush_primary_plane(dev_priv, pipe);
5000         }
5001 }
5002
5003 static void ilk_init_lp_watermarks(struct drm_device *dev)
5004 {
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5008         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5009         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5010
5011         /*
5012          * Don't touch WM1S_LP_EN here.
5013          * Doing so could cause underruns.
5014          */
5015 }
5016
5017 static void ironlake_init_clock_gating(struct drm_device *dev)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5021
5022         /*
5023          * Required for FBC
5024          * WaFbcDisableDpfcClockGating:ilk
5025          */
5026         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5027                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5028                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5029
5030         I915_WRITE(PCH_3DCGDIS0,
5031                    MARIUNIT_CLOCK_GATE_DISABLE |
5032                    SVSMUNIT_CLOCK_GATE_DISABLE);
5033         I915_WRITE(PCH_3DCGDIS1,
5034                    VFMUNIT_CLOCK_GATE_DISABLE);
5035
5036         /*
5037          * According to the spec the following bits should be set in
5038          * order to enable memory self-refresh
5039          * The bit 22/21 of 0x42004
5040          * The bit 5 of 0x42020
5041          * The bit 15 of 0x45000
5042          */
5043         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5044                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5045                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5046         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5047         I915_WRITE(DISP_ARB_CTL,
5048                    (I915_READ(DISP_ARB_CTL) |
5049                     DISP_FBC_WM_DIS));
5050
5051         ilk_init_lp_watermarks(dev);
5052
5053         /*
5054          * Based on the document from hardware guys the following bits
5055          * should be set unconditionally in order to enable FBC.
5056          * The bit 22 of 0x42000
5057          * The bit 22 of 0x42004
5058          * The bit 7,8,9 of 0x42020.
5059          */
5060         if (IS_IRONLAKE_M(dev)) {
5061                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5062                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5063                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5064                            ILK_FBCQ_DIS);
5065                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5066                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5067                            ILK_DPARB_GATE);
5068         }
5069
5070         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5071
5072         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5073                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5074                    ILK_ELPIN_409_SELECT);
5075         I915_WRITE(_3D_CHICKEN2,
5076                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5077                    _3D_CHICKEN2_WM_READ_PIPELINED);
5078
5079         /* WaDisableRenderCachePipelinedFlush:ilk */
5080         I915_WRITE(CACHE_MODE_0,
5081                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5082
5083         /* WaDisable_RenderCache_OperationalFlush:ilk */
5084         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5085
5086         g4x_disable_trickle_feed(dev);
5087
5088         ibx_init_clock_gating(dev);
5089 }
5090
5091 static void cpt_init_clock_gating(struct drm_device *dev)
5092 {
5093         struct drm_i915_private *dev_priv = dev->dev_private;
5094         int pipe;
5095         uint32_t val;
5096
5097         /*
5098          * On Ibex Peak and Cougar Point, we need to disable clock
5099          * gating for the panel power sequencer or it will fail to
5100          * start up when no ports are active.
5101          */
5102         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5103                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5104                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5105         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5106                    DPLS_EDP_PPS_FIX_DIS);
5107         /* The below fixes the weird display corruption, a few pixels shifted
5108          * downward, on (only) LVDS of some HP laptops with IVY.
5109          */
5110         for_each_pipe(pipe) {
5111                 val = I915_READ(TRANS_CHICKEN2(pipe));
5112                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5113                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5114                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5115                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5116                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5117                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5118                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5119                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5120         }
5121         /* WADP0ClockGatingDisable */
5122         for_each_pipe(pipe) {
5123                 I915_WRITE(TRANS_CHICKEN1(pipe),
5124                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5125         }
5126 }
5127
5128 static void gen6_check_mch_setup(struct drm_device *dev)
5129 {
5130         struct drm_i915_private *dev_priv = dev->dev_private;
5131         uint32_t tmp;
5132
5133         tmp = I915_READ(MCH_SSKPD);
5134         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
5135                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
5136                 DRM_INFO("This can cause pipe underruns and display issues.\n");
5137                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
5138         }
5139 }
5140
5141 static void gen6_init_clock_gating(struct drm_device *dev)
5142 {
5143         struct drm_i915_private *dev_priv = dev->dev_private;
5144         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5145
5146         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5147
5148         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5149                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5150                    ILK_ELPIN_409_SELECT);
5151
5152         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5153         I915_WRITE(_3D_CHICKEN,
5154                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5155
5156         /* WaSetupGtModeTdRowDispatch:snb */
5157         if (IS_SNB_GT1(dev))
5158                 I915_WRITE(GEN6_GT_MODE,
5159                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5160
5161         /* WaDisable_RenderCache_OperationalFlush:snb */
5162         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5163
5164         /*
5165          * BSpec recoomends 8x4 when MSAA is used,
5166          * however in practice 16x4 seems fastest.
5167          *
5168          * Note that PS/WM thread counts depend on the WIZ hashing
5169          * disable bit, which we don't touch here, but it's good
5170          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5171          */
5172         I915_WRITE(GEN6_GT_MODE,
5173                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5174
5175         ilk_init_lp_watermarks(dev);
5176
5177         I915_WRITE(CACHE_MODE_0,
5178                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5179
5180         I915_WRITE(GEN6_UCGCTL1,
5181                    I915_READ(GEN6_UCGCTL1) |
5182                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5183                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5184
5185         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5186          * gating disable must be set.  Failure to set it results in
5187          * flickering pixels due to Z write ordering failures after
5188          * some amount of runtime in the Mesa "fire" demo, and Unigine
5189          * Sanctuary and Tropics, and apparently anything else with
5190          * alpha test or pixel discard.
5191          *
5192          * According to the spec, bit 11 (RCCUNIT) must also be set,
5193          * but we didn't debug actual testcases to find it out.
5194          *
5195          * WaDisableRCCUnitClockGating:snb
5196          * WaDisableRCPBUnitClockGating:snb
5197          */
5198         I915_WRITE(GEN6_UCGCTL2,
5199                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5200                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5201
5202         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5203         I915_WRITE(_3D_CHICKEN3,
5204                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5205
5206         /*
5207          * Bspec says:
5208          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5209          * 3DSTATE_SF number of SF output attributes is more than 16."
5210          */
5211         I915_WRITE(_3D_CHICKEN3,
5212                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5213
5214         /*
5215          * According to the spec the following bits should be
5216          * set in order to enable memory self-refresh and fbc:
5217          * The bit21 and bit22 of 0x42000
5218          * The bit21 and bit22 of 0x42004
5219          * The bit5 and bit7 of 0x42020
5220          * The bit14 of 0x70180
5221          * The bit14 of 0x71180
5222          *
5223          * WaFbcAsynchFlipDisableFbcQueue:snb
5224          */
5225         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5226                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5227                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5228         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5229                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5230                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5231         I915_WRITE(ILK_DSPCLK_GATE_D,
5232                    I915_READ(ILK_DSPCLK_GATE_D) |
5233                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5234                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5235
5236         g4x_disable_trickle_feed(dev);
5237
5238         cpt_init_clock_gating(dev);
5239
5240         gen6_check_mch_setup(dev);
5241 }
5242
5243 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5244 {
5245         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5246
5247         /*
5248          * WaVSThreadDispatchOverride:ivb,vlv
5249          *
5250          * This actually overrides the dispatch
5251          * mode for all thread types.
5252          */
5253         reg &= ~GEN7_FF_SCHED_MASK;
5254         reg |= GEN7_FF_TS_SCHED_HW;
5255         reg |= GEN7_FF_VS_SCHED_HW;
5256         reg |= GEN7_FF_DS_SCHED_HW;
5257
5258         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5259 }
5260
5261 static void lpt_init_clock_gating(struct drm_device *dev)
5262 {
5263         struct drm_i915_private *dev_priv = dev->dev_private;
5264
5265         /*
5266          * TODO: this bit should only be enabled when really needed, then
5267          * disabled when not needed anymore in order to save power.
5268          */
5269         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5270                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5271                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5272                            PCH_LP_PARTITION_LEVEL_DISABLE);
5273
5274         /* WADPOClockGatingDisable:hsw */
5275         I915_WRITE(_TRANSA_CHICKEN1,
5276                    I915_READ(_TRANSA_CHICKEN1) |
5277                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5278 }
5279
5280 static void lpt_suspend_hw(struct drm_device *dev)
5281 {
5282         struct drm_i915_private *dev_priv = dev->dev_private;
5283
5284         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5285                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5286
5287                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5288                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5289         }
5290 }
5291
5292 static void gen8_init_clock_gating(struct drm_device *dev)
5293 {
5294         struct drm_i915_private *dev_priv = dev->dev_private;
5295         enum pipe pipe;
5296
5297         I915_WRITE(WM3_LP_ILK, 0);
5298         I915_WRITE(WM2_LP_ILK, 0);
5299         I915_WRITE(WM1_LP_ILK, 0);
5300
5301         /* FIXME(BDW): Check all the w/a, some might only apply to
5302          * pre-production hw. */
5303
5304         /* WaDisablePartialInstShootdown:bdw */
5305         I915_WRITE(GEN8_ROW_CHICKEN,
5306                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5307
5308         /* WaDisableThreadStallDopClockGating:bdw */
5309         /* FIXME: Unclear whether we really need this on production bdw. */
5310         I915_WRITE(GEN8_ROW_CHICKEN,
5311                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5312
5313         /*
5314          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5315          * pre-production hardware
5316          */
5317         I915_WRITE(HALF_SLICE_CHICKEN3,
5318                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5319         I915_WRITE(HALF_SLICE_CHICKEN3,
5320                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5321         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5322
5323         I915_WRITE(_3D_CHICKEN3,
5324                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5325
5326         I915_WRITE(COMMON_SLICE_CHICKEN2,
5327                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5328
5329         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5330                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5331
5332         /* WaDisableDopClockGating:bdw May not be needed for production */
5333         I915_WRITE(GEN7_ROW_CHICKEN2,
5334                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5335
5336         /* WaSwitchSolVfFArbitrationPriority:bdw */
5337         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5338
5339         /* WaPsrDPAMaskVBlankInSRD:bdw */
5340         I915_WRITE(CHICKEN_PAR1_1,
5341                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5342
5343         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5344         for_each_pipe(pipe) {
5345                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5346                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5347                            BDW_DPRS_MASK_VBLANK_SRD);
5348         }
5349
5350         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5351          * workaround for for a possible hang in the unlikely event a TLB
5352          * invalidation occurs during a PSD flush.
5353          */
5354         I915_WRITE(HDC_CHICKEN0,
5355                    I915_READ(HDC_CHICKEN0) |
5356                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5357
5358         /* WaVSRefCountFullforceMissDisable:bdw */
5359         /* WaDSRefCountFullforceMissDisable:bdw */
5360         I915_WRITE(GEN7_FF_THREAD_MODE,
5361                    I915_READ(GEN7_FF_THREAD_MODE) &
5362                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5363
5364         /*
5365          * BSpec recommends 8x4 when MSAA is used,
5366          * however in practice 16x4 seems fastest.
5367          *
5368          * Note that PS/WM thread counts depend on the WIZ hashing
5369          * disable bit, which we don't touch here, but it's good
5370          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5371          */
5372         I915_WRITE(GEN7_GT_MODE,
5373                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5374
5375         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5376                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5377
5378         /* WaDisableSDEUnitClockGating:bdw */
5379         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5380                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5381
5382         /* Wa4x4STCOptimizationDisable:bdw */
5383         I915_WRITE(CACHE_MODE_1,
5384                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5385 }
5386
5387 static void haswell_init_clock_gating(struct drm_device *dev)
5388 {
5389         struct drm_i915_private *dev_priv = dev->dev_private;
5390
5391         ilk_init_lp_watermarks(dev);
5392
5393         /* L3 caching of data atomics doesn't work -- disable it. */
5394         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5395         I915_WRITE(HSW_ROW_CHICKEN3,
5396                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5397
5398         /* This is required by WaCatErrorRejectionIssue:hsw */
5399         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5400                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5401                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5402
5403         /* WaVSRefCountFullforceMissDisable:hsw */
5404         I915_WRITE(GEN7_FF_THREAD_MODE,
5405                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5406
5407         /* WaDisable_RenderCache_OperationalFlush:hsw */
5408         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5409
5410         /* enable HiZ Raw Stall Optimization */
5411         I915_WRITE(CACHE_MODE_0_GEN7,
5412                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5413
5414         /* WaDisable4x2SubspanOptimization:hsw */
5415         I915_WRITE(CACHE_MODE_1,
5416                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5417
5418         /*
5419          * BSpec recommends 8x4 when MSAA is used,
5420          * however in practice 16x4 seems fastest.
5421          *
5422          * Note that PS/WM thread counts depend on the WIZ hashing
5423          * disable bit, which we don't touch here, but it's good
5424          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5425          */
5426         I915_WRITE(GEN7_GT_MODE,
5427                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5428
5429         /* WaSwitchSolVfFArbitrationPriority:hsw */
5430         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5431
5432         /* WaRsPkgCStateDisplayPMReq:hsw */
5433         I915_WRITE(CHICKEN_PAR1_1,
5434                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5435
5436         lpt_init_clock_gating(dev);
5437 }
5438
5439 static void ivybridge_init_clock_gating(struct drm_device *dev)
5440 {
5441         struct drm_i915_private *dev_priv = dev->dev_private;
5442         uint32_t snpcr;
5443
5444         ilk_init_lp_watermarks(dev);
5445
5446         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5447
5448         /* WaDisableEarlyCull:ivb */
5449         I915_WRITE(_3D_CHICKEN3,
5450                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5451
5452         /* WaDisableBackToBackFlipFix:ivb */
5453         I915_WRITE(IVB_CHICKEN3,
5454                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5455                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5456
5457         /* WaDisablePSDDualDispatchEnable:ivb */
5458         if (IS_IVB_GT1(dev))
5459                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5460                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5461
5462         /* WaDisable_RenderCache_OperationalFlush:ivb */
5463         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5464
5465         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5466         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5467                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5468
5469         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5470         I915_WRITE(GEN7_L3CNTLREG1,
5471                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5472         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5473                    GEN7_WA_L3_CHICKEN_MODE);
5474         if (IS_IVB_GT1(dev))
5475                 I915_WRITE(GEN7_ROW_CHICKEN2,
5476                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5477         else {
5478                 /* must write both registers */
5479                 I915_WRITE(GEN7_ROW_CHICKEN2,
5480                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5481                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5482                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5483         }
5484
5485         /* WaForceL3Serialization:ivb */
5486         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5487                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5488
5489         /*
5490          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5491          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5492          */
5493         I915_WRITE(GEN6_UCGCTL2,
5494                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5495
5496         /* This is required by WaCatErrorRejectionIssue:ivb */
5497         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5498                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5499                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5500
5501         g4x_disable_trickle_feed(dev);
5502
5503         gen7_setup_fixed_func_scheduler(dev_priv);
5504
5505         if (0) { /* causes HiZ corruption on ivb:gt1 */
5506                 /* enable HiZ Raw Stall Optimization */
5507                 I915_WRITE(CACHE_MODE_0_GEN7,
5508                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5509         }
5510
5511         /* WaDisable4x2SubspanOptimization:ivb */
5512         I915_WRITE(CACHE_MODE_1,
5513                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5514
5515         /*
5516          * BSpec recommends 8x4 when MSAA is used,
5517          * however in practice 16x4 seems fastest.
5518          *
5519          * Note that PS/WM thread counts depend on the WIZ hashing
5520          * disable bit, which we don't touch here, but it's good
5521          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5522          */
5523         I915_WRITE(GEN7_GT_MODE,
5524                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5525
5526         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5527         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5528         snpcr |= GEN6_MBC_SNPCR_MED;
5529         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5530
5531         if (!HAS_PCH_NOP(dev))
5532                 cpt_init_clock_gating(dev);
5533
5534         gen6_check_mch_setup(dev);
5535 }
5536
5537 static void valleyview_init_clock_gating(struct drm_device *dev)
5538 {
5539         struct drm_i915_private *dev_priv = dev->dev_private;
5540         u32 val;
5541
5542         mutex_lock(&dev_priv->rps.hw_lock);
5543         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5544         mutex_unlock(&dev_priv->rps.hw_lock);
5545         switch ((val >> 6) & 3) {
5546         case 0:
5547         case 1:
5548                 dev_priv->mem_freq = 800;
5549                 break;
5550         case 2:
5551                 dev_priv->mem_freq = 1066;
5552                 break;
5553         case 3:
5554                 dev_priv->mem_freq = 1333;
5555                 break;
5556         }
5557         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5558
5559         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5560         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5561                          dev_priv->vlv_cdclk_freq);
5562
5563         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5564
5565         /* WaDisableEarlyCull:vlv */
5566         I915_WRITE(_3D_CHICKEN3,
5567                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5568
5569         /* WaDisableBackToBackFlipFix:vlv */
5570         I915_WRITE(IVB_CHICKEN3,
5571                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5572                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5573
5574         /* WaPsdDispatchEnable:vlv */
5575         /* WaDisablePSDDualDispatchEnable:vlv */
5576         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5577                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5578                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5579
5580         /* WaDisable_RenderCache_OperationalFlush:vlv */
5581         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5582
5583         /* WaForceL3Serialization:vlv */
5584         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5585                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5586
5587         /* WaDisableDopClockGating:vlv */
5588         I915_WRITE(GEN7_ROW_CHICKEN2,
5589                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5590
5591         /* This is required by WaCatErrorRejectionIssue:vlv */
5592         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5593                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5594                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5595
5596         gen7_setup_fixed_func_scheduler(dev_priv);
5597
5598         /*
5599          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5600          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5601          */
5602         I915_WRITE(GEN6_UCGCTL2,
5603                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5604
5605         /* WaDisableL3Bank2xClockGate:vlv
5606          * Disabling L3 clock gating- MMIO 940c[25] = 1
5607          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5608         I915_WRITE(GEN7_UCGCTL4,
5609                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5610
5611         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5612
5613         /*
5614          * BSpec says this must be set, even though
5615          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5616          */
5617         I915_WRITE(CACHE_MODE_1,
5618                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5619
5620         /*
5621          * WaIncreaseL3CreditsForVLVB0:vlv
5622          * This is the hardware default actually.
5623          */
5624         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5625
5626         /*
5627          * WaDisableVLVClockGating_VBIIssue:vlv
5628          * Disable clock gating on th GCFG unit to prevent a delay
5629          * in the reporting of vblank events.
5630          */
5631         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5632 }
5633
5634 static void cherryview_init_clock_gating(struct drm_device *dev)
5635 {
5636         struct drm_i915_private *dev_priv = dev->dev_private;
5637
5638         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5639
5640         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5641
5642         /* WaDisablePartialInstShootdown:chv */
5643         I915_WRITE(GEN8_ROW_CHICKEN,
5644                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5645
5646         /* WaDisableThreadStallDopClockGating:chv */
5647         I915_WRITE(GEN8_ROW_CHICKEN,
5648                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5649
5650         /* WaVSRefCountFullforceMissDisable:chv */
5651         /* WaDSRefCountFullforceMissDisable:chv */
5652         I915_WRITE(GEN7_FF_THREAD_MODE,
5653                    I915_READ(GEN7_FF_THREAD_MODE) &
5654                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5655
5656         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5657         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5658                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5659
5660         /* WaDisableCSUnitClockGating:chv */
5661         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5662                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5663
5664         /* WaDisableSDEUnitClockGating:chv */
5665         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5666                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5667
5668         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5669         I915_WRITE(HALF_SLICE_CHICKEN3,
5670                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5671
5672         /* WaDisableGunitClockGating:chv (pre-production hw) */
5673         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5674                    GINT_DIS);
5675
5676         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5677         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5678                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5679
5680         /* WaDisableDopClockGating:chv (pre-production hw) */
5681         I915_WRITE(GEN7_ROW_CHICKEN2,
5682                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5683         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5684                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5685 }
5686
5687 static void g4x_init_clock_gating(struct drm_device *dev)
5688 {
5689         struct drm_i915_private *dev_priv = dev->dev_private;
5690         uint32_t dspclk_gate;
5691
5692         I915_WRITE(RENCLK_GATE_D1, 0);
5693         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5694                    GS_UNIT_CLOCK_GATE_DISABLE |
5695                    CL_UNIT_CLOCK_GATE_DISABLE);
5696         I915_WRITE(RAMCLK_GATE_D, 0);
5697         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5698                 OVRUNIT_CLOCK_GATE_DISABLE |
5699                 OVCUNIT_CLOCK_GATE_DISABLE;
5700         if (IS_GM45(dev))
5701                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5702         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5703
5704         /* WaDisableRenderCachePipelinedFlush */
5705         I915_WRITE(CACHE_MODE_0,
5706                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5707
5708         /* WaDisable_RenderCache_OperationalFlush:g4x */
5709         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5710
5711         g4x_disable_trickle_feed(dev);
5712 }
5713
5714 static void crestline_init_clock_gating(struct drm_device *dev)
5715 {
5716         struct drm_i915_private *dev_priv = dev->dev_private;
5717
5718         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5719         I915_WRITE(RENCLK_GATE_D2, 0);
5720         I915_WRITE(DSPCLK_GATE_D, 0);
5721         I915_WRITE(RAMCLK_GATE_D, 0);
5722         I915_WRITE16(DEUC, 0);
5723         I915_WRITE(MI_ARB_STATE,
5724                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5725
5726         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5727         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5728 }
5729
5730 static void broadwater_init_clock_gating(struct drm_device *dev)
5731 {
5732         struct drm_i915_private *dev_priv = dev->dev_private;
5733
5734         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5735                    I965_RCC_CLOCK_GATE_DISABLE |
5736                    I965_RCPB_CLOCK_GATE_DISABLE |
5737                    I965_ISC_CLOCK_GATE_DISABLE |
5738                    I965_FBC_CLOCK_GATE_DISABLE);
5739         I915_WRITE(RENCLK_GATE_D2, 0);
5740         I915_WRITE(MI_ARB_STATE,
5741                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5742
5743         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5744         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5745 }
5746
5747 static void gen3_init_clock_gating(struct drm_device *dev)
5748 {
5749         struct drm_i915_private *dev_priv = dev->dev_private;
5750         u32 dstate = I915_READ(D_STATE);
5751
5752         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5753                 DSTATE_DOT_CLOCK_GATING;
5754         I915_WRITE(D_STATE, dstate);
5755
5756         if (IS_PINEVIEW(dev))
5757                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5758
5759         /* IIR "flip pending" means done if this bit is set */
5760         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5761
5762         /* interrupts should cause a wake up from C3 */
5763         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5764
5765         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5766         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5767 }
5768
5769 static void i85x_init_clock_gating(struct drm_device *dev)
5770 {
5771         struct drm_i915_private *dev_priv = dev->dev_private;
5772
5773         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5774
5775         /* interrupts should cause a wake up from C3 */
5776         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5777                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5778 }
5779
5780 static void i830_init_clock_gating(struct drm_device *dev)
5781 {
5782         struct drm_i915_private *dev_priv = dev->dev_private;
5783
5784         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5785 }
5786
5787 void intel_init_clock_gating(struct drm_device *dev)
5788 {
5789         struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791         dev_priv->display.init_clock_gating(dev);
5792 }
5793
5794 void intel_suspend_hw(struct drm_device *dev)
5795 {
5796         if (HAS_PCH_LPT(dev))
5797                 lpt_suspend_hw(dev);
5798 }
5799
5800 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5801         for (i = 0;                                                     \
5802              i < (power_domains)->power_well_count &&                   \
5803                  ((power_well) = &(power_domains)->power_wells[i]);     \
5804              i++)                                                       \
5805                 if ((power_well)->domains & (domain_mask))
5806
5807 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5808         for (i = (power_domains)->power_well_count - 1;                  \
5809              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5810              i--)                                                        \
5811                 if ((power_well)->domains & (domain_mask))
5812
5813 /**
5814  * We should only use the power well if we explicitly asked the hardware to
5815  * enable it, so check if it's enabled and also check if we've requested it to
5816  * be enabled.
5817  */
5818 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5819                                    struct i915_power_well *power_well)
5820 {
5821         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5822                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5823 }
5824
5825 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5826                                     enum intel_display_power_domain domain)
5827 {
5828         struct i915_power_domains *power_domains;
5829         struct i915_power_well *power_well;
5830         bool is_enabled;
5831         int i;
5832
5833         if (dev_priv->pm.suspended)
5834                 return false;
5835
5836         power_domains = &dev_priv->power_domains;
5837         is_enabled = true;
5838         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5839                 if (power_well->always_on)
5840                         continue;
5841
5842                 if (!power_well->count) {
5843                         is_enabled = false;
5844                         break;
5845                 }
5846         }
5847         return is_enabled;
5848 }
5849
5850 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5851                                  enum intel_display_power_domain domain)
5852 {
5853         struct i915_power_domains *power_domains;
5854         struct i915_power_well *power_well;
5855         bool is_enabled;
5856         int i;
5857
5858         if (dev_priv->pm.suspended)
5859                 return false;
5860
5861         power_domains = &dev_priv->power_domains;
5862
5863         is_enabled = true;
5864
5865         mutex_lock(&power_domains->lock);
5866         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5867                 if (power_well->always_on)
5868                         continue;
5869
5870                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5871                         is_enabled = false;
5872                         break;
5873                 }
5874         }
5875         mutex_unlock(&power_domains->lock);
5876
5877         return is_enabled;
5878 }
5879
5880 /*
5881  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5882  * when not needed anymore. We have 4 registers that can request the power well
5883  * to be enabled, and it will only be disabled if none of the registers is
5884  * requesting it to be enabled.
5885  */
5886 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5887 {
5888         struct drm_device *dev = dev_priv->dev;
5889         unsigned long irqflags;
5890
5891         /*
5892          * After we re-enable the power well, if we touch VGA register 0x3d5
5893          * we'll get unclaimed register interrupts. This stops after we write
5894          * anything to the VGA MSR register. The vgacon module uses this
5895          * register all the time, so if we unbind our driver and, as a
5896          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5897          * console_unlock(). So make here we touch the VGA MSR register, making
5898          * sure vgacon can keep working normally without triggering interrupts
5899          * and error messages.
5900          */
5901         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5902         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5903         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5904
5905         if (IS_BROADWELL(dev)) {
5906                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5907                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5908                            dev_priv->de_irq_mask[PIPE_B]);
5909                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5910                            ~dev_priv->de_irq_mask[PIPE_B] |
5911                            GEN8_PIPE_VBLANK);
5912                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5913                            dev_priv->de_irq_mask[PIPE_C]);
5914                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5915                            ~dev_priv->de_irq_mask[PIPE_C] |
5916                            GEN8_PIPE_VBLANK);
5917                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5918                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5919         }
5920 }
5921
5922 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5923                                struct i915_power_well *power_well, bool enable)
5924 {
5925         bool is_enabled, enable_requested;
5926         uint32_t tmp;
5927
5928         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5929         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5930         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5931
5932         if (enable) {
5933                 if (!enable_requested)
5934                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5935                                    HSW_PWR_WELL_ENABLE_REQUEST);
5936
5937                 if (!is_enabled) {
5938                         DRM_DEBUG_KMS("Enabling power well\n");
5939                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5940                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5941                                 DRM_ERROR("Timeout enabling power well\n");
5942                 }
5943
5944                 hsw_power_well_post_enable(dev_priv);
5945         } else {
5946                 if (enable_requested) {
5947                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5948                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5949                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5950                 }
5951         }
5952 }
5953
5954 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5955                                    struct i915_power_well *power_well)
5956 {
5957         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5958
5959         /*
5960          * We're taking over the BIOS, so clear any requests made by it since
5961          * the driver is in charge now.
5962          */
5963         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5964                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5965 }
5966
5967 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5968                                   struct i915_power_well *power_well)
5969 {
5970         hsw_set_power_well(dev_priv, power_well, true);
5971 }
5972
5973 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5974                                    struct i915_power_well *power_well)
5975 {
5976         hsw_set_power_well(dev_priv, power_well, false);
5977 }
5978
5979 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5980                                            struct i915_power_well *power_well)
5981 {
5982 }
5983
5984 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5985                                              struct i915_power_well *power_well)
5986 {
5987         return true;
5988 }
5989
5990 void __vlv_set_power_well(struct drm_i915_private *dev_priv,
5991                           enum punit_power_well power_well_id, bool enable)
5992 {
5993         struct drm_device *dev = dev_priv->dev;
5994         u32 mask;
5995         u32 state;
5996         u32 ctrl;
5997         enum pipe pipe;
5998
5999         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6000                 if (enable) {
6001                         /*
6002                          * Enable the CRI clock source so we can get at the
6003                          * display and the reference clock for VGA
6004                          * hotplug / manual detection.
6005                          */
6006                         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6007                                    DPLL_REFA_CLK_ENABLE_VLV |
6008                                    DPLL_INTEGRATED_CRI_CLK_VLV);
6009                         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6010                 } else {
6011                         for_each_pipe(pipe)
6012                                 assert_pll_disabled(dev_priv, pipe);
6013                         /* Assert common reset */
6014                         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
6015                                    ~DPIO_CMNRST);
6016                 }
6017         }
6018
6019         mask = PUNIT_PWRGT_MASK(power_well_id);
6020         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6021                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6022
6023         mutex_lock(&dev_priv->rps.hw_lock);
6024
6025 #define COND \
6026         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6027
6028         if (COND)
6029                 goto out;
6030
6031         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6032         ctrl &= ~mask;
6033         ctrl |= state;
6034         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6035
6036         if (wait_for(COND, 100))
6037                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6038                           state,
6039                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6040
6041 #undef COND
6042
6043 out:
6044         mutex_unlock(&dev_priv->rps.hw_lock);
6045
6046         /*
6047          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6048          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6049          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6050          *   b. The other bits such as sfr settings / modesel may all
6051          *      be set to 0.
6052          *
6053          * This should only be done on init and resume from S3 with
6054          * both PLLs disabled, or we risk losing DPIO and PLL
6055          * synchronization.
6056          */
6057         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
6058                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6059 }
6060
6061 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6062                                struct i915_power_well *power_well, bool enable)
6063 {
6064         enum punit_power_well power_well_id = power_well->data;
6065
6066         __vlv_set_power_well(dev_priv, power_well_id, enable);
6067 }
6068
6069 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6070                                    struct i915_power_well *power_well)
6071 {
6072         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6073 }
6074
6075 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6076                                   struct i915_power_well *power_well)
6077 {
6078         vlv_set_power_well(dev_priv, power_well, true);
6079 }
6080
6081 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6082                                    struct i915_power_well *power_well)
6083 {
6084         vlv_set_power_well(dev_priv, power_well, false);
6085 }
6086
6087 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6088                                    struct i915_power_well *power_well)
6089 {
6090         int power_well_id = power_well->data;
6091         bool enabled = false;
6092         u32 mask;
6093         u32 state;
6094         u32 ctrl;
6095
6096         mask = PUNIT_PWRGT_MASK(power_well_id);
6097         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6098
6099         mutex_lock(&dev_priv->rps.hw_lock);
6100
6101         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6102         /*
6103          * We only ever set the power-on and power-gate states, anything
6104          * else is unexpected.
6105          */
6106         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6107                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6108         if (state == ctrl)
6109                 enabled = true;
6110
6111         /*
6112          * A transient state at this point would mean some unexpected party
6113          * is poking at the power controls too.
6114          */
6115         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6116         WARN_ON(ctrl != state);
6117
6118         mutex_unlock(&dev_priv->rps.hw_lock);
6119
6120         return enabled;
6121 }
6122
6123 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6124                                           struct i915_power_well *power_well)
6125 {
6126         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6127
6128         vlv_set_power_well(dev_priv, power_well, true);
6129
6130         spin_lock_irq(&dev_priv->irq_lock);
6131         valleyview_enable_display_irqs(dev_priv);
6132         spin_unlock_irq(&dev_priv->irq_lock);
6133
6134         /*
6135          * During driver initialization/resume we can avoid restoring the
6136          * part of the HW/SW state that will be inited anyway explicitly.
6137          */
6138         if (dev_priv->power_domains.initializing)
6139                 return;
6140
6141         intel_hpd_init(dev_priv->dev);
6142
6143         i915_redisable_vga_power_on(dev_priv->dev);
6144 }
6145
6146 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6147                                            struct i915_power_well *power_well)
6148 {
6149         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6150
6151         spin_lock_irq(&dev_priv->irq_lock);
6152         valleyview_disable_display_irqs(dev_priv);
6153         spin_unlock_irq(&dev_priv->irq_lock);
6154
6155         vlv_set_power_well(dev_priv, power_well, false);
6156 }
6157
6158 static void check_power_well_state(struct drm_i915_private *dev_priv,
6159                                    struct i915_power_well *power_well)
6160 {
6161         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6162
6163         if (power_well->always_on || !i915.disable_power_well) {
6164                 if (!enabled)
6165                         goto mismatch;
6166
6167                 return;
6168         }
6169
6170         if (enabled != (power_well->count > 0))
6171                 goto mismatch;
6172
6173         return;
6174
6175 mismatch:
6176         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6177                   power_well->name, power_well->always_on, enabled,
6178                   power_well->count, i915.disable_power_well);
6179 }
6180
6181 void intel_display_power_get(struct drm_i915_private *dev_priv,
6182                              enum intel_display_power_domain domain)
6183 {
6184         struct i915_power_domains *power_domains;
6185         struct i915_power_well *power_well;
6186         int i;
6187
6188         intel_runtime_pm_get(dev_priv);
6189
6190         power_domains = &dev_priv->power_domains;
6191
6192         mutex_lock(&power_domains->lock);
6193
6194         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6195                 if (!power_well->count++) {
6196                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6197                         power_well->ops->enable(dev_priv, power_well);
6198                 }
6199
6200                 check_power_well_state(dev_priv, power_well);
6201         }
6202
6203         power_domains->domain_use_count[domain]++;
6204
6205         mutex_unlock(&power_domains->lock);
6206 }
6207
6208 void intel_display_power_put(struct drm_i915_private *dev_priv,
6209                              enum intel_display_power_domain domain)
6210 {
6211         struct i915_power_domains *power_domains;
6212         struct i915_power_well *power_well;
6213         int i;
6214
6215         power_domains = &dev_priv->power_domains;
6216
6217         mutex_lock(&power_domains->lock);
6218
6219         WARN_ON(!power_domains->domain_use_count[domain]);
6220         power_domains->domain_use_count[domain]--;
6221
6222         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6223                 WARN_ON(!power_well->count);
6224
6225                 if (!--power_well->count && i915.disable_power_well) {
6226                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6227                         power_well->ops->disable(dev_priv, power_well);
6228                 }
6229
6230                 check_power_well_state(dev_priv, power_well);
6231         }
6232
6233         mutex_unlock(&power_domains->lock);
6234
6235         intel_runtime_pm_put(dev_priv);
6236 }
6237
6238 static struct i915_power_domains *hsw_pwr;
6239
6240 /* Display audio driver power well request */
6241 void i915_request_power_well(void)
6242 {
6243         struct drm_i915_private *dev_priv;
6244
6245         if (WARN_ON(!hsw_pwr))
6246                 return;
6247
6248         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6249                                 power_domains);
6250         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6251 }
6252 EXPORT_SYMBOL_GPL(i915_request_power_well);
6253
6254 /* Display audio driver power well release */
6255 void i915_release_power_well(void)
6256 {
6257         struct drm_i915_private *dev_priv;
6258
6259         if (WARN_ON(!hsw_pwr))
6260                 return;
6261
6262         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6263                                 power_domains);
6264         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6265 }
6266 EXPORT_SYMBOL_GPL(i915_release_power_well);
6267
6268 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6269
6270 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6271         BIT(POWER_DOMAIN_PIPE_A) |                      \
6272         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6273         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6274         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6275         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6276         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6277         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6278         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6279         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6280         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6281         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6282         BIT(POWER_DOMAIN_INIT))
6283 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6284         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6285         BIT(POWER_DOMAIN_INIT))
6286
6287 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6288         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6289         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6290 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6291         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6292         BIT(POWER_DOMAIN_INIT))
6293
6294 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6295 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6296
6297 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6298         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6299         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6300         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6301         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6302         BIT(POWER_DOMAIN_PORT_CRT) |            \
6303         BIT(POWER_DOMAIN_INIT))
6304
6305 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6306         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6307         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6308         BIT(POWER_DOMAIN_INIT))
6309
6310 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6311         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6312         BIT(POWER_DOMAIN_INIT))
6313
6314 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6315         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6316         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6317         BIT(POWER_DOMAIN_INIT))
6318
6319 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6320         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6321         BIT(POWER_DOMAIN_INIT))
6322
6323 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6324         .sync_hw = i9xx_always_on_power_well_noop,
6325         .enable = i9xx_always_on_power_well_noop,
6326         .disable = i9xx_always_on_power_well_noop,
6327         .is_enabled = i9xx_always_on_power_well_enabled,
6328 };
6329
6330 static struct i915_power_well i9xx_always_on_power_well[] = {
6331         {
6332                 .name = "always-on",
6333                 .always_on = 1,
6334                 .domains = POWER_DOMAIN_MASK,
6335                 .ops = &i9xx_always_on_power_well_ops,
6336         },
6337 };
6338
6339 static const struct i915_power_well_ops hsw_power_well_ops = {
6340         .sync_hw = hsw_power_well_sync_hw,
6341         .enable = hsw_power_well_enable,
6342         .disable = hsw_power_well_disable,
6343         .is_enabled = hsw_power_well_enabled,
6344 };
6345
6346 static struct i915_power_well hsw_power_wells[] = {
6347         {
6348                 .name = "always-on",
6349                 .always_on = 1,
6350                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6351                 .ops = &i9xx_always_on_power_well_ops,
6352         },
6353         {
6354                 .name = "display",
6355                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6356                 .ops = &hsw_power_well_ops,
6357         },
6358 };
6359
6360 static struct i915_power_well bdw_power_wells[] = {
6361         {
6362                 .name = "always-on",
6363                 .always_on = 1,
6364                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6365                 .ops = &i9xx_always_on_power_well_ops,
6366         },
6367         {
6368                 .name = "display",
6369                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6370                 .ops = &hsw_power_well_ops,
6371         },
6372 };
6373
6374 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6375         .sync_hw = vlv_power_well_sync_hw,
6376         .enable = vlv_display_power_well_enable,
6377         .disable = vlv_display_power_well_disable,
6378         .is_enabled = vlv_power_well_enabled,
6379 };
6380
6381 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6382         .sync_hw = vlv_power_well_sync_hw,
6383         .enable = vlv_power_well_enable,
6384         .disable = vlv_power_well_disable,
6385         .is_enabled = vlv_power_well_enabled,
6386 };
6387
6388 static struct i915_power_well vlv_power_wells[] = {
6389         {
6390                 .name = "always-on",
6391                 .always_on = 1,
6392                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6393                 .ops = &i9xx_always_on_power_well_ops,
6394         },
6395         {
6396                 .name = "display",
6397                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6398                 .data = PUNIT_POWER_WELL_DISP2D,
6399                 .ops = &vlv_display_power_well_ops,
6400         },
6401         {
6402                 .name = "dpio-tx-b-01",
6403                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6404                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6405                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6406                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6407                 .ops = &vlv_dpio_power_well_ops,
6408                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6409         },
6410         {
6411                 .name = "dpio-tx-b-23",
6412                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6413                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6414                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6415                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6416                 .ops = &vlv_dpio_power_well_ops,
6417                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6418         },
6419         {
6420                 .name = "dpio-tx-c-01",
6421                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6422                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6423                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6424                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6425                 .ops = &vlv_dpio_power_well_ops,
6426                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6427         },
6428         {
6429                 .name = "dpio-tx-c-23",
6430                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6431                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6432                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6433                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6434                 .ops = &vlv_dpio_power_well_ops,
6435                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6436         },
6437         {
6438                 .name = "dpio-common",
6439                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6440                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6441                 .ops = &vlv_dpio_power_well_ops,
6442         },
6443 };
6444
6445 #define set_power_wells(power_domains, __power_wells) ({                \
6446         (power_domains)->power_wells = (__power_wells);                 \
6447         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6448 })
6449
6450 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6451 {
6452         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6453
6454         mutex_init(&power_domains->lock);
6455
6456         /*
6457          * The enabling order will be from lower to higher indexed wells,
6458          * the disabling order is reversed.
6459          */
6460         if (IS_HASWELL(dev_priv->dev)) {
6461                 set_power_wells(power_domains, hsw_power_wells);
6462                 hsw_pwr = power_domains;
6463         } else if (IS_BROADWELL(dev_priv->dev)) {
6464                 set_power_wells(power_domains, bdw_power_wells);
6465                 hsw_pwr = power_domains;
6466         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6467                 set_power_wells(power_domains, vlv_power_wells);
6468         } else {
6469                 set_power_wells(power_domains, i9xx_always_on_power_well);
6470         }
6471
6472         return 0;
6473 }
6474
6475 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6476 {
6477         hsw_pwr = NULL;
6478 }
6479
6480 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6481 {
6482         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6483         struct i915_power_well *power_well;
6484         int i;
6485
6486         mutex_lock(&power_domains->lock);
6487         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6488                 power_well->ops->sync_hw(dev_priv, power_well);
6489         mutex_unlock(&power_domains->lock);
6490 }
6491
6492 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6493 {
6494         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6495
6496         power_domains->initializing = true;
6497         /* For now, we need the power well to be always enabled. */
6498         intel_display_set_init_power(dev_priv, true);
6499         intel_power_domains_resume(dev_priv);
6500         power_domains->initializing = false;
6501 }
6502
6503 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6504 {
6505         intel_runtime_pm_get(dev_priv);
6506 }
6507
6508 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6509 {
6510         intel_runtime_pm_put(dev_priv);
6511 }
6512
6513 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6514 {
6515         struct drm_device *dev = dev_priv->dev;
6516         struct device *device = &dev->pdev->dev;
6517
6518         if (!HAS_RUNTIME_PM(dev))
6519                 return;
6520
6521         pm_runtime_get_sync(device);
6522         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6523 }
6524
6525 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6526 {
6527         struct drm_device *dev = dev_priv->dev;
6528         struct device *device = &dev->pdev->dev;
6529
6530         if (!HAS_RUNTIME_PM(dev))
6531                 return;
6532
6533         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6534         pm_runtime_get_noresume(device);
6535 }
6536
6537 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6538 {
6539         struct drm_device *dev = dev_priv->dev;
6540         struct device *device = &dev->pdev->dev;
6541
6542         if (!HAS_RUNTIME_PM(dev))
6543                 return;
6544
6545         pm_runtime_mark_last_busy(device);
6546         pm_runtime_put_autosuspend(device);
6547 }
6548
6549 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6550 {
6551         struct drm_device *dev = dev_priv->dev;
6552         struct device *device = &dev->pdev->dev;
6553
6554         if (!HAS_RUNTIME_PM(dev))
6555                 return;
6556
6557         pm_runtime_set_active(device);
6558
6559         /*
6560          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6561          * requirement.
6562          */
6563         if (!intel_enable_rc6(dev)) {
6564                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6565                 return;
6566         }
6567
6568         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6569         pm_runtime_mark_last_busy(device);
6570         pm_runtime_use_autosuspend(device);
6571
6572         pm_runtime_put_autosuspend(device);
6573 }
6574
6575 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6576 {
6577         struct drm_device *dev = dev_priv->dev;
6578         struct device *device = &dev->pdev->dev;
6579
6580         if (!HAS_RUNTIME_PM(dev))
6581                 return;
6582
6583         if (!intel_enable_rc6(dev))
6584                 return;
6585
6586         /* Make sure we're not suspended first. */
6587         pm_runtime_get_sync(device);
6588         pm_runtime_disable(device);
6589 }
6590
6591 /* Set up chip specific power management-related functions */
6592 void intel_init_pm(struct drm_device *dev)
6593 {
6594         struct drm_i915_private *dev_priv = dev->dev_private;
6595
6596         if (HAS_FBC(dev)) {
6597                 if (INTEL_INFO(dev)->gen >= 7) {
6598                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6599                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6600                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6601                 } else if (INTEL_INFO(dev)->gen >= 5) {
6602                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6603                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6604                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6605                 } else if (IS_GM45(dev)) {
6606                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6607                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6608                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6609                 } else {
6610                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6611                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6612                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6613
6614                         /* This value was pulled out of someone's hat */
6615                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6616                 }
6617         }
6618
6619         /* For cxsr */
6620         if (IS_PINEVIEW(dev))
6621                 i915_pineview_get_mem_freq(dev);
6622         else if (IS_GEN5(dev))
6623                 i915_ironlake_get_mem_freq(dev);
6624
6625         /* For FIFO watermark updates */
6626         if (HAS_PCH_SPLIT(dev)) {
6627                 ilk_setup_wm_latency(dev);
6628
6629                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6630                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6631                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6632                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6633                         dev_priv->display.update_wm = ilk_update_wm;
6634                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6635                 } else {
6636                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6637                                       "Disable CxSR\n");
6638                 }
6639
6640                 if (IS_GEN5(dev))
6641                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6642                 else if (IS_GEN6(dev))
6643                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6644                 else if (IS_IVYBRIDGE(dev))
6645                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6646                 else if (IS_HASWELL(dev))
6647                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6648                 else if (INTEL_INFO(dev)->gen == 8)
6649                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6650         } else if (IS_CHERRYVIEW(dev)) {
6651                 dev_priv->display.update_wm = valleyview_update_wm;
6652                 dev_priv->display.init_clock_gating =
6653                         cherryview_init_clock_gating;
6654         } else if (IS_VALLEYVIEW(dev)) {
6655                 dev_priv->display.update_wm = valleyview_update_wm;
6656                 dev_priv->display.init_clock_gating =
6657                         valleyview_init_clock_gating;
6658         } else if (IS_PINEVIEW(dev)) {
6659                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6660                                             dev_priv->is_ddr3,
6661                                             dev_priv->fsb_freq,
6662                                             dev_priv->mem_freq)) {
6663                         DRM_INFO("failed to find known CxSR latency "
6664                                  "(found ddr%s fsb freq %d, mem freq %d), "
6665                                  "disabling CxSR\n",
6666                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6667                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6668                         /* Disable CxSR and never update its watermark again */
6669                         pineview_disable_cxsr(dev);
6670                         dev_priv->display.update_wm = NULL;
6671                 } else
6672                         dev_priv->display.update_wm = pineview_update_wm;
6673                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6674         } else if (IS_G4X(dev)) {
6675                 dev_priv->display.update_wm = g4x_update_wm;
6676                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6677         } else if (IS_GEN4(dev)) {
6678                 dev_priv->display.update_wm = i965_update_wm;
6679                 if (IS_CRESTLINE(dev))
6680                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6681                 else if (IS_BROADWATER(dev))
6682                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6683         } else if (IS_GEN3(dev)) {
6684                 dev_priv->display.update_wm = i9xx_update_wm;
6685                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6686                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6687         } else if (IS_GEN2(dev)) {
6688                 if (INTEL_INFO(dev)->num_pipes == 1) {
6689                         dev_priv->display.update_wm = i845_update_wm;
6690                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6691                 } else {
6692                         dev_priv->display.update_wm = i9xx_update_wm;
6693                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6694                 }
6695
6696                 if (IS_I85X(dev) || IS_I865G(dev))
6697                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6698                 else
6699                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6700         } else {
6701                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6702         }
6703 }
6704
6705 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6706 {
6707         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6708
6709         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6710                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6711                 return -EAGAIN;
6712         }
6713
6714         I915_WRITE(GEN6_PCODE_DATA, *val);
6715         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6716
6717         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6718                      500)) {
6719                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6720                 return -ETIMEDOUT;
6721         }
6722
6723         *val = I915_READ(GEN6_PCODE_DATA);
6724         I915_WRITE(GEN6_PCODE_DATA, 0);
6725
6726         return 0;
6727 }
6728
6729 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6730 {
6731         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6732
6733         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6734                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6735                 return -EAGAIN;
6736         }
6737
6738         I915_WRITE(GEN6_PCODE_DATA, val);
6739         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6740
6741         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6742                      500)) {
6743                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6744                 return -ETIMEDOUT;
6745         }
6746
6747         I915_WRITE(GEN6_PCODE_DATA, 0);
6748
6749         return 0;
6750 }
6751
6752 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6753 {
6754         int div;
6755
6756         /* 4 x czclk */
6757         switch (dev_priv->mem_freq) {
6758         case 800:
6759                 div = 10;
6760                 break;
6761         case 1066:
6762                 div = 12;
6763                 break;
6764         case 1333:
6765                 div = 16;
6766                 break;
6767         default:
6768                 return -1;
6769         }
6770
6771         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6772 }
6773
6774 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6775 {
6776         int mul;
6777
6778         /* 4 x czclk */
6779         switch (dev_priv->mem_freq) {
6780         case 800:
6781                 mul = 10;
6782                 break;
6783         case 1066:
6784                 mul = 12;
6785                 break;
6786         case 1333:
6787                 mul = 16;
6788                 break;
6789         default:
6790                 return -1;
6791         }
6792
6793         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6794 }
6795
6796 void intel_pm_setup(struct drm_device *dev)
6797 {
6798         struct drm_i915_private *dev_priv = dev->dev_private;
6799
6800         mutex_init(&dev_priv->rps.hw_lock);
6801
6802         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6803                           intel_gen6_powersave_work);
6804
6805         dev_priv->pm.suspended = false;
6806         dev_priv->pm.irqs_disabled = false;
6807 }